src/share/classes/com/sun/tools/javac/code/Types.java

Wed, 02 Jul 2008 12:56:02 -0700

author
xdono
date
Wed, 02 Jul 2008 12:56:02 -0700
changeset 54
eaf608c64fec
parent 41
6e9a43815df7
child 79
36df13bde238
permissions
-rw-r--r--

6719955: Update copyright year
Summary: Update copyright year for files that have been modified in 2008
Reviewed-by: ohair, tbell

duke@1 1 /*
xdono@54 2 * Copyright 2003-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
duke@1 7 * published by the Free Software Foundation. Sun designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
duke@1 9 * by Sun in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
duke@1 21 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@1 22 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@1 23 * have any questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.code;
duke@1 27
duke@1 28 import java.util.*;
duke@1 29
duke@1 30 import com.sun.tools.javac.util.*;
duke@1 31 import com.sun.tools.javac.util.List;
duke@1 32
duke@1 33 import com.sun.tools.javac.jvm.ClassReader;
duke@1 34 import com.sun.tools.javac.comp.Infer;
duke@1 35 import com.sun.tools.javac.comp.Check;
duke@1 36
duke@1 37 import static com.sun.tools.javac.code.Type.*;
duke@1 38 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 39 import static com.sun.tools.javac.code.Symbol.*;
duke@1 40 import static com.sun.tools.javac.code.Flags.*;
duke@1 41 import static com.sun.tools.javac.code.BoundKind.*;
duke@1 42 import static com.sun.tools.javac.util.ListBuffer.lb;
duke@1 43
duke@1 44 /**
duke@1 45 * Utility class containing various operations on types.
duke@1 46 *
duke@1 47 * <p>Unless other names are more illustrative, the following naming
duke@1 48 * conventions should be observed in this file:
duke@1 49 *
duke@1 50 * <dl>
duke@1 51 * <dt>t</dt>
duke@1 52 * <dd>If the first argument to an operation is a type, it should be named t.</dd>
duke@1 53 * <dt>s</dt>
duke@1 54 * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
duke@1 55 * <dt>ts</dt>
duke@1 56 * <dd>If an operations takes a list of types, the first should be named ts.</dd>
duke@1 57 * <dt>ss</dt>
duke@1 58 * <dd>A second list of types should be named ss.</dd>
duke@1 59 * </dl>
duke@1 60 *
duke@1 61 * <p><b>This is NOT part of any API supported by Sun Microsystems.
duke@1 62 * If you write code that depends on this, you do so at your own risk.
duke@1 63 * This code and its internal interfaces are subject to change or
duke@1 64 * deletion without notice.</b>
duke@1 65 */
duke@1 66 public class Types {
duke@1 67 protected static final Context.Key<Types> typesKey =
duke@1 68 new Context.Key<Types>();
duke@1 69
duke@1 70 final Symtab syms;
duke@1 71 final Name.Table names;
duke@1 72 final boolean allowBoxing;
duke@1 73 final ClassReader reader;
duke@1 74 final Source source;
duke@1 75 final Check chk;
duke@1 76 List<Warner> warnStack = List.nil();
duke@1 77 final Name capturedName;
duke@1 78
duke@1 79 // <editor-fold defaultstate="collapsed" desc="Instantiating">
duke@1 80 public static Types instance(Context context) {
duke@1 81 Types instance = context.get(typesKey);
duke@1 82 if (instance == null)
duke@1 83 instance = new Types(context);
duke@1 84 return instance;
duke@1 85 }
duke@1 86
duke@1 87 protected Types(Context context) {
duke@1 88 context.put(typesKey, this);
duke@1 89 syms = Symtab.instance(context);
duke@1 90 names = Name.Table.instance(context);
duke@1 91 allowBoxing = Source.instance(context).allowBoxing();
duke@1 92 reader = ClassReader.instance(context);
duke@1 93 source = Source.instance(context);
duke@1 94 chk = Check.instance(context);
duke@1 95 capturedName = names.fromString("<captured wildcard>");
duke@1 96 }
duke@1 97 // </editor-fold>
duke@1 98
duke@1 99 // <editor-fold defaultstate="collapsed" desc="upperBound">
duke@1 100 /**
duke@1 101 * The "rvalue conversion".<br>
duke@1 102 * The upper bound of most types is the type
duke@1 103 * itself. Wildcards, on the other hand have upper
duke@1 104 * and lower bounds.
duke@1 105 * @param t a type
duke@1 106 * @return the upper bound of the given type
duke@1 107 */
duke@1 108 public Type upperBound(Type t) {
duke@1 109 return upperBound.visit(t);
duke@1 110 }
duke@1 111 // where
duke@1 112 private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
duke@1 113
duke@1 114 @Override
duke@1 115 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 116 if (t.isSuperBound())
duke@1 117 return t.bound == null ? syms.objectType : t.bound.bound;
duke@1 118 else
duke@1 119 return visit(t.type);
duke@1 120 }
duke@1 121
duke@1 122 @Override
duke@1 123 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 124 return visit(t.bound);
duke@1 125 }
duke@1 126 };
duke@1 127 // </editor-fold>
duke@1 128
duke@1 129 // <editor-fold defaultstate="collapsed" desc="lowerBound">
duke@1 130 /**
duke@1 131 * The "lvalue conversion".<br>
duke@1 132 * The lower bound of most types is the type
duke@1 133 * itself. Wildcards, on the other hand have upper
duke@1 134 * and lower bounds.
duke@1 135 * @param t a type
duke@1 136 * @return the lower bound of the given type
duke@1 137 */
duke@1 138 public Type lowerBound(Type t) {
duke@1 139 return lowerBound.visit(t);
duke@1 140 }
duke@1 141 // where
duke@1 142 private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
duke@1 143
duke@1 144 @Override
duke@1 145 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 146 return t.isExtendsBound() ? syms.botType : visit(t.type);
duke@1 147 }
duke@1 148
duke@1 149 @Override
duke@1 150 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 151 return visit(t.getLowerBound());
duke@1 152 }
duke@1 153 };
duke@1 154 // </editor-fold>
duke@1 155
duke@1 156 // <editor-fold defaultstate="collapsed" desc="isUnbounded">
duke@1 157 /**
duke@1 158 * Checks that all the arguments to a class are unbounded
duke@1 159 * wildcards or something else that doesn't make any restrictions
duke@1 160 * on the arguments. If a class isUnbounded, a raw super- or
duke@1 161 * subclass can be cast to it without a warning.
duke@1 162 * @param t a type
duke@1 163 * @return true iff the given type is unbounded or raw
duke@1 164 */
duke@1 165 public boolean isUnbounded(Type t) {
duke@1 166 return isUnbounded.visit(t);
duke@1 167 }
duke@1 168 // where
duke@1 169 private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
duke@1 170
duke@1 171 public Boolean visitType(Type t, Void ignored) {
duke@1 172 return true;
duke@1 173 }
duke@1 174
duke@1 175 @Override
duke@1 176 public Boolean visitClassType(ClassType t, Void ignored) {
duke@1 177 List<Type> parms = t.tsym.type.allparams();
duke@1 178 List<Type> args = t.allparams();
duke@1 179 while (parms.nonEmpty()) {
duke@1 180 WildcardType unb = new WildcardType(syms.objectType,
duke@1 181 BoundKind.UNBOUND,
duke@1 182 syms.boundClass,
duke@1 183 (TypeVar)parms.head);
duke@1 184 if (!containsType(args.head, unb))
duke@1 185 return false;
duke@1 186 parms = parms.tail;
duke@1 187 args = args.tail;
duke@1 188 }
duke@1 189 return true;
duke@1 190 }
duke@1 191 };
duke@1 192 // </editor-fold>
duke@1 193
duke@1 194 // <editor-fold defaultstate="collapsed" desc="asSub">
duke@1 195 /**
duke@1 196 * Return the least specific subtype of t that starts with symbol
duke@1 197 * sym. If none exists, return null. The least specific subtype
duke@1 198 * is determined as follows:
duke@1 199 *
duke@1 200 * <p>If there is exactly one parameterized instance of sym that is a
duke@1 201 * subtype of t, that parameterized instance is returned.<br>
duke@1 202 * Otherwise, if the plain type or raw type `sym' is a subtype of
duke@1 203 * type t, the type `sym' itself is returned. Otherwise, null is
duke@1 204 * returned.
duke@1 205 */
duke@1 206 public Type asSub(Type t, Symbol sym) {
duke@1 207 return asSub.visit(t, sym);
duke@1 208 }
duke@1 209 // where
duke@1 210 private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
duke@1 211
duke@1 212 public Type visitType(Type t, Symbol sym) {
duke@1 213 return null;
duke@1 214 }
duke@1 215
duke@1 216 @Override
duke@1 217 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 218 if (t.tsym == sym)
duke@1 219 return t;
duke@1 220 Type base = asSuper(sym.type, t.tsym);
duke@1 221 if (base == null)
duke@1 222 return null;
duke@1 223 ListBuffer<Type> from = new ListBuffer<Type>();
duke@1 224 ListBuffer<Type> to = new ListBuffer<Type>();
duke@1 225 try {
duke@1 226 adapt(base, t, from, to);
duke@1 227 } catch (AdaptFailure ex) {
duke@1 228 return null;
duke@1 229 }
duke@1 230 Type res = subst(sym.type, from.toList(), to.toList());
duke@1 231 if (!isSubtype(res, t))
duke@1 232 return null;
duke@1 233 ListBuffer<Type> openVars = new ListBuffer<Type>();
duke@1 234 for (List<Type> l = sym.type.allparams();
duke@1 235 l.nonEmpty(); l = l.tail)
duke@1 236 if (res.contains(l.head) && !t.contains(l.head))
duke@1 237 openVars.append(l.head);
duke@1 238 if (openVars.nonEmpty()) {
duke@1 239 if (t.isRaw()) {
duke@1 240 // The subtype of a raw type is raw
duke@1 241 res = erasure(res);
duke@1 242 } else {
duke@1 243 // Unbound type arguments default to ?
duke@1 244 List<Type> opens = openVars.toList();
duke@1 245 ListBuffer<Type> qs = new ListBuffer<Type>();
duke@1 246 for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
duke@1 247 qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head));
duke@1 248 }
duke@1 249 res = subst(res, opens, qs.toList());
duke@1 250 }
duke@1 251 }
duke@1 252 return res;
duke@1 253 }
duke@1 254
duke@1 255 @Override
duke@1 256 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 257 return t;
duke@1 258 }
duke@1 259 };
duke@1 260 // </editor-fold>
duke@1 261
duke@1 262 // <editor-fold defaultstate="collapsed" desc="isConvertible">
duke@1 263 /**
duke@1 264 * Is t a subtype of or convertiable via boxing/unboxing
duke@1 265 * convertions to s?
duke@1 266 */
duke@1 267 public boolean isConvertible(Type t, Type s, Warner warn) {
duke@1 268 boolean tPrimitive = t.isPrimitive();
duke@1 269 boolean sPrimitive = s.isPrimitive();
duke@1 270 if (tPrimitive == sPrimitive)
duke@1 271 return isSubtypeUnchecked(t, s, warn);
duke@1 272 if (!allowBoxing) return false;
duke@1 273 return tPrimitive
duke@1 274 ? isSubtype(boxedClass(t).type, s)
duke@1 275 : isSubtype(unboxedType(t), s);
duke@1 276 }
duke@1 277
duke@1 278 /**
duke@1 279 * Is t a subtype of or convertiable via boxing/unboxing
duke@1 280 * convertions to s?
duke@1 281 */
duke@1 282 public boolean isConvertible(Type t, Type s) {
duke@1 283 return isConvertible(t, s, Warner.noWarnings);
duke@1 284 }
duke@1 285 // </editor-fold>
duke@1 286
duke@1 287 // <editor-fold defaultstate="collapsed" desc="isSubtype">
duke@1 288 /**
duke@1 289 * Is t an unchecked subtype of s?
duke@1 290 */
duke@1 291 public boolean isSubtypeUnchecked(Type t, Type s) {
duke@1 292 return isSubtypeUnchecked(t, s, Warner.noWarnings);
duke@1 293 }
duke@1 294 /**
duke@1 295 * Is t an unchecked subtype of s?
duke@1 296 */
duke@1 297 public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
duke@1 298 if (t.tag == ARRAY && s.tag == ARRAY) {
duke@1 299 return (((ArrayType)t).elemtype.tag <= lastBaseTag)
duke@1 300 ? isSameType(elemtype(t), elemtype(s))
duke@1 301 : isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
duke@1 302 } else if (isSubtype(t, s)) {
duke@1 303 return true;
mcimadamore@41 304 }
mcimadamore@41 305 else if (t.tag == TYPEVAR) {
mcimadamore@41 306 return isSubtypeUnchecked(t.getUpperBound(), s, warn);
mcimadamore@41 307 }
mcimadamore@41 308 else if (!s.isRaw()) {
duke@1 309 Type t2 = asSuper(t, s.tsym);
duke@1 310 if (t2 != null && t2.isRaw()) {
duke@1 311 if (isReifiable(s))
duke@1 312 warn.silentUnchecked();
duke@1 313 else
duke@1 314 warn.warnUnchecked();
duke@1 315 return true;
duke@1 316 }
duke@1 317 }
duke@1 318 return false;
duke@1 319 }
duke@1 320
duke@1 321 /**
duke@1 322 * Is t a subtype of s?<br>
duke@1 323 * (not defined for Method and ForAll types)
duke@1 324 */
duke@1 325 final public boolean isSubtype(Type t, Type s) {
duke@1 326 return isSubtype(t, s, true);
duke@1 327 }
duke@1 328 final public boolean isSubtypeNoCapture(Type t, Type s) {
duke@1 329 return isSubtype(t, s, false);
duke@1 330 }
duke@1 331 public boolean isSubtype(Type t, Type s, boolean capture) {
duke@1 332 if (t == s)
duke@1 333 return true;
duke@1 334
duke@1 335 if (s.tag >= firstPartialTag)
duke@1 336 return isSuperType(s, t);
duke@1 337
duke@1 338 Type lower = lowerBound(s);
duke@1 339 if (s != lower)
duke@1 340 return isSubtype(capture ? capture(t) : t, lower, false);
duke@1 341
duke@1 342 return isSubtype.visit(capture ? capture(t) : t, s);
duke@1 343 }
duke@1 344 // where
duke@1 345 private TypeRelation isSubtype = new TypeRelation()
duke@1 346 {
duke@1 347 public Boolean visitType(Type t, Type s) {
duke@1 348 switch (t.tag) {
duke@1 349 case BYTE: case CHAR:
duke@1 350 return (t.tag == s.tag ||
duke@1 351 t.tag + 2 <= s.tag && s.tag <= DOUBLE);
duke@1 352 case SHORT: case INT: case LONG: case FLOAT: case DOUBLE:
duke@1 353 return t.tag <= s.tag && s.tag <= DOUBLE;
duke@1 354 case BOOLEAN: case VOID:
duke@1 355 return t.tag == s.tag;
duke@1 356 case TYPEVAR:
duke@1 357 return isSubtypeNoCapture(t.getUpperBound(), s);
duke@1 358 case BOT:
duke@1 359 return
duke@1 360 s.tag == BOT || s.tag == CLASS ||
duke@1 361 s.tag == ARRAY || s.tag == TYPEVAR;
duke@1 362 case NONE:
duke@1 363 return false;
duke@1 364 default:
duke@1 365 throw new AssertionError("isSubtype " + t.tag);
duke@1 366 }
duke@1 367 }
duke@1 368
duke@1 369 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 370
duke@1 371 private boolean containsTypeRecursive(Type t, Type s) {
duke@1 372 TypePair pair = new TypePair(t, s);
duke@1 373 if (cache.add(pair)) {
duke@1 374 try {
duke@1 375 return containsType(t.getTypeArguments(),
duke@1 376 s.getTypeArguments());
duke@1 377 } finally {
duke@1 378 cache.remove(pair);
duke@1 379 }
duke@1 380 } else {
duke@1 381 return containsType(t.getTypeArguments(),
duke@1 382 rewriteSupers(s).getTypeArguments());
duke@1 383 }
duke@1 384 }
duke@1 385
duke@1 386 private Type rewriteSupers(Type t) {
duke@1 387 if (!t.isParameterized())
duke@1 388 return t;
duke@1 389 ListBuffer<Type> from = lb();
duke@1 390 ListBuffer<Type> to = lb();
duke@1 391 adaptSelf(t, from, to);
duke@1 392 if (from.isEmpty())
duke@1 393 return t;
duke@1 394 ListBuffer<Type> rewrite = lb();
duke@1 395 boolean changed = false;
duke@1 396 for (Type orig : to.toList()) {
duke@1 397 Type s = rewriteSupers(orig);
duke@1 398 if (s.isSuperBound() && !s.isExtendsBound()) {
duke@1 399 s = new WildcardType(syms.objectType,
duke@1 400 BoundKind.UNBOUND,
duke@1 401 syms.boundClass);
duke@1 402 changed = true;
duke@1 403 } else if (s != orig) {
duke@1 404 s = new WildcardType(upperBound(s),
duke@1 405 BoundKind.EXTENDS,
duke@1 406 syms.boundClass);
duke@1 407 changed = true;
duke@1 408 }
duke@1 409 rewrite.append(s);
duke@1 410 }
duke@1 411 if (changed)
duke@1 412 return subst(t.tsym.type, from.toList(), rewrite.toList());
duke@1 413 else
duke@1 414 return t;
duke@1 415 }
duke@1 416
duke@1 417 @Override
duke@1 418 public Boolean visitClassType(ClassType t, Type s) {
duke@1 419 Type sup = asSuper(t, s.tsym);
duke@1 420 return sup != null
duke@1 421 && sup.tsym == s.tsym
duke@1 422 // You're not allowed to write
duke@1 423 // Vector<Object> vec = new Vector<String>();
duke@1 424 // But with wildcards you can write
duke@1 425 // Vector<? extends Object> vec = new Vector<String>();
duke@1 426 // which means that subtype checking must be done
duke@1 427 // here instead of same-type checking (via containsType).
