src/share/classes/com/sun/tools/javac/comp/Check.java

Mon, 26 Mar 2012 15:28:22 +0100

author
mcimadamore
date
Mon, 26 Mar 2012 15:28:22 +0100
changeset 1238
e28a06a3c5d9
parent 1237
568e70bbd9aa
child 1239
2827076dbf64
permissions
-rw-r--r--

7151492: Encapsulate check logic into Attr.ResultInfo
Summary: ResultInfo class should be used to make attribution code transparent w.r.t. check logic being used
Reviewed-by: jjg, dlsmith

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    31 import com.sun.tools.javac.code.*;
    32 import com.sun.tools.javac.jvm.*;
    33 import com.sun.tools.javac.tree.*;
    34 import com.sun.tools.javac.util.*;
    35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    36 import com.sun.tools.javac.util.List;
    38 import com.sun.tools.javac.tree.JCTree.*;
    39 import com.sun.tools.javac.code.Lint;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Type.*;
    42 import com.sun.tools.javac.code.Symbol.*;
    44 import static com.sun.tools.javac.code.Flags.*;
    45 import static com.sun.tools.javac.code.Flags.ANNOTATION;
    46 import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
    47 import static com.sun.tools.javac.code.Kinds.*;
    48 import static com.sun.tools.javac.code.TypeTags.*;
    49 import static com.sun.tools.javac.code.TypeTags.WILDCARD;
    51 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    53 /** Type checking helper class for the attribution phase.
    54  *
    55  *  <p><b>This is NOT part of any supported API.
    56  *  If you write code that depends on this, you do so at your own risk.
    57  *  This code and its internal interfaces are subject to change or
    58  *  deletion without notice.</b>
    59  */
    60 public class Check {
    61     protected static final Context.Key<Check> checkKey =
    62         new Context.Key<Check>();
    64     private final Names names;
    65     private final Log log;
    66     private final Resolve rs;
    67     private final Symtab syms;
    68     private final Enter enter;
    69     private final Infer infer;
    70     private final Types types;
    71     private final JCDiagnostic.Factory diags;
    72     private final boolean skipAnnotations;
    73     private boolean warnOnSyntheticConflicts;
    74     private boolean suppressAbortOnBadClassFile;
    75     private boolean enableSunApiLintControl;
    76     private final TreeInfo treeinfo;
    78     // The set of lint options currently in effect. It is initialized
    79     // from the context, and then is set/reset as needed by Attr as it
    80     // visits all the various parts of the trees during attribution.
    81     private Lint lint;
    83     // The method being analyzed in Attr - it is set/reset as needed by
    84     // Attr as it visits new method declarations.
    85     private MethodSymbol method;
    87     public static Check instance(Context context) {
    88         Check instance = context.get(checkKey);
    89         if (instance == null)
    90             instance = new Check(context);
    91         return instance;
    92     }
    94     protected Check(Context context) {
    95         context.put(checkKey, this);
    97         names = Names.instance(context);
    98         log = Log.instance(context);
    99         rs = Resolve.instance(context);
   100         syms = Symtab.instance(context);
   101         enter = Enter.instance(context);
   102         infer = Infer.instance(context);
   103         this.types = Types.instance(context);
   104         diags = JCDiagnostic.Factory.instance(context);
   105         Options options = Options.instance(context);
   106         lint = Lint.instance(context);
   107         treeinfo = TreeInfo.instance(context);
   109         Source source = Source.instance(context);
   110         allowGenerics = source.allowGenerics();
   111         allowVarargs = source.allowVarargs();
   112         allowAnnotations = source.allowAnnotations();
   113         allowCovariantReturns = source.allowCovariantReturns();
   114         allowSimplifiedVarargs = source.allowSimplifiedVarargs();
   115         complexInference = options.isSet("complexinference");
   116         skipAnnotations = options.isSet("skipAnnotations");
   117         warnOnSyntheticConflicts = options.isSet("warnOnSyntheticConflicts");
   118         suppressAbortOnBadClassFile = options.isSet("suppressAbortOnBadClassFile");
   119         enableSunApiLintControl = options.isSet("enableSunApiLintControl");
   121         Target target = Target.instance(context);
   122         syntheticNameChar = target.syntheticNameChar();
   124         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   125         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   126         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
   127         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
   129         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
   130                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
   131         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
   132                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
   133         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
   134                 enforceMandatoryWarnings, "sunapi", null);
   136         deferredLintHandler = DeferredLintHandler.immediateHandler;
   137     }
   139     /** Switch: generics enabled?
   140      */
   141     boolean allowGenerics;
   143     /** Switch: varargs enabled?
   144      */
   145     boolean allowVarargs;
   147     /** Switch: annotations enabled?
   148      */
   149     boolean allowAnnotations;
   151     /** Switch: covariant returns enabled?
   152      */
   153     boolean allowCovariantReturns;
   155     /** Switch: simplified varargs enabled?
   156      */
   157     boolean allowSimplifiedVarargs;
   159     /** Switch: -complexinference option set?
   160      */
   161     boolean complexInference;
   163     /** Character for synthetic names
   164      */
   165     char syntheticNameChar;
   167     /** A table mapping flat names of all compiled classes in this run to their
   168      *  symbols; maintained from outside.
   169      */
   170     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   172     /** A handler for messages about deprecated usage.
   173      */
   174     private MandatoryWarningHandler deprecationHandler;
   176     /** A handler for messages about unchecked or unsafe usage.
   177      */
   178     private MandatoryWarningHandler uncheckedHandler;
   180     /** A handler for messages about using proprietary API.
   181      */
   182     private MandatoryWarningHandler sunApiHandler;
   184     /** A handler for deferred lint warnings.
   185      */
   186     private DeferredLintHandler deferredLintHandler;
   188 /* *************************************************************************
   189  * Errors and Warnings
   190  **************************************************************************/
   192     Lint setLint(Lint newLint) {
   193         Lint prev = lint;
   194         lint = newLint;
   195         return prev;
   196     }
   198     DeferredLintHandler setDeferredLintHandler(DeferredLintHandler newDeferredLintHandler) {
   199         DeferredLintHandler prev = deferredLintHandler;
   200         deferredLintHandler = newDeferredLintHandler;
   201         return prev;
   202     }
   204     MethodSymbol setMethod(MethodSymbol newMethod) {
   205         MethodSymbol prev = method;
   206         method = newMethod;
   207         return prev;
   208     }
   210     /** Warn about deprecated symbol.
   211      *  @param pos        Position to be used for error reporting.
   212      *  @param sym        The deprecated symbol.
   213      */
   214     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   215         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   216             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   217     }
   219     /** Warn about unchecked operation.
   220      *  @param pos        Position to be used for error reporting.
   221      *  @param msg        A string describing the problem.
   222      */
   223     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   224         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   225             uncheckedHandler.report(pos, msg, args);
   226     }
   228     /** Warn about unsafe vararg method decl.
   229      *  @param pos        Position to be used for error reporting.
   230      *  @param sym        The deprecated symbol.
   231      */
   232     void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
   233         if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
   234             log.warning(LintCategory.VARARGS, pos, key, args);
   235     }
   237     /** Warn about using proprietary API.
   238      *  @param pos        Position to be used for error reporting.
   239      *  @param msg        A string describing the problem.
   240      */
   241     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
   242         if (!lint.isSuppressed(LintCategory.SUNAPI))
   243             sunApiHandler.report(pos, msg, args);
   244     }
   246     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
   247         if (lint.isEnabled(LintCategory.STATIC))
   248             log.warning(LintCategory.STATIC, pos, msg, args);
   249     }
   251     /**
   252      * Report any deferred diagnostics.
   253      */
   254     public void reportDeferredDiagnostics() {
   255         deprecationHandler.reportDeferredDiagnostic();
   256         uncheckedHandler.reportDeferredDiagnostic();
   257         sunApiHandler.reportDeferredDiagnostic();
   258     }
   261     /** Report a failure to complete a class.
   262      *  @param pos        Position to be used for error reporting.
   263      *  @param ex         The failure to report.
   264      */
   265     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   266         log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
   267         if (ex instanceof ClassReader.BadClassFile
   268                 && !suppressAbortOnBadClassFile) throw new Abort();
   269         else return syms.errType;
   270     }
   272     /** Report an error that wrong type tag was found.
   273      *  @param pos        Position to be used for error reporting.
   274      *  @param required   An internationalized string describing the type tag
   275      *                    required.
   276      *  @param found      The type that was found.
   277      */
   278     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   279         // this error used to be raised by the parser,
   280         // but has been delayed to this point:
   281         if (found instanceof Type && ((Type)found).tag == VOID) {
   282             log.error(pos, "illegal.start.of.type");
   283             return syms.errType;
   284         }
   285         log.error(pos, "type.found.req", found, required);
   286         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
   287     }
   289     /** Report an error that symbol cannot be referenced before super
   290      *  has been called.
   291      *  @param pos        Position to be used for error reporting.
   292      *  @param sym        The referenced symbol.
   293      */
   294     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   295         log.error(pos, "cant.ref.before.ctor.called", sym);
   296     }
   298     /** Report duplicate declaration error.
   299      */
   300     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   301         if (!sym.type.isErroneous()) {
   302             Symbol location = sym.location();
   303             if (location.kind == MTH &&
   304                     ((MethodSymbol)location).isStaticOrInstanceInit()) {
   305                 log.error(pos, "already.defined.in.clinit", kindName(sym), sym,
   306                         kindName(sym.location()), kindName(sym.location().enclClass()),
   307                         sym.location().enclClass());
   308             } else {
   309                 log.error(pos, "already.defined", kindName(sym), sym,
   310                         kindName(sym.location()), sym.location());
   311             }
   312         }
   313     }
   315     /** Report array/varargs duplicate declaration
   316      */
   317     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   318         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   319             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   320         }
   321     }
   323 /* ************************************************************************
   324  * duplicate declaration checking
   325  *************************************************************************/
   327     /** Check that variable does not hide variable with same name in
   328      *  immediately enclosing local scope.
   329      *  @param pos           Position for error reporting.
   330      *  @param v             The symbol.
   331      *  @param s             The scope.
   332      */
   333     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   334         if (s.next != null) {
   335             for (Scope.Entry e = s.next.lookup(v.name);
   336                  e.scope != null && e.sym.owner == v.owner;
   337                  e = e.next()) {
   338                 if (e.sym.kind == VAR &&
   339                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   340                     v.name != names.error) {
   341                     duplicateError(pos, e.sym);
   342                     return;
   343                 }
   344             }
   345         }
   346     }
   348     /** Check that a class or interface does not hide a class or
   349      *  interface with same name in immediately enclosing local scope.
   350      *  @param pos           Position for error reporting.
   351      *  @param c             The symbol.
   352      *  @param s             The scope.
   353      */
   354     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   355         if (s.next != null) {
   356             for (Scope.Entry e = s.next.lookup(c.name);
   357                  e.scope != null && e.sym.owner == c.owner;
   358                  e = e.next()) {
   359                 if (e.sym.kind == TYP && e.sym.type.tag != TYPEVAR &&
   360                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   361                     c.name != names.error) {
   362                     duplicateError(pos, e.sym);
   363                     return;
   364                 }
   365             }
   366         }
   367     }
   369     /** Check that class does not have the same name as one of
   370      *  its enclosing classes, or as a class defined in its enclosing scope.
   371      *  return true if class is unique in its enclosing scope.
   372      *  @param pos           Position for error reporting.
   373      *  @param name          The class name.
   374      *  @param s             The enclosing scope.
   375      */
   376     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   377         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   378             if (e.sym.kind == TYP && e.sym.name != names.error) {
   379                 duplicateError(pos, e.sym);
   380                 return false;
   381             }
   382         }
   383         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   384             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   385                 duplicateError(pos, sym);
   386                 return true;
   387             }
   388         }
   389         return true;
   390     }
   392 /* *************************************************************************
   393  * Class name generation
   394  **************************************************************************/
   396     /** Return name of local class.
