src/share/classes/com/sun/tools/javac/comp/Check.java

Tue, 10 Aug 2010 14:53:19 +0100

author
mcimadamore
date
Tue, 10 Aug 2010 14:53:19 +0100
changeset 632
ea1930f4b789
parent 629
0fe472f4a332
child 634
27bae58329d5
permissions
-rw-r--r--

6975231: Regression test for 6881115 is failing with compiler output not matching expected output
Summary: missing symbols are collected in an HashSet which doesn't preserve ordering
Reviewed-by: jjg

     1 /*
     2  * Copyright (c) 1999, 2009, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    31 import com.sun.tools.javac.code.*;
    32 import com.sun.tools.javac.jvm.*;
    33 import com.sun.tools.javac.tree.*;
    34 import com.sun.tools.javac.util.*;
    35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    36 import com.sun.tools.javac.util.List;
    38 import com.sun.tools.javac.tree.JCTree.*;
    39 import com.sun.tools.javac.code.Lint;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Type.*;
    42 import com.sun.tools.javac.code.Symbol.*;
    44 import static com.sun.tools.javac.code.Flags.*;
    45 import static com.sun.tools.javac.code.Kinds.*;
    46 import static com.sun.tools.javac.code.TypeTags.*;
    48 /** Type checking helper class for the attribution phase.
    49  *
    50  *  <p><b>This is NOT part of any supported API.
    51  *  If you write code that depends on this, you do so at your own risk.
    52  *  This code and its internal interfaces are subject to change or
    53  *  deletion without notice.</b>
    54  */
    55 public class Check {
    56     protected static final Context.Key<Check> checkKey =
    57         new Context.Key<Check>();
    59     private final Names names;
    60     private final Log log;
    61     private final Symtab syms;
    62     private final Infer infer;
    63     private final Types types;
    64     private final JCDiagnostic.Factory diags;
    65     private final boolean skipAnnotations;
    66     private boolean warnOnSyntheticConflicts;
    67     private boolean suppressAbortOnBadClassFile;
    68     private final TreeInfo treeinfo;
    70     // The set of lint options currently in effect. It is initialized
    71     // from the context, and then is set/reset as needed by Attr as it
    72     // visits all the various parts of the trees during attribution.
    73     private Lint lint;
    75     public static Check instance(Context context) {
    76         Check instance = context.get(checkKey);
    77         if (instance == null)
    78             instance = new Check(context);
    79         return instance;
    80     }
    82     protected Check(Context context) {
    83         context.put(checkKey, this);
    85         names = Names.instance(context);
    86         log = Log.instance(context);
    87         syms = Symtab.instance(context);
    88         infer = Infer.instance(context);
    89         this.types = Types.instance(context);
    90         diags = JCDiagnostic.Factory.instance(context);
    91         Options options = Options.instance(context);
    92         lint = Lint.instance(context);
    93         treeinfo = TreeInfo.instance(context);
    95         Source source = Source.instance(context);
    96         allowGenerics = source.allowGenerics();
    97         allowAnnotations = source.allowAnnotations();
    98         allowCovariantReturns = source.allowCovariantReturns();
    99         complexInference = options.get("-complexinference") != null;
   100         skipAnnotations = options.get("skipAnnotations") != null;
   101         warnOnSyntheticConflicts = options.get("warnOnSyntheticConflicts") != null;
   102         suppressAbortOnBadClassFile = options.get("suppressAbortOnBadClassFile") != null;
   104         Target target = Target.instance(context);
   105         syntheticNameChar = target.syntheticNameChar();
   107         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   108         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   109         boolean verboseVarargs = lint.isEnabled(LintCategory.VARARGS);
   110         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
   111         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
   113         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
   114                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
   115         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
   116                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
   117         unsafeVarargsHandler = new MandatoryWarningHandler(log, verboseVarargs,
   118                 enforceMandatoryWarnings, "varargs", LintCategory.VARARGS);
   119         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
   120                 enforceMandatoryWarnings, "sunapi", null);
   121     }
   123     /** Switch: generics enabled?
   124      */
   125     boolean allowGenerics;
   127     /** Switch: annotations enabled?
   128      */
   129     boolean allowAnnotations;
   131     /** Switch: covariant returns enabled?
   132      */
   133     boolean allowCovariantReturns;
   135     /** Switch: -complexinference option set?
   136      */
   137     boolean complexInference;
   139     /** Character for synthetic names
   140      */
   141     char syntheticNameChar;
   143     /** A table mapping flat names of all compiled classes in this run to their
   144      *  symbols; maintained from outside.
   145      */
   146     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   148     /** A handler for messages about deprecated usage.
   149      */
   150     private MandatoryWarningHandler deprecationHandler;
   152     /** A handler for messages about unchecked or unsafe usage.
   153      */
   154     private MandatoryWarningHandler uncheckedHandler;
   156     /** A handler for messages about unchecked or unsafe vararg method decl.
   157      */
   158     private MandatoryWarningHandler unsafeVarargsHandler;
   160     /** A handler for messages about using proprietary API.
   161      */
   162     private MandatoryWarningHandler sunApiHandler;
   164 /* *************************************************************************
   165  * Errors and Warnings
   166  **************************************************************************/
   168     Lint setLint(Lint newLint) {
   169         Lint prev = lint;
   170         lint = newLint;
   171         return prev;
   172     }
   174     /** Warn about deprecated symbol.
   175      *  @param pos        Position to be used for error reporting.
   176      *  @param sym        The deprecated symbol.
   177      */
   178     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   179         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   180             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   181     }
   183     /** Warn about unchecked operation.
   184      *  @param pos        Position to be used for error reporting.
   185      *  @param msg        A string describing the problem.
   186      */
   187     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   188         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   189             uncheckedHandler.report(pos, msg, args);
   190     }
   192     /** Warn about unsafe vararg method decl.
   193      *  @param pos        Position to be used for error reporting.
   194      *  @param sym        The deprecated symbol.
   195      */
   196     void warnUnsafeVararg(DiagnosticPosition pos, Type elemType) {
   197         if (!lint.isSuppressed(LintCategory.VARARGS))
   198             unsafeVarargsHandler.report(pos, "varargs.non.reifiable.type", elemType);
   199     }
   201     /** Warn about using proprietary API.
   202      *  @param pos        Position to be used for error reporting.
   203      *  @param msg        A string describing the problem.
   204      */
   205     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
   206         if (!lint.isSuppressed(LintCategory.SUNAPI))
   207             sunApiHandler.report(pos, msg, args);
   208     }
   210     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
   211         if (lint.isEnabled(LintCategory.STATIC))
   212             log.warning(LintCategory.STATIC, pos, msg, args);
   213     }
   215     /**
   216      * Report any deferred diagnostics.
   217      */
   218     public void reportDeferredDiagnostics() {
   219         deprecationHandler.reportDeferredDiagnostic();
   220         uncheckedHandler.reportDeferredDiagnostic();
   221         unsafeVarargsHandler.reportDeferredDiagnostic();
   222         sunApiHandler.reportDeferredDiagnostic();
   223     }
   226     /** Report a failure to complete a class.
   227      *  @param pos        Position to be used for error reporting.
   228      *  @param ex         The failure to report.
   229      */
   230     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   231         log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
   232         if (ex instanceof ClassReader.BadClassFile
   233                 && !suppressAbortOnBadClassFile) throw new Abort();
   234         else return syms.errType;
   235     }
   237     /** Report a type error.
   238      *  @param pos        Position to be used for error reporting.
   239      *  @param problem    A string describing the error.
   240      *  @param found      The type that was found.
   241      *  @param req        The type that was required.
   242      */
   243     Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) {
   244         log.error(pos, "prob.found.req",
   245                   problem, found, req);
   246         return types.createErrorType(found);
   247     }
   249     Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) {
   250         log.error(pos, "prob.found.req.1", problem, found, req, explanation);
   251         return types.createErrorType(found);
   252     }
   254     /** Report an error that wrong type tag was found.
   255      *  @param pos        Position to be used for error reporting.
   256      *  @param required   An internationalized string describing the type tag
   257      *                    required.
   258      *  @param found      The type that was found.
   259      */
   260     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   261         // this error used to be raised by the parser,
   262         // but has been delayed to this point:
   263         if (found instanceof Type && ((Type)found).tag == VOID) {
   264             log.error(pos, "illegal.start.of.type");
   265             return syms.errType;
   266         }
   267         log.error(pos, "type.found.req", found, required);
   268         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
   269     }
   271     /** Report an error that symbol cannot be referenced before super
   272      *  has been called.
   273      *  @param pos        Position to be used for error reporting.
   274      *  @param sym        The referenced symbol.
   275      */
   276     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   277         log.error(pos, "cant.ref.before.ctor.called", sym);
   278     }
   280     /** Report duplicate declaration error.
   281      */
   282     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   283         if (!sym.type.isErroneous()) {
   284             log.error(pos, "already.defined", sym, sym.location());
   285         }
   286     }
   288     /** Report array/varargs duplicate declaration
   289      */
   290     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   291         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   292             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   293         }
   294     }
   296 /* ************************************************************************
   297  * duplicate declaration checking
   298  *************************************************************************/
   300     /** Check that variable does not hide variable with same name in
   301      *  immediately enclosing local scope.
   302      *  @param pos           Position for error reporting.
   303      *  @param v             The symbol.
   304      *  @param s             The scope.
   305      */
   306     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   307         if (s.next != null) {
   308             for (Scope.Entry e = s.next.lookup(v.name);
   309                  e.scope != null && e.sym.owner == v.owner;
   310                  e = e.next()) {
   311                 if (e.sym.kind == VAR &&
   312                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   313                     v.name != names.error) {
   314                     duplicateError(pos, e.sym);
   315                     return;
   316                 }
   317             }
   318         }
   319     }
   321     /** Check that a class or interface does not hide a class or
   322      *  interface with same name in immediately enclosing local scope.
   323      *  @param pos           Position for error reporting.
   324      *  @param c             The symbol.
   325      *  @param s             The scope.
   326      */
   327     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   328         if (s.next != null) {
   329             for (Scope.Entry e = s.next.lookup(c.name);
   330                  e.scope != null && e.sym.owner == c.owner;
   331                  e = e.next()) {
   332                 if (e.sym.kind == TYP &&
   333                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   334                     c.name != names.error) {
   335                     duplicateError(pos, e.sym);
   336                     return;
   337                 }
   338             }
   339         }
   340     }
   342     /** Check that class does not have the same name as one of
   343      *  its enclosing classes, or as a class defined in its enclosing scope.
