src/cpu/sparc/vm/assembler_sparc.hpp

Thu, 11 Aug 2011 12:08:11 -0700

author
kvn
date
Thu, 11 Aug 2011 12:08:11 -0700
changeset 3049
95134e034042
parent 3037
3d42f82cd811
child 3052
1af104d6cf99
permissions
-rw-r--r--

7063629: use cbcond in C2 generated code on T4
Summary: Use new short branch instruction in C2 generated code.
Reviewed-by: never

duke@435 1 /*
phh@2423 2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
stefank@2314 26 #define CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
stefank@2314 27
duke@435 28 class BiasedLockingCounters;
duke@435 29
duke@435 30 // <sys/trap.h> promises that the system will not use traps 16-31
duke@435 31 #define ST_RESERVED_FOR_USER_0 0x10
duke@435 32
duke@435 33 /* Written: David Ungar 4/19/97 */
duke@435 34
duke@435 35 // Contains all the definitions needed for sparc assembly code generation.
duke@435 36
duke@435 37 // Register aliases for parts of the system:
duke@435 38
duke@435 39 // 64 bit values can be kept in g1-g5, o1-o5 and o7 and all 64 bits are safe
duke@435 40 // across context switches in V8+ ABI. Of course, there are no 64 bit regs
duke@435 41 // in V8 ABI. All 64 bits are preserved in V9 ABI for all registers.
duke@435 42
duke@435 43 // g2-g4 are scratch registers called "application globals". Their
duke@435 44 // meaning is reserved to the "compilation system"--which means us!
duke@435 45 // They are are not supposed to be touched by ordinary C code, although
duke@435 46 // highly-optimized C code might steal them for temps. They are safe
duke@435 47 // across thread switches, and the ABI requires that they be safe
duke@435 48 // across function calls.
duke@435 49 //
duke@435 50 // g1 and g3 are touched by more modules. V8 allows g1 to be clobbered
duke@435 51 // across func calls, and V8+ also allows g5 to be clobbered across
duke@435 52 // func calls. Also, g1 and g5 can get touched while doing shared
duke@435 53 // library loading.
duke@435 54 //
duke@435 55 // We must not touch g7 (it is the thread-self register) and g6 is
duke@435 56 // reserved for certain tools. g0, of course, is always zero.
duke@435 57 //
duke@435 58 // (Sources: SunSoft Compilers Group, thread library engineers.)
duke@435 59
duke@435 60 // %%%% The interpreter should be revisited to reduce global scratch regs.
duke@435 61
duke@435 62 // This global always holds the current JavaThread pointer:
duke@435 63
duke@435 64 REGISTER_DECLARATION(Register, G2_thread , G2);
coleenp@548 65 REGISTER_DECLARATION(Register, G6_heapbase , G6);
duke@435 66
duke@435 67 // The following globals are part of the Java calling convention:
duke@435 68
duke@435 69 REGISTER_DECLARATION(Register, G5_method , G5);
duke@435 70 REGISTER_DECLARATION(Register, G5_megamorphic_method , G5_method);
duke@435 71 REGISTER_DECLARATION(Register, G5_inline_cache_reg , G5_method);
duke@435 72
duke@435 73 // The following globals are used for the new C1 & interpreter calling convention:
duke@435 74 REGISTER_DECLARATION(Register, Gargs , G4); // pointing to the last argument
duke@435 75
duke@435 76 // This local is used to preserve G2_thread in the interpreter and in stubs:
duke@435 77 REGISTER_DECLARATION(Register, L7_thread_cache , L7);
duke@435 78
duke@435 79 // These globals are used as scratch registers in the interpreter:
duke@435 80
duke@435 81 REGISTER_DECLARATION(Register, Gframe_size , G1); // SAME REG as G1_scratch
duke@435 82 REGISTER_DECLARATION(Register, G1_scratch , G1); // also SAME
duke@435 83 REGISTER_DECLARATION(Register, G3_scratch , G3);
duke@435 84 REGISTER_DECLARATION(Register, G4_scratch , G4);
duke@435 85
duke@435 86 // These globals are used as short-lived scratch registers in the compiler:
duke@435 87
duke@435 88 REGISTER_DECLARATION(Register, Gtemp , G5);
duke@435 89
jrose@1145 90 // JSR 292 fixed register usages:
jrose@1145 91 REGISTER_DECLARATION(Register, G5_method_type , G5);
jrose@1145 92 REGISTER_DECLARATION(Register, G3_method_handle , G3);
twisti@1919 93 REGISTER_DECLARATION(Register, L7_mh_SP_save , L7);
jrose@1145 94
duke@435 95 // The compiler requires that G5_megamorphic_method is G5_inline_cache_klass,
duke@435 96 // because a single patchable "set" instruction (NativeMovConstReg,
duke@435 97 // or NativeMovConstPatching for compiler1) instruction
duke@435 98 // serves to set up either quantity, depending on whether the compiled
duke@435 99 // call site is an inline cache or is megamorphic. See the function
duke@435 100 // CompiledIC::set_to_megamorphic.
duke@435 101 //
jrose@1145 102 // If a inline cache targets an interpreted method, then the
jrose@1145 103 // G5 register will be used twice during the call. First,
jrose@1145 104 // the call site will be patched to load a compiledICHolder
jrose@1145 105 // into G5. (This is an ordered pair of ic_klass, method.)
jrose@1145 106 // The c2i adapter will first check the ic_klass, then load
jrose@1145 107 // G5_method with the method part of the pair just before
jrose@1145 108 // jumping into the interpreter.
duke@435 109 //
duke@435 110 // Note that G5_method is only the method-self for the interpreter,
duke@435 111 // and is logically unrelated to G5_megamorphic_method.
duke@435 112 //
duke@435 113 // Invariants on G2_thread (the JavaThread pointer):
duke@435 114 // - it should not be used for any other purpose anywhere
duke@435 115 // - it must be re-initialized by StubRoutines::call_stub()
duke@435 116 // - it must be preserved around every use of call_VM
duke@435 117
duke@435 118 // We can consider using g2/g3/g4 to cache more values than the
duke@435 119 // JavaThread, such as the card-marking base or perhaps pointers into
duke@435 120 // Eden. It's something of a waste to use them as scratch temporaries,
duke@435 121 // since they are not supposed to be volatile. (Of course, if we find
duke@435 122 // that Java doesn't benefit from application globals, then we can just
duke@435 123 // use them as ordinary temporaries.)
duke@435 124 //
duke@435 125 // Since g1 and g5 (and/or g6) are the volatile (caller-save) registers,
duke@435 126 // it makes sense to use them routinely for procedure linkage,
duke@435 127 // whenever the On registers are not applicable. Examples: G5_method,
duke@435 128 // G5_inline_cache_klass, and a double handful of miscellaneous compiler
duke@435 129 // stubs. This means that compiler stubs, etc., should be kept to a
duke@435 130 // maximum of two or three G-register arguments.
duke@435 131
duke@435 132
duke@435 133 // stub frames
duke@435 134
duke@435 135 REGISTER_DECLARATION(Register, Lentry_args , L0); // pointer to args passed to callee (interpreter) not stub itself
duke@435 136
duke@435 137 // Interpreter frames
duke@435 138
duke@435 139 #ifdef CC_INTERP
duke@435 140 REGISTER_DECLARATION(Register, Lstate , L0); // interpreter state object pointer
duke@435 141 REGISTER_DECLARATION(Register, L1_scratch , L1); // scratch
duke@435 142 REGISTER_DECLARATION(Register, Lmirror , L1); // mirror (for native methods only)
duke@435 143 REGISTER_DECLARATION(Register, L2_scratch , L2);
duke@435 144 REGISTER_DECLARATION(Register, L3_scratch , L3);
duke@435 145 REGISTER_DECLARATION(Register, L4_scratch , L4);
duke@435 146 REGISTER_DECLARATION(Register, Lscratch , L5); // C1 uses
duke@435 147 REGISTER_DECLARATION(Register, Lscratch2 , L6); // C1 uses
duke@435 148 REGISTER_DECLARATION(Register, L7_scratch , L7); // constant pool cache
duke@435 149 REGISTER_DECLARATION(Register, O5_savedSP , O5);
duke@435 150 REGISTER_DECLARATION(Register, I5_savedSP , I5); // Saved SP before bumping for locals. This is simply
duke@435 151 // a copy SP, so in 64-bit it's a biased value. The bias
duke@435 152 // is added and removed as needed in the frame code.
duke@435 153 // Interface to signature handler
duke@435 154 REGISTER_DECLARATION(Register, Llocals , L7); // pointer to locals for signature handler
duke@435 155 REGISTER_DECLARATION(Register, Lmethod , L6); // methodOop when calling signature handler
duke@435 156
duke@435 157 #else
duke@435 158 REGISTER_DECLARATION(Register, Lesp , L0); // expression stack pointer
duke@435 159 REGISTER_DECLARATION(Register, Lbcp , L1); // pointer to next bytecode
duke@435 160 REGISTER_DECLARATION(Register, Lmethod , L2);
duke@435 161 REGISTER_DECLARATION(Register, Llocals , L3);
duke@435 162 REGISTER_DECLARATION(Register, Largs , L3); // pointer to locals for signature handler
duke@435 163 // must match Llocals in asm interpreter
duke@435 164 REGISTER_DECLARATION(Register, Lmonitors , L4);
duke@435 165 REGISTER_DECLARATION(Register, Lbyte_code , L5);
duke@435 166 // When calling out from the interpreter we record SP so that we can remove any extra stack
duke@435 167 // space allocated during adapter transitions. This register is only live from the point
duke@435 168 // of the call until we return.
duke@435 169 REGISTER_DECLARATION(Register, Llast_SP , L5);
duke@435 170 REGISTER_DECLARATION(Register, Lscratch , L5);
duke@435 171 REGISTER_DECLARATION(Register, Lscratch2 , L6);
duke@435 172 REGISTER_DECLARATION(Register, LcpoolCache , L6); // constant pool cache
duke@435 173
duke@435 174 REGISTER_DECLARATION(Register, O5_savedSP , O5);
duke@435 175 REGISTER_DECLARATION(Register, I5_savedSP , I5); // Saved SP before bumping for locals. This is simply
duke@435 176 // a copy SP, so in 64-bit it's a biased value. The bias
duke@435 177 // is added and removed as needed in the frame code.
duke@435 178 REGISTER_DECLARATION(Register, IdispatchTables , I4); // Base address of the bytecode dispatch tables
duke@435 179 REGISTER_DECLARATION(Register, IdispatchAddress , I3); // Register which saves the dispatch address for each bytecode
duke@435 180 REGISTER_DECLARATION(Register, ImethodDataPtr , I2); // Pointer to the current method data
duke@435 181 #endif /* CC_INTERP */
duke@435 182
duke@435 183 // NOTE: Lscratch2 and LcpoolCache point to the same registers in
duke@435 184 // the interpreter code. If Lscratch2 needs to be used for some
duke@435 185 // purpose than LcpoolCache should be restore after that for
duke@435 186 // the interpreter to work right
duke@435 187 // (These assignments must be compatible with L7_thread_cache; see above.)
duke@435 188
duke@435 189 // Since Lbcp points into the middle of the method object,
duke@435 190 // it is temporarily converted into a "bcx" during GC.
duke@435 191
duke@435 192 // Exception processing
duke@435 193 // These registers are passed into exception handlers.
duke@435 194 // All exception handlers require the exception object being thrown.
duke@435 195 // In addition, an nmethod's exception handler must be passed
duke@435 196 // the address of the call site within the nmethod, to allow
duke@435 197 // proper selection of the applicable catch block.
duke@435 198 // (Interpreter frames use their own bcp() for this purpose.)
duke@435 199 //
duke@435 200 // The Oissuing_pc value is not always needed. When jumping to a
duke@435 201 // handler that is known to be interpreted, the Oissuing_pc value can be
duke@435 202 // omitted. An actual catch block in compiled code receives (from its
duke@435 203 // nmethod's exception handler) the thrown exception in the Oexception,
duke@435 204 // but it doesn't need the Oissuing_pc.
duke@435 205 //
duke@435 206 // If an exception handler (either interpreted or compiled)
duke@435 207 // discovers there is no applicable catch block, it updates
duke@435 208 // the Oissuing_pc to the continuation PC of its own caller,
duke@435 209 // pops back to that caller's stack frame, and executes that
duke@435 210 // caller's exception handler. Obviously, this process will
duke@435 211 // iterate until the control stack is popped back to a method
duke@435 212 // containing an applicable catch block. A key invariant is
duke@435 213 // that the Oissuing_pc value is always a value local to
duke@435 214 // the method whose exception handler is currently executing.
duke@435 215 //
duke@435 216 // Note: The issuing PC value is __not__ a raw return address (I7 value).
duke@435 217 // It is a "return pc", the address __following__ the call.
duke@435 218 // Raw return addresses are converted to issuing PCs by frame::pc(),
duke@435 219 // or by stubs. Issuing PCs can be used directly with PC range tables.
duke@435 220 //
duke@435 221 REGISTER_DECLARATION(Register, Oexception , O0); // exception being thrown
duke@435 222 REGISTER_DECLARATION(Register, Oissuing_pc , O1); // where the exception is coming from
duke@435 223
duke@435 224
duke@435 225 // These must occur after the declarations above
duke@435 226 #ifndef DONT_USE_REGISTER_DEFINES
duke@435 227
duke@435 228 #define Gthread AS_REGISTER(Register, Gthread)
duke@435 229 #define Gmethod AS_REGISTER(Register, Gmethod)
duke@435 230 #define Gmegamorphic_method AS_REGISTER(Register, Gmegamorphic_method)
duke@435 231 #define Ginline_cache_reg AS_REGISTER(Register, Ginline_cache_reg)
duke@435 232 #define Gargs AS_REGISTER(Register, Gargs)
duke@435 233 #define Lthread_cache AS_REGISTER(Register, Lthread_cache)
duke@435 234 #define Gframe_size AS_REGISTER(Register, Gframe_size)
duke@435 235 #define Gtemp AS_REGISTER(Register, Gtemp)
duke@435 236
duke@435 237 #ifdef CC_INTERP
duke@435 238 #define Lstate AS_REGISTER(Register, Lstate)
duke@435 239 #define Lesp AS_REGISTER(Register, Lesp)
duke@435 240 #define L1_scratch AS_REGISTER(Register, L1_scratch)
duke@435 241 #define Lmirror AS_REGISTER(Register, Lmirror)
duke@435 242 #define L2_scratch AS_REGISTER(Register, L2_scratch)
duke@435 243 #define L3_scratch AS_REGISTER(Register, L3_scratch)
duke@435 244 #define L4_scratch AS_REGISTER(Register, L4_scratch)
duke@435 245 #define Lscratch AS_REGISTER(Register, Lscratch)
duke@435 246 #define Lscratch2 AS_REGISTER(Register, Lscratch2)
duke@435 247 #define L7_scratch AS_REGISTER(Register, L7_scratch)
duke@435 248 #define Ostate AS_REGISTER(Register, Ostate)
duke@435 249 #else
duke@435 250 #define Lesp AS_REGISTER(Register, Lesp)
duke@435 251 #define Lbcp AS_REGISTER(Register, Lbcp)
duke@435 252 #define Lmethod AS_REGISTER(Register, Lmethod)
duke@435 253 #define Llocals AS_REGISTER(Register, Llocals)
duke@435 254 #define Lmonitors AS_REGISTER(Register, Lmonitors)
duke@435 255 #define Lbyte_code AS_REGISTER(Register, Lbyte_code)
duke@435 256 #define Lscratch AS_REGISTER(Register, Lscratch)
duke@435 257 #define Lscratch2 AS_REGISTER(Register, Lscratch2)
duke@435 258 #define LcpoolCache AS_REGISTER(Register, LcpoolCache)
duke@435 259 #endif /* ! CC_INTERP */
duke@435 260
duke@435 261 #define Lentry_args AS_REGISTER(Register, Lentry_args)
duke@435 262 #define I5_savedSP AS_REGISTER(Register, I5_savedSP)
duke@435 263 #define O5_savedSP AS_REGISTER(Register, O5_savedSP)
duke@435 264 #define IdispatchAddress AS_REGISTER(Register, IdispatchAddress)
duke@435 265 #define ImethodDataPtr AS_REGISTER(Register, ImethodDataPtr)
duke@435 266 #define IdispatchTables AS_REGISTER(Register, IdispatchTables)
duke@435 267
duke@435 268 #define Oexception AS_REGISTER(Register, Oexception)
duke@435 269 #define Oissuing_pc AS_REGISTER(Register, Oissuing_pc)
duke@435 270
duke@435 271
duke@435 272 #endif
duke@435 273
duke@435 274 // Address is an abstraction used to represent a memory location.
duke@435 275 //
duke@435 276 // Note: A register location is represented via a Register, not
duke@435 277 // via an address for efficiency & simplicity reasons.
duke@435 278
duke@435 279 class Address VALUE_OBJ_CLASS_SPEC {
duke@435 280 private:
twisti@1162 281 Register _base; // Base register.
twisti@1162 282 RegisterOrConstant _index_or_disp; // Index register or constant displacement.