   397      *  This is of the form    <enclClass> $ n <classname>
   398      *  where
   399      *    enclClass is the flat name of the enclosing class,
   400      *    classname is the simple name of the local class
   401      */
   402     Name localClassName(ClassSymbol c) {
   403         for (int i=1; ; i++) {
   404             Name flatname = names.
   405                 fromString("" + c.owner.enclClass().flatname +
   406                            syntheticNameChar + i +
   407                            c.name);
   408             if (compiled.get(flatname) == null) return flatname;
   409         }
   410     }
   412 /* *************************************************************************
   413  * Type Checking
   414  **************************************************************************/
   416     /**
   417      * A check context is an object that can be used to perform compatibility
   418      * checks - depending on the check context, meaning of 'compatibility' might
   419      * vary significantly.
   420      */
   421     interface CheckContext {
   422         /**
   423          * Is type 'found' compatible with type 'req' in given context
   424          */
   425         boolean compatible(Type found, Type req, Warner warn);
   426         /**
   427          * Instantiate a ForAll type against a given target type 'req' in given context
   428          */
   429         Type rawInstantiatePoly(ForAll found, Type req, Warner warn);
   430         /**
   431          * Report a check error
   432          */
   433         void report(DiagnosticPosition pos, Type found, Type req, JCDiagnostic details);
   434         /**
   435          * Obtain a warner for this check context
   436          */
   437         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
   438     }
   440     /**
   441      * This class represent a check context that is nested within another check
   442      * context - useful to check sub-expressions. The default behavior simply
   443      * redirects all method calls to the enclosing check context leveraging
   444      * the forwarding pattern.
   445      */
   446     static class NestedCheckContext implements CheckContext {
   447         CheckContext enclosingContext;
   449         NestedCheckContext(CheckContext enclosingContext) {
   450             this.enclosingContext = enclosingContext;
   451         }
   453         public boolean compatible(Type found, Type req, Warner warn) {
   454             return enclosingContext.compatible(found, req, warn);
   455         }
   457         public Type rawInstantiatePoly(ForAll found, Type req, Warner warn) {
   458             return enclosingContext.rawInstantiatePoly(found, req, warn);
   459         }
   461         public void report(DiagnosticPosition pos, Type found, Type req, JCDiagnostic details) {
   462             enclosingContext.report(pos, found, req, details);
   463         }
   465         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   466             return enclosingContext.checkWarner(pos, found, req);
   467         }
   468     }
   470     /**
   471      * Check context to be used when evaluating assignment/return statements
   472      */
   473     CheckContext basicHandler = new CheckContext() {
   474         public void report(DiagnosticPosition pos, Type found, Type req, JCDiagnostic details) {
   475             if (details == null) {
   476                 log.error(pos, "prob.found.req", found, req);
   477             } else {
   478                 log.error(pos, "prob.found.req.1", details);
   479             }
   480         }
   481         public boolean compatible(Type found, Type req, Warner warn) {
   482             return types.isAssignable(found, req, warn);
   483         }
   485         public Type rawInstantiatePoly(ForAll found, Type req, Warner warn) {
   486             if (req.tag == NONE)
   487                 req = found.qtype.tag <= VOID ? found.qtype : syms.objectType;
   488             return infer.instantiateExpr(found, req, warn);
   489         }
   491         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   492             return convertWarner(pos, found, req);
   493         }
   494     };
   496     /** Check that a given type is assignable to a given proto-type.
   497      *  If it is, return the type, otherwise return errType.
   498      *  @param pos        Position to be used for error reporting.
   499      *  @param found      The type that was found.
   500      *  @param req        The type that was required.
   501      */
   502     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   503         return checkType(pos, found, req, basicHandler);
   504     }
   506     Type checkType(final DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
   507         if (req.tag == ERROR)
   508             return req;
   509         if (found.tag == FORALL) {
   510             ForAll fa = (ForAll)found;
   511             Type owntype = instantiatePoly(pos, checkContext, fa, req, checkContext.checkWarner(pos, found, req));
   512             return checkType(pos, owntype, req, checkContext);
   513         }
   514         if (req.tag == NONE)
   515             return found;
   516         if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
   517             return found;
   518         } else {
   519             if (found.tag <= DOUBLE && req.tag <= DOUBLE) {
   520                 checkContext.report(pos, found, req, diags.fragment("possible.loss.of.precision"));
   521                 return types.createErrorType(found);
   522             }
   523             checkContext.report(pos, found, req, null);
   524             return types.createErrorType(found);
   525         }
   526     }
   528     /** Instantiate polymorphic type to some prototype, unless
   529      *  prototype is `anyPoly' in which case polymorphic type
   530      *  is returned unchanged.
   531      */
   532     Type instantiatePoly(DiagnosticPosition pos, CheckContext checkContext, ForAll t, Type pt, Warner warn) throws Infer.NoInstanceException {
   533         try {
   534             return checkContext.rawInstantiatePoly(t, pt, warn);
   535         } catch (final Infer.NoInstanceException ex) {
   536             JCDiagnostic d = ex.getDiagnostic();
   537             if (d != null) {
   538                 if (ex.isAmbiguous) {
   539                     d = diags.fragment("undetermined.type", t, d);
   540                 }
   541             }
   542             checkContext.report(pos, t, pt, d);
   543             return types.createErrorType(pt);
   544         } catch (Infer.InvalidInstanceException ex) {
   545             JCDiagnostic d = ex.getDiagnostic();
   546             if (d != null) {
   547                 d = diags.fragment("invalid.inferred.types", t.tvars, d);
   548             }
   549             checkContext.report(pos, t, pt, d);
   550             return types.createErrorType(pt);
   551         }
   552     }
   554     /** Check that a given type can be cast to a given target type.
   555      *  Return the result of the cast.
   556      *  @param pos        Position to be used for error reporting.
   557      *  @param found      The type that is being cast.
   558      *  @param req        The target type of the cast.
   559      */
   560     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   561         return checkCastable(pos, found, req, basicHandler);
   562     }
   563     Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
   564         if (found.tag == FORALL) {
   565             instantiatePoly(pos, basicHandler, (ForAll) found, req, castWarner(pos, found, req));
   566             return req;
   567         } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
   568             return req;
   569         } else {
   570             checkContext.report(pos, found, req, diags.fragment("inconvertible.types", found, req));
   571             return types.createErrorType(found);
   572         }
   573     }
   575     /** Check for redundant casts (i.e. where source type is a subtype of target type)
   576      * The problem should only be reported for non-292 cast
   577      */
   578     public void checkRedundantCast(Env<AttrContext> env, JCTypeCast tree) {
   579         if (!tree.type.isErroneous() &&
   580             (env.info.lint == null || env.info.lint.isEnabled(Lint.LintCategory.CAST))
   581             && types.isSameType(tree.expr.type, tree.clazz.type)
   582             && !is292targetTypeCast(tree)) {
   583             log.warning(Lint.LintCategory.CAST,
   584                     tree.pos(), "redundant.cast", tree.expr.type);
   585         }
   586     }
   587     //where
   588             private boolean is292targetTypeCast(JCTypeCast tree) {
   589                 boolean is292targetTypeCast = false;
   590                 JCExpression expr = TreeInfo.skipParens(tree.expr);
   591                 if (expr.hasTag(APPLY)) {
   592                     JCMethodInvocation apply = (JCMethodInvocation)expr;
   593                     Symbol sym = TreeInfo.symbol(apply.meth);
   594                     is292targetTypeCast = sym != null &&
   595                         sym.kind == MTH &&
   596                         (sym.flags() & POLYMORPHIC_SIGNATURE) != 0;
   597                 }
   598                 return is292targetTypeCast;
   599             }
   603 //where
   604         /** Is type a type variable, or a (possibly multi-dimensional) array of
   605          *  type variables?
   606          */
   607         boolean isTypeVar(Type t) {
   608             return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
   609         }
   611     /** Check that a type is within some bounds.
   612      *
   613      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   614      *  type argument.
   615      *  @param pos           Position to be used for error reporting.
   616      *  @param a             The type that should be bounded by bs.
   617      *  @param bs            The bound.
   618      */
   619     private boolean checkExtends(Type a, Type bound) {
   620          if (a.isUnbound()) {
   621              return true;
   622          } else if (a.tag != WILDCARD) {
   623              a = types.upperBound(a);
   624              return types.isSubtype(a, bound);
   625          } else if (a.isExtendsBound()) {
   626              return types.isCastable(bound, types.upperBound(a), Warner.noWarnings);
   627          } else if (a.isSuperBound()) {
   628              return !types.notSoftSubtype(types.lowerBound(a), bound);
   629          }
   630          return true;
   631      }
   633     /** Check that type is different from 'void'.
   634      *  @param pos           Position to be used for error reporting.
   635      *  @param t             The type to be checked.
   636      */
   637     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   638         if (t.tag == VOID) {
   639             log.error(pos, "void.not.allowed.here");
   640             return types.createErrorType(t);
   641         } else {
   642             return t;
   643         }
   644     }
   646     /** Check that type is a class or interface type.
   647      *  @param pos           Position to be used for error reporting.
   648      *  @param t             The type to be checked.
   649      */
   650     Type checkClassType(DiagnosticPosition pos, Type t) {
   651         if (t.tag != CLASS && t.tag != ERROR)
   652             return typeTagError(pos,
   653                                 diags.fragment("type.req.class"),
   654                                 (t.tag == TYPEVAR)
   655                                 ? diags.fragment("type.parameter", t)
   656                                 : t);
   657         else
   658             return t;
   659     }
   661     /** Check that type is a class or interface type.
   662      *  @param pos           Position to be used for error reporting.
   663      *  @param t             The type to be checked.
   664      *  @param noBounds    True if type bounds are illegal here.
   665      */
   666     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   667         t = checkClassType(pos, t);
   668         if (noBounds && t.isParameterized()) {
   669             List<Type> args = t.getTypeArguments();
   670             while (args.nonEmpty()) {
   671                 if (args.head.tag == WILDCARD)
   672                     return typeTagError(pos,
   673                                         diags.fragment("type.req.exact"),
   674                                         args.head);
   675                 args = args.tail;
   676             }
   677         }
   678         return t;
   679     }
   681     /** Check that type is a reifiable class, interface or array type.
   682      *  @param pos           Position to be used for error reporting.
   683      *  @param t             The type to be checked.
   684      */
   685     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
   686         if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
   687             return typeTagError(pos,
   688                                 diags.fragment("type.req.class.array"),
   689                                 t);
   690         } else if (!types.isReifiable(t)) {
   691             log.error(pos, "illegal.generic.type.for.instof");
   692             return types.createErrorType(t);
   693         } else {
   694             return t;
   695         }
   696     }
   698     /** Check that type is a reference type, i.e. a class, interface or array type
   699      *  or a type variable.
   700      *  @param pos           Position to be used for error reporting.
   701      *  @param t             The type to be checked.
   702      */
   703     Type checkRefType(DiagnosticPosition pos, Type t) {
   704         switch (t.tag) {
   705         case CLASS:
   706         case ARRAY:
   707         case TYPEVAR:
   708         case WILDCARD:
   709         case ERROR:
   710             return t;
   711         default:
   712             return typeTagError(pos,
   713                                 diags.fragment("type.req.ref"),
   714                                 t);
   715         }
   716     }
   718     /** Check that each type is a reference type, i.e. a class, interface or array type
   719      *  or a type variable.
   720      *  @param trees         Original trees, used for error reporting.
   721      *  @param types         The types to be checked.
   722      */
   723     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
   724         List<JCExpression> tl = trees;
   725         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
   726             l.head = checkRefType(tl.head.pos(), l.head);
   727             tl = tl.tail;
   728         }
   729         return types;
   730     }
   732     /** Check that type is a null or reference type.
   733      *  @param pos           Position to be used for error reporting.
   734      *  @param t             The type to be checked.
   735      */
   736     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   737         switch (t.tag) {
   738         case CLASS:
   739         case ARRAY:
   740         case TYPEVAR:
   741         case WILDCARD:
   742         case BOT:
   743         case ERROR:
   744             return t;
   745         default:
   746             return typeTagError(pos,
   747                                 diags.fragment("type.req.ref"),
   748                                 t);
   749         }
   750     }
   752     /** Check that flag set does not contain elements of two conflicting sets. s
   753      *  Return true if it doesn't.
   754      *  @param pos           Position to be used for error reporting.
