src/share/classes/com/sun/tools/javac/comp/Check.java

Fri, 09 Mar 2012 17:10:56 +0000

author
mcimadamore
date
Fri, 09 Mar 2012 17:10:56 +0000
changeset 1226
97bec6ab1227
parent 1219
48ee63caaa93
child 1237
568e70bbd9aa
permissions
-rw-r--r--

7151802: compiler update caused sqe test failed
Summary: Fix regression caused by 7144506
Reviewed-by: jjg, dlsmith

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    31 import com.sun.tools.javac.code.*;
    32 import com.sun.tools.javac.jvm.*;
    33 import com.sun.tools.javac.tree.*;
    34 import com.sun.tools.javac.util.*;
    35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    36 import com.sun.tools.javac.util.List;
    38 import com.sun.tools.javac.tree.JCTree.*;
    39 import com.sun.tools.javac.code.Lint;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Type.*;
    42 import com.sun.tools.javac.code.Symbol.*;
    44 import static com.sun.tools.javac.code.Flags.*;
    45 import static com.sun.tools.javac.code.Flags.ANNOTATION;
    46 import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
    47 import static com.sun.tools.javac.code.Kinds.*;
    48 import static com.sun.tools.javac.code.TypeTags.*;
    49 import static com.sun.tools.javac.code.TypeTags.WILDCARD;
    51 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    53 /** Type checking helper class for the attribution phase.
    54  *
    55  *  <p><b>This is NOT part of any supported API.
    56  *  If you write code that depends on this, you do so at your own risk.
    57  *  This code and its internal interfaces are subject to change or
    58  *  deletion without notice.</b>
    59  */
    60 public class Check {
    61     protected static final Context.Key<Check> checkKey =
    62         new Context.Key<Check>();
    64     private final Names names;
    65     private final Log log;
    66     private final Resolve rs;
    67     private final Symtab syms;
    68     private final Enter enter;
    69     private final Infer infer;
    70     private final Types types;
    71     private final JCDiagnostic.Factory diags;
    72     private final boolean skipAnnotations;
    73     private boolean warnOnSyntheticConflicts;
    74     private boolean suppressAbortOnBadClassFile;
    75     private boolean enableSunApiLintControl;
    76     private final TreeInfo treeinfo;
    78     // The set of lint options currently in effect. It is initialized
    79     // from the context, and then is set/reset as needed by Attr as it
    80     // visits all the various parts of the trees during attribution.
    81     private Lint lint;
    83     // The method being analyzed in Attr - it is set/reset as needed by
    84     // Attr as it visits new method declarations.
    85     private MethodSymbol method;
    87     public static Check instance(Context context) {
    88         Check instance = context.get(checkKey);
    89         if (instance == null)
    90             instance = new Check(context);
    91         return instance;
    92     }
    94     protected Check(Context context) {
    95         context.put(checkKey, this);
    97         names = Names.instance(context);
    98         log = Log.instance(context);
    99         rs = Resolve.instance(context);
   100         syms = Symtab.instance(context);
   101         enter = Enter.instance(context);
   102         infer = Infer.instance(context);
   103         this.types = Types.instance(context);
   104         diags = JCDiagnostic.Factory.instance(context);
   105         Options options = Options.instance(context);
   106         lint = Lint.instance(context);
   107         treeinfo = TreeInfo.instance(context);
   109         Source source = Source.instance(context);
   110         allowGenerics = source.allowGenerics();
   111         allowVarargs = source.allowVarargs();
   112         allowAnnotations = source.allowAnnotations();
   113         allowCovariantReturns = source.allowCovariantReturns();
   114         allowSimplifiedVarargs = source.allowSimplifiedVarargs();
   115         complexInference = options.isSet("complexinference");
   116         skipAnnotations = options.isSet("skipAnnotations");
   117         warnOnSyntheticConflicts = options.isSet("warnOnSyntheticConflicts");
   118         suppressAbortOnBadClassFile = options.isSet("suppressAbortOnBadClassFile");
   119         enableSunApiLintControl = options.isSet("enableSunApiLintControl");
   121         Target target = Target.instance(context);
   122         syntheticNameChar = target.syntheticNameChar();
   124         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   125         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   126         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
   127         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
   129         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
   130                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
   131         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
   132                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
   133         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
   134                 enforceMandatoryWarnings, "sunapi", null);
   136         deferredLintHandler = DeferredLintHandler.immediateHandler;
   137     }
   139     /** Switch: generics enabled?
   140      */
   141     boolean allowGenerics;
   143     /** Switch: varargs enabled?
   144      */
   145     boolean allowVarargs;
   147     /** Switch: annotations enabled?
   148      */
   149     boolean allowAnnotations;
   151     /** Switch: covariant returns enabled?
   152      */
   153     boolean allowCovariantReturns;
   155     /** Switch: simplified varargs enabled?
   156      */
   157     boolean allowSimplifiedVarargs;
   159     /** Switch: -complexinference option set?
   160      */
   161     boolean complexInference;
   163     /** Character for synthetic names
   164      */
   165     char syntheticNameChar;
   167     /** A table mapping flat names of all compiled classes in this run to their
   168      *  symbols; maintained from outside.
   169      */
   170     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   172     /** A handler for messages about deprecated usage.
   173      */
   174     private MandatoryWarningHandler deprecationHandler;
   176     /** A handler for messages about unchecked or unsafe usage.
   177      */
   178     private MandatoryWarningHandler uncheckedHandler;
   180     /** A handler for messages about using proprietary API.
   181      */
   182     private MandatoryWarningHandler sunApiHandler;
   184     /** A handler for deferred lint warnings.
   185      */
   186     private DeferredLintHandler deferredLintHandler;
   188 /* *************************************************************************
   189  * Errors and Warnings
   190  **************************************************************************/
   192     Lint setLint(Lint newLint) {
   193         Lint prev = lint;
   194         lint = newLint;
   195         return prev;
   196     }
   198     DeferredLintHandler setDeferredLintHandler(DeferredLintHandler newDeferredLintHandler) {
   199         DeferredLintHandler prev = deferredLintHandler;
   200         deferredLintHandler = newDeferredLintHandler;
   201         return prev;
   202     }
   204     MethodSymbol setMethod(MethodSymbol newMethod) {
   205         MethodSymbol prev = method;
   206         method = newMethod;
   207         return prev;
   208     }
   210     /** Warn about deprecated symbol.
   211      *  @param pos        Position to be used for error reporting.
   212      *  @param sym        The deprecated symbol.
   213      */
   214     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   215         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   216             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   217     }
   219     /** Warn about unchecked operation.
   220      *  @param pos        Position to be used for error reporting.
   221      *  @param msg        A string describing the problem.
   222      */
   223     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   224         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   225             uncheckedHandler.report(pos, msg, args);
   226     }
   228     /** Warn about unsafe vararg method decl.
   229      *  @param pos        Position to be used for error reporting.
   230      *  @param sym        The deprecated symbol.
   231      */
   232     void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
   233         if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
   234             log.warning(LintCategory.VARARGS, pos, key, args);
   235     }
   237     /** Warn about using proprietary API.
   238      *  @param pos        Position to be used for error reporting.
   239      *  @param msg        A string describing the problem.
   240      */
   241     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
   242         if (!lint.isSuppressed(LintCategory.SUNAPI))
   243             sunApiHandler.report(pos, msg, args);
   244     }
   246     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
   247         if (lint.isEnabled(LintCategory.STATIC))
   248             log.warning(LintCategory.STATIC, pos, msg, args);
   249     }
   251     /**
   252      * Report any deferred diagnostics.
   253      */
   254     public void reportDeferredDiagnostics() {
   255         deprecationHandler.reportDeferredDiagnostic();
   256         uncheckedHandler.reportDeferredDiagnostic();
   257         sunApiHandler.reportDeferredDiagnostic();
   258     }
   261     /** Report a failure to complete a class.
   262      *  @param pos        Position to be used for error reporting.
   263      *  @param ex         The failure to report.
   264      */
   265     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   266         log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
   267         if (ex instanceof ClassReader.BadClassFile
   268                 && !suppressAbortOnBadClassFile) throw new Abort();
   269         else return syms.errType;
   270     }
   272     /** Report a type error.
   273      *  @param pos        Position to be used for error reporting.
   274      *  @param problem    A string describing the error.
   275      *  @param found      The type that was found.
   276      *  @param req        The type that was required.
   277      */
   278     Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) {
   279         log.error(pos, "prob.found.req",
   280                   problem, found, req);
   281         return types.createErrorType(found);
   282     }
   284     Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) {
   285         log.error(pos, "prob.found.req.1", problem, found, req, explanation);
   286         return types.createErrorType(found);
   287     }
   289     /** Report an error that wrong type tag was found.
   290      *  @param pos        Position to be used for error reporting.
   291      *  @param required   An internationalized string describing the type tag
   292      *                    required.
   293      *  @param found      The type that was found.
   294      */
   295     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   296         // this error used to be raised by the parser,
   297         // but has been delayed to this point:
   298         if (found instanceof Type && ((Type)found).tag == VOID) {
   299             log.error(pos, "illegal.start.of.type");
   300             return syms.errType;
   301         }
   302         log.error(pos, "type.found.req", found, required);
   303         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
   304     }
   306     /** Report an error that symbol cannot be referenced before super
   307      *  has been called.
   308      *  @param pos        Position to be used for error reporting.
   309      *  @param sym        The referenced symbol.
   310      */
   311     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   312         log.error(pos, "cant.ref.before.ctor.called", sym);
   313     }
   315     /** Report duplicate declaration error.
   316      */
   317     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   318         if (!sym.type.isErroneous()) {
   319             Symbol location = sym.location();
   320             if (location.kind == MTH &&
   321                     ((MethodSymbol)location).isStaticOrInstanceInit()) {
   322                 log.error(pos, "already.defined.in.clinit", kindName(sym), sym,
   323                         kindName(sym.location()), kindName(sym.location().enclClass()),
   324                         sym.location().enclClass());
   325             } else {
   326                 log.error(pos, "already.defined", kindName(sym), sym,
   327                         kindName(sym.location()), sym.location());
   328             }
   329         }
   330     }
   332     /** Report array/varargs duplicate declaration
   333      */
   334     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   335         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   336             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   337         }
   338     }
   340 /* ************************************************************************
   341  * duplicate declaration checking
   342  *************************************************************************/
   344     /** Check that variable does not hide variable with same name in
   345      *  immediately enclosing local scope.
   346      *  @param pos           Position for error reporting.
   347      *  @param v             The symbol.
   348      *  @param s             The scope.
   349      */
   350     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   351         if (s.next != null) {
   352             for (Scope.Entry e = s.next.lookup(v.name);
   353                  e.scope != null && e.sym.owner == v.owner;
   354                  e = e.next()) {
   355                 if (e.sym.kind == VAR &&
   356                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   357                     v.name != names.error) {
   358                     duplicateError(pos, e.sym);
   359                     return;
   360                 }
   361             }
   362         }
   363     }
   365     /** Check that a class or interface does not hide a class or
   366      *  interface with same name in immediately enclosing local scope.
   367      *  @param pos           Position for error reporting.
   368      *  @param c             The symbol.
   369      *  @param s             The scope.
   370      */
   371     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   372         if (s.next != null) {
   373             for (Scope.Entry e = s.next.lookup(c.name);
   374                  e.scope != null && e.sym.owner == c.owner;
   375                  e = e.next()) {
   376                 if (e.sym.kind == TYP && e.sym.type.tag != TYPEVAR &&
   377                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   378                     c.name != names.error) {
   379                     duplicateError(pos, e.sym);
   380                     return;
   381                 }
   382             }
   383         }
   384     }
   386     /** Check that class does not have the same name as one of
   387      *  its enclosing classes, or as a class defined in its enclosing scope.