twisti@1162 283 RelocationHolder _rspec;
twisti@1162 284
twisti@1162 285 public:
twisti@1162 286 Address() : _base(noreg), _index_or_disp(noreg) {}
twisti@1162 287
twisti@1162 288 Address(Register base, RegisterOrConstant index_or_disp)
twisti@1162 289 : _base(base),
twisti@1162 290 _index_or_disp(index_or_disp) {
twisti@1162 291 }
twisti@1162 292
twisti@1162 293 Address(Register base, Register index)
twisti@1162 294 : _base(base),
twisti@1162 295 _index_or_disp(index) {
twisti@1162 296 }
twisti@1162 297
twisti@1162 298 Address(Register base, int disp)
twisti@1162 299 : _base(base),
twisti@1162 300 _index_or_disp(disp) {
twisti@1162 301 }
twisti@1162 302
twisti@1162 303 #ifdef ASSERT
twisti@1162 304 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
twisti@1162 305 Address(Register base, ByteSize disp)
twisti@1162 306 : _base(base),
twisti@1162 307 _index_or_disp(in_bytes(disp)) {
twisti@1162 308 }
duke@435 309 #endif
twisti@1162 310
twisti@1162 311 // accessors
never@2950 312 Register base() const { return _base; }
never@2950 313 Register index() const { return _index_or_disp.as_register(); }
never@2950 314 int disp() const { return _index_or_disp.as_constant(); }
never@2950 315
never@2950 316 bool has_index() const { return _index_or_disp.is_register(); }
never@2950 317 bool has_disp() const { return _index_or_disp.is_constant(); }
never@2950 318
never@2950 319 bool uses(Register reg) const { return base() == reg || (has_index() && index() == reg); }
twisti@1162 320
twisti@1162 321 const relocInfo::relocType rtype() { return _rspec.type(); }
twisti@1162 322 const RelocationHolder& rspec() { return _rspec; }
twisti@1162 323
twisti@1162 324 RelocationHolder rspec(int offset) const {
twisti@1162 325 return offset == 0 ? _rspec : _rspec.plus(offset);
twisti@1162 326 }
twisti@1162 327
twisti@1162 328 inline bool is_simm13(int offset = 0); // check disp+offset for overflow
twisti@1162 329
twisti@1162 330 Address plus_disp(int plusdisp) const { // bump disp by a small amount
twisti@1162 331 assert(_index_or_disp.is_constant(), "must have a displacement");
twisti@1162 332 Address a(base(), disp() + plusdisp);
twisti@1162 333 return a;
twisti@1162 334 }
never@2950 335 bool is_same_address(Address a) const {
never@2950 336 // disregard _rspec
never@2950 337 return base() == a.base() && (has_index() ? index() == a.index() : disp() == a.disp());
never@2950 338 }
twisti@1162 339
twisti@1162 340 Address after_save() const {
twisti@1162 341 Address a = (*this);
twisti@1162 342 a._base = a._base->after_save();
twisti@1162 343 return a;
twisti@1162 344 }
twisti@1162 345
twisti@1162 346 Address after_restore() const {
twisti@1162 347 Address a = (*this);
twisti@1162 348 a._base = a._base->after_restore();
twisti@1162 349 return a;
twisti@1162 350 }
twisti@1162 351
twisti@1162 352 // Convert the raw encoding form into the form expected by the
twisti@1162 353 // constructor for Address.
twisti@1162 354 static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop);
twisti@1162 355
twisti@1162 356 friend class Assembler;
twisti@1162 357 };
twisti@1162 358
twisti@1162 359
twisti@1162 360 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
twisti@1162 361 private:
twisti@1162 362 address _address;
twisti@1162 363 RelocationHolder _rspec;
twisti@1162 364
twisti@1162 365 RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
twisti@1162 366 switch (rtype) {
duke@435 367 case relocInfo::external_word_type:
twisti@1162 368 return external_word_Relocation::spec(addr);
duke@435 369 case relocInfo::internal_word_type:
twisti@1162 370 return internal_word_Relocation::spec(addr);
duke@435 371 #ifdef _LP64
duke@435 372 case relocInfo::opt_virtual_call_type:
duke@435 373 return opt_virtual_call_Relocation::spec();
duke@435 374 case relocInfo::static_call_type:
duke@435 375 return static_call_Relocation::spec();
duke@435 376 case relocInfo::runtime_call_type:
duke@435 377 return runtime_call_Relocation::spec();
duke@435 378 #endif
duke@435 379 case relocInfo::none:
duke@435 380 return RelocationHolder();
duke@435 381 default:
duke@435 382 ShouldNotReachHere();
duke@435 383 return RelocationHolder();
duke@435 384 }
duke@435 385 }
duke@435 386
twisti@1162 387 protected:
twisti@1162 388 // creation
twisti@1162 389 AddressLiteral() : _address(NULL), _rspec(NULL) {}
twisti@1162 390
duke@435 391 public:
twisti@1162 392 AddressLiteral(address addr, RelocationHolder const& rspec)
twisti@1162 393 : _address(addr),
twisti@1162 394 _rspec(rspec) {}
twisti@1162 395
twisti@1162 396 // Some constructors to avoid casting at the call site.
twisti@1162 397 AddressLiteral(jobject obj, RelocationHolder const& rspec)
twisti@1162 398 : _address((address) obj),
twisti@1162 399 _rspec(rspec) {}
twisti@1162 400
twisti@1162 401 AddressLiteral(intptr_t value, RelocationHolder const& rspec)
twisti@1162 402 : _address((address) value),
twisti@1162 403 _rspec(rspec) {}
twisti@1162 404
twisti@1162 405 AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none)
twisti@1162 406 : _address((address) addr),
twisti@1162 407 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
twisti@1162 408
twisti@1162 409 // Some constructors to avoid casting at the call site.
twisti@1162 410 AddressLiteral(address* addr, relocInfo::relocType rtype = relocInfo::none)
twisti@1162 411 : _address((address) addr),
twisti@1162 412 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
twisti@1162 413
twisti@1162 414 AddressLiteral(bool* addr, relocInfo::relocType rtype = relocInfo::none)
twisti@1162 415 : _address((address) addr),
twisti@1162 416 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
twisti@1162 417
twisti@1162 418 AddressLiteral(const bool* addr, relocInfo::relocType rtype = relocInfo::none)
twisti@1162 419 : _address((address) addr),
twisti@1162 420 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
twisti@1162 421
twisti@1162 422 AddressLiteral(signed char* addr, relocInfo::relocType rtype = relocInfo::none)
twisti@1162 423 : _address((address) addr),
twisti@1162 424 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
twisti@1162 425
twisti@1162 426 AddressLiteral(int* addr, relocInfo::relocType rtype = relocInfo::none)
twisti@1162 427 : _address((address) addr),
twisti@1162 428 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
twisti@1162 429
twisti@1162 430 AddressLiteral(intptr_t addr, relocInfo::relocType rtype = relocInfo::none)
twisti@1162 431 : _address((address) addr),
twisti@1162 432 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
twisti@1162 433
duke@435 434 #ifdef _LP64
twisti@1162 435 // 32-bit complains about a multiple declaration for int*.
twisti@1162 436 AddressLiteral(intptr_t* addr, relocInfo::relocType rtype = relocInfo::none)
twisti@1162 437 : _address((address) addr),
twisti@1162 438 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
duke@435 439 #endif
twisti@1162 440
twisti@1162 441 AddressLiteral(oop addr, relocInfo::relocType rtype = relocInfo::none)
twisti@1162 442 : _address((address) addr),
twisti@1162 443 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
twisti@1162 444
never@2950 445 AddressLiteral(oop* addr, relocInfo::relocType rtype = relocInfo::none)
never@2950 446 : _address((address) addr),
never@2950 447 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
never@2950 448
twisti@1162 449 AddressLiteral(float* addr, relocInfo::relocType rtype = relocInfo::none)
twisti@1162 450 : _address((address) addr),
twisti@1162 451 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
twisti@1162 452
twisti@1162 453 AddressLiteral(double* addr, relocInfo::relocType rtype = relocInfo::none)
twisti@1162 454 : _address((address) addr),
twisti@1162 455 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
twisti@1162 456
twisti@1162 457 intptr_t value() const { return (intptr_t) _address; }
twisti@1162 458 int low10() const;
twisti@1162 459
twisti@1162 460 const relocInfo::relocType rtype() const { return _rspec.type(); }
twisti@1162 461 const RelocationHolder& rspec() const { return _rspec; }
twisti@1162 462
twisti@1162 463 RelocationHolder rspec(int offset) const {
duke@435 464 return offset == 0 ? _rspec : _rspec.plus(offset);
duke@435 465 }
duke@435 466 };
duke@435 467
never@2950 468 // Convenience classes
never@2950 469 class ExternalAddress: public AddressLiteral {
never@2950 470 private:
never@2950 471 static relocInfo::relocType reloc_for_target(address target) {
never@2950 472 // Sometimes ExternalAddress is used for values which aren't
never@2950 473 // exactly addresses, like the card table base.
never@2950 474 // external_word_type can't be used for values in the first page
never@2950 475 // so just skip the reloc in that case.
never@2950 476 return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
never@2950 477 }
never@2950 478
never@2950 479 public:
never@2950 480 ExternalAddress(address target) : AddressLiteral(target, reloc_for_target( target)) {}
never@2950 481 ExternalAddress(oop* target) : AddressLiteral(target, reloc_for_target((address) target)) {}
never@2950 482 };
duke@435 483
duke@435 484 inline Address RegisterImpl::address_in_saved_window() const {
twisti@1162 485 return (Address(SP, (sp_offset_in_saved_window() * wordSize) + STACK_BIAS));
duke@435 486 }
duke@435 487
duke@435 488
duke@435 489
duke@435 490 // Argument is an abstraction used to represent an outgoing
duke@435 491 // actual argument or an incoming formal parameter, whether
duke@435 492 // it resides in memory or in a register, in a manner consistent
duke@435 493 // with the SPARC Application Binary Interface, or ABI. This is
duke@435 494 // often referred to as the native or C calling convention.
duke@435 495
duke@435 496 class Argument VALUE_OBJ_CLASS_SPEC {
duke@435 497 private:
duke@435 498 int _number;
duke@435 499 bool _is_in;
duke@435 500
duke@435 501 public:
duke@435 502 #ifdef _LP64
duke@435 503 enum {
duke@435 504 n_register_parameters = 6, // only 6 registers may contain integer parameters
duke@435 505 n_float_register_parameters = 16 // Can have up to 16 floating registers
duke@435 506 };
duke@435 507 #else
duke@435 508 enum {
duke@435 509 n_register_parameters = 6 // only 6 registers may contain integer parameters
duke@435 510 };
duke@435 511 #endif
duke@435 512
duke@435 513 // creation
duke@435 514 Argument(int number, bool is_in) : _number(number), _is_in(is_in) {}
duke@435 515
duke@435 516 int number() const { return _number; }
duke@435 517 bool is_in() const { return _is_in; }
duke@435 518 bool is_out() const { return !is_in(); }
duke@435 519
duke@435 520 Argument successor() const { return Argument(number() + 1, is_in()); }
duke@435 521 Argument as_in() const { return Argument(number(), true ); }
duke@435 522 Argument as_out() const { return Argument(number(), false); }
duke@435 523
duke@435 524 // locating register-based arguments:
duke@435 525 bool is_register() const { return _number < n_register_parameters; }
duke@435 526
duke@435 527 #ifdef _LP64
duke@435 528 // locating Floating Point register-based arguments:
duke@435 529 bool is_float_register() const { return _number < n_float_register_parameters; }
duke@435 530
duke@435 531 FloatRegister as_float_register() const {
duke@435 532 assert(is_float_register(), "must be a register argument");
duke@435 533 return as_FloatRegister(( number() *2 ) + 1);
duke@435 534 }
duke@435 535 FloatRegister as_double_register() const {
duke@435 536 assert(is_float_register(), "must be a register argument");
duke@435 537 return as_FloatRegister(( number() *2 ));
duke@435 538 }
duke@435 539 #endif
duke@435 540
duke@435 541 Register as_register() const {
duke@435 542 assert(is_register(), "must be a register argument");
duke@435 543 return is_in() ? as_iRegister(number()) : as_oRegister(number());
duke@435 544 }
duke@435 545
duke@435 546 // locating memory-based arguments
duke@435 547 Address as_address() const {
duke@435 548 assert(!is_register(), "must be a memory argument");
duke@435 549 return address_in_frame();
duke@435 550 }
duke@435 551
duke@435 552 // When applied to a register-based argument, give the corresponding address
duke@435 553 // into the 6-word area "into which callee may store register arguments"
duke@435 554 // (This is a different place than the corresponding register-save area location.)
twisti@1162 555 Address address_in_frame() const;
duke@435 556
duke@435 557 // debugging
duke@435 558 const char* name() const;
duke@435 559
duke@435 560 friend class Assembler;
duke@435 561 };
duke@435 562
duke@435 563
duke@435 564 // The SPARC Assembler: Pure assembler doing NO optimizations on the instruction
duke@435 565 // level; i.e., what you write
duke@435 566 // is what you get. The Assembler is generating code into a CodeBuffer.