   755      *  @param flags         The set of flags to be checked.
   756      *  @param set1          Conflicting flags set #1.
   757      *  @param set2          Conflicting flags set #2.
   758      */
   759     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   760         if ((flags & set1) != 0 && (flags & set2) != 0) {
   761             log.error(pos,
   762                       "illegal.combination.of.modifiers",
   763                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
   764                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
   765             return false;
   766         } else
   767             return true;
   768     }
   770     /** Check that usage of diamond operator is correct (i.e. diamond should not
   771      * be used with non-generic classes or in anonymous class creation expressions)
   772      */
   773     Type checkDiamond(JCNewClass tree, Type t) {
   774         if (!TreeInfo.isDiamond(tree) ||
   775                 t.isErroneous()) {
   776             return checkClassType(tree.clazz.pos(), t, true);
   777         } else if (tree.def != null) {
   778             log.error(tree.clazz.pos(),
   779                     "cant.apply.diamond.1",
   780                     t, diags.fragment("diamond.and.anon.class", t));
   781             return types.createErrorType(t);
   782         } else if (t.tsym.type.getTypeArguments().isEmpty()) {
   783             log.error(tree.clazz.pos(),
   784                 "cant.apply.diamond.1",
   785                 t, diags.fragment("diamond.non.generic", t));
   786             return types.createErrorType(t);
   787         } else if (tree.typeargs != null &&
   788                 tree.typeargs.nonEmpty()) {
   789             log.error(tree.clazz.pos(),
   790                 "cant.apply.diamond.1",
   791                 t, diags.fragment("diamond.and.explicit.params", t));
   792             return types.createErrorType(t);
   793         } else {
   794             return t;
   795         }
   796     }
   798     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
   799         MethodSymbol m = tree.sym;
   800         if (!allowSimplifiedVarargs) return;
   801         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
   802         Type varargElemType = null;
   803         if (m.isVarArgs()) {
   804             varargElemType = types.elemtype(tree.params.last().type);
   805         }
   806         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
   807             if (varargElemType != null) {
   808                 log.error(tree,
   809                         "varargs.invalid.trustme.anno",
   810                         syms.trustMeType.tsym,
   811                         diags.fragment("varargs.trustme.on.virtual.varargs", m));
   812             } else {
   813                 log.error(tree,
   814                             "varargs.invalid.trustme.anno",
   815                             syms.trustMeType.tsym,
   816                             diags.fragment("varargs.trustme.on.non.varargs.meth", m));
   817             }
   818         } else if (hasTrustMeAnno && varargElemType != null &&
   819                             types.isReifiable(varargElemType)) {
   820             warnUnsafeVararg(tree,
   821                             "varargs.redundant.trustme.anno",
   822                             syms.trustMeType.tsym,
   823                             diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
   824         }
   825         else if (!hasTrustMeAnno && varargElemType != null &&
   826                 !types.isReifiable(varargElemType)) {
   827             warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
   828         }
   829     }
   830     //where
   831         private boolean isTrustMeAllowedOnMethod(Symbol s) {
   832             return (s.flags() & VARARGS) != 0 &&
   833                 (s.isConstructor() ||
   834                     (s.flags() & (STATIC | FINAL)) != 0);
   835         }
   837     Type checkMethod(Type owntype,
   838                             Symbol sym,
   839                             Env<AttrContext> env,
   840                             final List<JCExpression> argtrees,
   841                             List<Type> argtypes,
   842                             boolean useVarargs,
   843                             boolean unchecked) {
   844         // System.out.println("call   : " + env.tree);
   845         // System.out.println("method : " + owntype);
   846         // System.out.println("actuals: " + argtypes);
   847         List<Type> formals = owntype.getParameterTypes();
   848         Type last = useVarargs ? formals.last() : null;
   849         if (sym.name==names.init &&
   850                 sym.owner == syms.enumSym)
   851                 formals = formals.tail.tail;
   852         List<JCExpression> args = argtrees;
   853         while (formals.head != last) {
   854             JCTree arg = args.head;
   855             Warner warn = convertWarner(arg.pos(), arg.type, formals.head);
   856             assertConvertible(arg, arg.type, formals.head, warn);
   857             args = args.tail;
   858             formals = formals.tail;
   859         }
   860         if (useVarargs) {
   861             Type varArg = types.elemtype(last);
   862             while (args.tail != null) {
   863                 JCTree arg = args.head;
   864                 Warner warn = convertWarner(arg.pos(), arg.type, varArg);
   865                 assertConvertible(arg, arg.type, varArg, warn);
   866                 args = args.tail;
   867             }
   868         } else if ((sym.flags() & VARARGS) != 0 && allowVarargs) {
   869             // non-varargs call to varargs method
   870             Type varParam = owntype.getParameterTypes().last();
   871             Type lastArg = argtypes.last();
   872             if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
   873                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
   874                 log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
   875                         types.elemtype(varParam), varParam);
   876         }
   877         if (unchecked) {
   878             warnUnchecked(env.tree.pos(),
   879                     "unchecked.meth.invocation.applied",
   880                     kindName(sym),
   881                     sym.name,
   882                     rs.methodArguments(sym.type.getParameterTypes()),
   883                     rs.methodArguments(argtypes),
   884                     kindName(sym.location()),
   885                     sym.location());
   886            owntype = new MethodType(owntype.getParameterTypes(),
   887                    types.erasure(owntype.getReturnType()),
   888                    types.erasure(owntype.getThrownTypes()),
   889                    syms.methodClass);
   890         }
   891         if (useVarargs) {
   892             JCTree tree = env.tree;
   893             Type argtype = owntype.getParameterTypes().last();
   894             if (!types.isReifiable(argtype) &&
   895                     (!allowSimplifiedVarargs ||
   896                     sym.attribute(syms.trustMeType.tsym) == null ||
   897                     !isTrustMeAllowedOnMethod(sym))) {
   898                 warnUnchecked(env.tree.pos(),
   899                                   "unchecked.generic.array.creation",
   900                                   argtype);
   901             }
   902             Type elemtype = types.elemtype(argtype);
   903             switch (tree.getTag()) {
   904                 case APPLY:
   905                     ((JCMethodInvocation) tree).varargsElement = elemtype;
   906                     break;
   907                 case NEWCLASS:
   908                     ((JCNewClass) tree).varargsElement = elemtype;
   909                     break;
   910                 default:
   911                     throw new AssertionError(""+tree);
   912             }
   913          }
   914          return owntype;
   915     }
   916     //where
   917         private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
   918             if (types.isConvertible(actual, formal, warn))
   919                 return;
   921             if (formal.isCompound()
   922                 && types.isSubtype(actual, types.supertype(formal))
   923                 && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
   924                 return;
   925         }
   927     /**
   928      * Check that type 't' is a valid instantiation of a generic class
   929      * (see JLS 4.5)
   930      *
   931      * @param t class type to be checked
   932      * @return true if 't' is well-formed
   933      */
   934     public boolean checkValidGenericType(Type t) {
   935         return firstIncompatibleTypeArg(t) == null;
   936     }
   937     //WHERE
   938         private Type firstIncompatibleTypeArg(Type type) {
   939             List<Type> formals = type.tsym.type.allparams();
   940             List<Type> actuals = type.allparams();
   941             List<Type> args = type.getTypeArguments();
   942             List<Type> forms = type.tsym.type.getTypeArguments();
   943             ListBuffer<Type> bounds_buf = new ListBuffer<Type>();
   945             // For matching pairs of actual argument types `a' and
   946             // formal type parameters with declared bound `b' ...
   947             while (args.nonEmpty() && forms.nonEmpty()) {
   948                 // exact type arguments needs to know their
   949                 // bounds (for upper and lower bound
   950                 // calculations).  So we create new bounds where
   951                 // type-parameters are replaced with actuals argument types.
   952                 bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
   953                 args = args.tail;
   954                 forms = forms.tail;
   955             }
   957             args = type.getTypeArguments();
   958             List<Type> tvars_cap = types.substBounds(formals,
   959                                       formals,
   960                                       types.capture(type).allparams());
   961             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
   962                 // Let the actual arguments know their bound
   963                 args.head.withTypeVar((TypeVar)tvars_cap.head);
   964                 args = args.tail;
   965                 tvars_cap = tvars_cap.tail;
   966             }
   968             args = type.getTypeArguments();
   969             List<Type> bounds = bounds_buf.toList();
   971             while (args.nonEmpty() && bounds.nonEmpty()) {
   972                 Type actual = args.head;
   973                 if (!isTypeArgErroneous(actual) &&
   974                         !bounds.head.isErroneous() &&
   975                         !checkExtends(actual, bounds.head)) {
   976                     return args.head;
   977                 }
   978                 args = args.tail;
   979                 bounds = bounds.tail;
   980             }
   982             args = type.getTypeArguments();
   983             bounds = bounds_buf.toList();
   985             for (Type arg : types.capture(type).getTypeArguments()) {
   986                 if (arg.tag == TYPEVAR &&
   987                         arg.getUpperBound().isErroneous() &&
   988                         !bounds.head.isErroneous() &&
   989                         !isTypeArgErroneous(args.head)) {
   990                     return args.head;
   991                 }
   992                 bounds = bounds.tail;
   993                 args = args.tail;
   994             }
   996             return null;
   997         }
   998         //where
   999         boolean isTypeArgErroneous(Type t) {
  1000             return isTypeArgErroneous.visit(t);
  1003         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
  1004             public Boolean visitType(Type t, Void s) {
  1005                 return t.isErroneous();
  1007             @Override
  1008             public Boolean visitTypeVar(TypeVar t, Void s) {
  1009                 return visit(t.getUpperBound());
  1011             @Override
  1012             public Boolean visitCapturedType(CapturedType t, Void s) {
  1013                 return visit(t.getUpperBound()) ||
  1014                         visit(t.getLowerBound());
  1016             @Override
  1017             public Boolean visitWildcardType(WildcardType t, Void s) {
  1018                 return visit(t.type);
  1020         };
  1022     /** Check that given modifiers are legal for given symbol and
  1023      *  return modifiers together with any implicit modififiers for that symbol.
  1024      *  Warning: we can't use flags() here since this method
  1025      *  is called during class enter, when flags() would cause a premature
  1026      *  completion.
  1027      *  @param pos           Position to be used for error reporting.
  1028      *  @param flags         The set of modifiers given in a definition.
  1029      *  @param sym           The defined symbol.
  1030      */
  1031     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
  1032         long mask;
  1033         long implicit = 0;
  1034         switch (sym.kind) {
  1035         case VAR:
  1036             if (sym.owner.kind != TYP)
  1037                 mask = LocalVarFlags;
  1038             else if ((sym.owner.flags_field & INTERFACE) != 0)
  1039                 mask = implicit = InterfaceVarFlags;
  1040             else
  1041                 mask = VarFlags;
  1042             break;
  1043         case MTH:
  1044             if (sym.name == names.init) {
  1045                 if ((sym.owner.flags_field & ENUM) != 0) {
  1046                     // enum constructors cannot be declared public or
  1047                     // protected and must be implicitly or explicitly
  1048                     // private
  1049                     implicit = PRIVATE;
  1050                     mask = PRIVATE;
  1051                 } else
  1052                     mask = ConstructorFlags;
  1053             }  else if ((sym.owner.flags_field & INTERFACE) != 0)
  1054                 mask = implicit = InterfaceMethodFlags;
  1055             else {
  1056                 mask = MethodFlags;
  1058             // Imply STRICTFP if owner has STRICTFP set.
  1059             if (((flags|implicit) & Flags.ABSTRACT) == 0)
  1060               implicit |= sym.owner.flags_field & STRICTFP;
  1061             break;
  1062         case TYP:
  1063             if (sym.isLocal()) {
  1064                 mask = LocalClassFlags;
  1065                 if (sym.name.isEmpty()) { // Anonymous class
  1066                     // Anonymous classes in static methods are themselves static;
  1067                     // that's why we admit STATIC here.
  1068                     mask |= STATIC;
  1069                     // JLS: Anonymous classes are final.