   388      *  return true if class is unique in its enclosing scope.
   389      *  @param pos           Position for error reporting.
   390      *  @param name          The class name.
   391      *  @param s             The enclosing scope.
   392      */
   393     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   394         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   395             if (e.sym.kind == TYP && e.sym.name != names.error) {
   396                 duplicateError(pos, e.sym);
   397                 return false;
   398             }
   399         }
   400         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   401             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   402                 duplicateError(pos, sym);
   403                 return true;
   404             }
   405         }
   406         return true;
   407     }
   409 /* *************************************************************************
   410  * Class name generation
   411  **************************************************************************/
   413     /** Return name of local class.
   414      *  This is of the form    <enclClass> $ n <classname>
   415      *  where
   416      *    enclClass is the flat name of the enclosing class,
   417      *    classname is the simple name of the local class
   418      */
   419     Name localClassName(ClassSymbol c) {
   420         for (int i=1; ; i++) {
   421             Name flatname = names.
   422                 fromString("" + c.owner.enclClass().flatname +
   423                            syntheticNameChar + i +
   424                            c.name);
   425             if (compiled.get(flatname) == null) return flatname;
   426         }
   427     }
   429 /* *************************************************************************
   430  * Type Checking
   431  **************************************************************************/
   433     /** Check that a given type is assignable to a given proto-type.
   434      *  If it is, return the type, otherwise return errType.
   435      *  @param pos        Position to be used for error reporting.
   436      *  @param found      The type that was found.
   437      *  @param req        The type that was required.
   438      */
   439     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   440         return checkType(pos, found, req, "incompatible.types");
   441     }
   443     Type checkType(DiagnosticPosition pos, Type found, Type req, String errKey) {
   444         if (req.tag == ERROR)
   445             return req;
   446         if (found.tag == FORALL)
   447             return instantiatePoly(pos, (ForAll)found, req, convertWarner(pos, found, req));
   448         if (req.tag == NONE)
   449             return found;
   450         if (types.isAssignable(found, req, convertWarner(pos, found, req)))
   451             return found;
   452         if (found.tag <= DOUBLE && req.tag <= DOUBLE)
   453             return typeError(pos, diags.fragment("possible.loss.of.precision"), found, req);
   454         if (found.isSuperBound()) {
   455             log.error(pos, "assignment.from.super-bound", found);
   456             return types.createErrorType(found);
   457         }
   458         if (req.isExtendsBound()) {
   459             log.error(pos, "assignment.to.extends-bound", req);
   460             return types.createErrorType(found);
   461         }
   462         return typeError(pos, diags.fragment(errKey), found, req);
   463     }
   465     /** Instantiate polymorphic type to some prototype, unless
   466      *  prototype is `anyPoly' in which case polymorphic type
   467      *  is returned unchanged.
   468      */
   469     Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) throws Infer.NoInstanceException {
   470         if (pt == Infer.anyPoly && complexInference) {
   471             return t;
   472         } else if (pt == Infer.anyPoly || pt.tag == NONE) {
   473             Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType;
   474             return instantiatePoly(pos, t, newpt, warn);
   475         } else if (pt.tag == ERROR) {
   476             return pt;
   477         } else {
   478             try {
   479                 return infer.instantiateExpr(t, pt, warn);
   480             } catch (Infer.NoInstanceException ex) {
   481                 if (ex.isAmbiguous) {
   482                     JCDiagnostic d = ex.getDiagnostic();
   483                     log.error(pos,
   484                               "undetermined.type" + (d!=null ? ".1" : ""),
   485                               t, d);
   486                     return types.createErrorType(pt);
   487                 } else {
   488                     JCDiagnostic d = ex.getDiagnostic();
   489                     return typeError(pos,
   490                                      diags.fragment("incompatible.types" + (d!=null ? ".1" : ""), d),
   491                                      t, pt);
   492                 }
   493             } catch (Infer.InvalidInstanceException ex) {
   494                 JCDiagnostic d = ex.getDiagnostic();
   495                 log.error(pos, "invalid.inferred.types", t.tvars, d);
   496                 return types.createErrorType(pt);
   497             }
   498         }
   499     }
   501     /** Check that a given type can be cast to a given target type.
   502      *  Return the result of the cast.
   503      *  @param pos        Position to be used for error reporting.
   504      *  @param found      The type that is being cast.
   505      *  @param req        The target type of the cast.
   506      */
   507     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   508         if (found.tag == FORALL) {
   509             instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req));
   510             return req;
   511         } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
   512             return req;
   513         } else {
   514             return typeError(pos,
   515                              diags.fragment("inconvertible.types"),
   516                              found, req);
   517         }
   518     }
   519 //where
   520         /** Is type a type variable, or a (possibly multi-dimensional) array of
   521          *  type variables?
   522          */
   523         boolean isTypeVar(Type t) {
   524             return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
   525         }
   527     /** Check that a type is within some bounds.
   528      *
   529      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   530      *  type argument.
   531      *  @param pos           Position to be used for error reporting.
   532      *  @param a             The type that should be bounded by bs.
   533      *  @param bs            The bound.
   534      */
   535     private boolean checkExtends(Type a, Type bound) {
   536          if (a.isUnbound()) {
   537              return true;
   538          } else if (a.tag != WILDCARD) {
   539              a = types.upperBound(a);
   540              return types.isSubtype(a, bound);
   541          } else if (a.isExtendsBound()) {
   542              return types.isCastable(bound, types.upperBound(a), Warner.noWarnings);
   543          } else if (a.isSuperBound()) {
   544              return !types.notSoftSubtype(types.lowerBound(a), bound);
   545          }
   546          return true;
   547      }
   549     /** Check that type is different from 'void'.
   550      *  @param pos           Position to be used for error reporting.
   551      *  @param t             The type to be checked.
   552      */
   553     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   554         if (t.tag == VOID) {
   555             log.error(pos, "void.not.allowed.here");
   556             return types.createErrorType(t);
   557         } else {
   558             return t;
   559         }
   560     }
   562     /** Check that type is a class or interface type.
   563      *  @param pos           Position to be used for error reporting.
   564      *  @param t             The type to be checked.
   565      */
   566     Type checkClassType(DiagnosticPosition pos, Type t) {
   567         if (t.tag != CLASS && t.tag != ERROR)
   568             return typeTagError(pos,
   569                                 diags.fragment("type.req.class"),
   570                                 (t.tag == TYPEVAR)
   571                                 ? diags.fragment("type.parameter", t)
   572                                 : t);
   573         else
   574             return t;
   575     }
   577     /** Check that type is a class or interface type.
   578      *  @param pos           Position to be used for error reporting.
   579      *  @param t             The type to be checked.
   580      *  @param noBounds    True if type bounds are illegal here.
   581      */
   582     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   583         t = checkClassType(pos, t);
   584         if (noBounds && t.isParameterized()) {
   585             List<Type> args = t.getTypeArguments();
   586             while (args.nonEmpty()) {
   587                 if (args.head.tag == WILDCARD)
   588                     return typeTagError(pos,
   589                                         diags.fragment("type.req.exact"),
   590                                         args.head);
   591                 args = args.tail;
   592             }
   593         }
   594         return t;
   595     }
   597     /** Check that type is a reifiable class, interface or array type.
   598      *  @param pos           Position to be used for error reporting.
   599      *  @param t             The type to be checked.
   600      */
   601     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
   602         if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
   603             return typeTagError(pos,
   604                                 diags.fragment("type.req.class.array"),
   605                                 t);
   606         } else if (!types.isReifiable(t)) {
   607             log.error(pos, "illegal.generic.type.for.instof");
   608             return types.createErrorType(t);
   609         } else {
   610             return t;
   611         }
   612     }
   614     /** Check that type is a reference type, i.e. a class, interface or array type
   615      *  or a type variable.
   616      *  @param pos           Position to be used for error reporting.
   617      *  @param t             The type to be checked.
   618      */
   619     Type checkRefType(DiagnosticPosition pos, Type t) {
   620         switch (t.tag) {
   621         case CLASS:
   622         case ARRAY:
   623         case TYPEVAR:
   624         case WILDCARD:
   625         case ERROR:
   626             return t;
   627         default:
   628             return typeTagError(pos,
   629                                 diags.fragment("type.req.ref"),
   630                                 t);
   631         }
   632     }
   634     /** Check that each type is a reference type, i.e. a class, interface or array type
   635      *  or a type variable.
   636      *  @param trees         Original trees, used for error reporting.
   637      *  @param types         The types to be checked.
   638      */
   639     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
   640         List<JCExpression> tl = trees;
   641         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
   642             l.head = checkRefType(tl.head.pos(), l.head);
   643             tl = tl.tail;
   644         }
   645         return types;
   646     }
   648     /** Check that type is a null or reference type.
   649      *  @param pos           Position to be used for error reporting.
   650      *  @param t             The type to be checked.
   651      */
   652     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   653         switch (t.tag) {
   654         case CLASS:
   655         case ARRAY:
   656         case TYPEVAR:
   657         case WILDCARD:
   658         case BOT:
   659         case ERROR:
   660             return t;
   661         default:
   662             return typeTagError(pos,
   663                                 diags.fragment("type.req.ref"),
   664                                 t);
   665         }
   666     }
   668     /** Check that flag set does not contain elements of two conflicting sets. s
   669      *  Return true if it doesn't.
   670      *  @param pos           Position to be used for error reporting.
   671      *  @param flags         The set of flags to be checked.
   672      *  @param set1          Conflicting flags set #1.
   673      *  @param set2          Conflicting flags set #2.
