src/share/classes/com/sun/tools/javac/comp/Check.java

Mon, 26 Mar 2012 15:27:51 +0100

author
mcimadamore
date
Mon, 26 Mar 2012 15:27:51 +0100
changeset 1237
568e70bbd9aa
parent 1226
97bec6ab1227
child 1238
e28a06a3c5d9
permissions
-rw-r--r--

7151580: Separate DA/DU logic from exception checking logic in Flow.java
Summary: DA/DU analysis and exception checking analysis should live in two separate tree visitors
Reviewed-by: gafter, dlsmith, jjg

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    31 import com.sun.tools.javac.code.*;
    32 import com.sun.tools.javac.jvm.*;
    33 import com.sun.tools.javac.tree.*;
    34 import com.sun.tools.javac.util.*;
    35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    36 import com.sun.tools.javac.util.List;
    38 import com.sun.tools.javac.tree.JCTree.*;
    39 import com.sun.tools.javac.code.Lint;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Type.*;
    42 import com.sun.tools.javac.code.Symbol.*;
    44 import static com.sun.tools.javac.code.Flags.*;
    45 import static com.sun.tools.javac.code.Flags.ANNOTATION;
    46 import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
    47 import static com.sun.tools.javac.code.Kinds.*;
    48 import static com.sun.tools.javac.code.TypeTags.*;
    49 import static com.sun.tools.javac.code.TypeTags.WILDCARD;
    51 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    53 /** Type checking helper class for the attribution phase.
    54  *
    55  *  <p><b>This is NOT part of any supported API.
    56  *  If you write code that depends on this, you do so at your own risk.
    57  *  This code and its internal interfaces are subject to change or
    58  *  deletion without notice.</b>
    59  */
    60 public class Check {
    61     protected static final Context.Key<Check> checkKey =
    62         new Context.Key<Check>();
    64     private final Names names;
    65     private final Log log;
    66     private final Resolve rs;
    67     private final Symtab syms;
    68     private final Enter enter;
    69     private final Infer infer;
    70     private final Types types;
    71     private final JCDiagnostic.Factory diags;
    72     private final boolean skipAnnotations;
    73     private boolean warnOnSyntheticConflicts;
    74     private boolean suppressAbortOnBadClassFile;
    75     private boolean enableSunApiLintControl;
    76     private final TreeInfo treeinfo;
    78     // The set of lint options currently in effect. It is initialized
    79     // from the context, and then is set/reset as needed by Attr as it
    80     // visits all the various parts of the trees during attribution.
    81     private Lint lint;
    83     // The method being analyzed in Attr - it is set/reset as needed by
    84     // Attr as it visits new method declarations.
    85     private MethodSymbol method;
    87     public static Check instance(Context context) {
    88         Check instance = context.get(checkKey);
    89         if (instance == null)
    90             instance = new Check(context);
    91         return instance;
    92     }
    94     protected Check(Context context) {
    95         context.put(checkKey, this);
    97         names = Names.instance(context);
    98         log = Log.instance(context);
    99         rs = Resolve.instance(context);
   100         syms = Symtab.instance(context);
   101         enter = Enter.instance(context);
   102         infer = Infer.instance(context);
   103         this.types = Types.instance(context);
   104         diags = JCDiagnostic.Factory.instance(context);
   105         Options options = Options.instance(context);
   106         lint = Lint.instance(context);
   107         treeinfo = TreeInfo.instance(context);
   109         Source source = Source.instance(context);
   110         allowGenerics = source.allowGenerics();
   111         allowVarargs = source.allowVarargs();
   112         allowAnnotations = source.allowAnnotations();
   113         allowCovariantReturns = source.allowCovariantReturns();
   114         allowSimplifiedVarargs = source.allowSimplifiedVarargs();
   115         complexInference = options.isSet("complexinference");
   116         skipAnnotations = options.isSet("skipAnnotations");
   117         warnOnSyntheticConflicts = options.isSet("warnOnSyntheticConflicts");
   118         suppressAbortOnBadClassFile = options.isSet("suppressAbortOnBadClassFile");
   119         enableSunApiLintControl = options.isSet("enableSunApiLintControl");
   121         Target target = Target.instance(context);
   122         syntheticNameChar = target.syntheticNameChar();
   124         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   125         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   126         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
   127         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
   129         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
   130                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
   131         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
   132                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
   133         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
   134                 enforceMandatoryWarnings, "sunapi", null);
   136         deferredLintHandler = DeferredLintHandler.immediateHandler;
   137     }
   139     /** Switch: generics enabled?
   140      */
   141     boolean allowGenerics;
   143     /** Switch: varargs enabled?
   144      */
   145     boolean allowVarargs;
   147     /** Switch: annotations enabled?
   148      */
   149     boolean allowAnnotations;
   151     /** Switch: covariant returns enabled?
   152      */
   153     boolean allowCovariantReturns;
   155     /** Switch: simplified varargs enabled?
   156      */
   157     boolean allowSimplifiedVarargs;
   159     /** Switch: -complexinference option set?
   160      */
   161     boolean complexInference;
   163     /** Character for synthetic names
   164      */
   165     char syntheticNameChar;
   167     /** A table mapping flat names of all compiled classes in this run to their
   168      *  symbols; maintained from outside.
   169      */
   170     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   172     /** A handler for messages about deprecated usage.
   173      */
   174     private MandatoryWarningHandler deprecationHandler;
   176     /** A handler for messages about unchecked or unsafe usage.
   177      */
   178     private MandatoryWarningHandler uncheckedHandler;
   180     /** A handler for messages about using proprietary API.
   181      */
   182     private MandatoryWarningHandler sunApiHandler;
   184     /** A handler for deferred lint warnings.
   185      */
   186     private DeferredLintHandler deferredLintHandler;
   188 /* *************************************************************************
   189  * Errors and Warnings
   190  **************************************************************************/
   192     Lint setLint(Lint newLint) {
   193         Lint prev = lint;
   194         lint = newLint;
   195         return prev;
   196     }
   198     DeferredLintHandler setDeferredLintHandler(DeferredLintHandler newDeferredLintHandler) {
   199         DeferredLintHandler prev = deferredLintHandler;
   200         deferredLintHandler = newDeferredLintHandler;
   201         return prev;
   202     }
   204     MethodSymbol setMethod(MethodSymbol newMethod) {
   205         MethodSymbol prev = method;
   206         method = newMethod;
   207         return prev;
   208     }
   210     /** Warn about deprecated symbol.
   211      *  @param pos        Position to be used for error reporting.
   212      *  @param sym        The deprecated symbol.
   213      */
   214     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   215         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   216             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   217     }
   219     /** Warn about unchecked operation.
   220      *  @param pos        Position to be used for error reporting.
   221      *  @param msg        A string describing the problem.
   222      */
   223     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   224         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   225             uncheckedHandler.report(pos, msg, args);
   226     }
   228     /** Warn about unsafe vararg method decl.
   229      *  @param pos        Position to be used for error reporting.
   230      *  @param sym        The deprecated symbol.
   231      */
   232     void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
   233         if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
   234             log.warning(LintCategory.VARARGS, pos, key, args);
   235     }
   237     /** Warn about using proprietary API.
   238      *  @param pos        Position to be used for error reporting.
   239      *  @param msg        A string describing the problem.
   240      */
   241     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
   242         if (!lint.isSuppressed(LintCategory.SUNAPI))
   243             sunApiHandler.report(pos, msg, args);
   244     }
   246     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
   247         if (lint.isEnabled(LintCategory.STATIC))
   248             log.warning(LintCategory.STATIC, pos, msg, args);
   249     }
   251     /**
   252      * Report any deferred diagnostics.
   253      */
   254     public void reportDeferredDiagnostics() {
   255         deprecationHandler.reportDeferredDiagnostic();
   256         uncheckedHandler.reportDeferredDiagnostic();
   257         sunApiHandler.reportDeferredDiagnostic();
   258     }
   261     /** Report a failure to complete a class.
   262      *  @param pos        Position to be used for error reporting.
   263      *  @param ex         The failure to report.
   264      */
   265     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   266         log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
   267         if (ex instanceof ClassReader.BadClassFile
   268                 && !suppressAbortOnBadClassFile) throw new Abort();
   269         else return syms.errType;
   270     }
   272     /** Report a type error.
   273      *  @param pos        Position to be used for error reporting.
   274      *  @param problem    A string describing the error.
   275      *  @param found      The type that was found.
   276      *  @param req        The type that was required.
   277      */
   278     Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) {
   279         log.error(pos, "prob.found.req",
   280                   problem, found, req);
   281         return types.createErrorType(found);
   282     }
   284     Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) {
   285         log.error(pos, "prob.found.req.1", problem, found, req, explanation);
   286         return types.createErrorType(found);
   287     }
   289     /** Report an error that wrong type tag was found.
   290      *  @param pos        Position to be used for error reporting.
   291      *  @param required   An internationalized string describing the type tag
   292      *                    required.
   293      *  @param found      The type that was found.
   294      */
   295     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   296         // this error used to be raised by the parser,
   297         // but has been delayed to this point:
   298         if (found instanceof Type && ((Type)found).tag == VOID) {
   299             log.error(pos, "illegal.start.of.type");
   300             return syms.errType;
   301         }
   302         log.error(pos, "type.found.req", found, required);
   303         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
   304     }
   306     /** Report an error that symbol cannot be referenced before super
   307      *  has been called.
   308      *  @param pos        Position to be used for error reporting.
   309      *  @param sym        The referenced symbol.
   310      */
   311     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   312         log.error(pos, "cant.ref.before.ctor.called", sym);
   313     }
   315     /** Report duplicate declaration error.
   316      */
   317     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   318         if (!sym.type.isErroneous()) {
   319             Symbol location = sym.location();
   320             if (location.kind == MTH &&
   321                     ((MethodSymbol)location).isStaticOrInstanceInit()) {
   322                 log.error(pos, "already.defined.in.clinit", kindName(sym), sym,
   323                         kindName(sym.location()), kindName(sym.location().enclClass()),
   324                         sym.location().enclClass());
   325             } else {
   326                 log.error(pos, "already.defined", kindName(sym), sym,
   327                         kindName(sym.location()), sym.location());
   328             }
   329         }
   330     }
   332     /** Report array/varargs duplicate declaration
   333      */
   334     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   335         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   336             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   337         }
   338     }
   340 /* ************************************************************************
   341  * duplicate declaration checking
   342  *************************************************************************/
   344     /** Check that variable does not hide variable with same name in
   345      *  immediately enclosing local scope.
   346      *  @param pos           Position for error reporting.
   347      *  @param v             The symbol.
   348      *  @param s             The scope.
   349      */
   350     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   351         if (s.next != null) {
   352             for (Scope.Entry e = s.next.lookup(v.name);
   353                  e.scope != null && e.sym.owner == v.owner;
   354                  e = e.next()) {
   355                 if (e.sym.kind == VAR &&
   356                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   357                     v.name != names.error) {
   358                     duplicateError(pos, e.sym);
   359                     return;
   360                 }
   361             }
   362         }
   363     }
   365     /** Check that a class or interface does not hide a class or
   366      *  interface with same name in immediately enclosing local scope.
   367      *  @param pos           Position for error reporting.
   368      *  @param c             The symbol.
   369      *  @param s             The scope.
   370      */
   371     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   372         if (s.next != null) {
   373             for (Scope.Entry e = s.next.lookup(c.name);
   374                  e.scope != null && e.sym.owner == c.owner;
   375                  e = e.next()) {
   376                 if (e.sym.kind == TYP && e.sym.type.tag != TYPEVAR &&
   377                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   378                     c.name != names.error) {
   379                     duplicateError(pos, e.sym);
   380                     return;
   381                 }
   382             }
   383         }
   384     }
   386     /** Check that class does not have the same name as one of
   387      *  its enclosing classes, or as a class defined in its enclosing scope.
   388      *  return true if class is unique in its enclosing scope.
   389      *  @param pos           Position for error reporting.
   390      *  @param name          The class name.