duke@1 428 && (!s.isParameterized() || containsTypeRecursive(s, sup))
duke@1 429 && isSubtypeNoCapture(sup.getEnclosingType(),
duke@1 430 s.getEnclosingType());
duke@1 431 }
duke@1 432
duke@1 433 @Override
duke@1 434 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 435 if (s.tag == ARRAY) {
duke@1 436 if (t.elemtype.tag <= lastBaseTag)
duke@1 437 return isSameType(t.elemtype, elemtype(s));
duke@1 438 else
duke@1 439 return isSubtypeNoCapture(t.elemtype, elemtype(s));
duke@1 440 }
duke@1 441
duke@1 442 if (s.tag == CLASS) {
duke@1 443 Name sname = s.tsym.getQualifiedName();
duke@1 444 return sname == names.java_lang_Object
duke@1 445 || sname == names.java_lang_Cloneable
duke@1 446 || sname == names.java_io_Serializable;
duke@1 447 }
duke@1 448
duke@1 449 return false;
duke@1 450 }
duke@1 451
duke@1 452 @Override
duke@1 453 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 454 //todo: test against origin needed? or replace with substitution?
duke@1 455 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
duke@1 456 return true;
duke@1 457
duke@1 458 if (t.inst != null)
duke@1 459 return isSubtypeNoCapture(t.inst, s); // TODO: ", warn"?
duke@1 460
duke@1 461 t.hibounds = t.hibounds.prepend(s);
duke@1 462 return true;
duke@1 463 }
duke@1 464
duke@1 465 @Override
duke@1 466 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 467 return true;
duke@1 468 }
duke@1 469 };
duke@1 470
duke@1 471 /**
duke@1 472 * Is t a subtype of every type in given list `ts'?<br>
duke@1 473 * (not defined for Method and ForAll types)<br>
duke@1 474 * Allows unchecked conversions.
duke@1 475 */
duke@1 476 public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
duke@1 477 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 478 if (!isSubtypeUnchecked(t, l.head, warn))
duke@1 479 return false;
duke@1 480 return true;
duke@1 481 }
duke@1 482
duke@1 483 /**
duke@1 484 * Are corresponding elements of ts subtypes of ss? If lists are
duke@1 485 * of different length, return false.
duke@1 486 */
duke@1 487 public boolean isSubtypes(List<Type> ts, List<Type> ss) {
duke@1 488 while (ts.tail != null && ss.tail != null
duke@1 489 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 490 isSubtype(ts.head, ss.head)) {
duke@1 491 ts = ts.tail;
duke@1 492 ss = ss.tail;
duke@1 493 }
duke@1 494 return ts.tail == null && ss.tail == null;
duke@1 495 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 496 }
duke@1 497
duke@1 498 /**
duke@1 499 * Are corresponding elements of ts subtypes of ss, allowing
duke@1 500 * unchecked conversions? If lists are of different length,
duke@1 501 * return false.
duke@1 502 **/
duke@1 503 public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
duke@1 504 while (ts.tail != null && ss.tail != null
duke@1 505 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 506 isSubtypeUnchecked(ts.head, ss.head, warn)) {
duke@1 507 ts = ts.tail;
duke@1 508 ss = ss.tail;
duke@1 509 }
duke@1 510 return ts.tail == null && ss.tail == null;
duke@1 511 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 512 }
duke@1 513 // </editor-fold>
duke@1 514
duke@1 515 // <editor-fold defaultstate="collapsed" desc="isSuperType">
duke@1 516 /**
duke@1 517 * Is t a supertype of s?
duke@1 518 */
duke@1 519 public boolean isSuperType(Type t, Type s) {
duke@1 520 switch (t.tag) {
duke@1 521 case ERROR:
duke@1 522 return true;
duke@1 523 case UNDETVAR: {
duke@1 524 UndetVar undet = (UndetVar)t;
duke@1 525 if (t == s ||
duke@1 526 undet.qtype == s ||
duke@1 527 s.tag == ERROR ||
duke@1 528 s.tag == BOT) return true;
duke@1 529 if (undet.inst != null)
duke@1 530 return isSubtype(s, undet.inst);
duke@1 531 undet.lobounds = undet.lobounds.prepend(s);
duke@1 532 return true;
duke@1 533 }
duke@1 534 default:
duke@1 535 return isSubtype(s, t);
duke@1 536 }
duke@1 537 }
duke@1 538 // </editor-fold>
duke@1 539
duke@1 540 // <editor-fold defaultstate="collapsed" desc="isSameType">
duke@1 541 /**
duke@1 542 * Are corresponding elements of the lists the same type? If
duke@1 543 * lists are of different length, return false.
duke@1 544 */
duke@1 545 public boolean isSameTypes(List<Type> ts, List<Type> ss) {
duke@1 546 while (ts.tail != null && ss.tail != null
duke@1 547 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 548 isSameType(ts.head, ss.head)) {
duke@1 549 ts = ts.tail;
duke@1 550 ss = ss.tail;
duke@1 551 }
duke@1 552 return ts.tail == null && ss.tail == null;
duke@1 553 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 554 }
duke@1 555
duke@1 556 /**
duke@1 557 * Is t the same type as s?
duke@1 558 */
duke@1 559 public boolean isSameType(Type t, Type s) {
duke@1 560 return isSameType.visit(t, s);
duke@1 561 }
duke@1 562 // where
duke@1 563 private TypeRelation isSameType = new TypeRelation() {
duke@1 564
duke@1 565 public Boolean visitType(Type t, Type s) {
duke@1 566 if (t == s)
duke@1 567 return true;
duke@1 568
duke@1 569 if (s.tag >= firstPartialTag)
duke@1 570 return visit(s, t);
duke@1 571
duke@1 572 switch (t.tag) {
duke@1 573 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 574 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
duke@1 575 return t.tag == s.tag;
duke@1 576 case TYPEVAR:
duke@1 577 return s.isSuperBound()
duke@1 578 && !s.isExtendsBound()
duke@1 579 && visit(t, upperBound(s));
duke@1 580 default:
duke@1 581 throw new AssertionError("isSameType " + t.tag);
duke@1 582 }
duke@1 583 }
duke@1 584
duke@1 585 @Override
duke@1 586 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 587 if (s.tag >= firstPartialTag)
duke@1 588 return visit(s, t);
duke@1 589 else
duke@1 590 return false;
duke@1 591 }
duke@1 592
duke@1 593 @Override
duke@1 594 public Boolean visitClassType(ClassType t, Type s) {
duke@1 595 if (t == s)
duke@1 596 return true;
duke@1 597
duke@1 598 if (s.tag >= firstPartialTag)
duke@1 599 return visit(s, t);
duke@1 600
duke@1 601 if (s.isSuperBound() && !s.isExtendsBound())
duke@1 602 return visit(t, upperBound(s)) && visit(t, lowerBound(s));
duke@1 603
duke@1 604 if (t.isCompound() && s.isCompound()) {
duke@1 605 if (!visit(supertype(t), supertype(s)))
duke@1 606 return false;
duke@1 607
duke@1 608 HashSet<SingletonType> set = new HashSet<SingletonType>();
duke@1 609 for (Type x : interfaces(t))
duke@1 610 set.add(new SingletonType(x));
duke@1 611 for (Type x : interfaces(s)) {
duke@1 612 if (!set.remove(new SingletonType(x)))
duke@1 613 return false;
duke@1 614 }
duke@1 615 return (set.size() == 0);
duke@1 616 }
duke@1 617 return t.tsym == s.tsym
duke@1 618 && visit(t.getEnclosingType(), s.getEnclosingType())
duke@1 619 && containsTypeEquivalent(t.getTypeArguments(), s.getTypeArguments());
duke@1 620 }
duke@1 621
duke@1 622 @Override
duke@1 623 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 624 if (t == s)
duke@1 625 return true;
duke@1 626
duke@1 627 if (s.tag >= firstPartialTag)
duke@1 628 return visit(s, t);
duke@1 629
duke@1 630 return s.tag == ARRAY
duke@1 631 && containsTypeEquivalent(t.elemtype, elemtype(s));
duke@1 632 }
duke@1 633
duke@1 634 @Override
duke@1 635 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 636 // isSameType for methods does not take thrown
duke@1 637 // exceptions into account!
duke@1 638 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
duke@1 639 }
duke@1 640
duke@1 641 @Override
duke@1 642 public Boolean visitPackageType(PackageType t, Type s) {
duke@1 643 return t == s;
duke@1 644 }
duke@1 645
duke@1 646 @Override
duke@1 647 public Boolean visitForAll(ForAll t, Type s) {
duke@1 648 if (s.tag != FORALL)
duke@1 649 return false;
duke@1 650
duke@1 651 ForAll forAll = (ForAll)s;
duke@1 652 return hasSameBounds(t, forAll)
duke@1 653 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 654 }
duke@1 655
duke@1 656 @Override
duke@1 657 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 658 if (s.tag == WILDCARD)
duke@1 659 // FIXME, this might be leftovers from before capture conversion
duke@1 660 return false;
duke@1 661
duke@1 662 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
duke@1 663 return true;
duke@1 664
duke@1 665 if (t.inst != null)
duke@1 666 return visit(t.inst, s);
duke@1 667
duke@1 668 t.inst = fromUnknownFun.apply(s);
duke@1 669 for (List<Type> l = t.lobounds; l.nonEmpty(); l = l.tail) {
duke@1 670 if (!isSubtype(l.head, t.inst))
duke@1 671 return false;
duke@1 672 }
duke@1 673 for (List<Type> l = t.hibounds; l.nonEmpty(); l = l.tail) {
duke@1 674 if (!isSubtype(t.inst, l.head))
duke@1 675 return false;
duke@1 676 }
duke@1 677 return true;
duke@1 678 }
duke@1 679
duke@1 680 @Override
duke@1 681 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 682 return true;
duke@1 683 }
duke@1 684 };
duke@1 685 // </editor-fold>
duke@1 686
duke@1 687 // <editor-fold defaultstate="collapsed" desc="fromUnknownFun">
duke@1 688 /**
duke@1 689 * A mapping that turns all unknown types in this type to fresh
duke@1 690 * unknown variables.
duke@1 691 */
duke@1 692 public Mapping fromUnknownFun = new Mapping("fromUnknownFun") {
duke@1 693 public Type apply(Type t) {
duke@1 694 if (t.tag == UNKNOWN) return new UndetVar(t);
duke@1 695 else return t.map(this);
duke@1 696 }
duke@1 697 };
duke@1 698 // </editor-fold>
duke@1 699
duke@1 700 // <editor-fold defaultstate="collapsed" desc="Contains Type">
duke@1 701 public boolean containedBy(Type t, Type s) {
duke@1 702 switch (t.tag) {
duke@1 703 case UNDETVAR:
duke@1 704 if (s.tag == WILDCARD) {
duke@1 705 UndetVar undetvar = (UndetVar)t;
duke@1 706
duke@1 707 // Because of wildcard capture, s must be on the left
duke@1 708 // hand side of an assignment. Furthermore, t is an
duke@1 709 // underconstrained type variable, for example, one
duke@1 710 // that is only used in the return type of a method.
duke@1 711 // If the type variable is truly underconstrained, it
duke@1 712 // cannot have any low bounds:
duke@1 713 assert undetvar.lobounds.isEmpty() : undetvar;
duke@1 714
duke@1 715 undetvar.inst = glb(upperBound(s), undetvar.inst);
duke@1 716 return true;
duke@1 717 } else {
duke@1 718 return isSameType(t, s);
duke@1 719 }
duke@1 720 case ERROR:
duke@1 721 return true;
duke@1 722 default:
duke@1 723 return containsType(s, t);
duke@1 724 }
duke@1 725 }
duke@1 726
duke@1 727 boolean containsType(List<Type> ts, List<Type> ss) {
duke@1 728 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 729 && containsType(ts.head, ss.head)) {
duke@1 730 ts = ts.tail;
duke@1 731 ss = ss.tail;
duke@1 732 }
duke@1 733 return ts.isEmpty() && ss.isEmpty();
duke@1 734 }
duke@1 735
duke@1 736 /**
duke@1 737 * Check if t contains s.
duke@1 738 *
duke@1 739 * <p>T contains S if:
duke@1 740 *
duke@1 741 * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
duke@1 742 *
duke@1 743 * <p>This relation is only used by ClassType.isSubtype(), that
duke@1 744 * is,
duke@1 745 *
duke@1 746 * <p>{@code C<S> <: C<T> if T contains S.}
duke@1 747 *
duke@1 748 * <p>Because of F-bounds, this relation can lead to infinite
duke@1 749 * recursion. Thus we must somehow break that recursion. Notice
duke@1 750 * that containsType() is only called from ClassType.isSubtype().
duke@1 751 * Since the arguments have already been checked against their
duke@1 752 * bounds, we know:
duke@1 753 *
duke@1 754 * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
duke@1 755 *
duke@1 756 * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
duke@1 757 *
duke@1 758 * @param t a type
duke@1 759 * @param s a type
duke@1 760 */
duke@1 761 public boolean containsType(Type t, Type s) {
duke@1 762 return containsType.visit(t, s);
duke@1 763 }
duke@1 764 // where
duke@1 765 private TypeRelation containsType = new TypeRelation() {
duke@1 766
duke@1 767 private Type U(Type t) {
duke@1 768 while (t.tag == WILDCARD) {
duke@1 769 WildcardType w = (WildcardType)t;
duke@1 770 if (w.isSuperBound())
duke@1 771 return w.bound == null ? syms.objectType : w.bound.bound;
duke@1 772 else
duke@1 773 t = w.type;
duke@1 774 }
duke@1 775 return t;
duke@1 776 }
duke@1 777
duke@1 778 private Type L(Type t) {
duke@1 779 while (t.tag == WILDCARD) {
duke@1 780 WildcardType w = (WildcardType)t;
duke@1 781 if (w.isExtendsBound())
duke@1 782 return syms.botType;
duke@1 783 else
duke@1 784 t = w.type;
duke@1 785 }
duke@1 786 return t;
duke@1 787 }
duke@1 788
duke@1 789 public Boolean visitType(Type t, Type s) {
duke@1 790 if (s.tag >= firstPartialTag)
duke@1 791 return containedBy(s, t);
duke@1 792 else
duke@1 793 return isSameType(t, s);
duke@1 794 }
duke@1 795
duke@1 796 void debugContainsType(WildcardType t, Type s) {
duke@1 797 System.err.println();
duke@1 798 System.err.format(" does %s contain %s?%n", t, s);
duke@1 799 System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
duke@1 800 upperBound(s), s, t, U(t),
duke@1 801 t.isSuperBound()
duke@1 802 || isSubtypeNoCapture(upperBound(s), U(t)));
duke@1 803 System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
duke@1 804 L(t), t, s, lowerBound(s),
duke@1 805 t.isExtendsBound()
duke@1 806 || isSubtypeNoCapture(L(t), lowerBound(s)));
duke@1 807 System.err.println();
duke@1 808 }
duke@1 809
duke@1 810 @Override
duke@1 811 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 812 if (s.tag >= firstPartialTag)
duke@1 813 return containedBy(s, t);
duke@1 814 else {
duke@1 815 // debugContainsType(t, s);
duke@1 816 return isSameWildcard(t, s)
duke@1 817 || isCaptureOf(s, t)
duke@1 818 || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
duke@1 819 (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
duke@1 820 }
duke@1 821 }
duke@1 822
duke@1 823 @Override
duke@1 824 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 825 if (s.tag != WILDCARD)
duke@1 826 return isSameType(t, s);
duke@1 827 else
duke@1 828 return false;
duke@1 829 }
duke@1 830
duke@1 831 @Override
duke@1 832 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 833 return true;
duke@1 834 }
duke@1 835 };
duke@1 836
duke@1 837 public boolean isCaptureOf(Type s, WildcardType t) {
duke@1 838 if (s.tag != TYPEVAR || !(s instanceof CapturedType))
duke@1 839 return false;
duke@1 840 return isSameWildcard(t, ((CapturedType)s).wildcard);
duke@1 841 }
duke@1 842
duke@1 843 public boolean isSameWildcard(WildcardType t, Type s) {
duke@1 844 if (s.tag != WILDCARD)
duke@1 845 return false;
duke@1 846 WildcardType w = (WildcardType)s;
duke@1 847 return w.kind == t.kind && w.type == t.type;
duke@1 848 }
duke@1 849
duke@1 850 public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
duke@1 851 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 852 && containsTypeEquivalent(ts.head, ss.head)) {
duke@1 853 ts = ts.tail;
duke@1 854 ss = ss.tail;
duke@1 855 }
duke@1 856 return ts.isEmpty() && ss.isEmpty();
duke@1 857 }
duke@1 858 // </editor-fold>
duke@1 859
duke@1 860 // <editor-fold defaultstate="collapsed" desc="isCastable">
duke@1 861 public boolean isCastable(Type t, Type s) {
duke@1 862 return isCastable(t, s, Warner.noWarnings);
duke@1 863 }
duke@1 864
duke@1 865 /**
duke@1 866 * Is t is castable to s?<br>
duke@1 867 * s is assumed to be an erased type.<br>
duke@1 868 * (not defined for Method and ForAll types).