   674      */
   675     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   676         if ((flags & set1) != 0 && (flags & set2) != 0) {
   677             log.error(pos,
   678                       "illegal.combination.of.modifiers",
   679                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
   680                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
   681             return false;
   682         } else
   683             return true;
   684     }
   686     /** Check that usage of diamond operator is correct (i.e. diamond should not
   687      * be used with non-generic classes or in anonymous class creation expressions)
   688      */
   689     Type checkDiamond(JCNewClass tree, Type t) {
   690         if (!TreeInfo.isDiamond(tree) ||
   691                 t.isErroneous()) {
   692             return checkClassType(tree.clazz.pos(), t, true);
   693         } else if (tree.def != null) {
   694             log.error(tree.clazz.pos(),
   695                     "cant.apply.diamond.1",
   696                     t, diags.fragment("diamond.and.anon.class", t));
   697             return types.createErrorType(t);
   698         } else if (t.tsym.type.getTypeArguments().isEmpty()) {
   699             log.error(tree.clazz.pos(),
   700                 "cant.apply.diamond.1",
   701                 t, diags.fragment("diamond.non.generic", t));
   702             return types.createErrorType(t);
   703         } else if (tree.typeargs != null &&
   704                 tree.typeargs.nonEmpty()) {
   705             log.error(tree.clazz.pos(),
   706                 "cant.apply.diamond.1",
   707                 t, diags.fragment("diamond.and.explicit.params", t));
   708             return types.createErrorType(t);
   709         } else {
   710             return t;
   711         }
   712     }
   714     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
   715         MethodSymbol m = tree.sym;
   716         if (!allowSimplifiedVarargs) return;
   717         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
   718         Type varargElemType = null;
   719         if (m.isVarArgs()) {
   720             varargElemType = types.elemtype(tree.params.last().type);
   721         }
   722         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
   723             if (varargElemType != null) {
   724                 log.error(tree,
   725                         "varargs.invalid.trustme.anno",
   726                         syms.trustMeType.tsym,
   727                         diags.fragment("varargs.trustme.on.virtual.varargs", m));
   728             } else {
   729                 log.error(tree,
   730                             "varargs.invalid.trustme.anno",
   731                             syms.trustMeType.tsym,
   732                             diags.fragment("varargs.trustme.on.non.varargs.meth", m));
   733             }
   734         } else if (hasTrustMeAnno && varargElemType != null &&
   735                             types.isReifiable(varargElemType)) {
   736             warnUnsafeVararg(tree,
   737                             "varargs.redundant.trustme.anno",
   738                             syms.trustMeType.tsym,
   739                             diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
   740         }
   741         else if (!hasTrustMeAnno && varargElemType != null &&
   742                 !types.isReifiable(varargElemType)) {
   743             warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
   744         }
   745     }
   746     //where
   747         private boolean isTrustMeAllowedOnMethod(Symbol s) {
   748             return (s.flags() & VARARGS) != 0 &&
   749                 (s.isConstructor() ||
   750                     (s.flags() & (STATIC | FINAL)) != 0);
   751         }
   753     Type checkMethod(Type owntype,
   754                             Symbol sym,
   755                             Env<AttrContext> env,
   756                             final List<JCExpression> argtrees,
   757                             List<Type> argtypes,
   758                             boolean useVarargs,
   759                             boolean unchecked) {
   760         // System.out.println("call   : " + env.tree);
   761         // System.out.println("method : " + owntype);
   762         // System.out.println("actuals: " + argtypes);
   763         List<Type> formals = owntype.getParameterTypes();
   764         Type last = useVarargs ? formals.last() : null;
   765         if (sym.name==names.init &&
   766                 sym.owner == syms.enumSym)
   767                 formals = formals.tail.tail;
   768         List<JCExpression> args = argtrees;
   769         while (formals.head != last) {
   770             JCTree arg = args.head;
   771             Warner warn = convertWarner(arg.pos(), arg.type, formals.head);
   772             assertConvertible(arg, arg.type, formals.head, warn);
   773             args = args.tail;
   774             formals = formals.tail;
   775         }
   776         if (useVarargs) {
   777             Type varArg = types.elemtype(last);
   778             while (args.tail != null) {
   779                 JCTree arg = args.head;
   780                 Warner warn = convertWarner(arg.pos(), arg.type, varArg);
   781                 assertConvertible(arg, arg.type, varArg, warn);
   782                 args = args.tail;
   783             }
   784         } else if ((sym.flags() & VARARGS) != 0 && allowVarargs) {
   785             // non-varargs call to varargs method
   786             Type varParam = owntype.getParameterTypes().last();
   787             Type lastArg = argtypes.last();
   788             if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
   789                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
   790                 log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
   791                         types.elemtype(varParam), varParam);
   792         }
   793         if (unchecked) {
   794             warnUnchecked(env.tree.pos(),
   795                     "unchecked.meth.invocation.applied",
   796                     kindName(sym),
   797                     sym.name,
   798                     rs.methodArguments(sym.type.getParameterTypes()),
   799                     rs.methodArguments(argtypes),
   800                     kindName(sym.location()),
   801                     sym.location());
   802            owntype = new MethodType(owntype.getParameterTypes(),
   803                    types.erasure(owntype.getReturnType()),
   804                    types.erasure(owntype.getThrownTypes()),
   805                    syms.methodClass);
   806         }
   807         if (useVarargs) {
   808             JCTree tree = env.tree;
   809             Type argtype = owntype.getParameterTypes().last();
   810             if (!types.isReifiable(argtype) &&
   811                     (!allowSimplifiedVarargs ||
   812                     sym.attribute(syms.trustMeType.tsym) == null ||
   813                     !isTrustMeAllowedOnMethod(sym))) {
   814                 warnUnchecked(env.tree.pos(),
   815                                   "unchecked.generic.array.creation",
   816                                   argtype);
   817             }
   818             Type elemtype = types.elemtype(argtype);
   819             switch (tree.getTag()) {
   820                 case APPLY:
   821                     ((JCMethodInvocation) tree).varargsElement = elemtype;
   822                     break;
   823                 case NEWCLASS:
   824                     ((JCNewClass) tree).varargsElement = elemtype;
   825                     break;
   826                 default:
   827                     throw new AssertionError(""+tree);
   828             }
   829          }
   830          return owntype;
   831     }
   832     //where
   833         private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
   834             if (types.isConvertible(actual, formal, warn))
   835                 return;
   837             if (formal.isCompound()
   838                 && types.isSubtype(actual, types.supertype(formal))
   839                 && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
   840                 return;
   842             if (false) {
   843                 // TODO: make assertConvertible work
   844                 typeError(tree.pos(), diags.fragment("incompatible.types"), actual, formal);
   845                 throw new AssertionError("Tree: " + tree
   846                                          + " actual:" + actual
   847                                          + " formal: " + formal);
   848             }
   849         }
   851     /**
   852      * Check that type 't' is a valid instantiation of a generic class
   853      * (see JLS 4.5)
   854      *
   855      * @param t class type to be checked
   856      * @return true if 't' is well-formed
   857      */
   858     public boolean checkValidGenericType(Type t) {
   859         return firstIncompatibleTypeArg(t) == null;
   860     }
   861     //WHERE
   862         private Type firstIncompatibleTypeArg(Type type) {
   863             List<Type> formals = type.tsym.type.allparams();
   864             List<Type> actuals = type.allparams();
   865             List<Type> args = type.getTypeArguments();
   866             List<Type> forms = type.tsym.type.getTypeArguments();
   867             ListBuffer<Type> bounds_buf = new ListBuffer<Type>();
   869             // For matching pairs of actual argument types `a' and
   870             // formal type parameters with declared bound `b' ...
   871             while (args.nonEmpty() && forms.nonEmpty()) {
   872                 // exact type arguments needs to know their
   873                 // bounds (for upper and lower bound
   874                 // calculations).  So we create new bounds where
   875                 // type-parameters are replaced with actuals argument types.
   876                 bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
   877                 args = args.tail;
   878                 forms = forms.tail;
   879             }
   881             args = type.getTypeArguments();
   882             List<Type> tvars_cap = types.substBounds(formals,
   883                                       formals,
   884                                       types.capture(type).allparams());
   885             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
   886                 // Let the actual arguments know their bound
   887                 args.head.withTypeVar((TypeVar)tvars_cap.head);
   888                 args = args.tail;
   889                 tvars_cap = tvars_cap.tail;
   890             }
   892             args = type.getTypeArguments();
   893             List<Type> bounds = bounds_buf.toList();
   895             while (args.nonEmpty() && bounds.nonEmpty()) {
   896                 Type actual = args.head;
   897                 if (!isTypeArgErroneous(actual) &&
   898                         !bounds.head.isErroneous() &&
   899                         !checkExtends(actual, bounds.head)) {
   900                     return args.head;
   901                 }
   902                 args = args.tail;
   903                 bounds = bounds.tail;
   904             }
   906             args = type.getTypeArguments();
   907             bounds = bounds_buf.toList();
   909             for (Type arg : types.capture(type).getTypeArguments()) {
   910                 if (arg.tag == TYPEVAR &&
   911                         arg.getUpperBound().isErroneous() &&
   912                         !bounds.head.isErroneous() &&
   913                         !isTypeArgErroneous(args.head)) {
   914                     return args.head;
   915                 }
   916                 bounds = bounds.tail;
   917                 args = args.tail;
   918             }
   920             return null;
   921         }
   922         //where
   923         boolean isTypeArgErroneous(Type t) {
   924             return isTypeArgErroneous.visit(t);
   925         }
   927         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
   928             public Boolean visitType(Type t, Void s) {
   929                 return t.isErroneous();
   930             }
   931             @Override
   932             public Boolean visitTypeVar(TypeVar t, Void s) {
   933                 return visit(t.getUpperBound());
   934             }
   935             @Override
   936             public Boolean visitCapturedType(CapturedType t, Void s) {
   937                 return visit(t.getUpperBound()) ||
   938                         visit(t.getLowerBound());
   939             }
   940             @Override
   941             public Boolean visitWildcardType(WildcardType t, Void s) {
   942                 return visit(t.type);
   943             }
   944         };
   946     /** Check that given modifiers are legal for given symbol and
   947      *  return modifiers together with any implicit modififiers for that symbol.
   948      *  Warning: we can't use flags() here since this method
   949      *  is called during class enter, when flags() would cause a premature
   950      *  completion.
   951      *  @param pos           Position to be used for error reporting.
   952      *  @param flags         The set of modifiers given in a definition.
   953      *  @param sym           The defined symbol.
   954      */
   955     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
   956         long mask;
   957         long implicit = 0;
   958         switch (sym.kind) {
   959         case VAR:
   960             if (sym.owner.kind != TYP)
   961                 mask = LocalVarFlags;
   962             else if ((sym.owner.flags_field & INTERFACE) != 0)
   963                 mask = implicit = InterfaceVarFlags;
   964             else
   965                 mask = VarFlags;
   966             break;
   967         case MTH:
   968             if (sym.name == names.init) {
   969                 if ((sym.owner.flags_field & ENUM) != 0) {
   970                     // enum constructors cannot be declared public or
   971                     // protected and must be implicitly or explicitly
   972                     // private
   973                     implicit = PRIVATE;
   974                     mask = PRIVATE;
   975                 } else
   976                     mask = ConstructorFlags;
   977             }  else if ((sym.owner.flags_field & INTERFACE) != 0)
   978                 mask = implicit = InterfaceMethodFlags;
   979             else {
   980                 mask = MethodFlags;
   981             }
   982             // Imply STRICTFP if owner has STRICTFP set.
   983             if (((flags|implicit) & Flags.ABSTRACT) == 0)
   984               implicit |= sym.owner.flags_field & STRICTFP;
   985             break;
   986         case TYP:
   987             if (sym.isLocal()) {
   988                 mask = LocalClassFlags;
   989                 if (sym.name.isEmpty()) { // Anonymous class
   990                     // Anonymous classes in static methods are themselves static;
   991                     // that's why we admit STATIC here.
   992                     mask |= STATIC;
   993                     // JLS: Anonymous classes are final.
   994                     implicit |= FINAL;
   995                 }
   996                 if ((sym.owner.flags_field & STATIC) == 0 &&
   997                     (flags & ENUM) != 0)
   998                     log.error(pos, "enums.must.be.static");
   999             } else if (sym.owner.kind == TYP) {
  1000                 mask = MemberClassFlags;
  1001                 if (sym.owner.owner.kind == PCK ||
  1002                     (sym.owner.flags_field & STATIC) != 0)
  1003                     mask |= STATIC;
  1004                 else if ((flags & ENUM) != 0)
  1005                     log.error(pos, "enums.must.be.static");
  1006                 // Nested interfaces and enums are always STATIC (Spec ???)
  1007                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
  1008             } else {
  1009                 mask = ClassFlags;
  1011             // Interfaces are always ABSTRACT
  1012             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
  1014             if ((flags & ENUM) != 0) {
  1015                 // enums can't be declared abstract or final
  1016                 mask &= ~(ABSTRACT | FINAL);
  1017                 implicit |= implicitEnumFinalFlag(tree);
  1019             // Imply STRICTFP if owner has STRICTFP set.
  1020             implicit |= sym.owner.flags_field & STRICTFP;
  1021             break;
  1022         default:
  1023             throw new AssertionError();
  1025         long illegal = flags & StandardFlags & ~mask;
  1026         if (illegal != 0) {
  1027             if ((illegal & INTERFACE) != 0) {
  1028                 log.error(pos, "intf.not.allowed.here");
  1029                 mask |= INTERFACE;
  1031             else {
  1032                 log.error(pos,
  1033                           "mod.not.allowed.here", asFlagSet(illegal));
  1036         else if ((sym.kind == TYP ||
  1037                   // ISSUE: Disallowing abstract&private is no longer appropriate
  1038                   // in the presence of inner classes. Should it be deleted here?