   344      *  return true if class is unique in its enclosing scope.
   345      *  @param pos           Position for error reporting.
   346      *  @param name          The class name.
   347      *  @param s             The enclosing scope.
   348      */
   349     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   350         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   351             if (e.sym.kind == TYP && e.sym.name != names.error) {
   352                 duplicateError(pos, e.sym);
   353                 return false;
   354             }
   355         }
   356         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   357             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   358                 duplicateError(pos, sym);
   359                 return true;
   360             }
   361         }
   362         return true;
   363     }
   365 /* *************************************************************************
   366  * Class name generation
   367  **************************************************************************/
   369     /** Return name of local class.
   370      *  This is of the form    <enclClass> $ n <classname>
   371      *  where
   372      *    enclClass is the flat name of the enclosing class,
   373      *    classname is the simple name of the local class
   374      */
   375     Name localClassName(ClassSymbol c) {
   376         for (int i=1; ; i++) {
   377             Name flatname = names.
   378                 fromString("" + c.owner.enclClass().flatname +
   379                            syntheticNameChar + i +
   380                            c.name);
   381             if (compiled.get(flatname) == null) return flatname;
   382         }
   383     }
   385 /* *************************************************************************
   386  * Type Checking
   387  **************************************************************************/
   389     /** Check that a given type is assignable to a given proto-type.
   390      *  If it is, return the type, otherwise return errType.
   391      *  @param pos        Position to be used for error reporting.
   392      *  @param found      The type that was found.
   393      *  @param req        The type that was required.
   394      */
   395     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   396         return checkType(pos, found, req, "incompatible.types");
   397     }
   399     Type checkType(DiagnosticPosition pos, Type found, Type req, String errKey) {
   400         if (req.tag == ERROR)
   401             return req;
   402         if (found.tag == FORALL)
   403             return instantiatePoly(pos, (ForAll)found, req, convertWarner(pos, found, req));
   404         if (req.tag == NONE)
   405             return found;
   406         if (types.isAssignable(found, req, convertWarner(pos, found, req)))
   407             return found;
   408         if (found.tag <= DOUBLE && req.tag <= DOUBLE)
   409             return typeError(pos, diags.fragment("possible.loss.of.precision"), found, req);
   410         if (found.isSuperBound()) {
   411             log.error(pos, "assignment.from.super-bound", found);
   412             return types.createErrorType(found);
   413         }
   414         if (req.isExtendsBound()) {
   415             log.error(pos, "assignment.to.extends-bound", req);
   416             return types.createErrorType(found);
   417         }
   418         return typeError(pos, diags.fragment(errKey), found, req);
   419     }
   421     /** Instantiate polymorphic type to some prototype, unless
   422      *  prototype is `anyPoly' in which case polymorphic type
   423      *  is returned unchanged.
   424      */
   425     Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) throws Infer.NoInstanceException {
   426         if (pt == Infer.anyPoly && complexInference) {
   427             return t;
   428         } else if (pt == Infer.anyPoly || pt.tag == NONE) {
   429             Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType;
   430             return instantiatePoly(pos, t, newpt, warn);
   431         } else if (pt.tag == ERROR) {
   432             return pt;
   433         } else {
   434             try {
   435                 return infer.instantiateExpr(t, pt, warn);
   436             } catch (Infer.NoInstanceException ex) {
   437                 if (ex.isAmbiguous) {
   438                     JCDiagnostic d = ex.getDiagnostic();
   439                     log.error(pos,
   440                               "undetermined.type" + (d!=null ? ".1" : ""),
   441                               t, d);
   442                     return types.createErrorType(pt);
   443                 } else {
   444                     JCDiagnostic d = ex.getDiagnostic();
   445                     return typeError(pos,
   446                                      diags.fragment("incompatible.types" + (d!=null ? ".1" : ""), d),
   447                                      t, pt);
   448                 }
   449             } catch (Infer.InvalidInstanceException ex) {
   450                 JCDiagnostic d = ex.getDiagnostic();
   451                 log.error(pos, "invalid.inferred.types", t.tvars, d);
   452                 return types.createErrorType(pt);
   453             }
   454         }
   455     }
   457     /** Check that a given type can be cast to a given target type.
   458      *  Return the result of the cast.
   459      *  @param pos        Position to be used for error reporting.
   460      *  @param found      The type that is being cast.
   461      *  @param req        The target type of the cast.
   462      */
   463     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   464         if (found.tag == FORALL) {
   465             instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req));
   466             return req;
   467         } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
   468             return req;
   469         } else {
   470             return typeError(pos,
   471                              diags.fragment("inconvertible.types"),
   472                              found, req);
   473         }
   474     }
   475 //where
   476         /** Is type a type variable, or a (possibly multi-dimensional) array of
   477          *  type variables?
   478          */
   479         boolean isTypeVar(Type t) {
   480             return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
   481         }
   483     /** Check that a type is within some bounds.
   484      *
   485      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   486      *  type argument.
   487      *  @param pos           Position to be used for error reporting.
   488      *  @param a             The type that should be bounded by bs.
   489      *  @param bs            The bound.
   490      */
   491     private void checkExtends(DiagnosticPosition pos, Type a, TypeVar bs) {
   492          if (a.isUnbound()) {
   493              return;
   494          } else if (a.tag != WILDCARD) {
   495              a = types.upperBound(a);
   496              for (List<Type> l = types.getBounds(bs); l.nonEmpty(); l = l.tail) {
   497                  if (!types.isSubtype(a, l.head)) {
   498                      log.error(pos, "not.within.bounds", a);
   499                      return;
   500                  }
   501              }
   502          } else if (a.isExtendsBound()) {
   503              if (!types.isCastable(bs.getUpperBound(), types.upperBound(a), Warner.noWarnings))
   504                  log.error(pos, "not.within.bounds", a);
   505          } else if (a.isSuperBound()) {
   506              if (types.notSoftSubtype(types.lowerBound(a), bs.getUpperBound()))
   507                  log.error(pos, "not.within.bounds", a);
   508          }
   509      }
   511     /** Check that a type is within some bounds.
   512      *
   513      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   514      *  type argument.
   515      *  @param pos           Position to be used for error reporting.
   516      *  @param a             The type that should be bounded by bs.
   517      *  @param bs            The bound.
   518      */
   519     private void checkCapture(JCTypeApply tree) {
   520         List<JCExpression> args = tree.getTypeArguments();
   521         for (Type arg : types.capture(tree.type).getTypeArguments()) {
   522             if (arg.tag == TYPEVAR && arg.getUpperBound().isErroneous()) {
   523                 log.error(args.head.pos, "not.within.bounds", args.head.type);
   524                 break;
   525             }
   526             args = args.tail;
   527         }
   528      }
   530     /** Check that type is different from 'void'.
   531      *  @param pos           Position to be used for error reporting.
   532      *  @param t             The type to be checked.
   533      */
   534     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   535         if (t.tag == VOID) {
   536             log.error(pos, "void.not.allowed.here");
   537             return types.createErrorType(t);
   538         } else {
   539             return t;
   540         }
   541     }
   543     /** Check that type is a class or interface type.
   544      *  @param pos           Position to be used for error reporting.
   545      *  @param t             The type to be checked.
   546      */
   547     Type checkClassType(DiagnosticPosition pos, Type t) {
   548         if (t.tag != CLASS && t.tag != ERROR)
   549             return typeTagError(pos,
   550                                 diags.fragment("type.req.class"),
   551                                 (t.tag == TYPEVAR)
   552                                 ? diags.fragment("type.parameter", t)
   553                                 : t);
   554         else
   555             return t;
   556     }
   558     /** Check that type is a class or interface type.
   559      *  @param pos           Position to be used for error reporting.
   560      *  @param t             The type to be checked.
   561      *  @param noBounds    True if type bounds are illegal here.
   562      */
   563     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   564         t = checkClassType(pos, t);
   565         if (noBounds && t.isParameterized()) {
   566             List<Type> args = t.getTypeArguments();
   567             while (args.nonEmpty()) {
   568                 if (args.head.tag == WILDCARD)
   569                     return typeTagError(pos,
   570                                         diags.fragment("type.req.exact"),
   571                                         args.head);
   572                 args = args.tail;
   573             }
   574         }
   575         return t;
   576     }
   578     /** Check that type is a reifiable class, interface or array type.
   579      *  @param pos           Position to be used for error reporting.
   580      *  @param t             The type to be checked.
   581      */
   582     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
   583         if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
   584             return typeTagError(pos,
   585                                 diags.fragment("type.req.class.array"),
   586                                 t);
   587         } else if (!types.isReifiable(t)) {
   588             log.error(pos, "illegal.generic.type.for.instof");
   589             return types.createErrorType(t);
   590         } else {
   591             return t;
   592         }
   593     }
   595     /** Check that type is a reference type, i.e. a class, interface or array type
   596      *  or a type variable.
   597      *  @param pos           Position to be used for error reporting.
   598      *  @param t             The type to be checked.
   599      */
   600     Type checkRefType(DiagnosticPosition pos, Type t) {
   601         switch (t.tag) {
   602         case CLASS:
   603         case ARRAY:
   604         case TYPEVAR:
   605         case WILDCARD:
   606         case ERROR:
   607             return t;
   608         default:
   609             return typeTagError(pos,
   610                                 diags.fragment("type.req.ref"),
   611                                 t);
   612         }
   613     }
   615     /** Check that each type is a reference type, i.e. a class, interface or array type
   616      *  or a type variable.
   617      *  @param trees         Original trees, used for error reporting.
   618      *  @param types         The types to be checked.
   619      */
   620     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
   621         List<JCExpression> tl = trees;
   622         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
   623             l.head = checkRefType(tl.head.pos(), l.head);
   624             tl = tl.tail;
   625         }
   626         return types;
   627     }
   629     /** Check that type is a null or reference type.
   630      *  @param pos           Position to be used for error reporting.
   631      *  @param t             The type to be checked.
   632      */
   633     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   634         switch (t.tag) {
   635         case CLASS:
   636         case ARRAY:
   637         case TYPEVAR:
   638         case WILDCARD:
   639         case BOT:
   640         case ERROR:
   641             return t;
   642         default:
   643             return typeTagError(pos,
   644                                 diags.fragment("type.req.ref"),
   645                                 t);
   646         }
   647     }
   649     /** Check that flag set does not contain elements of two conflicting sets. s
   650      *  Return true if it doesn't.