duke@1 869 */
duke@1 870 public boolean isCastable(Type t, Type s, Warner warn) {
duke@1 871 if (t == s)
duke@1 872 return true;
duke@1 873
duke@1 874 if (t.isPrimitive() != s.isPrimitive())
duke@1 875 return allowBoxing && isConvertible(t, s, warn);
duke@1 876
duke@1 877 if (warn != warnStack.head) {
duke@1 878 try {
duke@1 879 warnStack = warnStack.prepend(warn);
duke@1 880 return isCastable.visit(t, s);
duke@1 881 } finally {
duke@1 882 warnStack = warnStack.tail;
duke@1 883 }
duke@1 884 } else {
duke@1 885 return isCastable.visit(t, s);
duke@1 886 }
duke@1 887 }
duke@1 888 // where
duke@1 889 private TypeRelation isCastable = new TypeRelation() {
duke@1 890
duke@1 891 public Boolean visitType(Type t, Type s) {
duke@1 892 if (s.tag == ERROR)
duke@1 893 return true;
duke@1 894
duke@1 895 switch (t.tag) {
duke@1 896 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 897 case DOUBLE:
duke@1 898 return s.tag <= DOUBLE;
duke@1 899 case BOOLEAN:
duke@1 900 return s.tag == BOOLEAN;
duke@1 901 case VOID:
duke@1 902 return false;
duke@1 903 case BOT:
duke@1 904 return isSubtype(t, s);
duke@1 905 default:
duke@1 906 throw new AssertionError();
duke@1 907 }
duke@1 908 }
duke@1 909
duke@1 910 @Override
duke@1 911 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 912 return isCastable(upperBound(t), s, warnStack.head);
duke@1 913 }
duke@1 914
duke@1 915 @Override
duke@1 916 public Boolean visitClassType(ClassType t, Type s) {
duke@1 917 if (s.tag == ERROR || s.tag == BOT)
duke@1 918 return true;
duke@1 919
duke@1 920 if (s.tag == TYPEVAR) {
duke@1 921 if (isCastable(s.getUpperBound(), t, Warner.noWarnings)) {
duke@1 922 warnStack.head.warnUnchecked();
duke@1 923 return true;
duke@1 924 } else {
duke@1 925 return false;
duke@1 926 }
duke@1 927 }
duke@1 928
duke@1 929 if (t.isCompound()) {
duke@1 930 if (!visit(supertype(t), s))
duke@1 931 return false;
duke@1 932 for (Type intf : interfaces(t)) {
duke@1 933 if (!visit(intf, s))
duke@1 934 return false;
duke@1 935 }
duke@1 936 return true;
duke@1 937 }
duke@1 938
duke@1 939 if (s.isCompound()) {
duke@1 940 // call recursively to reuse the above code
duke@1 941 return visitClassType((ClassType)s, t);
duke@1 942 }
duke@1 943
duke@1 944 if (s.tag == CLASS || s.tag == ARRAY) {
duke@1 945 boolean upcast;
duke@1 946 if ((upcast = isSubtype(erasure(t), erasure(s)))
duke@1 947 || isSubtype(erasure(s), erasure(t))) {
duke@1 948 if (!upcast && s.tag == ARRAY) {
duke@1 949 if (!isReifiable(s))
duke@1 950 warnStack.head.warnUnchecked();
duke@1 951 return true;
duke@1 952 } else if (s.isRaw()) {
duke@1 953 return true;
duke@1 954 } else if (t.isRaw()) {
duke@1 955 if (!isUnbounded(s))
duke@1 956 warnStack.head.warnUnchecked();
duke@1 957 return true;
duke@1 958 }
duke@1 959 // Assume |a| <: |b|
duke@1 960 final Type a = upcast ? t : s;
duke@1 961 final Type b = upcast ? s : t;
duke@1 962 final boolean HIGH = true;
duke@1 963 final boolean LOW = false;
duke@1 964 final boolean DONT_REWRITE_TYPEVARS = false;
duke@1 965 Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 966 Type aLow = rewriteQuantifiers(a, LOW, DONT_REWRITE_TYPEVARS);
duke@1 967 Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 968 Type bLow = rewriteQuantifiers(b, LOW, DONT_REWRITE_TYPEVARS);
duke@1 969 Type lowSub = asSub(bLow, aLow.tsym);
duke@1 970 Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 971 if (highSub == null) {
duke@1 972 final boolean REWRITE_TYPEVARS = true;
duke@1 973 aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
duke@1 974 aLow = rewriteQuantifiers(a, LOW, REWRITE_TYPEVARS);
duke@1 975 bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
duke@1 976 bLow = rewriteQuantifiers(b, LOW, REWRITE_TYPEVARS);
duke@1 977 lowSub = asSub(bLow, aLow.tsym);
duke@1 978 highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 979 }
duke@1 980 if (highSub != null) {
duke@1 981 assert a.tsym == highSub.tsym && a.tsym == lowSub.tsym
duke@1 982 : a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym;
duke@1 983 if (!disjointTypes(aHigh.getTypeArguments(), highSub.getTypeArguments())
duke@1 984 && !disjointTypes(aHigh.getTypeArguments(), lowSub.getTypeArguments())
duke@1 985 && !disjointTypes(aLow.getTypeArguments(), highSub.getTypeArguments())
duke@1 986 && !disjointTypes(aLow.getTypeArguments(), lowSub.getTypeArguments())) {
duke@1 987 if (upcast ? giveWarning(a, highSub) || giveWarning(a, lowSub)
duke@1 988 : giveWarning(highSub, a) || giveWarning(lowSub, a))
duke@1 989 warnStack.head.warnUnchecked();
duke@1 990 return true;
duke@1 991 }
duke@1 992 }
duke@1 993 if (isReifiable(s))
duke@1 994 return isSubtypeUnchecked(a, b);
duke@1 995 else
duke@1 996 return isSubtypeUnchecked(a, b, warnStack.head);
duke@1 997 }
duke@1 998
duke@1 999 // Sidecast
duke@1 1000 if (s.tag == CLASS) {
duke@1 1001 if ((s.tsym.flags() & INTERFACE) != 0) {
duke@1 1002 return ((t.tsym.flags() & FINAL) == 0)
duke@1 1003 ? sideCast(t, s, warnStack.head)
duke@1 1004 : sideCastFinal(t, s, warnStack.head);
duke@1 1005 } else if ((t.tsym.flags() & INTERFACE) != 0) {
duke@1 1006 return ((s.tsym.flags() & FINAL) == 0)
duke@1 1007 ? sideCast(t, s, warnStack.head)
duke@1 1008 : sideCastFinal(t, s, warnStack.head);
duke@1 1009 } else {
duke@1 1010 // unrelated class types
duke@1 1011 return false;
duke@1 1012 }
duke@1 1013 }
duke@1 1014 }
duke@1 1015 return false;
duke@1 1016 }
duke@1 1017
duke@1 1018 @Override
duke@1 1019 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 1020 switch (s.tag) {
duke@1 1021 case ERROR:
duke@1 1022 case BOT:
duke@1 1023 return true;
duke@1 1024 case TYPEVAR:
duke@1 1025 if (isCastable(s, t, Warner.noWarnings)) {
duke@1 1026 warnStack.head.warnUnchecked();
duke@1 1027 return true;
duke@1 1028 } else {
duke@1 1029 return false;
duke@1 1030 }
duke@1 1031 case CLASS:
duke@1 1032 return isSubtype(t, s);
duke@1 1033 case ARRAY:
duke@1 1034 if (elemtype(t).tag <= lastBaseTag) {
duke@1 1035 return elemtype(t).tag == elemtype(s).tag;
duke@1 1036 } else {
duke@1 1037 return visit(elemtype(t), elemtype(s));
duke@1 1038 }
duke@1 1039 default:
duke@1 1040 return false;
duke@1 1041 }
duke@1 1042 }
duke@1 1043
duke@1 1044 @Override
duke@1 1045 public Boolean visitTypeVar(TypeVar t, Type s) {
duke@1 1046 switch (s.tag) {
duke@1 1047 case ERROR:
duke@1 1048 case BOT:
duke@1 1049 return true;
duke@1 1050 case TYPEVAR:
duke@1 1051 if (isSubtype(t, s)) {
duke@1 1052 return true;
duke@1 1053 } else if (isCastable(t.bound, s, Warner.noWarnings)) {
duke@1 1054 warnStack.head.warnUnchecked();
duke@1 1055 return true;
duke@1 1056 } else {
duke@1 1057 return false;
duke@1 1058 }
duke@1 1059 default:
duke@1 1060 return isCastable(t.bound, s, warnStack.head);
duke@1 1061 }
duke@1 1062 }
duke@1 1063
duke@1 1064 @Override
duke@1 1065 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 1066 return true;
duke@1 1067 }
duke@1 1068 };
duke@1 1069 // </editor-fold>
duke@1 1070
duke@1 1071 // <editor-fold defaultstate="collapsed" desc="disjointTypes">
duke@1 1072 public boolean disjointTypes(List<Type> ts, List<Type> ss) {
duke@1 1073 while (ts.tail != null && ss.tail != null) {
duke@1 1074 if (disjointType(ts.head, ss.head)) return true;
duke@1 1075 ts = ts.tail;
duke@1 1076 ss = ss.tail;
duke@1 1077 }
duke@1 1078 return false;
duke@1 1079 }
duke@1 1080
duke@1 1081 /**
duke@1 1082 * Two types or wildcards are considered disjoint if it can be
duke@1 1083 * proven that no type can be contained in both. It is
duke@1 1084 * conservative in that it is allowed to say that two types are
duke@1 1085 * not disjoint, even though they actually are.
duke@1 1086 *
duke@1 1087 * The type C<X> is castable to C<Y> exactly if X and Y are not
duke@1 1088 * disjoint.
duke@1 1089 */
duke@1 1090 public boolean disjointType(Type t, Type s) {
duke@1 1091 return disjointType.visit(t, s);
duke@1 1092 }
duke@1 1093 // where
duke@1 1094 private TypeRelation disjointType = new TypeRelation() {
duke@1 1095
duke@1 1096 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 1097
duke@1 1098 public Boolean visitType(Type t, Type s) {
duke@1 1099 if (s.tag == WILDCARD)
duke@1 1100 return visit(s, t);
duke@1 1101 else
duke@1 1102 return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
duke@1 1103 }
duke@1 1104
duke@1 1105 private boolean isCastableRecursive(Type t, Type s) {
duke@1 1106 TypePair pair = new TypePair(t, s);
duke@1 1107 if (cache.add(pair)) {
duke@1 1108 try {
duke@1 1109 return Types.this.isCastable(t, s);
duke@1 1110 } finally {
duke@1 1111 cache.remove(pair);
duke@1 1112 }
duke@1 1113 } else {
duke@1 1114 return true;
duke@1 1115 }
duke@1 1116 }
duke@1 1117
duke@1 1118 private boolean notSoftSubtypeRecursive(Type t, Type s) {
duke@1 1119 TypePair pair = new TypePair(t, s);
duke@1 1120 if (cache.add(pair)) {
duke@1 1121 try {
duke@1 1122 return Types.this.notSoftSubtype(t, s);
duke@1 1123 } finally {
duke@1 1124 cache.remove(pair);
duke@1 1125 }
duke@1 1126 } else {
duke@1 1127 return false;
duke@1 1128 }
duke@1 1129 }
duke@1 1130
duke@1 1131 @Override
duke@1 1132 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 1133 if (t.isUnbound())
duke@1 1134 return false;
duke@1 1135
duke@1 1136 if (s.tag != WILDCARD) {
duke@1 1137 if (t.isExtendsBound())
duke@1 1138 return notSoftSubtypeRecursive(s, t.type);
duke@1 1139 else // isSuperBound()
duke@1 1140 return notSoftSubtypeRecursive(t.type, s);
duke@1 1141 }
duke@1 1142
duke@1 1143 if (s.isUnbound())
duke@1 1144 return false;
duke@1 1145
duke@1 1146 if (t.isExtendsBound()) {
duke@1 1147 if (s.isExtendsBound())
duke@1 1148 return !isCastableRecursive(t.type, upperBound(s));
duke@1 1149 else if (s.isSuperBound())
duke@1 1150 return notSoftSubtypeRecursive(lowerBound(s), t.type);
duke@1 1151 } else if (t.isSuperBound()) {
duke@1 1152 if (s.isExtendsBound())
duke@1 1153 return notSoftSubtypeRecursive(t.type, upperBound(s));
duke@1 1154 }
duke@1 1155 return false;
duke@1 1156 }
duke@1 1157 };
duke@1 1158 // </editor-fold>
duke@1 1159
duke@1 1160 // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
duke@1 1161 /**
duke@1 1162 * Returns the lower bounds of the formals of a method.
duke@1 1163 */
duke@1 1164 public List<Type> lowerBoundArgtypes(Type t) {
duke@1 1165 return map(t.getParameterTypes(), lowerBoundMapping);
duke@1 1166 }
duke@1 1167 private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
duke@1 1168 public Type apply(Type t) {
duke@1 1169 return lowerBound(t);
duke@1 1170 }
duke@1 1171 };
duke@1 1172 // </editor-fold>
duke@1 1173
duke@1 1174 // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
duke@1 1175 /**
duke@1 1176 * This relation answers the question: is impossible that
duke@1 1177 * something of type `t' can be a subtype of `s'? This is
duke@1 1178 * different from the question "is `t' not a subtype of `s'?"
duke@1 1179 * when type variables are involved: Integer is not a subtype of T
duke@1 1180 * where <T extends Number> but it is not true that Integer cannot
duke@1 1181 * possibly be a subtype of T.
duke@1 1182 */
duke@1 1183 public boolean notSoftSubtype(Type t, Type s) {
duke@1 1184 if (t == s) return false;
duke@1 1185 if (t.tag == TYPEVAR) {
duke@1 1186 TypeVar tv = (TypeVar) t;
duke@1 1187 if (s.tag == TYPEVAR)
duke@1 1188 s = s.getUpperBound();
duke@1 1189 return !isCastable(tv.bound,
duke@1 1190 s,
duke@1 1191 Warner.noWarnings);
duke@1 1192 }
duke@1 1193 if (s.tag != WILDCARD)
duke@1 1194 s = upperBound(s);
duke@1 1195 if (s.tag == TYPEVAR)
duke@1 1196 s = s.getUpperBound();
duke@1 1197 return !isSubtype(t, s);
duke@1 1198 }
duke@1 1199 // </editor-fold>
duke@1 1200
duke@1 1201 // <editor-fold defaultstate="collapsed" desc="isReifiable">
duke@1 1202 public boolean isReifiable(Type t) {
duke@1 1203 return isReifiable.visit(t);
duke@1 1204 }
duke@1 1205 // where
duke@1 1206 private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
duke@1 1207
duke@1 1208 public Boolean visitType(Type t, Void ignored) {
duke@1 1209 return true;
duke@1 1210 }
duke@1 1211
duke@1 1212 @Override
duke@1 1213 public Boolean visitClassType(ClassType t, Void ignored) {
duke@1 1214 if (!t.isParameterized())
duke@1 1215 return true;
duke@1 1216
duke@1 1217 for (Type param : t.allparams()) {
duke@1 1218 if (!param.isUnbound())
duke@1 1219 return false;
duke@1 1220 }
duke@1 1221 return true;
duke@1 1222 }
duke@1 1223
duke@1 1224 @Override
duke@1 1225 public Boolean visitArrayType(ArrayType t, Void ignored) {
duke@1 1226 return visit(t.elemtype);
duke@1 1227 }
duke@1 1228
duke@1 1229 @Override
duke@1 1230 public Boolean visitTypeVar(TypeVar t, Void ignored) {
duke@1 1231 return false;
duke@1 1232 }
duke@1 1233 };
duke@1 1234 // </editor-fold>
duke@1 1235
duke@1 1236 // <editor-fold defaultstate="collapsed" desc="Array Utils">
duke@1 1237 public boolean isArray(Type t) {
duke@1 1238 while (t.tag == WILDCARD)
duke@1 1239 t = upperBound(t);
duke@1 1240 return t.tag == ARRAY;
duke@1 1241 }
duke@1 1242
duke@1 1243 /**
duke@1 1244 * The element type of an array.