  1070                     implicit |= FINAL;
  1072                 if ((sym.owner.flags_field & STATIC) == 0 &&
  1073                     (flags & ENUM) != 0)
  1074                     log.error(pos, "enums.must.be.static");
  1075             } else if (sym.owner.kind == TYP) {
  1076                 mask = MemberClassFlags;
  1077                 if (sym.owner.owner.kind == PCK ||
  1078                     (sym.owner.flags_field & STATIC) != 0)
  1079                     mask |= STATIC;
  1080                 else if ((flags & ENUM) != 0)
  1081                     log.error(pos, "enums.must.be.static");
  1082                 // Nested interfaces and enums are always STATIC (Spec ???)
  1083                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
  1084             } else {
  1085                 mask = ClassFlags;
  1087             // Interfaces are always ABSTRACT
  1088             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
  1090             if ((flags & ENUM) != 0) {
  1091                 // enums can't be declared abstract or final
  1092                 mask &= ~(ABSTRACT | FINAL);
  1093                 implicit |= implicitEnumFinalFlag(tree);
  1095             // Imply STRICTFP if owner has STRICTFP set.
  1096             implicit |= sym.owner.flags_field & STRICTFP;
  1097             break;
  1098         default:
  1099             throw new AssertionError();
  1101         long illegal = flags & StandardFlags & ~mask;
  1102         if (illegal != 0) {
  1103             if ((illegal & INTERFACE) != 0) {
  1104                 log.error(pos, "intf.not.allowed.here");
  1105                 mask |= INTERFACE;
  1107             else {
  1108                 log.error(pos,
  1109                           "mod.not.allowed.here", asFlagSet(illegal));
  1112         else if ((sym.kind == TYP ||
  1113                   // ISSUE: Disallowing abstract&private is no longer appropriate
  1114                   // in the presence of inner classes. Should it be deleted here?
  1115                   checkDisjoint(pos, flags,
  1116                                 ABSTRACT,
  1117                                 PRIVATE | STATIC))
  1118                  &&
  1119                  checkDisjoint(pos, flags,
  1120                                ABSTRACT | INTERFACE,
  1121                                FINAL | NATIVE | SYNCHRONIZED)
  1122                  &&
  1123                  checkDisjoint(pos, flags,
  1124                                PUBLIC,
  1125                                PRIVATE | PROTECTED)
  1126                  &&
  1127                  checkDisjoint(pos, flags,
  1128                                PRIVATE,
  1129                                PUBLIC | PROTECTED)
  1130                  &&
  1131                  checkDisjoint(pos, flags,
  1132                                FINAL,
  1133                                VOLATILE)
  1134                  &&
  1135                  (sym.kind == TYP ||
  1136                   checkDisjoint(pos, flags,
  1137                                 ABSTRACT | NATIVE,
  1138                                 STRICTFP))) {
  1139             // skip
  1141         return flags & (mask | ~StandardFlags) | implicit;
  1145     /** Determine if this enum should be implicitly final.
  1147      *  If the enum has no specialized enum contants, it is final.
  1149      *  If the enum does have specialized enum contants, it is
  1150      *  <i>not</i> final.
  1151      */
  1152     private long implicitEnumFinalFlag(JCTree tree) {
  1153         if (!tree.hasTag(CLASSDEF)) return 0;
  1154         class SpecialTreeVisitor extends JCTree.Visitor {
  1155             boolean specialized;
  1156             SpecialTreeVisitor() {
  1157                 this.specialized = false;
  1158             };
  1160             @Override
  1161             public void visitTree(JCTree tree) { /* no-op */ }
  1163             @Override
  1164             public void visitVarDef(JCVariableDecl tree) {
  1165                 if ((tree.mods.flags & ENUM) != 0) {
  1166                     if (tree.init instanceof JCNewClass &&
  1167                         ((JCNewClass) tree.init).def != null) {
  1168                         specialized = true;
  1174         SpecialTreeVisitor sts = new SpecialTreeVisitor();
  1175         JCClassDecl cdef = (JCClassDecl) tree;
  1176         for (JCTree defs: cdef.defs) {
  1177             defs.accept(sts);
  1178             if (sts.specialized) return 0;
  1180         return FINAL;
  1183 /* *************************************************************************
  1184  * Type Validation
  1185  **************************************************************************/
  1187     /** Validate a type expression. That is,
  1188      *  check that all type arguments of a parametric type are within
  1189      *  their bounds. This must be done in a second phase after type attributon
  1190      *  since a class might have a subclass as type parameter bound. E.g:
  1192      *  class B<A extends C> { ... }
  1193      *  class C extends B<C> { ... }
  1195      *  and we can't make sure that the bound is already attributed because
  1196      *  of possible cycles.
  1198      * Visitor method: Validate a type expression, if it is not null, catching
  1199      *  and reporting any completion failures.
  1200      */
  1201     void validate(JCTree tree, Env<AttrContext> env) {
  1202         validate(tree, env, true);
  1204     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
  1205         new Validator(env).validateTree(tree, checkRaw, true);
  1208     /** Visitor method: Validate a list of type expressions.
  1209      */
  1210     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
  1211         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1212             validate(l.head, env);
  1215     /** A visitor class for type validation.
  1216      */
  1217     class Validator extends JCTree.Visitor {
  1219         boolean isOuter;
  1220         Env<AttrContext> env;
  1222         Validator(Env<AttrContext> env) {
  1223             this.env = env;
  1226         @Override
  1227         public void visitTypeArray(JCArrayTypeTree tree) {
  1228             tree.elemtype.accept(this);
  1231         @Override
  1232         public void visitTypeApply(JCTypeApply tree) {
  1233             if (tree.type.tag == CLASS) {
  1234                 List<JCExpression> args = tree.arguments;
  1235                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
  1237                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
  1238                 if (incompatibleArg != null) {
  1239                     for (JCTree arg : tree.arguments) {
  1240                         if (arg.type == incompatibleArg) {
  1241                             log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
  1243                         forms = forms.tail;
  1247                 forms = tree.type.tsym.type.getTypeArguments();
  1249                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
  1251                 // For matching pairs of actual argument types `a' and
  1252                 // formal type parameters with declared bound `b' ...
  1253                 while (args.nonEmpty() && forms.nonEmpty()) {
  1254                     validateTree(args.head,
  1255                             !(isOuter && is_java_lang_Class),
  1256                             false);
  1257                     args = args.tail;
  1258                     forms = forms.tail;
  1261                 // Check that this type is either fully parameterized, or
  1262                 // not parameterized at all.
  1263                 if (tree.type.getEnclosingType().isRaw())
  1264                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
  1265                 if (tree.clazz.hasTag(SELECT))
  1266                     visitSelectInternal((JCFieldAccess)tree.clazz);
  1270         @Override
  1271         public void visitTypeParameter(JCTypeParameter tree) {
  1272             validateTrees(tree.bounds, true, isOuter);
  1273             checkClassBounds(tree.pos(), tree.type);
  1276         @Override
  1277         public void visitWildcard(JCWildcard tree) {
  1278             if (tree.inner != null)
  1279                 validateTree(tree.inner, true, isOuter);
  1282         @Override
  1283         public void visitSelect(JCFieldAccess tree) {
  1284             if (tree.type.tag == CLASS) {
  1285                 visitSelectInternal(tree);
  1287                 // Check that this type is either fully parameterized, or
  1288                 // not parameterized at all.
  1289                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
  1290                     log.error(tree.pos(), "improperly.formed.type.param.missing");
  1294         public void visitSelectInternal(JCFieldAccess tree) {
  1295             if (tree.type.tsym.isStatic() &&
  1296                 tree.selected.type.isParameterized()) {
  1297                 // The enclosing type is not a class, so we are
  1298                 // looking at a static member type.  However, the
  1299                 // qualifying expression is parameterized.
  1300                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
  1301             } else {
  1302                 // otherwise validate the rest of the expression
  1303                 tree.selected.accept(this);
  1307         /** Default visitor method: do nothing.
  1308          */
  1309         @Override
  1310         public void visitTree(JCTree tree) {
  1313         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
  1314             try {
  1315                 if (tree != null) {
  1316                     this.isOuter = isOuter;
  1317                     tree.accept(this);
  1318                     if (checkRaw)
  1319                         checkRaw(tree, env);
  1321             } catch (CompletionFailure ex) {
  1322                 completionError(tree.pos(), ex);
  1326         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
  1327             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1328                 validateTree(l.head, checkRaw, isOuter);
  1331         void checkRaw(JCTree tree, Env<AttrContext> env) {
  1332             if (lint.isEnabled(LintCategory.RAW) &&
  1333                 tree.type.tag == CLASS &&
  1334                 !TreeInfo.isDiamond(tree) &&
  1335                 !withinAnonConstr(env) &&
  1336                 tree.type.isRaw()) {
  1337                 log.warning(LintCategory.RAW,
  1338                         tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
  1342         boolean withinAnonConstr(Env<AttrContext> env) {
  1343             return env.enclClass.name.isEmpty() &&
  1344                     env.enclMethod != null && env.enclMethod.name == names.init;
  1348 /* *************************************************************************
  1349  * Exception checking
  1350  **************************************************************************/
  1352     /* The following methods treat classes as sets that contain
  1353      * the class itself and all their subclasses
  1354      */
  1356     /** Is given type a subtype of some of the types in given list?
  1357      */
  1358     boolean subset(Type t, List<Type> ts) {
  1359         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1360             if (types.isSubtype(t, l.head)) return true;
  1361         return false;
  1364     /** Is given type a subtype or supertype of
  1365      *  some of the types in given list?
  1366      */
  1367     boolean intersects(Type t, List<Type> ts) {
  1368         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1369             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
  1370         return false;
  1373     /** Add type set to given type list, unless it is a subclass of some class
  1374      *  in the list.
  1375      */
  1376     List<Type> incl(Type t, List<Type> ts) {
  1377         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
  1380     /** Remove type set from type set list.
  1381      */
  1382     List<Type> excl(Type t, List<Type> ts) {
  1383         if (ts.isEmpty()) {
  1384             return ts;
  1385         } else {
  1386             List<Type> ts1 = excl(t, ts.tail);
  1387             if (types.isSubtype(ts.head, t)) return ts1;
  1388             else if (ts1 == ts.tail) return ts;
  1389             else return ts1.prepend(ts.head);
  1393     /** Form the union of two type set lists.
  1394      */
  1395     List<Type> union(List<Type> ts1, List<Type> ts2) {
  1396         List<Type> ts = ts1;
  1397         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1398             ts = incl(l.head, ts);
  1399         return ts;
  1402     /** Form the difference of two type lists.
  1403      */
  1404     List<Type> diff(List<Type> ts1, List<Type> ts2) {
  1405         List<Type> ts = ts1;
  1406         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1407             ts = excl(l.head, ts);
  1408         return ts;
  1411     /** Form the intersection of two type lists.
  1412      */
  1413     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
  1414         List<Type> ts = List.nil();
  1415         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
  1416             if (subset(l.head, ts2)) ts = incl(l.head, ts);
  1417         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1418             if (subset(l.head, ts1)) ts = incl(l.head, ts);
  1419         return ts;
  1422     /** Is exc an exception symbol that need not be declared?
  1423      */
  1424     boolean isUnchecked(ClassSymbol exc) {
  1425         return
  1426             exc.kind == ERR ||
  1427             exc.isSubClass(syms.errorType.tsym, types) ||
  1428             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
  1431     /** Is exc an exception type that need not be declared?
  1432      */
  1433     boolean isUnchecked(Type exc) {
  1434         return
  1435             (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
  1436             (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
  1437             exc.tag == BOT;
  1440     /** Same, but handling completion failures.
  1441      */
  1442     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
  1443         try {
  1444             return isUnchecked(exc);
  1445         } catch (CompletionFailure ex) {
  1446             completionError(pos, ex);
  1447             return true;
  1451     /** Is exc handled by given exception list?
  1452      */
  1453     boolean isHandled(Type exc, List<Type> handled) {
  1454         return isUnchecked(exc) || subset(exc, handled);
  1457     /** Return all exceptions in thrown list that are not in handled list.
  1458      *  @param thrown     The list of thrown exceptions.
  1459      *  @param handled    The list of handled exceptions.