   651      *  @param pos           Position to be used for error reporting.
   652      *  @param flags         The set of flags to be checked.
   653      *  @param set1          Conflicting flags set #1.
   654      *  @param set2          Conflicting flags set #2.
   655      */
   656     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   657         if ((flags & set1) != 0 && (flags & set2) != 0) {
   658             log.error(pos,
   659                       "illegal.combination.of.modifiers",
   660                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
   661                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
   662             return false;
   663         } else
   664             return true;
   665     }
   667     /** Check that the type inferred using the diamond operator does not contain
   668      *  non-denotable types such as captured types or intersection types.
   669      *  @param t the type inferred using the diamond operator
   670      */
   671     List<Type> checkDiamond(ClassType t) {
   672         DiamondTypeChecker dtc = new DiamondTypeChecker();
   673         ListBuffer<Type> buf = ListBuffer.lb();
   674         for (Type arg : t.getTypeArguments()) {
   675             if (!dtc.visit(arg, null)) {
   676                 buf.append(arg);
   677             }
   678         }
   679         return buf.toList();
   680     }
   682     static class DiamondTypeChecker extends Types.SimpleVisitor<Boolean, Void> {
   683         public Boolean visitType(Type t, Void s) {
   684             return true;
   685         }
   686         @Override
   687         public Boolean visitClassType(ClassType t, Void s) {
   688             if (t.isCompound()) {
   689                 return false;
   690             }
   691             for (Type targ : t.getTypeArguments()) {
   692                 if (!visit(targ, s)) {
   693                     return false;
   694                 }
   695             }
   696             return true;
   697         }
   698         @Override
   699         public Boolean visitCapturedType(CapturedType t, Void s) {
   700             return false;
   701         }
   702     }
   704     void checkVarargMethodDecl(JCMethodDecl tree) {
   705         MethodSymbol m = tree.sym;
   706         //check the element type of the vararg
   707         if (m.isVarArgs()) {
   708             Type varargElemType = types.elemtype(tree.params.last().type);
   709             if (!types.isReifiable(varargElemType)) {
   710                 warnUnsafeVararg(tree.params.head.pos(), varargElemType);
   711             }
   712         }
   713     }
   715     /**
   716      * Check that vararg method call is sound
   717      * @param pos Position to be used for error reporting.
   718      * @param argtypes Actual arguments supplied to vararg method.
   719      */
   720     void checkVararg(DiagnosticPosition pos, List<Type> argtypes, Symbol msym, Env<AttrContext> env) {
   721         Env<AttrContext> calleeLintEnv = env;
   722         while (calleeLintEnv.info.lint == null)
   723             calleeLintEnv = calleeLintEnv.next;
   724         Lint calleeLint = calleeLintEnv.info.lint.augment(msym.attributes_field, msym.flags());
   725         Type argtype = argtypes.last();
   726         if (!types.isReifiable(argtype) && !calleeLint.isSuppressed(Lint.LintCategory.VARARGS)) {
   727             warnUnchecked(pos,
   728                               "unchecked.generic.array.creation",
   729                               argtype);
   730         }
   731     }
   733     /** Check that given modifiers are legal for given symbol and
   734      *  return modifiers together with any implicit modififiers for that symbol.
   735      *  Warning: we can't use flags() here since this method
   736      *  is called during class enter, when flags() would cause a premature
   737      *  completion.
   738      *  @param pos           Position to be used for error reporting.
   739      *  @param flags         The set of modifiers given in a definition.
   740      *  @param sym           The defined symbol.
   741      */
   742     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
   743         long mask;
   744         long implicit = 0;
   745         switch (sym.kind) {
   746         case VAR:
   747             if (sym.owner.kind != TYP)
   748                 mask = LocalVarFlags;
   749             else if ((sym.owner.flags_field & INTERFACE) != 0)
   750                 mask = implicit = InterfaceVarFlags;
   751             else
   752                 mask = VarFlags;
   753             break;
   754         case MTH:
   755             if (sym.name == names.init) {
   756                 if ((sym.owner.flags_field & ENUM) != 0) {
   757                     // enum constructors cannot be declared public or
   758                     // protected and must be implicitly or explicitly
   759                     // private
   760                     implicit = PRIVATE;
   761                     mask = PRIVATE;
   762                 } else
   763                     mask = ConstructorFlags;
   764             }  else if ((sym.owner.flags_field & INTERFACE) != 0)
   765                 mask = implicit = InterfaceMethodFlags;
   766             else {
   767                 mask = MethodFlags;
   768             }
   769             // Imply STRICTFP if owner has STRICTFP set.
   770             if (((flags|implicit) & Flags.ABSTRACT) == 0)
   771               implicit |= sym.owner.flags_field & STRICTFP;
   772             break;
   773         case TYP:
   774             if (sym.isLocal()) {
   775                 mask = LocalClassFlags;
   776                 if (sym.name.isEmpty()) { // Anonymous class
   777                     // Anonymous classes in static methods are themselves static;
   778                     // that's why we admit STATIC here.
   779                     mask |= STATIC;
   780                     // JLS: Anonymous classes are final.
   781                     implicit |= FINAL;
   782                 }
   783                 if ((sym.owner.flags_field & STATIC) == 0 &&
   784                     (flags & ENUM) != 0)
   785                     log.error(pos, "enums.must.be.static");
   786             } else if (sym.owner.kind == TYP) {
   787                 mask = MemberClassFlags;
   788                 if (sym.owner.owner.kind == PCK ||
   789                     (sym.owner.flags_field & STATIC) != 0)
   790                     mask |= STATIC;
   791                 else if ((flags & ENUM) != 0)
   792                     log.error(pos, "enums.must.be.static");
   793                 // Nested interfaces and enums are always STATIC (Spec ???)
   794                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
   795             } else {
   796                 mask = ClassFlags;
   797             }
   798             // Interfaces are always ABSTRACT
   799             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
   801             if ((flags & ENUM) != 0) {
   802                 // enums can't be declared abstract or final
   803                 mask &= ~(ABSTRACT | FINAL);
   804                 implicit |= implicitEnumFinalFlag(tree);
   805             }
   806             // Imply STRICTFP if owner has STRICTFP set.
   807             implicit |= sym.owner.flags_field & STRICTFP;
   808             break;
   809         default:
   810             throw new AssertionError();
   811         }
   812         long illegal = flags & StandardFlags & ~mask;
   813         if (illegal != 0) {
   814             if ((illegal & INTERFACE) != 0) {
   815                 log.error(pos, "intf.not.allowed.here");
   816                 mask |= INTERFACE;
   817             }
   818             else {
   819                 log.error(pos,
   820                           "mod.not.allowed.here", asFlagSet(illegal));
   821             }
   822         }
   823         else if ((sym.kind == TYP ||
   824                   // ISSUE: Disallowing abstract&private is no longer appropriate
   825                   // in the presence of inner classes. Should it be deleted here?
   826                   checkDisjoint(pos, flags,
   827                                 ABSTRACT,
   828                                 PRIVATE | STATIC))
   829                  &&
   830                  checkDisjoint(pos, flags,
   831                                ABSTRACT | INTERFACE,
   832                                FINAL | NATIVE | SYNCHRONIZED)
   833                  &&
   834                  checkDisjoint(pos, flags,
   835                                PUBLIC,
   836                                PRIVATE | PROTECTED)
   837                  &&
   838                  checkDisjoint(pos, flags,
   839                                PRIVATE,
   840                                PUBLIC | PROTECTED)
   841                  &&
   842                  checkDisjoint(pos, flags,
   843                                FINAL,
   844                                VOLATILE)
   845                  &&
   846                  (sym.kind == TYP ||
   847                   checkDisjoint(pos, flags,
   848                                 ABSTRACT | NATIVE,
   849                                 STRICTFP))) {
   850             // skip
   851         }
   852         return flags & (mask | ~StandardFlags) | implicit;
   853     }
   856     /** Determine if this enum should be implicitly final.
   857      *
   858      *  If the enum has no specialized enum contants, it is final.
   859      *
   860      *  If the enum does have specialized enum contants, it is
   861      *  <i>not</i> final.
   862      */
   863     private long implicitEnumFinalFlag(JCTree tree) {
   864         if (tree.getTag() != JCTree.CLASSDEF) return 0;
   865         class SpecialTreeVisitor extends JCTree.Visitor {
   866             boolean specialized;
   867             SpecialTreeVisitor() {
   868                 this.specialized = false;
   869             };
   871             @Override
   872             public void visitTree(JCTree tree) { /* no-op */ }
   874             @Override
   875             public void visitVarDef(JCVariableDecl tree) {
   876                 if ((tree.mods.flags & ENUM) != 0) {
   877                     if (tree.init instanceof JCNewClass &&
   878                         ((JCNewClass) tree.init).def != null) {
   879                         specialized = true;
   880                     }
   881                 }
   882             }
   883         }
   885         SpecialTreeVisitor sts = new SpecialTreeVisitor();
   886         JCClassDecl cdef = (JCClassDecl) tree;
   887         for (JCTree defs: cdef.defs) {
   888             defs.accept(sts);
   889             if (sts.specialized) return 0;
   890         }
   891         return FINAL;
   892     }
   894 /* *************************************************************************
   895  * Type Validation
   896  **************************************************************************/
   898     /** Validate a type expression. That is,
   899      *  check that all type arguments of a parametric type are within
   900      *  their bounds. This must be done in a second phase after type attributon
   901      *  since a class might have a subclass as type parameter bound. E.g:
   902      *
   903      *  class B<A extends C> { ... }
   904      *  class C extends B<C> { ... }
   905      *
   906      *  and we can't make sure that the bound is already attributed because
   907      *  of possible cycles.
   908      */
   909     private Validator validator = new Validator();
   911     /** Visitor method: Validate a type expression, if it is not null, catching
   912      *  and reporting any completion failures.