  1039                   checkDisjoint(pos, flags,
  1040                                 ABSTRACT,
  1041                                 PRIVATE | STATIC))
  1042                  &&
  1043                  checkDisjoint(pos, flags,
  1044                                ABSTRACT | INTERFACE,
  1045                                FINAL | NATIVE | SYNCHRONIZED)
  1046                  &&
  1047                  checkDisjoint(pos, flags,
  1048                                PUBLIC,
  1049                                PRIVATE | PROTECTED)
  1050                  &&
  1051                  checkDisjoint(pos, flags,
  1052                                PRIVATE,
  1053                                PUBLIC | PROTECTED)
  1054                  &&
  1055                  checkDisjoint(pos, flags,
  1056                                FINAL,
  1057                                VOLATILE)
  1058                  &&
  1059                  (sym.kind == TYP ||
  1060                   checkDisjoint(pos, flags,
  1061                                 ABSTRACT | NATIVE,
  1062                                 STRICTFP))) {
  1063             // skip
  1065         return flags & (mask | ~StandardFlags) | implicit;
  1069     /** Determine if this enum should be implicitly final.
  1071      *  If the enum has no specialized enum contants, it is final.
  1073      *  If the enum does have specialized enum contants, it is
  1074      *  <i>not</i> final.
  1075      */
  1076     private long implicitEnumFinalFlag(JCTree tree) {
  1077         if (!tree.hasTag(CLASSDEF)) return 0;
  1078         class SpecialTreeVisitor extends JCTree.Visitor {
  1079             boolean specialized;
  1080             SpecialTreeVisitor() {
  1081                 this.specialized = false;
  1082             };
  1084             @Override
  1085             public void visitTree(JCTree tree) { /* no-op */ }
  1087             @Override
  1088             public void visitVarDef(JCVariableDecl tree) {
  1089                 if ((tree.mods.flags & ENUM) != 0) {
  1090                     if (tree.init instanceof JCNewClass &&
  1091                         ((JCNewClass) tree.init).def != null) {
  1092                         specialized = true;
  1098         SpecialTreeVisitor sts = new SpecialTreeVisitor();
  1099         JCClassDecl cdef = (JCClassDecl) tree;
  1100         for (JCTree defs: cdef.defs) {
  1101             defs.accept(sts);
  1102             if (sts.specialized) return 0;
  1104         return FINAL;
  1107 /* *************************************************************************
  1108  * Type Validation
  1109  **************************************************************************/
  1111     /** Validate a type expression. That is,
  1112      *  check that all type arguments of a parametric type are within
  1113      *  their bounds. This must be done in a second phase after type attributon
  1114      *  since a class might have a subclass as type parameter bound. E.g:
  1116      *  class B<A extends C> { ... }
  1117      *  class C extends B<C> { ... }
  1119      *  and we can't make sure that the bound is already attributed because
  1120      *  of possible cycles.
  1122      * Visitor method: Validate a type expression, if it is not null, catching
  1123      *  and reporting any completion failures.
  1124      */
  1125     void validate(JCTree tree, Env<AttrContext> env) {
  1126         validate(tree, env, true);
  1128     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
  1129         new Validator(env).validateTree(tree, checkRaw, true);
  1132     /** Visitor method: Validate a list of type expressions.
  1133      */
  1134     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
  1135         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1136             validate(l.head, env);
  1139     /** A visitor class for type validation.
  1140      */
  1141     class Validator extends JCTree.Visitor {
  1143         boolean isOuter;
  1144         Env<AttrContext> env;
  1146         Validator(Env<AttrContext> env) {
  1147             this.env = env;
  1150         @Override
  1151         public void visitTypeArray(JCArrayTypeTree tree) {
  1152             tree.elemtype.accept(this);
  1155         @Override
  1156         public void visitTypeApply(JCTypeApply tree) {
  1157             if (tree.type.tag == CLASS) {
  1158                 List<JCExpression> args = tree.arguments;
  1159                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
  1161                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
  1162                 if (incompatibleArg != null) {
  1163                     for (JCTree arg : tree.arguments) {
  1164                         if (arg.type == incompatibleArg) {
  1165                             log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
  1167                         forms = forms.tail;
  1171                 forms = tree.type.tsym.type.getTypeArguments();
  1173                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
  1175                 // For matching pairs of actual argument types `a' and
  1176                 // formal type parameters with declared bound `b' ...
  1177                 while (args.nonEmpty() && forms.nonEmpty()) {
  1178                     validateTree(args.head,
  1179                             !(isOuter && is_java_lang_Class),
  1180                             false);
  1181                     args = args.tail;
  1182                     forms = forms.tail;
  1185                 // Check that this type is either fully parameterized, or
  1186                 // not parameterized at all.
  1187                 if (tree.type.getEnclosingType().isRaw())
  1188                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
  1189                 if (tree.clazz.hasTag(SELECT))
  1190                     visitSelectInternal((JCFieldAccess)tree.clazz);
  1194         @Override
  1195         public void visitTypeParameter(JCTypeParameter tree) {
  1196             validateTrees(tree.bounds, true, isOuter);
  1197             checkClassBounds(tree.pos(), tree.type);
  1200         @Override
  1201         public void visitWildcard(JCWildcard tree) {
  1202             if (tree.inner != null)
  1203                 validateTree(tree.inner, true, isOuter);
  1206         @Override
  1207         public void visitSelect(JCFieldAccess tree) {
  1208             if (tree.type.tag == CLASS) {
  1209                 visitSelectInternal(tree);
  1211                 // Check that this type is either fully parameterized, or
  1212                 // not parameterized at all.
  1213                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
  1214                     log.error(tree.pos(), "improperly.formed.type.param.missing");
  1218         public void visitSelectInternal(JCFieldAccess tree) {
  1219             if (tree.type.tsym.isStatic() &&
  1220                 tree.selected.type.isParameterized()) {
  1221                 // The enclosing type is not a class, so we are
  1222                 // looking at a static member type.  However, the
  1223                 // qualifying expression is parameterized.
  1224                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
  1225             } else {
  1226                 // otherwise validate the rest of the expression
  1227                 tree.selected.accept(this);
  1231         /** Default visitor method: do nothing.
  1232          */
  1233         @Override
  1234         public void visitTree(JCTree tree) {
  1237         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
  1238             try {
  1239                 if (tree != null) {
  1240                     this.isOuter = isOuter;
  1241                     tree.accept(this);
  1242                     if (checkRaw)
  1243                         checkRaw(tree, env);
  1245             } catch (CompletionFailure ex) {
  1246                 completionError(tree.pos(), ex);
  1250         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
  1251             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1252                 validateTree(l.head, checkRaw, isOuter);
  1255         void checkRaw(JCTree tree, Env<AttrContext> env) {
  1256             if (lint.isEnabled(LintCategory.RAW) &&
  1257                 tree.type.tag == CLASS &&
  1258                 !TreeInfo.isDiamond(tree) &&
  1259                 !withinAnonConstr(env) &&
  1260                 tree.type.isRaw()) {
  1261                 log.warning(LintCategory.RAW,
  1262                         tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
  1266         boolean withinAnonConstr(Env<AttrContext> env) {
  1267             return env.enclClass.name.isEmpty() &&
  1268                     env.enclMethod != null && env.enclMethod.name == names.init;
  1272 /* *************************************************************************
  1273  * Exception checking
  1274  **************************************************************************/
  1276     /* The following methods treat classes as sets that contain
  1277      * the class itself and all their subclasses
  1278      */
  1280     /** Is given type a subtype of some of the types in given list?
  1281      */
  1282     boolean subset(Type t, List<Type> ts) {
  1283         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1284             if (types.isSubtype(t, l.head)) return true;
  1285         return false;
  1288     /** Is given type a subtype or supertype of
  1289      *  some of the types in given list?
  1290      */
  1291     boolean intersects(Type t, List<Type> ts) {
  1292         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1293             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
  1294         return false;
  1297     /** Add type set to given type list, unless it is a subclass of some class
  1298      *  in the list.
  1299      */
  1300     List<Type> incl(Type t, List<Type> ts) {
  1301         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
  1304     /** Remove type set from type set list.
  1305      */
  1306     List<Type> excl(Type t, List<Type> ts) {
  1307         if (ts.isEmpty()) {
  1308             return ts;
  1309         } else {
  1310             List<Type> ts1 = excl(t, ts.tail);
  1311             if (types.isSubtype(ts.head, t)) return ts1;
  1312             else if (ts1 == ts.tail) return ts;
  1313             else return ts1.prepend(ts.head);
  1317     /** Form the union of two type set lists.
  1318      */
  1319     List<Type> union(List<Type> ts1, List<Type> ts2) {
  1320         List<Type> ts = ts1;
  1321         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1322             ts = incl(l.head, ts);
  1323         return ts;
  1326     /** Form the difference of two type lists.
  1327      */
  1328     List<Type> diff(List<Type> ts1, List<Type> ts2) {
  1329         List<Type> ts = ts1;
  1330         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1331             ts = excl(l.head, ts);
  1332         return ts;
  1335     /** Form the intersection of two type lists.
  1336      */
  1337     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
  1338         List<Type> ts = List.nil();
  1339         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
  1340             if (subset(l.head, ts2)) ts = incl(l.head, ts);
  1341         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1342             if (subset(l.head, ts1)) ts = incl(l.head, ts);
  1343         return ts;
  1346     /** Is exc an exception symbol that need not be declared?
  1347      */
  1348     boolean isUnchecked(ClassSymbol exc) {
  1349         return
  1350             exc.kind == ERR ||
  1351             exc.isSubClass(syms.errorType.tsym, types) ||
  1352             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
  1355     /** Is exc an exception type that need not be declared?
  1356      */
  1357     boolean isUnchecked(Type exc) {
  1358         return
  1359             (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
  1360             (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
  1361             exc.tag == BOT;
  1364     /** Same, but handling completion failures.
  1365      */
  1366     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
  1367         try {
  1368             return isUnchecked(exc);
  1369         } catch (CompletionFailure ex) {
  1370             completionError(pos, ex);
  1371             return true;
  1375     /** Is exc handled by given exception list?
  1376      */
  1377     boolean isHandled(Type exc, List<Type> handled) {
  1378         return isUnchecked(exc) || subset(exc, handled);
  1381     /** Return all exceptions in thrown list that are not in handled list.
  1382      *  @param thrown     The list of thrown exceptions.
  1383      *  @param handled    The list of handled exceptions.
  1384      */
  1385     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
  1386         List<Type> unhandled = List.nil();
  1387         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
  1388             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
  1389         return unhandled;
  1392 /* *************************************************************************
  1393  * Overriding/Implementation checking
  1394  **************************************************************************/
  1396     /** The level of access protection given by a flag set,
  1397      *  where PRIVATE is highest and PUBLIC is lowest.
  1398      */
  1399     static int protection(long flags) {
  1400         switch ((short)(flags & AccessFlags)) {
  1401         case PRIVATE: return 3;
  1402         case PROTECTED: return 1;
  1403         default:
  1404         case PUBLIC: return 0;
  1405         case 0: return 2;
  1409     /** A customized "cannot override" error message.
  1410      *  @param m      The overriding method.
  1411      *  @param other  The overridden method.
  1412      *  @return       An internationalized string.
  1413      */
  1414     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1415         String key;
  1416         if ((other.owner.flags() & INTERFACE) == 0)
  1417             key = "cant.override";
  1418         else if ((m.owner.flags() & INTERFACE) == 0)
  1419             key = "cant.implement";
  1420         else
  1421             key = "clashes.with";
  1422         return diags.fragment(key, m, m.location(), other, other.location());
  1425     /** A customized "override" warning message.
  1426      *  @param m      The overriding method.
  1427      *  @param other  The overridden method.
  1428      *  @return       An internationalized string.
  1429      */
  1430     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1431         String key;
  1432         if ((other.owner.flags() & INTERFACE) == 0)
  1433             key = "unchecked.override";
  1434         else if ((m.owner.flags() & INTERFACE) == 0)
  1435             key = "unchecked.implement";
  1436         else
  1437             key = "unchecked.clash.with";
  1438         return diags.fragment(key, m, m.location(), other, other.location());
  1441     /** A customized "override" warning message.