duke@435 567
duke@435 568 class Assembler : public AbstractAssembler {
duke@435 569 protected:
duke@435 570
duke@435 571 static void print_instruction(int inst);
duke@435 572 static int patched_branch(int dest_pos, int inst, int inst_pos);
duke@435 573 static int branch_destination(int inst, int pos);
duke@435 574
duke@435 575
duke@435 576 friend class AbstractAssembler;
twisti@1162 577 friend class AddressLiteral;
duke@435 578
duke@435 579 // code patchers need various routines like inv_wdisp()
duke@435 580 friend class NativeInstruction;
duke@435 581 friend class NativeGeneralJump;
duke@435 582 friend class Relocation;
duke@435 583 friend class Label;
duke@435 584
duke@435 585 public:
duke@435 586 // op carries format info; see page 62 & 267
duke@435 587
duke@435 588 enum ops {
duke@435 589 call_op = 1, // fmt 1
duke@435 590 branch_op = 0, // also sethi (fmt2)
duke@435 591 arith_op = 2, // fmt 3, arith & misc
duke@435 592 ldst_op = 3 // fmt 3, load/store
duke@435 593 };
duke@435 594
duke@435 595 enum op2s {
duke@435 596 bpr_op2 = 3,
duke@435 597 fb_op2 = 6,
duke@435 598 fbp_op2 = 5,
duke@435 599 br_op2 = 2,
duke@435 600 bp_op2 = 1,
duke@435 601 cb_op2 = 7, // V8
duke@435 602 sethi_op2 = 4
duke@435 603 };
duke@435 604
duke@435 605 enum op3s {
duke@435 606 // selected op3s
duke@435 607 add_op3 = 0x00,
duke@435 608 and_op3 = 0x01,
duke@435 609 or_op3 = 0x02,
duke@435 610 xor_op3 = 0x03,
duke@435 611 sub_op3 = 0x04,
duke@435 612 andn_op3 = 0x05,
duke@435 613 orn_op3 = 0x06,
duke@435 614 xnor_op3 = 0x07,
duke@435 615 addc_op3 = 0x08,
duke@435 616 mulx_op3 = 0x09,
duke@435 617 umul_op3 = 0x0a,
duke@435 618 smul_op3 = 0x0b,
duke@435 619 subc_op3 = 0x0c,
duke@435 620 udivx_op3 = 0x0d,
duke@435 621 udiv_op3 = 0x0e,
duke@435 622 sdiv_op3 = 0x0f,
duke@435 623
duke@435 624 addcc_op3 = 0x10,
duke@435 625 andcc_op3 = 0x11,
duke@435 626 orcc_op3 = 0x12,
duke@435 627 xorcc_op3 = 0x13,
duke@435 628 subcc_op3 = 0x14,
duke@435 629 andncc_op3 = 0x15,
duke@435 630 orncc_op3 = 0x16,
duke@435 631 xnorcc_op3 = 0x17,
duke@435 632 addccc_op3 = 0x18,
duke@435 633 umulcc_op3 = 0x1a,
duke@435 634 smulcc_op3 = 0x1b,
duke@435 635 subccc_op3 = 0x1c,
duke@435 636 udivcc_op3 = 0x1e,
duke@435 637 sdivcc_op3 = 0x1f,
duke@435 638
duke@435 639 taddcc_op3 = 0x20,
duke@435 640 tsubcc_op3 = 0x21,
duke@435 641 taddcctv_op3 = 0x22,
duke@435 642 tsubcctv_op3 = 0x23,
duke@435 643 mulscc_op3 = 0x24,
duke@435 644 sll_op3 = 0x25,
duke@435 645 sllx_op3 = 0x25,
duke@435 646 srl_op3 = 0x26,
duke@435 647 srlx_op3 = 0x26,
duke@435 648 sra_op3 = 0x27,
duke@435 649 srax_op3 = 0x27,
duke@435 650 rdreg_op3 = 0x28,
duke@435 651 membar_op3 = 0x28,
duke@435 652
duke@435 653 flushw_op3 = 0x2b,
duke@435 654 movcc_op3 = 0x2c,
duke@435 655 sdivx_op3 = 0x2d,
duke@435 656 popc_op3 = 0x2e,
duke@435 657 movr_op3 = 0x2f,
duke@435 658
duke@435 659 sir_op3 = 0x30,
duke@435 660 wrreg_op3 = 0x30,
duke@435 661 saved_op3 = 0x31,
duke@435 662
duke@435 663 fpop1_op3 = 0x34,
duke@435 664 fpop2_op3 = 0x35,
duke@435 665 impdep1_op3 = 0x36,
duke@435 666 impdep2_op3 = 0x37,
duke@435 667 jmpl_op3 = 0x38,
duke@435 668 rett_op3 = 0x39,
duke@435 669 trap_op3 = 0x3a,
duke@435 670 flush_op3 = 0x3b,
duke@435 671 save_op3 = 0x3c,
duke@435 672 restore_op3 = 0x3d,
duke@435 673 done_op3 = 0x3e,
duke@435 674 retry_op3 = 0x3e,
duke@435 675
duke@435 676 lduw_op3 = 0x00,
duke@435 677 ldub_op3 = 0x01,
duke@435 678 lduh_op3 = 0x02,
duke@435 679 ldd_op3 = 0x03,
duke@435 680 stw_op3 = 0x04,
duke@435 681 stb_op3 = 0x05,
duke@435 682 sth_op3 = 0x06,
duke@435 683 std_op3 = 0x07,
duke@435 684 ldsw_op3 = 0x08,
duke@435 685 ldsb_op3 = 0x09,
duke@435 686 ldsh_op3 = 0x0a,
duke@435 687 ldx_op3 = 0x0b,
duke@435 688
duke@435 689 ldstub_op3 = 0x0d,
duke@435 690 stx_op3 = 0x0e,
duke@435 691 swap_op3 = 0x0f,
duke@435 692
duke@435 693 stwa_op3 = 0x14,
duke@435 694 stxa_op3 = 0x1e,
duke@435 695
duke@435 696 ldf_op3 = 0x20,
duke@435 697 ldfsr_op3 = 0x21,
duke@435 698 ldqf_op3 = 0x22,
duke@435 699 lddf_op3 = 0x23,
duke@435 700 stf_op3 = 0x24,
duke@435 701 stfsr_op3 = 0x25,
duke@435 702 stqf_op3 = 0x26,
duke@435 703 stdf_op3 = 0x27,
duke@435 704
duke@435 705 prefetch_op3 = 0x2d,
duke@435 706
duke@435 707
duke@435 708 ldc_op3 = 0x30,
duke@435 709 ldcsr_op3 = 0x31,
duke@435 710 lddc_op3 = 0x33,
duke@435 711 stc_op3 = 0x34,
duke@435 712 stcsr_op3 = 0x35,
duke@435 713 stdcq_op3 = 0x36,
duke@435 714 stdc_op3 = 0x37,
duke@435 715
duke@435 716 casa_op3 = 0x3c,
duke@435 717 casxa_op3 = 0x3e,
duke@435 718
kvn@3001 719 mftoi_op3 = 0x36,
kvn@3001 720
duke@435 721 alt_bit_op3 = 0x10,
duke@435 722 cc_bit_op3 = 0x10
duke@435 723 };
duke@435 724
duke@435 725 enum opfs {
duke@435 726 // selected opfs
duke@435 727 fmovs_opf = 0x01,
duke@435 728 fmovd_opf = 0x02,
duke@435 729
duke@435 730 fnegs_opf = 0x05,
duke@435 731 fnegd_opf = 0x06,
duke@435 732
duke@435 733 fadds_opf = 0x41,
duke@435 734 faddd_opf = 0x42,
duke@435 735 fsubs_opf = 0x45,
duke@435 736 fsubd_opf = 0x46,
duke@435 737
duke@435 738 fmuls_opf = 0x49,
duke@435 739 fmuld_opf = 0x4a,
duke@435 740 fdivs_opf = 0x4d,
duke@435 741 fdivd_opf = 0x4e,
duke@435 742
duke@435 743 fcmps_opf = 0x51,
duke@435 744 fcmpd_opf = 0x52,
duke@435 745
duke@435 746 fstox_opf = 0x81,
duke@435 747 fdtox_opf = 0x82,
duke@435 748 fxtos_opf = 0x84,
duke@435 749 fxtod_opf = 0x88,
duke@435 750 fitos_opf = 0xc4,
duke@435 751 fdtos_opf = 0xc6,
duke@435 752 fitod_opf = 0xc8,
duke@435 753 fstod_opf = 0xc9,
duke@435 754 fstoi_opf = 0xd1,
kvn@3001 755 fdtoi_opf = 0xd2,
kvn@3001 756
kvn@3001 757 mdtox_opf = 0x110,
kvn@3001 758 mstouw_opf = 0x111,
kvn@3001 759 mstosw_opf = 0x113,
kvn@3001 760 mxtod_opf = 0x118,
kvn@3001 761 mwtos_opf = 0x119
duke@435 762 };
duke@435 763
kvn@3037 764 enum RCondition { rc_z = 1, rc_lez = 2, rc_lz = 3, rc_nz = 5, rc_gz = 6, rc_gez = 7, rc_last = rc_gez };
duke@435 765
duke@435 766 enum Condition {
duke@435 767 // for FBfcc & FBPfcc instruction
duke@435 768 f_never = 0,
duke@435 769 f_notEqual = 1,
duke@435 770 f_notZero = 1,
duke@435 771 f_lessOrGreater = 2,
duke@435 772 f_unorderedOrLess = 3,
duke@435 773 f_less = 4,
duke@435 774 f_unorderedOrGreater = 5,
duke@435 775 f_greater = 6,
duke@435 776 f_unordered = 7,
duke@435 777 f_always = 8,
duke@435 778 f_equal = 9,
duke@435 779 f_zero = 9,
duke@435 780 f_unorderedOrEqual = 10,
duke@435 781 f_greaterOrEqual = 11,
duke@435 782 f_unorderedOrGreaterOrEqual = 12,
duke@435 783 f_lessOrEqual = 13,
duke@435 784 f_unorderedOrLessOrEqual = 14,
duke@435 785 f_ordered = 15,
duke@435 786
duke@435 787 // V8 coproc, pp 123 v8 manual
duke@435 788
duke@435 789 cp_always = 8,
duke@435 790 cp_never = 0,
duke@435 791 cp_3 = 7,
duke@435 792 cp_2 = 6,
duke@435 793 cp_2or3 = 5,
duke@435 794 cp_1 = 4,
duke@435 795 cp_1or3 = 3,
duke@435 796 cp_1or2 = 2,
duke@435 797 cp_1or2or3 = 1,
duke@435 798 cp_0 = 9,
duke@435 799 cp_0or3 = 10,
duke@435 800 cp_0or2 = 11,
duke@435 801 cp_0or2or3 = 12,
duke@435 802 cp_0or1 = 13,
duke@435 803 cp_0or1or3 = 14,
duke@435 804 cp_0or1or2 = 15,
duke@435 805
duke@435 806
duke@435 807 // for integers
duke@435 808
duke@435 809 never = 0,
duke@435 810 equal = 1,
duke@435 811 zero = 1,
duke@435 812 lessEqual = 2,
duke@435 813 less = 3,
duke@435 814 lessEqualUnsigned = 4,
duke@435 815 lessUnsigned = 5,
duke@435 816 carrySet = 5,
duke@435 817 negative = 6,
duke@435 818 overflowSet = 7,
duke@435 819 always = 8,
duke@435 820 notEqual = 9,
duke@435 821 notZero = 9,
duke@435 822 greater = 10,
duke@435 823 greaterEqual = 11,
duke@435 824 greaterUnsigned = 12,
duke@435 825 greaterEqualUnsigned = 13,
duke@435 826 carryClear = 13,
duke@435 827 positive = 14,
duke@435 828 overflowClear = 15
duke@435 829 };
duke@435 830
duke@435 831 enum CC {
duke@435 832 icc = 0, xcc = 2,
duke@435 833 // ptr_cc is the correct condition code for a pointer or intptr_t:
duke@435 834 ptr_cc = NOT_LP64(icc) LP64_ONLY(xcc),
duke@435 835 fcc0 = 0, fcc1 = 1, fcc2 = 2, fcc3 = 3
duke@435 836 };
duke@435 837
duke@435 838 enum PrefetchFcn {
duke@435 839 severalReads = 0, oneRead = 1, severalWritesAndPossiblyReads = 2, oneWrite = 3, page = 4
duke@435 840 };
duke@435 841
duke@435 842 public:
duke@435 843 // Helper functions for groups of instructions
duke@435 844
duke@435 845 enum Predict { pt = 1, pn = 0 }; // pt = predict taken
duke@435 846
duke@435 847 enum Membar_mask_bits { // page 184, v9
duke@435 848 StoreStore = 1 << 3,
duke@435 849 LoadStore = 1 << 2,
duke@435 850 StoreLoad = 1 << 1,
duke@435 851 LoadLoad = 1 << 0,
duke@435 852
duke@435 853 Sync = 1 << 6,
duke@435 854 MemIssue = 1 << 5,
duke@435 855 Lookaside = 1 << 4
duke@435 856 };
duke@435 857
duke@435 858 // test if x is within signed immediate range for nbits
iveresov@2441 859 static bool is_simm(intptr_t x, int nbits) { return -( intptr_t(1) << nbits-1 ) <= x && x < ( intptr_t(1) << nbits-1 ); }
duke@435 860
duke@435 861 // test if -4096 <= x <= 4095
iveresov@2441 862 static bool is_simm13(intptr_t x) { return is_simm(x, 13); }
iveresov@2441 863
iveresov@2441 864 static bool is_in_wdisp_range(address a, address b, int nbits) {
iveresov@2441 865 intptr_t d = intptr_t(b) - intptr_t(a);
iveresov@2441 866 return is_simm(d, nbits + 2);
iveresov@2441 867 }
duke@435 868
kvn@3037 869 address target_distance(Label& L) {
kvn@3037 870 // Assembler::target(L) should be called only when
kvn@3037 871 // a branch instruction is emitted since non-bound
kvn@3037 872 // labels record current pc() as a branch address.
kvn@3037 873 if (L.is_bound()) return target(L);
kvn@3037 874 // Return current address for non-bound labels.
kvn@3037 875 return pc();
kvn@3037 876 }
kvn@3037 877
iveresov@2203 878 // test if label is in simm16 range in words (wdisp16).
iveresov@2203 879 bool is_in_wdisp16_range(Label& L) {
kvn@3037 880 return is_in_wdisp_range(target_distance(L), pc(), 16);
iveresov@2441 881 }
iveresov@2441 882 // test if the distance between two addresses fits in simm30 range in words
iveresov@2441 883 static bool is_in_wdisp30_range(address a, address b) {
iveresov@2441 884 return is_in_wdisp_range(a, b, 30);
iveresov@2203 885 }
iveresov@2203 886
duke@435 887 enum ASIs { // page 72, v9
duke@435 888 ASI_PRIMARY = 0x80,
duke@435 889 ASI_PRIMARY_LITTLE = 0x88
duke@435 890 // add more from book as needed
duke@435 891 };
duke@435 892
duke@435 893 protected:
duke@435 894 // helpers
duke@435 895
duke@435 896 // x is supposed to fit in a field "nbits" wide
duke@435 897 // and be sign-extended. Check the range.
duke@435 898
duke@435 899 static void assert_signed_range(intptr_t x, int nbits) {
never@2950 900 assert(nbits == 32 || (-(1 << nbits-1) <= x && x < ( 1 << nbits-1)),
never@2950 901 err_msg("value out of range: x=" INTPTR_FORMAT ", nbits=%d", x, nbits));
duke@435 902 }
duke@435 903
duke@435 904 static void assert_signed_word_disp_range(intptr_t x, int nbits) {
duke@435 905 assert( (x & 3) == 0, "not word aligned");
duke@435 906 assert_signed_range(x, nbits + 2);
duke@435 907 }
duke@435 908
duke@435 909 static void assert_unsigned_const(int x, int nbits) {
duke@435 910 assert( juint(x) < juint(1 << nbits), "unsigned constant out of range");
duke@435 911 }
duke@435 912
duke@435 913 // fields: note bits numbered from LSB = 0,
duke@435 914 // fields known by inclusive bit range
duke@435 915
duke@435 916 static int fmask(juint hi_bit, juint lo_bit) {
duke@435 917 assert( hi_bit >= lo_bit && 0 <= lo_bit && hi_bit < 32, "bad bits");
duke@435 918 return (1 << ( hi_bit-lo_bit + 1 )) - 1;
duke@435 919 }
duke@435 920
duke@435 921 // inverse of u_field
duke@435 922
duke@435 923 static int inv_u_field(int x, int hi_bit, int lo_bit) {
duke@435 924 juint r = juint(x) >> lo_bit;
duke@435 925 r &= fmask( hi_bit, lo_bit);
duke@435 926 return int(r);
duke@435 927 }
duke@435 928
duke@435 929
duke@435 930 // signed version: extract from field and sign-extend
duke@435 931
duke@435 932 static int inv_s_field(int x, int hi_bit, int lo_bit) {
duke@435 933 int sign_shift = 31 - hi_bit;
duke@435 934 return inv_u_field( ((x << sign_shift) >> sign_shift), hi_bit, lo_bit);
duke@435 935 }
duke@435 936
duke@435 937 // given a field that ranges from hi_bit to lo_bit (inclusive,
duke@435 938 // LSB = 0), and an unsigned value for the field,
duke@435 939 // shift it into the field
duke@435 940
duke@435 941 #ifdef ASSERT
duke@435 942 static int u_field(int x, int hi_bit, int lo_bit) {
duke@435 943 assert( ( x & ~fmask(hi_bit, lo_bit)) == 0,
duke@435 944 "value out of range");
duke@435 945 int r = x << lo_bit;
duke@435 946 assert( inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
duke@435 947 return r;
duke@435 948 }
duke@435 949 #else
duke@435 950 // make sure this is inlined as it will reduce code size significantly
duke@435 951 #define u_field(x, hi_bit, lo_bit) ((x) << (lo_bit))
duke@435 952 #endif
duke@435 953
duke@435 954 static int inv_op( int x ) { return inv_u_field(x, 31, 30); }
duke@435 955 static int inv_op2( int x ) { return inv_u_field(x, 24, 22); }
duke@435 956 static int inv_op3( int x ) { return inv_u_field(x, 24, 19); }
duke@435 957 static int inv_cond( int x ){ return inv_u_field(x, 28, 25); }
duke@435 958
duke@435 959 static bool inv_immed( int x ) { return (x & Assembler::immed(true)) != 0; }
duke@435 960
duke@435 961 static Register inv_rd( int x ) { return as_Register(inv_u_field(x, 29, 25)); }
duke@435 962 static Register inv_rs1( int x ) { return as_Register(inv_u_field(x, 18, 14)); }
duke@435 963 static Register inv_rs2( int x ) { return as_Register(inv_u_field(x, 4, 0)); }
duke@435 964
duke@435 965 static int op( int x) { return u_field(x, 31, 30); }
duke@435 966 static int rd( Register r) { return u_field(r->encoding(), 29, 25); }
duke@435 967 static int fcn( int x) { return u_field(x, 29, 25); }
duke@435 968 static int op3( int x) { return u_field(x, 24, 19); }
duke@435 969 static int rs1( Register r) { return u_field(r->encoding(), 18, 14); }
duke@435 970 static int rs2( Register r) { return u_field(r->encoding(), 4, 0); }
duke@435 971 static int annul( bool a) { return u_field(a ? 1 : 0, 29, 29); }
duke@435 972 static int cond( int x) { return u_field(x, 28, 25); }
duke@435 973 static int cond_mov( int x) { return u_field(x, 17, 14); }
duke@435 974 static int rcond( RCondition x) { return u_field(x, 12, 10); }
duke@435 975 static int op2( int x) { return u_field(x, 24, 22); }
duke@435 976 static int predict( bool p) { return u_field(p ? 1 : 0, 19, 19); }
duke@435 977 static int branchcc( CC fcca) { return u_field(fcca, 21, 20); }
duke@435 978 static int cmpcc( CC fcca) { return u_field(fcca, 26, 25); }
duke@435 979 static int imm_asi( int x) { return u_field(x, 12, 5); }
duke@435 980 static int immed( bool i) { return u_field(i ? 1 : 0, 13, 13); }
duke@435 981 static int opf_low6( int w) { return u_field(w, 10, 5); }
duke@435 982 static int opf_low5( int w) { return u_field(w, 9, 5); }
duke@435 983 static int trapcc( CC cc) { return u_field(cc, 12, 11); }
duke@435 984 static int sx( int i) { return u_field(i, 12, 12); } // shift x=1 means 64-bit
duke@435 985 static int opf( int x) { return u_field(x, 13, 5); }
duke@435 986
kvn@3037 987 static bool is_cbcond( int x ) {
kvn@3037 988 return (VM_Version::has_cbcond() && (inv_cond(x) > rc_last) &&
kvn@3037 989 inv_op(x) == branch_op && inv_op2(x) == bpr_op2);
kvn@3037 990 }
kvn@3037 991 static bool is_cxb( int x ) {
kvn@3037 992 assert(is_cbcond(x), "wrong instruction");
kvn@3037 993 return (x & (1<<21)) != 0;
kvn@3037 994 }
kvn@3037 995 static int cond_cbcond( int x) { return u_field((((x & 8)<<1) + 8 + (x & 7)), 29, 25); }
kvn@3037 996 static int inv_cond_cbcond(int x) {
kvn@3037 997 assert(is_cbcond(x), "wrong instruction");
kvn@3037 998 return inv_u_field(x, 27, 25) | (inv_u_field(x, 29, 29)<<3);
kvn@3037 999 }
kvn@3037 1000
duke@435 1001 static int opf_cc( CC c, bool useFloat ) { return u_field((useFloat ? 0 : 4) + c, 13, 11); }
duke@435 1002 static int mov_cc( CC c, bool useFloat ) { return u_field(useFloat ? 0 : 1, 18, 18) | u_field(c, 12, 11); }
duke@435 1003
duke@435 1004 static int fd( FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 29, 25); };
duke@435 1005 static int fs1(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 18, 14); };
duke@435 1006 static int fs2(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 4, 0); };
duke@435 1007
duke@435 1008 // some float instructions use this encoding on the op3 field
duke@435 1009 static int alt_op3(int op, FloatRegisterImpl::Width w) {