   913      */
   914     void validate(JCTree tree, Env<AttrContext> env) {
   915         try {
   916             if (tree != null) {
   917                 validator.env = env;
   918                 tree.accept(validator);
   919                 checkRaw(tree, env);
   920             }
   921         } catch (CompletionFailure ex) {
   922             completionError(tree.pos(), ex);
   923         }
   924     }
   925     //where
   926     void checkRaw(JCTree tree, Env<AttrContext> env) {
   927         if (lint.isEnabled(Lint.LintCategory.RAW) &&
   928             tree.type.tag == CLASS &&
   929             !TreeInfo.isDiamond(tree) &&
   930             !env.enclClass.name.isEmpty() &&  //anonymous or intersection
   931             tree.type.isRaw()) {
   932             log.warning(Lint.LintCategory.RAW,
   933                     tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
   934         }
   935     }
   937     /** Visitor method: Validate a list of type expressions.
   938      */
   939     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
   940         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
   941             validate(l.head, env);
   942     }
   944     /** A visitor class for type validation.
   945      */
   946     class Validator extends JCTree.Visitor {
   948         @Override
   949         public void visitTypeArray(JCArrayTypeTree tree) {
   950             validate(tree.elemtype, env);
   951         }
   953         @Override
   954         public void visitTypeApply(JCTypeApply tree) {
   955             if (tree.type.tag == CLASS) {
   956                 List<Type> formals = tree.type.tsym.type.allparams();
   957                 List<Type> actuals = tree.type.allparams();
   958                 List<JCExpression> args = tree.arguments;
   959                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
   960                 ListBuffer<Type> tvars_buf = new ListBuffer<Type>();
   962                 // For matching pairs of actual argument types `a' and
   963                 // formal type parameters with declared bound `b' ...
   964                 while (args.nonEmpty() && forms.nonEmpty()) {
   965                     validate(args.head, env);
   967                     // exact type arguments needs to know their
   968                     // bounds (for upper and lower bound
   969                     // calculations).  So we create new TypeVars with
   970                     // bounds substed with actuals.
   971                     tvars_buf.append(types.substBound(((TypeVar)forms.head),
   972                                                       formals,
   973                                                       actuals));
   975                     args = args.tail;
   976                     forms = forms.tail;
   977                 }
   979                 args = tree.arguments;
   980                 List<Type> tvars_cap = types.substBounds(formals,
   981                                           formals,
   982                                           types.capture(tree.type).allparams());
   983                 while (args.nonEmpty() && tvars_cap.nonEmpty()) {
   984                     // Let the actual arguments know their bound
   985                     args.head.type.withTypeVar((TypeVar)tvars_cap.head);
   986                     args = args.tail;
   987                     tvars_cap = tvars_cap.tail;
   988                 }
   990                 args = tree.arguments;
   991                 List<Type> tvars = tvars_buf.toList();
   993                 while (args.nonEmpty() && tvars.nonEmpty()) {
   994                     Type actual = types.subst(args.head.type,
   995                         tree.type.tsym.type.getTypeArguments(),
   996                         tvars_buf.toList());
   997                     checkExtends(args.head.pos(),
   998                                  actual,
   999                                  (TypeVar)tvars.head);
  1000                     args = args.tail;
  1001                     tvars = tvars.tail;
  1004                 checkCapture(tree);
  1006                 // Check that this type is either fully parameterized, or
  1007                 // not parameterized at all.
  1008                 if (tree.type.getEnclosingType().isRaw())
  1009                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
  1010                 if (tree.clazz.getTag() == JCTree.SELECT)
  1011                     visitSelectInternal((JCFieldAccess)tree.clazz);
  1015         @Override
  1016         public void visitTypeParameter(JCTypeParameter tree) {
  1017             validate(tree.bounds, env);
  1018             checkClassBounds(tree.pos(), tree.type);
  1021         @Override
  1022         public void visitWildcard(JCWildcard tree) {
  1023             if (tree.inner != null)
  1024                 validate(tree.inner, env);
  1027         @Override
  1028         public void visitSelect(JCFieldAccess tree) {
  1029             if (tree.type.tag == CLASS) {
  1030                 visitSelectInternal(tree);
  1032                 // Check that this type is either fully parameterized, or
  1033                 // not parameterized at all.
  1034                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
  1035                     log.error(tree.pos(), "improperly.formed.type.param.missing");
  1038         public void visitSelectInternal(JCFieldAccess tree) {
  1039             if (tree.type.tsym.isStatic() &&
  1040                 tree.selected.type.isParameterized()) {
  1041                 // The enclosing type is not a class, so we are
  1042                 // looking at a static member type.  However, the
  1043                 // qualifying expression is parameterized.
  1044                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
  1045             } else {
  1046                 // otherwise validate the rest of the expression
  1047                 tree.selected.accept(this);
  1051         @Override
  1052         public void visitAnnotatedType(JCAnnotatedType tree) {
  1053             tree.underlyingType.accept(this);
  1056         /** Default visitor method: do nothing.
  1057          */
  1058         @Override
  1059         public void visitTree(JCTree tree) {
  1062         Env<AttrContext> env;
  1065 /* *************************************************************************
  1066  * Exception checking
  1067  **************************************************************************/
  1069     /* The following methods treat classes as sets that contain
  1070      * the class itself and all their subclasses
  1071      */
  1073     /** Is given type a subtype of some of the types in given list?
  1074      */
  1075     boolean subset(Type t, List<Type> ts) {
  1076         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1077             if (types.isSubtype(t, l.head)) return true;
  1078         return false;
  1081     /** Is given type a subtype or supertype of
  1082      *  some of the types in given list?
  1083      */
  1084     boolean intersects(Type t, List<Type> ts) {
  1085         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1086             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
  1087         return false;
  1090     /** Add type set to given type list, unless it is a subclass of some class
  1091      *  in the list.
  1092      */
  1093     List<Type> incl(Type t, List<Type> ts) {
  1094         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
  1097     /** Remove type set from type set list.
  1098      */
  1099     List<Type> excl(Type t, List<Type> ts) {
  1100         if (ts.isEmpty()) {
  1101             return ts;
  1102         } else {
  1103             List<Type> ts1 = excl(t, ts.tail);
  1104             if (types.isSubtype(ts.head, t)) return ts1;
  1105             else if (ts1 == ts.tail) return ts;
  1106             else return ts1.prepend(ts.head);
  1110     /** Form the union of two type set lists.
  1111      */
  1112     List<Type> union(List<Type> ts1, List<Type> ts2) {
  1113         List<Type> ts = ts1;
  1114         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1115             ts = incl(l.head, ts);
  1116         return ts;
  1119     /** Form the difference of two type lists.
  1120      */
  1121     List<Type> diff(List<Type> ts1, List<Type> ts2) {
  1122         List<Type> ts = ts1;
  1123         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1124             ts = excl(l.head, ts);
  1125         return ts;
  1128     /** Form the intersection of two type lists.
  1129      */
  1130     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
  1131         List<Type> ts = List.nil();
  1132         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
  1133             if (subset(l.head, ts2)) ts = incl(l.head, ts);
  1134         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1135             if (subset(l.head, ts1)) ts = incl(l.head, ts);
  1136         return ts;
  1139     /** Is exc an exception symbol that need not be declared?
  1140      */
  1141     boolean isUnchecked(ClassSymbol exc) {
  1142         return
  1143             exc.kind == ERR ||
  1144             exc.isSubClass(syms.errorType.tsym, types) ||
  1145             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
  1148     /** Is exc an exception type that need not be declared?
  1149      */
  1150     boolean isUnchecked(Type exc) {
  1151         return
  1152             (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
  1153             (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
  1154             exc.tag == BOT;
  1157     /** Same, but handling completion failures.
  1158      */
  1159     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
  1160         try {
  1161             return isUnchecked(exc);
  1162         } catch (CompletionFailure ex) {
  1163             completionError(pos, ex);
  1164             return true;
  1168     /** Is exc handled by given exception list?
  1169      */
  1170     boolean isHandled(Type exc, List<Type> handled) {
  1171         return isUnchecked(exc) || subset(exc, handled);
  1174     /** Return all exceptions in thrown list that are not in handled list.
  1175      *  @param thrown     The list of thrown exceptions.
  1176      *  @param handled    The list of handled exceptions.
  1177      */
  1178     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
  1179         List<Type> unhandled = List.nil();
  1180         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
  1181             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
  1182         return unhandled;
  1185 /* *************************************************************************
  1186  * Overriding/Implementation checking
  1187  **************************************************************************/
  1189     /** The level of access protection given by a flag set,
  1190      *  where PRIVATE is highest and PUBLIC is lowest.
  1191      */
  1192     static int protection(long flags) {
  1193         switch ((short)(flags & AccessFlags)) {
  1194         case PRIVATE: return 3;
  1195         case PROTECTED: return 1;
  1196         default:
  1197         case PUBLIC: return 0;
  1198         case 0: return 2;
  1202     /** A customized "cannot override" error message.
  1203      *  @param m      The overriding method.
  1204      *  @param other  The overridden method.
  1205      *  @return       An internationalized string.
  1206      */
  1207     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1208         String key;
  1209         if ((other.owner.flags() & INTERFACE) == 0)
  1210             key = "cant.override";
  1211         else if ((m.owner.flags() & INTERFACE) == 0)
  1212             key = "cant.implement";
  1213         else
  1214             key = "clashes.with";
  1215         return diags.fragment(key, m, m.location(), other, other.location());
  1218     /** A customized "override" warning message.
  1219      *  @param m      The overriding method.
  1220      *  @param other  The overridden method.
  1221      *  @return       An internationalized string.
  1222      */
  1223     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1224         String key;
  1225         if ((other.owner.flags() & INTERFACE) == 0)
  1226             key = "unchecked.override";
  1227         else if ((m.owner.flags() & INTERFACE) == 0)
  1228             key = "unchecked.implement";
  1229         else
  1230             key = "unchecked.clash.with";
  1231         return diags.fragment(key, m, m.location(), other, other.location());
  1234     /** A customized "override" warning message.
  1235      *  @param m      The overriding method.
  1236      *  @param other  The overridden method.
  1237      *  @return       An internationalized string.
  1238      */
  1239     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1240         String key;
  1241         if ((other.owner.flags() & INTERFACE) == 0)
  1242             key = "varargs.override";
  1243         else  if ((m.owner.flags() & INTERFACE) == 0)
  1244             key = "varargs.implement";
  1245         else
  1246             key = "varargs.clash.with";
  1247         return diags.fragment(key, m, m.location(), other, other.location());
  1250     /** Check that this method conforms with overridden method 'other'.
  1251      *  where `origin' is the class where checking started.
  1252      *  Complications:
  1253      *  (1) Do not check overriding of synthetic methods
  1254      *      (reason: they might be final).