duke@1 1245 */
duke@1 1246 public Type elemtype(Type t) {
duke@1 1247 switch (t.tag) {
duke@1 1248 case WILDCARD:
duke@1 1249 return elemtype(upperBound(t));
duke@1 1250 case ARRAY:
duke@1 1251 return ((ArrayType)t).elemtype;
duke@1 1252 case FORALL:
duke@1 1253 return elemtype(((ForAll)t).qtype);
duke@1 1254 case ERROR:
duke@1 1255 return t;
duke@1 1256 default:
duke@1 1257 return null;
duke@1 1258 }
duke@1 1259 }
duke@1 1260
duke@1 1261 /**
duke@1 1262 * Mapping to take element type of an arraytype
duke@1 1263 */
duke@1 1264 private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
duke@1 1265 public Type apply(Type t) { return elemtype(t); }
duke@1 1266 };
duke@1 1267
duke@1 1268 /**
duke@1 1269 * The number of dimensions of an array type.
duke@1 1270 */
duke@1 1271 public int dimensions(Type t) {
duke@1 1272 int result = 0;
duke@1 1273 while (t.tag == ARRAY) {
duke@1 1274 result++;
duke@1 1275 t = elemtype(t);
duke@1 1276 }
duke@1 1277 return result;
duke@1 1278 }
duke@1 1279 // </editor-fold>
duke@1 1280
duke@1 1281 // <editor-fold defaultstate="collapsed" desc="asSuper">
duke@1 1282 /**
duke@1 1283 * Return the (most specific) base type of t that starts with the
duke@1 1284 * given symbol. If none exists, return null.
duke@1 1285 *
duke@1 1286 * @param t a type
duke@1 1287 * @param sym a symbol
duke@1 1288 */
duke@1 1289 public Type asSuper(Type t, Symbol sym) {
duke@1 1290 return asSuper.visit(t, sym);
duke@1 1291 }
duke@1 1292 // where
duke@1 1293 private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
duke@1 1294
duke@1 1295 public Type visitType(Type t, Symbol sym) {
duke@1 1296 return null;
duke@1 1297 }
duke@1 1298
duke@1 1299 @Override
duke@1 1300 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1301 if (t.tsym == sym)
duke@1 1302 return t;
duke@1 1303
duke@1 1304 Type st = supertype(t);
mcimadamore@19 1305 if (st.tag == CLASS || st.tag == TYPEVAR || st.tag == ERROR) {
duke@1 1306 Type x = asSuper(st, sym);
duke@1 1307 if (x != null)
duke@1 1308 return x;
duke@1 1309 }
duke@1 1310 if ((sym.flags() & INTERFACE) != 0) {
duke@1 1311 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 1312 Type x = asSuper(l.head, sym);
duke@1 1313 if (x != null)
duke@1 1314 return x;
duke@1 1315 }
duke@1 1316 }
duke@1 1317 return null;
duke@1 1318 }
duke@1 1319
duke@1 1320 @Override
duke@1 1321 public Type visitArrayType(ArrayType t, Symbol sym) {
duke@1 1322 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1323 }
duke@1 1324
duke@1 1325 @Override
duke@1 1326 public Type visitTypeVar(TypeVar t, Symbol sym) {
mcimadamore@19 1327 if (t.tsym == sym)
mcimadamore@19 1328 return t;
mcimadamore@19 1329 else
mcimadamore@19 1330 return asSuper(t.bound, sym);
duke@1 1331 }
duke@1 1332
duke@1 1333 @Override
duke@1 1334 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1335 return t;
duke@1 1336 }
duke@1 1337 };
duke@1 1338
duke@1 1339 /**
duke@1 1340 * Return the base type of t or any of its outer types that starts
duke@1 1341 * with the given symbol. If none exists, return null.
duke@1 1342 *
duke@1 1343 * @param t a type
duke@1 1344 * @param sym a symbol
duke@1 1345 */
duke@1 1346 public Type asOuterSuper(Type t, Symbol sym) {
duke@1 1347 switch (t.tag) {
duke@1 1348 case CLASS:
duke@1 1349 do {
duke@1 1350 Type s = asSuper(t, sym);
duke@1 1351 if (s != null) return s;
duke@1 1352 t = t.getEnclosingType();
duke@1 1353 } while (t.tag == CLASS);
duke@1 1354 return null;
duke@1 1355 case ARRAY:
duke@1 1356 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1357 case TYPEVAR:
duke@1 1358 return asSuper(t, sym);
duke@1 1359 case ERROR:
duke@1 1360 return t;
duke@1 1361 default:
duke@1 1362 return null;
duke@1 1363 }
duke@1 1364 }
duke@1 1365
duke@1 1366 /**
duke@1 1367 * Return the base type of t or any of its enclosing types that
duke@1 1368 * starts with the given symbol. If none exists, return null.
duke@1 1369 *
duke@1 1370 * @param t a type
duke@1 1371 * @param sym a symbol
duke@1 1372 */
duke@1 1373 public Type asEnclosingSuper(Type t, Symbol sym) {
duke@1 1374 switch (t.tag) {
duke@1 1375 case CLASS:
duke@1 1376 do {
duke@1 1377 Type s = asSuper(t, sym);
duke@1 1378 if (s != null) return s;
duke@1 1379 Type outer = t.getEnclosingType();
duke@1 1380 t = (outer.tag == CLASS) ? outer :
duke@1 1381 (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
duke@1 1382 Type.noType;
duke@1 1383 } while (t.tag == CLASS);
duke@1 1384 return null;
duke@1 1385 case ARRAY:
duke@1 1386 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1387 case TYPEVAR:
duke@1 1388 return asSuper(t, sym);
duke@1 1389 case ERROR:
duke@1 1390 return t;
duke@1 1391 default:
duke@1 1392 return null;
duke@1 1393 }
duke@1 1394 }
duke@1 1395 // </editor-fold>
duke@1 1396
duke@1 1397 // <editor-fold defaultstate="collapsed" desc="memberType">
duke@1 1398 /**
duke@1 1399 * The type of given symbol, seen as a member of t.
duke@1 1400 *
duke@1 1401 * @param t a type
duke@1 1402 * @param sym a symbol
duke@1 1403 */
duke@1 1404 public Type memberType(Type t, Symbol sym) {
duke@1 1405 return (sym.flags() & STATIC) != 0
duke@1 1406 ? sym.type
duke@1 1407 : memberType.visit(t, sym);
duke@1 1408 }
duke@1 1409 // where
duke@1 1410 private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
duke@1 1411
duke@1 1412 public Type visitType(Type t, Symbol sym) {
duke@1 1413 return sym.type;
duke@1 1414 }
duke@1 1415
duke@1 1416 @Override
duke@1 1417 public Type visitWildcardType(WildcardType t, Symbol sym) {
duke@1 1418 return memberType(upperBound(t), sym);
duke@1 1419 }
duke@1 1420
duke@1 1421 @Override
duke@1 1422 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1423 Symbol owner = sym.owner;
duke@1 1424 long flags = sym.flags();
duke@1 1425 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
duke@1 1426 Type base = asOuterSuper(t, owner);
duke@1 1427 if (base != null) {
duke@1 1428 List<Type> ownerParams = owner.type.allparams();
duke@1 1429 List<Type> baseParams = base.allparams();
duke@1 1430 if (ownerParams.nonEmpty()) {
duke@1 1431 if (baseParams.isEmpty()) {
duke@1 1432 // then base is a raw type
duke@1 1433 return erasure(sym.type);
duke@1 1434 } else {
duke@1 1435 return subst(sym.type, ownerParams, baseParams);
duke@1 1436 }
duke@1 1437 }
duke@1 1438 }
duke@1 1439 }
duke@1 1440 return sym.type;
duke@1 1441 }
duke@1 1442
duke@1 1443 @Override
duke@1 1444 public Type visitTypeVar(TypeVar t, Symbol sym) {
duke@1 1445 return memberType(t.bound, sym);
duke@1 1446 }
duke@1 1447
duke@1 1448 @Override
duke@1 1449 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1450 return t;
duke@1 1451 }
duke@1 1452 };
duke@1 1453 // </editor-fold>
duke@1 1454
duke@1 1455 // <editor-fold defaultstate="collapsed" desc="isAssignable">
duke@1 1456 public boolean isAssignable(Type t, Type s) {
duke@1 1457 return isAssignable(t, s, Warner.noWarnings);
duke@1 1458 }
duke@1 1459
duke@1 1460 /**
duke@1 1461 * Is t assignable to s?<br>
duke@1 1462 * Equivalent to subtype except for constant values and raw
duke@1 1463 * types.<br>
duke@1 1464 * (not defined for Method and ForAll types)
duke@1 1465 */
duke@1 1466 public boolean isAssignable(Type t, Type s, Warner warn) {
duke@1 1467 if (t.tag == ERROR)
duke@1 1468 return true;
duke@1 1469 if (t.tag <= INT && t.constValue() != null) {
duke@1 1470 int value = ((Number)t.constValue()).intValue();
duke@1 1471 switch (s.tag) {
duke@1 1472 case BYTE:
duke@1 1473 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
duke@1 1474 return true;
duke@1 1475 break;
duke@1 1476 case CHAR:
duke@1 1477 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
duke@1 1478 return true;
duke@1 1479 break;
duke@1 1480 case SHORT:
duke@1 1481 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
duke@1 1482 return true;
duke@1 1483 break;
duke@1 1484 case INT:
duke@1 1485 return true;
duke@1 1486 case CLASS:
duke@1 1487 switch (unboxedType(s).tag) {
duke@1 1488 case BYTE:
duke@1 1489 case CHAR:
duke@1 1490 case SHORT:
duke@1 1491 return isAssignable(t, unboxedType(s), warn);
duke@1 1492 }
duke@1 1493 break;
duke@1 1494 }
duke@1 1495 }
duke@1 1496 return isConvertible(t, s, warn);
duke@1 1497 }
duke@1 1498 // </editor-fold>
duke@1 1499
duke@1 1500 // <editor-fold defaultstate="collapsed" desc="erasure">
duke@1 1501 /**
duke@1 1502 * The erasure of t {@code |t|} -- the type that results when all
duke@1 1503 * type parameters in t are deleted.
duke@1 1504 */
duke@1 1505 public Type erasure(Type t) {
mcimadamore@30 1506 return erasure(t, false);
mcimadamore@30 1507 }
mcimadamore@30 1508 //where
mcimadamore@30 1509 private Type erasure(Type t, boolean recurse) {
duke@1 1510 if (t.tag <= lastBaseTag)
duke@1 1511 return t; /* fast special case */
duke@1 1512 else
mcimadamore@30 1513 return erasure.visit(t, recurse);
duke@1 1514 }
duke@1 1515 // where
mcimadamore@30 1516 private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
mcimadamore@30 1517 public Type visitType(Type t, Boolean recurse) {
duke@1 1518 if (t.tag <= lastBaseTag)
duke@1 1519 return t; /*fast special case*/
duke@1 1520 else
mcimadamore@30 1521 return t.map(recurse ? erasureRecFun : erasureFun);
duke@1 1522 }
duke@1 1523
duke@1 1524 @Override
mcimadamore@30 1525 public Type visitWildcardType(WildcardType t, Boolean recurse) {
mcimadamore@30 1526 return erasure(upperBound(t), recurse);
duke@1 1527 }
duke@1 1528
duke@1 1529 @Override
mcimadamore@30 1530 public Type visitClassType(ClassType t, Boolean recurse) {
mcimadamore@30 1531 Type erased = t.tsym.erasure(Types.this);
mcimadamore@30 1532 if (recurse) {
mcimadamore@30 1533 erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
mcimadamore@30 1534 }
mcimadamore@30 1535 return erased;
duke@1 1536 }
duke@1 1537
duke@1 1538 @Override
mcimadamore@30 1539 public Type visitTypeVar(TypeVar t, Boolean recurse) {
mcimadamore@30 1540 return erasure(t.bound, recurse);
duke@1 1541 }
duke@1 1542
duke@1 1543 @Override
mcimadamore@30 1544 public Type visitErrorType(ErrorType t, Boolean recurse) {
duke@1 1545 return t;
duke@1 1546 }
duke@1 1547 };
mcimadamore@30 1548
duke@1 1549 private Mapping erasureFun = new Mapping ("erasure") {
duke@1 1550 public Type apply(Type t) { return erasure(t); }
duke@1 1551 };
duke@1 1552
mcimadamore@30 1553 private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
mcimadamore@30 1554 public Type apply(Type t) { return erasureRecursive(t); }
mcimadamore@30 1555 };
mcimadamore@30 1556
duke@1 1557 public List<Type> erasure(List<Type> ts) {
duke@1 1558 return Type.map(ts, erasureFun);
duke@1 1559 }
mcimadamore@30 1560
mcimadamore@30 1561 public Type erasureRecursive(Type t) {
mcimadamore@30 1562 return erasure(t, true);
mcimadamore@30 1563 }
mcimadamore@30 1564
mcimadamore@30 1565 public List<Type> erasureRecursive(List<Type> ts) {
mcimadamore@30 1566 return Type.map(ts, erasureRecFun);
mcimadamore@30 1567 }
duke@1 1568 // </editor-fold>
duke@1 1569
duke@1 1570 // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
duke@1 1571 /**
duke@1 1572 * Make a compound type from non-empty list of types
duke@1 1573 *
duke@1 1574 * @param bounds the types from which the compound type is formed
duke@1 1575 * @param supertype is objectType if all bounds are interfaces,
duke@1 1576 * null otherwise.
duke@1 1577 */
duke@1 1578 public Type makeCompoundType(List<Type> bounds,
duke@1 1579 Type supertype) {
duke@1 1580 ClassSymbol bc =
duke@1 1581 new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
duke@1 1582 Type.moreInfo
duke@1 1583 ? names.fromString(bounds.toString())
duke@1 1584 : names.empty,
duke@1 1585 syms.noSymbol);
duke@1 1586 if (bounds.head.tag == TYPEVAR)
duke@1 1587 // error condition, recover
duke@1 1588 bc.erasure_field = syms.objectType;
duke@1 1589 else
duke@1 1590 bc.erasure_field = erasure(bounds.head);
duke@1 1591 bc.members_field = new Scope(bc);
duke@1 1592 ClassType bt = (ClassType)bc.type;
duke@1 1593 bt.allparams_field = List.nil();
duke@1 1594 if (supertype != null) {
duke@1 1595 bt.supertype_field = supertype;
duke@1 1596 bt.interfaces_field = bounds;
duke@1 1597 } else {
duke@1 1598 bt.supertype_field = bounds.head;
duke@1 1599 bt.interfaces_field = bounds.tail;
duke@1 1600 }
duke@1 1601 assert bt.supertype_field.tsym.completer != null
duke@1 1602 || !bt.supertype_field.isInterface()
duke@1 1603 : bt.supertype_field;
duke@1 1604 return bt;
duke@1 1605 }
duke@1 1606
duke@1 1607 /**
duke@1 1608 * Same as {@link #makeCompoundType(List,Type)}, except that the
duke@1 1609 * second parameter is computed directly. Note that this might
duke@1 1610 * cause a symbol completion. Hence, this version of
duke@1 1611 * makeCompoundType may not be called during a classfile read.
duke@1 1612 */
duke@1 1613 public Type makeCompoundType(List<Type> bounds) {
duke@1 1614 Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
duke@1 1615 supertype(bounds.head) : null;
duke@1 1616 return makeCompoundType(bounds, supertype);
duke@1 1617 }
duke@1 1618
duke@1 1619 /**
duke@1 1620 * A convenience wrapper for {@link #makeCompoundType(List)}; the
duke@1 1621 * arguments are converted to a list and passed to the other
duke@1 1622 * method. Note that this might cause a symbol completion.
duke@1 1623 * Hence, this version of makeCompoundType may not be called
duke@1 1624 * during a classfile read.
duke@1 1625 */
duke@1 1626 public Type makeCompoundType(Type bound1, Type bound2) {
duke@1 1627 return makeCompoundType(List.of(bound1, bound2));
duke@1 1628 }
duke@1 1629 // </editor-fold>
duke@1 1630
duke@1 1631 // <editor-fold defaultstate="collapsed" desc="supertype">
duke@1 1632 public Type supertype(Type t) {
duke@1 1633 return supertype.visit(t);
duke@1 1634 }
duke@1 1635 // where
duke@1 1636 private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
duke@1 1637
duke@1 1638 public Type visitType(Type t, Void ignored) {
duke@1 1639 // A note on wildcards: there is no good way to
duke@1 1640 // determine a supertype for a super bounded wildcard.
duke@1 1641 return null;
duke@1 1642 }
duke@1 1643
duke@1 1644 @Override
duke@1 1645 public Type visitClassType(ClassType t, Void ignored) {
duke@1 1646 if (t.supertype_field == null) {
duke@1 1647 Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
duke@1 1648 // An interface has no superclass; its supertype is Object.