  1460      */
  1461     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
  1462         List<Type> unhandled = List.nil();
  1463         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
  1464             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
  1465         return unhandled;
  1468 /* *************************************************************************
  1469  * Overriding/Implementation checking
  1470  **************************************************************************/
  1472     /** The level of access protection given by a flag set,
  1473      *  where PRIVATE is highest and PUBLIC is lowest.
  1474      */
  1475     static int protection(long flags) {
  1476         switch ((short)(flags & AccessFlags)) {
  1477         case PRIVATE: return 3;
  1478         case PROTECTED: return 1;
  1479         default:
  1480         case PUBLIC: return 0;
  1481         case 0: return 2;
  1485     /** A customized "cannot override" error message.
  1486      *  @param m      The overriding method.
  1487      *  @param other  The overridden method.
  1488      *  @return       An internationalized string.
  1489      */
  1490     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1491         String key;
  1492         if ((other.owner.flags() & INTERFACE) == 0)
  1493             key = "cant.override";
  1494         else if ((m.owner.flags() & INTERFACE) == 0)
  1495             key = "cant.implement";
  1496         else
  1497             key = "clashes.with";
  1498         return diags.fragment(key, m, m.location(), other, other.location());
  1501     /** A customized "override" warning message.
  1502      *  @param m      The overriding method.
  1503      *  @param other  The overridden method.
  1504      *  @return       An internationalized string.
  1505      */
  1506     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1507         String key;
  1508         if ((other.owner.flags() & INTERFACE) == 0)
  1509             key = "unchecked.override";
  1510         else if ((m.owner.flags() & INTERFACE) == 0)
  1511             key = "unchecked.implement";
  1512         else
  1513             key = "unchecked.clash.with";
  1514         return diags.fragment(key, m, m.location(), other, other.location());
  1517     /** A customized "override" warning message.
  1518      *  @param m      The overriding method.
  1519      *  @param other  The overridden method.
  1520      *  @return       An internationalized string.
  1521      */
  1522     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1523         String key;
  1524         if ((other.owner.flags() & INTERFACE) == 0)
  1525             key = "varargs.override";
  1526         else  if ((m.owner.flags() & INTERFACE) == 0)
  1527             key = "varargs.implement";
  1528         else
  1529             key = "varargs.clash.with";
  1530         return diags.fragment(key, m, m.location(), other, other.location());
  1533     /** Check that this method conforms with overridden method 'other'.
  1534      *  where `origin' is the class where checking started.
  1535      *  Complications:
  1536      *  (1) Do not check overriding of synthetic methods
  1537      *      (reason: they might be final).
  1538      *      todo: check whether this is still necessary.
  1539      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1540      *      than the method it implements. Augment the proxy methods with the
  1541      *      undeclared exceptions in this case.
  1542      *  (3) When generics are enabled, admit the case where an interface proxy
  1543      *      has a result type
  1544      *      extended by the result type of the method it implements.
  1545      *      Change the proxies result type to the smaller type in this case.
  1547      *  @param tree         The tree from which positions
  1548      *                      are extracted for errors.
  1549      *  @param m            The overriding method.
  1550      *  @param other        The overridden method.
  1551      *  @param origin       The class of which the overriding method
  1552      *                      is a member.
  1553      */
  1554     void checkOverride(JCTree tree,
  1555                        MethodSymbol m,
  1556                        MethodSymbol other,
  1557                        ClassSymbol origin) {
  1558         // Don't check overriding of synthetic methods or by bridge methods.
  1559         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1560             return;
  1563         // Error if static method overrides instance method (JLS 8.4.6.2).
  1564         if ((m.flags() & STATIC) != 0 &&
  1565                    (other.flags() & STATIC) == 0) {
  1566             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1567                       cannotOverride(m, other));
  1568             return;
  1571         // Error if instance method overrides static or final
  1572         // method (JLS 8.4.6.1).
  1573         if ((other.flags() & FINAL) != 0 ||
  1574                  (m.flags() & STATIC) == 0 &&
  1575                  (other.flags() & STATIC) != 0) {
  1576             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1577                       cannotOverride(m, other),
  1578                       asFlagSet(other.flags() & (FINAL | STATIC)));
  1579             return;
  1582         if ((m.owner.flags() & ANNOTATION) != 0) {
  1583             // handled in validateAnnotationMethod
  1584             return;
  1587         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1588         if ((origin.flags() & INTERFACE) == 0 &&
  1589                  protection(m.flags()) > protection(other.flags())) {
  1590             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1591                       cannotOverride(m, other),
  1592                       other.flags() == 0 ?
  1593                           Flag.PACKAGE :
  1594                           asFlagSet(other.flags() & AccessFlags));
  1595             return;
  1598         Type mt = types.memberType(origin.type, m);
  1599         Type ot = types.memberType(origin.type, other);
  1600         // Error if overriding result type is different
  1601         // (or, in the case of generics mode, not a subtype) of
  1602         // overridden result type. We have to rename any type parameters
  1603         // before comparing types.
  1604         List<Type> mtvars = mt.getTypeArguments();
  1605         List<Type> otvars = ot.getTypeArguments();
  1606         Type mtres = mt.getReturnType();
  1607         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1609         overrideWarner.clear();
  1610         boolean resultTypesOK =
  1611             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1612         if (!resultTypesOK) {
  1613             if (!allowCovariantReturns &&
  1614                 m.owner != origin &&
  1615                 m.owner.isSubClass(other.owner, types)) {
  1616                 // allow limited interoperability with covariant returns
  1617             } else {
  1618                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1619                           "override.incompatible.ret",
  1620                           cannotOverride(m, other),
  1621                           mtres, otres);
  1622                 return;
  1624         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
  1625             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1626                     "override.unchecked.ret",
  1627                     uncheckedOverrides(m, other),
  1628                     mtres, otres);
  1631         // Error if overriding method throws an exception not reported
  1632         // by overridden method.
  1633         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1634         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
  1635         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
  1636         if (unhandledErased.nonEmpty()) {
  1637             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1638                       "override.meth.doesnt.throw",
  1639                       cannotOverride(m, other),
  1640                       unhandledUnerased.head);
  1641             return;
  1643         else if (unhandledUnerased.nonEmpty()) {
  1644             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1645                           "override.unchecked.thrown",
  1646                          cannotOverride(m, other),
  1647                          unhandledUnerased.head);
  1648             return;
  1651         // Optional warning if varargs don't agree
  1652         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1653             && lint.isEnabled(LintCategory.OVERRIDES)) {
  1654             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1655                         ((m.flags() & Flags.VARARGS) != 0)
  1656                         ? "override.varargs.missing"
  1657                         : "override.varargs.extra",
  1658                         varargsOverrides(m, other));
  1661         // Warn if instance method overrides bridge method (compiler spec ??)
  1662         if ((other.flags() & BRIDGE) != 0) {
  1663             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1664                         uncheckedOverrides(m, other));
  1667         // Warn if a deprecated method overridden by a non-deprecated one.
  1668         if (!isDeprecatedOverrideIgnorable(other, origin)) {
  1669             checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
  1672     // where
  1673         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1674             // If the method, m, is defined in an interface, then ignore the issue if the method
  1675             // is only inherited via a supertype and also implemented in the supertype,
  1676             // because in that case, we will rediscover the issue when examining the method
  1677             // in the supertype.
  1678             // If the method, m, is not defined in an interface, then the only time we need to
  1679             // address the issue is when the method is the supertype implemementation: any other
  1680             // case, we will have dealt with when examining the supertype classes
  1681             ClassSymbol mc = m.enclClass();
  1682             Type st = types.supertype(origin.type);
  1683             if (st.tag != CLASS)
  1684                 return true;
  1685             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1687             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1688                 List<Type> intfs = types.interfaces(origin.type);
  1689                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1691             else
  1692                 return (stimpl != m);
  1696     // used to check if there were any unchecked conversions
  1697     Warner overrideWarner = new Warner();
  1699     /** Check that a class does not inherit two concrete methods
  1700      *  with the same signature.
  1701      *  @param pos          Position to be used for error reporting.
  1702      *  @param site         The class type to be checked.
  1703      */
  1704     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1705         Type sup = types.supertype(site);
  1706         if (sup.tag != CLASS) return;
  1708         for (Type t1 = sup;
  1709              t1.tsym.type.isParameterized();
  1710              t1 = types.supertype(t1)) {
  1711             for (Scope.Entry e1 = t1.tsym.members().elems;
  1712                  e1 != null;
  1713                  e1 = e1.sibling) {
  1714                 Symbol s1 = e1.sym;
  1715                 if (s1.kind != MTH ||
  1716                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1717                     !s1.isInheritedIn(site.tsym, types) ||
  1718                     ((MethodSymbol)s1).implementation(site.tsym,
  1719                                                       types,
  1720                                                       true) != s1)
  1721                     continue;
  1722                 Type st1 = types.memberType(t1, s1);
  1723                 int s1ArgsLength = st1.getParameterTypes().length();
  1724                 if (st1 == s1.type) continue;
  1726                 for (Type t2 = sup;
  1727                      t2.tag == CLASS;
  1728                      t2 = types.supertype(t2)) {
  1729                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1730                          e2.scope != null;
  1731                          e2 = e2.next()) {
  1732                         Symbol s2 = e2.sym;
  1733                         if (s2 == s1 ||
  1734                             s2.kind != MTH ||
  1735                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1736                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1737                             !s2.isInheritedIn(site.tsym, types) ||
  1738                             ((MethodSymbol)s2).implementation(site.tsym,
  1739                                                               types,
  1740                                                               true) != s2)
  1741                             continue;
  1742                         Type st2 = types.memberType(t2, s2);
  1743                         if (types.overrideEquivalent(st1, st2))
  1744                             log.error(pos, "concrete.inheritance.conflict",
  1745                                       s1, t1, s2, t2, sup);
  1752     /** Check that classes (or interfaces) do not each define an abstract
  1753      *  method with same name and arguments but incompatible return types.
  1754      *  @param pos          Position to be used for error reporting.
  1755      *  @param t1           The first argument type.
  1756      *  @param t2           The second argument type.
  1757      */
  1758     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1759                                             Type t1,
  1760                                             Type t2) {
  1761         return checkCompatibleAbstracts(pos, t1, t2,
  1762                                         types.makeCompoundType(t1, t2));
  1765     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1766                                             Type t1,
  1767                                             Type t2,
  1768                                             Type site) {
  1769         return firstIncompatibility(pos, t1, t2, site) == null;
  1772     /** Return the first method which is defined with same args
  1773      *  but different return types in two given interfaces, or null if none
  1774      *  exists.
  1775      *  @param t1     The first type.
  1776      *  @param t2     The second type.
  1777      *  @param site   The most derived type.
  1778      *  @returns symbol from t2 that conflicts with one in t1.