  1255      *      todo: check whether this is still necessary.
  1256      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1257      *      than the method it implements. Augment the proxy methods with the
  1258      *      undeclared exceptions in this case.
  1259      *  (3) When generics are enabled, admit the case where an interface proxy
  1260      *      has a result type
  1261      *      extended by the result type of the method it implements.
  1262      *      Change the proxies result type to the smaller type in this case.
  1264      *  @param tree         The tree from which positions
  1265      *                      are extracted for errors.
  1266      *  @param m            The overriding method.
  1267      *  @param other        The overridden method.
  1268      *  @param origin       The class of which the overriding method
  1269      *                      is a member.
  1270      */
  1271     void checkOverride(JCTree tree,
  1272                        MethodSymbol m,
  1273                        MethodSymbol other,
  1274                        ClassSymbol origin) {
  1275         // Don't check overriding of synthetic methods or by bridge methods.
  1276         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1277             return;
  1280         // Error if static method overrides instance method (JLS 8.4.6.2).
  1281         if ((m.flags() & STATIC) != 0 &&
  1282                    (other.flags() & STATIC) == 0) {
  1283             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1284                       cannotOverride(m, other));
  1285             return;
  1288         // Error if instance method overrides static or final
  1289         // method (JLS 8.4.6.1).
  1290         if ((other.flags() & FINAL) != 0 ||
  1291                  (m.flags() & STATIC) == 0 &&
  1292                  (other.flags() & STATIC) != 0) {
  1293             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1294                       cannotOverride(m, other),
  1295                       asFlagSet(other.flags() & (FINAL | STATIC)));
  1296             return;
  1299         if ((m.owner.flags() & ANNOTATION) != 0) {
  1300             // handled in validateAnnotationMethod
  1301             return;
  1304         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1305         if ((origin.flags() & INTERFACE) == 0 &&
  1306                  protection(m.flags()) > protection(other.flags())) {
  1307             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1308                       cannotOverride(m, other),
  1309                       other.flags() == 0 ?
  1310                           Flag.PACKAGE :
  1311                           asFlagSet(other.flags() & AccessFlags));
  1312             return;
  1315         Type mt = types.memberType(origin.type, m);
  1316         Type ot = types.memberType(origin.type, other);
  1317         // Error if overriding result type is different
  1318         // (or, in the case of generics mode, not a subtype) of
  1319         // overridden result type. We have to rename any type parameters
  1320         // before comparing types.
  1321         List<Type> mtvars = mt.getTypeArguments();
  1322         List<Type> otvars = ot.getTypeArguments();
  1323         Type mtres = mt.getReturnType();
  1324         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1326         overrideWarner.warned = false;
  1327         boolean resultTypesOK =
  1328             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1329         if (!resultTypesOK) {
  1330             if (!allowCovariantReturns &&
  1331                 m.owner != origin &&
  1332                 m.owner.isSubClass(other.owner, types)) {
  1333                 // allow limited interoperability with covariant returns
  1334             } else {
  1335                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1336                           "override.incompatible.ret",
  1337                           cannotOverride(m, other),
  1338                           mtres, otres);
  1339                 return;
  1341         } else if (overrideWarner.warned) {
  1342             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1343                     "override.unchecked.ret",
  1344                     uncheckedOverrides(m, other),
  1345                     mtres, otres);
  1348         // Error if overriding method throws an exception not reported
  1349         // by overridden method.
  1350         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1351         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
  1352         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
  1353         if (unhandledErased.nonEmpty()) {
  1354             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1355                       "override.meth.doesnt.throw",
  1356                       cannotOverride(m, other),
  1357                       unhandledUnerased.head);
  1358             return;
  1360         else if (unhandledUnerased.nonEmpty()) {
  1361             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1362                           "override.unchecked.thrown",
  1363                          cannotOverride(m, other),
  1364                          unhandledUnerased.head);
  1365             return;
  1368         // Optional warning if varargs don't agree
  1369         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1370             && lint.isEnabled(Lint.LintCategory.OVERRIDES)) {
  1371             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1372                         ((m.flags() & Flags.VARARGS) != 0)
  1373                         ? "override.varargs.missing"
  1374                         : "override.varargs.extra",
  1375                         varargsOverrides(m, other));
  1378         // Warn if instance method overrides bridge method (compiler spec ??)
  1379         if ((other.flags() & BRIDGE) != 0) {
  1380             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1381                         uncheckedOverrides(m, other));
  1384         // Warn if a deprecated method overridden by a non-deprecated one.
  1385         if ((other.flags() & DEPRECATED) != 0
  1386             && (m.flags() & DEPRECATED) == 0
  1387             && m.outermostClass() != other.outermostClass()
  1388             && !isDeprecatedOverrideIgnorable(other, origin)) {
  1389             warnDeprecated(TreeInfo.diagnosticPositionFor(m, tree), other);
  1392     // where
  1393         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1394             // If the method, m, is defined in an interface, then ignore the issue if the method
  1395             // is only inherited via a supertype and also implemented in the supertype,
  1396             // because in that case, we will rediscover the issue when examining the method
  1397             // in the supertype.
  1398             // If the method, m, is not defined in an interface, then the only time we need to
  1399             // address the issue is when the method is the supertype implemementation: any other
  1400             // case, we will have dealt with when examining the supertype classes
  1401             ClassSymbol mc = m.enclClass();
  1402             Type st = types.supertype(origin.type);
  1403             if (st.tag != CLASS)
  1404                 return true;
  1405             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1407             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1408                 List<Type> intfs = types.interfaces(origin.type);
  1409                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1411             else
  1412                 return (stimpl != m);
  1416     // used to check if there were any unchecked conversions
  1417     Warner overrideWarner = new Warner();
  1419     /** Check that a class does not inherit two concrete methods
  1420      *  with the same signature.
  1421      *  @param pos          Position to be used for error reporting.
  1422      *  @param site         The class type to be checked.
  1423      */
  1424     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1425         Type sup = types.supertype(site);
  1426         if (sup.tag != CLASS) return;
  1428         for (Type t1 = sup;
  1429              t1.tsym.type.isParameterized();
  1430              t1 = types.supertype(t1)) {
  1431             for (Scope.Entry e1 = t1.tsym.members().elems;
  1432                  e1 != null;
  1433                  e1 = e1.sibling) {
  1434                 Symbol s1 = e1.sym;
  1435                 if (s1.kind != MTH ||
  1436                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1437                     !s1.isInheritedIn(site.tsym, types) ||
  1438                     ((MethodSymbol)s1).implementation(site.tsym,
  1439                                                       types,
  1440                                                       true) != s1)
  1441                     continue;
  1442                 Type st1 = types.memberType(t1, s1);
  1443                 int s1ArgsLength = st1.getParameterTypes().length();
  1444                 if (st1 == s1.type) continue;
  1446                 for (Type t2 = sup;
  1447                      t2.tag == CLASS;
  1448                      t2 = types.supertype(t2)) {
  1449                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1450                          e2.scope != null;
  1451                          e2 = e2.next()) {
  1452                         Symbol s2 = e2.sym;
  1453                         if (s2 == s1 ||
  1454                             s2.kind != MTH ||
  1455                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1456                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1457                             !s2.isInheritedIn(site.tsym, types) ||
  1458                             ((MethodSymbol)s2).implementation(site.tsym,
  1459                                                               types,
  1460                                                               true) != s2)
  1461                             continue;
  1462                         Type st2 = types.memberType(t2, s2);
  1463                         if (types.overrideEquivalent(st1, st2))
  1464                             log.error(pos, "concrete.inheritance.conflict",
  1465                                       s1, t1, s2, t2, sup);
  1472     /** Check that classes (or interfaces) do not each define an abstract
  1473      *  method with same name and arguments but incompatible return types.
  1474      *  @param pos          Position to be used for error reporting.
  1475      *  @param t1           The first argument type.
  1476      *  @param t2           The second argument type.
  1477      */
  1478     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1479                                             Type t1,
  1480                                             Type t2) {
  1481         return checkCompatibleAbstracts(pos, t1, t2,
  1482                                         types.makeCompoundType(t1, t2));
  1485     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1486                                             Type t1,
  1487                                             Type t2,
  1488                                             Type site) {
  1489         Symbol sym = firstIncompatibility(t1, t2, site);
  1490         if (sym != null) {
  1491             log.error(pos, "types.incompatible.diff.ret",
  1492                       t1, t2, sym.name +
  1493                       "(" + types.memberType(t2, sym).getParameterTypes() + ")");
  1494             return false;
  1496         return true;
  1499     /** Return the first method which is defined with same args
  1500      *  but different return types in two given interfaces, or null if none
  1501      *  exists.
  1502      *  @param t1     The first type.
  1503      *  @param t2     The second type.
  1504      *  @param site   The most derived type.
  1505      *  @returns symbol from t2 that conflicts with one in t1.