duke@435 1010 int r;
duke@435 1011 switch(w) {
duke@435 1012 case FloatRegisterImpl::S: r = op + 0; break;
duke@435 1013 case FloatRegisterImpl::D: r = op + 3; break;
duke@435 1014 case FloatRegisterImpl::Q: r = op + 2; break;
duke@435 1015 default: ShouldNotReachHere(); break;
duke@435 1016 }
duke@435 1017 return op3(r);
duke@435 1018 }
duke@435 1019
duke@435 1020
duke@435 1021 // compute inverse of simm
duke@435 1022 static int inv_simm(int x, int nbits) {
duke@435 1023 return (int)(x << (32 - nbits)) >> (32 - nbits);
duke@435 1024 }
duke@435 1025
duke@435 1026 static int inv_simm13( int x ) { return inv_simm(x, 13); }
duke@435 1027
duke@435 1028 // signed immediate, in low bits, nbits long
duke@435 1029 static int simm(int x, int nbits) {
duke@435 1030 assert_signed_range(x, nbits);
duke@435 1031 return x & (( 1 << nbits ) - 1);
duke@435 1032 }
duke@435 1033
duke@435 1034 // compute inverse of wdisp16
duke@435 1035 static intptr_t inv_wdisp16(int x, intptr_t pos) {
duke@435 1036 int lo = x & (( 1 << 14 ) - 1);
duke@435 1037 int hi = (x >> 20) & 3;
duke@435 1038 if (hi >= 2) hi |= ~1;
duke@435 1039 return (((hi << 14) | lo) << 2) + pos;
duke@435 1040 }
duke@435 1041
duke@435 1042 // word offset, 14 bits at LSend, 2 bits at B21, B20
duke@435 1043 static int wdisp16(intptr_t x, intptr_t off) {
duke@435 1044 intptr_t xx = x - off;
duke@435 1045 assert_signed_word_disp_range(xx, 16);
duke@435 1046 int r = (xx >> 2) & ((1 << 14) - 1)
duke@435 1047 | ( ( (xx>>(2+14)) & 3 ) << 20 );
duke@435 1048 assert( inv_wdisp16(r, off) == x, "inverse is not inverse");
duke@435 1049 return r;
duke@435 1050 }
duke@435 1051
kvn@3037 1052 // compute inverse of wdisp10
kvn@3037 1053 static intptr_t inv_wdisp10(int x, intptr_t pos) {
kvn@3037 1054 assert(is_cbcond(x), "wrong instruction");
kvn@3037 1055 int lo = inv_u_field(x, 12, 5);
kvn@3037 1056 int hi = (x >> 19) & 3;
kvn@3037 1057 if (hi >= 2) hi |= ~1;
kvn@3037 1058 return (((hi << 8) | lo) << 2) + pos;
kvn@3037 1059 }
kvn@3037 1060
kvn@3037 1061 // word offset for cbcond, 8 bits at [B12,B5], 2 bits at [B20,B19]
kvn@3037 1062 static int wdisp10(intptr_t x, intptr_t off) {
kvn@3037 1063 assert(VM_Version::has_cbcond(), "This CPU does not have CBCOND instruction");
kvn@3037 1064 intptr_t xx = x - off;
kvn@3037 1065 assert_signed_word_disp_range(xx, 10);
kvn@3037 1066 int r = ( ( (xx >> 2 ) & ((1 << 8) - 1) ) << 5 )
kvn@3037 1067 | ( ( (xx >> (2+8)) & 3 ) << 19 );
kvn@3037 1068 // Have to fake cbcond instruction to pass assert in inv_wdisp10()
kvn@3037 1069 assert(inv_wdisp10((r | op(branch_op) | cond_cbcond(rc_last+1) | op2(bpr_op2)), off) == x, "inverse is not inverse");
kvn@3037 1070 return r;
kvn@3037 1071 }
duke@435 1072
duke@435 1073 // word displacement in low-order nbits bits
duke@435 1074
duke@435 1075 static intptr_t inv_wdisp( int x, intptr_t pos, int nbits ) {
duke@435 1076 int pre_sign_extend = x & (( 1 << nbits ) - 1);
duke@435 1077 int r = pre_sign_extend >= ( 1 << (nbits-1) )
duke@435 1078 ? pre_sign_extend | ~(( 1 << nbits ) - 1)
duke@435 1079 : pre_sign_extend;
duke@435 1080 return (r << 2) + pos;
duke@435 1081 }
duke@435 1082
duke@435 1083 static int wdisp( intptr_t x, intptr_t off, int nbits ) {
duke@435 1084 intptr_t xx = x - off;
duke@435 1085 assert_signed_word_disp_range(xx, nbits);
duke@435 1086 int r = (xx >> 2) & (( 1 << nbits ) - 1);
duke@435 1087 assert( inv_wdisp( r, off, nbits ) == x, "inverse not inverse");
duke@435 1088 return r;
duke@435 1089 }
duke@435 1090
duke@435 1091
duke@435 1092 // Extract the top 32 bits in a 64 bit word
duke@435 1093 static int32_t hi32( int64_t x ) {
duke@435 1094 int32_t r = int32_t( (uint64_t)x >> 32 );
duke@435 1095 return r;
duke@435 1096 }
duke@435 1097
duke@435 1098 // given a sethi instruction, extract the constant, left-justified
duke@435 1099 static int inv_hi22( int x ) {
duke@435 1100 return x << 10;
duke@435 1101 }
duke@435 1102
duke@435 1103 // create an imm22 field, given a 32-bit left-justified constant
duke@435 1104 static int hi22( int x ) {
duke@435 1105 int r = int( juint(x) >> 10 );
duke@435 1106 assert( (r & ~((1 << 22) - 1)) == 0, "just checkin'");
duke@435 1107 return r;
duke@435 1108 }
duke@435 1109
duke@435 1110 // create a low10 __value__ (not a field) for a given a 32-bit constant
duke@435 1111 static int low10( int x ) {
duke@435 1112 return x & ((1 << 10) - 1);
duke@435 1113 }
duke@435 1114
kvn@3001 1115 // instruction only in VIS3
kvn@3001 1116 static void vis3_only() { assert( VM_Version::has_vis3(), "This instruction only works on SPARC with VIS3"); }
kvn@3001 1117
duke@435 1118 // instruction only in v9
duke@435 1119 static void v9_only() { assert( VM_Version::v9_instructions_work(), "This instruction only works on SPARC V9"); }
duke@435 1120
duke@435 1121 // instruction only in v8
duke@435 1122 static void v8_only() { assert( VM_Version::v8_instructions_work(), "This instruction only works on SPARC V8"); }
duke@435 1123
duke@435 1124 // instruction deprecated in v9
duke@435 1125 static void v9_dep() { } // do nothing for now
duke@435 1126
duke@435 1127 // some float instructions only exist for single prec. on v8
duke@435 1128 static void v8_s_only(FloatRegisterImpl::Width w) { if (w != FloatRegisterImpl::S) v9_only(); }
duke@435 1129
duke@435 1130 // v8 has no CC field
duke@435 1131 static void v8_no_cc(CC cc) { if (cc) v9_only(); }
duke@435 1132
duke@435 1133 protected:
duke@435 1134 // Simple delay-slot scheme:
duke@435 1135 // In order to check the programmer, the assembler keeps track of deley slots.
duke@435 1136 // It forbids CTIs in delay slots (conservative, but should be OK).
duke@435 1137 // Also, when putting an instruction into a delay slot, you must say
duke@435 1138 // asm->delayed()->add(...), in order to check that you don't omit
duke@435 1139 // delay-slot instructions.
duke@435 1140 // To implement this, we use a simple FSA
duke@435 1141
duke@435 1142 #ifdef ASSERT
duke@435 1143 #define CHECK_DELAY
duke@435 1144 #endif
duke@435 1145 #ifdef CHECK_DELAY
duke@435 1146 enum Delay_state { no_delay, at_delay_slot, filling_delay_slot } delay_state;
duke@435 1147 #endif
duke@435 1148
duke@435 1149 public:
duke@435 1150 // Tells assembler next instruction must NOT be in delay slot.
duke@435 1151 // Use at start of multinstruction macros.
duke@435 1152 void assert_not_delayed() {
duke@435 1153 // This is a separate overloading to avoid creation of string constants
duke@435 1154 // in non-asserted code--with some compilers this pollutes the object code.
duke@435 1155 #ifdef CHECK_DELAY
duke@435 1156 assert_not_delayed("next instruction should not be a delay slot");
duke@435 1157 #endif
duke@435 1158 }
duke@435 1159 void assert_not_delayed(const char* msg) {
duke@435 1160 #ifdef CHECK_DELAY
jcoomes@1845 1161 assert(delay_state == no_delay, msg);
duke@435 1162 #endif
duke@435 1163 }
duke@435 1164
duke@435 1165 protected:
duke@435 1166 // Delay slot helpers
duke@435 1167 // cti is called when emitting control-transfer instruction,
duke@435 1168 // BEFORE doing the emitting.
duke@435 1169 // Only effective when assertion-checking is enabled.
duke@435 1170 void cti() {
duke@435 1171 #ifdef CHECK_DELAY
duke@435 1172 assert_not_delayed("cti should not be in delay slot");
duke@435 1173 #endif
duke@435 1174 }
duke@435 1175
duke@435 1176 // called when emitting cti with a delay slot, AFTER emitting
duke@435 1177 void has_delay_slot() {
duke@435 1178 #ifdef CHECK_DELAY
duke@435 1179 assert_not_delayed("just checking");
duke@435 1180 delay_state = at_delay_slot;
duke@435 1181 #endif
duke@435 1182 }
duke@435 1183
kvn@3037 1184 // cbcond instruction should not be generated one after an other
kvn@3037 1185 bool cbcond_before() {
kvn@3037 1186 if (offset() == 0) return false; // it is first instruction
kvn@3037 1187 int x = *(int*)(intptr_t(pc()) - 4); // previous instruction
kvn@3037 1188 return is_cbcond(x);
kvn@3037 1189 }
kvn@3037 1190
kvn@3037 1191 void no_cbcond_before() {
kvn@3037 1192 assert(offset() == 0 || !cbcond_before(), "cbcond should not follow an other cbcond");
kvn@3037 1193 }
kvn@3037 1194
kvn@3049 1195 public:
kvn@3049 1196
kvn@3037 1197 bool use_cbcond(Label& L) {
kvn@3037 1198 if (!UseCBCond || cbcond_before()) return false;
kvn@3037 1199 intptr_t x = intptr_t(target_distance(L)) - intptr_t(pc());
kvn@3037 1200 assert( (x & 3) == 0, "not word aligned");
kvn@3037 1201 return is_simm(x, 12);
kvn@3037 1202 }
kvn@3037 1203
duke@435 1204 // Tells assembler you know that next instruction is delayed
duke@435 1205 Assembler* delayed() {
duke@435 1206 #ifdef CHECK_DELAY
duke@435 1207 assert ( delay_state == at_delay_slot, "delayed instruction is not in delay slot");
duke@435 1208 delay_state = filling_delay_slot;
duke@435 1209 #endif
duke@435 1210 return this;
duke@435 1211 }
duke@435 1212
duke@435 1213 void flush() {
duke@435 1214 #ifdef CHECK_DELAY
duke@435 1215 assert ( delay_state == no_delay, "ending code with a delay slot");
duke@435 1216 #endif
duke@435 1217 AbstractAssembler::flush();
duke@435 1218 }
duke@435 1219
duke@435 1220 inline void emit_long(int); // shadows AbstractAssembler::emit_long
duke@435 1221 inline void emit_data(int x) { emit_long(x); }
duke@435 1222 inline void emit_data(int, RelocationHolder const&);
duke@435 1223 inline void emit_data(int, relocInfo::relocType rtype);
duke@435 1224 // helper for above fcns
duke@435 1225 inline void check_delay();
duke@435 1226
duke@435 1227
duke@435 1228 public:
duke@435 1229 // instructions, refer to page numbers in the SPARC Architecture Manual, V9
duke@435 1230
duke@435 1231 // pp 135 (addc was addx in v8)
duke@435 1232
twisti@1162 1233 inline void add(Register s1, Register s2, Register d );
twisti@1162 1234 inline void add(Register s1, int simm13a, Register d, relocInfo::relocType rtype = relocInfo::none);
twisti@1162 1235 inline void add(Register s1, int simm13a, Register d, RelocationHolder const& rspec);
twisti@1162 1236 inline void add(Register s1, RegisterOrConstant s2, Register d, int offset = 0);
jrose@2266 1237 inline void add(const Address& a, Register d, int offset = 0);
duke@435 1238
duke@435 1239 void addcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1240 void addcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1241 void addc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1242 void addc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1243 void addccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1244 void addccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1245
kvn@3037 1246
duke@435 1247 // pp 136
duke@435 1248
kvn@3037 1249 inline void bpr(RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none);
kvn@3037 1250 inline void bpr(RCondition c, bool a, Predict p, Register s1, Label& L);
duke@435 1251
kvn@3037 1252 // compare and branch
kvn@3037 1253 inline void cbcond(Condition c, CC cc, Register s1, Register s2, Label& L);
kvn@3037 1254 inline void cbcond(Condition c, CC cc, Register s1, int simm5, Label& L);
kvn@3037 1255
kvn@3049 1256 protected: // use MacroAssembler::br instead
kvn@3049 1257
kvn@3049 1258 // pp 138
kvn@3049 1259
kvn@3049 1260 inline void fb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
kvn@3049 1261 inline void fb( Condition c, bool a, Label& L );
kvn@3049 1262
kvn@3049 1263 // pp 141
kvn@3049 1264
kvn@3049 1265 inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
kvn@3049 1266 inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
kvn@3049 1267
kvn@3049 1268 // pp 144
kvn@3049 1269
kvn@3049 1270 inline void br( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
kvn@3049 1271 inline void br( Condition c, bool a, Label& L );
kvn@3049 1272
kvn@3049 1273 // pp 146
kvn@3049 1274
kvn@3049 1275 inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
kvn@3049 1276 inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
kvn@3049 1277
kvn@3049 1278 // pp 121 (V8)
kvn@3049 1279
kvn@3049 1280 inline void cb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
kvn@3049 1281 inline void cb( Condition c, bool a, Label& L );
kvn@3049 1282
duke@435 1283 // pp 149
duke@435 1284
duke@435 1285 inline void call( address d, relocInfo::relocType rt = relocInfo::runtime_call_type );
duke@435 1286 inline void call( Label& L, relocInfo::relocType rt = relocInfo::runtime_call_type );
duke@435 1287
kvn@3037 1288 public:
kvn@3037 1289
duke@435 1290 // pp 150
duke@435 1291
duke@435 1292 // These instructions compare the contents of s2 with the contents of
duke@435 1293 // memory at address in s1. If the values are equal, the contents of memory
duke@435 1294 // at address s1 is swapped with the data in d. If the values are not equal,
duke@435 1295 // the the contents of memory at s1 is loaded into d, without the swap.
duke@435 1296
duke@435 1297 void casa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(casa_op3 ) | rs1(s1) | (ia == -1 ? immed(true) : imm_asi(ia)) | rs2(s2)); }
duke@435 1298 void casxa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(casxa_op3) | rs1(s1) | (ia == -1 ? immed(true) : imm_asi(ia)) | rs2(s2)); }
duke@435 1299
duke@435 1300 // pp 152
duke@435 1301
duke@435 1302 void udiv( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 ) | rs1(s1) | rs2(s2)); }
duke@435 1303 void udiv( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1304 void sdiv( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 ) | rs1(s1) | rs2(s2)); }
duke@435 1305 void sdiv( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1306 void udivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
duke@435 1307 void udivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1308 void sdivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
duke@435 1309 void sdivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1310
duke@435 1311 // pp 155
duke@435 1312
duke@435 1313 void done() { v9_only(); cti(); emit_long( op(arith_op) | fcn(0) | op3(done_op3) ); }
duke@435 1314 void retry() { v9_only(); cti(); emit_long( op(arith_op) | fcn(1) | op3(retry_op3) ); }
duke@435 1315
duke@435 1316 // pp 156
duke@435 1317
duke@435 1318 void fadd( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x40 + w) | fs2(s2, w)); }
duke@435 1319 void fsub( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x44 + w) | fs2(s2, w)); }
duke@435 1320
duke@435 1321 // pp 157
duke@435 1322
duke@435 1323 void fcmp( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc); emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x50 + w) | fs2(s2, w)); }
duke@435 1324 void fcmpe( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc); emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x54 + w) | fs2(s2, w)); }
duke@435 1325
duke@435 1326 // pp 159
duke@435 1327
kvn@3001 1328 void ftox( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only(); emit_long( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(fpop1_op3) | opf(0x80 + w) | fs2(s, w)); }
kvn@3001 1329 void ftoi( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(fpop1_op3) | opf(0xd0 + w) | fs2(s, w)); }
duke@435 1330
duke@435 1331 // pp 160
duke@435 1332
duke@435 1333 void ftof( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | opf(0xc0 + sw + dw*4) | fs2(s, sw)); }
duke@435 1334
duke@435 1335 // pp 161
duke@435 1336
kvn@3001 1337 void fxtof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only(); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w*4) | fs2(s, FloatRegisterImpl::D)); }
kvn@3001 1338 void fitof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xc0 + w*4) | fs2(s, FloatRegisterImpl::S)); }
duke@435 1339
duke@435 1340 // pp 162
duke@435 1341
duke@435 1342 void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x00 + w) | fs2(s, w)); }
duke@435 1343
duke@435 1344 void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(s, w)); }
duke@435 1345
duke@435 1346 // page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fnegs is the only instruction available
duke@435 1347 // on v8 to do negation of single, double and quad precision floats.
duke@435 1348
duke@435 1349 void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x05) | fs2(sd, w)); }
duke@435 1350
duke@435 1351 void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(s, w)); }
duke@435 1352
duke@435 1353 // page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fabss is the only instruction available
duke@435 1354 // on v8 to do abs operation on single/double/quad precision floats.