   391      *  @param s             The enclosing scope.
   392      */
   393     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   394         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   395             if (e.sym.kind == TYP && e.sym.name != names.error) {
   396                 duplicateError(pos, e.sym);
   397                 return false;
   398             }
   399         }
   400         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   401             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   402                 duplicateError(pos, sym);
   403                 return true;
   404             }
   405         }
   406         return true;
   407     }
   409 /* *************************************************************************
   410  * Class name generation
   411  **************************************************************************/
   413     /** Return name of local class.
   414      *  This is of the form    <enclClass> $ n <classname>
   415      *  where
   416      *    enclClass is the flat name of the enclosing class,
   417      *    classname is the simple name of the local class
   418      */
   419     Name localClassName(ClassSymbol c) {
   420         for (int i=1; ; i++) {
   421             Name flatname = names.
   422                 fromString("" + c.owner.enclClass().flatname +
   423                            syntheticNameChar + i +
   424                            c.name);
   425             if (compiled.get(flatname) == null) return flatname;
   426         }
   427     }
   429 /* *************************************************************************
   430  * Type Checking
   431  **************************************************************************/
   433     /** Check that a given type is assignable to a given proto-type.
   434      *  If it is, return the type, otherwise return errType.
   435      *  @param pos        Position to be used for error reporting.
   436      *  @param found      The type that was found.
   437      *  @param req        The type that was required.
   438      */
   439     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   440         return checkType(pos, found, req, "incompatible.types");
   441     }
   443     Type checkType(DiagnosticPosition pos, Type found, Type req, String errKey) {
   444         if (req.tag == ERROR)
   445             return req;
   446         if (found.tag == FORALL)
   447             return instantiatePoly(pos, (ForAll)found, req, convertWarner(pos, found, req));
   448         if (req.tag == NONE)
   449             return found;
   450         if (types.isAssignable(found, req, convertWarner(pos, found, req)))
   451             return found;
   452         if (found.tag <= DOUBLE && req.tag <= DOUBLE)
   453             return typeError(pos, diags.fragment("possible.loss.of.precision"), found, req);
   454         if (found.isSuperBound()) {
   455             log.error(pos, "assignment.from.super-bound", found);
   456             return types.createErrorType(found);
   457         }
   458         if (req.isExtendsBound()) {
   459             log.error(pos, "assignment.to.extends-bound", req);
   460             return types.createErrorType(found);
   461         }
   462         return typeError(pos, diags.fragment(errKey), found, req);
   463     }
   465     /** Instantiate polymorphic type to some prototype, unless
   466      *  prototype is `anyPoly' in which case polymorphic type
   467      *  is returned unchanged.
   468      */
   469     Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) throws Infer.NoInstanceException {
   470         if (pt == Infer.anyPoly && complexInference) {
   471             return t;
   472         } else if (pt == Infer.anyPoly || pt.tag == NONE) {
   473             Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType;
   474             return instantiatePoly(pos, t, newpt, warn);
   475         } else if (pt.tag == ERROR) {
   476             return pt;
   477         } else {
   478             try {
   479                 return infer.instantiateExpr(t, pt, warn);
   480             } catch (Infer.NoInstanceException ex) {
   481                 if (ex.isAmbiguous) {
   482                     JCDiagnostic d = ex.getDiagnostic();
   483                     log.error(pos,
   484                               "undetermined.type" + (d!=null ? ".1" : ""),
   485                               t, d);
   486                     return types.createErrorType(pt);
   487                 } else {
   488                     JCDiagnostic d = ex.getDiagnostic();
   489                     return typeError(pos,
   490                                      diags.fragment("incompatible.types" + (d!=null ? ".1" : ""), d),
   491                                      t, pt);
   492                 }
   493             } catch (Infer.InvalidInstanceException ex) {
   494                 JCDiagnostic d = ex.getDiagnostic();
   495                 log.error(pos, "invalid.inferred.types", t.tvars, d);
   496                 return types.createErrorType(pt);
   497             }
   498         }
   499     }
   501     /** Check that a given type can be cast to a given target type.
   502      *  Return the result of the cast.
   503      *  @param pos        Position to be used for error reporting.
   504      *  @param found      The type that is being cast.
   505      *  @param req        The target type of the cast.
   506      */
   507     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   508         if (found.tag == FORALL) {
   509             instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req));
   510             return req;
   511         } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
   512             return req;
   513         } else {
   514             return typeError(pos,
   515                              diags.fragment("inconvertible.types"),
   516                              found, req);
   517         }
   518     }
   520     /** Check for redundant casts (i.e. where source type is a subtype of target type)
   521      * The problem should only be reported for non-292 cast
   522      */
   523     public void checkRedundantCast(Env<AttrContext> env, JCTypeCast tree) {
   524         if (!tree.type.isErroneous() &&
   525             (env.info.lint == null || env.info.lint.isEnabled(Lint.LintCategory.CAST))
   526             && types.isSameType(tree.expr.type, tree.clazz.type)
   527             && !is292targetTypeCast(tree)) {
   528             log.warning(Lint.LintCategory.CAST,
   529                     tree.pos(), "redundant.cast", tree.expr.type);
   530         }
   531     }
   532     //where
   533             private boolean is292targetTypeCast(JCTypeCast tree) {
   534                 boolean is292targetTypeCast = false;
   535                 JCExpression expr = TreeInfo.skipParens(tree.expr);
   536                 if (expr.hasTag(APPLY)) {
   537                     JCMethodInvocation apply = (JCMethodInvocation)expr;
   538                     Symbol sym = TreeInfo.symbol(apply.meth);
   539                     is292targetTypeCast = sym != null &&
   540                         sym.kind == MTH &&
   541                         (sym.flags() & POLYMORPHIC_SIGNATURE) != 0;
   542                 }
   543                 return is292targetTypeCast;
   544             }
   548 //where
   549         /** Is type a type variable, or a (possibly multi-dimensional) array of
   550          *  type variables?
   551          */
   552         boolean isTypeVar(Type t) {
   553             return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
   554         }
   556     /** Check that a type is within some bounds.
   557      *
   558      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   559      *  type argument.
   560      *  @param pos           Position to be used for error reporting.
   561      *  @param a             The type that should be bounded by bs.
   562      *  @param bs            The bound.
   563      */
   564     private boolean checkExtends(Type a, Type bound) {
   565          if (a.isUnbound()) {
   566              return true;
   567          } else if (a.tag != WILDCARD) {
   568              a = types.upperBound(a);
   569              return types.isSubtype(a, bound);
   570          } else if (a.isExtendsBound()) {
   571              return types.isCastable(bound, types.upperBound(a), Warner.noWarnings);
   572          } else if (a.isSuperBound()) {
   573              return !types.notSoftSubtype(types.lowerBound(a), bound);
   574          }
   575          return true;
   576      }
   578     /** Check that type is different from 'void'.
   579      *  @param pos           Position to be used for error reporting.
   580      *  @param t             The type to be checked.
   581      */
   582     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   583         if (t.tag == VOID) {
   584             log.error(pos, "void.not.allowed.here");
   585             return types.createErrorType(t);
   586         } else {
   587             return t;
   588         }
   589     }
   591     /** Check that type is a class or interface type.
   592      *  @param pos           Position to be used for error reporting.
   593      *  @param t             The type to be checked.
   594      */
   595     Type checkClassType(DiagnosticPosition pos, Type t) {
   596         if (t.tag != CLASS && t.tag != ERROR)
   597             return typeTagError(pos,
   598                                 diags.fragment("type.req.class"),
   599                                 (t.tag == TYPEVAR)
   600                                 ? diags.fragment("type.parameter", t)
   601                                 : t);
   602         else
   603             return t;
   604     }
   606     /** Check that type is a class or interface type.
   607      *  @param pos           Position to be used for error reporting.
   608      *  @param t             The type to be checked.
   609      *  @param noBounds    True if type bounds are illegal here.
   610      */
   611     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   612         t = checkClassType(pos, t);
   613         if (noBounds && t.isParameterized()) {
   614             List<Type> args = t.getTypeArguments();
   615             while (args.nonEmpty()) {
   616                 if (args.head.tag == WILDCARD)
   617                     return typeTagError(pos,
   618                                         diags.fragment("type.req.exact"),
   619                                         args.head);
   620                 args = args.tail;
   621             }
   622         }
   623         return t;
   624     }
   626     /** Check that type is a reifiable class, interface or array type.
   627      *  @param pos           Position to be used for error reporting.
   628      *  @param t             The type to be checked.
   629      */
   630     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
   631         if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
   632             return typeTagError(pos,
   633                                 diags.fragment("type.req.class.array"),
   634                                 t);
   635         } else if (!types.isReifiable(t)) {
   636             log.error(pos, "illegal.generic.type.for.instof");
   637             return types.createErrorType(t);
   638         } else {
   639             return t;
   640         }
   641     }
   643     /** Check that type is a reference type, i.e. a class, interface or array type
   644      *  or a type variable.
   645      *  @param pos           Position to be used for error reporting.
   646      *  @param t             The type to be checked.
   647      */
   648     Type checkRefType(DiagnosticPosition pos, Type t) {
   649         switch (t.tag) {
   650         case CLASS:
   651         case ARRAY:
   652         case TYPEVAR:
   653         case WILDCARD:
   654         case ERROR:
   655             return t;
   656         default:
   657             return typeTagError(pos,
   658                                 diags.fragment("type.req.ref"),
   659                                 t);
   660         }
   661     }
   663     /** Check that each type is a reference type, i.e. a class, interface or array type
   664      *  or a type variable.
   665      *  @param trees         Original trees, used for error reporting.
   666      *  @param types         The types to be checked.
   667      */
   668     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
   669         List<JCExpression> tl = trees;
   670         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
   671             l.head = checkRefType(tl.head.pos(), l.head);
   672             tl = tl.tail;
   673         }
   674         return types;
   675     }
   677     /** Check that type is a null or reference type.
   678      *  @param pos           Position to be used for error reporting.
   679      *  @param t             The type to be checked.
   680      */
   681     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   682         switch (t.tag) {
   683         case CLASS:
   684         case ARRAY:
   685         case TYPEVAR:
   686         case WILDCARD:
   687         case BOT:
   688         case ERROR:
   689             return t;
   690         default:
   691             return typeTagError(pos,
   692                                 diags.fragment("type.req.ref"),
   693                                 t);
   694         }
   695     }
   697     /** Check that flag set does not contain elements of two conflicting sets. s
   698      *  Return true if it doesn't.
   699      *  @param pos           Position to be used for error reporting.
   700      *  @param flags         The set of flags to be checked.
   701      *  @param set1          Conflicting flags set #1.
   702      *  @param set2          Conflicting flags set #2.