  1442      *  @param m      The overriding method.
  1443      *  @param other  The overridden method.
  1444      *  @return       An internationalized string.
  1445      */
  1446     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1447         String key;
  1448         if ((other.owner.flags() & INTERFACE) == 0)
  1449             key = "varargs.override";
  1450         else  if ((m.owner.flags() & INTERFACE) == 0)
  1451             key = "varargs.implement";
  1452         else
  1453             key = "varargs.clash.with";
  1454         return diags.fragment(key, m, m.location(), other, other.location());
  1457     /** Check that this method conforms with overridden method 'other'.
  1458      *  where `origin' is the class where checking started.
  1459      *  Complications:
  1460      *  (1) Do not check overriding of synthetic methods
  1461      *      (reason: they might be final).
  1462      *      todo: check whether this is still necessary.
  1463      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1464      *      than the method it implements. Augment the proxy methods with the
  1465      *      undeclared exceptions in this case.
  1466      *  (3) When generics are enabled, admit the case where an interface proxy
  1467      *      has a result type
  1468      *      extended by the result type of the method it implements.
  1469      *      Change the proxies result type to the smaller type in this case.
  1471      *  @param tree         The tree from which positions
  1472      *                      are extracted for errors.
  1473      *  @param m            The overriding method.
  1474      *  @param other        The overridden method.
  1475      *  @param origin       The class of which the overriding method
  1476      *                      is a member.
  1477      */
  1478     void checkOverride(JCTree tree,
  1479                        MethodSymbol m,
  1480                        MethodSymbol other,
  1481                        ClassSymbol origin) {
  1482         // Don't check overriding of synthetic methods or by bridge methods.
  1483         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1484             return;
  1487         // Error if static method overrides instance method (JLS 8.4.6.2).
  1488         if ((m.flags() & STATIC) != 0 &&
  1489                    (other.flags() & STATIC) == 0) {
  1490             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1491                       cannotOverride(m, other));
  1492             return;
  1495         // Error if instance method overrides static or final
  1496         // method (JLS 8.4.6.1).
  1497         if ((other.flags() & FINAL) != 0 ||
  1498                  (m.flags() & STATIC) == 0 &&
  1499                  (other.flags() & STATIC) != 0) {
  1500             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1501                       cannotOverride(m, other),
  1502                       asFlagSet(other.flags() & (FINAL | STATIC)));
  1503             return;
  1506         if ((m.owner.flags() & ANNOTATION) != 0) {
  1507             // handled in validateAnnotationMethod
  1508             return;
  1511         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1512         if ((origin.flags() & INTERFACE) == 0 &&
  1513                  protection(m.flags()) > protection(other.flags())) {
  1514             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1515                       cannotOverride(m, other),
  1516                       other.flags() == 0 ?
  1517                           Flag.PACKAGE :
  1518                           asFlagSet(other.flags() & AccessFlags));
  1519             return;
  1522         Type mt = types.memberType(origin.type, m);
  1523         Type ot = types.memberType(origin.type, other);
  1524         // Error if overriding result type is different
  1525         // (or, in the case of generics mode, not a subtype) of
  1526         // overridden result type. We have to rename any type parameters
  1527         // before comparing types.
  1528         List<Type> mtvars = mt.getTypeArguments();
  1529         List<Type> otvars = ot.getTypeArguments();
  1530         Type mtres = mt.getReturnType();
  1531         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1533         overrideWarner.clear();
  1534         boolean resultTypesOK =
  1535             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1536         if (!resultTypesOK) {
  1537             if (!allowCovariantReturns &&
  1538                 m.owner != origin &&
  1539                 m.owner.isSubClass(other.owner, types)) {
  1540                 // allow limited interoperability with covariant returns
  1541             } else {
  1542                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1543                           "override.incompatible.ret",
  1544                           cannotOverride(m, other),
  1545                           mtres, otres);
  1546                 return;
  1548         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
  1549             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1550                     "override.unchecked.ret",
  1551                     uncheckedOverrides(m, other),
  1552                     mtres, otres);
  1555         // Error if overriding method throws an exception not reported
  1556         // by overridden method.
  1557         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1558         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
  1559         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
  1560         if (unhandledErased.nonEmpty()) {
  1561             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1562                       "override.meth.doesnt.throw",
  1563                       cannotOverride(m, other),
  1564                       unhandledUnerased.head);
  1565             return;
  1567         else if (unhandledUnerased.nonEmpty()) {
  1568             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1569                           "override.unchecked.thrown",
  1570                          cannotOverride(m, other),
  1571                          unhandledUnerased.head);
  1572             return;
  1575         // Optional warning if varargs don't agree
  1576         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1577             && lint.isEnabled(LintCategory.OVERRIDES)) {
  1578             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1579                         ((m.flags() & Flags.VARARGS) != 0)
  1580                         ? "override.varargs.missing"
  1581                         : "override.varargs.extra",
  1582                         varargsOverrides(m, other));
  1585         // Warn if instance method overrides bridge method (compiler spec ??)
  1586         if ((other.flags() & BRIDGE) != 0) {
  1587             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1588                         uncheckedOverrides(m, other));
  1591         // Warn if a deprecated method overridden by a non-deprecated one.
  1592         if (!isDeprecatedOverrideIgnorable(other, origin)) {
  1593             checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
  1596     // where
  1597         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1598             // If the method, m, is defined in an interface, then ignore the issue if the method
  1599             // is only inherited via a supertype and also implemented in the supertype,
  1600             // because in that case, we will rediscover the issue when examining the method
  1601             // in the supertype.
  1602             // If the method, m, is not defined in an interface, then the only time we need to
  1603             // address the issue is when the method is the supertype implemementation: any other
  1604             // case, we will have dealt with when examining the supertype classes
  1605             ClassSymbol mc = m.enclClass();
  1606             Type st = types.supertype(origin.type);
  1607             if (st.tag != CLASS)
  1608                 return true;
  1609             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1611             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1612                 List<Type> intfs = types.interfaces(origin.type);
  1613                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1615             else
  1616                 return (stimpl != m);
  1620     // used to check if there were any unchecked conversions
  1621     Warner overrideWarner = new Warner();
  1623     /** Check that a class does not inherit two concrete methods
  1624      *  with the same signature.
  1625      *  @param pos          Position to be used for error reporting.
  1626      *  @param site         The class type to be checked.
  1627      */
  1628     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1629         Type sup = types.supertype(site);
  1630         if (sup.tag != CLASS) return;
  1632         for (Type t1 = sup;
  1633              t1.tsym.type.isParameterized();
  1634              t1 = types.supertype(t1)) {
  1635             for (Scope.Entry e1 = t1.tsym.members().elems;
  1636                  e1 != null;
  1637                  e1 = e1.sibling) {
  1638                 Symbol s1 = e1.sym;
  1639                 if (s1.kind != MTH ||
  1640                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1641                     !s1.isInheritedIn(site.tsym, types) ||
  1642                     ((MethodSymbol)s1).implementation(site.tsym,
  1643                                                       types,
  1644                                                       true) != s1)
  1645                     continue;
  1646                 Type st1 = types.memberType(t1, s1);
  1647                 int s1ArgsLength = st1.getParameterTypes().length();
  1648                 if (st1 == s1.type) continue;
  1650                 for (Type t2 = sup;
  1651                      t2.tag == CLASS;
  1652                      t2 = types.supertype(t2)) {
  1653                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1654                          e2.scope != null;
  1655                          e2 = e2.next()) {
  1656                         Symbol s2 = e2.sym;
  1657                         if (s2 == s1 ||
  1658                             s2.kind != MTH ||
  1659                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1660                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1661                             !s2.isInheritedIn(site.tsym, types) ||
  1662                             ((MethodSymbol)s2).implementation(site.tsym,
  1663                                                               types,
  1664                                                               true) != s2)
  1665                             continue;
  1666                         Type st2 = types.memberType(t2, s2);
  1667                         if (types.overrideEquivalent(st1, st2))
  1668                             log.error(pos, "concrete.inheritance.conflict",
  1669                                       s1, t1, s2, t2, sup);
  1676     /** Check that classes (or interfaces) do not each define an abstract
  1677      *  method with same name and arguments but incompatible return types.
  1678      *  @param pos          Position to be used for error reporting.
  1679      *  @param t1           The first argument type.
  1680      *  @param t2           The second argument type.
  1681      */
  1682     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1683                                             Type t1,
  1684                                             Type t2) {
  1685         return checkCompatibleAbstracts(pos, t1, t2,
  1686                                         types.makeCompoundType(t1, t2));
  1689     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1690                                             Type t1,
  1691                                             Type t2,
  1692                                             Type site) {
  1693         return firstIncompatibility(pos, t1, t2, site) == null;
  1696     /** Return the first method which is defined with same args
  1697      *  but different return types in two given interfaces, or null if none
  1698      *  exists.
  1699      *  @param t1     The first type.
  1700      *  @param t2     The second type.
  1701      *  @param site   The most derived type.
  1702      *  @returns symbol from t2 that conflicts with one in t1.
  1703      */
  1704     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1705         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1706         closure(t1, interfaces1);
  1707         Map<TypeSymbol,Type> interfaces2;
  1708         if (t1 == t2)
  1709             interfaces2 = interfaces1;
  1710         else
  1711             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1713         for (Type t3 : interfaces1.values()) {
  1714             for (Type t4 : interfaces2.values()) {
  1715                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
  1716                 if (s != null) return s;
  1719         return null;
  1722     /** Compute all the supertypes of t, indexed by type symbol. */
  1723     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1724         if (t.tag != CLASS) return;
  1725         if (typeMap.put(t.tsym, t) == null) {
  1726             closure(types.supertype(t), typeMap);
  1727             for (Type i : types.interfaces(t))
  1728                 closure(i, typeMap);
  1732     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1733     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1734         if (t.tag != CLASS) return;
  1735         if (typesSkip.get(t.tsym) != null) return;
  1736         if (typeMap.put(t.tsym, t) == null) {
  1737             closure(types.supertype(t), typesSkip, typeMap);
  1738             for (Type i : types.interfaces(t))
  1739                 closure(i, typesSkip, typeMap);
  1743     /** Return the first method in t2 that conflicts with a method from t1. */
  1744     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1745         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1746             Symbol s1 = e1.sym;
  1747             Type st1 = null;
  1748             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
  1749             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1750             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1751             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1752                 Symbol s2 = e2.sym;
  1753                 if (s1 == s2) continue;
  1754                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
  1755                 if (st1 == null) st1 = types.memberType(t1, s1);
  1756                 Type st2 = types.memberType(t2, s2);
  1757                 if (types.overrideEquivalent(st1, st2)) {
  1758                     List<Type> tvars1 = st1.getTypeArguments();
  1759                     List<Type> tvars2 = st2.getTypeArguments();
  1760                     Type rt1 = st1.getReturnType();
  1761                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1762                     boolean compat =
  1763                         types.isSameType(rt1, rt2) ||
  1764                         rt1.tag >= CLASS && rt2.tag >= CLASS &&
  1765                         (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
  1766                          types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
  1767                          checkCommonOverriderIn(s1,s2,site);
  1768                     if (!compat) {
  1769                         log.error(pos, "types.incompatible.diff.ret",
  1770                             t1, t2, s2.name +
  1771                             "(" + types.memberType(t2, s2).getParameterTypes() + ")");
  1772                         return s2;
  1774                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
  1775                         !checkCommonOverriderIn(s1, s2, site)) {
  1776                     log.error(pos,
  1777                             "name.clash.same.erasure.no.override",
  1778                             s1, s1.location(),
  1779                             s2, s2.location());
  1780                     return s2;
  1784         return null;
  1786     //WHERE
  1787     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
  1788         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
  1789         Type st1 = types.memberType(site, s1);
  1790         Type st2 = types.memberType(site, s2);
  1791         closure(site, supertypes);
  1792         for (Type t : supertypes.values()) {
  1793             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
  1794                 Symbol s3 = e.sym;
  1795                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
  1796                 Type st3 = types.memberType(site,s3);
  1797                 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
  1798                     if (s3.owner == site.tsym) {
  1799                         return true;
  1801                     List<Type> tvars1 = st1.getTypeArguments();
  1802                     List<Type> tvars2 = st2.getTypeArguments();
  1803                     List<Type> tvars3 = st3.getTypeArguments();
  1804                     Type rt1 = st1.getReturnType();
  1805                     Type rt2 = st2.getReturnType();
  1806                     Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
  1807                     Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
  1808                     boolean compat =
  1809                         rt13.tag >= CLASS && rt23.tag >= CLASS &&
  1810                         (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
  1811                          types.covariantReturnType(rt23, rt2, Warner.noWarnings));
  1812                     if (compat)
  1813                         return true;
  1817         return false;
  1820     /** Check that a given method conforms with any method it overrides.