duke@435 1355
duke@435 1356 void fabs( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x09) | fs2(sd, w)); }
duke@435 1357
duke@435 1358 // pp 163
duke@435 1359
duke@435 1360 void fmul( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x48 + w) | fs2(s2, w)); }
duke@435 1361 void fmul( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | fs1(s1, sw) | opf(0x60 + sw + dw*4) | fs2(s2, sw)); }
duke@435 1362 void fdiv( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x4c + w) | fs2(s2, w)); }
duke@435 1363
duke@435 1364 // pp 164
duke@435 1365
duke@435 1366 void fsqrt( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x28 + w) | fs2(s, w)); }
duke@435 1367
duke@435 1368 // pp 165
duke@435 1369
duke@435 1370 inline void flush( Register s1, Register s2 );
duke@435 1371 inline void flush( Register s1, int simm13a);
duke@435 1372
duke@435 1373 // pp 167
duke@435 1374
duke@435 1375 void flushw() { v9_only(); emit_long( op(arith_op) | op3(flushw_op3) ); }
duke@435 1376
duke@435 1377 // pp 168
duke@435 1378
duke@435 1379 void illtrap( int const22a) { if (const22a != 0) v9_only(); emit_long( op(branch_op) | u_field(const22a, 21, 0) ); }
duke@435 1380 // v8 unimp == illtrap(0)
duke@435 1381
duke@435 1382 // pp 169
duke@435 1383
duke@435 1384 void impdep1( int id1, int const19a ) { v9_only(); emit_long( op(arith_op) | fcn(id1) | op3(impdep1_op3) | u_field(const19a, 18, 0)); }
duke@435 1385 void impdep2( int id1, int const19a ) { v9_only(); emit_long( op(arith_op) | fcn(id1) | op3(impdep2_op3) | u_field(const19a, 18, 0)); }
duke@435 1386
duke@435 1387 // pp 149 (v8)
duke@435 1388
duke@435 1389 void cpop1( int opc, int cr1, int cr2, int crd ) { v8_only(); emit_long( op(arith_op) | fcn(crd) | op3(impdep1_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }
duke@435 1390 void cpop2( int opc, int cr1, int cr2, int crd ) { v8_only(); emit_long( op(arith_op) | fcn(crd) | op3(impdep2_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }
duke@435 1391
duke@435 1392 // pp 170
duke@435 1393
duke@435 1394 void jmpl( Register s1, Register s2, Register d );
duke@435 1395 void jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec = RelocationHolder() );
duke@435 1396
duke@435 1397 // 171
duke@435 1398
twisti@1441 1399 inline void ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d);
twisti@1162 1400 inline void ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d);
twisti@1162 1401 inline void ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec = RelocationHolder());
twisti@1162 1402
twisti@1162 1403 inline void ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset = 0);
duke@435 1404
duke@435 1405
duke@435 1406 inline void ldfsr( Register s1, Register s2 );
duke@435 1407 inline void ldfsr( Register s1, int simm13a);
duke@435 1408 inline void ldxfsr( Register s1, Register s2 );
duke@435 1409 inline void ldxfsr( Register s1, int simm13a);
duke@435 1410
duke@435 1411 // pp 94 (v8)
duke@435 1412
duke@435 1413 inline void ldc( Register s1, Register s2, int crd );
duke@435 1414 inline void ldc( Register s1, int simm13a, int crd);
duke@435 1415 inline void lddc( Register s1, Register s2, int crd );
duke@435 1416 inline void lddc( Register s1, int simm13a, int crd);
duke@435 1417 inline void ldcsr( Register s1, Register s2, int crd );
duke@435 1418 inline void ldcsr( Register s1, int simm13a, int crd);
duke@435 1419
duke@435 1420
duke@435 1421 // 173
duke@435 1422
duke@435 1423 void ldfa( FloatRegisterImpl::Width w, Register s1, Register s2, int ia, FloatRegister d ) { v9_only(); emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1424 void ldfa( FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d ) { v9_only(); emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1425
duke@435 1426 // pp 175, lduw is ld on v8
duke@435 1427
duke@435 1428 inline void ldsb( Register s1, Register s2, Register d );
duke@435 1429 inline void ldsb( Register s1, int simm13a, Register d);
duke@435 1430 inline void ldsh( Register s1, Register s2, Register d );
duke@435 1431 inline void ldsh( Register s1, int simm13a, Register d);
duke@435 1432 inline void ldsw( Register s1, Register s2, Register d );
duke@435 1433 inline void ldsw( Register s1, int simm13a, Register d);
duke@435 1434 inline void ldub( Register s1, Register s2, Register d );
duke@435 1435 inline void ldub( Register s1, int simm13a, Register d);
duke@435 1436 inline void lduh( Register s1, Register s2, Register d );
duke@435 1437 inline void lduh( Register s1, int simm13a, Register d);
duke@435 1438 inline void lduw( Register s1, Register s2, Register d );
duke@435 1439 inline void lduw( Register s1, int simm13a, Register d);
duke@435 1440 inline void ldx( Register s1, Register s2, Register d );
duke@435 1441 inline void ldx( Register s1, int simm13a, Register d);
duke@435 1442 inline void ld( Register s1, Register s2, Register d );
duke@435 1443 inline void ld( Register s1, int simm13a, Register d);
duke@435 1444 inline void ldd( Register s1, Register s2, Register d );
duke@435 1445 inline void ldd( Register s1, int simm13a, Register d);
duke@435 1446
twisti@1162 1447 #ifdef ASSERT
twisti@1162 1448 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
twisti@1162 1449 inline void ld( Register s1, ByteSize simm13a, Register d);
twisti@1162 1450 #endif
twisti@1162 1451
twisti@1162 1452 inline void ldsb(const Address& a, Register d, int offset = 0);
twisti@1162 1453 inline void ldsh(const Address& a, Register d, int offset = 0);
twisti@1162 1454 inline void ldsw(const Address& a, Register d, int offset = 0);
twisti@1162 1455 inline void ldub(const Address& a, Register d, int offset = 0);
twisti@1162 1456 inline void lduh(const Address& a, Register d, int offset = 0);
twisti@1162 1457 inline void lduw(const Address& a, Register d, int offset = 0);
twisti@1162 1458 inline void ldx( const Address& a, Register d, int offset = 0);
twisti@1162 1459 inline void ld( const Address& a, Register d, int offset = 0);
twisti@1162 1460 inline void ldd( const Address& a, Register d, int offset = 0);
duke@435 1461
jrose@1100 1462 inline void ldub( Register s1, RegisterOrConstant s2, Register d );
jrose@1100 1463 inline void ldsb( Register s1, RegisterOrConstant s2, Register d );
jrose@1100 1464 inline void lduh( Register s1, RegisterOrConstant s2, Register d );
jrose@1100 1465 inline void ldsh( Register s1, RegisterOrConstant s2, Register d );
jrose@1100 1466 inline void lduw( Register s1, RegisterOrConstant s2, Register d );
jrose@1100 1467 inline void ldsw( Register s1, RegisterOrConstant s2, Register d );
jrose@1100 1468 inline void ldx( Register s1, RegisterOrConstant s2, Register d );
jrose@1100 1469 inline void ld( Register s1, RegisterOrConstant s2, Register d );
jrose@1100 1470 inline void ldd( Register s1, RegisterOrConstant s2, Register d );
jrose@1057 1471
duke@435 1472 // pp 177
duke@435 1473
duke@435 1474 void ldsba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1475 void ldsba( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1476 void ldsha( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1477 void ldsha( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1478 void ldswa( Register s1, Register s2, int ia, Register d ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1479 void ldswa( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1480 void lduba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1481 void lduba( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1482 void lduha( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1483 void lduha( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1484 void lduwa( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1485 void lduwa( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1486 void ldxa( Register s1, Register s2, int ia, Register d ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1487 void ldxa( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1488 void ldda( Register s1, Register s2, int ia, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1489 void ldda( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1490
duke@435 1491 // pp 179
duke@435 1492
duke@435 1493 inline void ldstub( Register s1, Register s2, Register d );
duke@435 1494 inline void ldstub( Register s1, int simm13a, Register d);
duke@435 1495
duke@435 1496 // pp 180
duke@435 1497
duke@435 1498 void ldstuba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1499 void ldstuba( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1500
duke@435 1501 // pp 181
duke@435 1502
twisti@1858 1503 void and3( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@1858 1504 void and3( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1505 void andcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1506 void andcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1507 void andn( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1508 void andn( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@1858 1509 void andn( Register s1, RegisterOrConstant s2, Register d);
duke@435 1510 void andncc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1511 void andncc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@1858 1512 void or3( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@1858 1513 void or3( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1514 void orcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1515 void orcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1516 void orn( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1517 void orn( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1518 void orncc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1519 void orncc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@1858 1520 void xor3( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@1858 1521 void xor3( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1522 void xorcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1523 void xorcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1524 void xnor( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1525 void xnor( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1526 void xnorcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1527 void xnorcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1528
duke@435 1529 // pp 183
duke@435 1530
duke@435 1531 void membar( Membar_mask_bits const7a ) { v9_only(); emit_long( op(arith_op) | op3(membar_op3) | rs1(O7) | immed(true) | u_field( int(const7a), 6, 0)); }
duke@435 1532
duke@435 1533 // pp 185
duke@435 1534
duke@435 1535 void fmov( FloatRegisterImpl::Width w, Condition c, bool floatCC, CC cca, FloatRegister s2, FloatRegister d ) { v9_only(); emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | cond_mov(c) | opf_cc(cca, floatCC) | opf_low6(w) | fs2(s2, w)); }
duke@435 1536
duke@435 1537 // pp 189
duke@435 1538
duke@435 1539 void fmov( FloatRegisterImpl::Width w, RCondition c, Register s1, FloatRegister s2, FloatRegister d ) { v9_only(); emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | rs1(s1) | rcond(c) | opf_low5(4 + w) | fs2(s2, w)); }
duke@435 1540
duke@435 1541 // pp 191
duke@435 1542
duke@435 1543 void movcc( Condition c, bool floatCC, CC cca, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | rs2(s2) ); }
duke@435 1544 void movcc( Condition c, bool floatCC, CC cca, int simm11a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | immed(true) | simm(simm11a, 11) ); }
duke@435 1545
duke@435 1546 // pp 195
duke@435 1547
duke@435 1548 void movr( RCondition c, Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | rs2(s2) ); }
duke@435 1549 void movr( RCondition c, Register s1, int simm10a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | immed(true) | simm(simm10a, 10) ); }
duke@435 1550
duke@435 1551 // pp 196
duke@435 1552
duke@435 1553 void mulx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1554 void mulx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1555 void sdivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1556 void sdivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1557 void udivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1558 void udivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1559
duke@435 1560 // pp 197
duke@435 1561
duke@435 1562 void umul( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1563 void umul( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1564 void smul( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1565 void smul( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1566 void umulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1567 void umulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1568 void smulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1569 void smulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1570
duke@435 1571 // pp 199
duke@435 1572
duke@435 1573 void mulscc( Register s1, Register s2, Register d ) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1574 void mulscc( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1575
duke@435 1576 // pp 201
duke@435 1577
duke@435 1578 void nop() { emit_long( op(branch_op) | op2(sethi_op2) ); }
duke@435 1579
duke@435 1580
duke@435 1581 // pp 202
duke@435 1582
duke@435 1583 void popc( Register s, Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(popc_op3) | rs2(s)); }
duke@435 1584 void popc( int simm13a, Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(popc_op3) | immed(true) | simm(simm13a, 13)); }
duke@435 1585
duke@435 1586 // pp 203
duke@435 1587
duke@435 1588 void prefetch( Register s1, Register s2, PrefetchFcn f);
duke@435 1589 void prefetch( Register s1, int simm13a, PrefetchFcn f);
duke@435 1590 void prefetcha( Register s1, Register s2, int ia, PrefetchFcn f ) { v9_only(); emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1591 void prefetcha( Register s1, int simm13a, PrefetchFcn f ) { v9_only(); emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1592
duke@435 1593 inline void prefetch(const Address& a, PrefetchFcn F, int offset = 0);
duke@435 1594
duke@435 1595 // pp 208
duke@435 1596
duke@435 1597 // not implementing read privileged register
duke@435 1598
duke@435 1599 inline void rdy( Register d) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(0, 18, 14)); }
duke@435 1600 inline void rdccr( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(2, 18, 14)); }
duke@435 1601 inline void rdasi( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(3, 18, 14)); }
duke@435 1602 inline void rdtick( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(4, 18, 14)); } // Spoon!
duke@435 1603 inline void rdpc( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(5, 18, 14)); }
duke@435 1604 inline void rdfprs( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(6, 18, 14)); }
duke@435 1605
duke@435 1606 // pp 213
duke@435 1607
duke@435 1608 inline void rett( Register s1, Register s2);
duke@435 1609 inline void rett( Register s1, int simm13a, relocInfo::relocType rt = relocInfo::none);
duke@435 1610
duke@435 1611 // pp 214
duke@435 1612
duke@435 1613 void save( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | rs2(s2) ); }
ysr@777 1614 void save( Register s1, int simm13a, Register d ) {
ysr@777 1615 // make sure frame is at least large enough for the register save area
ysr@777 1616 assert(-simm13a >= 16 * wordSize, "frame too small");
ysr@777 1617 emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) );
ysr@777 1618 }
duke@435 1619
duke@435 1620 void restore( Register s1 = G0, Register s2 = G0, Register d = G0 ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1621 void restore( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1622
duke@435 1623 // pp 216
duke@435 1624
duke@435 1625 void saved() { v9_only(); emit_long( op(arith_op) | fcn(0) | op3(saved_op3)); }
duke@435 1626 void restored() { v9_only(); emit_long( op(arith_op) | fcn(1) | op3(saved_op3)); }
duke@435 1627
duke@435 1628 // pp 217
duke@435 1629
duke@435 1630 inline void sethi( int imm22a, Register d, RelocationHolder const& rspec = RelocationHolder() );
duke@435 1631 // pp 218
duke@435 1632
duke@435 1633 void sll( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
duke@435 1634 void sll( Register s1, int imm5a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
duke@435 1635 void srl( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
duke@435 1636 void srl( Register s1, int imm5a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
duke@435 1637 void sra( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
duke@435 1638 void sra( Register s1, int imm5a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
duke@435 1639
duke@435 1640 void sllx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
duke@435 1641 void sllx( Register s1, int imm6a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
duke@435 1642 void srlx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
duke@435 1643 void srlx( Register s1, int imm6a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
duke@435 1644 void srax( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
duke@435 1645 void srax( Register s1, int imm6a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
duke@435 1646
duke@435 1647 // pp 220
duke@435 1648
duke@435 1649 void sir( int simm13a ) { emit_long( op(arith_op) | fcn(15) | op3(sir_op3) | immed(true) | simm(simm13a, 13)); }
duke@435 1650
duke@435 1651 // pp 221
duke@435 1652
duke@435 1653 void stbar() { emit_long( op(arith_op) | op3(membar_op3) | u_field(15, 18, 14)); }
duke@435 1654
duke@435 1655 // pp 222
duke@435 1656
twisti@1441 1657 inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2);
twisti@1441 1658 inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2);
duke@435 1659 inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a);
duke@435 1660 inline void stf( FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset = 0);
duke@435 1661
duke@435 1662 inline void stfsr( Register s1, Register s2 );
duke@435 1663 inline void stfsr( Register s1, int simm13a);
duke@435 1664 inline void stxfsr( Register s1, Register s2 );
duke@435 1665 inline void stxfsr( Register s1, int simm13a);
duke@435 1666
duke@435 1667 // pp 224
duke@435 1668
duke@435 1669 void stfa( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2, int ia ) { v9_only(); emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1670 void stfa( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a ) { v9_only(); emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1671
duke@435 1672 // p 226
duke@435 1673
duke@435 1674 inline void stb( Register d, Register s1, Register s2 );
duke@435 1675 inline void stb( Register d, Register s1, int simm13a);
duke@435 1676 inline void sth( Register d, Register s1, Register s2 );
duke@435 1677 inline void sth( Register d, Register s1, int simm13a);
duke@435 1678 inline void stw( Register d, Register s1, Register s2 );
duke@435 1679 inline void stw( Register d, Register s1, int simm13a);
duke@435 1680 inline void st( Register d, Register s1, Register s2 );
duke@435 1681 inline void st( Register d, Register s1, int simm13a);
duke@435 1682 inline void stx( Register d, Register s1, Register s2 );
duke@435 1683 inline void stx( Register d, Register s1, int simm13a);
duke@435 1684 inline void std( Register d, Register s1, Register s2 );
duke@435 1685 inline void std( Register d, Register s1, int simm13a);
duke@435 1686
twisti@1162 1687 #ifdef ASSERT
twisti@1162 1688 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
twisti@1162 1689 inline void st( Register d, Register s1, ByteSize simm13a);
twisti@1162 1690 #endif
twisti@1162 1691
duke@435 1692 inline void stb( Register d, const Address& a, int offset = 0 );
duke@435 1693 inline void sth( Register d, const Address& a, int offset = 0 );
duke@435 1694 inline void stw( Register d, const Address& a, int offset = 0 );
duke@435 1695 inline void stx( Register d, const Address& a, int offset = 0 );
duke@435 1696 inline void st( Register d, const Address& a, int offset = 0 );
duke@435 1697 inline void std( Register d, const Address& a, int offset = 0 );
duke@435 1698
jrose@1100 1699 inline void stb( Register d, Register s1, RegisterOrConstant s2 );
jrose@1100 1700 inline void sth( Register d, Register s1, RegisterOrConstant s2 );
jrose@1100 1701 inline void stw( Register d, Register s1, RegisterOrConstant s2 );
jrose@1100 1702 inline void stx( Register d, Register s1, RegisterOrConstant s2 );
jrose@1100 1703 inline void std( Register d, Register s1, RegisterOrConstant s2 );
jrose@1100 1704 inline void st( Register d, Register s1, RegisterOrConstant s2 );
jrose@1057 1705
duke@435 1706 // pp 177
duke@435 1707
duke@435 1708 void stba( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1709 void stba( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1710 void stha( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1711 void stha( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1712 void stwa( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1713 void stwa( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1714 void stxa( Register d, Register s1, Register s2, int ia ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1715 void stxa( Register d, Register s1, int simm13a ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1716 void stda( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1717 void stda( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1718
duke@435 1719 // pp 97 (v8)
duke@435 1720
duke@435 1721 inline void stc( int crd, Register s1, Register s2 );
duke@435 1722 inline void stc( int crd, Register s1, int simm13a);
duke@435 1723 inline void stdc( int crd, Register s1, Register s2 );
duke@435 1724 inline void stdc( int crd, Register s1, int simm13a);
duke@435 1725 inline void stcsr( int crd, Register s1, Register s2 );
duke@435 1726 inline void stcsr( int crd, Register s1, int simm13a);
duke@435 1727 inline void stdcq( int crd, Register s1, Register s2 );
duke@435 1728 inline void stdcq( int crd, Register s1, int simm13a);
duke@435 1729
duke@435 1730 // pp 230
duke@435 1731
duke@435 1732 void sub( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1733 void sub( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@2350 1734
twisti@2350 1735 // Note: offset is added to s2.