  1779      */
  1780     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1781         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1782         closure(t1, interfaces1);
  1783         Map<TypeSymbol,Type> interfaces2;
  1784         if (t1 == t2)
  1785             interfaces2 = interfaces1;
  1786         else
  1787             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1789         for (Type t3 : interfaces1.values()) {
  1790             for (Type t4 : interfaces2.values()) {
  1791                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
  1792                 if (s != null) return s;
  1795         return null;
  1798     /** Compute all the supertypes of t, indexed by type symbol. */
  1799     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1800         if (t.tag != CLASS) return;
  1801         if (typeMap.put(t.tsym, t) == null) {
  1802             closure(types.supertype(t), typeMap);
  1803             for (Type i : types.interfaces(t))
  1804                 closure(i, typeMap);
  1808     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1809     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1810         if (t.tag != CLASS) return;
  1811         if (typesSkip.get(t.tsym) != null) return;
  1812         if (typeMap.put(t.tsym, t) == null) {
  1813             closure(types.supertype(t), typesSkip, typeMap);
  1814             for (Type i : types.interfaces(t))
  1815                 closure(i, typesSkip, typeMap);
  1819     /** Return the first method in t2 that conflicts with a method from t1. */
  1820     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1821         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1822             Symbol s1 = e1.sym;
  1823             Type st1 = null;
  1824             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
  1825             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1826             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1827             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1828                 Symbol s2 = e2.sym;
  1829                 if (s1 == s2) continue;
  1830                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
  1831                 if (st1 == null) st1 = types.memberType(t1, s1);
  1832                 Type st2 = types.memberType(t2, s2);
  1833                 if (types.overrideEquivalent(st1, st2)) {
  1834                     List<Type> tvars1 = st1.getTypeArguments();
  1835                     List<Type> tvars2 = st2.getTypeArguments();
  1836                     Type rt1 = st1.getReturnType();
  1837                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1838                     boolean compat =
  1839                         types.isSameType(rt1, rt2) ||
  1840                         rt1.tag >= CLASS && rt2.tag >= CLASS &&
  1841                         (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
  1842                          types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
  1843                          checkCommonOverriderIn(s1,s2,site);
  1844                     if (!compat) {
  1845                         log.error(pos, "types.incompatible.diff.ret",
  1846                             t1, t2, s2.name +
  1847                             "(" + types.memberType(t2, s2).getParameterTypes() + ")");
  1848                         return s2;
  1850                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
  1851                         !checkCommonOverriderIn(s1, s2, site)) {
  1852                     log.error(pos,
  1853                             "name.clash.same.erasure.no.override",
  1854                             s1, s1.location(),
  1855                             s2, s2.location());
  1856                     return s2;
  1860         return null;
  1862     //WHERE
  1863     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
  1864         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
  1865         Type st1 = types.memberType(site, s1);
  1866         Type st2 = types.memberType(site, s2);
  1867         closure(site, supertypes);
  1868         for (Type t : supertypes.values()) {
  1869             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
  1870                 Symbol s3 = e.sym;
  1871                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
  1872                 Type st3 = types.memberType(site,s3);
  1873                 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
  1874                     if (s3.owner == site.tsym) {
  1875                         return true;
  1877                     List<Type> tvars1 = st1.getTypeArguments();
  1878                     List<Type> tvars2 = st2.getTypeArguments();
  1879                     List<Type> tvars3 = st3.getTypeArguments();
  1880                     Type rt1 = st1.getReturnType();
  1881                     Type rt2 = st2.getReturnType();
  1882                     Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
  1883                     Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
  1884                     boolean compat =
  1885                         rt13.tag >= CLASS && rt23.tag >= CLASS &&
  1886                         (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
  1887                          types.covariantReturnType(rt23, rt2, Warner.noWarnings));
  1888                     if (compat)
  1889                         return true;
  1893         return false;
  1896     /** Check that a given method conforms with any method it overrides.
  1897      *  @param tree         The tree from which positions are extracted
  1898      *                      for errors.
  1899      *  @param m            The overriding method.
  1900      */
  1901     void checkOverride(JCTree tree, MethodSymbol m) {
  1902         ClassSymbol origin = (ClassSymbol)m.owner;
  1903         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1904             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1905                 log.error(tree.pos(), "enum.no.finalize");
  1906                 return;
  1908         for (Type t = origin.type; t.tag == CLASS;
  1909              t = types.supertype(t)) {
  1910             if (t != origin.type) {
  1911                 checkOverride(tree, t, origin, m);
  1913             for (Type t2 : types.interfaces(t)) {
  1914                 checkOverride(tree, t2, origin, m);
  1919     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
  1920         TypeSymbol c = site.tsym;
  1921         Scope.Entry e = c.members().lookup(m.name);
  1922         while (e.scope != null) {
  1923             if (m.overrides(e.sym, origin, types, false)) {
  1924                 if ((e.sym.flags() & ABSTRACT) == 0) {
  1925                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  1928             e = e.next();
  1932     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
  1933         ClashFilter cf = new ClashFilter(origin.type);
  1934         return (cf.accepts(s1) &&
  1935                 cf.accepts(s2) &&
  1936                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
  1940     /** Check that all abstract members of given class have definitions.
  1941      *  @param pos          Position to be used for error reporting.
  1942      *  @param c            The class.
  1943      */
  1944     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  1945         try {
  1946             MethodSymbol undef = firstUndef(c, c);
  1947             if (undef != null) {
  1948                 if ((c.flags() & ENUM) != 0 &&
  1949                     types.supertype(c.type).tsym == syms.enumSym &&
  1950                     (c.flags() & FINAL) == 0) {
  1951                     // add the ABSTRACT flag to an enum
  1952                     c.flags_field |= ABSTRACT;
  1953                 } else {
  1954                     MethodSymbol undef1 =
  1955                         new MethodSymbol(undef.flags(), undef.name,
  1956                                          types.memberType(c.type, undef), undef.owner);
  1957                     log.error(pos, "does.not.override.abstract",
  1958                               c, undef1, undef1.location());
  1961         } catch (CompletionFailure ex) {
  1962             completionError(pos, ex);
  1965 //where
  1966         /** Return first abstract member of class `c' that is not defined
  1967          *  in `impl', null if there is none.
  1968          */
  1969         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  1970             MethodSymbol undef = null;
  1971             // Do not bother to search in classes that are not abstract,
  1972             // since they cannot have abstract members.
  1973             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1974                 Scope s = c.members();
  1975                 for (Scope.Entry e = s.elems;
  1976                      undef == null && e != null;
  1977                      e = e.sibling) {
  1978                     if (e.sym.kind == MTH &&
  1979                         (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
  1980                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  1981                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  1982                         if (implmeth == null || implmeth == absmeth)
  1983                             undef = absmeth;
  1986                 if (undef == null) {
  1987                     Type st = types.supertype(c.type);
  1988                     if (st.tag == CLASS)
  1989                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
  1991                 for (List<Type> l = types.interfaces(c.type);
  1992                      undef == null && l.nonEmpty();
  1993                      l = l.tail) {
  1994                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  1997             return undef;
  2000     void checkNonCyclicDecl(JCClassDecl tree) {
  2001         CycleChecker cc = new CycleChecker();
  2002         cc.scan(tree);
  2003         if (!cc.errorFound && !cc.partialCheck) {
  2004             tree.sym.flags_field |= ACYCLIC;
  2008     class CycleChecker extends TreeScanner {
  2010         List<Symbol> seenClasses = List.nil();
  2011         boolean errorFound = false;
  2012         boolean partialCheck = false;
  2014         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
  2015             if (sym != null && sym.kind == TYP) {
  2016                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
  2017                 if (classEnv != null) {
  2018                     DiagnosticSource prevSource = log.currentSource();
  2019                     try {
  2020                         log.useSource(classEnv.toplevel.sourcefile);
  2021                         scan(classEnv.tree);
  2023                     finally {
  2024                         log.useSource(prevSource.getFile());
  2026                 } else if (sym.kind == TYP) {
  2027                     checkClass(pos, sym, List.<JCTree>nil());
  2029             } else {
  2030                 //not completed yet
  2031                 partialCheck = true;
  2035         @Override
  2036         public void visitSelect(JCFieldAccess tree) {
  2037             super.visitSelect(tree);
  2038             checkSymbol(tree.pos(), tree.sym);
  2041         @Override
  2042         public void visitIdent(JCIdent tree) {
  2043             checkSymbol(tree.pos(), tree.sym);
  2046         @Override
  2047         public void visitTypeApply(JCTypeApply tree) {
  2048             scan(tree.clazz);
  2051         @Override
  2052         public void visitTypeArray(JCArrayTypeTree tree) {
  2053             scan(tree.elemtype);
  2056         @Override
  2057         public void visitClassDef(JCClassDecl tree) {
  2058             List<JCTree> supertypes = List.nil();
  2059             if (tree.getExtendsClause() != null) {
  2060                 supertypes = supertypes.prepend(tree.getExtendsClause());
  2062             if (tree.getImplementsClause() != null) {
  2063                 for (JCTree intf : tree.getImplementsClause()) {
  2064                     supertypes = supertypes.prepend(intf);
  2067             checkClass(tree.pos(), tree.sym, supertypes);
  2070         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
  2071             if ((c.flags_field & ACYCLIC) != 0)
  2072                 return;
  2073             if (seenClasses.contains(c)) {
  2074                 errorFound = true;
  2075                 noteCyclic(pos, (ClassSymbol)c);
  2076             } else if (!c.type.isErroneous()) {
  2077                 try {
  2078                     seenClasses = seenClasses.prepend(c);
  2079                     if (c.type.tag == CLASS) {
  2080                         if (supertypes.nonEmpty()) {
  2081                             scan(supertypes);
  2083                         else {
  2084                             ClassType ct = (ClassType)c.type;
  2085                             if (ct.supertype_field == null ||
  2086                                     ct.interfaces_field == null) {
  2087                                 //not completed yet
  2088                                 partialCheck = true;
  2089                                 return;
  2091                             checkSymbol(pos, ct.supertype_field.tsym);
  2092                             for (Type intf : ct.interfaces_field) {
  2093                                 checkSymbol(pos, intf.tsym);
  2096                         if (c.owner.kind == TYP) {
  2097                             checkSymbol(pos, c.owner);
  2100                 } finally {
  2101                     seenClasses = seenClasses.tail;
  2107     /** Check for cyclic references. Issue an error if the
  2108      *  symbol of the type referred to has a LOCKED flag set.
  2110      *  @param pos      Position to be used for error reporting.
  2111      *  @param t        The type referred to.
  2112      */
  2113     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  2114         checkNonCyclicInternal(pos, t);
  2118     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  2119         checkNonCyclic1(pos, t, List.<TypeVar>nil());
  2122     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
  2123         final TypeVar tv;
  2124         if  (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
  2125             return;
  2126         if (seen.contains(t)) {
  2127             tv = (TypeVar)t;
  2128             tv.bound = types.createErrorType(t);
  2129             log.error(pos, "cyclic.inheritance", t);
  2130         } else if (t.tag == TYPEVAR) {
  2131             tv = (TypeVar)t;
  2132             seen = seen.prepend(tv);
  2133             for (Type b : types.getBounds(tv))
  2134                 checkNonCyclic1(pos, b, seen);
  2138     /** Check for cyclic references. Issue an error if the
  2139      *  symbol of the type referred to has a LOCKED flag set.
  2141      *  @param pos      Position to be used for error reporting.
  2142      *  @param t        The type referred to.
  2143      *  @returns        True if the check completed on all attributed classes
  2144      */
  2145     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  2146         boolean complete = true; // was the check complete?
  2147         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  2148         Symbol c = t.tsym;
  2149         if ((c.flags_field & ACYCLIC) != 0) return true;
  2151         if ((c.flags_field & LOCKED) != 0) {
  2152             noteCyclic(pos, (ClassSymbol)c);
  2153         } else if (!c.type.isErroneous()) {
  2154             try {
  2155                 c.flags_field |= LOCKED;
  2156                 if (c.type.tag == CLASS) {
  2157                     ClassType clazz = (ClassType)c.type;
  2158                     if (clazz.interfaces_field != null)
  2159                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  2160                             complete &= checkNonCyclicInternal(pos, l.head);
  2161                     if (clazz.supertype_field != null) {
  2162                         Type st = clazz.supertype_field;
  2163                         if (st != null && st.tag == CLASS)
  2164                             complete &= checkNonCyclicInternal(pos, st);
  2166                     if (c.owner.kind == TYP)
  2167                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  2169             } finally {
  2170                 c.flags_field &= ~LOCKED;
  2173         if (complete)
  2174             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  2175         if (complete) c.flags_field |= ACYCLIC;
  2176         return complete;
  2179     /** Note that we found an inheritance cycle. */
  2180     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  2181         log.error(pos, "cyclic.inheritance", c);
  2182         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  2183             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
  2184         Type st = types.supertype(c.type);
  2185         if (st.tag == CLASS)
  2186             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
  2187         c.type = types.createErrorType(c, c.type);
  2188         c.flags_field |= ACYCLIC;
  2191     /** Check that all methods which implement some
  2192      *  method conform to the method they implement.
  2193      *  @param tree         The class definition whose members are checked.
  2194      */
  2195     void checkImplementations(JCClassDecl tree) {
  2196         checkImplementations(tree, tree.sym);
  2198 //where
  2199         /** Check that all methods which implement some
  2200          *  method in `ic' conform to the method they implement.