   703      */
   704     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   705         if ((flags & set1) != 0 && (flags & set2) != 0) {
   706             log.error(pos,
   707                       "illegal.combination.of.modifiers",
   708                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
   709                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
   710             return false;
   711         } else
   712             return true;
   713     }
   715     /** Check that usage of diamond operator is correct (i.e. diamond should not
   716      * be used with non-generic classes or in anonymous class creation expressions)
   717      */
   718     Type checkDiamond(JCNewClass tree, Type t) {
   719         if (!TreeInfo.isDiamond(tree) ||
   720                 t.isErroneous()) {
   721             return checkClassType(tree.clazz.pos(), t, true);
   722         } else if (tree.def != null) {
   723             log.error(tree.clazz.pos(),
   724                     "cant.apply.diamond.1",
   725                     t, diags.fragment("diamond.and.anon.class", t));
   726             return types.createErrorType(t);
   727         } else if (t.tsym.type.getTypeArguments().isEmpty()) {
   728             log.error(tree.clazz.pos(),
   729                 "cant.apply.diamond.1",
   730                 t, diags.fragment("diamond.non.generic", t));
   731             return types.createErrorType(t);
   732         } else if (tree.typeargs != null &&
   733                 tree.typeargs.nonEmpty()) {
   734             log.error(tree.clazz.pos(),
   735                 "cant.apply.diamond.1",
   736                 t, diags.fragment("diamond.and.explicit.params", t));
   737             return types.createErrorType(t);
   738         } else {
   739             return t;
   740         }
   741     }
   743     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
   744         MethodSymbol m = tree.sym;
   745         if (!allowSimplifiedVarargs) return;
   746         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
   747         Type varargElemType = null;
   748         if (m.isVarArgs()) {
   749             varargElemType = types.elemtype(tree.params.last().type);
   750         }
   751         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
   752             if (varargElemType != null) {
   753                 log.error(tree,
   754                         "varargs.invalid.trustme.anno",
   755                         syms.trustMeType.tsym,
   756                         diags.fragment("varargs.trustme.on.virtual.varargs", m));
   757             } else {
   758                 log.error(tree,
   759                             "varargs.invalid.trustme.anno",
   760                             syms.trustMeType.tsym,
   761                             diags.fragment("varargs.trustme.on.non.varargs.meth", m));
   762             }
   763         } else if (hasTrustMeAnno && varargElemType != null &&
   764                             types.isReifiable(varargElemType)) {
   765             warnUnsafeVararg(tree,
   766                             "varargs.redundant.trustme.anno",
   767                             syms.trustMeType.tsym,
   768                             diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
   769         }
   770         else if (!hasTrustMeAnno && varargElemType != null &&
   771                 !types.isReifiable(varargElemType)) {
   772             warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
   773         }
   774     }
   775     //where
   776         private boolean isTrustMeAllowedOnMethod(Symbol s) {
   777             return (s.flags() & VARARGS) != 0 &&
   778                 (s.isConstructor() ||
   779                     (s.flags() & (STATIC | FINAL)) != 0);
   780         }
   782     Type checkMethod(Type owntype,
   783                             Symbol sym,
   784                             Env<AttrContext> env,
   785                             final List<JCExpression> argtrees,
   786                             List<Type> argtypes,
   787                             boolean useVarargs,
   788                             boolean unchecked) {
   789         // System.out.println("call   : " + env.tree);
   790         // System.out.println("method : " + owntype);
   791         // System.out.println("actuals: " + argtypes);
   792         List<Type> formals = owntype.getParameterTypes();
   793         Type last = useVarargs ? formals.last() : null;
   794         if (sym.name==names.init &&
   795                 sym.owner == syms.enumSym)
   796                 formals = formals.tail.tail;
   797         List<JCExpression> args = argtrees;
   798         while (formals.head != last) {
   799             JCTree arg = args.head;
   800             Warner warn = convertWarner(arg.pos(), arg.type, formals.head);
   801             assertConvertible(arg, arg.type, formals.head, warn);
   802             args = args.tail;
   803             formals = formals.tail;
   804         }
   805         if (useVarargs) {
   806             Type varArg = types.elemtype(last);
   807             while (args.tail != null) {
   808                 JCTree arg = args.head;
   809                 Warner warn = convertWarner(arg.pos(), arg.type, varArg);
   810                 assertConvertible(arg, arg.type, varArg, warn);
   811                 args = args.tail;
   812             }
   813         } else if ((sym.flags() & VARARGS) != 0 && allowVarargs) {
   814             // non-varargs call to varargs method
   815             Type varParam = owntype.getParameterTypes().last();
   816             Type lastArg = argtypes.last();
   817             if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
   818                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
   819                 log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
   820                         types.elemtype(varParam), varParam);
   821         }
   822         if (unchecked) {
   823             warnUnchecked(env.tree.pos(),
   824                     "unchecked.meth.invocation.applied",
   825                     kindName(sym),
   826                     sym.name,
   827                     rs.methodArguments(sym.type.getParameterTypes()),
   828                     rs.methodArguments(argtypes),
   829                     kindName(sym.location()),
   830                     sym.location());
   831            owntype = new MethodType(owntype.getParameterTypes(),
   832                    types.erasure(owntype.getReturnType()),
   833                    types.erasure(owntype.getThrownTypes()),
   834                    syms.methodClass);
   835         }
   836         if (useVarargs) {
   837             JCTree tree = env.tree;
   838             Type argtype = owntype.getParameterTypes().last();
   839             if (!types.isReifiable(argtype) &&
   840                     (!allowSimplifiedVarargs ||
   841                     sym.attribute(syms.trustMeType.tsym) == null ||
   842                     !isTrustMeAllowedOnMethod(sym))) {
   843                 warnUnchecked(env.tree.pos(),
   844                                   "unchecked.generic.array.creation",
   845                                   argtype);
   846             }
   847             Type elemtype = types.elemtype(argtype);
   848             switch (tree.getTag()) {
   849                 case APPLY:
   850                     ((JCMethodInvocation) tree).varargsElement = elemtype;
   851                     break;
   852                 case NEWCLASS:
   853                     ((JCNewClass) tree).varargsElement = elemtype;
   854                     break;
   855                 default:
   856                     throw new AssertionError(""+tree);
   857             }
   858          }
   859          return owntype;
   860     }
   861     //where
   862         private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
   863             if (types.isConvertible(actual, formal, warn))
   864                 return;
   866             if (formal.isCompound()
   867                 && types.isSubtype(actual, types.supertype(formal))
   868                 && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
   869                 return;
   871             if (false) {
   872                 // TODO: make assertConvertible work
   873                 typeError(tree.pos(), diags.fragment("incompatible.types"), actual, formal);
   874                 throw new AssertionError("Tree: " + tree
   875                                          + " actual:" + actual
   876                                          + " formal: " + formal);
   877             }
   878         }
   880     /**
   881      * Check that type 't' is a valid instantiation of a generic class
   882      * (see JLS 4.5)
   883      *
   884      * @param t class type to be checked
   885      * @return true if 't' is well-formed
   886      */
   887     public boolean checkValidGenericType(Type t) {
   888         return firstIncompatibleTypeArg(t) == null;
   889     }
   890     //WHERE
   891         private Type firstIncompatibleTypeArg(Type type) {
   892             List<Type> formals = type.tsym.type.allparams();
   893             List<Type> actuals = type.allparams();
   894             List<Type> args = type.getTypeArguments();
   895             List<Type> forms = type.tsym.type.getTypeArguments();
   896             ListBuffer<Type> bounds_buf = new ListBuffer<Type>();
   898             // For matching pairs of actual argument types `a' and
   899             // formal type parameters with declared bound `b' ...
   900             while (args.nonEmpty() && forms.nonEmpty()) {
   901                 // exact type arguments needs to know their
   902                 // bounds (for upper and lower bound
   903                 // calculations).  So we create new bounds where
   904                 // type-parameters are replaced with actuals argument types.
   905                 bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
   906                 args = args.tail;
   907                 forms = forms.tail;
   908             }
   910             args = type.getTypeArguments();
   911             List<Type> tvars_cap = types.substBounds(formals,
   912                                       formals,
   913                                       types.capture(type).allparams());
   914             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
   915                 // Let the actual arguments know their bound
   916                 args.head.withTypeVar((TypeVar)tvars_cap.head);
   917                 args = args.tail;
   918                 tvars_cap = tvars_cap.tail;
   919             }
   921             args = type.getTypeArguments();
   922             List<Type> bounds = bounds_buf.toList();
   924             while (args.nonEmpty() && bounds.nonEmpty()) {
   925                 Type actual = args.head;
   926                 if (!isTypeArgErroneous(actual) &&
   927                         !bounds.head.isErroneous() &&
   928                         !checkExtends(actual, bounds.head)) {
   929                     return args.head;
   930                 }
   931                 args = args.tail;
   932                 bounds = bounds.tail;
   933             }
   935             args = type.getTypeArguments();
   936             bounds = bounds_buf.toList();
   938             for (Type arg : types.capture(type).getTypeArguments()) {
   939                 if (arg.tag == TYPEVAR &&
   940                         arg.getUpperBound().isErroneous() &&
   941                         !bounds.head.isErroneous() &&
   942                         !isTypeArgErroneous(args.head)) {
   943                     return args.head;
   944                 }
   945                 bounds = bounds.tail;
   946                 args = args.tail;
   947             }
   949             return null;
   950         }
   951         //where
   952         boolean isTypeArgErroneous(Type t) {
   953             return isTypeArgErroneous.visit(t);
   954         }
   956         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
   957             public Boolean visitType(Type t, Void s) {
   958                 return t.isErroneous();
   959             }
   960             @Override
   961             public Boolean visitTypeVar(TypeVar t, Void s) {
   962                 return visit(t.getUpperBound());
   963             }
   964             @Override
   965             public Boolean visitCapturedType(CapturedType t, Void s) {
   966                 return visit(t.getUpperBound()) ||
   967                         visit(t.getLowerBound());
   968             }
   969             @Override
   970             public Boolean visitWildcardType(WildcardType t, Void s) {
   971                 return visit(t.type);
   972             }
   973         };
   975     /** Check that given modifiers are legal for given symbol and
   976      *  return modifiers together with any implicit modififiers for that symbol.
   977      *  Warning: we can't use flags() here since this method
   978      *  is called during class enter, when flags() would cause a premature
   979      *  completion.
   980      *  @param pos           Position to be used for error reporting.
   981      *  @param flags         The set of modifiers given in a definition.
   982      *  @param sym           The defined symbol.
   983      */
   984     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
   985         long mask;
   986         long implicit = 0;
   987         switch (sym.kind) {
   988         case VAR:
   989             if (sym.owner.kind != TYP)
   990                 mask = LocalVarFlags;
   991             else if ((sym.owner.flags_field & INTERFACE) != 0)
   992                 mask = implicit = InterfaceVarFlags;
   993             else
   994                 mask = VarFlags;
   995             break;
   996         case MTH:
   997             if (sym.name == names.init) {
   998                 if ((sym.owner.flags_field & ENUM) != 0) {
   999                     // enum constructors cannot be declared public or
  1000                     // protected and must be implicitly or explicitly
  1001                     // private
  1002                     implicit = PRIVATE;
  1003                     mask = PRIVATE;
  1004                 } else
  1005                     mask = ConstructorFlags;
  1006             }  else if ((sym.owner.flags_field & INTERFACE) != 0)
  1007                 mask = implicit = InterfaceMethodFlags;
  1008             else {
  1009                 mask = MethodFlags;
  1011             // Imply STRICTFP if owner has STRICTFP set.
  1012             if (((flags|implicit) & Flags.ABSTRACT) == 0)
  1013               implicit |= sym.owner.flags_field & STRICTFP;
  1014             break;
  1015         case TYP:
  1016             if (sym.isLocal()) {
  1017                 mask = LocalClassFlags;
  1018                 if (sym.name.isEmpty()) { // Anonymous class
  1019                     // Anonymous classes in static methods are themselves static;
  1020                     // that's why we admit STATIC here.
  1021                     mask |= STATIC;
  1022                     // JLS: Anonymous classes are final.
  1023                     implicit |= FINAL;
  1025                 if ((sym.owner.flags_field & STATIC) == 0 &&
  1026                     (flags & ENUM) != 0)
  1027                     log.error(pos, "enums.must.be.static");
  1028             } else if (sym.owner.kind == TYP) {
  1029                 mask = MemberClassFlags;
  1030                 if (sym.owner.owner.kind == PCK ||
  1031                     (sym.owner.flags_field & STATIC) != 0)
  1032                     mask |= STATIC;
  1033                 else if ((flags & ENUM) != 0)
  1034                     log.error(pos, "enums.must.be.static");
  1035                 // Nested interfaces and enums are always STATIC (Spec ???)
  1036                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
  1037             } else {
  1038                 mask = ClassFlags;
  1040             // Interfaces are always ABSTRACT
  1041             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
  1043             if ((flags & ENUM) != 0) {
  1044                 // enums can't be declared abstract or final
  1045                 mask &= ~(ABSTRACT | FINAL);
  1046                 implicit |= implicitEnumFinalFlag(tree);
  1048             // Imply STRICTFP if owner has STRICTFP set.