  1821      *  @param tree         The tree from which positions are extracted
  1822      *                      for errors.
  1823      *  @param m            The overriding method.
  1824      */
  1825     void checkOverride(JCTree tree, MethodSymbol m) {
  1826         ClassSymbol origin = (ClassSymbol)m.owner;
  1827         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1828             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1829                 log.error(tree.pos(), "enum.no.finalize");
  1830                 return;
  1832         for (Type t = origin.type; t.tag == CLASS;
  1833              t = types.supertype(t)) {
  1834             if (t != origin.type) {
  1835                 checkOverride(tree, t, origin, m);
  1837             for (Type t2 : types.interfaces(t)) {
  1838                 checkOverride(tree, t2, origin, m);
  1843     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
  1844         TypeSymbol c = site.tsym;
  1845         Scope.Entry e = c.members().lookup(m.name);
  1846         while (e.scope != null) {
  1847             if (m.overrides(e.sym, origin, types, false)) {
  1848                 if ((e.sym.flags() & ABSTRACT) == 0) {
  1849                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  1852             e = e.next();
  1856     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
  1857         ClashFilter cf = new ClashFilter(origin.type);
  1858         return (cf.accepts(s1) &&
  1859                 cf.accepts(s2) &&
  1860                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
  1864     /** Check that all abstract members of given class have definitions.
  1865      *  @param pos          Position to be used for error reporting.
  1866      *  @param c            The class.
  1867      */
  1868     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  1869         try {
  1870             MethodSymbol undef = firstUndef(c, c);
  1871             if (undef != null) {
  1872                 if ((c.flags() & ENUM) != 0 &&
  1873                     types.supertype(c.type).tsym == syms.enumSym &&
  1874                     (c.flags() & FINAL) == 0) {
  1875                     // add the ABSTRACT flag to an enum
  1876                     c.flags_field |= ABSTRACT;
  1877                 } else {
  1878                     MethodSymbol undef1 =
  1879                         new MethodSymbol(undef.flags(), undef.name,
  1880                                          types.memberType(c.type, undef), undef.owner);
  1881                     log.error(pos, "does.not.override.abstract",
  1882                               c, undef1, undef1.location());
  1885         } catch (CompletionFailure ex) {
  1886             completionError(pos, ex);
  1889 //where
  1890         /** Return first abstract member of class `c' that is not defined
  1891          *  in `impl', null if there is none.
  1892          */
  1893         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  1894             MethodSymbol undef = null;
  1895             // Do not bother to search in classes that are not abstract,
  1896             // since they cannot have abstract members.
  1897             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1898                 Scope s = c.members();
  1899                 for (Scope.Entry e = s.elems;
  1900                      undef == null && e != null;
  1901                      e = e.sibling) {
  1902                     if (e.sym.kind == MTH &&
  1903                         (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
  1904                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  1905                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  1906                         if (implmeth == null || implmeth == absmeth)
  1907                             undef = absmeth;
  1910                 if (undef == null) {
  1911                     Type st = types.supertype(c.type);
  1912                     if (st.tag == CLASS)
  1913                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
  1915                 for (List<Type> l = types.interfaces(c.type);
  1916                      undef == null && l.nonEmpty();
  1917                      l = l.tail) {
  1918                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  1921             return undef;
  1924     void checkNonCyclicDecl(JCClassDecl tree) {
  1925         CycleChecker cc = new CycleChecker();
  1926         cc.scan(tree);
  1927         if (!cc.errorFound && !cc.partialCheck) {
  1928             tree.sym.flags_field |= ACYCLIC;
  1932     class CycleChecker extends TreeScanner {
  1934         List<Symbol> seenClasses = List.nil();
  1935         boolean errorFound = false;
  1936         boolean partialCheck = false;
  1938         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
  1939             if (sym != null && sym.kind == TYP) {
  1940                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
  1941                 if (classEnv != null) {
  1942                     DiagnosticSource prevSource = log.currentSource();
  1943                     try {
  1944                         log.useSource(classEnv.toplevel.sourcefile);
  1945                         scan(classEnv.tree);
  1947                     finally {
  1948                         log.useSource(prevSource.getFile());
  1950                 } else if (sym.kind == TYP) {
  1951                     checkClass(pos, sym, List.<JCTree>nil());
  1953             } else {
  1954                 //not completed yet
  1955                 partialCheck = true;
  1959         @Override
  1960         public void visitSelect(JCFieldAccess tree) {
  1961             super.visitSelect(tree);
  1962             checkSymbol(tree.pos(), tree.sym);
  1965         @Override
  1966         public void visitIdent(JCIdent tree) {
  1967             checkSymbol(tree.pos(), tree.sym);
  1970         @Override
  1971         public void visitTypeApply(JCTypeApply tree) {
  1972             scan(tree.clazz);
  1975         @Override
  1976         public void visitTypeArray(JCArrayTypeTree tree) {
  1977             scan(tree.elemtype);
  1980         @Override
  1981         public void visitClassDef(JCClassDecl tree) {
  1982             List<JCTree> supertypes = List.nil();
  1983             if (tree.getExtendsClause() != null) {
  1984                 supertypes = supertypes.prepend(tree.getExtendsClause());
  1986             if (tree.getImplementsClause() != null) {
  1987                 for (JCTree intf : tree.getImplementsClause()) {
  1988                     supertypes = supertypes.prepend(intf);
  1991             checkClass(tree.pos(), tree.sym, supertypes);
  1994         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
  1995             if ((c.flags_field & ACYCLIC) != 0)
  1996                 return;
  1997             if (seenClasses.contains(c)) {
  1998                 errorFound = true;
  1999                 noteCyclic(pos, (ClassSymbol)c);
  2000             } else if (!c.type.isErroneous()) {
  2001                 try {
  2002                     seenClasses = seenClasses.prepend(c);
  2003                     if (c.type.tag == CLASS) {
  2004                         if (supertypes.nonEmpty()) {
  2005                             scan(supertypes);
  2007                         else {
  2008                             ClassType ct = (ClassType)c.type;
  2009                             if (ct.supertype_field == null ||
  2010                                     ct.interfaces_field == null) {
  2011                                 //not completed yet
  2012                                 partialCheck = true;
  2013                                 return;
  2015                             checkSymbol(pos, ct.supertype_field.tsym);
  2016                             for (Type intf : ct.interfaces_field) {
  2017                                 checkSymbol(pos, intf.tsym);
  2020                         if (c.owner.kind == TYP) {
  2021                             checkSymbol(pos, c.owner);
  2024                 } finally {
  2025                     seenClasses = seenClasses.tail;
  2031     /** Check for cyclic references. Issue an error if the
  2032      *  symbol of the type referred to has a LOCKED flag set.
  2034      *  @param pos      Position to be used for error reporting.
  2035      *  @param t        The type referred to.
  2036      */
  2037     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  2038         checkNonCyclicInternal(pos, t);
  2042     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  2043         checkNonCyclic1(pos, t, List.<TypeVar>nil());
  2046     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
  2047         final TypeVar tv;
  2048         if  (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
  2049             return;
  2050         if (seen.contains(t)) {
  2051             tv = (TypeVar)t;
  2052             tv.bound = types.createErrorType(t);
  2053             log.error(pos, "cyclic.inheritance", t);
  2054         } else if (t.tag == TYPEVAR) {
  2055             tv = (TypeVar)t;
  2056             seen = seen.prepend(tv);
  2057             for (Type b : types.getBounds(tv))
  2058                 checkNonCyclic1(pos, b, seen);
  2062     /** Check for cyclic references. Issue an error if the
  2063      *  symbol of the type referred to has a LOCKED flag set.
  2065      *  @param pos      Position to be used for error reporting.
  2066      *  @param t        The type referred to.
  2067      *  @returns        True if the check completed on all attributed classes
  2068      */
  2069     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  2070         boolean complete = true; // was the check complete?
  2071         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  2072         Symbol c = t.tsym;
  2073         if ((c.flags_field & ACYCLIC) != 0) return true;
  2075         if ((c.flags_field & LOCKED) != 0) {
  2076             noteCyclic(pos, (ClassSymbol)c);
  2077         } else if (!c.type.isErroneous()) {
  2078             try {
  2079                 c.flags_field |= LOCKED;
  2080                 if (c.type.tag == CLASS) {
  2081                     ClassType clazz = (ClassType)c.type;
  2082                     if (clazz.interfaces_field != null)
  2083                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  2084                             complete &= checkNonCyclicInternal(pos, l.head);
  2085                     if (clazz.supertype_field != null) {
  2086                         Type st = clazz.supertype_field;
  2087                         if (st != null && st.tag == CLASS)
  2088                             complete &= checkNonCyclicInternal(pos, st);
  2090                     if (c.owner.kind == TYP)
  2091                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  2093             } finally {
  2094                 c.flags_field &= ~LOCKED;
  2097         if (complete)
  2098             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  2099         if (complete) c.flags_field |= ACYCLIC;
  2100         return complete;
  2103     /** Note that we found an inheritance cycle. */
  2104     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  2105         log.error(pos, "cyclic.inheritance", c);
  2106         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  2107             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
  2108         Type st = types.supertype(c.type);
  2109         if (st.tag == CLASS)
  2110             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
  2111         c.type = types.createErrorType(c, c.type);
  2112         c.flags_field |= ACYCLIC;
  2115     /** Check that all methods which implement some
  2116      *  method conform to the method they implement.
  2117      *  @param tree         The class definition whose members are checked.
  2118      */
  2119     void checkImplementations(JCClassDecl tree) {
  2120         checkImplementations(tree, tree.sym);
  2122 //where
  2123         /** Check that all methods which implement some
  2124          *  method in `ic' conform to the method they implement.
  2125          */
  2126         void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
  2127             ClassSymbol origin = tree.sym;
  2128             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  2129                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  2130                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  2131                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  2132                         if (e.sym.kind == MTH &&
  2133                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  2134                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  2135                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  2136                             if (implmeth != null && implmeth != absmeth &&
  2137                                 (implmeth.owner.flags() & INTERFACE) ==
  2138                                 (origin.flags() & INTERFACE)) {
  2139                                 // don't check if implmeth is in a class, yet
  2140                                 // origin is an interface. This case arises only
  2141                                 // if implmeth is declared in Object. The reason is
  2142                                 // that interfaces really don't inherit from
  2143                                 // Object it's just that the compiler represents
  2144                                 // things that way.
  2145                                 checkOverride(tree, implmeth, absmeth, origin);
  2153     /** Check that all abstract methods implemented by a class are
  2154      *  mutually compatible.
  2155      *  @param pos          Position to be used for error reporting.
  2156      *  @param c            The class whose interfaces are checked.