duke@1 1649 if (t.isInterface())
duke@1 1650 supertype = ((ClassType)t.tsym.type).supertype_field;
duke@1 1651 if (t.supertype_field == null) {
duke@1 1652 List<Type> actuals = classBound(t).allparams();
duke@1 1653 List<Type> formals = t.tsym.type.allparams();
mcimadamore@30 1654 if (t.hasErasedSupertypes()) {
mcimadamore@30 1655 t.supertype_field = erasureRecursive(supertype);
mcimadamore@30 1656 } else if (formals.nonEmpty()) {
duke@1 1657 t.supertype_field = subst(supertype, formals, actuals);
duke@1 1658 }
mcimadamore@30 1659 else {
mcimadamore@30 1660 t.supertype_field = supertype;
mcimadamore@30 1661 }
duke@1 1662 }
duke@1 1663 }
duke@1 1664 return t.supertype_field;
duke@1 1665 }
duke@1 1666
duke@1 1667 /**
duke@1 1668 * The supertype is always a class type. If the type
duke@1 1669 * variable's bounds start with a class type, this is also
duke@1 1670 * the supertype. Otherwise, the supertype is
duke@1 1671 * java.lang.Object.
duke@1 1672 */
duke@1 1673 @Override
duke@1 1674 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 1675 if (t.bound.tag == TYPEVAR ||
duke@1 1676 (!t.bound.isCompound() && !t.bound.isInterface())) {
duke@1 1677 return t.bound;
duke@1 1678 } else {
duke@1 1679 return supertype(t.bound);
duke@1 1680 }
duke@1 1681 }
duke@1 1682
duke@1 1683 @Override
duke@1 1684 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 1685 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
duke@1 1686 return arraySuperType();
duke@1 1687 else
duke@1 1688 return new ArrayType(supertype(t.elemtype), t.tsym);
duke@1 1689 }
duke@1 1690
duke@1 1691 @Override
duke@1 1692 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 1693 return t;
duke@1 1694 }
duke@1 1695 };
duke@1 1696 // </editor-fold>
duke@1 1697
duke@1 1698 // <editor-fold defaultstate="collapsed" desc="interfaces">
duke@1 1699 /**
duke@1 1700 * Return the interfaces implemented by this class.
duke@1 1701 */
duke@1 1702 public List<Type> interfaces(Type t) {
duke@1 1703 return interfaces.visit(t);
duke@1 1704 }
duke@1 1705 // where
duke@1 1706 private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
duke@1 1707
duke@1 1708 public List<Type> visitType(Type t, Void ignored) {
duke@1 1709 return List.nil();
duke@1 1710 }
duke@1 1711
duke@1 1712 @Override
duke@1 1713 public List<Type> visitClassType(ClassType t, Void ignored) {
duke@1 1714 if (t.interfaces_field == null) {
duke@1 1715 List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
duke@1 1716 if (t.interfaces_field == null) {
duke@1 1717 // If t.interfaces_field is null, then t must
duke@1 1718 // be a parameterized type (not to be confused
duke@1 1719 // with a generic type declaration).
duke@1 1720 // Terminology:
duke@1 1721 // Parameterized type: List<String>
duke@1 1722 // Generic type declaration: class List<E> { ... }
duke@1 1723 // So t corresponds to List<String> and
duke@1 1724 // t.tsym.type corresponds to List<E>.
duke@1 1725 // The reason t must be parameterized type is
duke@1 1726 // that completion will happen as a side
duke@1 1727 // effect of calling
duke@1 1728 // ClassSymbol.getInterfaces. Since
duke@1 1729 // t.interfaces_field is null after
duke@1 1730 // completion, we can assume that t is not the
duke@1 1731 // type of a class/interface declaration.
duke@1 1732 assert t != t.tsym.type : t.toString();
duke@1 1733 List<Type> actuals = t.allparams();
duke@1 1734 List<Type> formals = t.tsym.type.allparams();
mcimadamore@30 1735 if (t.hasErasedSupertypes()) {
mcimadamore@30 1736 t.interfaces_field = erasureRecursive(interfaces);
mcimadamore@30 1737 } else if (formals.nonEmpty()) {
duke@1 1738 t.interfaces_field =
duke@1 1739 upperBounds(subst(interfaces, formals, actuals));
duke@1 1740 }
mcimadamore@30 1741 else {
mcimadamore@30 1742 t.interfaces_field = interfaces;
mcimadamore@30 1743 }
duke@1 1744 }
duke@1 1745 }
duke@1 1746 return t.interfaces_field;
duke@1 1747 }
duke@1 1748
duke@1 1749 @Override
duke@1 1750 public List<Type> visitTypeVar(TypeVar t, Void ignored) {
duke@1 1751 if (t.bound.isCompound())
duke@1 1752 return interfaces(t.bound);
duke@1 1753
duke@1 1754 if (t.bound.isInterface())
duke@1 1755 return List.of(t.bound);
duke@1 1756
duke@1 1757 return List.nil();
duke@1 1758 }
duke@1 1759 };
duke@1 1760 // </editor-fold>
duke@1 1761
duke@1 1762 // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
duke@1 1763 Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
duke@1 1764
duke@1 1765 public boolean isDerivedRaw(Type t) {
duke@1 1766 Boolean result = isDerivedRawCache.get(t);
duke@1 1767 if (result == null) {
duke@1 1768 result = isDerivedRawInternal(t);
duke@1 1769 isDerivedRawCache.put(t, result);
duke@1 1770 }
duke@1 1771 return result;
duke@1 1772 }
duke@1 1773
duke@1 1774 public boolean isDerivedRawInternal(Type t) {
duke@1 1775 if (t.isErroneous())
duke@1 1776 return false;
duke@1 1777 return
duke@1 1778 t.isRaw() ||
duke@1 1779 supertype(t) != null && isDerivedRaw(supertype(t)) ||
duke@1 1780 isDerivedRaw(interfaces(t));
duke@1 1781 }
duke@1 1782
duke@1 1783 public boolean isDerivedRaw(List<Type> ts) {
duke@1 1784 List<Type> l = ts;
duke@1 1785 while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
duke@1 1786 return l.nonEmpty();
duke@1 1787 }
duke@1 1788 // </editor-fold>
duke@1 1789
duke@1 1790 // <editor-fold defaultstate="collapsed" desc="setBounds">
duke@1 1791 /**
duke@1 1792 * Set the bounds field of the given type variable to reflect a
duke@1 1793 * (possibly multiple) list of bounds.
duke@1 1794 * @param t a type variable
duke@1 1795 * @param bounds the bounds, must be nonempty
duke@1 1796 * @param supertype is objectType if all bounds are interfaces,
duke@1 1797 * null otherwise.
duke@1 1798 */
duke@1 1799 public void setBounds(TypeVar t, List<Type> bounds, Type supertype) {
duke@1 1800 if (bounds.tail.isEmpty())
duke@1 1801 t.bound = bounds.head;
duke@1 1802 else
duke@1 1803 t.bound = makeCompoundType(bounds, supertype);
duke@1 1804 t.rank_field = -1;
duke@1 1805 }
duke@1 1806
duke@1 1807 /**
duke@1 1808 * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
duke@1 1809 * third parameter is computed directly. Note that this test
duke@1 1810 * might cause a symbol completion. Hence, this version of
duke@1 1811 * setBounds may not be called during a classfile read.
duke@1 1812 */
duke@1 1813 public void setBounds(TypeVar t, List<Type> bounds) {
duke@1 1814 Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
duke@1 1815 supertype(bounds.head) : null;
duke@1 1816 setBounds(t, bounds, supertype);
duke@1 1817 t.rank_field = -1;
duke@1 1818 }
duke@1 1819 // </editor-fold>
duke@1 1820
duke@1 1821 // <editor-fold defaultstate="collapsed" desc="getBounds">
duke@1 1822 /**
duke@1 1823 * Return list of bounds of the given type variable.
duke@1 1824 */
duke@1 1825 public List<Type> getBounds(TypeVar t) {
duke@1 1826 if (t.bound.isErroneous() || !t.bound.isCompound())
duke@1 1827 return List.of(t.bound);
duke@1 1828 else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
duke@1 1829 return interfaces(t).prepend(supertype(t));
duke@1 1830 else
duke@1 1831 // No superclass was given in bounds.
duke@1 1832 // In this case, supertype is Object, erasure is first interface.
duke@1 1833 return interfaces(t);
duke@1 1834 }
duke@1 1835 // </editor-fold>
duke@1 1836
duke@1 1837 // <editor-fold defaultstate="collapsed" desc="classBound">
duke@1 1838 /**
duke@1 1839 * If the given type is a (possibly selected) type variable,
duke@1 1840 * return the bounding class of this type, otherwise return the
duke@1 1841 * type itself.
duke@1 1842 */
duke@1 1843 public Type classBound(Type t) {
duke@1 1844 return classBound.visit(t);
duke@1 1845 }
duke@1 1846 // where
duke@1 1847 private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
duke@1 1848
duke@1 1849 public Type visitType(Type t, Void ignored) {
duke@1 1850 return t;
duke@1 1851 }
duke@1 1852
duke@1 1853 @Override
duke@1 1854 public Type visitClassType(ClassType t, Void ignored) {
duke@1 1855 Type outer1 = classBound(t.getEnclosingType());
duke@1 1856 if (outer1 != t.getEnclosingType())
duke@1 1857 return new ClassType(outer1, t.getTypeArguments(), t.tsym);
duke@1 1858 else
duke@1 1859 return t;
duke@1 1860 }
duke@1 1861
duke@1 1862 @Override
duke@1 1863 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 1864 return classBound(supertype(t));
duke@1 1865 }
duke@1 1866
duke@1 1867 @Override
duke@1 1868 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 1869 return t;
duke@1 1870 }
duke@1 1871 };
duke@1 1872 // </editor-fold>
duke@1 1873
duke@1 1874 // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
duke@1 1875 /**
duke@1 1876 * Returns true iff the first signature is a <em>sub
duke@1 1877 * signature</em> of the other. This is <b>not</b> an equivalence
duke@1 1878 * relation.
duke@1 1879 *
duke@1 1880 * @see "The Java Language Specification, Third Ed. (8.4.2)."
duke@1 1881 * @see #overrideEquivalent(Type t, Type s)
duke@1 1882 * @param t first signature (possibly raw).
duke@1 1883 * @param s second signature (could be subjected to erasure).
duke@1 1884 * @return true if t is a sub signature of s.
duke@1 1885 */
duke@1 1886 public boolean isSubSignature(Type t, Type s) {
duke@1 1887 return hasSameArgs(t, s) || hasSameArgs(t, erasure(s));
duke@1 1888 }
duke@1 1889
duke@1 1890 /**
duke@1 1891 * Returns true iff these signatures are related by <em>override
duke@1 1892 * equivalence</em>. This is the natural extension of
duke@1 1893 * isSubSignature to an equivalence relation.
duke@1 1894 *
duke@1 1895 * @see "The Java Language Specification, Third Ed. (8.4.2)."
duke@1 1896 * @see #isSubSignature(Type t, Type s)
duke@1 1897 * @param t a signature (possible raw, could be subjected to
duke@1 1898 * erasure).
duke@1 1899 * @param s a signature (possible raw, could be subjected to
duke@1 1900 * erasure).
duke@1 1901 * @return true if either argument is a sub signature of the other.
duke@1 1902 */
duke@1 1903 public boolean overrideEquivalent(Type t, Type s) {
duke@1 1904 return hasSameArgs(t, s) ||
duke@1 1905 hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
duke@1 1906 }
duke@1 1907
duke@1 1908 /**
duke@1 1909 * Does t have the same arguments as s? It is assumed that both
duke@1 1910 * types are (possibly polymorphic) method types. Monomorphic
duke@1 1911 * method types "have the same arguments", if their argument lists
duke@1 1912 * are equal. Polymorphic method types "have the same arguments",
duke@1 1913 * if they have the same arguments after renaming all type
duke@1 1914 * variables of one to corresponding type variables in the other,
duke@1 1915 * where correspondence is by position in the type parameter list.
duke@1 1916 */
duke@1 1917 public boolean hasSameArgs(Type t, Type s) {
duke@1 1918 return hasSameArgs.visit(t, s);
duke@1 1919 }
duke@1 1920 // where
duke@1 1921 private TypeRelation hasSameArgs = new TypeRelation() {
duke@1 1922
duke@1 1923 public Boolean visitType(Type t, Type s) {
duke@1 1924 throw new AssertionError();
duke@1 1925 }
duke@1 1926
duke@1 1927 @Override
duke@1 1928 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 1929 return s.tag == METHOD
duke@1 1930 && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
duke@1 1931 }
duke@1 1932
duke@1 1933 @Override
duke@1 1934 public Boolean visitForAll(ForAll t, Type s) {
duke@1 1935 if (s.tag != FORALL)
duke@1 1936 return false;
duke@1 1937
duke@1 1938 ForAll forAll = (ForAll)s;
duke@1 1939 return hasSameBounds(t, forAll)
duke@1 1940 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 1941 }
duke@1 1942
duke@1 1943 @Override
duke@1 1944 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 1945 return false;
duke@1 1946 }
duke@1 1947 };
duke@1 1948 // </editor-fold>
duke@1 1949
duke@1 1950 // <editor-fold defaultstate="collapsed" desc="subst">
duke@1 1951 public List<Type> subst(List<Type> ts,
duke@1 1952 List<Type> from,
duke@1 1953 List<Type> to) {
duke@1 1954 return new Subst(from, to).subst(ts);
duke@1 1955 }
duke@1 1956
duke@1 1957 /**
duke@1 1958 * Substitute all occurrences of a type in `from' with the
duke@1 1959 * corresponding type in `to' in 't'. Match lists `from' and `to'
duke@1 1960 * from the right: If lists have different length, discard leading
duke@1 1961 * elements of the longer list.