  1049             implicit |= sym.owner.flags_field & STRICTFP;
  1050             break;
  1051         default:
  1052             throw new AssertionError();
  1054         long illegal = flags & StandardFlags & ~mask;
  1055         if (illegal != 0) {
  1056             if ((illegal & INTERFACE) != 0) {
  1057                 log.error(pos, "intf.not.allowed.here");
  1058                 mask |= INTERFACE;
  1060             else {
  1061                 log.error(pos,
  1062                           "mod.not.allowed.here", asFlagSet(illegal));
  1065         else if ((sym.kind == TYP ||
  1066                   // ISSUE: Disallowing abstract&private is no longer appropriate
  1067                   // in the presence of inner classes. Should it be deleted here?
  1068                   checkDisjoint(pos, flags,
  1069                                 ABSTRACT,
  1070                                 PRIVATE | STATIC))
  1071                  &&
  1072                  checkDisjoint(pos, flags,
  1073                                ABSTRACT | INTERFACE,
  1074                                FINAL | NATIVE | SYNCHRONIZED)
  1075                  &&
  1076                  checkDisjoint(pos, flags,
  1077                                PUBLIC,
  1078                                PRIVATE | PROTECTED)
  1079                  &&
  1080                  checkDisjoint(pos, flags,
  1081                                PRIVATE,
  1082                                PUBLIC | PROTECTED)
  1083                  &&
  1084                  checkDisjoint(pos, flags,
  1085                                FINAL,
  1086                                VOLATILE)
  1087                  &&
  1088                  (sym.kind == TYP ||
  1089                   checkDisjoint(pos, flags,
  1090                                 ABSTRACT | NATIVE,
  1091                                 STRICTFP))) {
  1092             // skip
  1094         return flags & (mask | ~StandardFlags) | implicit;
  1098     /** Determine if this enum should be implicitly final.
  1100      *  If the enum has no specialized enum contants, it is final.
  1102      *  If the enum does have specialized enum contants, it is
  1103      *  <i>not</i> final.
  1104      */
  1105     private long implicitEnumFinalFlag(JCTree tree) {
  1106         if (!tree.hasTag(CLASSDEF)) return 0;
  1107         class SpecialTreeVisitor extends JCTree.Visitor {
  1108             boolean specialized;
  1109             SpecialTreeVisitor() {
  1110                 this.specialized = false;
  1111             };
  1113             @Override
  1114             public void visitTree(JCTree tree) { /* no-op */ }
  1116             @Override
  1117             public void visitVarDef(JCVariableDecl tree) {
  1118                 if ((tree.mods.flags & ENUM) != 0) {
  1119                     if (tree.init instanceof JCNewClass &&
  1120                         ((JCNewClass) tree.init).def != null) {
  1121                         specialized = true;
  1127         SpecialTreeVisitor sts = new SpecialTreeVisitor();
  1128         JCClassDecl cdef = (JCClassDecl) tree;
  1129         for (JCTree defs: cdef.defs) {
  1130             defs.accept(sts);
  1131             if (sts.specialized) return 0;
  1133         return FINAL;
  1136 /* *************************************************************************
  1137  * Type Validation
  1138  **************************************************************************/
  1140     /** Validate a type expression. That is,
  1141      *  check that all type arguments of a parametric type are within
  1142      *  their bounds. This must be done in a second phase after type attributon
  1143      *  since a class might have a subclass as type parameter bound. E.g:
  1145      *  class B<A extends C> { ... }
  1146      *  class C extends B<C> { ... }
  1148      *  and we can't make sure that the bound is already attributed because
  1149      *  of possible cycles.
  1151      * Visitor method: Validate a type expression, if it is not null, catching
  1152      *  and reporting any completion failures.
  1153      */
  1154     void validate(JCTree tree, Env<AttrContext> env) {
  1155         validate(tree, env, true);
  1157     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
  1158         new Validator(env).validateTree(tree, checkRaw, true);
  1161     /** Visitor method: Validate a list of type expressions.
  1162      */
  1163     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
  1164         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1165             validate(l.head, env);
  1168     /** A visitor class for type validation.
  1169      */
  1170     class Validator extends JCTree.Visitor {
  1172         boolean isOuter;
  1173         Env<AttrContext> env;
  1175         Validator(Env<AttrContext> env) {
  1176             this.env = env;
  1179         @Override
  1180         public void visitTypeArray(JCArrayTypeTree tree) {
  1181             tree.elemtype.accept(this);
  1184         @Override
  1185         public void visitTypeApply(JCTypeApply tree) {
  1186             if (tree.type.tag == CLASS) {
  1187                 List<JCExpression> args = tree.arguments;
  1188                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
  1190                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
  1191                 if (incompatibleArg != null) {
  1192                     for (JCTree arg : tree.arguments) {
  1193                         if (arg.type == incompatibleArg) {
  1194                             log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
  1196                         forms = forms.tail;
  1200                 forms = tree.type.tsym.type.getTypeArguments();
  1202                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
  1204                 // For matching pairs of actual argument types `a' and
  1205                 // formal type parameters with declared bound `b' ...
  1206                 while (args.nonEmpty() && forms.nonEmpty()) {
  1207                     validateTree(args.head,
  1208                             !(isOuter && is_java_lang_Class),
  1209                             false);
  1210                     args = args.tail;
  1211                     forms = forms.tail;
  1214                 // Check that this type is either fully parameterized, or
  1215                 // not parameterized at all.
  1216                 if (tree.type.getEnclosingType().isRaw())
  1217                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
  1218                 if (tree.clazz.hasTag(SELECT))
  1219                     visitSelectInternal((JCFieldAccess)tree.clazz);
  1223         @Override
  1224         public void visitTypeParameter(JCTypeParameter tree) {
  1225             validateTrees(tree.bounds, true, isOuter);
  1226             checkClassBounds(tree.pos(), tree.type);
  1229         @Override
  1230         public void visitWildcard(JCWildcard tree) {
  1231             if (tree.inner != null)
  1232                 validateTree(tree.inner, true, isOuter);
  1235         @Override
  1236         public void visitSelect(JCFieldAccess tree) {
  1237             if (tree.type.tag == CLASS) {
  1238                 visitSelectInternal(tree);
  1240                 // Check that this type is either fully parameterized, or
  1241                 // not parameterized at all.
  1242                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
  1243                     log.error(tree.pos(), "improperly.formed.type.param.missing");
  1247         public void visitSelectInternal(JCFieldAccess tree) {
  1248             if (tree.type.tsym.isStatic() &&
  1249                 tree.selected.type.isParameterized()) {
  1250                 // The enclosing type is not a class, so we are
  1251                 // looking at a static member type.  However, the
  1252                 // qualifying expression is parameterized.
  1253                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
  1254             } else {
  1255                 // otherwise validate the rest of the expression
  1256                 tree.selected.accept(this);
  1260         /** Default visitor method: do nothing.
  1261          */
  1262         @Override
  1263         public void visitTree(JCTree tree) {
  1266         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
  1267             try {
  1268                 if (tree != null) {
  1269                     this.isOuter = isOuter;
  1270                     tree.accept(this);
  1271                     if (checkRaw)
  1272                         checkRaw(tree, env);
  1274             } catch (CompletionFailure ex) {
  1275                 completionError(tree.pos(), ex);
  1279         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
  1280             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1281                 validateTree(l.head, checkRaw, isOuter);
  1284         void checkRaw(JCTree tree, Env<AttrContext> env) {
  1285             if (lint.isEnabled(LintCategory.RAW) &&
  1286                 tree.type.tag == CLASS &&
  1287                 !TreeInfo.isDiamond(tree) &&
  1288                 !withinAnonConstr(env) &&
  1289                 tree.type.isRaw()) {
  1290                 log.warning(LintCategory.RAW,
  1291                         tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
  1295         boolean withinAnonConstr(Env<AttrContext> env) {
  1296             return env.enclClass.name.isEmpty() &&
  1297                     env.enclMethod != null && env.enclMethod.name == names.init;
  1301 /* *************************************************************************
  1302  * Exception checking
  1303  **************************************************************************/
  1305     /* The following methods treat classes as sets that contain
  1306      * the class itself and all their subclasses
  1307      */
  1309     /** Is given type a subtype of some of the types in given list?
  1310      */
  1311     boolean subset(Type t, List<Type> ts) {
  1312         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1313             if (types.isSubtype(t, l.head)) return true;
  1314         return false;
  1317     /** Is given type a subtype or supertype of
  1318      *  some of the types in given list?
  1319      */
  1320     boolean intersects(Type t, List<Type> ts) {
  1321         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1322             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
  1323         return false;
  1326     /** Add type set to given type list, unless it is a subclass of some class
  1327      *  in the list.
  1328      */
  1329     List<Type> incl(Type t, List<Type> ts) {
  1330         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
  1333     /** Remove type set from type set list.
  1334      */
  1335     List<Type> excl(Type t, List<Type> ts) {
  1336         if (ts.isEmpty()) {
  1337             return ts;
  1338         } else {
  1339             List<Type> ts1 = excl(t, ts.tail);
  1340             if (types.isSubtype(ts.head, t)) return ts1;
  1341             else if (ts1 == ts.tail) return ts;
  1342             else return ts1.prepend(ts.head);
  1346     /** Form the union of two type set lists.
  1347      */
  1348     List<Type> union(List<Type> ts1, List<Type> ts2) {
  1349         List<Type> ts = ts1;
  1350         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1351             ts = incl(l.head, ts);
  1352         return ts;
  1355     /** Form the difference of two type lists.
  1356      */
  1357     List<Type> diff(List<Type> ts1, List<Type> ts2) {
  1358         List<Type> ts = ts1;
  1359         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1360             ts = excl(l.head, ts);
  1361         return ts;
  1364     /** Form the intersection of two type lists.
  1365      */
  1366     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
  1367         List<Type> ts = List.nil();
  1368         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
  1369             if (subset(l.head, ts2)) ts = incl(l.head, ts);
  1370         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1371             if (subset(l.head, ts1)) ts = incl(l.head, ts);
  1372         return ts;
  1375     /** Is exc an exception symbol that need not be declared?
  1376      */
  1377     boolean isUnchecked(ClassSymbol exc) {
  1378         return
  1379             exc.kind == ERR ||
  1380             exc.isSubClass(syms.errorType.tsym, types) ||
  1381             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
  1384     /** Is exc an exception type that need not be declared?
  1385      */
  1386     boolean isUnchecked(Type exc) {
  1387         return
  1388             (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
  1389             (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
  1390             exc.tag == BOT;
  1393     /** Same, but handling completion failures.
  1394      */
  1395     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
  1396         try {
  1397             return isUnchecked(exc);
  1398         } catch (CompletionFailure ex) {
  1399             completionError(pos, ex);
  1400             return true;
  1404     /** Is exc handled by given exception list?
  1405      */
  1406     boolean isHandled(Type exc, List<Type> handled) {
  1407         return isUnchecked(exc) || subset(exc, handled);
  1410     /** Return all exceptions in thrown list that are not in handled list.
  1411      *  @param thrown     The list of thrown exceptions.
  1412      *  @param handled    The list of handled exceptions.
  1413      */
  1414     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
  1415         List<Type> unhandled = List.nil();
  1416         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
  1417             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
  1418         return unhandled;
  1421 /* *************************************************************************
  1422  * Overriding/Implementation checking
  1423  **************************************************************************/
  1425     /** The level of access protection given by a flag set,
  1426      *  where PRIVATE is highest and PUBLIC is lowest.
  1427      */
  1428     static int protection(long flags) {
  1429         switch ((short)(flags & AccessFlags)) {
  1430         case PRIVATE: return 3;
  1431         case PROTECTED: return 1;
  1432         default:
  1433         case PUBLIC: return 0;
  1434         case 0: return 2;
  1438     /** A customized "cannot override" error message.
  1439      *  @param m      The overriding method.
  1440      *  @param other  The overridden method.
  1441      *  @return       An internationalized string.