  2201          */
  2202         void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
  2203             ClassSymbol origin = tree.sym;
  2204             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  2205                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  2206                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  2207                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  2208                         if (e.sym.kind == MTH &&
  2209                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  2210                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  2211                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  2212                             if (implmeth != null && implmeth != absmeth &&
  2213                                 (implmeth.owner.flags() & INTERFACE) ==
  2214                                 (origin.flags() & INTERFACE)) {
  2215                                 // don't check if implmeth is in a class, yet
  2216                                 // origin is an interface. This case arises only
  2217                                 // if implmeth is declared in Object. The reason is
  2218                                 // that interfaces really don't inherit from
  2219                                 // Object it's just that the compiler represents
  2220                                 // things that way.
  2221                                 checkOverride(tree, implmeth, absmeth, origin);
  2229     /** Check that all abstract methods implemented by a class are
  2230      *  mutually compatible.
  2231      *  @param pos          Position to be used for error reporting.
  2232      *  @param c            The class whose interfaces are checked.
  2233      */
  2234     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  2235         List<Type> supertypes = types.interfaces(c);
  2236         Type supertype = types.supertype(c);
  2237         if (supertype.tag == CLASS &&
  2238             (supertype.tsym.flags() & ABSTRACT) != 0)
  2239             supertypes = supertypes.prepend(supertype);
  2240         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  2241             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  2242                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  2243                 return;
  2244             for (List<Type> m = supertypes; m != l; m = m.tail)
  2245                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  2246                     return;
  2248         checkCompatibleConcretes(pos, c);
  2251     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
  2252         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
  2253             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
  2254                 // VM allows methods and variables with differing types
  2255                 if (sym.kind == e.sym.kind &&
  2256                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
  2257                     sym != e.sym &&
  2258                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
  2259                     (sym.flags() & IPROXY) == 0 && (e.sym.flags() & IPROXY) == 0 &&
  2260                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
  2261                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
  2262                     return;
  2268     /** Check that all non-override equivalent methods accessible from 'site'
  2269      *  are mutually compatible (JLS 8.4.8/9.4.1).
  2271      *  @param pos  Position to be used for error reporting.
  2272      *  @param site The class whose methods are checked.
  2273      *  @param sym  The method symbol to be checked.
  2274      */
  2275     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2276          ClashFilter cf = new ClashFilter(site);
  2277         //for each method m1 that is overridden (directly or indirectly)
  2278         //by method 'sym' in 'site'...
  2279         for (Symbol m1 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2280             if (!sym.overrides(m1, site.tsym, types, false)) continue;
  2281              //...check each method m2 that is a member of 'site'
  2282              for (Symbol m2 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2283                 if (m2 == m1) continue;
  2284                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2285                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
  2286                 if (!types.isSubSignature(sym.type, types.memberType(site, m2), false) &&
  2287                         types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
  2288                     sym.flags_field |= CLASH;
  2289                     String key = m1 == sym ?
  2290                             "name.clash.same.erasure.no.override" :
  2291                             "name.clash.same.erasure.no.override.1";
  2292                     log.error(pos,
  2293                             key,
  2294                             sym, sym.location(),
  2295                             m2, m2.location(),
  2296                             m1, m1.location());
  2297                     return;
  2305     /** Check that all static methods accessible from 'site' are
  2306      *  mutually compatible (JLS 8.4.8).
  2308      *  @param pos  Position to be used for error reporting.
  2309      *  @param site The class whose methods are checked.
  2310      *  @param sym  The method symbol to be checked.
  2311      */
  2312     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2313         ClashFilter cf = new ClashFilter(site);
  2314         //for each method m1 that is a member of 'site'...
  2315         for (Symbol s : types.membersClosure(site, true).getElementsByName(sym.name, cf)) {
  2316             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2317             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
  2318             if (!types.isSubSignature(sym.type, types.memberType(site, s), false) &&
  2319                     types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
  2320                 log.error(pos,
  2321                         "name.clash.same.erasure.no.hide",
  2322                         sym, sym.location(),
  2323                         s, s.location());
  2324                 return;
  2329      //where
  2330      private class ClashFilter implements Filter<Symbol> {
  2332          Type site;
  2334          ClashFilter(Type site) {
  2335              this.site = site;
  2338          boolean shouldSkip(Symbol s) {
  2339              return (s.flags() & CLASH) != 0 &&
  2340                 s.owner == site.tsym;
  2343          public boolean accepts(Symbol s) {
  2344              return s.kind == MTH &&
  2345                      (s.flags() & SYNTHETIC) == 0 &&
  2346                      !shouldSkip(s) &&
  2347                      s.isInheritedIn(site.tsym, types) &&
  2348                      !s.isConstructor();
  2352     /** Report a conflict between a user symbol and a synthetic symbol.
  2353      */
  2354     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
  2355         if (!sym.type.isErroneous()) {
  2356             if (warnOnSyntheticConflicts) {
  2357                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
  2359             else {
  2360                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
  2365     /** Check that class c does not implement directly or indirectly
  2366      *  the same parameterized interface with two different argument lists.
  2367      *  @param pos          Position to be used for error reporting.
  2368      *  @param type         The type whose interfaces are checked.
  2369      */
  2370     void checkClassBounds(DiagnosticPosition pos, Type type) {
  2371         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  2373 //where
  2374         /** Enter all interfaces of type `type' into the hash table `seensofar'
  2375          *  with their class symbol as key and their type as value. Make
  2376          *  sure no class is entered with two different types.
  2377          */
  2378         void checkClassBounds(DiagnosticPosition pos,
  2379                               Map<TypeSymbol,Type> seensofar,
  2380                               Type type) {
  2381             if (type.isErroneous()) return;
  2382             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  2383                 Type it = l.head;
  2384                 Type oldit = seensofar.put(it.tsym, it);
  2385                 if (oldit != null) {
  2386                     List<Type> oldparams = oldit.allparams();
  2387                     List<Type> newparams = it.allparams();
  2388                     if (!types.containsTypeEquivalent(oldparams, newparams))
  2389                         log.error(pos, "cant.inherit.diff.arg",
  2390                                   it.tsym, Type.toString(oldparams),
  2391                                   Type.toString(newparams));
  2393                 checkClassBounds(pos, seensofar, it);
  2395             Type st = types.supertype(type);
  2396             if (st != null) checkClassBounds(pos, seensofar, st);
  2399     /** Enter interface into into set.
  2400      *  If it existed already, issue a "repeated interface" error.
  2401      */
  2402     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  2403         if (its.contains(it))
  2404             log.error(pos, "repeated.interface");
  2405         else {
  2406             its.add(it);
  2410 /* *************************************************************************
  2411  * Check annotations
  2412  **************************************************************************/
  2414     /**
  2415      * Recursively validate annotations values
  2416      */
  2417     void validateAnnotationTree(JCTree tree) {
  2418         class AnnotationValidator extends TreeScanner {
  2419             @Override
  2420             public void visitAnnotation(JCAnnotation tree) {
  2421                 if (!tree.type.isErroneous()) {
  2422                     super.visitAnnotation(tree);
  2423                     validateAnnotation(tree);
  2427         tree.accept(new AnnotationValidator());
  2430     /** Annotation types are restricted to primitives, String, an
  2431      *  enum, an annotation, Class, Class<?>, Class<? extends
  2432      *  Anything>, arrays of the preceding.
  2433      */
  2434     void validateAnnotationType(JCTree restype) {
  2435         // restype may be null if an error occurred, so don't bother validating it
  2436         if (restype != null) {
  2437             validateAnnotationType(restype.pos(), restype.type);
  2441     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  2442         if (type.isPrimitive()) return;
  2443         if (types.isSameType(type, syms.stringType)) return;
  2444         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  2445         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  2446         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  2447         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  2448             validateAnnotationType(pos, types.elemtype(type));
  2449             return;
  2451         log.error(pos, "invalid.annotation.member.type");
  2454     /**
  2455      * "It is also a compile-time error if any method declared in an
  2456      * annotation type has a signature that is override-equivalent to
  2457      * that of any public or protected method declared in class Object
  2458      * or in the interface annotation.Annotation."
  2460      * @jls 9.6 Annotation Types
  2461      */
  2462     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  2463         for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
  2464             Scope s = sup.tsym.members();
  2465             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  2466                 if (e.sym.kind == MTH &&
  2467                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  2468                     types.overrideEquivalent(m.type, e.sym.type))
  2469                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  2474     /** Check the annotations of a symbol.
  2475      */
  2476     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  2477         if (skipAnnotations) return;
  2478         for (JCAnnotation a : annotations)
  2479             validateAnnotation(a, s);
  2482     /** Check an annotation of a symbol.
  2483      */
  2484     public void validateAnnotation(JCAnnotation a, Symbol s) {
  2485         validateAnnotationTree(a);
  2487         if (!annotationApplicable(a, s))
  2488             log.error(a.pos(), "annotation.type.not.applicable");
  2490         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  2491             if (!isOverrider(s))
  2492                 log.error(a.pos(), "method.does.not.override.superclass");
  2496     /** Is s a method symbol that overrides a method in a superclass? */
  2497     boolean isOverrider(Symbol s) {
  2498         if (s.kind != MTH || s.isStatic())
  2499             return false;
  2500         MethodSymbol m = (MethodSymbol)s;
  2501         TypeSymbol owner = (TypeSymbol)m.owner;
  2502         for (Type sup : types.closure(owner.type)) {
  2503             if (sup == owner.type)
  2504                 continue; // skip "this"
  2505             Scope scope = sup.tsym.members();
  2506             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  2507                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  2508                     return true;
  2511         return false;
  2514     /** Is the annotation applicable to the symbol? */
  2515     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  2516         Attribute.Compound atTarget =
  2517             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  2518         if (atTarget == null) return true;
  2519         Attribute atValue = atTarget.member(names.value);
  2520         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
  2521         Attribute.Array arr = (Attribute.Array) atValue;
  2522         for (Attribute app : arr.values) {
  2523             if (!(app instanceof Attribute.Enum)) return true; // recovery
  2524             Attribute.Enum e = (Attribute.Enum) app;
  2525             if (e.value.name == names.TYPE)
  2526                 { if (s.kind == TYP) return true; }
  2527             else if (e.value.name == names.FIELD)
  2528                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  2529             else if (e.value.name == names.METHOD)
  2530                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  2531             else if (e.value.name == names.PARAMETER)
  2532                 { if (s.kind == VAR &&
  2533                       s.owner.kind == MTH &&
  2534                       (s.flags() & PARAMETER) != 0)
  2535                     return true;
  2537             else if (e.value.name == names.CONSTRUCTOR)
  2538                 { if (s.kind == MTH && s.isConstructor()) return true; }
  2539             else if (e.value.name == names.LOCAL_VARIABLE)
  2540                 { if (s.kind == VAR && s.owner.kind == MTH &&
  2541                       (s.flags() & PARAMETER) == 0)
  2542                     return true;
  2544             else if (e.value.name == names.ANNOTATION_TYPE)
  2545                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  2546                     return true;
  2548             else if (e.value.name == names.PACKAGE)
  2549                 { if (s.kind == PCK) return true; }
  2550             else if (e.value.name == names.TYPE_USE)
  2551                 { if (s.kind == TYP ||
  2552                       s.kind == VAR ||
  2553                       (s.kind == MTH && !s.isConstructor() &&
  2554                        s.type.getReturnType().tag != VOID))
  2555                     return true;
  2557             else
  2558                 return true; // recovery
  2560         return false;
  2563     /** Check an annotation value.