  1506      */
  1507     private Symbol firstIncompatibility(Type t1, Type t2, Type site) {
  1508         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1509         closure(t1, interfaces1);
  1510         Map<TypeSymbol,Type> interfaces2;
  1511         if (t1 == t2)
  1512             interfaces2 = interfaces1;
  1513         else
  1514             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1516         for (Type t3 : interfaces1.values()) {
  1517             for (Type t4 : interfaces2.values()) {
  1518                 Symbol s = firstDirectIncompatibility(t3, t4, site);
  1519                 if (s != null) return s;
  1522         return null;
  1525     /** Compute all the supertypes of t, indexed by type symbol. */
  1526     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1527         if (t.tag != CLASS) return;
  1528         if (typeMap.put(t.tsym, t) == null) {
  1529             closure(types.supertype(t), typeMap);
  1530             for (Type i : types.interfaces(t))
  1531                 closure(i, typeMap);
  1535     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1536     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1537         if (t.tag != CLASS) return;
  1538         if (typesSkip.get(t.tsym) != null) return;
  1539         if (typeMap.put(t.tsym, t) == null) {
  1540             closure(types.supertype(t), typesSkip, typeMap);
  1541             for (Type i : types.interfaces(t))
  1542                 closure(i, typesSkip, typeMap);
  1546     /** Return the first method in t2 that conflicts with a method from t1. */
  1547     private Symbol firstDirectIncompatibility(Type t1, Type t2, Type site) {
  1548         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1549             Symbol s1 = e1.sym;
  1550             Type st1 = null;
  1551             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
  1552             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1553             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1554             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1555                 Symbol s2 = e2.sym;
  1556                 if (s1 == s2) continue;
  1557                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
  1558                 if (st1 == null) st1 = types.memberType(t1, s1);
  1559                 Type st2 = types.memberType(t2, s2);
  1560                 if (types.overrideEquivalent(st1, st2)) {
  1561                     List<Type> tvars1 = st1.getTypeArguments();
  1562                     List<Type> tvars2 = st2.getTypeArguments();
  1563                     Type rt1 = st1.getReturnType();
  1564                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1565                     boolean compat =
  1566                         types.isSameType(rt1, rt2) ||
  1567                         rt1.tag >= CLASS && rt2.tag >= CLASS &&
  1568                         (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
  1569                          types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
  1570                          checkCommonOverriderIn(s1,s2,site);
  1571                     if (!compat) return s2;
  1575         return null;
  1577     //WHERE
  1578     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
  1579         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
  1580         Type st1 = types.memberType(site, s1);
  1581         Type st2 = types.memberType(site, s2);
  1582         closure(site, supertypes);
  1583         for (Type t : supertypes.values()) {
  1584             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
  1585                 Symbol s3 = e.sym;
  1586                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
  1587                 Type st3 = types.memberType(site,s3);
  1588                 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
  1589                     if (s3.owner == site.tsym) {
  1590                         return true;
  1592                     List<Type> tvars1 = st1.getTypeArguments();
  1593                     List<Type> tvars2 = st2.getTypeArguments();
  1594                     List<Type> tvars3 = st3.getTypeArguments();
  1595                     Type rt1 = st1.getReturnType();
  1596                     Type rt2 = st2.getReturnType();
  1597                     Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
  1598                     Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
  1599                     boolean compat =
  1600                         rt13.tag >= CLASS && rt23.tag >= CLASS &&
  1601                         (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
  1602                          types.covariantReturnType(rt23, rt2, Warner.noWarnings));
  1603                     if (compat)
  1604                         return true;
  1608         return false;
  1611     /** Check that a given method conforms with any method it overrides.
  1612      *  @param tree         The tree from which positions are extracted
  1613      *                      for errors.
  1614      *  @param m            The overriding method.
  1615      */
  1616     void checkOverride(JCTree tree, MethodSymbol m) {
  1617         ClassSymbol origin = (ClassSymbol)m.owner;
  1618         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1619             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1620                 log.error(tree.pos(), "enum.no.finalize");
  1621                 return;
  1623         for (Type t = types.supertype(origin.type); t.tag == CLASS;
  1624              t = types.supertype(t)) {
  1625             TypeSymbol c = t.tsym;
  1626             Scope.Entry e = c.members().lookup(m.name);
  1627             while (e.scope != null) {
  1628                 if (m.overrides(e.sym, origin, types, false))
  1629                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  1630                 else if (e.sym.kind == MTH &&
  1631                         e.sym.isInheritedIn(origin, types) &&
  1632                         (e.sym.flags() & SYNTHETIC) == 0 &&
  1633                         !m.isConstructor()) {
  1634                     Type er1 = m.erasure(types);
  1635                     Type er2 = e.sym.erasure(types);
  1636                     if (types.isSameTypes(er1.getParameterTypes(),
  1637                             er2.getParameterTypes())) {
  1638                             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1639                                     "name.clash.same.erasure.no.override",
  1640                                     m, m.location(),
  1641                                     e.sym, e.sym.location());
  1644                 e = e.next();
  1649     /** Check that all abstract members of given class have definitions.
  1650      *  @param pos          Position to be used for error reporting.
  1651      *  @param c            The class.
  1652      */
  1653     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  1654         try {
  1655             MethodSymbol undef = firstUndef(c, c);
  1656             if (undef != null) {
  1657                 if ((c.flags() & ENUM) != 0 &&
  1658                     types.supertype(c.type).tsym == syms.enumSym &&
  1659                     (c.flags() & FINAL) == 0) {
  1660                     // add the ABSTRACT flag to an enum
  1661                     c.flags_field |= ABSTRACT;
  1662                 } else {
  1663                     MethodSymbol undef1 =
  1664                         new MethodSymbol(undef.flags(), undef.name,
  1665                                          types.memberType(c.type, undef), undef.owner);
  1666                     log.error(pos, "does.not.override.abstract",
  1667                               c, undef1, undef1.location());
  1670         } catch (CompletionFailure ex) {
  1671             completionError(pos, ex);
  1674 //where
  1675         /** Return first abstract member of class `c' that is not defined
  1676          *  in `impl', null if there is none.
  1677          */
  1678         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  1679             MethodSymbol undef = null;
  1680             // Do not bother to search in classes that are not abstract,
  1681             // since they cannot have abstract members.
  1682             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1683                 Scope s = c.members();
  1684                 for (Scope.Entry e = s.elems;
  1685                      undef == null && e != null;
  1686                      e = e.sibling) {
  1687                     if (e.sym.kind == MTH &&
  1688                         (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
  1689                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  1690                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  1691                         if (implmeth == null || implmeth == absmeth)
  1692                             undef = absmeth;
  1695                 if (undef == null) {
  1696                     Type st = types.supertype(c.type);
  1697                     if (st.tag == CLASS)
  1698                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
  1700                 for (List<Type> l = types.interfaces(c.type);
  1701                      undef == null && l.nonEmpty();
  1702                      l = l.tail) {
  1703                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  1706             return undef;
  1709     /** Check for cyclic references. Issue an error if the
  1710      *  symbol of the type referred to has a LOCKED flag set.
  1712      *  @param pos      Position to be used for error reporting.
  1713      *  @param t        The type referred to.
  1714      */
  1715     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  1716         checkNonCyclicInternal(pos, t);
  1720     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  1721         checkNonCyclic1(pos, t, List.<TypeVar>nil());
  1724     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
  1725         final TypeVar tv;
  1726         if  (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
  1727             return;
  1728         if (seen.contains(t)) {
  1729             tv = (TypeVar)t;
  1730             tv.bound = types.createErrorType(t);
  1731             log.error(pos, "cyclic.inheritance", t);
  1732         } else if (t.tag == TYPEVAR) {
  1733             tv = (TypeVar)t;
  1734             seen = seen.prepend(tv);
  1735             for (Type b : types.getBounds(tv))
  1736                 checkNonCyclic1(pos, b, seen);
  1740     /** Check for cyclic references. Issue an error if the
  1741      *  symbol of the type referred to has a LOCKED flag set.
  1743      *  @param pos      Position to be used for error reporting.
  1744      *  @param t        The type referred to.
  1745      *  @returns        True if the check completed on all attributed classes
  1746      */
  1747     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  1748         boolean complete = true; // was the check complete?
  1749         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  1750         Symbol c = t.tsym;
  1751         if ((c.flags_field & ACYCLIC) != 0) return true;
  1753         if ((c.flags_field & LOCKED) != 0) {
  1754             noteCyclic(pos, (ClassSymbol)c);
  1755         } else if (!c.type.isErroneous()) {
  1756             try {
  1757                 c.flags_field |= LOCKED;
  1758                 if (c.type.tag == CLASS) {
  1759                     ClassType clazz = (ClassType)c.type;
  1760                     if (clazz.interfaces_field != null)
  1761                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  1762                             complete &= checkNonCyclicInternal(pos, l.head);
  1763                     if (clazz.supertype_field != null) {
  1764                         Type st = clazz.supertype_field;
  1765                         if (st != null && st.tag == CLASS)
  1766                             complete &= checkNonCyclicInternal(pos, st);
  1768                     if (c.owner.kind == TYP)
  1769                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  1771             } finally {
  1772                 c.flags_field &= ~LOCKED;
  1775         if (complete)
  1776             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  1777         if (complete) c.flags_field |= ACYCLIC;
  1778         return complete;
  1781     /** Note that we found an inheritance cycle. */
  1782     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  1783         log.error(pos, "cyclic.inheritance", c);
  1784         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  1785             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
  1786         Type st = types.supertype(c.type);
  1787         if (st.tag == CLASS)
  1788             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
  1789         c.type = types.createErrorType(c, c.type);
  1790         c.flags_field |= ACYCLIC;
  1793     /** Check that all methods which implement some
  1794      *  method conform to the method they implement.
  1795      *  @param tree         The class definition whose members are checked.
  1796      */
  1797     void checkImplementations(JCClassDecl tree) {
  1798         checkImplementations(tree, tree.sym);
  1800 //where
  1801         /** Check that all methods which implement some
  1802          *  method in `ic' conform to the method they implement.
  1803          */
  1804         void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
  1805             ClassSymbol origin = tree.sym;
  1806             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  1807                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  1808                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  1809                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  1810                         if (e.sym.kind == MTH &&
  1811                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  1812                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  1813                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  1814                             if (implmeth != null && implmeth != absmeth &&
  1815                                 (implmeth.owner.flags() & INTERFACE) ==
  1816                                 (origin.flags() & INTERFACE)) {
  1817                                 // don't check if implmeth is in a class, yet
  1818                                 // origin is an interface. This case arises only
  1819                                 // if implmeth is declared in Object. The reason is
  1820                                 // that interfaces really don't inherit from
  1821                                 // Object it's just that the compiler represents
  1822                                 // things that way.
  1823                                 checkOverride(tree, implmeth, absmeth, origin);
  1831     /** Check that all abstract methods implemented by a class are
  1832      *  mutually compatible.
  1833      *  @param pos          Position to be used for error reporting.
  1834      *  @param c            The class whose interfaces are checked.
  1835      */
  1836     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  1837         List<Type> supertypes = types.interfaces(c);
  1838         Type supertype = types.supertype(c);
  1839         if (supertype.tag == CLASS &&
  1840             (supertype.tsym.flags() & ABSTRACT) != 0)
  1841             supertypes = supertypes.prepend(supertype);
  1842         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  1843             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  1844                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  1845                 return;
  1846             for (List<Type> m = supertypes; m != l; m = m.tail)
  1847                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  1848                     return;
  1850         checkCompatibleConcretes(pos, c);
  1853     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
  1854         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
  1855             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
  1856                 // VM allows methods and variables with differing types
  1857                 if (sym.kind == e.sym.kind &&
  1858                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
  1859                     sym != e.sym &&
  1860                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
  1861                     (sym.flags() & IPROXY) == 0 && (e.sym.flags() & IPROXY) == 0 &&
  1862                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
  1863                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
  1864                     return;
  1870     /** Report a conflict between a user symbol and a synthetic symbol.