  1442      */
  1443     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1444         String key;
  1445         if ((other.owner.flags() & INTERFACE) == 0)
  1446             key = "cant.override";
  1447         else if ((m.owner.flags() & INTERFACE) == 0)
  1448             key = "cant.implement";
  1449         else
  1450             key = "clashes.with";
  1451         return diags.fragment(key, m, m.location(), other, other.location());
  1454     /** A customized "override" warning message.
  1455      *  @param m      The overriding method.
  1456      *  @param other  The overridden method.
  1457      *  @return       An internationalized string.
  1458      */
  1459     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1460         String key;
  1461         if ((other.owner.flags() & INTERFACE) == 0)
  1462             key = "unchecked.override";
  1463         else if ((m.owner.flags() & INTERFACE) == 0)
  1464             key = "unchecked.implement";
  1465         else
  1466             key = "unchecked.clash.with";
  1467         return diags.fragment(key, m, m.location(), other, other.location());
  1470     /** A customized "override" warning message.
  1471      *  @param m      The overriding method.
  1472      *  @param other  The overridden method.
  1473      *  @return       An internationalized string.
  1474      */
  1475     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1476         String key;
  1477         if ((other.owner.flags() & INTERFACE) == 0)
  1478             key = "varargs.override";
  1479         else  if ((m.owner.flags() & INTERFACE) == 0)
  1480             key = "varargs.implement";
  1481         else
  1482             key = "varargs.clash.with";
  1483         return diags.fragment(key, m, m.location(), other, other.location());
  1486     /** Check that this method conforms with overridden method 'other'.
  1487      *  where `origin' is the class where checking started.
  1488      *  Complications:
  1489      *  (1) Do not check overriding of synthetic methods
  1490      *      (reason: they might be final).
  1491      *      todo: check whether this is still necessary.
  1492      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1493      *      than the method it implements. Augment the proxy methods with the
  1494      *      undeclared exceptions in this case.
  1495      *  (3) When generics are enabled, admit the case where an interface proxy
  1496      *      has a result type
  1497      *      extended by the result type of the method it implements.
  1498      *      Change the proxies result type to the smaller type in this case.
  1500      *  @param tree         The tree from which positions
  1501      *                      are extracted for errors.
  1502      *  @param m            The overriding method.
  1503      *  @param other        The overridden method.
  1504      *  @param origin       The class of which the overriding method
  1505      *                      is a member.
  1506      */
  1507     void checkOverride(JCTree tree,
  1508                        MethodSymbol m,
  1509                        MethodSymbol other,
  1510                        ClassSymbol origin) {
  1511         // Don't check overriding of synthetic methods or by bridge methods.
  1512         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1513             return;
  1516         // Error if static method overrides instance method (JLS 8.4.6.2).
  1517         if ((m.flags() & STATIC) != 0 &&
  1518                    (other.flags() & STATIC) == 0) {
  1519             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1520                       cannotOverride(m, other));
  1521             return;
  1524         // Error if instance method overrides static or final
  1525         // method (JLS 8.4.6.1).
  1526         if ((other.flags() & FINAL) != 0 ||
  1527                  (m.flags() & STATIC) == 0 &&
  1528                  (other.flags() & STATIC) != 0) {
  1529             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1530                       cannotOverride(m, other),
  1531                       asFlagSet(other.flags() & (FINAL | STATIC)));
  1532             return;
  1535         if ((m.owner.flags() & ANNOTATION) != 0) {
  1536             // handled in validateAnnotationMethod
  1537             return;
  1540         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1541         if ((origin.flags() & INTERFACE) == 0 &&
  1542                  protection(m.flags()) > protection(other.flags())) {
  1543             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1544                       cannotOverride(m, other),
  1545                       other.flags() == 0 ?
  1546                           Flag.PACKAGE :
  1547                           asFlagSet(other.flags() & AccessFlags));
  1548             return;
  1551         Type mt = types.memberType(origin.type, m);
  1552         Type ot = types.memberType(origin.type, other);
  1553         // Error if overriding result type is different
  1554         // (or, in the case of generics mode, not a subtype) of
  1555         // overridden result type. We have to rename any type parameters
  1556         // before comparing types.
  1557         List<Type> mtvars = mt.getTypeArguments();
  1558         List<Type> otvars = ot.getTypeArguments();
  1559         Type mtres = mt.getReturnType();
  1560         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1562         overrideWarner.clear();
  1563         boolean resultTypesOK =
  1564             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1565         if (!resultTypesOK) {
  1566             if (!allowCovariantReturns &&
  1567                 m.owner != origin &&
  1568                 m.owner.isSubClass(other.owner, types)) {
  1569                 // allow limited interoperability with covariant returns
  1570             } else {
  1571                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1572                           "override.incompatible.ret",
  1573                           cannotOverride(m, other),
  1574                           mtres, otres);
  1575                 return;
  1577         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
  1578             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1579                     "override.unchecked.ret",
  1580                     uncheckedOverrides(m, other),
  1581                     mtres, otres);
  1584         // Error if overriding method throws an exception not reported
  1585         // by overridden method.
  1586         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1587         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
  1588         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
  1589         if (unhandledErased.nonEmpty()) {
  1590             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1591                       "override.meth.doesnt.throw",
  1592                       cannotOverride(m, other),
  1593                       unhandledUnerased.head);
  1594             return;
  1596         else if (unhandledUnerased.nonEmpty()) {
  1597             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1598                           "override.unchecked.thrown",
  1599                          cannotOverride(m, other),
  1600                          unhandledUnerased.head);
  1601             return;
  1604         // Optional warning if varargs don't agree
  1605         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1606             && lint.isEnabled(LintCategory.OVERRIDES)) {
  1607             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1608                         ((m.flags() & Flags.VARARGS) != 0)
  1609                         ? "override.varargs.missing"
  1610                         : "override.varargs.extra",
  1611                         varargsOverrides(m, other));
  1614         // Warn if instance method overrides bridge method (compiler spec ??)
  1615         if ((other.flags() & BRIDGE) != 0) {
  1616             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1617                         uncheckedOverrides(m, other));
  1620         // Warn if a deprecated method overridden by a non-deprecated one.
  1621         if (!isDeprecatedOverrideIgnorable(other, origin)) {
  1622             checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
  1625     // where
  1626         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1627             // If the method, m, is defined in an interface, then ignore the issue if the method
  1628             // is only inherited via a supertype and also implemented in the supertype,
  1629             // because in that case, we will rediscover the issue when examining the method
  1630             // in the supertype.
  1631             // If the method, m, is not defined in an interface, then the only time we need to
  1632             // address the issue is when the method is the supertype implemementation: any other
  1633             // case, we will have dealt with when examining the supertype classes
  1634             ClassSymbol mc = m.enclClass();
  1635             Type st = types.supertype(origin.type);
  1636             if (st.tag != CLASS)
  1637                 return true;
  1638             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1640             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1641                 List<Type> intfs = types.interfaces(origin.type);
  1642                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1644             else
  1645                 return (stimpl != m);
  1649     // used to check if there were any unchecked conversions
  1650     Warner overrideWarner = new Warner();
  1652     /** Check that a class does not inherit two concrete methods
  1653      *  with the same signature.
  1654      *  @param pos          Position to be used for error reporting.
  1655      *  @param site         The class type to be checked.
  1656      */
  1657     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1658         Type sup = types.supertype(site);
  1659         if (sup.tag != CLASS) return;
  1661         for (Type t1 = sup;
  1662              t1.tsym.type.isParameterized();
  1663              t1 = types.supertype(t1)) {
  1664             for (Scope.Entry e1 = t1.tsym.members().elems;
  1665                  e1 != null;
  1666                  e1 = e1.sibling) {
  1667                 Symbol s1 = e1.sym;
  1668                 if (s1.kind != MTH ||
  1669                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1670                     !s1.isInheritedIn(site.tsym, types) ||
  1671                     ((MethodSymbol)s1).implementation(site.tsym,
  1672                                                       types,
  1673                                                       true) != s1)
  1674                     continue;
  1675                 Type st1 = types.memberType(t1, s1);
  1676                 int s1ArgsLength = st1.getParameterTypes().length();
  1677                 if (st1 == s1.type) continue;
  1679                 for (Type t2 = sup;
  1680                      t2.tag == CLASS;
  1681                      t2 = types.supertype(t2)) {
  1682                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1683                          e2.scope != null;
  1684                          e2 = e2.next()) {
  1685                         Symbol s2 = e2.sym;
  1686                         if (s2 == s1 ||
  1687                             s2.kind != MTH ||
  1688                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1689                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1690                             !s2.isInheritedIn(site.tsym, types) ||
  1691                             ((MethodSymbol)s2).implementation(site.tsym,
  1692                                                               types,
  1693                                                               true) != s2)
  1694                             continue;
  1695                         Type st2 = types.memberType(t2, s2);
  1696                         if (types.overrideEquivalent(st1, st2))
  1697                             log.error(pos, "concrete.inheritance.conflict",
  1698                                       s1, t1, s2, t2, sup);
  1705     /** Check that classes (or interfaces) do not each define an abstract
  1706      *  method with same name and arguments but incompatible return types.
  1707      *  @param pos          Position to be used for error reporting.
  1708      *  @param t1           The first argument type.
  1709      *  @param t2           The second argument type.
  1710      */
  1711     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1712                                             Type t1,
  1713                                             Type t2) {
  1714         return checkCompatibleAbstracts(pos, t1, t2,
  1715                                         types.makeCompoundType(t1, t2));
  1718     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1719                                             Type t1,
  1720                                             Type t2,
  1721                                             Type site) {
  1722         return firstIncompatibility(pos, t1, t2, site) == null;
  1725     /** Return the first method which is defined with same args
  1726      *  but different return types in two given interfaces, or null if none
  1727      *  exists.
  1728      *  @param t1     The first type.
  1729      *  @param t2     The second type.
  1730      *  @param site   The most derived type.
  1731      *  @returns symbol from t2 that conflicts with one in t1.
  1732      */
  1733     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1734         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1735         closure(t1, interfaces1);
  1736         Map<TypeSymbol,Type> interfaces2;
  1737         if (t1 == t2)
  1738             interfaces2 = interfaces1;
  1739         else
  1740             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1742         for (Type t3 : interfaces1.values()) {
  1743             for (Type t4 : interfaces2.values()) {
  1744                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
  1745                 if (s != null) return s;
  1748         return null;
  1751     /** Compute all the supertypes of t, indexed by type symbol. */
  1752     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1753         if (t.tag != CLASS) return;
  1754         if (typeMap.put(t.tsym, t) == null) {
  1755             closure(types.supertype(t), typeMap);
  1756             for (Type i : types.interfaces(t))
  1757                 closure(i, typeMap);
  1761     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1762     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1763         if (t.tag != CLASS) return;
  1764         if (typesSkip.get(t.tsym) != null) return;
  1765         if (typeMap.put(t.tsym, t) == null) {
  1766             closure(types.supertype(t), typesSkip, typeMap);
  1767             for (Type i : types.interfaces(t))
  1768                 closure(i, typesSkip, typeMap);
  1772     /** Return the first method in t2 that conflicts with a method from t1. */
  1773     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1774         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1775             Symbol s1 = e1.sym;
  1776             Type st1 = null;
  1777             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
  1778             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1779             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1780             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1781                 Symbol s2 = e2.sym;
  1782                 if (s1 == s2) continue;
  1783                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
  1784                 if (st1 == null) st1 = types.memberType(t1, s1);
  1785                 Type st2 = types.memberType(t2, s2);
  1786                 if (types.overrideEquivalent(st1, st2)) {
  1787                     List<Type> tvars1 = st1.getTypeArguments();
  1788                     List<Type> tvars2 = st2.getTypeArguments();
  1789                     Type rt1 = st1.getReturnType();
  1790                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1791                     boolean compat =
  1792                         types.isSameType(rt1, rt2) ||
  1793                         rt1.tag >= CLASS && rt2.tag >= CLASS &&
  1794                         (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
  1795                          types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
  1796                          checkCommonOverriderIn(s1,s2,site);
  1797                     if (!compat) {
  1798                         log.error(pos, "types.incompatible.diff.ret",
  1799                             t1, t2, s2.name +
  1800                             "(" + types.memberType(t2, s2).getParameterTypes() + ")");
  1801                         return s2;
  1803                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
  1804                         !checkCommonOverriderIn(s1, s2, site)) {
  1805                     log.error(pos,
  1806                             "name.clash.same.erasure.no.override",
  1807                             s1, s1.location(),
  1808                             s2, s2.location());
  1809                     return s2;
  1813         return null;
  1815     //WHERE
  1816     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
  1817         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
  1818         Type st1 = types.memberType(site, s1);
  1819         Type st2 = types.memberType(site, s2);
  1820         closure(site, supertypes);
  1821         for (Type t : supertypes.values()) {
  1822             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
  1823                 Symbol s3 = e.sym;
  1824                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
  1825                 Type st3 = types.memberType(site,s3);
  1826                 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
  1827                     if (s3.owner == site.tsym) {
  1828                         return true;
  1830                     List<Type> tvars1 = st1.getTypeArguments();
  1831                     List<Type> tvars2 = st2.getTypeArguments();
  1832                     List<Type> tvars3 = st3.getTypeArguments();
  1833                     Type rt1 = st1.getReturnType();
  1834                     Type rt2 = st2.getReturnType();
  1835                     Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
  1836                     Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
  1837                     boolean compat =
  1838                         rt13.tag >= CLASS && rt23.tag >= CLASS &&
  1839                         (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
  1840                          types.covariantReturnType(rt23, rt2, Warner.noWarnings));
  1841                     if (compat)
  1842                         return true;
  1846         return false;
  1849     /** Check that a given method conforms with any method it overrides.