  2564      */
  2565     public void validateAnnotation(JCAnnotation a) {
  2566         // collect an inventory of the members (sorted alphabetically)
  2567         Set<MethodSymbol> members = new TreeSet<MethodSymbol>(new Comparator<Symbol>() {
  2568             public int compare(Symbol t, Symbol t1) {
  2569                 return t.name.compareTo(t1.name);
  2571         });
  2572         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  2573              e != null;
  2574              e = e.sibling)
  2575             if (e.sym.kind == MTH)
  2576                 members.add((MethodSymbol) e.sym);
  2578         // count them off as they're annotated
  2579         for (JCTree arg : a.args) {
  2580             if (!arg.hasTag(ASSIGN)) continue; // recovery
  2581             JCAssign assign = (JCAssign) arg;
  2582             Symbol m = TreeInfo.symbol(assign.lhs);
  2583             if (m == null || m.type.isErroneous()) continue;
  2584             if (!members.remove(m))
  2585                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
  2586                           m.name, a.type);
  2589         // all the remaining ones better have default values
  2590         ListBuffer<Name> missingDefaults = ListBuffer.lb();
  2591         for (MethodSymbol m : members) {
  2592             if (m.defaultValue == null && !m.type.isErroneous()) {
  2593                 missingDefaults.append(m.name);
  2596         if (missingDefaults.nonEmpty()) {
  2597             String key = (missingDefaults.size() > 1)
  2598                     ? "annotation.missing.default.value.1"
  2599                     : "annotation.missing.default.value";
  2600             log.error(a.pos(), key, a.type, missingDefaults);
  2603         // special case: java.lang.annotation.Target must not have
  2604         // repeated values in its value member
  2605         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  2606             a.args.tail == null)
  2607             return;
  2609         if (!a.args.head.hasTag(ASSIGN)) return; // error recovery
  2610         JCAssign assign = (JCAssign) a.args.head;
  2611         Symbol m = TreeInfo.symbol(assign.lhs);
  2612         if (m.name != names.value) return;
  2613         JCTree rhs = assign.rhs;
  2614         if (!rhs.hasTag(NEWARRAY)) return;
  2615         JCNewArray na = (JCNewArray) rhs;
  2616         Set<Symbol> targets = new HashSet<Symbol>();
  2617         for (JCTree elem : na.elems) {
  2618             if (!targets.add(TreeInfo.symbol(elem))) {
  2619                 log.error(elem.pos(), "repeated.annotation.target");
  2624     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  2625         if (allowAnnotations &&
  2626             lint.isEnabled(LintCategory.DEP_ANN) &&
  2627             (s.flags() & DEPRECATED) != 0 &&
  2628             !syms.deprecatedType.isErroneous() &&
  2629             s.attribute(syms.deprecatedType.tsym) == null) {
  2630             log.warning(LintCategory.DEP_ANN,
  2631                     pos, "missing.deprecated.annotation");
  2635     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
  2636         if ((s.flags() & DEPRECATED) != 0 &&
  2637                 (other.flags() & DEPRECATED) == 0 &&
  2638                 s.outermostClass() != other.outermostClass()) {
  2639             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  2640                 @Override
  2641                 public void report() {
  2642                     warnDeprecated(pos, s);
  2644             });
  2648     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
  2649         if ((s.flags() & PROPRIETARY) != 0) {
  2650             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  2651                 public void report() {
  2652                     if (enableSunApiLintControl)
  2653                       warnSunApi(pos, "sun.proprietary", s);
  2654                     else
  2655                       log.mandatoryWarning(pos, "sun.proprietary", s);
  2657             });
  2661 /* *************************************************************************
  2662  * Check for recursive annotation elements.
  2663  **************************************************************************/
  2665     /** Check for cycles in the graph of annotation elements.
  2666      */
  2667     void checkNonCyclicElements(JCClassDecl tree) {
  2668         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  2669         Assert.check((tree.sym.flags_field & LOCKED) == 0);
  2670         try {
  2671             tree.sym.flags_field |= LOCKED;
  2672             for (JCTree def : tree.defs) {
  2673                 if (!def.hasTag(METHODDEF)) continue;
  2674                 JCMethodDecl meth = (JCMethodDecl)def;
  2675                 checkAnnotationResType(meth.pos(), meth.restype.type);
  2677         } finally {
  2678             tree.sym.flags_field &= ~LOCKED;
  2679             tree.sym.flags_field |= ACYCLIC_ANN;
  2683     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  2684         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  2685             return;
  2686         if ((tsym.flags_field & LOCKED) != 0) {
  2687             log.error(pos, "cyclic.annotation.element");
  2688             return;
  2690         try {
  2691             tsym.flags_field |= LOCKED;
  2692             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  2693                 Symbol s = e.sym;
  2694                 if (s.kind != Kinds.MTH)
  2695                     continue;
  2696                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  2698         } finally {
  2699             tsym.flags_field &= ~LOCKED;
  2700             tsym.flags_field |= ACYCLIC_ANN;
  2704     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  2705         switch (type.tag) {
  2706         case TypeTags.CLASS:
  2707             if ((type.tsym.flags() & ANNOTATION) != 0)
  2708                 checkNonCyclicElementsInternal(pos, type.tsym);
  2709             break;
  2710         case TypeTags.ARRAY:
  2711             checkAnnotationResType(pos, types.elemtype(type));
  2712             break;
  2713         default:
  2714             break; // int etc
  2718 /* *************************************************************************
  2719  * Check for cycles in the constructor call graph.
  2720  **************************************************************************/
  2722     /** Check for cycles in the graph of constructors calling other
  2723      *  constructors.
  2724      */
  2725     void checkCyclicConstructors(JCClassDecl tree) {
  2726         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  2728         // enter each constructor this-call into the map
  2729         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  2730             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  2731             if (app == null) continue;
  2732             JCMethodDecl meth = (JCMethodDecl) l.head;
  2733             if (TreeInfo.name(app.meth) == names._this) {
  2734                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  2735             } else {
  2736                 meth.sym.flags_field |= ACYCLIC;
  2740         // Check for cycles in the map
  2741         Symbol[] ctors = new Symbol[0];
  2742         ctors = callMap.keySet().toArray(ctors);
  2743         for (Symbol caller : ctors) {
  2744             checkCyclicConstructor(tree, caller, callMap);
  2748     /** Look in the map to see if the given constructor is part of a
  2749      *  call cycle.
  2750      */
  2751     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  2752                                         Map<Symbol,Symbol> callMap) {
  2753         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  2754             if ((ctor.flags_field & LOCKED) != 0) {
  2755                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  2756                           "recursive.ctor.invocation");
  2757             } else {
  2758                 ctor.flags_field |= LOCKED;
  2759                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  2760                 ctor.flags_field &= ~LOCKED;
  2762             ctor.flags_field |= ACYCLIC;
  2766 /* *************************************************************************
  2767  * Miscellaneous
  2768  **************************************************************************/
  2770     /**
  2771      * Return the opcode of the operator but emit an error if it is an
  2772      * error.
  2773      * @param pos        position for error reporting.
  2774      * @param operator   an operator
  2775      * @param tag        a tree tag
  2776      * @param left       type of left hand side
  2777      * @param right      type of right hand side
  2778      */
  2779     int checkOperator(DiagnosticPosition pos,
  2780                        OperatorSymbol operator,
  2781                        JCTree.Tag tag,
  2782                        Type left,
  2783                        Type right) {
  2784         if (operator.opcode == ByteCodes.error) {
  2785             log.error(pos,
  2786                       "operator.cant.be.applied.1",
  2787                       treeinfo.operatorName(tag),
  2788                       left, right);
  2790         return operator.opcode;
  2794     /**
  2795      *  Check for division by integer constant zero
  2796      *  @param pos           Position for error reporting.
  2797      *  @param operator      The operator for the expression
  2798      *  @param operand       The right hand operand for the expression
  2799      */
  2800     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  2801         if (operand.constValue() != null
  2802             && lint.isEnabled(LintCategory.DIVZERO)
  2803             && operand.tag <= LONG
  2804             && ((Number) (operand.constValue())).longValue() == 0) {
  2805             int opc = ((OperatorSymbol)operator).opcode;
  2806             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  2807                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  2808                 log.warning(LintCategory.DIVZERO, pos, "div.zero");
  2813     /**
  2814      * Check for empty statements after if
  2815      */
  2816     void checkEmptyIf(JCIf tree) {
  2817         if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
  2818                 lint.isEnabled(LintCategory.EMPTY))
  2819             log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
  2822     /** Check that symbol is unique in given scope.
  2823      *  @param pos           Position for error reporting.
  2824      *  @param sym           The symbol.
  2825      *  @param s             The scope.
  2826      */
  2827     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  2828         if (sym.type.isErroneous())
  2829             return true;
  2830         if (sym.owner.name == names.any) return false;
  2831         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  2832             if (sym != e.sym &&
  2833                     (e.sym.flags() & CLASH) == 0 &&
  2834                     sym.kind == e.sym.kind &&
  2835                     sym.name != names.error &&
  2836                     (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
  2837                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS)) {
  2838                     varargsDuplicateError(pos, sym, e.sym);
  2839                     return true;
  2840                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, e.sym.type, false)) {
  2841                     duplicateErasureError(pos, sym, e.sym);
  2842                     sym.flags_field |= CLASH;
  2843                     return true;
  2844                 } else {
  2845                     duplicateError(pos, e.sym);
  2846                     return false;
  2850         return true;
  2853     /** Report duplicate declaration error.
  2854      */
  2855     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
  2856         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
  2857             log.error(pos, "name.clash.same.erasure", sym1, sym2);
  2861     /** Check that single-type import is not already imported or top-level defined,
  2862      *  but make an exception for two single-type imports which denote the same type.
  2863      *  @param pos           Position for error reporting.
  2864      *  @param sym           The symbol.
  2865      *  @param s             The scope
  2866      */
  2867     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2868         return checkUniqueImport(pos, sym, s, false);
  2871     /** Check that static single-type import is not already imported or top-level defined,
  2872      *  but make an exception for two single-type imports which denote the same type.
  2873      *  @param pos           Position for error reporting.
  2874      *  @param sym           The symbol.
  2875      *  @param s             The scope
  2876      *  @param staticImport  Whether or not this was a static import
  2877      */
  2878     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2879         return checkUniqueImport(pos, sym, s, true);
  2882     /** Check that single-type import is not already imported or top-level defined,
  2883      *  but make an exception for two single-type imports which denote the same type.
  2884      *  @param pos           Position for error reporting.
  2885      *  @param sym           The symbol.
  2886      *  @param s             The scope.
  2887      *  @param staticImport  Whether or not this was a static import
  2888      */
  2889     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  2890         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  2891             // is encountered class entered via a class declaration?
  2892             boolean isClassDecl = e.scope == s;
  2893             if ((isClassDecl || sym != e.sym) &&
  2894                 sym.kind == e.sym.kind &&
  2895                 sym.name != names.error) {
  2896                 if (!e.sym.type.isErroneous()) {
  2897                     String what = e.sym.toString();
  2898                     if (!isClassDecl) {
  2899                         if (staticImport)
  2900                             log.error(pos, "already.defined.static.single.import", what);
  2901                         else
  2902                             log.error(pos, "already.defined.single.import", what);
  2904                     else if (sym != e.sym)
  2905                         log.error(pos, "already.defined.this.unit", what);
  2907                 return false;
  2910         return true;
  2913     /** Check that a qualified name is in canonical form (for import decls).
  2914      */
  2915     public void checkCanonical(JCTree tree) {
  2916         if (!isCanonical(tree))
  2917             log.error(tree.pos(), "import.requires.canonical",
  2918                       TreeInfo.symbol(tree));
  2920         // where
  2921         private boolean isCanonical(JCTree tree) {
  2922             while (tree.hasTag(SELECT)) {
  2923                 JCFieldAccess s = (JCFieldAccess) tree;
  2924                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  2925                     return false;
  2926                 tree = s.selected;
  2928             return true;
  2931     private class ConversionWarner extends Warner {
  2932         final String uncheckedKey;
  2933         final Type found;
  2934         final Type expected;
  2935         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
  2936             super(pos);
  2937             this.uncheckedKey = uncheckedKey;
  2938             this.found = found;
  2939             this.expected = expected;
  2942         @Override
  2943         public void warn(LintCategory lint) {
  2944             boolean warned = this.warned;
  2945             super.warn(lint);
  2946             if (warned) return; // suppress redundant diagnostics
  2947             switch (lint) {
  2948                 case UNCHECKED:
  2949                     Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
  2950                     break;
  2951                 case VARARGS:
  2952                     if (method != null &&
  2953                             method.attribute(syms.trustMeType.tsym) != null &&
  2954                             isTrustMeAllowedOnMethod(method) &&
  2955                             !types.isReifiable(method.type.getParameterTypes().last())) {
  2956                         Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
  2958                     break;
  2959                 default:
  2960                     throw new AssertionError("Unexpected lint: " + lint);
  2965     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  2966         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  2969     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  2970         return new ConversionWarner(pos, "unchecked.assign", found, expected);

mercurial