  1871      */
  1872     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
  1873         if (!sym.type.isErroneous()) {
  1874             if (warnOnSyntheticConflicts) {
  1875                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
  1877             else {
  1878                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
  1883     /** Check that class c does not implement directly or indirectly
  1884      *  the same parameterized interface with two different argument lists.
  1885      *  @param pos          Position to be used for error reporting.
  1886      *  @param type         The type whose interfaces are checked.
  1887      */
  1888     void checkClassBounds(DiagnosticPosition pos, Type type) {
  1889         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  1891 //where
  1892         /** Enter all interfaces of type `type' into the hash table `seensofar'
  1893          *  with their class symbol as key and their type as value. Make
  1894          *  sure no class is entered with two different types.
  1895          */
  1896         void checkClassBounds(DiagnosticPosition pos,
  1897                               Map<TypeSymbol,Type> seensofar,
  1898                               Type type) {
  1899             if (type.isErroneous()) return;
  1900             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  1901                 Type it = l.head;
  1902                 Type oldit = seensofar.put(it.tsym, it);
  1903                 if (oldit != null) {
  1904                     List<Type> oldparams = oldit.allparams();
  1905                     List<Type> newparams = it.allparams();
  1906                     if (!types.containsTypeEquivalent(oldparams, newparams))
  1907                         log.error(pos, "cant.inherit.diff.arg",
  1908                                   it.tsym, Type.toString(oldparams),
  1909                                   Type.toString(newparams));
  1911                 checkClassBounds(pos, seensofar, it);
  1913             Type st = types.supertype(type);
  1914             if (st != null) checkClassBounds(pos, seensofar, st);
  1917     /** Enter interface into into set.
  1918      *  If it existed already, issue a "repeated interface" error.
  1919      */
  1920     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  1921         if (its.contains(it))
  1922             log.error(pos, "repeated.interface");
  1923         else {
  1924             its.add(it);
  1928 /* *************************************************************************
  1929  * Check annotations
  1930  **************************************************************************/
  1932     /**
  1933      * Validate annotations in default values
  1934      */
  1935     void validateAnnotationDefaultValue(JCTree defaultValue) {
  1936         class DefaultValueValidator extends TreeScanner {
  1937             @Override
  1938             public void visitAnnotation(JCAnnotation tree) {
  1939                 super.visitAnnotation(tree);
  1940                 validateAnnotation(tree);
  1943         // defaultValue may be null if an error occurred, so don't bother validating it
  1944         if (defaultValue != null) {
  1945             defaultValue.accept(new DefaultValueValidator());
  1949     /** Annotation types are restricted to primitives, String, an
  1950      *  enum, an annotation, Class, Class<?>, Class<? extends
  1951      *  Anything>, arrays of the preceding.
  1952      */
  1953     void validateAnnotationType(JCTree restype) {
  1954         // restype may be null if an error occurred, so don't bother validating it
  1955         if (restype != null) {
  1956             validateAnnotationType(restype.pos(), restype.type);
  1960     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  1961         if (type.isPrimitive()) return;
  1962         if (types.isSameType(type, syms.stringType)) return;
  1963         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  1964         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  1965         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  1966         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  1967             validateAnnotationType(pos, types.elemtype(type));
  1968             return;
  1970         log.error(pos, "invalid.annotation.member.type");
  1973     /**
  1974      * "It is also a compile-time error if any method declared in an
  1975      * annotation type has a signature that is override-equivalent to
  1976      * that of any public or protected method declared in class Object
  1977      * or in the interface annotation.Annotation."
  1979      * @jls3 9.6 Annotation Types
  1980      */
  1981     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  1982         for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
  1983             Scope s = sup.tsym.members();
  1984             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  1985                 if (e.sym.kind == MTH &&
  1986                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  1987                     types.overrideEquivalent(m.type, e.sym.type))
  1988                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  1993     /** Check the annotations of a symbol.
  1994      */
  1995     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  1996         if (skipAnnotations) return;
  1997         for (JCAnnotation a : annotations)
  1998             validateAnnotation(a, s);
  2001     /** Check the type annotations
  2002      */
  2003     public void validateTypeAnnotations(List<JCTypeAnnotation> annotations, boolean isTypeParameter) {
  2004         if (skipAnnotations) return;
  2005         for (JCTypeAnnotation a : annotations)
  2006             validateTypeAnnotation(a, isTypeParameter);
  2009     /** Check an annotation of a symbol.
  2010      */
  2011     public void validateAnnotation(JCAnnotation a, Symbol s) {
  2012         validateAnnotation(a);
  2014         if (!annotationApplicable(a, s))
  2015             log.error(a.pos(), "annotation.type.not.applicable");
  2017         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  2018             if (!isOverrider(s))
  2019                 log.error(a.pos(), "method.does.not.override.superclass");
  2023     public void validateTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
  2024         if (a.type == null)
  2025             throw new AssertionError("annotation tree hasn't been attributed yet: " + a);
  2026         validateAnnotation(a);
  2028         if (!isTypeAnnotation(a, isTypeParameter))
  2029             log.error(a.pos(), "annotation.type.not.applicable");
  2032     /** Is s a method symbol that overrides a method in a superclass? */
  2033     boolean isOverrider(Symbol s) {
  2034         if (s.kind != MTH || s.isStatic())
  2035             return false;
  2036         MethodSymbol m = (MethodSymbol)s;
  2037         TypeSymbol owner = (TypeSymbol)m.owner;
  2038         for (Type sup : types.closure(owner.type)) {
  2039             if (sup == owner.type)
  2040                 continue; // skip "this"
  2041             Scope scope = sup.tsym.members();
  2042             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  2043                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  2044                     return true;
  2047         return false;
  2050     /** Is the annotation applicable to type annotations */
  2051     boolean isTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
  2052         Attribute.Compound atTarget =
  2053             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  2054         if (atTarget == null) return true;
  2055         Attribute atValue = atTarget.member(names.value);
  2056         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
  2057         Attribute.Array arr = (Attribute.Array) atValue;
  2058         for (Attribute app : arr.values) {
  2059             if (!(app instanceof Attribute.Enum)) return true; // recovery
  2060             Attribute.Enum e = (Attribute.Enum) app;
  2061             if (!isTypeParameter && e.value.name == names.TYPE_USE)
  2062                 return true;
  2063             else if (isTypeParameter && e.value.name == names.TYPE_PARAMETER)
  2064                 return true;
  2066         return false;
  2069     /** Is the annotation applicable to the symbol? */
  2070     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  2071         Attribute.Compound atTarget =
  2072             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  2073         if (atTarget == null) return true;
  2074         Attribute atValue = atTarget.member(names.value);
  2075         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
  2076         Attribute.Array arr = (Attribute.Array) atValue;
  2077         for (Attribute app : arr.values) {
  2078             if (!(app instanceof Attribute.Enum)) return true; // recovery
  2079             Attribute.Enum e = (Attribute.Enum) app;
  2080             if (e.value.name == names.TYPE)
  2081                 { if (s.kind == TYP) return true; }
  2082             else if (e.value.name == names.FIELD)
  2083                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  2084             else if (e.value.name == names.METHOD)
  2085                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  2086             else if (e.value.name == names.PARAMETER)
  2087                 { if (s.kind == VAR &&
  2088                       s.owner.kind == MTH &&
  2089                       (s.flags() & PARAMETER) != 0)
  2090                     return true;
  2092             else if (e.value.name == names.CONSTRUCTOR)
  2093                 { if (s.kind == MTH && s.isConstructor()) return true; }
  2094             else if (e.value.name == names.LOCAL_VARIABLE)
  2095                 { if (s.kind == VAR && s.owner.kind == MTH &&
  2096                       (s.flags() & PARAMETER) == 0)
  2097                     return true;
  2099             else if (e.value.name == names.ANNOTATION_TYPE)
  2100                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  2101                     return true;
  2103             else if (e.value.name == names.PACKAGE)
  2104                 { if (s.kind == PCK) return true; }
  2105             else if (e.value.name == names.TYPE_USE)
  2106                 { if (s.kind == TYP ||
  2107                       s.kind == VAR ||
  2108                       (s.kind == MTH && !s.isConstructor() &&
  2109                        s.type.getReturnType().tag != VOID))
  2110                     return true;
  2112             else
  2113                 return true; // recovery
  2115         return false;
  2118     /** Check an annotation value.
  2119      */
  2120     public void validateAnnotation(JCAnnotation a) {
  2121         if (a.type.isErroneous()) return;
  2123         // collect an inventory of the members (sorted alphabetically)
  2124         Set<MethodSymbol> members = new TreeSet<MethodSymbol>(new Comparator<Symbol>() {
  2125             public int compare(Symbol t, Symbol t1) {
  2126                 return t.name.compareTo(t1.name);
  2128         });
  2129         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  2130              e != null;
  2131              e = e.sibling)
  2132             if (e.sym.kind == MTH)
  2133                 members.add((MethodSymbol) e.sym);
  2135         // count them off as they're annotated
  2136         for (JCTree arg : a.args) {
  2137             if (arg.getTag() != JCTree.ASSIGN) continue; // recovery
  2138             JCAssign assign = (JCAssign) arg;
  2139             Symbol m = TreeInfo.symbol(assign.lhs);
  2140             if (m == null || m.type.isErroneous()) continue;
  2141             if (!members.remove(m))
  2142                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
  2143                           m.name, a.type);
  2144             if (assign.rhs.getTag() == ANNOTATION)
  2145                 validateAnnotation((JCAnnotation)assign.rhs);
  2148         // all the remaining ones better have default values
  2149         ListBuffer<Name> missingDefaults = ListBuffer.lb();
  2150         for (MethodSymbol m : members) {
  2151             if (m.defaultValue == null && !m.type.isErroneous()) {
  2152                 missingDefaults.append(m.name);
  2155         if (missingDefaults.nonEmpty()) {
  2156             String key = (missingDefaults.size() > 1)
  2157                     ? "annotation.missing.default.value.1"
  2158                     : "annotation.missing.default.value";
  2159             log.error(a.pos(), key, a.type, missingDefaults);
  2162         // special case: java.lang.annotation.Target must not have
  2163         // repeated values in its value member
  2164         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  2165             a.args.tail == null)
  2166             return;
  2168         if (a.args.head.getTag() != JCTree.ASSIGN) return; // error recovery
  2169         JCAssign assign = (JCAssign) a.args.head;
  2170         Symbol m = TreeInfo.symbol(assign.lhs);
  2171         if (m.name != names.value) return;
  2172         JCTree rhs = assign.rhs;
  2173         if (rhs.getTag() != JCTree.NEWARRAY) return;
  2174         JCNewArray na = (JCNewArray) rhs;
  2175         Set<Symbol> targets = new HashSet<Symbol>();
  2176         for (JCTree elem : na.elems) {
  2177             if (!targets.add(TreeInfo.symbol(elem))) {
  2178                 log.error(elem.pos(), "repeated.annotation.target");
  2183     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  2184         if (allowAnnotations &&
  2185             lint.isEnabled(Lint.LintCategory.DEP_ANN) &&
  2186             (s.flags() & DEPRECATED) != 0 &&
  2187             !syms.deprecatedType.isErroneous() &&
  2188             s.attribute(syms.deprecatedType.tsym) == null) {
  2189             log.warning(Lint.LintCategory.DEP_ANN,
  2190                     pos, "missing.deprecated.annotation");
  2194 /* *************************************************************************
  2195  * Check for recursive annotation elements.