  1850      *  @param tree         The tree from which positions are extracted
  1851      *                      for errors.
  1852      *  @param m            The overriding method.
  1853      */
  1854     void checkOverride(JCTree tree, MethodSymbol m) {
  1855         ClassSymbol origin = (ClassSymbol)m.owner;
  1856         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1857             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1858                 log.error(tree.pos(), "enum.no.finalize");
  1859                 return;
  1861         for (Type t = origin.type; t.tag == CLASS;
  1862              t = types.supertype(t)) {
  1863             if (t != origin.type) {
  1864                 checkOverride(tree, t, origin, m);
  1866             for (Type t2 : types.interfaces(t)) {
  1867                 checkOverride(tree, t2, origin, m);
  1872     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
  1873         TypeSymbol c = site.tsym;
  1874         Scope.Entry e = c.members().lookup(m.name);
  1875         while (e.scope != null) {
  1876             if (m.overrides(e.sym, origin, types, false)) {
  1877                 if ((e.sym.flags() & ABSTRACT) == 0) {
  1878                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  1881             e = e.next();
  1885     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
  1886         ClashFilter cf = new ClashFilter(origin.type);
  1887         return (cf.accepts(s1) &&
  1888                 cf.accepts(s2) &&
  1889                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
  1893     /** Check that all abstract members of given class have definitions.
  1894      *  @param pos          Position to be used for error reporting.
  1895      *  @param c            The class.
  1896      */
  1897     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  1898         try {
  1899             MethodSymbol undef = firstUndef(c, c);
  1900             if (undef != null) {
  1901                 if ((c.flags() & ENUM) != 0 &&
  1902                     types.supertype(c.type).tsym == syms.enumSym &&
  1903                     (c.flags() & FINAL) == 0) {
  1904                     // add the ABSTRACT flag to an enum
  1905                     c.flags_field |= ABSTRACT;
  1906                 } else {
  1907                     MethodSymbol undef1 =
  1908                         new MethodSymbol(undef.flags(), undef.name,
  1909                                          types.memberType(c.type, undef), undef.owner);
  1910                     log.error(pos, "does.not.override.abstract",
  1911                               c, undef1, undef1.location());
  1914         } catch (CompletionFailure ex) {
  1915             completionError(pos, ex);
  1918 //where
  1919         /** Return first abstract member of class `c' that is not defined
  1920          *  in `impl', null if there is none.
  1921          */
  1922         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  1923             MethodSymbol undef = null;
  1924             // Do not bother to search in classes that are not abstract,
  1925             // since they cannot have abstract members.
  1926             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1927                 Scope s = c.members();
  1928                 for (Scope.Entry e = s.elems;
  1929                      undef == null && e != null;
  1930                      e = e.sibling) {
  1931                     if (e.sym.kind == MTH &&
  1932                         (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
  1933                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  1934                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  1935                         if (implmeth == null || implmeth == absmeth)
  1936                             undef = absmeth;
  1939                 if (undef == null) {
  1940                     Type st = types.supertype(c.type);
  1941                     if (st.tag == CLASS)
  1942                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
  1944                 for (List<Type> l = types.interfaces(c.type);
  1945                      undef == null && l.nonEmpty();
  1946                      l = l.tail) {
  1947                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  1950             return undef;
  1953     void checkNonCyclicDecl(JCClassDecl tree) {
  1954         CycleChecker cc = new CycleChecker();
  1955         cc.scan(tree);
  1956         if (!cc.errorFound && !cc.partialCheck) {
  1957             tree.sym.flags_field |= ACYCLIC;
  1961     class CycleChecker extends TreeScanner {
  1963         List<Symbol> seenClasses = List.nil();
  1964         boolean errorFound = false;
  1965         boolean partialCheck = false;
  1967         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
  1968             if (sym != null && sym.kind == TYP) {
  1969                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
  1970                 if (classEnv != null) {
  1971                     DiagnosticSource prevSource = log.currentSource();
  1972                     try {
  1973                         log.useSource(classEnv.toplevel.sourcefile);
  1974                         scan(classEnv.tree);
  1976                     finally {
  1977                         log.useSource(prevSource.getFile());
  1979                 } else if (sym.kind == TYP) {
  1980                     checkClass(pos, sym, List.<JCTree>nil());
  1982             } else {
  1983                 //not completed yet
  1984                 partialCheck = true;
  1988         @Override
  1989         public void visitSelect(JCFieldAccess tree) {
  1990             super.visitSelect(tree);
  1991             checkSymbol(tree.pos(), tree.sym);
  1994         @Override
  1995         public void visitIdent(JCIdent tree) {
  1996             checkSymbol(tree.pos(), tree.sym);
  1999         @Override
  2000         public void visitTypeApply(JCTypeApply tree) {
  2001             scan(tree.clazz);
  2004         @Override
  2005         public void visitTypeArray(JCArrayTypeTree tree) {
  2006             scan(tree.elemtype);
  2009         @Override
  2010         public void visitClassDef(JCClassDecl tree) {
  2011             List<JCTree> supertypes = List.nil();
  2012             if (tree.getExtendsClause() != null) {
  2013                 supertypes = supertypes.prepend(tree.getExtendsClause());
  2015             if (tree.getImplementsClause() != null) {
  2016                 for (JCTree intf : tree.getImplementsClause()) {
  2017                     supertypes = supertypes.prepend(intf);
  2020             checkClass(tree.pos(), tree.sym, supertypes);
  2023         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
  2024             if ((c.flags_field & ACYCLIC) != 0)
  2025                 return;
  2026             if (seenClasses.contains(c)) {
  2027                 errorFound = true;
  2028                 noteCyclic(pos, (ClassSymbol)c);
  2029             } else if (!c.type.isErroneous()) {
  2030                 try {
  2031                     seenClasses = seenClasses.prepend(c);
  2032                     if (c.type.tag == CLASS) {
  2033                         if (supertypes.nonEmpty()) {
  2034                             scan(supertypes);
  2036                         else {
  2037                             ClassType ct = (ClassType)c.type;
  2038                             if (ct.supertype_field == null ||
  2039                                     ct.interfaces_field == null) {
  2040                                 //not completed yet
  2041                                 partialCheck = true;
  2042                                 return;
  2044                             checkSymbol(pos, ct.supertype_field.tsym);
  2045                             for (Type intf : ct.interfaces_field) {
  2046                                 checkSymbol(pos, intf.tsym);
  2049                         if (c.owner.kind == TYP) {
  2050                             checkSymbol(pos, c.owner);
  2053                 } finally {
  2054                     seenClasses = seenClasses.tail;
  2060     /** Check for cyclic references. Issue an error if the
  2061      *  symbol of the type referred to has a LOCKED flag set.
  2063      *  @param pos      Position to be used for error reporting.
  2064      *  @param t        The type referred to.
  2065      */
  2066     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  2067         checkNonCyclicInternal(pos, t);
  2071     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  2072         checkNonCyclic1(pos, t, List.<TypeVar>nil());
  2075     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
  2076         final TypeVar tv;
  2077         if  (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
  2078             return;
  2079         if (seen.contains(t)) {
  2080             tv = (TypeVar)t;
  2081             tv.bound = types.createErrorType(t);
  2082             log.error(pos, "cyclic.inheritance", t);
  2083         } else if (t.tag == TYPEVAR) {
  2084             tv = (TypeVar)t;
  2085             seen = seen.prepend(tv);
  2086             for (Type b : types.getBounds(tv))
  2087                 checkNonCyclic1(pos, b, seen);
  2091     /** Check for cyclic references. Issue an error if the
  2092      *  symbol of the type referred to has a LOCKED flag set.
  2094      *  @param pos      Position to be used for error reporting.
  2095      *  @param t        The type referred to.
  2096      *  @returns        True if the check completed on all attributed classes
  2097      */
  2098     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  2099         boolean complete = true; // was the check complete?
  2100         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  2101         Symbol c = t.tsym;
  2102         if ((c.flags_field & ACYCLIC) != 0) return true;
  2104         if ((c.flags_field & LOCKED) != 0) {
  2105             noteCyclic(pos, (ClassSymbol)c);
  2106         } else if (!c.type.isErroneous()) {
  2107             try {
  2108                 c.flags_field |= LOCKED;
  2109                 if (c.type.tag == CLASS) {
  2110                     ClassType clazz = (ClassType)c.type;
  2111                     if (clazz.interfaces_field != null)
  2112                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  2113                             complete &= checkNonCyclicInternal(pos, l.head);
  2114                     if (clazz.supertype_field != null) {
  2115                         Type st = clazz.supertype_field;
  2116                         if (st != null && st.tag == CLASS)
  2117                             complete &= checkNonCyclicInternal(pos, st);
  2119                     if (c.owner.kind == TYP)
  2120                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  2122             } finally {
  2123                 c.flags_field &= ~LOCKED;
  2126         if (complete)
  2127             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  2128         if (complete) c.flags_field |= ACYCLIC;
  2129         return complete;
  2132     /** Note that we found an inheritance cycle. */
  2133     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  2134         log.error(pos, "cyclic.inheritance", c);
  2135         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  2136             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
  2137         Type st = types.supertype(c.type);
  2138         if (st.tag == CLASS)
  2139             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
  2140         c.type = types.createErrorType(c, c.type);
  2141         c.flags_field |= ACYCLIC;
  2144     /** Check that all methods which implement some
  2145      *  method conform to the method they implement.
  2146      *  @param tree         The class definition whose members are checked.
  2147      */
  2148     void checkImplementations(JCClassDecl tree) {
  2149         checkImplementations(tree, tree.sym);
  2151 //where
  2152         /** Check that all methods which implement some
  2153          *  method in `ic' conform to the method they implement.
  2154          */
  2155         void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
  2156             ClassSymbol origin = tree.sym;
  2157             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  2158                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  2159                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  2160                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  2161                         if (e.sym.kind == MTH &&
  2162                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  2163                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  2164                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  2165                             if (implmeth != null && implmeth != absmeth &&
  2166                                 (implmeth.owner.flags() & INTERFACE) ==
  2167                                 (origin.flags() & INTERFACE)) {
  2168                                 // don't check if implmeth is in a class, yet
  2169                                 // origin is an interface. This case arises only
  2170                                 // if implmeth is declared in Object. The reason is
  2171                                 // that interfaces really don't inherit from
  2172                                 // Object it's just that the compiler represents
  2173                                 // things that way.