twisti@2350 1736 inline void sub(Register s1, RegisterOrConstant s2, Register d, int offset = 0);
twisti@2350 1737
duke@435 1738 void subcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1739 void subcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1740 void subc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1741 void subc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1742 void subccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1743 void subccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1744
duke@435 1745 // pp 231
duke@435 1746
duke@435 1747 inline void swap( Register s1, Register s2, Register d );
duke@435 1748 inline void swap( Register s1, int simm13a, Register d);
duke@435 1749 inline void swap( Address& a, Register d, int offset = 0 );
duke@435 1750
duke@435 1751 // pp 232
duke@435 1752
duke@435 1753 void swapa( Register s1, Register s2, int ia, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1754 void swapa( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1755
duke@435 1756 // pp 234, note op in book is wrong, see pp 268
duke@435 1757
duke@435 1758 void taddcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(taddcc_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1759 void taddcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(taddcc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1760 void taddcctv( Register s1, Register s2, Register d ) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1761 void taddcctv( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1762
duke@435 1763 // pp 235
duke@435 1764
duke@435 1765 void tsubcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1766 void tsubcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1767 void tsubcctv( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1768 void tsubcctv( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1769
duke@435 1770 // pp 237
duke@435 1771
duke@435 1772 void trap( Condition c, CC cc, Register s1, Register s2 ) { v8_no_cc(cc); emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | rs2(s2)); }
duke@435 1773 void trap( Condition c, CC cc, Register s1, int trapa ) { v8_no_cc(cc); emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | immed(true) | u_field(trapa, 6, 0)); }
duke@435 1774 // simple uncond. trap
duke@435 1775 void trap( int trapa ) { trap( always, icc, G0, trapa ); }
duke@435 1776
duke@435 1777 // pp 239 omit write priv register for now
duke@435 1778
duke@435 1779 inline void wry( Register d) { v9_dep(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(0, 29, 25)); }
duke@435 1780 inline void wrccr(Register s) { v9_only(); emit_long( op(arith_op) | rs1(s) | op3(wrreg_op3) | u_field(2, 29, 25)); }
duke@435 1781 inline void wrccr(Register s, int simm13a) { v9_only(); emit_long( op(arith_op) |
duke@435 1782 rs1(s) |
duke@435 1783 op3(wrreg_op3) |
duke@435 1784 u_field(2, 29, 25) |
duke@435 1785 u_field(1, 13, 13) |
duke@435 1786 simm(simm13a, 13)); }
duke@435 1787 inline void wrasi( Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(3, 29, 25)); }
duke@435 1788 inline void wrfprs( Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(6, 29, 25)); }
duke@435 1789
kvn@3001 1790
kvn@3001 1791 // VIS3 instructions
kvn@3001 1792
kvn@3001 1793 void movstosw( FloatRegister s, Register d ) { vis3_only(); emit_long( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mstosw_opf) | fs2(s, FloatRegisterImpl::S)); }
kvn@3001 1794 void movstouw( FloatRegister s, Register d ) { vis3_only(); emit_long( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mstouw_opf) | fs2(s, FloatRegisterImpl::S)); }
kvn@3001 1795 void movdtox( FloatRegister s, Register d ) { vis3_only(); emit_long( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mdtox_opf) | fs2(s, FloatRegisterImpl::D)); }
kvn@3001 1796
kvn@3001 1797 void movwtos( Register s, FloatRegister d ) { vis3_only(); emit_long( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(mftoi_op3) | opf(mwtos_opf) | rs2(s)); }
kvn@3001 1798 void movxtod( Register s, FloatRegister d ) { vis3_only(); emit_long( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(mftoi_op3) | opf(mxtod_opf) | rs2(s)); }
kvn@3001 1799
kvn@3001 1800
kvn@3001 1801
kvn@3001 1802
ysr@777 1803 // For a given register condition, return the appropriate condition code
ysr@777 1804 // Condition (the one you would use to get the same effect after "tst" on
ysr@777 1805 // the target register.)
ysr@777 1806 Assembler::Condition reg_cond_to_cc_cond(RCondition in);
ysr@777 1807
duke@435 1808
duke@435 1809 // Creation
duke@435 1810 Assembler(CodeBuffer* code) : AbstractAssembler(code) {
duke@435 1811 #ifdef CHECK_DELAY
duke@435 1812 delay_state = no_delay;
duke@435 1813 #endif
duke@435 1814 }
duke@435 1815
duke@435 1816 // Testing
duke@435 1817 #ifndef PRODUCT
duke@435 1818 void test_v9();
duke@435 1819 void test_v8_onlys();
duke@435 1820 #endif
duke@435 1821 };
duke@435 1822
duke@435 1823
duke@435 1824 class RegistersForDebugging : public StackObj {
duke@435 1825 public:
duke@435 1826 intptr_t i[8], l[8], o[8], g[8];
duke@435 1827 float f[32];
duke@435 1828 double d[32];
duke@435 1829
duke@435 1830 void print(outputStream* s);
duke@435 1831
duke@435 1832 static int i_offset(int j) { return offset_of(RegistersForDebugging, i[j]); }
duke@435 1833 static int l_offset(int j) { return offset_of(RegistersForDebugging, l[j]); }
duke@435 1834 static int o_offset(int j) { return offset_of(RegistersForDebugging, o[j]); }
duke@435 1835 static int g_offset(int j) { return offset_of(RegistersForDebugging, g[j]); }
duke@435 1836 static int f_offset(int j) { return offset_of(RegistersForDebugging, f[j]); }
duke@435 1837 static int d_offset(int j) { return offset_of(RegistersForDebugging, d[j / 2]); }
duke@435 1838
duke@435 1839 // gen asm code to save regs
duke@435 1840 static void save_registers(MacroAssembler* a);
duke@435 1841
duke@435 1842 // restore global registers in case C code disturbed them
duke@435 1843 static void restore_registers(MacroAssembler* a, Register r);
ysr@777 1844
ysr@777 1845
duke@435 1846 };
duke@435 1847
duke@435 1848
duke@435 1849 // MacroAssembler extends Assembler by a few frequently used macros.
duke@435 1850 //
duke@435 1851 // Most of the standard SPARC synthetic ops are defined here.
duke@435 1852 // Instructions for which a 'better' code sequence exists depending
duke@435 1853 // on arguments should also go in here.
duke@435 1854
duke@435 1855 #define JMP2(r1, r2) jmp(r1, r2, __FILE__, __LINE__)
duke@435 1856 #define JMP(r1, off) jmp(r1, off, __FILE__, __LINE__)
twisti@1162 1857 #define JUMP(a, temp, off) jump(a, temp, off, __FILE__, __LINE__)
twisti@1162 1858 #define JUMPL(a, temp, d, off) jumpl(a, temp, d, off, __FILE__, __LINE__)
duke@435 1859
duke@435 1860
duke@435 1861 class MacroAssembler: public Assembler {
duke@435 1862 protected:
duke@435 1863 // Support for VM calls
duke@435 1864 // This is the base routine called by the different versions of call_VM_leaf. The interpreter
duke@435 1865 // may customize this version by overriding it for its purposes (e.g., to save/restore
duke@435 1866 // additional registers when doing a VM call).
duke@435 1867 #ifdef CC_INTERP
duke@435 1868 #define VIRTUAL
duke@435 1869 #else
duke@435 1870 #define VIRTUAL virtual
duke@435 1871 #endif
duke@435 1872
duke@435 1873 VIRTUAL void call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments);
duke@435 1874
duke@435 1875 //
duke@435 1876 // It is imperative that all calls into the VM are handled via the call_VM macros.
duke@435 1877 // They make sure that the stack linkage is setup correctly. call_VM's correspond
duke@435 1878 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
duke@435 1879 //
duke@435 1880 // This is the base routine called by the different versions of call_VM. The interpreter
duke@435 1881 // may customize this version by overriding it for its purposes (e.g., to save/restore
duke@435 1882 // additional registers when doing a VM call).
duke@435 1883 //
duke@435 1884 // A non-volatile java_thread_cache register should be specified so
duke@435 1885 // that the G2_thread value can be preserved across the call.
duke@435 1886 // (If java_thread_cache is noreg, then a slow get_thread call
duke@435 1887 // will re-initialize the G2_thread.) call_VM_base returns the register that contains the
duke@435 1888 // thread.
duke@435 1889 //
duke@435 1890 // If no last_java_sp is specified (noreg) than SP will be used instead.
duke@435 1891
duke@435 1892 virtual void call_VM_base(
duke@435 1893 Register oop_result, // where an oop-result ends up if any; use noreg otherwise
duke@435 1894 Register java_thread_cache, // the thread if computed before ; use noreg otherwise
duke@435 1895 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise
duke@435 1896 address entry_point, // the entry point
duke@435 1897 int number_of_arguments, // the number of arguments (w/o thread) to pop after call
duke@435 1898 bool check_exception=true // flag which indicates if exception should be checked
duke@435 1899 );
duke@435 1900
duke@435 1901 // This routine should emit JVMTI PopFrame and ForceEarlyReturn handling code.
duke@435 1902 // The implementation is only non-empty for the InterpreterMacroAssembler,
duke@435 1903 // as only the interpreter handles and ForceEarlyReturn PopFrame requests.
duke@435 1904 virtual void check_and_handle_popframe(Register scratch_reg);
duke@435 1905 virtual void check_and_handle_earlyret(Register scratch_reg);
duke@435 1906
duke@435 1907 public:
duke@435 1908 MacroAssembler(CodeBuffer* code) : Assembler(code) {}
duke@435 1909
duke@435 1910 // Support for NULL-checks
duke@435 1911 //
duke@435 1912 // Generates code that causes a NULL OS exception if the content of reg is NULL.
duke@435 1913 // If the accessed location is M[reg + offset] and the offset is known, provide the
duke@435 1914 // offset. No explicit code generation is needed if the offset is within a certain
duke@435 1915 // range (0 <= offset <= page_size).
duke@435 1916 //
duke@435 1917 // %%%%%% Currently not done for SPARC
duke@435 1918
duke@435 1919 void null_check(Register reg, int offset = -1);
duke@435 1920 static bool needs_explicit_null_check(intptr_t offset);
duke@435 1921
duke@435 1922 // support for delayed instructions
duke@435 1923 MacroAssembler* delayed() { Assembler::delayed(); return this; }
duke@435 1924
duke@435 1925 // branches that use right instruction for v8 vs. v9
duke@435 1926 inline void br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1927 inline void br( Condition c, bool a, Predict p, Label& L );
iveresov@2344 1928
duke@435 1929 inline void fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1930 inline void fb( Condition c, bool a, Predict p, Label& L );
duke@435 1931
kvn@3037 1932 // compares register with zero (32 bit) and branches (V9 and V8 instructions)
kvn@3037 1933 void cmp_zero_and_br( Condition c, Register s1, Label& L, bool a = false, Predict p = pn );
duke@435 1934 // Compares a pointer register with zero and branches on (not)null.
duke@435 1935 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
duke@435 1936 void br_null ( Register s1, bool a, Predict p, Label& L );
duke@435 1937 void br_notnull( Register s1, bool a, Predict p, Label& L );
duke@435 1938
ysr@777 1939 // These versions will do the most efficient thing on v8 and v9. Perhaps
ysr@777 1940 // this is what the routine above was meant to do, but it didn't (and
ysr@777 1941 // didn't cover both target address kinds.)
ysr@777 1942 void br_on_reg_cond( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none );
ysr@777 1943 void br_on_reg_cond( RCondition c, bool a, Predict p, Register s1, Label& L);
ysr@777 1944
kvn@3037 1945 //
kvn@3037 1946 // Compare registers and branch with nop in delay slot or cbcond without delay slot.
kvn@3037 1947 //
kvn@3037 1948 // ATTENTION: use these instructions with caution because cbcond instruction
kvn@3037 1949 // has very short distance: 512 instructions (2Kbyte).
kvn@3037 1950
kvn@3037 1951 // Compare integer (32 bit) values (icc only).
kvn@3037 1952 void cmp_and_br_short(Register s1, Register s2, Condition c, Predict p, Label& L);
kvn@3037 1953 void cmp_and_br_short(Register s1, int simm13a, Condition c, Predict p, Label& L);
kvn@3037 1954 // Platform depending version for pointer compare (icc on !LP64 and xcc on LP64).
kvn@3037 1955 void cmp_and_brx_short(Register s1, Register s2, Condition c, Predict p, Label& L);
kvn@3037 1956 void cmp_and_brx_short(Register s1, int simm13a, Condition c, Predict p, Label& L);
kvn@3037 1957
kvn@3037 1958 // Short branch version for compares a pointer pwith zero.
kvn@3037 1959 void br_null_short ( Register s1, Predict p, Label& L );
kvn@3037 1960 void br_notnull_short( Register s1, Predict p, Label& L );
kvn@3037 1961
kvn@3037 1962 // unconditional short branch
kvn@3037 1963 void ba_short(Label& L);
kvn@3037 1964
duke@435 1965 inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1966 inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
duke@435 1967
duke@435 1968 // Branch that tests xcc in LP64 and icc in !LP64
duke@435 1969 inline void brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1970 inline void brx( Condition c, bool a, Predict p, Label& L );
duke@435 1971
kvn@3037 1972 // unconditional branch
kvn@3037 1973 inline void ba( Label& L );
duke@435 1974
duke@435 1975 // Branch that tests fp condition codes
duke@435 1976 inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1977 inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
duke@435 1978
duke@435 1979 // get PC the best way
duke@435 1980 inline int get_pc( Register d );
duke@435 1981
duke@435 1982 // Sparc shorthands(pp 85, V8 manual, pp 289 V9 manual)
duke@435 1983 inline void cmp( Register s1, Register s2 ) { subcc( s1, s2, G0 ); }
duke@435 1984 inline void cmp( Register s1, int simm13a ) { subcc( s1, simm13a, G0 ); }
duke@435 1985
duke@435 1986 inline void jmp( Register s1, Register s2 );
duke@435 1987 inline void jmp( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
duke@435 1988
iveresov@2441 1989 // Check if the call target is out of wdisp30 range (relative to the code cache)
iveresov@2441 1990 static inline bool is_far_target(address d);
duke@435 1991 inline void call( address d, relocInfo::relocType rt = relocInfo::runtime_call_type );
duke@435 1992 inline void call( Label& L, relocInfo::relocType rt = relocInfo::runtime_call_type );
duke@435 1993 inline void callr( Register s1, Register s2 );
duke@435 1994 inline void callr( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
duke@435 1995
duke@435 1996 // Emits nothing on V8
duke@435 1997 inline void iprefetch( address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1998 inline void iprefetch( Label& L);
duke@435 1999
duke@435 2000 inline void tst( Register s ) { orcc( G0, s, G0 ); }
duke@435 2001
duke@435 2002 #ifdef PRODUCT
duke@435 2003 inline void ret( bool trace = TraceJumps ) { if (trace) {
duke@435 2004 mov(I7, O7); // traceable register
duke@435 2005 JMP(O7, 2 * BytesPerInstWord);
duke@435 2006 } else {
duke@435 2007 jmpl( I7, 2 * BytesPerInstWord, G0 );
duke@435 2008 }
duke@435 2009 }
duke@435 2010
duke@435 2011 inline void retl( bool trace = TraceJumps ) { if (trace) JMP(O7, 2 * BytesPerInstWord);
duke@435 2012 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
duke@435 2013 #else
duke@435 2014 void ret( bool trace = TraceJumps );
duke@435 2015 void retl( bool trace = TraceJumps );
duke@435 2016 #endif /* PRODUCT */
duke@435 2017
duke@435 2018 // Required platform-specific helpers for Label::patch_instructions.
duke@435 2019 // They _shadow_ the declarations in AbstractAssembler, which are undefined.