  2196  **************************************************************************/
  2198     /** Check for cycles in the graph of annotation elements.
  2199      */
  2200     void checkNonCyclicElements(JCClassDecl tree) {
  2201         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  2202         assert (tree.sym.flags_field & LOCKED) == 0;
  2203         try {
  2204             tree.sym.flags_field |= LOCKED;
  2205             for (JCTree def : tree.defs) {
  2206                 if (def.getTag() != JCTree.METHODDEF) continue;
  2207                 JCMethodDecl meth = (JCMethodDecl)def;
  2208                 checkAnnotationResType(meth.pos(), meth.restype.type);
  2210         } finally {
  2211             tree.sym.flags_field &= ~LOCKED;
  2212             tree.sym.flags_field |= ACYCLIC_ANN;
  2216     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  2217         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  2218             return;
  2219         if ((tsym.flags_field & LOCKED) != 0) {
  2220             log.error(pos, "cyclic.annotation.element");
  2221             return;
  2223         try {
  2224             tsym.flags_field |= LOCKED;
  2225             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  2226                 Symbol s = e.sym;
  2227                 if (s.kind != Kinds.MTH)
  2228                     continue;
  2229                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  2231         } finally {
  2232             tsym.flags_field &= ~LOCKED;
  2233             tsym.flags_field |= ACYCLIC_ANN;
  2237     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  2238         switch (type.tag) {
  2239         case TypeTags.CLASS:
  2240             if ((type.tsym.flags() & ANNOTATION) != 0)
  2241                 checkNonCyclicElementsInternal(pos, type.tsym);
  2242             break;
  2243         case TypeTags.ARRAY:
  2244             checkAnnotationResType(pos, types.elemtype(type));
  2245             break;
  2246         default:
  2247             break; // int etc
  2251 /* *************************************************************************
  2252  * Check for cycles in the constructor call graph.
  2253  **************************************************************************/
  2255     /** Check for cycles in the graph of constructors calling other
  2256      *  constructors.
  2257      */
  2258     void checkCyclicConstructors(JCClassDecl tree) {
  2259         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  2261         // enter each constructor this-call into the map
  2262         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  2263             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  2264             if (app == null) continue;
  2265             JCMethodDecl meth = (JCMethodDecl) l.head;
  2266             if (TreeInfo.name(app.meth) == names._this) {
  2267                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  2268             } else {
  2269                 meth.sym.flags_field |= ACYCLIC;
  2273         // Check for cycles in the map
  2274         Symbol[] ctors = new Symbol[0];
  2275         ctors = callMap.keySet().toArray(ctors);
  2276         for (Symbol caller : ctors) {
  2277             checkCyclicConstructor(tree, caller, callMap);
  2281     /** Look in the map to see if the given constructor is part of a
  2282      *  call cycle.
  2283      */
  2284     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  2285                                         Map<Symbol,Symbol> callMap) {
  2286         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  2287             if ((ctor.flags_field & LOCKED) != 0) {
  2288                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  2289                           "recursive.ctor.invocation");
  2290             } else {
  2291                 ctor.flags_field |= LOCKED;
  2292                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  2293                 ctor.flags_field &= ~LOCKED;
  2295             ctor.flags_field |= ACYCLIC;
  2299 /* *************************************************************************
  2300  * Miscellaneous
  2301  **************************************************************************/
  2303     /**
  2304      * Return the opcode of the operator but emit an error if it is an
  2305      * error.
  2306      * @param pos        position for error reporting.
  2307      * @param operator   an operator
  2308      * @param tag        a tree tag
  2309      * @param left       type of left hand side
  2310      * @param right      type of right hand side
  2311      */
  2312     int checkOperator(DiagnosticPosition pos,
  2313                        OperatorSymbol operator,
  2314                        int tag,
  2315                        Type left,
  2316                        Type right) {
  2317         if (operator.opcode == ByteCodes.error) {
  2318             log.error(pos,
  2319                       "operator.cant.be.applied",
  2320                       treeinfo.operatorName(tag),
  2321                       List.of(left, right));
  2323         return operator.opcode;
  2327     /**
  2328      *  Check for division by integer constant zero
  2329      *  @param pos           Position for error reporting.
  2330      *  @param operator      The operator for the expression
  2331      *  @param operand       The right hand operand for the expression
  2332      */
  2333     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  2334         if (operand.constValue() != null
  2335             && lint.isEnabled(Lint.LintCategory.DIVZERO)
  2336             && operand.tag <= LONG
  2337             && ((Number) (operand.constValue())).longValue() == 0) {
  2338             int opc = ((OperatorSymbol)operator).opcode;
  2339             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  2340                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  2341                 log.warning(Lint.LintCategory.DIVZERO, pos, "div.zero");
  2346     /**
  2347      * Check for empty statements after if
  2348      */
  2349     void checkEmptyIf(JCIf tree) {
  2350         if (tree.thenpart.getTag() == JCTree.SKIP && tree.elsepart == null && lint.isEnabled(Lint.LintCategory.EMPTY))
  2351             log.warning(Lint.LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
  2354     /** Check that symbol is unique in given scope.
  2355      *  @param pos           Position for error reporting.
  2356      *  @param sym           The symbol.
  2357      *  @param s             The scope.
  2358      */
  2359     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  2360         if (sym.type.isErroneous())
  2361             return true;
  2362         if (sym.owner.name == names.any) return false;
  2363         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  2364             if (sym != e.sym &&
  2365                 sym.kind == e.sym.kind &&
  2366                 sym.name != names.error &&
  2367                 (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
  2368                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS))
  2369                     varargsDuplicateError(pos, sym, e.sym);
  2370                 else if (sym.kind == MTH && !types.overrideEquivalent(sym.type, e.sym.type))
  2371                     duplicateErasureError(pos, sym, e.sym);
  2372                 else
  2373                     duplicateError(pos, e.sym);
  2374                 return false;
  2377         return true;
  2379     //where
  2380     /** Report duplicate declaration error.
  2381      */
  2382     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
  2383         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
  2384             log.error(pos, "name.clash.same.erasure", sym1, sym2);
  2388     /** Check that single-type import is not already imported or top-level defined,
  2389      *  but make an exception for two single-type imports which denote the same type.
  2390      *  @param pos           Position for error reporting.
  2391      *  @param sym           The symbol.
  2392      *  @param s             The scope
  2393      */
  2394     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2395         return checkUniqueImport(pos, sym, s, false);
  2398     /** Check that static single-type import is not already imported or top-level defined,
  2399      *  but make an exception for two single-type imports which denote the same type.
  2400      *  @param pos           Position for error reporting.
  2401      *  @param sym           The symbol.
  2402      *  @param s             The scope
  2403      *  @param staticImport  Whether or not this was a static import
  2404      */
  2405     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2406         return checkUniqueImport(pos, sym, s, true);
  2409     /** Check that single-type import is not already imported or top-level defined,
  2410      *  but make an exception for two single-type imports which denote the same type.
  2411      *  @param pos           Position for error reporting.
  2412      *  @param sym           The symbol.
  2413      *  @param s             The scope.
  2414      *  @param staticImport  Whether or not this was a static import
  2415      */
  2416     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  2417         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  2418             // is encountered class entered via a class declaration?
  2419             boolean isClassDecl = e.scope == s;
  2420             if ((isClassDecl || sym != e.sym) &&
  2421                 sym.kind == e.sym.kind &&
  2422                 sym.name != names.error) {
  2423                 if (!e.sym.type.isErroneous()) {
  2424                     String what = e.sym.toString();
  2425                     if (!isClassDecl) {
  2426                         if (staticImport)
  2427                             log.error(pos, "already.defined.static.single.import", what);
  2428                         else
  2429                             log.error(pos, "already.defined.single.import", what);
  2431                     else if (sym != e.sym)
  2432                         log.error(pos, "already.defined.this.unit", what);
  2434                 return false;
  2437         return true;
  2440     /** Check that a qualified name is in canonical form (for import decls).
  2441      */
  2442     public void checkCanonical(JCTree tree) {
  2443         if (!isCanonical(tree))
  2444             log.error(tree.pos(), "import.requires.canonical",
  2445                       TreeInfo.symbol(tree));
  2447         // where
  2448         private boolean isCanonical(JCTree tree) {
  2449             while (tree.getTag() == JCTree.SELECT) {
  2450                 JCFieldAccess s = (JCFieldAccess) tree;
  2451                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  2452                     return false;
  2453                 tree = s.selected;
  2455             return true;
  2458     private class ConversionWarner extends Warner {
  2459         final String key;
  2460         final Type found;
  2461         final Type expected;
  2462         public ConversionWarner(DiagnosticPosition pos, String key, Type found, Type expected) {
  2463             super(pos);
  2464             this.key = key;
  2465             this.found = found;
  2466             this.expected = expected;
  2469         @Override
  2470         public void warnUnchecked() {
  2471             boolean warned = this.warned;
  2472             super.warnUnchecked();
  2473             if (warned) return; // suppress redundant diagnostics
  2474             Object problem = diags.fragment(key);
  2475             Check.this.warnUnchecked(pos(), "prob.found.req", problem, found, expected);
  2479     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  2480         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  2483     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  2484         return new ConversionWarner(pos, "unchecked.assign", found, expected);

mercurial