  2174                                 checkOverride(tree, implmeth, absmeth, origin);
  2182     /** Check that all abstract methods implemented by a class are
  2183      *  mutually compatible.
  2184      *  @param pos          Position to be used for error reporting.
  2185      *  @param c            The class whose interfaces are checked.
  2186      */
  2187     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  2188         List<Type> supertypes = types.interfaces(c);
  2189         Type supertype = types.supertype(c);
  2190         if (supertype.tag == CLASS &&
  2191             (supertype.tsym.flags() & ABSTRACT) != 0)
  2192             supertypes = supertypes.prepend(supertype);
  2193         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  2194             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  2195                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  2196                 return;
  2197             for (List<Type> m = supertypes; m != l; m = m.tail)
  2198                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  2199                     return;
  2201         checkCompatibleConcretes(pos, c);
  2204     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
  2205         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
  2206             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
  2207                 // VM allows methods and variables with differing types
  2208                 if (sym.kind == e.sym.kind &&
  2209                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
  2210                     sym != e.sym &&
  2211                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
  2212                     (sym.flags() & IPROXY) == 0 && (e.sym.flags() & IPROXY) == 0 &&
  2213                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
  2214                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
  2215                     return;
  2221     /** Check that all non-override equivalent methods accessible from 'site'
  2222      *  are mutually compatible (JLS 8.4.8/9.4.1).
  2224      *  @param pos  Position to be used for error reporting.
  2225      *  @param site The class whose methods are checked.
  2226      *  @param sym  The method symbol to be checked.
  2227      */
  2228     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2229          ClashFilter cf = new ClashFilter(site);
  2230         //for each method m1 that is overridden (directly or indirectly)
  2231         //by method 'sym' in 'site'...
  2232         for (Symbol m1 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2233             if (!sym.overrides(m1, site.tsym, types, false)) continue;
  2234              //...check each method m2 that is a member of 'site'
  2235              for (Symbol m2 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2236                 if (m2 == m1) continue;
  2237                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2238                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
  2239                 if (!types.isSubSignature(sym.type, types.memberType(site, m2), false) &&
  2240                         types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
  2241                     sym.flags_field |= CLASH;
  2242                     String key = m1 == sym ?
  2243                             "name.clash.same.erasure.no.override" :
  2244                             "name.clash.same.erasure.no.override.1";
  2245                     log.error(pos,
  2246                             key,
  2247                             sym, sym.location(),
  2248                             m2, m2.location(),
  2249                             m1, m1.location());
  2250                     return;
  2258     /** Check that all static methods accessible from 'site' are
  2259      *  mutually compatible (JLS 8.4.8).
  2261      *  @param pos  Position to be used for error reporting.
  2262      *  @param site The class whose methods are checked.
  2263      *  @param sym  The method symbol to be checked.
  2264      */
  2265     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2266         ClashFilter cf = new ClashFilter(site);
  2267         //for each method m1 that is a member of 'site'...
  2268         for (Symbol s : types.membersClosure(site, true).getElementsByName(sym.name, cf)) {
  2269             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2270             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
  2271             if (!types.isSubSignature(sym.type, types.memberType(site, s), false) &&
  2272                     types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
  2273                 log.error(pos,
  2274                         "name.clash.same.erasure.no.hide",
  2275                         sym, sym.location(),
  2276                         s, s.location());
  2277                 return;
  2282      //where
  2283      private class ClashFilter implements Filter<Symbol> {
  2285          Type site;
  2287          ClashFilter(Type site) {
  2288              this.site = site;
  2291          boolean shouldSkip(Symbol s) {
  2292              return (s.flags() & CLASH) != 0 &&
  2293                 s.owner == site.tsym;
  2296          public boolean accepts(Symbol s) {
  2297              return s.kind == MTH &&
  2298                      (s.flags() & SYNTHETIC) == 0 &&
  2299                      !shouldSkip(s) &&
  2300                      s.isInheritedIn(site.tsym, types) &&
  2301                      !s.isConstructor();
  2305     /** Report a conflict between a user symbol and a synthetic symbol.
  2306      */
  2307     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
  2308         if (!sym.type.isErroneous()) {
  2309             if (warnOnSyntheticConflicts) {
  2310                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
  2312             else {
  2313                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
  2318     /** Check that class c does not implement directly or indirectly
  2319      *  the same parameterized interface with two different argument lists.
  2320      *  @param pos          Position to be used for error reporting.
  2321      *  @param type         The type whose interfaces are checked.
  2322      */
  2323     void checkClassBounds(DiagnosticPosition pos, Type type) {
  2324         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  2326 //where
  2327         /** Enter all interfaces of type `type' into the hash table `seensofar'
  2328          *  with their class symbol as key and their type as value. Make
  2329          *  sure no class is entered with two different types.
  2330          */
  2331         void checkClassBounds(DiagnosticPosition pos,
  2332                               Map<TypeSymbol,Type> seensofar,
  2333                               Type type) {
  2334             if (type.isErroneous()) return;
  2335             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  2336                 Type it = l.head;
  2337                 Type oldit = seensofar.put(it.tsym, it);
  2338                 if (oldit != null) {
  2339                     List<Type> oldparams = oldit.allparams();
  2340                     List<Type> newparams = it.allparams();
  2341                     if (!types.containsTypeEquivalent(oldparams, newparams))
  2342                         log.error(pos, "cant.inherit.diff.arg",
  2343                                   it.tsym, Type.toString(oldparams),
  2344                                   Type.toString(newparams));
  2346                 checkClassBounds(pos, seensofar, it);
  2348             Type st = types.supertype(type);
  2349             if (st != null) checkClassBounds(pos, seensofar, st);
  2352     /** Enter interface into into set.
  2353      *  If it existed already, issue a "repeated interface" error.
  2354      */
  2355     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  2356         if (its.contains(it))
  2357             log.error(pos, "repeated.interface");
  2358         else {
  2359             its.add(it);
  2363 /* *************************************************************************
  2364  * Check annotations
  2365  **************************************************************************/
  2367     /**
  2368      * Recursively validate annotations values
  2369      */
  2370     void validateAnnotationTree(JCTree tree) {
  2371         class AnnotationValidator extends TreeScanner {
  2372             @Override
  2373             public void visitAnnotation(JCAnnotation tree) {
  2374                 if (!tree.type.isErroneous()) {
  2375                     super.visitAnnotation(tree);
  2376                     validateAnnotation(tree);
  2380         tree.accept(new AnnotationValidator());
  2383     /** Annotation types are restricted to primitives, String, an
  2384      *  enum, an annotation, Class, Class<?>, Class<? extends
  2385      *  Anything>, arrays of the preceding.
  2386      */
  2387     void validateAnnotationType(JCTree restype) {
  2388         // restype may be null if an error occurred, so don't bother validating it
  2389         if (restype != null) {
  2390             validateAnnotationType(restype.pos(), restype.type);
  2394     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  2395         if (type.isPrimitive()) return;
  2396         if (types.isSameType(type, syms.stringType)) return;
  2397         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  2398         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  2399         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  2400         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  2401             validateAnnotationType(pos, types.elemtype(type));
  2402             return;
  2404         log.error(pos, "invalid.annotation.member.type");
  2407     /**
  2408      * "It is also a compile-time error if any method declared in an
  2409      * annotation type has a signature that is override-equivalent to
  2410      * that of any public or protected method declared in class Object
  2411      * or in the interface annotation.Annotation."
  2413      * @jls 9.6 Annotation Types
  2414      */
  2415     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  2416         for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
  2417             Scope s = sup.tsym.members();
  2418             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  2419                 if (e.sym.kind == MTH &&
  2420                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  2421                     types.overrideEquivalent(m.type, e.sym.type))
  2422                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  2427     /** Check the annotations of a symbol.
  2428      */
  2429     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  2430         if (skipAnnotations) return;
  2431         for (JCAnnotation a : annotations)
  2432             validateAnnotation(a, s);
  2435     /** Check an annotation of a symbol.
  2436      */
  2437     public void validateAnnotation(JCAnnotation a, Symbol s) {
  2438         validateAnnotationTree(a);
  2440         if (!annotationApplicable(a, s))
  2441             log.error(a.pos(), "annotation.type.not.applicable");
  2443         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  2444             if (!isOverrider(s))
  2445                 log.error(a.pos(), "method.does.not.override.superclass");
  2449     /** Is s a method symbol that overrides a method in a superclass? */
  2450     boolean isOverrider(Symbol s) {
  2451         if (s.kind != MTH || s.isStatic())
  2452             return false;
  2453         MethodSymbol m = (MethodSymbol)s;
  2454         TypeSymbol owner = (TypeSymbol)m.owner;
  2455         for (Type sup : types.closure(owner.type)) {
  2456             if (sup == owner.type)
  2457                 continue; // skip "this"
  2458             Scope scope = sup.tsym.members();
  2459             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  2460                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  2461                     return true;
  2464         return false;
  2467     /** Is the annotation applicable to the symbol? */
  2468     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  2469         Attribute.Compound atTarget =
  2470             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  2471         if (atTarget == null) return true;
  2472         Attribute atValue = atTarget.member(names.value);
  2473         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
  2474         Attribute.Array arr = (Attribute.Array) atValue;
  2475         for (Attribute app : arr.values) {
  2476             if (!(app instanceof Attribute.Enum)) return true; // recovery
  2477             Attribute.Enum e = (Attribute.Enum) app;
  2478             if (e.value.name == names.TYPE)
  2479                 { if (s.kind == TYP) return true; }
  2480             else if (e.value.name == names.FIELD)
  2481                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  2482             else if (e.value.name == names.METHOD)
  2483                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  2484             else if (e.value.name == names.PARAMETER)
  2485                 { if (s.kind == VAR &&
  2486                       s.owner.kind == MTH &&
  2487                       (s.flags() & PARAMETER) != 0)
  2488                     return true;
  2490             else if (e.value.name == names.CONSTRUCTOR)
  2491                 { if (s.kind == MTH && s.isConstructor()) return true; }
  2492             else if (e.value.name == names.LOCAL_VARIABLE)
  2493                 { if (s.kind == VAR && s.owner.kind == MTH &&
  2494                       (s.flags() & PARAMETER) == 0)
  2495                     return true;
  2497             else if (e.value.name == names.ANNOTATION_TYPE)
  2498                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  2499                     return true;
  2501             else if (e.value.name == names.PACKAGE)
  2502                 { if (s.kind == PCK) return true; }
  2503             else if (e.value.name == names.TYPE_USE)
  2504                 { if (s.kind == TYP ||
  2505                       s.kind == VAR ||
  2506                       (s.kind == MTH && !s.isConstructor() &&
  2507                        s.type.getReturnType().tag != VOID))
  2508                     return true;
  2510             else
  2511                 return true; // recovery
  2513         return false;
  2516     /** Check an annotation value.