duke@435 2020 void pd_patch_instruction(address branch, address target);
duke@435 2021 #ifndef PRODUCT
duke@435 2022 static void pd_print_patched_instruction(address branch);
duke@435 2023 #endif
duke@435 2024
duke@435 2025 // sethi Macro handles optimizations and relocations
twisti@1162 2026 private:
twisti@1162 2027 void internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable);
twisti@1162 2028 public:
twisti@1162 2029 void sethi(const AddressLiteral& addrlit, Register d);
twisti@1162 2030 void patchable_sethi(const AddressLiteral& addrlit, Register d);
duke@435 2031
twisti@2399 2032 // compute the number of instructions for a sethi/set
twisti@2399 2033 static int insts_for_sethi( address a, bool worst_case = false );
twisti@2399 2034 static int worst_case_insts_for_set();
duke@435 2035
duke@435 2036 // set may be either setsw or setuw (high 32 bits may be zero or sign)
twisti@1162 2037 private:
twisti@1162 2038 void internal_set(const AddressLiteral& al, Register d, bool ForceRelocatable);
twisti@2399 2039 static int insts_for_internal_set(intptr_t value);
twisti@1162 2040 public:
twisti@1162 2041 void set(const AddressLiteral& addrlit, Register d);
twisti@1162 2042 void set(intptr_t value, Register d);
twisti@1162 2043 void set(address addr, Register d, RelocationHolder const& rspec);
twisti@2399 2044 static int insts_for_set(intptr_t value) { return insts_for_internal_set(value); }
twisti@2399 2045
twisti@1162 2046 void patchable_set(const AddressLiteral& addrlit, Register d);
twisti@1162 2047 void patchable_set(intptr_t value, Register d);
twisti@1162 2048 void set64(jlong value, Register d, Register tmp);
twisti@2399 2049 static int insts_for_set64(jlong value);
twisti@2350 2050
duke@435 2051 // sign-extend 32 to 64
duke@435 2052 inline void signx( Register s, Register d ) { sra( s, G0, d); }
duke@435 2053 inline void signx( Register d ) { sra( d, G0, d); }
duke@435 2054
duke@435 2055 inline void not1( Register s, Register d ) { xnor( s, G0, d ); }
duke@435 2056 inline void not1( Register d ) { xnor( d, G0, d ); }
duke@435 2057
duke@435 2058 inline void neg( Register s, Register d ) { sub( G0, s, d ); }
duke@435 2059 inline void neg( Register d ) { sub( G0, d, d ); }
duke@435 2060
duke@435 2061 inline void cas( Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY); }
duke@435 2062 inline void casx( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY); }
duke@435 2063 // Functions for isolating 64 bit atomic swaps for LP64
duke@435 2064 // cas_ptr will perform cas for 32 bit VM's and casx for 64 bit VM's
duke@435 2065 inline void cas_ptr( Register s1, Register s2, Register d) {
duke@435 2066 #ifdef _LP64
duke@435 2067 casx( s1, s2, d );
duke@435 2068 #else
duke@435 2069 cas( s1, s2, d );
duke@435 2070 #endif
duke@435 2071 }
duke@435 2072
duke@435 2073 // Functions for isolating 64 bit shifts for LP64
duke@435 2074 inline void sll_ptr( Register s1, Register s2, Register d );
duke@435 2075 inline void sll_ptr( Register s1, int imm6a, Register d );
jrose@1100 2076 inline void sll_ptr( Register s1, RegisterOrConstant s2, Register d );
duke@435 2077 inline void srl_ptr( Register s1, Register s2, Register d );
duke@435 2078 inline void srl_ptr( Register s1, int imm6a, Register d );
duke@435 2079
duke@435 2080 // little-endian
duke@435 2081 inline void casl( Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY_LITTLE); }
duke@435 2082 inline void casxl( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY_LITTLE); }
duke@435 2083
duke@435 2084 inline void inc( Register d, int const13 = 1 ) { add( d, const13, d); }
duke@435 2085 inline void inccc( Register d, int const13 = 1 ) { addcc( d, const13, d); }
duke@435 2086
duke@435 2087 inline void dec( Register d, int const13 = 1 ) { sub( d, const13, d); }
duke@435 2088 inline void deccc( Register d, int const13 = 1 ) { subcc( d, const13, d); }
duke@435 2089
duke@435 2090 inline void btst( Register s1, Register s2 ) { andcc( s1, s2, G0 ); }
duke@435 2091 inline void btst( int simm13a, Register s ) { andcc( s, simm13a, G0 ); }
duke@435 2092
duke@435 2093 inline void bset( Register s1, Register s2 ) { or3( s1, s2, s2 ); }
duke@435 2094 inline void bset( int simm13a, Register s ) { or3( s, simm13a, s ); }
duke@435 2095
duke@435 2096 inline void bclr( Register s1, Register s2 ) { andn( s1, s2, s2 ); }
duke@435 2097 inline void bclr( int simm13a, Register s ) { andn( s, simm13a, s ); }
duke@435 2098
duke@435 2099 inline void btog( Register s1, Register s2 ) { xor3( s1, s2, s2 ); }
duke@435 2100 inline void btog( int simm13a, Register s ) { xor3( s, simm13a, s ); }
duke@435 2101
duke@435 2102 inline void clr( Register d ) { or3( G0, G0, d ); }
duke@435 2103
duke@435 2104 inline void clrb( Register s1, Register s2);
duke@435 2105 inline void clrh( Register s1, Register s2);
duke@435 2106 inline void clr( Register s1, Register s2);
duke@435 2107 inline void clrx( Register s1, Register s2);
duke@435 2108
duke@435 2109 inline void clrb( Register s1, int simm13a);
duke@435 2110 inline void clrh( Register s1, int simm13a);
duke@435 2111 inline void clr( Register s1, int simm13a);
duke@435 2112 inline void clrx( Register s1, int simm13a);
duke@435 2113
duke@435 2114 // copy & clear upper word
duke@435 2115 inline void clruw( Register s, Register d ) { srl( s, G0, d); }
duke@435 2116 // clear upper word
duke@435 2117 inline void clruwu( Register d ) { srl( d, G0, d); }
duke@435 2118
duke@435 2119 // membar psuedo instruction. takes into account target memory model.
duke@435 2120 inline void membar( Assembler::Membar_mask_bits const7a );
duke@435 2121
duke@435 2122 // returns if membar generates anything.
duke@435 2123 inline bool membar_has_effect( Assembler::Membar_mask_bits const7a );
duke@435 2124
duke@435 2125 // mov pseudo instructions
duke@435 2126 inline void mov( Register s, Register d) {
duke@435 2127 if ( s != d ) or3( G0, s, d);
duke@435 2128 else assert_not_delayed(); // Put something useful in the delay slot!
duke@435 2129 }
duke@435 2130
duke@435 2131 inline void mov_or_nop( Register s, Register d) {
duke@435 2132 if ( s != d ) or3( G0, s, d);
duke@435 2133 else nop();
duke@435 2134 }
duke@435 2135
duke@435 2136 inline void mov( int simm13a, Register d) { or3( G0, simm13a, d); }
duke@435 2137
duke@435 2138 // address pseudos: make these names unlike instruction names to avoid confusion
duke@435 2139 inline intptr_t load_pc_address( Register reg, int bytes_to_skip );
coleenp@2035 2140 inline void load_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
coleenp@2035 2141 inline void load_ptr_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
coleenp@2035 2142 inline void store_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset = 0);
coleenp@2035 2143 inline void store_ptr_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset = 0);
coleenp@2035 2144 inline void jumpl_to(const AddressLiteral& addrlit, Register temp, Register d, int offset = 0);
coleenp@2035 2145 inline void jump_to(const AddressLiteral& addrlit, Register temp, int offset = 0);
twisti@1162 2146 inline void jump_indirect_to(Address& a, Register temp, int ld_offset = 0, int jmp_offset = 0);
duke@435 2147
duke@435 2148 // ring buffer traceable jumps
duke@435 2149
duke@435 2150 void jmp2( Register r1, Register r2, const char* file, int line );
duke@435 2151 void jmp ( Register r1, int offset, const char* file, int line );
duke@435 2152
coleenp@2035 2153 void jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line);
coleenp@2035 2154 void jump (const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line);
duke@435 2155
duke@435 2156
duke@435 2157 // argument pseudos:
duke@435 2158
duke@435 2159 inline void load_argument( Argument& a, Register d );
duke@435 2160 inline void store_argument( Register s, Argument& a );
duke@435 2161 inline void store_ptr_argument( Register s, Argument& a );
duke@435 2162 inline void store_float_argument( FloatRegister s, Argument& a );
duke@435 2163 inline void store_double_argument( FloatRegister s, Argument& a );
duke@435 2164 inline void store_long_argument( Register s, Argument& a );
duke@435 2165
duke@435 2166 // handy macros:
duke@435 2167
duke@435 2168 inline void round_to( Register r, int modulus ) {
duke@435 2169 assert_not_delayed();
duke@435 2170 inc( r, modulus - 1 );
duke@435 2171 and3( r, -modulus, r );
duke@435 2172 }
duke@435 2173
duke@435 2174 // --------------------------------------------------
duke@435 2175
duke@435 2176 // Functions for isolating 64 bit loads for LP64
duke@435 2177 // ld_ptr will perform ld for 32 bit VM's and ldx for 64 bit VM's
duke@435 2178 // st_ptr will perform st for 32 bit VM's and stx for 64 bit VM's
twisti@1162 2179 inline void ld_ptr(Register s1, Register s2, Register d);
twisti@1162 2180 inline void ld_ptr(Register s1, int simm13a, Register d);
twisti@1162 2181 inline void ld_ptr(Register s1, RegisterOrConstant s2, Register d);
twisti@1162 2182 inline void ld_ptr(const Address& a, Register d, int offset = 0);
twisti@1162 2183 inline void st_ptr(Register d, Register s1, Register s2);
twisti@1162 2184 inline void st_ptr(Register d, Register s1, int simm13a);
twisti@1162 2185 inline void st_ptr(Register d, Register s1, RegisterOrConstant s2);
twisti@1162 2186 inline void st_ptr(Register d, const Address& a, int offset = 0);
twisti@1162 2187
twisti@1162 2188 #ifdef ASSERT
twisti@1162 2189 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
twisti@1162 2190 inline void ld_ptr(Register s1, ByteSize simm13a, Register d);
twisti@1162 2191 inline void st_ptr(Register d, Register s1, ByteSize simm13a);
twisti@1162 2192 #endif
duke@435 2193
twisti@1858 2194 // ld_long will perform ldd for 32 bit VM's and ldx for 64 bit VM's
twisti@1858 2195 // st_long will perform std for 32 bit VM's and stx for 64 bit VM's
twisti@1162 2196 inline void ld_long(Register s1, Register s2, Register d);
twisti@1162 2197 inline void ld_long(Register s1, int simm13a, Register d);
twisti@1162 2198 inline void ld_long(Register s1, RegisterOrConstant s2, Register d);
twisti@1162 2199 inline void ld_long(const Address& a, Register d, int offset = 0);
twisti@1162 2200 inline void st_long(Register d, Register s1, Register s2);
twisti@1162 2201 inline void st_long(Register d, Register s1, int simm13a);
twisti@1162 2202 inline void st_long(Register d, Register s1, RegisterOrConstant s2);
twisti@1162 2203 inline void st_long(Register d, const Address& a, int offset = 0);
jrose@1057 2204
jrose@1058 2205 // Helpers for address formation.
twisti@1858 2206 // - They emit only a move if s2 is a constant zero.
twisti@1858 2207 // - If dest is a constant and either s1 or s2 is a register, the temp argument is required and becomes the result.
twisti@1858 2208 // - If dest is a register and either s1 or s2 is a non-simm13 constant, the temp argument is required and used to materialize the constant.
twisti@1858 2209 RegisterOrConstant regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
twisti@1858 2210 RegisterOrConstant regcon_inc_ptr( RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
twisti@1858 2211 RegisterOrConstant regcon_sll_ptr( RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
twisti@1858 2212
twisti@1858 2213 RegisterOrConstant ensure_simm13_or_reg(RegisterOrConstant src, Register temp) {
twisti@1858 2214 if (is_simm13(src.constant_or_zero()))
twisti@1858 2215 return src; // register or short constant
twisti@1858 2216 guarantee(temp != noreg, "constant offset overflow");
twisti@1858 2217 set(src.as_constant(), temp);
twisti@1858 2218 return temp;
jrose@1058 2219 }
jrose@1058 2220
duke@435 2221 // --------------------------------------------------
duke@435 2222
duke@435 2223 public:
duke@435 2224 // traps as per trap.h (SPARC ABI?)
duke@435 2225
duke@435 2226 void breakpoint_trap();
duke@435 2227 void breakpoint_trap(Condition c, CC cc = icc);
duke@435 2228 void flush_windows_trap();
duke@435 2229 void clean_windows_trap();
duke@435 2230 void get_psr_trap();
duke@435 2231 void set_psr_trap();
duke@435 2232
duke@435 2233 // V8/V9 flush_windows
duke@435 2234 void flush_windows();
duke@435 2235
duke@435 2236 // Support for serializing memory accesses between threads
duke@435 2237 void serialize_memory(Register thread, Register tmp1, Register tmp2);
duke@435 2238
duke@435 2239 // Stack frame creation/removal
duke@435 2240 void enter();
duke@435 2241 void leave();
duke@435 2242
duke@435 2243 // V8/V9 integer multiply
duke@435 2244 void mult(Register s1, Register s2, Register d);
duke@435 2245 void mult(Register s1, int simm13a, Register d);
duke@435 2246
duke@435 2247 // V8/V9 read and write of condition codes.
duke@435 2248 void read_ccr(Register d);
duke@435 2249 void write_ccr(Register s);
duke@435 2250
duke@435 2251 // Manipulation of C++ bools
duke@435 2252 // These are idioms to flag the need for care with accessing bools but on
duke@435 2253 // this platform we assume byte size
duke@435 2254
twisti@1162 2255 inline void stbool(Register d, const Address& a) { stb(d, a); }
twisti@1162 2256 inline void ldbool(const Address& a, Register d) { ldsb(a, d); }
duke@435 2257 inline void movbool( bool boolconst, Register d) { mov( (int) boolconst, d); }
duke@435 2258
coleenp@548 2259 // klass oop manipulations if compressed
kvn@599 2260 void load_klass(Register src_oop, Register klass);
kvn@599 2261 void store_klass(Register klass, Register dst_oop);
coleenp@602 2262 void store_klass_gap(Register s, Register dst_oop);
coleenp@548 2263
coleenp@548 2264 // oop manipulations
twisti@1162 2265 void load_heap_oop(const Address& s, Register d);
coleenp@548 2266 void load_heap_oop(Register s1, Register s2, Register d);
coleenp@548 2267 void load_heap_oop(Register s1, int simm13a, Register d);
twisti@2201 2268 void load_heap_oop(Register s1, RegisterOrConstant s2, Register d);
coleenp@548 2269 void store_heap_oop(Register d, Register s1, Register s2);
coleenp@548 2270 void store_heap_oop(Register d, Register s1, int simm13a);
coleenp@548 2271 void store_heap_oop(Register d, const Address& a, int offset = 0);
coleenp@548 2272
coleenp@548 2273 void encode_heap_oop(Register src, Register dst);
coleenp@548 2274 void encode_heap_oop(Register r) {
coleenp@548 2275 encode_heap_oop(r, r);
coleenp@548 2276 }
coleenp@548 2277 void decode_heap_oop(Register src, Register dst);
coleenp@548 2278 void decode_heap_oop(Register r) {
coleenp@548 2279 decode_heap_oop(r, r);
coleenp@548 2280 }
coleenp@548 2281 void encode_heap_oop_not_null(Register r);
coleenp@548 2282 void decode_heap_oop_not_null(Register r);
kvn@559 2283 void encode_heap_oop_not_null(Register src, Register dst);
kvn@559 2284 void decode_heap_oop_not_null(Register src, Register dst);
coleenp@548 2285
duke@435 2286 // Support for managing the JavaThread pointer (i.e.; the reference to
duke@435 2287 // thread-local information).
duke@435 2288 void get_thread(); // load G2_thread
duke@435 2289 void verify_thread(); // verify G2_thread contents
duke@435 2290 void save_thread (const Register threache); // save to cache
duke@435 2291 void restore_thread(const Register thread_cache); // restore from cache
duke@435 2292
duke@435 2293 // Support for last Java frame (but use call_VM instead where possible)
duke@435 2294 void set_last_Java_frame(Register last_java_sp, Register last_Java_pc);
duke@435 2295 void reset_last_Java_frame(void);
duke@435 2296
duke@435 2297 // Call into the VM.
duke@435 2298 // Passes the thread pointer (in O0) as a prepended argument.
duke@435 2299 // Makes sure oop return values are visible to the GC.
duke@435 2300 void call_VM(Register oop_result, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
duke@435 2301 void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
duke@435 2302 void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
duke@435 2303 void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
duke@435 2304
duke@435 2305 // these overloadings are not presently used on SPARC:
duke@435 2306 void call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
duke@435 2307 void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
duke@435 2308 void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
duke@435 2309 void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
duke@435 2310
duke@435 2311 void call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments = 0);
duke@435 2312 void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1);
duke@435 2313 void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2);
duke@435 2314 void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3);
duke@435 2315
duke@435 2316 void get_vm_result (Register oop_result);
duke@435 2317 void get_vm_result_2(Register oop_result);
duke@435 2318
duke@435 2319 // vm result is currently getting hijacked to for oop preservation
duke@435 2320 void set_vm_result(Register oop_result);
duke@435 2321
duke@435 2322 // if call_VM_base was called with check_exceptions=false, then call
duke@435 2323 // check_and_forward_exception to handle exceptions when it is safe
duke@435 2324 void check_and_forward_exception(Register scratch_reg);
duke@435 2325
duke@435 2326 private:
duke@435 2327 // For V8
duke@435 2328 void read_ccr_trap(Register ccr_save);
duke@435 2329 void write_ccr_trap(Register ccr_save1, Register scratch1, Register scratch2);
duke@435 2330
duke@435 2331 #ifdef ASSERT
duke@435 2332 // For V8 debugging. Uses V8 instruction sequence and checks
duke@435 2333 // result with V9 insturctions rdccr and wrccr.