  2157      */
  2158     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  2159         List<Type> supertypes = types.interfaces(c);
  2160         Type supertype = types.supertype(c);
  2161         if (supertype.tag == CLASS &&
  2162             (supertype.tsym.flags() & ABSTRACT) != 0)
  2163             supertypes = supertypes.prepend(supertype);
  2164         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  2165             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  2166                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  2167                 return;
  2168             for (List<Type> m = supertypes; m != l; m = m.tail)
  2169                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  2170                     return;
  2172         checkCompatibleConcretes(pos, c);
  2175     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
  2176         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
  2177             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
  2178                 // VM allows methods and variables with differing types
  2179                 if (sym.kind == e.sym.kind &&
  2180                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
  2181                     sym != e.sym &&
  2182                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
  2183                     (sym.flags() & IPROXY) == 0 && (e.sym.flags() & IPROXY) == 0 &&
  2184                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
  2185                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
  2186                     return;
  2192     /** Check that all non-override equivalent methods accessible from 'site'
  2193      *  are mutually compatible (JLS 8.4.8/9.4.1).
  2195      *  @param pos  Position to be used for error reporting.
  2196      *  @param site The class whose methods are checked.
  2197      *  @param sym  The method symbol to be checked.
  2198      */
  2199     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2200          ClashFilter cf = new ClashFilter(site);
  2201         //for each method m1 that is overridden (directly or indirectly)
  2202         //by method 'sym' in 'site'...
  2203         for (Symbol m1 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2204             if (!sym.overrides(m1, site.tsym, types, false)) continue;
  2205              //...check each method m2 that is a member of 'site'
  2206              for (Symbol m2 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2207                 if (m2 == m1) continue;
  2208                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2209                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
  2210                 if (!types.isSubSignature(sym.type, types.memberType(site, m2), false) &&
  2211                         types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
  2212                     sym.flags_field |= CLASH;
  2213                     String key = m1 == sym ?
  2214                             "name.clash.same.erasure.no.override" :
  2215                             "name.clash.same.erasure.no.override.1";
  2216                     log.error(pos,
  2217                             key,
  2218                             sym, sym.location(),
  2219                             m2, m2.location(),
  2220                             m1, m1.location());
  2221                     return;
  2229     /** Check that all static methods accessible from 'site' are
  2230      *  mutually compatible (JLS 8.4.8).
  2232      *  @param pos  Position to be used for error reporting.
  2233      *  @param site The class whose methods are checked.
  2234      *  @param sym  The method symbol to be checked.
  2235      */
  2236     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2237         ClashFilter cf = new ClashFilter(site);
  2238         //for each method m1 that is a member of 'site'...
  2239         for (Symbol s : types.membersClosure(site, true).getElementsByName(sym.name, cf)) {
  2240             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2241             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
  2242             if (!types.isSubSignature(sym.type, types.memberType(site, s), false) &&
  2243                     types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
  2244                 log.error(pos,
  2245                         "name.clash.same.erasure.no.hide",
  2246                         sym, sym.location(),
  2247                         s, s.location());
  2248                 return;
  2253      //where
  2254      private class ClashFilter implements Filter<Symbol> {
  2256          Type site;
  2258          ClashFilter(Type site) {
  2259              this.site = site;
  2262          boolean shouldSkip(Symbol s) {
  2263              return (s.flags() & CLASH) != 0 &&
  2264                 s.owner == site.tsym;
  2267          public boolean accepts(Symbol s) {
  2268              return s.kind == MTH &&
  2269                      (s.flags() & SYNTHETIC) == 0 &&
  2270                      !shouldSkip(s) &&
  2271                      s.isInheritedIn(site.tsym, types) &&
  2272                      !s.isConstructor();
  2276     /** Report a conflict between a user symbol and a synthetic symbol.
  2277      */
  2278     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
  2279         if (!sym.type.isErroneous()) {
  2280             if (warnOnSyntheticConflicts) {
  2281                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
  2283             else {
  2284                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
  2289     /** Check that class c does not implement directly or indirectly
  2290      *  the same parameterized interface with two different argument lists.
  2291      *  @param pos          Position to be used for error reporting.
  2292      *  @param type         The type whose interfaces are checked.
  2293      */
  2294     void checkClassBounds(DiagnosticPosition pos, Type type) {
  2295         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  2297 //where
  2298         /** Enter all interfaces of type `type' into the hash table `seensofar'
  2299          *  with their class symbol as key and their type as value. Make
  2300          *  sure no class is entered with two different types.
  2301          */
  2302         void checkClassBounds(DiagnosticPosition pos,
  2303                               Map<TypeSymbol,Type> seensofar,
  2304                               Type type) {
  2305             if (type.isErroneous()) return;
  2306             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  2307                 Type it = l.head;
  2308                 Type oldit = seensofar.put(it.tsym, it);
  2309                 if (oldit != null) {
  2310                     List<Type> oldparams = oldit.allparams();
  2311                     List<Type> newparams = it.allparams();
  2312                     if (!types.containsTypeEquivalent(oldparams, newparams))
  2313                         log.error(pos, "cant.inherit.diff.arg",
  2314                                   it.tsym, Type.toString(oldparams),
  2315                                   Type.toString(newparams));
  2317                 checkClassBounds(pos, seensofar, it);
  2319             Type st = types.supertype(type);
  2320             if (st != null) checkClassBounds(pos, seensofar, st);
  2323     /** Enter interface into into set.
  2324      *  If it existed already, issue a "repeated interface" error.
  2325      */
  2326     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  2327         if (its.contains(it))
  2328             log.error(pos, "repeated.interface");
  2329         else {
  2330             its.add(it);
  2334 /* *************************************************************************
  2335  * Check annotations
  2336  **************************************************************************/
  2338     /**
  2339      * Recursively validate annotations values
  2340      */
  2341     void validateAnnotationTree(JCTree tree) {
  2342         class AnnotationValidator extends TreeScanner {
  2343             @Override
  2344             public void visitAnnotation(JCAnnotation tree) {
  2345                 if (!tree.type.isErroneous()) {
  2346                     super.visitAnnotation(tree);
  2347                     validateAnnotation(tree);
  2351         tree.accept(new AnnotationValidator());
  2354     /** Annotation types are restricted to primitives, String, an
  2355      *  enum, an annotation, Class, Class<?>, Class<? extends
  2356      *  Anything>, arrays of the preceding.
  2357      */
  2358     void validateAnnotationType(JCTree restype) {
  2359         // restype may be null if an error occurred, so don't bother validating it
  2360         if (restype != null) {
  2361             validateAnnotationType(restype.pos(), restype.type);
  2365     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  2366         if (type.isPrimitive()) return;
  2367         if (types.isSameType(type, syms.stringType)) return;
  2368         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  2369         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  2370         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  2371         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  2372             validateAnnotationType(pos, types.elemtype(type));
  2373             return;
  2375         log.error(pos, "invalid.annotation.member.type");
  2378     /**
  2379      * "It is also a compile-time error if any method declared in an
  2380      * annotation type has a signature that is override-equivalent to
  2381      * that of any public or protected method declared in class Object
  2382      * or in the interface annotation.Annotation."
  2384      * @jls 9.6 Annotation Types
  2385      */
  2386     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  2387         for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
  2388             Scope s = sup.tsym.members();
  2389             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  2390                 if (e.sym.kind == MTH &&
  2391                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  2392                     types.overrideEquivalent(m.type, e.sym.type))
  2393                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  2398     /** Check the annotations of a symbol.
  2399      */
  2400     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  2401         if (skipAnnotations) return;
  2402         for (JCAnnotation a : annotations)
  2403             validateAnnotation(a, s);
  2406     /** Check an annotation of a symbol.
  2407      */
  2408     public void validateAnnotation(JCAnnotation a, Symbol s) {
  2409         validateAnnotationTree(a);
  2411         if (!annotationApplicable(a, s))
  2412             log.error(a.pos(), "annotation.type.not.applicable");
  2414         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  2415             if (!isOverrider(s))
  2416                 log.error(a.pos(), "method.does.not.override.superclass");
  2420     /** Is s a method symbol that overrides a method in a superclass? */
  2421     boolean isOverrider(Symbol s) {
  2422         if (s.kind != MTH || s.isStatic())
  2423             return false;
  2424         MethodSymbol m = (MethodSymbol)s;
  2425         TypeSymbol owner = (TypeSymbol)m.owner;
  2426         for (Type sup : types.closure(owner.type)) {
  2427             if (sup == owner.type)
  2428                 continue; // skip "this"
  2429             Scope scope = sup.tsym.members();
  2430             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  2431                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  2432                     return true;
  2435         return false;
  2438     /** Is the annotation applicable to the symbol? */
  2439     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  2440         Attribute.Compound atTarget =
  2441             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  2442         if (atTarget == null) return true;
  2443         Attribute atValue = atTarget.member(names.value);
  2444         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
  2445         Attribute.Array arr = (Attribute.Array) atValue;
  2446         for (Attribute app : arr.values) {
  2447             if (!(app instanceof Attribute.Enum)) return true; // recovery
  2448             Attribute.Enum e = (Attribute.Enum) app;
  2449             if (e.value.name == names.TYPE)
  2450                 { if (s.kind == TYP) return true; }
  2451             else if (e.value.name == names.FIELD)
  2452                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  2453             else if (e.value.name == names.METHOD)
  2454                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  2455             else if (e.value.name == names.PARAMETER)
  2456                 { if (s.kind == VAR &&
  2457                       s.owner.kind == MTH &&
  2458                       (s.flags() & PARAMETER) != 0)
  2459                     return true;
  2461             else if (e.value.name == names.CONSTRUCTOR)
  2462                 { if (s.kind == MTH && s.isConstructor()) return true; }
  2463             else if (e.value.name == names.LOCAL_VARIABLE)
  2464                 { if (s.kind == VAR && s.owner.kind == MTH &&
  2465                       (s.flags() & PARAMETER) == 0)
  2466                     return true;
  2468             else if (e.value.name == names.ANNOTATION_TYPE)
  2469                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  2470                     return true;
  2472             else if (e.value.name == names.PACKAGE)
  2473                 { if (s.kind == PCK) return true; }
  2474             else if (e.value.name == names.TYPE_USE)
  2475                 { if (s.kind == TYP ||
  2476                       s.kind == VAR ||
  2477                       (s.kind == MTH && !s.isConstructor() &&
  2478                        s.type.getReturnType().tag != VOID))
  2479                     return true;
  2481             else
  2482                 return true; // recovery
  2484         return false;
  2487     /** Check an annotation value.