  2517      */
  2518     public void validateAnnotation(JCAnnotation a) {
  2519         // collect an inventory of the members (sorted alphabetically)
  2520         Set<MethodSymbol> members = new TreeSet<MethodSymbol>(new Comparator<Symbol>() {
  2521             public int compare(Symbol t, Symbol t1) {
  2522                 return t.name.compareTo(t1.name);
  2524         });
  2525         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  2526              e != null;
  2527              e = e.sibling)
  2528             if (e.sym.kind == MTH)
  2529                 members.add((MethodSymbol) e.sym);
  2531         // count them off as they're annotated
  2532         for (JCTree arg : a.args) {
  2533             if (!arg.hasTag(ASSIGN)) continue; // recovery
  2534             JCAssign assign = (JCAssign) arg;
  2535             Symbol m = TreeInfo.symbol(assign.lhs);
  2536             if (m == null || m.type.isErroneous()) continue;
  2537             if (!members.remove(m))
  2538                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
  2539                           m.name, a.type);
  2542         // all the remaining ones better have default values
  2543         ListBuffer<Name> missingDefaults = ListBuffer.lb();
  2544         for (MethodSymbol m : members) {
  2545             if (m.defaultValue == null && !m.type.isErroneous()) {
  2546                 missingDefaults.append(m.name);
  2549         if (missingDefaults.nonEmpty()) {
  2550             String key = (missingDefaults.size() > 1)
  2551                     ? "annotation.missing.default.value.1"
  2552                     : "annotation.missing.default.value";
  2553             log.error(a.pos(), key, a.type, missingDefaults);
  2556         // special case: java.lang.annotation.Target must not have
  2557         // repeated values in its value member
  2558         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  2559             a.args.tail == null)
  2560             return;
  2562         if (!a.args.head.hasTag(ASSIGN)) return; // error recovery
  2563         JCAssign assign = (JCAssign) a.args.head;
  2564         Symbol m = TreeInfo.symbol(assign.lhs);
  2565         if (m.name != names.value) return;
  2566         JCTree rhs = assign.rhs;
  2567         if (!rhs.hasTag(NEWARRAY)) return;
  2568         JCNewArray na = (JCNewArray) rhs;
  2569         Set<Symbol> targets = new HashSet<Symbol>();
  2570         for (JCTree elem : na.elems) {
  2571             if (!targets.add(TreeInfo.symbol(elem))) {
  2572                 log.error(elem.pos(), "repeated.annotation.target");
  2577     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  2578         if (allowAnnotations &&
  2579             lint.isEnabled(LintCategory.DEP_ANN) &&
  2580             (s.flags() & DEPRECATED) != 0 &&
  2581             !syms.deprecatedType.isErroneous() &&
  2582             s.attribute(syms.deprecatedType.tsym) == null) {
  2583             log.warning(LintCategory.DEP_ANN,
  2584                     pos, "missing.deprecated.annotation");
  2588     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
  2589         if ((s.flags() & DEPRECATED) != 0 &&
  2590                 (other.flags() & DEPRECATED) == 0 &&
  2591                 s.outermostClass() != other.outermostClass()) {
  2592             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  2593                 @Override
  2594                 public void report() {
  2595                     warnDeprecated(pos, s);
  2597             });
  2601     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
  2602         if ((s.flags() & PROPRIETARY) != 0) {
  2603             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  2604                 public void report() {
  2605                     if (enableSunApiLintControl)
  2606                       warnSunApi(pos, "sun.proprietary", s);
  2607                     else
  2608                       log.mandatoryWarning(pos, "sun.proprietary", s);
  2610             });
  2614 /* *************************************************************************
  2615  * Check for recursive annotation elements.
  2616  **************************************************************************/
  2618     /** Check for cycles in the graph of annotation elements.
  2619      */
  2620     void checkNonCyclicElements(JCClassDecl tree) {
  2621         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  2622         Assert.check((tree.sym.flags_field & LOCKED) == 0);
  2623         try {
  2624             tree.sym.flags_field |= LOCKED;
  2625             for (JCTree def : tree.defs) {
  2626                 if (!def.hasTag(METHODDEF)) continue;
  2627                 JCMethodDecl meth = (JCMethodDecl)def;
  2628                 checkAnnotationResType(meth.pos(), meth.restype.type);
  2630         } finally {
  2631             tree.sym.flags_field &= ~LOCKED;
  2632             tree.sym.flags_field |= ACYCLIC_ANN;
  2636     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  2637         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  2638             return;
  2639         if ((tsym.flags_field & LOCKED) != 0) {
  2640             log.error(pos, "cyclic.annotation.element");
  2641             return;
  2643         try {
  2644             tsym.flags_field |= LOCKED;
  2645             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  2646                 Symbol s = e.sym;
  2647                 if (s.kind != Kinds.MTH)
  2648                     continue;
  2649                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  2651         } finally {
  2652             tsym.flags_field &= ~LOCKED;
  2653             tsym.flags_field |= ACYCLIC_ANN;
  2657     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  2658         switch (type.tag) {
  2659         case TypeTags.CLASS:
  2660             if ((type.tsym.flags() & ANNOTATION) != 0)
  2661                 checkNonCyclicElementsInternal(pos, type.tsym);
  2662             break;
  2663         case TypeTags.ARRAY:
  2664             checkAnnotationResType(pos, types.elemtype(type));
  2665             break;
  2666         default:
  2667             break; // int etc
  2671 /* *************************************************************************
  2672  * Check for cycles in the constructor call graph.
  2673  **************************************************************************/
  2675     /** Check for cycles in the graph of constructors calling other
  2676      *  constructors.
  2677      */
  2678     void checkCyclicConstructors(JCClassDecl tree) {
  2679         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  2681         // enter each constructor this-call into the map
  2682         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  2683             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  2684             if (app == null) continue;
  2685             JCMethodDecl meth = (JCMethodDecl) l.head;
  2686             if (TreeInfo.name(app.meth) == names._this) {
  2687                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  2688             } else {
  2689                 meth.sym.flags_field |= ACYCLIC;
  2693         // Check for cycles in the map
  2694         Symbol[] ctors = new Symbol[0];
  2695         ctors = callMap.keySet().toArray(ctors);
  2696         for (Symbol caller : ctors) {
  2697             checkCyclicConstructor(tree, caller, callMap);
  2701     /** Look in the map to see if the given constructor is part of a
  2702      *  call cycle.
  2703      */
  2704     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  2705                                         Map<Symbol,Symbol> callMap) {
  2706         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  2707             if ((ctor.flags_field & LOCKED) != 0) {
  2708                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  2709                           "recursive.ctor.invocation");
  2710             } else {
  2711                 ctor.flags_field |= LOCKED;
  2712                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  2713                 ctor.flags_field &= ~LOCKED;
  2715             ctor.flags_field |= ACYCLIC;
  2719 /* *************************************************************************
  2720  * Miscellaneous
  2721  **************************************************************************/
  2723     /**
  2724      * Return the opcode of the operator but emit an error if it is an
  2725      * error.
  2726      * @param pos        position for error reporting.
  2727      * @param operator   an operator
  2728      * @param tag        a tree tag
  2729      * @param left       type of left hand side
  2730      * @param right      type of right hand side
  2731      */
  2732     int checkOperator(DiagnosticPosition pos,
  2733                        OperatorSymbol operator,
  2734                        JCTree.Tag tag,
  2735                        Type left,
  2736                        Type right) {
  2737         if (operator.opcode == ByteCodes.error) {
  2738             log.error(pos,
  2739                       "operator.cant.be.applied.1",
  2740                       treeinfo.operatorName(tag),
  2741                       left, right);
  2743         return operator.opcode;
  2747     /**
  2748      *  Check for division by integer constant zero
  2749      *  @param pos           Position for error reporting.
  2750      *  @param operator      The operator for the expression
  2751      *  @param operand       The right hand operand for the expression
  2752      */
  2753     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  2754         if (operand.constValue() != null
  2755             && lint.isEnabled(LintCategory.DIVZERO)
  2756             && operand.tag <= LONG
  2757             && ((Number) (operand.constValue())).longValue() == 0) {
  2758             int opc = ((OperatorSymbol)operator).opcode;
  2759             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  2760                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  2761                 log.warning(LintCategory.DIVZERO, pos, "div.zero");
  2766     /**
  2767      * Check for empty statements after if
  2768      */
  2769     void checkEmptyIf(JCIf tree) {
  2770         if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
  2771                 lint.isEnabled(LintCategory.EMPTY))
  2772             log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
  2775     /** Check that symbol is unique in given scope.
  2776      *  @param pos           Position for error reporting.
  2777      *  @param sym           The symbol.
  2778      *  @param s             The scope.
  2779      */
  2780     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  2781         if (sym.type.isErroneous())
  2782             return true;
  2783         if (sym.owner.name == names.any) return false;
  2784         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  2785             if (sym != e.sym &&
  2786                     (e.sym.flags() & CLASH) == 0 &&
  2787                     sym.kind == e.sym.kind &&
  2788                     sym.name != names.error &&
  2789                     (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
  2790                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS)) {
  2791                     varargsDuplicateError(pos, sym, e.sym);
  2792                     return true;
  2793                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, e.sym.type, false)) {
  2794                     duplicateErasureError(pos, sym, e.sym);
  2795                     sym.flags_field |= CLASH;
  2796                     return true;
  2797                 } else {
  2798                     duplicateError(pos, e.sym);
  2799                     return false;
  2803         return true;
  2806     /** Report duplicate declaration error.
  2807      */
  2808     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
  2809         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
  2810             log.error(pos, "name.clash.same.erasure", sym1, sym2);
  2814     /** Check that single-type import is not already imported or top-level defined,
  2815      *  but make an exception for two single-type imports which denote the same type.
  2816      *  @param pos           Position for error reporting.
  2817      *  @param sym           The symbol.
  2818      *  @param s             The scope
  2819      */
  2820     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2821         return checkUniqueImport(pos, sym, s, false);
  2824     /** Check that static single-type import is not already imported or top-level defined,
  2825      *  but make an exception for two single-type imports which denote the same type.
  2826      *  @param pos           Position for error reporting.
  2827      *  @param sym           The symbol.
  2828      *  @param s             The scope
  2829      *  @param staticImport  Whether or not this was a static import
  2830      */
  2831     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2832         return checkUniqueImport(pos, sym, s, true);
  2835     /** Check that single-type import is not already imported or top-level defined,
  2836      *  but make an exception for two single-type imports which denote the same type.
  2837      *  @param pos           Position for error reporting.
  2838      *  @param sym           The symbol.
  2839      *  @param s             The scope.
  2840      *  @param staticImport  Whether or not this was a static import
  2841      */
  2842     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  2843         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  2844             // is encountered class entered via a class declaration?
  2845             boolean isClassDecl = e.scope == s;
  2846             if ((isClassDecl || sym != e.sym) &&
  2847                 sym.kind == e.sym.kind &&
  2848                 sym.name != names.error) {
  2849                 if (!e.sym.type.isErroneous()) {
  2850                     String what = e.sym.toString();
  2851                     if (!isClassDecl) {
  2852                         if (staticImport)
  2853                             log.error(pos, "already.defined.static.single.import", what);
  2854                         else
  2855                             log.error(pos, "already.defined.single.import", what);
  2857                     else if (sym != e.sym)
  2858                         log.error(pos, "already.defined.this.unit", what);
  2860                 return false;
  2863         return true;
  2866     /** Check that a qualified name is in canonical form (for import decls).
  2867      */
  2868     public void checkCanonical(JCTree tree) {
  2869         if (!isCanonical(tree))
  2870             log.error(tree.pos(), "import.requires.canonical",
  2871                       TreeInfo.symbol(tree));
  2873         // where
  2874         private boolean isCanonical(JCTree tree) {
  2875             while (tree.hasTag(SELECT)) {
  2876                 JCFieldAccess s = (JCFieldAccess) tree;
  2877                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  2878                     return false;
  2879                 tree = s.selected;
  2881             return true;
  2884     private class ConversionWarner extends Warner {
  2885         final String uncheckedKey;
  2886         final Type found;
  2887         final Type expected;
  2888         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
  2889             super(pos);
  2890             this.uncheckedKey = uncheckedKey;
  2891             this.found = found;
  2892             this.expected = expected;
  2895         @Override
  2896         public void warn(LintCategory lint) {
  2897             boolean warned = this.warned;
  2898             super.warn(lint);
  2899             if (warned) return; // suppress redundant diagnostics
  2900             switch (lint) {
  2901                 case UNCHECKED:
  2902                     Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
  2903                     break;
  2904                 case VARARGS:
  2905                     if (method != null &&
  2906                             method.attribute(syms.trustMeType.tsym) != null &&
  2907                             isTrustMeAllowedOnMethod(method) &&
  2908                             !types.isReifiable(method.type.getParameterTypes().last())) {
  2909                         Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
  2911                     break;
  2912                 default:
  2913                     throw new AssertionError("Unexpected lint: " + lint);
  2918     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  2919         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  2922     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  2923         return new ConversionWarner(pos, "unchecked.assign", found, expected);

mercurial