duke@435 2334 // Uses Gscatch and Gscatch2
duke@435 2335 void read_ccr_v8_assert(Register ccr_save);
duke@435 2336 void write_ccr_v8_assert(Register ccr_save);
duke@435 2337 #endif // ASSERT
duke@435 2338
duke@435 2339 public:
ysr@777 2340
ysr@777 2341 // Write to card table for - register is destroyed afterwards.
ysr@777 2342 void card_table_write(jbyte* byte_map_base, Register tmp, Register obj);
ysr@777 2343
ysr@777 2344 void card_write_barrier_post(Register store_addr, Register new_val, Register tmp);
ysr@777 2345
ysr@777 2346 #ifndef SERIALGC
johnc@2781 2347 // General G1 pre-barrier generator.
johnc@2781 2348 void g1_write_barrier_pre(Register obj, Register index, int offset, Register pre_val, Register tmp, bool preserve_o_regs);
johnc@2781 2349
johnc@2781 2350 // General G1 post-barrier generator
ysr@777 2351 void g1_write_barrier_post(Register store_addr, Register new_val, Register tmp);
ysr@777 2352 #endif // SERIALGC
duke@435 2353
duke@435 2354 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
duke@435 2355 void push_fTOS();
duke@435 2356
duke@435 2357 // pops double TOS element from CPU stack and pushes on FPU stack
duke@435 2358 void pop_fTOS();
duke@435 2359
duke@435 2360 void empty_FPU_stack();
duke@435 2361
duke@435 2362 void push_IU_state();
duke@435 2363 void pop_IU_state();
duke@435 2364
duke@435 2365 void push_FPU_state();
duke@435 2366 void pop_FPU_state();
duke@435 2367
duke@435 2368 void push_CPU_state();
duke@435 2369 void pop_CPU_state();
duke@435 2370
coleenp@548 2371 // if heap base register is used - reinit it with the correct value
coleenp@548 2372 void reinit_heapbase();
coleenp@548 2373
duke@435 2374 // Debugging
duke@435 2375 void _verify_oop(Register reg, const char * msg, const char * file, int line);
duke@435 2376 void _verify_oop_addr(Address addr, const char * msg, const char * file, int line);
duke@435 2377
duke@435 2378 #define verify_oop(reg) _verify_oop(reg, "broken oop " #reg, __FILE__, __LINE__)
duke@435 2379 #define verify_oop_addr(addr) _verify_oop_addr(addr, "broken oop addr ", __FILE__, __LINE__)
duke@435 2380
duke@435 2381 // only if +VerifyOops
duke@435 2382 void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
duke@435 2383 // only if +VerifyFPU
duke@435 2384 void stop(const char* msg); // prints msg, dumps registers and stops execution
duke@435 2385 void warn(const char* msg); // prints msg, but don't stop
duke@435 2386 void untested(const char* what = "");
twisti@2201 2387 void unimplemented(const char* what = "") { char* b = new char[1024]; jio_snprintf(b, 1024, "unimplemented: %s", what); stop(b); }
duke@435 2388 void should_not_reach_here() { stop("should not reach here"); }
duke@435 2389 void print_CPU_state();
duke@435 2390
duke@435 2391 // oops in code
twisti@1162 2392 AddressLiteral allocate_oop_address(jobject obj); // allocate_index
twisti@1162 2393 AddressLiteral constant_oop_address(jobject obj); // find_index
twisti@1162 2394 inline void set_oop (jobject obj, Register d); // uses allocate_oop_address
twisti@1162 2395 inline void set_oop_constant (jobject obj, Register d); // uses constant_oop_address
jcoomes@1902 2396 inline void set_oop (const AddressLiteral& obj_addr, Register d); // same as load_address
duke@435 2397
kvn@599 2398 void set_narrow_oop( jobject obj, Register d );
kvn@599 2399
duke@435 2400 // nop padding
duke@435 2401 void align(int modulus);
duke@435 2402
duke@435 2403 // declare a safepoint
duke@435 2404 void safepoint();
duke@435 2405
duke@435 2406 // factor out part of stop into subroutine to save space
duke@435 2407 void stop_subroutine();
duke@435 2408 // factor out part of verify_oop into subroutine to save space
duke@435 2409 void verify_oop_subroutine();
duke@435 2410
duke@435 2411 // side-door communication with signalHandler in os_solaris.cpp
duke@435 2412 static address _verify_oop_implicit_branch[3];
duke@435 2413
duke@435 2414 #ifndef PRODUCT
duke@435 2415 static void test();
duke@435 2416 #endif
duke@435 2417
duke@435 2418 // convert an incoming arglist to varargs format; put the pointer in d
duke@435 2419 void set_varargs( Argument a, Register d );
duke@435 2420
duke@435 2421 int total_frame_size_in_bytes(int extraWords);
duke@435 2422
duke@435 2423 // used when extraWords known statically
never@2950 2424 void save_frame(int extraWords = 0);
duke@435 2425 void save_frame_c1(int size_in_bytes);
duke@435 2426 // make a frame, and simultaneously pass up one or two register value
duke@435 2427 // into the new register window
duke@435 2428 void save_frame_and_mov(int extraWords, Register s1, Register d1, Register s2 = Register(), Register d2 = Register());
duke@435 2429
duke@435 2430 // give no. (outgoing) params, calc # of words will need on frame
duke@435 2431 void calc_mem_param_words(Register Rparam_words, Register Rresult);
duke@435 2432
duke@435 2433 // used to calculate frame size dynamically
duke@435 2434 // result is in bytes and must be negated for save inst
duke@435 2435 void calc_frame_size(Register extraWords, Register resultReg);
duke@435 2436
duke@435 2437 // calc and also save
duke@435 2438 void calc_frame_size_and_save(Register extraWords, Register resultReg);
duke@435 2439
duke@435 2440 static void debug(char* msg, RegistersForDebugging* outWindow);
duke@435 2441
duke@435 2442 // implementations of bytecodes used by both interpreter and compiler
duke@435 2443
duke@435 2444 void lcmp( Register Ra_hi, Register Ra_low,
duke@435 2445 Register Rb_hi, Register Rb_low,
duke@435 2446 Register Rresult);
duke@435 2447
duke@435 2448 void lneg( Register Rhi, Register Rlow );
duke@435 2449
duke@435 2450 void lshl( Register Rin_high, Register Rin_low, Register Rcount,
duke@435 2451 Register Rout_high, Register Rout_low, Register Rtemp );
duke@435 2452
duke@435 2453 void lshr( Register Rin_high, Register Rin_low, Register Rcount,
duke@435 2454 Register Rout_high, Register Rout_low, Register Rtemp );
duke@435 2455
duke@435 2456 void lushr( Register Rin_high, Register Rin_low, Register Rcount,
duke@435 2457 Register Rout_high, Register Rout_low, Register Rtemp );
duke@435 2458
duke@435 2459 #ifdef _LP64
duke@435 2460 void lcmp( Register Ra, Register Rb, Register Rresult);
duke@435 2461 #endif
duke@435 2462
twisti@2565 2463 // Load and store values by size and signed-ness
twisti@2565 2464 void load_sized_value( Address src, Register dst, size_t size_in_bytes, bool is_signed);
twisti@2565 2465 void store_sized_value(Register src, Address dst, size_t size_in_bytes);
twisti@1858 2466
duke@435 2467 void float_cmp( bool is_float, int unordered_result,
duke@435 2468 FloatRegister Fa, FloatRegister Fb,
duke@435 2469 Register Rresult);
duke@435 2470
duke@435 2471 void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
duke@435 2472 void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { Assembler::fneg(w, sd); }
duke@435 2473 void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
duke@435 2474 void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
duke@435 2475
duke@435 2476 void save_all_globals_into_locals();
duke@435 2477 void restore_globals_from_locals();
duke@435 2478
duke@435 2479 void casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
duke@435 2480 address lock_addr=0, bool use_call_vm=false);
duke@435 2481 void cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
duke@435 2482 address lock_addr=0, bool use_call_vm=false);
duke@435 2483 void casn (Register addr_reg, Register cmp_reg, Register set_reg) ;
duke@435 2484
duke@435 2485 // These set the icc condition code to equal if the lock succeeded
duke@435 2486 // and notEqual if it failed and requires a slow case
kvn@855 2487 void compiler_lock_object(Register Roop, Register Rmark, Register Rbox,
kvn@855 2488 Register Rscratch,
kvn@855 2489 BiasedLockingCounters* counters = NULL,
kvn@855 2490 bool try_bias = UseBiasedLocking);
kvn@855 2491 void compiler_unlock_object(Register Roop, Register Rmark, Register Rbox,
kvn@855 2492 Register Rscratch,
kvn@855 2493 bool try_bias = UseBiasedLocking);
duke@435 2494
duke@435 2495 // Biased locking support
duke@435 2496 // Upon entry, lock_reg must point to the lock record on the stack,
duke@435 2497 // obj_reg must contain the target object, and mark_reg must contain
duke@435 2498 // the target object's header.
duke@435 2499 // Destroys mark_reg if an attempt is made to bias an anonymously
duke@435 2500 // biased lock. In this case a failure will go either to the slow
duke@435 2501 // case or fall through with the notEqual condition code set with
duke@435 2502 // the expectation that the slow case in the runtime will be called.
duke@435 2503 // In the fall-through case where the CAS-based lock is done,
duke@435 2504 // mark_reg is not destroyed.
duke@435 2505 void biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg,
duke@435 2506 Label& done, Label* slow_case = NULL,
duke@435 2507 BiasedLockingCounters* counters = NULL);
duke@435 2508 // Upon entry, the base register of mark_addr must contain the oop.
duke@435 2509 // Destroys temp_reg.
duke@435 2510
duke@435 2511 // If allow_delay_slot_filling is set to true, the next instruction
duke@435 2512 // emitted after this one will go in an annulled delay slot if the
duke@435 2513 // biased locking exit case failed.
duke@435 2514 void biased_locking_exit(Address mark_addr, Register temp_reg, Label& done, bool allow_delay_slot_filling = false);
duke@435 2515
duke@435 2516 // allocation
duke@435 2517 void eden_allocate(
duke@435 2518 Register obj, // result: pointer to object after successful allocation
duke@435 2519 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 2520 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 2521 Register t1, // temp register
duke@435 2522 Register t2, // temp register
duke@435 2523 Label& slow_case // continuation point if fast allocation fails
duke@435 2524 );
duke@435 2525 void tlab_allocate(
duke@435 2526 Register obj, // result: pointer to object after successful allocation
duke@435 2527 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 2528 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 2529 Register t1, // temp register
duke@435 2530 Label& slow_case // continuation point if fast allocation fails
duke@435 2531 );
duke@435 2532 void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
phh@2447 2533 void incr_allocated_bytes(RegisterOrConstant size_in_bytes,
phh@2447 2534 Register t1, Register t2);
duke@435 2535
jrose@1058 2536 // interface method calling
jrose@1058 2537 void lookup_interface_method(Register recv_klass,
jrose@1058 2538 Register intf_klass,
jrose@1100 2539 RegisterOrConstant itable_index,
jrose@1058 2540 Register method_result,
jrose@1058 2541 Register temp_reg, Register temp2_reg,
jrose@1058 2542 Label& no_such_interface);
jrose@1058 2543
jrose@1079 2544 // Test sub_klass against super_klass, with fast and slow paths.
jrose@1079 2545
jrose@1079 2546 // The fast path produces a tri-state answer: yes / no / maybe-slow.
jrose@1079 2547 // One of the three labels can be NULL, meaning take the fall-through.
jrose@1079 2548 // If super_check_offset is -1, the value is loaded up from super_klass.
jrose@1079 2549 // No registers are killed, except temp_reg and temp2_reg.
jrose@1079 2550 // If super_check_offset is not -1, temp2_reg is not used and can be noreg.
jrose@1079 2551 void check_klass_subtype_fast_path(Register sub_klass,
jrose@1079 2552 Register super_klass,
jrose@1079 2553 Register temp_reg,
jrose@1079 2554 Register temp2_reg,
jrose@1079 2555 Label* L_success,
jrose@1079 2556 Label* L_failure,
jrose@1079 2557 Label* L_slow_path,
kvn@3037 2558 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
jrose@1079 2559
jrose@1079 2560 // The rest of the type check; must be wired to a corresponding fast path.
jrose@1079 2561 // It does not repeat the fast path logic, so don't use it standalone.
jrose@1079 2562 // The temp_reg can be noreg, if no temps are available.
jrose@1079 2563 // It can also be sub_klass or super_klass, meaning it's OK to kill that one.
jrose@1079 2564 // Updates the sub's secondary super cache as necessary.
jrose@1079 2565 void check_klass_subtype_slow_path(Register sub_klass,
jrose@1079 2566 Register super_klass,
jrose@1079 2567 Register temp_reg,
jrose@1079 2568 Register temp2_reg,
jrose@1079 2569 Register temp3_reg,
jrose@1079 2570 Register temp4_reg,
jrose@1079 2571 Label* L_success,
jrose@1079 2572 Label* L_failure);
jrose@1079 2573
jrose@1079 2574 // Simplified, combined version, good for typical uses.
jrose@1079 2575 // Falls through on failure.
jrose@1079 2576 void check_klass_subtype(Register sub_klass,
jrose@1079 2577 Register super_klass,
jrose@1079 2578 Register temp_reg,
jrose@1079 2579 Register temp2_reg,
jrose@1079 2580 Label& L_success);
jrose@1079 2581
jrose@1145 2582 // method handles (JSR 292)
jrose@1145 2583 void check_method_handle_type(Register mtype_reg, Register mh_reg,
jrose@1145 2584 Register temp_reg,
jrose@1145 2585 Label& wrong_method_type);
twisti@1858 2586 void load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
twisti@1858 2587 Register temp_reg);
twisti@1858 2588 void jump_to_method_handle_entry(Register mh_reg, Register temp_reg, bool emit_delayed_nop = true);
jrose@1145 2589 // offset relative to Gargs of argument at tos[arg_slot].
jrose@1145 2590 // (arg_slot == 0 means the last argument, not the first).
jrose@1145 2591 RegisterOrConstant argument_offset(RegisterOrConstant arg_slot,
never@2950 2592 Register temp_reg,
jrose@1145 2593 int extra_slot_offset = 0);
twisti@1858 2594 // Address of Gargs and argument_offset.
twisti@1858 2595 Address argument_address(RegisterOrConstant arg_slot,
never@2950 2596 Register temp_reg,
twisti@1858 2597 int extra_slot_offset = 0);
jrose@1079 2598
duke@435 2599 // Stack overflow checking
duke@435 2600
duke@435 2601 // Note: this clobbers G3_scratch
duke@435 2602 void bang_stack_with_offset(int offset) {
duke@435 2603 // stack grows down, caller passes positive offset
duke@435 2604 assert(offset > 0, "must bang with negative offset");
duke@435 2605 set((-offset)+STACK_BIAS, G3_scratch);
duke@435 2606 st(G0, SP, G3_scratch);
duke@435 2607 }
duke@435 2608
duke@435 2609 // Writes to stack successive pages until offset reached to check for
duke@435 2610 // stack overflow + shadow pages. Clobbers tsp and scratch registers.
duke@435 2611 void bang_stack_size(Register Rsize, Register Rtsp, Register Rscratch);
duke@435 2612
jrose@1100 2613 virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset);
jrose@1057 2614
duke@435 2615 void verify_tlab();
duke@435 2616
duke@435 2617 Condition negate_condition(Condition cond);
duke@435 2618
duke@435 2619 // Helper functions for statistics gathering.
duke@435 2620 // Conditionally (non-atomically) increments passed counter address, preserving condition codes.
duke@435 2621 void cond_inc(Condition cond, address counter_addr, Register Rtemp1, Register Rtemp2);
duke@435 2622 // Unconditional increment.
twisti@1162 2623 void inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2);
twisti@1162 2624 void inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2);
duke@435 2625
kvn@1421 2626 // Compare char[] arrays aligned to 4 bytes.
kvn@1421 2627 void char_arrays_equals(Register ary1, Register ary2,
kvn@1421 2628 Register limit, Register result,
kvn@1421 2629 Register chr1, Register chr2, Label& Ldone);
kvn@1421 2630
duke@435 2631 #undef VIRTUAL
duke@435 2632
duke@435 2633 };
duke@435 2634
duke@435 2635 /**
duke@435 2636 * class SkipIfEqual:
duke@435 2637 *
duke@435 2638 * Instantiating this class will result in assembly code being output that will
duke@435 2639 * jump around any code emitted between the creation of the instance and it's
duke@435 2640 * automatic destruction at the end of a scope block, depending on the value of
duke@435 2641 * the flag passed to the constructor, which will be checked at run-time.
duke@435 2642 */
duke@435 2643 class SkipIfEqual : public StackObj {
duke@435 2644 private:
duke@435 2645 MacroAssembler* _masm;
duke@435 2646 Label _label;
duke@435 2647
duke@435 2648 public:
duke@435 2649 // 'temp' is a temp register that this object can use (and trash)
duke@435 2650 SkipIfEqual(MacroAssembler*, Register temp,
duke@435 2651 const bool* flag_addr, Assembler::Condition condition);
duke@435 2652 ~SkipIfEqual();
duke@435 2653 };
duke@435 2654
duke@435 2655 #ifdef ASSERT
duke@435 2656 // On RISC, there's no benefit to verifying instruction boundaries.
duke@435 2657 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
duke@435 2658 #endif
stefank@2314 2659
stefank@2314 2660 #endif // CPU_SPARC_VM_ASSEMBLER_SPARC_HPP

mercurial