  2488      */
  2489     public void validateAnnotation(JCAnnotation a) {
  2490         // collect an inventory of the members (sorted alphabetically)
  2491         Set<MethodSymbol> members = new TreeSet<MethodSymbol>(new Comparator<Symbol>() {
  2492             public int compare(Symbol t, Symbol t1) {
  2493                 return t.name.compareTo(t1.name);
  2495         });
  2496         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  2497              e != null;
  2498              e = e.sibling)
  2499             if (e.sym.kind == MTH)
  2500                 members.add((MethodSymbol) e.sym);
  2502         // count them off as they're annotated
  2503         for (JCTree arg : a.args) {
  2504             if (!arg.hasTag(ASSIGN)) continue; // recovery
  2505             JCAssign assign = (JCAssign) arg;
  2506             Symbol m = TreeInfo.symbol(assign.lhs);
  2507             if (m == null || m.type.isErroneous()) continue;
  2508             if (!members.remove(m))
  2509                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
  2510                           m.name, a.type);
  2513         // all the remaining ones better have default values
  2514         ListBuffer<Name> missingDefaults = ListBuffer.lb();
  2515         for (MethodSymbol m : members) {
  2516             if (m.defaultValue == null && !m.type.isErroneous()) {
  2517                 missingDefaults.append(m.name);
  2520         if (missingDefaults.nonEmpty()) {
  2521             String key = (missingDefaults.size() > 1)
  2522                     ? "annotation.missing.default.value.1"
  2523                     : "annotation.missing.default.value";
  2524             log.error(a.pos(), key, a.type, missingDefaults);
  2527         // special case: java.lang.annotation.Target must not have
  2528         // repeated values in its value member
  2529         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  2530             a.args.tail == null)
  2531             return;
  2533         if (!a.args.head.hasTag(ASSIGN)) return; // error recovery
  2534         JCAssign assign = (JCAssign) a.args.head;
  2535         Symbol m = TreeInfo.symbol(assign.lhs);
  2536         if (m.name != names.value) return;
  2537         JCTree rhs = assign.rhs;
  2538         if (!rhs.hasTag(NEWARRAY)) return;
  2539         JCNewArray na = (JCNewArray) rhs;
  2540         Set<Symbol> targets = new HashSet<Symbol>();
  2541         for (JCTree elem : na.elems) {
  2542             if (!targets.add(TreeInfo.symbol(elem))) {
  2543                 log.error(elem.pos(), "repeated.annotation.target");
  2548     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  2549         if (allowAnnotations &&
  2550             lint.isEnabled(LintCategory.DEP_ANN) &&
  2551             (s.flags() & DEPRECATED) != 0 &&
  2552             !syms.deprecatedType.isErroneous() &&
  2553             s.attribute(syms.deprecatedType.tsym) == null) {
  2554             log.warning(LintCategory.DEP_ANN,
  2555                     pos, "missing.deprecated.annotation");
  2559     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
  2560         if ((s.flags() & DEPRECATED) != 0 &&
  2561                 (other.flags() & DEPRECATED) == 0 &&
  2562                 s.outermostClass() != other.outermostClass()) {
  2563             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  2564                 @Override
  2565                 public void report() {
  2566                     warnDeprecated(pos, s);
  2568             });
  2572     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
  2573         if ((s.flags() & PROPRIETARY) != 0) {
  2574             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  2575                 public void report() {
  2576                     if (enableSunApiLintControl)
  2577                       warnSunApi(pos, "sun.proprietary", s);
  2578                     else
  2579                       log.mandatoryWarning(pos, "sun.proprietary", s);
  2581             });
  2585 /* *************************************************************************
  2586  * Check for recursive annotation elements.
  2587  **************************************************************************/
  2589     /** Check for cycles in the graph of annotation elements.
  2590      */
  2591     void checkNonCyclicElements(JCClassDecl tree) {
  2592         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  2593         Assert.check((tree.sym.flags_field & LOCKED) == 0);
  2594         try {
  2595             tree.sym.flags_field |= LOCKED;
  2596             for (JCTree def : tree.defs) {
  2597                 if (!def.hasTag(METHODDEF)) continue;
  2598                 JCMethodDecl meth = (JCMethodDecl)def;
  2599                 checkAnnotationResType(meth.pos(), meth.restype.type);
  2601         } finally {
  2602             tree.sym.flags_field &= ~LOCKED;
  2603             tree.sym.flags_field |= ACYCLIC_ANN;
  2607     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  2608         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  2609             return;
  2610         if ((tsym.flags_field & LOCKED) != 0) {
  2611             log.error(pos, "cyclic.annotation.element");
  2612             return;
  2614         try {
  2615             tsym.flags_field |= LOCKED;
  2616             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  2617                 Symbol s = e.sym;
  2618                 if (s.kind != Kinds.MTH)
  2619                     continue;
  2620                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  2622         } finally {
  2623             tsym.flags_field &= ~LOCKED;
  2624             tsym.flags_field |= ACYCLIC_ANN;
  2628     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  2629         switch (type.tag) {
  2630         case TypeTags.CLASS:
  2631             if ((type.tsym.flags() & ANNOTATION) != 0)
  2632                 checkNonCyclicElementsInternal(pos, type.tsym);
  2633             break;
  2634         case TypeTags.ARRAY:
  2635             checkAnnotationResType(pos, types.elemtype(type));
  2636             break;
  2637         default:
  2638             break; // int etc
  2642 /* *************************************************************************
  2643  * Check for cycles in the constructor call graph.
  2644  **************************************************************************/
  2646     /** Check for cycles in the graph of constructors calling other
  2647      *  constructors.
  2648      */
  2649     void checkCyclicConstructors(JCClassDecl tree) {
  2650         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  2652         // enter each constructor this-call into the map
  2653         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  2654             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  2655             if (app == null) continue;
  2656             JCMethodDecl meth = (JCMethodDecl) l.head;
  2657             if (TreeInfo.name(app.meth) == names._this) {
  2658                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  2659             } else {
  2660                 meth.sym.flags_field |= ACYCLIC;
  2664         // Check for cycles in the map
  2665         Symbol[] ctors = new Symbol[0];
  2666         ctors = callMap.keySet().toArray(ctors);
  2667         for (Symbol caller : ctors) {
  2668             checkCyclicConstructor(tree, caller, callMap);
  2672     /** Look in the map to see if the given constructor is part of a
  2673      *  call cycle.
  2674      */
  2675     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  2676                                         Map<Symbol,Symbol> callMap) {
  2677         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  2678             if ((ctor.flags_field & LOCKED) != 0) {
  2679                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  2680                           "recursive.ctor.invocation");
  2681             } else {
  2682                 ctor.flags_field |= LOCKED;
  2683                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  2684                 ctor.flags_field &= ~LOCKED;
  2686             ctor.flags_field |= ACYCLIC;
  2690 /* *************************************************************************
  2691  * Miscellaneous
  2692  **************************************************************************/
  2694     /**
  2695      * Return the opcode of the operator but emit an error if it is an
  2696      * error.
  2697      * @param pos        position for error reporting.
  2698      * @param operator   an operator
  2699      * @param tag        a tree tag
  2700      * @param left       type of left hand side
  2701      * @param right      type of right hand side
  2702      */
  2703     int checkOperator(DiagnosticPosition pos,
  2704                        OperatorSymbol operator,
  2705                        JCTree.Tag tag,
  2706                        Type left,
  2707                        Type right) {
  2708         if (operator.opcode == ByteCodes.error) {
  2709             log.error(pos,
  2710                       "operator.cant.be.applied.1",
  2711                       treeinfo.operatorName(tag),
  2712                       left, right);
  2714         return operator.opcode;
  2718     /**
  2719      *  Check for division by integer constant zero
  2720      *  @param pos           Position for error reporting.
  2721      *  @param operator      The operator for the expression
  2722      *  @param operand       The right hand operand for the expression
  2723      */
  2724     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  2725         if (operand.constValue() != null
  2726             && lint.isEnabled(LintCategory.DIVZERO)
  2727             && operand.tag <= LONG
  2728             && ((Number) (operand.constValue())).longValue() == 0) {
  2729             int opc = ((OperatorSymbol)operator).opcode;
  2730             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  2731                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  2732                 log.warning(LintCategory.DIVZERO, pos, "div.zero");
  2737     /**
  2738      * Check for empty statements after if
  2739      */
  2740     void checkEmptyIf(JCIf tree) {
  2741         if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
  2742                 lint.isEnabled(LintCategory.EMPTY))
  2743             log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
  2746     /** Check that symbol is unique in given scope.
  2747      *  @param pos           Position for error reporting.
  2748      *  @param sym           The symbol.
  2749      *  @param s             The scope.
  2750      */
  2751     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  2752         if (sym.type.isErroneous())
  2753             return true;
  2754         if (sym.owner.name == names.any) return false;
  2755         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  2756             if (sym != e.sym &&
  2757                     (e.sym.flags() & CLASH) == 0 &&
  2758                     sym.kind == e.sym.kind &&
  2759                     sym.name != names.error &&
  2760                     (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
  2761                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS)) {
  2762                     varargsDuplicateError(pos, sym, e.sym);
  2763                     return true;
  2764                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, e.sym.type, false)) {
  2765                     duplicateErasureError(pos, sym, e.sym);
  2766                     sym.flags_field |= CLASH;
  2767                     return true;
  2768                 } else {
  2769                     duplicateError(pos, e.sym);
  2770                     return false;
  2774         return true;
  2777     /** Report duplicate declaration error.
  2778      */
  2779     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
  2780         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
  2781             log.error(pos, "name.clash.same.erasure", sym1, sym2);
  2785     /** Check that single-type import is not already imported or top-level defined,
  2786      *  but make an exception for two single-type imports which denote the same type.
  2787      *  @param pos           Position for error reporting.
  2788      *  @param sym           The symbol.
  2789      *  @param s             The scope
  2790      */
  2791     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2792         return checkUniqueImport(pos, sym, s, false);
  2795     /** Check that static single-type import is not already imported or top-level defined,
  2796      *  but make an exception for two single-type imports which denote the same type.
  2797      *  @param pos           Position for error reporting.
  2798      *  @param sym           The symbol.
  2799      *  @param s             The scope
  2800      *  @param staticImport  Whether or not this was a static import
  2801      */
  2802     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2803         return checkUniqueImport(pos, sym, s, true);
  2806     /** Check that single-type import is not already imported or top-level defined,
  2807      *  but make an exception for two single-type imports which denote the same type.
  2808      *  @param pos           Position for error reporting.
  2809      *  @param sym           The symbol.
  2810      *  @param s             The scope.
  2811      *  @param staticImport  Whether or not this was a static import
  2812      */
  2813     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  2814         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  2815             // is encountered class entered via a class declaration?
  2816             boolean isClassDecl = e.scope == s;
  2817             if ((isClassDecl || sym != e.sym) &&
  2818                 sym.kind == e.sym.kind &&
  2819                 sym.name != names.error) {
  2820                 if (!e.sym.type.isErroneous()) {
  2821                     String what = e.sym.toString();
  2822                     if (!isClassDecl) {
  2823                         if (staticImport)
  2824                             log.error(pos, "already.defined.static.single.import", what);
  2825                         else
  2826                             log.error(pos, "already.defined.single.import", what);
  2828                     else if (sym != e.sym)
  2829                         log.error(pos, "already.defined.this.unit", what);
  2831                 return false;
  2834         return true;
  2837     /** Check that a qualified name is in canonical form (for import decls).
  2838      */
  2839     public void checkCanonical(JCTree tree) {
  2840         if (!isCanonical(tree))
  2841             log.error(tree.pos(), "import.requires.canonical",
  2842                       TreeInfo.symbol(tree));
  2844         // where
  2845         private boolean isCanonical(JCTree tree) {
  2846             while (tree.hasTag(SELECT)) {
  2847                 JCFieldAccess s = (JCFieldAccess) tree;
  2848                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  2849                     return false;
  2850                 tree = s.selected;
  2852             return true;
  2855     private class ConversionWarner extends Warner {
  2856         final String uncheckedKey;
  2857         final Type found;
  2858         final Type expected;
  2859         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
  2860             super(pos);
  2861             this.uncheckedKey = uncheckedKey;
  2862             this.found = found;
  2863             this.expected = expected;
  2866         @Override
  2867         public void warn(LintCategory lint) {
  2868             boolean warned = this.warned;
  2869             super.warn(lint);
  2870             if (warned) return; // suppress redundant diagnostics
  2871             switch (lint) {
  2872                 case UNCHECKED:
  2873                     Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
  2874                     break;
  2875                 case VARARGS:
  2876                     if (method != null &&
  2877                             method.attribute(syms.trustMeType.tsym) != null &&
  2878                             isTrustMeAllowedOnMethod(method) &&
  2879                             !types.isReifiable(method.type.getParameterTypes().last())) {
  2880                         Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
  2882                     break;
  2883                 default:
  2884                     throw new AssertionError("Unexpected lint: " + lint);
  2889     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  2890         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  2893     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  2894         return new ConversionWarner(pos, "unchecked.assign", found, expected);

mercurial