duke@1 1962 */
duke@1 1963 public Type subst(Type t, List<Type> from, List<Type> to) {
duke@1 1964 return new Subst(from, to).subst(t);
duke@1 1965 }
duke@1 1966
duke@1 1967 private class Subst extends UnaryVisitor<Type> {
duke@1 1968 List<Type> from;
duke@1 1969 List<Type> to;
duke@1 1970
duke@1 1971 public Subst(List<Type> from, List<Type> to) {
duke@1 1972 int fromLength = from.length();
duke@1 1973 int toLength = to.length();
duke@1 1974 while (fromLength > toLength) {
duke@1 1975 fromLength--;
duke@1 1976 from = from.tail;
duke@1 1977 }
duke@1 1978 while (fromLength < toLength) {
duke@1 1979 toLength--;
duke@1 1980 to = to.tail;
duke@1 1981 }
duke@1 1982 this.from = from;
duke@1 1983 this.to = to;
duke@1 1984 }
duke@1 1985
duke@1 1986 Type subst(Type t) {
duke@1 1987 if (from.tail == null)
duke@1 1988 return t;
duke@1 1989 else
duke@1 1990 return visit(t);
duke@1 1991 }
duke@1 1992
duke@1 1993 List<Type> subst(List<Type> ts) {
duke@1 1994 if (from.tail == null)
duke@1 1995 return ts;
duke@1 1996 boolean wild = false;
duke@1 1997 if (ts.nonEmpty() && from.nonEmpty()) {
duke@1 1998 Type head1 = subst(ts.head);
duke@1 1999 List<Type> tail1 = subst(ts.tail);
duke@1 2000 if (head1 != ts.head || tail1 != ts.tail)
duke@1 2001 return tail1.prepend(head1);
duke@1 2002 }
duke@1 2003 return ts;
duke@1 2004 }
duke@1 2005
duke@1 2006 public Type visitType(Type t, Void ignored) {
duke@1 2007 return t;
duke@1 2008 }
duke@1 2009
duke@1 2010 @Override
duke@1 2011 public Type visitMethodType(MethodType t, Void ignored) {
duke@1 2012 List<Type> argtypes = subst(t.argtypes);
duke@1 2013 Type restype = subst(t.restype);
duke@1 2014 List<Type> thrown = subst(t.thrown);
duke@1 2015 if (argtypes == t.argtypes &&
duke@1 2016 restype == t.restype &&
duke@1 2017 thrown == t.thrown)
duke@1 2018 return t;
duke@1 2019 else
duke@1 2020 return new MethodType(argtypes, restype, thrown, t.tsym);
duke@1 2021 }
duke@1 2022
duke@1 2023 @Override
duke@1 2024 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 2025 for (List<Type> from = this.from, to = this.to;
duke@1 2026 from.nonEmpty();
duke@1 2027 from = from.tail, to = to.tail) {
duke@1 2028 if (t == from.head) {
duke@1 2029 return to.head.withTypeVar(t);
duke@1 2030 }
duke@1 2031 }
duke@1 2032 return t;
duke@1 2033 }
duke@1 2034
duke@1 2035 @Override
duke@1 2036 public Type visitClassType(ClassType t, Void ignored) {
duke@1 2037 if (!t.isCompound()) {
duke@1 2038 List<Type> typarams = t.getTypeArguments();
duke@1 2039 List<Type> typarams1 = subst(typarams);
duke@1 2040 Type outer = t.getEnclosingType();
duke@1 2041 Type outer1 = subst(outer);
duke@1 2042 if (typarams1 == typarams && outer1 == outer)
duke@1 2043 return t;
duke@1 2044 else
duke@1 2045 return new ClassType(outer1, typarams1, t.tsym);
duke@1 2046 } else {
duke@1 2047 Type st = subst(supertype(t));
duke@1 2048 List<Type> is = upperBounds(subst(interfaces(t)));
duke@1 2049 if (st == supertype(t) && is == interfaces(t))
duke@1 2050 return t;
duke@1 2051 else
duke@1 2052 return makeCompoundType(is.prepend(st));
duke@1 2053 }
duke@1 2054 }
duke@1 2055
duke@1 2056 @Override
duke@1 2057 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 2058 Type bound = t.type;
duke@1 2059 if (t.kind != BoundKind.UNBOUND)
duke@1 2060 bound = subst(bound);
duke@1 2061 if (bound == t.type) {
duke@1 2062 return t;
duke@1 2063 } else {
duke@1 2064 if (t.isExtendsBound() && bound.isExtendsBound())
duke@1 2065 bound = upperBound(bound);
duke@1 2066 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
duke@1 2067 }
duke@1 2068 }
duke@1 2069
duke@1 2070 @Override
duke@1 2071 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 2072 Type elemtype = subst(t.elemtype);
duke@1 2073 if (elemtype == t.elemtype)
duke@1 2074 return t;
duke@1 2075 else
duke@1 2076 return new ArrayType(upperBound(elemtype), t.tsym);
duke@1 2077 }
duke@1 2078
duke@1 2079 @Override
duke@1 2080 public Type visitForAll(ForAll t, Void ignored) {
duke@1 2081 List<Type> tvars1 = substBounds(t.tvars, from, to);
duke@1 2082 Type qtype1 = subst(t.qtype);
duke@1 2083 if (tvars1 == t.tvars && qtype1 == t.qtype) {
duke@1 2084 return t;
duke@1 2085 } else if (tvars1 == t.tvars) {
duke@1 2086 return new ForAll(tvars1, qtype1);
duke@1 2087 } else {
duke@1 2088 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
duke@1 2089 }
duke@1 2090 }
duke@1 2091
duke@1 2092 @Override
duke@1 2093 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 2094 return t;
duke@1 2095 }
duke@1 2096 }
duke@1 2097
duke@1 2098 public List<Type> substBounds(List<Type> tvars,
duke@1 2099 List<Type> from,
duke@1 2100 List<Type> to) {
duke@1 2101 if (tvars.isEmpty())
duke@1 2102 return tvars;
duke@1 2103 if (tvars.tail.isEmpty())
duke@1 2104 // fast common case
duke@1 2105 return List.<Type>of(substBound((TypeVar)tvars.head, from, to));
duke@1 2106 ListBuffer<Type> newBoundsBuf = lb();
duke@1 2107 boolean changed = false;
duke@1 2108 // calculate new bounds
duke@1 2109 for (Type t : tvars) {
duke@1 2110 TypeVar tv = (TypeVar) t;
duke@1 2111 Type bound = subst(tv.bound, from, to);
duke@1 2112 if (bound != tv.bound)
duke@1 2113 changed = true;
duke@1 2114 newBoundsBuf.append(bound);
duke@1 2115 }
duke@1 2116 if (!changed)
duke@1 2117 return tvars;
duke@1 2118 ListBuffer<Type> newTvars = lb();
duke@1 2119 // create new type variables without bounds
duke@1 2120 for (Type t : tvars) {
duke@1 2121 newTvars.append(new TypeVar(t.tsym, null, syms.botType));
duke@1 2122 }
duke@1 2123 // the new bounds should use the new type variables in place
duke@1 2124 // of the old
duke@1 2125 List<Type> newBounds = newBoundsBuf.toList();
duke@1 2126 from = tvars;
duke@1 2127 to = newTvars.toList();
duke@1 2128 for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
duke@1 2129 newBounds.head = subst(newBounds.head, from, to);
duke@1 2130 }
duke@1 2131 newBounds = newBoundsBuf.toList();
duke@1 2132 // set the bounds of new type variables to the new bounds
duke@1 2133 for (Type t : newTvars.toList()) {
duke@1 2134 TypeVar tv = (TypeVar) t;
duke@1 2135 tv.bound = newBounds.head;
duke@1 2136 newBounds = newBounds.tail;
duke@1 2137 }
duke@1 2138 return newTvars.toList();
duke@1 2139 }
duke@1 2140
duke@1 2141 public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
duke@1 2142 Type bound1 = subst(t.bound, from, to);
duke@1 2143 if (bound1 == t.bound)
duke@1 2144 return t;
duke@1 2145 else
duke@1 2146 return new TypeVar(t.tsym, bound1, syms.botType);
duke@1 2147 }
duke@1 2148 // </editor-fold>
duke@1 2149
duke@1 2150 // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
duke@1 2151 /**
duke@1 2152 * Does t have the same bounds for quantified variables as s?
duke@1 2153 */
duke@1 2154 boolean hasSameBounds(ForAll t, ForAll s) {
duke@1 2155 List<Type> l1 = t.tvars;
duke@1 2156 List<Type> l2 = s.tvars;
duke@1 2157 while (l1.nonEmpty() && l2.nonEmpty() &&
duke@1 2158 isSameType(l1.head.getUpperBound(),
duke@1 2159 subst(l2.head.getUpperBound(),
duke@1 2160 s.tvars,
duke@1 2161 t.tvars))) {
duke@1 2162 l1 = l1.tail;
duke@1 2163 l2 = l2.tail;
duke@1 2164 }
duke@1 2165 return l1.isEmpty() && l2.isEmpty();
duke@1 2166 }
duke@1 2167 // </editor-fold>
duke@1 2168
duke@1 2169 // <editor-fold defaultstate="collapsed" desc="newInstances">
duke@1 2170 /** Create new vector of type variables from list of variables
duke@1 2171 * changing all recursive bounds from old to new list.
duke@1 2172 */
duke@1 2173 public List<Type> newInstances(List<Type> tvars) {
duke@1 2174 List<Type> tvars1 = Type.map(tvars, newInstanceFun);
duke@1 2175 for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
duke@1 2176 TypeVar tv = (TypeVar) l.head;
duke@1 2177 tv.bound = subst(tv.bound, tvars, tvars1);
duke@1 2178 }
duke@1 2179 return tvars1;
duke@1 2180 }
duke@1 2181 static private Mapping newInstanceFun = new Mapping("newInstanceFun") {
duke@1 2182 public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
duke@1 2183 };
duke@1 2184 // </editor-fold>
duke@1 2185
duke@1 2186 // <editor-fold defaultstate="collapsed" desc="rank">
duke@1 2187 /**
duke@1 2188 * The rank of a class is the length of the longest path between
duke@1 2189 * the class and java.lang.Object in the class inheritance
duke@1 2190 * graph. Undefined for all but reference types.
duke@1 2191 */
duke@1 2192 public int rank(Type t) {
duke@1 2193 switch(t.tag) {
duke@1 2194 case CLASS: {
duke@1 2195 ClassType cls = (ClassType)t;
duke@1 2196 if (cls.rank_field < 0) {
duke@1 2197 Name fullname = cls.tsym.getQualifiedName();
duke@1 2198 if (fullname == fullname.table.java_lang_Object)
duke@1 2199 cls.rank_field = 0;
duke@1 2200 else {
duke@1 2201 int r = rank(supertype(cls));
duke@1 2202 for (List<Type> l = interfaces(cls);
duke@1 2203 l.nonEmpty();
duke@1 2204 l = l.tail) {
duke@1 2205 if (rank(l.head) > r)
duke@1 2206 r = rank(l.head);
duke@1 2207 }
duke@1 2208 cls.rank_field = r + 1;
duke@1 2209 }
duke@1 2210 }
duke@1 2211 return cls.rank_field;
duke@1 2212 }
duke@1 2213 case TYPEVAR: {
duke@1 2214 TypeVar tvar = (TypeVar)t;
duke@1 2215 if (tvar.rank_field < 0) {
duke@1 2216 int r = rank(supertype(tvar));
duke@1 2217 for (List<Type> l = interfaces(tvar);
duke@1 2218 l.nonEmpty();
duke@1 2219 l = l.tail) {
duke@1 2220 if (rank(l.head) > r) r = rank(l.head);
duke@1 2221 }
duke@1 2222 tvar.rank_field = r + 1;
duke@1 2223 }
duke@1 2224 return tvar.rank_field;
duke@1 2225 }
duke@1 2226 case ERROR:
duke@1 2227 return 0;
duke@1 2228 default:
duke@1 2229 throw new AssertionError();
duke@1 2230 }
duke@1 2231 }
duke@1 2232 // </editor-fold>
duke@1 2233
duke@1 2234 // <editor-fold defaultstate="collapsed" desc="toString">
duke@1 2235 /**
duke@1 2236 * This toString is slightly more descriptive than the one on Type.
duke@1 2237 */
duke@1 2238 public String toString(Type t) {
duke@1 2239 if (t.tag == FORALL) {
duke@1 2240 ForAll forAll = (ForAll)t;
duke@1 2241 return typaramsString(forAll.tvars) + forAll.qtype;
duke@1 2242 }
duke@1 2243 return "" + t;
duke@1 2244 }
duke@1 2245 // where
duke@1 2246 private String typaramsString(List<Type> tvars) {
duke@1 2247 StringBuffer s = new StringBuffer();
duke@1 2248 s.append('<');
duke@1 2249 boolean first = true;
duke@1 2250 for (Type t : tvars) {
duke@1 2251 if (!first) s.append(", ");
duke@1 2252 first = false;
duke@1 2253 appendTyparamString(((TypeVar)t), s);
duke@1 2254 }
duke@1 2255 s.append('>');
duke@1 2256 return s.toString();
duke@1 2257 }
duke@1 2258 private void appendTyparamString(TypeVar t, StringBuffer buf) {
duke@1 2259 buf.append(t);
duke@1 2260 if (t.bound == null ||
duke@1 2261 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
duke@1 2262 return;
duke@1 2263 buf.append(" extends "); // Java syntax; no need for i18n
duke@1 2264 Type bound = t.bound;
duke@1 2265 if (!bound.isCompound()) {
duke@1 2266 buf.append(bound);
duke@1 2267 } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
duke@1 2268 buf.append(supertype(t));
duke@1 2269 for (Type intf : interfaces(t)) {
duke@1 2270 buf.append('&');
duke@1 2271 buf.append(intf);
duke@1 2272 }
duke@1 2273 } else {
duke@1 2274 // No superclass was given in bounds.
duke@1 2275 // In this case, supertype is Object, erasure is first interface.
duke@1 2276 boolean first = true;
duke@1 2277 for (Type intf : interfaces(t)) {
duke@1 2278 if (!first) buf.append('&');
duke@1 2279 first = false;
duke@1 2280 buf.append(intf);
duke@1 2281 }
duke@1 2282 }
duke@1 2283 }
duke@1 2284 // </editor-fold>
duke@1 2285
duke@1 2286 // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
duke@1 2287 /**
duke@1 2288 * A cache for closures.
duke@1 2289 *
duke@1 2290 * <p>A closure is a list of all the supertypes and interfaces of
duke@1 2291 * a class or interface type, ordered by ClassSymbol.precedes
duke@1 2292 * (that is, subclasses come first, arbitrary but fixed
duke@1 2293 * otherwise).
duke@1 2294 */
duke@1 2295 private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
duke@1 2296
duke@1 2297 /**
duke@1 2298 * Returns the closure of a class or interface type.
duke@1 2299 */
duke@1 2300 public List<Type> closure(Type t) {
duke@1 2301 List<Type> cl = closureCache.get(t);
duke@1 2302 if (cl == null) {
duke@1 2303 Type st = supertype(t);
duke@1 2304 if (!t.isCompound()) {
duke@1 2305 if (st.tag == CLASS) {
duke@1 2306 cl = insert(closure(st), t);
duke@1 2307 } else if (st.tag == TYPEVAR) {
duke@1 2308 cl = closure(st).prepend(t);
duke@1 2309 } else {
duke@1 2310 cl = List.of(t);
duke@1 2311 }
duke@1 2312 } else {
duke@1 2313 cl = closure(supertype(t));
duke@1 2314 }
duke@1 2315 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
duke@1 2316 cl = union(cl, closure(l.head));
duke@1 2317 closureCache.put(t, cl);
duke@1 2318 }
duke@1 2319 return cl;
duke@1 2320 }
duke@1 2321
duke@1 2322 /**
duke@1 2323 * Insert a type in a closure
duke@1 2324 */
duke@1 2325 public List<Type> insert(List<Type> cl, Type t) {
duke@1 2326 if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
duke@1 2327 return cl.prepend(t);
duke@1 2328 } else if (cl.head.tsym.precedes(t.tsym, this)) {
duke@1 2329 return insert(cl.tail, t).prepend(cl.head);
duke@1 2330 } else {
duke@1 2331 return cl;
duke@1 2332 }
duke@1 2333 }
duke@1 2334
duke@1 2335 /**
duke@1 2336 * Form the union of two closures
duke@1 2337 */
duke@1 2338 public List<Type> union(List<Type> cl1, List<Type> cl2) {
duke@1 2339 if (cl1.isEmpty()) {
duke@1 2340 return cl2;
duke@1 2341 } else if (cl2.isEmpty()) {
duke@1 2342 return cl1;
duke@1 2343 } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
duke@1 2344 return union(cl1.tail, cl2).prepend(cl1.head);
duke@1 2345 } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
duke@1 2346 return union(cl1, cl2.tail).prepend(cl2.head);
duke@1 2347 } else {
duke@1 2348 return union(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 2349 }
duke@1 2350 }
duke@1 2351
duke@1 2352 /**
duke@1 2353 * Intersect two closures
duke@1 2354 */
duke@1 2355 public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
duke@1 2356 if (cl1 == cl2)
duke@1 2357 return cl1;
duke@1 2358 if (cl1.isEmpty() || cl2.isEmpty())
duke@1 2359 return List.nil();
duke@1 2360 if (cl1.head.tsym.precedes(cl2.head.tsym, this))
duke@1 2361 return intersect(cl1.tail, cl2);
duke@1 2362 if (cl2.head.tsym.precedes(cl1.head.tsym, this))
duke@1 2363 return intersect(cl1, cl2.tail);
duke@1 2364 if (isSameType(cl1.head, cl2.head))
duke@1 2365 return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 2366 if (cl1.head.tsym == cl2.head.tsym &&
duke@1 2367 cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
duke@1 2368 if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
duke@1 2369 Type merge = merge(cl1.head,cl2.head);
duke@1 2370 return intersect(cl1.tail, cl2.tail).prepend(merge);
duke@1 2371 }
duke@1 2372 if (cl1.head.isRaw() || cl2.head.isRaw())
duke@1 2373 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
duke@1 2374 }
duke@1 2375 return intersect(cl1.tail, cl2.tail);
duke@1 2376 }
duke@1 2377 // where
duke@1 2378 class TypePair {
duke@1 2379 final Type t1;
duke@1 2380 final Type t2;
duke@1 2381 TypePair(Type t1, Type t2) {
duke@1 2382 this.t1 = t1;
duke@1 2383 this.t2 = t2;
duke@1 2384 }
duke@1 2385 @Override
duke@1 2386 public int hashCode() {
duke@1 2387 return 127 * Types.this.hashCode(t1) + Types.this.hashCode(t2);
duke@1 2388 }
duke@1 2389 @Override
duke@1 2390 public boolean equals(Object obj) {
duke@1 2391 if (!(obj instanceof TypePair))
duke@1 2392 return false;
duke@1 2393 TypePair typePair = (TypePair)obj;
duke@1 2394 return isSameType(t1, typePair.t1)
duke@1 2395 && isSameType(t2, typePair.t2);
duke@1 2396 }
duke@1 2397 }
duke@1 2398 Set<TypePair> mergeCache = new HashSet<TypePair>();
duke@1 2399 private Type merge(Type c1, Type c2) {
duke@1 2400 ClassType class1 = (ClassType) c1;
duke@1 2401 List<Type> act1 = class1.getTypeArguments();
duke@1 2402 ClassType class2 = (ClassType) c2;
duke@1 2403 List<Type> act2 = class2.getTypeArguments();
duke@1 2404 ListBuffer<Type> merged = new ListBuffer<Type>();
duke@1 2405 List<Type> typarams = class1.tsym.type.getTypeArguments();
duke@1 2406
duke@1 2407 while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
duke@1 2408 if (containsType(act1.head, act2.head)) {
duke@1 2409 merged.append(act1.head);
duke@1 2410 } else if (containsType(act2.head, act1.head)) {
duke@1 2411 merged.append(act2.head);
duke@1 2412 } else {
duke@1 2413 TypePair pair = new TypePair(c1, c2);
duke@1 2414 Type m;
duke@1 2415 if (mergeCache.add(pair)) {
duke@1 2416 m = new WildcardType(lub(upperBound(act1.head),
duke@1 2417 upperBound(act2.head)),
duke@1 2418 BoundKind.EXTENDS,
duke@1 2419 syms.boundClass);
duke@1 2420 mergeCache.remove(pair);
duke@1 2421 } else {
duke@1 2422 m = new WildcardType(syms.objectType,
duke@1 2423 BoundKind.UNBOUND,
duke@1 2424 syms.boundClass);
duke@1 2425 }
duke@1 2426 merged.append(m.withTypeVar(typarams.head));
duke@1 2427 }
duke@1 2428 act1 = act1.tail;
duke@1 2429 act2 = act2.tail;
duke@1 2430 typarams = typarams.tail;
duke@1 2431 }
duke@1 2432 assert(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
duke@1 2433 return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
duke@1 2434 }
duke@1 2435
duke@1 2436 /**
duke@1 2437 * Return the minimum type of a closure, a compound type if no
duke@1 2438 * unique minimum exists.
duke@1 2439 */
duke@1 2440 private Type compoundMin(List<Type> cl) {
duke@1 2441 if (cl.isEmpty()) return syms.objectType;
duke@1 2442 List<Type> compound = closureMin(cl);
duke@1 2443 if (compound.isEmpty())
duke@1 2444 return null;
duke@1 2445 else if (compound.tail.isEmpty())
duke@1 2446 return compound.head;
duke@1 2447 else
duke@1 2448 return makeCompoundType(compound);
duke@1 2449 }
duke@1 2450
duke@1 2451 /**
duke@1 2452 * Return the minimum types of a closure, suitable for computing
duke@1 2453 * compoundMin or glb.
duke@1 2454 */
duke@1 2455 private List<Type> closureMin(List<Type> cl) {
duke@1 2456 ListBuffer<Type> classes = lb();
duke@1 2457 ListBuffer<Type> interfaces = lb();
duke@1 2458 while (!cl.isEmpty()) {
duke@1 2459 Type current = cl.head;
duke@1 2460 if (current.isInterface())
duke@1 2461 interfaces.append(current);
duke@1 2462 else
duke@1 2463 classes.append(current);
duke@1 2464 ListBuffer<Type> candidates = lb();
duke@1 2465 for (Type t : cl.tail) {
duke@1 2466 if (!isSubtypeNoCapture(current, t))
duke@1 2467 candidates.append(t);
duke@1 2468 }
duke@1 2469 cl = candidates.toList();
duke@1 2470 }
duke@1 2471 return classes.appendList(interfaces).toList();
duke@1 2472 }
duke@1 2473
duke@1 2474 /**
duke@1 2475 * Return the least upper bound of pair of types. if the lub does
duke@1 2476 * not exist return null.
duke@1 2477 */
duke@1 2478 public Type lub(Type t1, Type t2) {
duke@1 2479 return lub(List.of(t1, t2));
duke@1 2480 }
duke@1 2481
duke@1 2482 /**
duke@1 2483 * Return the least upper bound (lub) of set of types. If the lub
duke@1 2484 * does not exist return the type of null (bottom).
duke@1 2485 */
duke@1 2486 public Type lub(List<Type> ts) {
duke@1 2487 final int ARRAY_BOUND = 1;
duke@1 2488 final int CLASS_BOUND = 2;
duke@1 2489 int boundkind = 0;
duke@1 2490 for (Type t : ts) {
duke@1 2491 switch (t.tag) {
duke@1 2492 case CLASS:
duke@1 2493 boundkind |= CLASS_BOUND;
duke@1 2494 break;
duke@1 2495 case ARRAY:
duke@1 2496 boundkind |= ARRAY_BOUND;
duke@1 2497 break;
duke@1 2498 case TYPEVAR:
duke@1 2499 do {
duke@1 2500 t = t.getUpperBound();
duke@1 2501 } while (t.tag == TYPEVAR);
duke@1 2502 if (t.tag == ARRAY) {
duke@1 2503 boundkind |= ARRAY_BOUND;
duke@1 2504 } else {
duke@1 2505 boundkind |= CLASS_BOUND;
duke@1 2506 }
duke@1 2507 break;
duke@1 2508 default:
duke@1 2509 if (t.isPrimitive())
mcimadamore@5 2510 return syms.errType;
duke@1 2511 }
duke@1 2512 }
duke@1 2513 switch (boundkind) {
duke@1 2514 case 0:
duke@1 2515 return syms.botType;
duke@1 2516
duke@1 2517 case ARRAY_BOUND:
duke@1 2518 // calculate lub(A[], B[])
duke@1 2519 List<Type> elements = Type.map(ts, elemTypeFun);
duke@1 2520 for (Type t : elements) {
duke@1 2521 if (t.isPrimitive()) {
duke@1 2522 // if a primitive type is found, then return
duke@1 2523 // arraySuperType unless all the types are the
duke@1 2524 // same
duke@1 2525 Type first = ts.head;
duke@1 2526 for (Type s : ts.tail) {
duke@1 2527 if (!isSameType(first, s)) {
duke@1 2528 // lub(int[], B[]) is Cloneable & Serializable
duke@1 2529 return arraySuperType();
duke@1 2530 }
duke@1 2531 }
duke@1 2532 // all the array types are the same, return one
duke@1 2533 // lub(int[], int[]) is int[]
duke@1 2534 return first;
duke@1 2535 }
duke@1 2536 }
duke@1 2537 // lub(A[], B[]) is lub(A, B)[]
duke@1 2538 return new ArrayType(lub(elements), syms.arrayClass);
duke@1 2539
duke@1 2540 case CLASS_BOUND:
duke@1 2541 // calculate lub(A, B)
duke@1 2542 while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
duke@1 2543 ts = ts.tail;
duke@1 2544 assert !ts.isEmpty();
duke@1 2545 List<Type> cl = closure(ts.head);
duke@1 2546 for (Type t : ts.tail) {
duke@1 2547 if (t.tag == CLASS || t.tag == TYPEVAR)
duke@1 2548 cl = intersect(cl, closure(t));
duke@1 2549 }
duke@1 2550 return compoundMin(cl);
duke@1 2551
duke@1 2552 default:
duke@1 2553 // calculate lub(A, B[])
duke@1 2554 List<Type> classes = List.of(arraySuperType());
duke@1 2555 for (Type t : ts) {
duke@1 2556 if (t.tag != ARRAY) // Filter out any arrays
duke@1 2557 classes = classes.prepend(t);
duke@1 2558 }
duke@1 2559 // lub(A, B[]) is lub(A, arraySuperType)
duke@1 2560 return lub(classes);
duke@1 2561 }
duke@1 2562 }
duke@1 2563 // where
duke@1 2564 private Type arraySuperType = null;
duke@1 2565 private Type arraySuperType() {
duke@1 2566 // initialized lazily to avoid problems during compiler startup
duke@1 2567 if (arraySuperType == null) {
duke@1 2568 synchronized (this) {
duke@1 2569 if (arraySuperType == null) {
duke@1 2570 // JLS 10.8: all arrays implement Cloneable and Serializable.
duke@1 2571 arraySuperType = makeCompoundType(List.of(syms.serializableType,
duke@1 2572 syms.cloneableType),
duke@1 2573 syms.objectType);
duke@1 2574 }
duke@1 2575 }
duke@1 2576 }
duke@1 2577 return arraySuperType;
duke@1 2578 }
duke@1 2579 // </editor-fold>
duke@1 2580
duke@1 2581 // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
duke@1 2582 public Type glb(Type t, Type s) {
duke@1 2583 if (s == null)
duke@1 2584 return t;
duke@1 2585 else if (isSubtypeNoCapture(t, s))
duke@1 2586 return t;
duke@1 2587 else if (isSubtypeNoCapture(s, t))
duke@1 2588 return s;
duke@1 2589
duke@1 2590 List<Type> closure = union(closure(t), closure(s));
duke@1 2591 List<Type> bounds = closureMin(closure);
duke@1 2592
duke@1 2593 if (bounds.isEmpty()) { // length == 0
duke@1 2594 return syms.objectType;
duke@1 2595 } else if (bounds.tail.isEmpty()) { // length == 1
duke@1 2596 return bounds.head;
duke@1 2597 } else { // length > 1
duke@1 2598 int classCount = 0;
duke@1 2599 for (Type bound : bounds)
duke@1 2600 if (!bound.isInterface())
duke@1 2601 classCount++;
duke@1 2602 if (classCount > 1)
duke@1 2603 return syms.errType;
duke@1 2604 }
duke@1 2605 return makeCompoundType(bounds);
duke@1 2606 }
duke@1 2607 // </editor-fold>
duke@1 2608
duke@1 2609 // <editor-fold defaultstate="collapsed" desc="hashCode">
duke@1 2610 /**
duke@1 2611 * Compute a hash code on a type.
duke@1 2612 */
duke@1 2613 public static int hashCode(Type t) {
duke@1 2614 return hashCode.visit(t);
duke@1 2615 }
duke@1 2616 // where
duke@1 2617 private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
duke@1 2618
duke@1 2619 public Integer visitType(Type t, Void ignored) {
duke@1 2620 return t.tag;
duke@1 2621 }
duke@1 2622
duke@1 2623 @Override
duke@1 2624 public Integer visitClassType(ClassType t, Void ignored) {
duke@1 2625 int result = visit(t.getEnclosingType());
duke@1 2626 result *= 127;
duke@1 2627 result += t.tsym.flatName().hashCode();
duke@1 2628 for (Type s : t.getTypeArguments()) {
duke@1 2629 result *= 127;
duke@1 2630 result += visit(s);
duke@1 2631 }
duke@1 2632 return result;
duke@1 2633 }
duke@1 2634
duke@1 2635 @Override
duke@1 2636 public Integer visitWildcardType(WildcardType t, Void ignored) {
duke@1 2637 int result = t.kind.hashCode();
duke@1 2638 if (t.type != null) {
duke@1 2639 result *= 127;
duke@1 2640 result += visit(t.type);
duke@1 2641 }
duke@1 2642 return result;
duke@1 2643 }
duke@1 2644
duke@1 2645 @Override
duke@1 2646 public Integer visitArrayType(ArrayType t, Void ignored) {
duke@1 2647 return visit(t.elemtype) + 12;
duke@1 2648 }
duke@1 2649
duke@1 2650 @Override
duke@1 2651 public Integer visitTypeVar(TypeVar t, Void ignored) {
duke@1 2652 return System.identityHashCode(t.tsym);
duke@1 2653 }
duke@1 2654
duke@1 2655 @Override
duke@1 2656 public Integer visitUndetVar(UndetVar t, Void ignored) {
duke@1 2657 return System.identityHashCode(t);
duke@1 2658 }
duke@1 2659
duke@1 2660 @Override
duke@1 2661 public Integer visitErrorType(ErrorType t, Void ignored) {
duke@1 2662 return 0;
duke@1 2663 }
duke@1 2664 };
duke@1 2665 // </editor-fold>
duke@1 2666
duke@1 2667 // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
duke@1 2668 /**
duke@1 2669 * Does t have a result that is a subtype of the result type of s,
duke@1 2670 * suitable for covariant returns? It is assumed that both types
duke@1 2671 * are (possibly polymorphic) method types. Monomorphic method
duke@1 2672 * types are handled in the obvious way. Polymorphic method types
duke@1 2673 * require renaming all type variables of one to corresponding
duke@1 2674 * type variables in the other, where correspondence is by
duke@1 2675 * position in the type parameter list. */
duke@1 2676 public boolean resultSubtype(Type t, Type s, Warner warner) {
duke@1 2677 List<Type> tvars = t.getTypeArguments();
duke@1 2678 List<Type> svars = s.getTypeArguments();
duke@1 2679 Type tres = t.getReturnType();
duke@1 2680 Type sres = subst(s.getReturnType(), svars, tvars);
duke@1 2681 return covariantReturnType(tres, sres, warner);
duke@1 2682 }
duke@1 2683
duke@1 2684 /**
duke@1 2685 * Return-Type-Substitutable.
duke@1 2686 * @see <a href="http://java.sun.com/docs/books/jls/">The Java
duke@1 2687 * Language Specification, Third Ed. (8.4.5)</a>
duke@1 2688 */
duke@1 2689 public boolean returnTypeSubstitutable(Type r1, Type r2) {
duke@1 2690 if (hasSameArgs(r1, r2))
duke@1 2691 return resultSubtype(r1, r2, Warner.noWarnings);
duke@1 2692 else
duke@1 2693 return covariantReturnType(r1.getReturnType(),
duke@1 2694 erasure(r2.getReturnType()),
duke@1 2695 Warner.noWarnings);
duke@1 2696 }
duke@1 2697
duke@1 2698 public boolean returnTypeSubstitutable(Type r1,
duke@1 2699 Type r2, Type r2res,
duke@1 2700 Warner warner) {
duke@1 2701 if (isSameType(r1.getReturnType(), r2res))
duke@1 2702 return true;
duke@1 2703 if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
duke@1 2704 return false;
duke@1 2705
duke@1 2706 if (hasSameArgs(r1, r2))
duke@1 2707 return covariantReturnType(r1.getReturnType(), r2res, warner);
duke@1 2708 if (!source.allowCovariantReturns())
duke@1 2709 return false;
duke@1 2710 if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
duke@1 2711 return true;
duke@1 2712 if (!isSubtype(r1.getReturnType(), erasure(r2res)))
duke@1 2713 return false;
duke@1 2714 warner.warnUnchecked();
duke@1 2715 return true;
duke@1 2716 }
duke@1 2717
duke@1 2718 /**
duke@1 2719 * Is t an appropriate return type in an overrider for a
duke@1 2720 * method that returns s?
duke@1 2721 */
duke@1 2722 public boolean covariantReturnType(Type t, Type s, Warner warner) {
duke@1 2723 return
duke@1 2724 isSameType(t, s) ||
duke@1 2725 source.allowCovariantReturns() &&
duke@1 2726 !t.isPrimitive() &&
duke@1 2727 !s.isPrimitive() &&
duke@1 2728 isAssignable(t, s, warner);
duke@1 2729 }
duke@1 2730 // </editor-fold>
duke@1 2731
duke@1 2732 // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
duke@1 2733 /**
duke@1 2734 * Return the class that boxes the given primitive.
duke@1 2735 */
duke@1 2736 public ClassSymbol boxedClass(Type t) {
duke@1 2737 return reader.enterClass(syms.boxedName[t.tag]);
duke@1 2738 }
duke@1 2739
duke@1 2740 /**
duke@1 2741 * Return the primitive type corresponding to a boxed type.
duke@1 2742 */
duke@1 2743 public Type unboxedType(Type t) {
duke@1 2744 if (allowBoxing) {
duke@1 2745 for (int i=0; i<syms.boxedName.length; i++) {
duke@1 2746 Name box = syms.boxedName[i];
duke@1 2747 if (box != null &&
duke@1 2748 asSuper(t, reader.enterClass(box)) != null)
duke@1 2749 return syms.typeOfTag[i];
duke@1 2750 }
duke@1 2751 }
duke@1 2752 return Type.noType;
duke@1 2753 }
duke@1 2754 // </editor-fold>
duke@1 2755
duke@1 2756 // <editor-fold defaultstate="collapsed" desc="Capture conversion">
duke@1 2757 /*
duke@1 2758 * JLS 3rd Ed. 5.1.10 Capture Conversion:
duke@1 2759 *
duke@1 2760 * Let G name a generic type declaration with n formal type
duke@1 2761 * parameters A1 ... An with corresponding bounds U1 ... Un. There
duke@1 2762 * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
duke@1 2763 * where, for 1 <= i <= n:
duke@1 2764 *
duke@1 2765 * + If Ti is a wildcard type argument (4.5.1) of the form ? then
duke@1 2766 * Si is a fresh type variable whose upper bound is
duke@1 2767 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
duke@1 2768 * type.
duke@1 2769 *
duke@1 2770 * + If Ti is a wildcard type argument of the form ? extends Bi,
duke@1 2771 * then Si is a fresh type variable whose upper bound is
duke@1 2772 * glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
duke@1 2773 * the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
duke@1 2774 * a compile-time error if for any two classes (not interfaces)
duke@1 2775 * Vi and Vj,Vi is not a subclass of Vj or vice versa.
duke@1 2776 *
duke@1 2777 * + If Ti is a wildcard type argument of the form ? super Bi,
duke@1 2778 * then Si is a fresh type variable whose upper bound is
duke@1 2779 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
duke@1 2780 *
duke@1 2781 * + Otherwise, Si = Ti.
duke@1 2782 *
duke@1 2783 * Capture conversion on any type other than a parameterized type
duke@1 2784 * (4.5) acts as an identity conversion (5.1.1). Capture
duke@1 2785 * conversions never require a special action at run time and
duke@1 2786 * therefore never throw an exception at run time.
duke@1 2787 *
duke@1 2788 * Capture conversion is not applied recursively.
duke@1 2789 */
duke@1 2790 /**
duke@1 2791 * Capture conversion as specified by JLS 3rd Ed.
duke@1 2792 */
duke@1 2793 public Type capture(Type t) {
duke@1 2794 if (t.tag != CLASS)
duke@1 2795 return t;
duke@1 2796 ClassType cls = (ClassType)t;
duke@1 2797 if (cls.isRaw() || !cls.isParameterized())
duke@1 2798 return cls;
duke@1 2799
duke@1 2800 ClassType G = (ClassType)cls.asElement().asType();
duke@1 2801 List<Type> A = G.getTypeArguments();
duke@1 2802 List<Type> T = cls.getTypeArguments();
duke@1 2803 List<Type> S = freshTypeVariables(T);
duke@1 2804
duke@1 2805 List<Type> currentA = A;
duke@1 2806 List<Type> currentT = T;
duke@1 2807 List<Type> currentS = S;
duke@1 2808 boolean captured = false;
duke@1 2809 while (!currentA.isEmpty() &&
duke@1 2810 !currentT.isEmpty() &&
duke@1 2811 !currentS.isEmpty()) {
duke@1 2812 if (currentS.head != currentT.head) {
duke@1 2813 captured = true;
duke@1 2814 WildcardType Ti = (WildcardType)currentT.head;
duke@1 2815 Type Ui = currentA.head.getUpperBound();
duke@1 2816 CapturedType Si = (CapturedType)currentS.head;
duke@1 2817 if (Ui == null)
duke@1 2818 Ui = syms.objectType;
duke@1 2819 switch (Ti.kind) {
duke@1 2820 case UNBOUND:
duke@1 2821 Si.bound = subst(Ui, A, S);
duke@1 2822 Si.lower = syms.botType;
duke@1 2823 break;
duke@1 2824 case EXTENDS:
duke@1 2825 Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
duke@1 2826 Si.lower = syms.botType;
duke@1 2827 break;
duke@1 2828 case SUPER:
duke@1 2829 Si.bound = subst(Ui, A, S);
duke@1 2830 Si.lower = Ti.getSuperBound();
duke@1 2831 break;
duke@1 2832 }
duke@1 2833 if (Si.bound == Si.lower)
duke@1 2834 currentS.head = Si.bound;
duke@1 2835 }
duke@1 2836 currentA = currentA.tail;
duke@1 2837 currentT = currentT.tail;
duke@1 2838 currentS = currentS.tail;
duke@1 2839 }
duke@1 2840 if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
duke@1 2841 return erasure(t); // some "rare" type involved
duke@1 2842
duke@1 2843 if (captured)
duke@1 2844 return new ClassType(cls.getEnclosingType(), S, cls.tsym);
duke@1 2845 else
duke@1 2846 return t;
duke@1 2847 }
duke@1 2848 // where
duke@1 2849 private List<Type> freshTypeVariables(List<Type> types) {
duke@1 2850 ListBuffer<Type> result = lb();
duke@1 2851 for (Type t : types) {
duke@1 2852 if (t.tag == WILDCARD) {
duke@1 2853 Type bound = ((WildcardType)t).getExtendsBound();
duke@1 2854 if (bound == null)
duke@1 2855 bound = syms.objectType;
duke@1 2856 result.append(new CapturedType(capturedName,
duke@1 2857 syms.noSymbol,
duke@1 2858 bound,
duke@1 2859 syms.botType,
duke@1 2860 (WildcardType)t));
duke@1 2861 } else {
duke@1 2862 result.append(t);
duke@1 2863 }
duke@1 2864 }
duke@1 2865 return result.toList();
duke@1 2866 }
duke@1 2867 // </editor-fold>
duke@1 2868
duke@1 2869 // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
duke@1 2870 private List<Type> upperBounds(List<Type> ss) {
duke@1 2871 if (ss.isEmpty()) return ss;
duke@1 2872 Type head = upperBound(ss.head);
duke@1 2873 List<Type> tail = upperBounds(ss.tail);
duke@1 2874 if (head != ss.head || tail != ss.tail)
duke@1 2875 return tail.prepend(head);
duke@1 2876 else
duke@1 2877 return ss;
duke@1 2878 }
duke@1 2879
duke@1 2880 private boolean sideCast(Type from, Type to, Warner warn) {
duke@1 2881 // We are casting from type $from$ to type $to$, which are
duke@1 2882 // non-final unrelated types. This method
duke@1 2883 // tries to reject a cast by transferring type parameters
duke@1 2884 // from $to$ to $from$ by common superinterfaces.
duke@1 2885 boolean reverse = false;
duke@1 2886 Type target = to;
duke@1 2887 if ((to.tsym.flags() & INTERFACE) == 0) {
duke@1 2888 assert (from.tsym.flags() & INTERFACE) != 0;
duke@1 2889 reverse = true;
duke@1 2890 to = from;
duke@1 2891 from = target;
duke@1 2892 }
duke@1 2893 List<Type> commonSupers = superClosure(to, erasure(from));
duke@1 2894 boolean giveWarning = commonSupers.isEmpty();
duke@1 2895 // The arguments to the supers could be unified here to
duke@1 2896 // get a more accurate analysis
duke@1 2897 while (commonSupers.nonEmpty()) {
duke@1 2898 Type t1 = asSuper(from, commonSupers.head.tsym);
duke@1 2899 Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
duke@1 2900 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 2901 return false;
duke@1 2902 giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
duke@1 2903 commonSupers = commonSupers.tail;
duke@1 2904 }
duke@1 2905 if (giveWarning && !isReifiable(to))
duke@1 2906 warn.warnUnchecked();
duke@1 2907 if (!source.allowCovariantReturns())
duke@1 2908 // reject if there is a common method signature with
duke@1 2909 // incompatible return types.
duke@1 2910 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 2911 return true;
duke@1 2912 }
duke@1 2913
duke@1 2914 private boolean sideCastFinal(Type from, Type to, Warner warn) {
duke@1 2915 // We are casting from type $from$ to type $to$, which are
duke@1 2916 // unrelated types one of which is final and the other of
duke@1 2917 // which is an interface. This method
duke@1 2918 // tries to reject a cast by transferring type parameters
duke@1 2919 // from the final class to the interface.
duke@1 2920 boolean reverse = false;
duke@1 2921 Type target = to;
duke@1 2922 if ((to.tsym.flags() & INTERFACE) == 0) {
duke@1 2923 assert (from.tsym.flags() & INTERFACE) != 0;
duke@1 2924 reverse = true;
duke@1 2925 to = from;
duke@1 2926 from = target;
duke@1 2927 }
duke@1 2928 assert (from.tsym.flags() & FINAL) != 0;
duke@1 2929 Type t1 = asSuper(from, to.tsym);
duke@1 2930 if (t1 == null) return false;
duke@1 2931 Type t2 = to;
duke@1 2932 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 2933 return false;
duke@1 2934 if (!source.allowCovariantReturns())
duke@1 2935 // reject if there is a common method signature with
duke@1 2936 // incompatible return types.
duke@1 2937 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 2938 if (!isReifiable(target) &&
duke@1 2939 (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
duke@1 2940 warn.warnUnchecked();
duke@1 2941 return true;
duke@1 2942 }
duke@1 2943
duke@1 2944 private boolean giveWarning(Type from, Type to) {
duke@1 2945 // To and from are (possibly different) parameterizations
duke@1 2946 // of the same class or interface
duke@1 2947 return to.isParameterized() && !containsType(to.getTypeArguments(), from.getTypeArguments());
duke@1 2948 }
duke@1 2949
duke@1 2950 private List<Type> superClosure(Type t, Type s) {
duke@1 2951 List<Type> cl = List.nil();
duke@1 2952 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 2953 if (isSubtype(s, erasure(l.head))) {
duke@1 2954 cl = insert(cl, l.head);
duke@1 2955 } else {
duke@1 2956 cl = union(cl, superClosure(l.head, s));
duke@1 2957 }
duke@1 2958 }
duke@1 2959 return cl;
duke@1 2960 }
duke@1 2961
duke@1 2962 private boolean containsTypeEquivalent(Type t, Type s) {
duke@1 2963 return
duke@1 2964 isSameType(t, s) || // shortcut
duke@1 2965 containsType(t, s) && containsType(s, t);
duke@1 2966 }
duke@1 2967
duke@1 2968 /**
duke@1 2969 * Adapt a type by computing a substitution which maps a source
duke@1 2970 * type to a target type.
duke@1 2971 *
duke@1 2972 * @param source the source type
duke@1 2973 * @param target the target type
duke@1 2974 * @param from the type variables of the computed substitution
duke@1 2975 * @param to the types of the computed substitution.
duke@1 2976 */
duke@1 2977 public void adapt(Type source,
duke@1 2978 Type target,
duke@1 2979 ListBuffer<Type> from,
duke@1 2980 ListBuffer<Type> to) throws AdaptFailure {
duke@1 2981 Map<Symbol,Type> mapping = new HashMap<Symbol,Type>();
duke@1 2982 adaptRecursive(source, target, from, to, mapping);
duke@1 2983 List<Type> fromList = from.toList();
duke@1 2984 List<Type> toList = to.toList();
duke@1 2985 while (!fromList.isEmpty()) {
duke@1 2986 Type val = mapping.get(fromList.head.tsym);
duke@1 2987 if (toList.head != val)
duke@1 2988 toList.head = val;
duke@1 2989 fromList = fromList.tail;
duke@1 2990 toList = toList.tail;
duke@1 2991 }
duke@1 2992 }
duke@1 2993 // where
duke@1 2994 private void adaptRecursive(Type source,
duke@1 2995 Type target,
duke@1 2996 ListBuffer<Type> from,
duke@1 2997 ListBuffer<Type> to,
duke@1 2998 Map<Symbol,Type> mapping) throws AdaptFailure {
duke@1 2999 if (source.tag == TYPEVAR) {
duke@1 3000 // Check to see if there is
duke@1 3001 // already a mapping for $source$, in which case
duke@1 3002 // the old mapping will be merged with the new
duke@1 3003 Type val = mapping.get(source.tsym);
duke@1 3004 if (val != null) {
duke@1 3005 if (val.isSuperBound() && target.isSuperBound()) {
duke@1 3006 val = isSubtype(lowerBound(val), lowerBound(target))
duke@1 3007 ? target : val;
duke@1 3008 } else if (val.isExtendsBound() && target.isExtendsBound()) {
duke@1 3009 val = isSubtype(upperBound(val), upperBound(target))
duke@1 3010 ? val : target;
duke@1 3011 } else if (!isSameType(val, target)) {
duke@1 3012 throw new AdaptFailure();
duke@1 3013 }
duke@1 3014 } else {
duke@1 3015 val = target;
duke@1 3016 from.append(source);
duke@1 3017 to.append(target);
duke@1 3018 }
duke@1 3019 mapping.put(source.tsym, val);
duke@1 3020 } else if (source.tag == target.tag) {
duke@1 3021 switch (source.tag) {
duke@1 3022 case CLASS:
duke@1 3023 adapt(source.allparams(), target.allparams(),
duke@1 3024 from, to, mapping);
duke@1 3025 break;
duke@1 3026 case ARRAY:
duke@1 3027 adaptRecursive(elemtype(source), elemtype(target),
duke@1 3028 from, to, mapping);
duke@1 3029 break;
duke@1 3030 case WILDCARD:
duke@1 3031 if (source.isExtendsBound()) {
duke@1 3032 adaptRecursive(upperBound(source), upperBound(target),
duke@1 3033 from, to, mapping);
duke@1 3034 } else if (source.isSuperBound()) {
duke@1 3035 adaptRecursive(lowerBound(source), lowerBound(target),
duke@1 3036 from, to, mapping);
duke@1 3037 }
duke@1 3038 break;
duke@1 3039 }
duke@1 3040 }
duke@1 3041 }
duke@1 3042 public static class AdaptFailure extends Exception {
duke@1 3043 static final long serialVersionUID = -7490231548272701566L;
duke@1 3044 }
duke@1 3045
duke@1 3046 /**
duke@1 3047 * Adapt a type by computing a substitution which maps a list of
duke@1 3048 * source types to a list of target types.
duke@1 3049 *
duke@1 3050 * @param source the source type
duke@1 3051 * @param target the target type
duke@1 3052 * @param from the type variables of the computed substitution
duke@1 3053 * @param to the types of the computed substitution.
duke@1 3054 */
duke@1 3055 private void adapt(List<Type> source,
duke@1 3056 List<Type> target,
duke@1 3057 ListBuffer<Type> from,
duke@1 3058 ListBuffer<Type> to,
duke@1 3059 Map<Symbol,Type> mapping) throws AdaptFailure {
duke@1 3060 if (source.length() == target.length()) {
duke@1 3061 while (source.nonEmpty()) {
duke@1 3062 adaptRecursive(source.head, target.head, from, to, mapping);
duke@1 3063 source = source.tail;
duke@1 3064 target = target.tail;
duke@1 3065 }
duke@1 3066 }
duke@1 3067 }
duke@1 3068
duke@1 3069 private void adaptSelf(Type t,
duke@1 3070 ListBuffer<Type> from,
duke@1 3071 ListBuffer<Type> to) {
duke@1 3072 try {
duke@1 3073 //if (t.tsym.type != t)
duke@1 3074 adapt(t.tsym.type, t, from, to);
duke@1 3075 } catch (AdaptFailure ex) {
duke@1 3076 // Adapt should never fail calculating a mapping from
duke@1 3077 // t.tsym.type to t as there can be no merge problem.
duke@1 3078 throw new AssertionError(ex);
duke@1 3079 }
duke@1 3080 }
duke@1 3081
duke@1 3082 /**
duke@1 3083 * Rewrite all type variables (universal quantifiers) in the given
duke@1 3084 * type to wildcards (existential quantifiers). This is used to
duke@1 3085 * determine if a cast is allowed. For example, if high is true
duke@1 3086 * and {@code T <: Number}, then {@code List<T>} is rewritten to
duke@1 3087 * {@code List<? extends Number>}. Since {@code List<Integer> <:
duke@1 3088 * List<? extends Number>} a {@code List<T>} can be cast to {@code
duke@1 3089 * List<Integer>} with a warning.
duke@1 3090 * @param t a type
duke@1 3091 * @param high if true return an upper bound; otherwise a lower
duke@1 3092 * bound
duke@1 3093 * @param rewriteTypeVars only rewrite captured wildcards if false;
duke@1 3094 * otherwise rewrite all type variables
duke@1 3095 * @return the type rewritten with wildcards (existential
duke@1 3096 * quantifiers) only
duke@1 3097 */
duke@1 3098 private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
duke@1 3099 ListBuffer<Type> from = new ListBuffer<Type>();
duke@1 3100 ListBuffer<Type> to = new ListBuffer<Type>();
duke@1 3101 adaptSelf(t, from, to);
duke@1 3102 ListBuffer<Type> rewritten = new ListBuffer<Type>();
duke@1 3103 List<Type> formals = from.toList();
duke@1 3104 boolean changed = false;
duke@1 3105 for (Type arg : to.toList()) {
duke@1 3106 Type bound;
duke@1 3107 if (rewriteTypeVars && arg.tag == TYPEVAR) {
duke@1 3108 TypeVar tv = (TypeVar)arg;
duke@1 3109 bound = high ? tv.bound : syms.botType;
duke@1 3110 } else {
duke@1 3111 bound = high ? upperBound(arg) : lowerBound(arg);
duke@1 3112 }
duke@1 3113 Type newarg = bound;
duke@1 3114 if (arg != bound) {
duke@1 3115 changed = true;
duke@1 3116 newarg = high ? makeExtendsWildcard(bound, (TypeVar)formals.head)
duke@1 3117 : makeSuperWildcard(bound, (TypeVar)formals.head);
duke@1 3118 }
duke@1 3119 rewritten.append(newarg);
duke@1 3120 formals = formals.tail;
duke@1 3121 }
duke@1 3122 if (changed)
duke@1 3123 return subst(t.tsym.type, from.toList(), rewritten.toList());
duke@1 3124 else
duke@1 3125 return t;
duke@1 3126 }
duke@1 3127
duke@1 3128 /**
duke@1 3129 * Create a wildcard with the given upper (extends) bound; create
duke@1 3130 * an unbounded wildcard if bound is Object.
duke@1 3131 *
duke@1 3132 * @param bound the upper bound
duke@1 3133 * @param formal the formal type parameter that will be
duke@1 3134 * substituted by the wildcard
duke@1 3135 */
duke@1 3136 private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
duke@1 3137 if (bound == syms.objectType) {
duke@1 3138 return new WildcardType(syms.objectType,
duke@1 3139 BoundKind.UNBOUND,
duke@1 3140 syms.boundClass,
duke@1 3141 formal);
duke@1 3142 } else {
duke@1 3143 return new WildcardType(bound,
duke@1 3144 BoundKind.EXTENDS,
duke@1 3145 syms.boundClass,
duke@1 3146 formal);
duke@1 3147 }
duke@1 3148 }
duke@1 3149
duke@1 3150 /**
duke@1 3151 * Create a wildcard with the given lower (super) bound; create an
duke@1 3152 * unbounded wildcard if bound is bottom (type of {@code null}).
duke@1 3153 *
duke@1 3154 * @param bound the lower bound
duke@1 3155 * @param formal the formal type parameter that will be
duke@1 3156 * substituted by the wildcard
duke@1 3157 */
duke@1 3158 private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
duke@1 3159 if (bound.tag == BOT) {
duke@1 3160 return new WildcardType(syms.objectType,
duke@1 3161 BoundKind.UNBOUND,
duke@1 3162 syms.boundClass,
duke@1 3163 formal);
duke@1 3164 } else {
duke@1 3165 return new WildcardType(bound,
duke@1 3166 BoundKind.SUPER,
duke@1 3167 syms.boundClass,
duke@1 3168 formal);
duke@1 3169 }
duke@1 3170 }
duke@1 3171
duke@1 3172 /**
duke@1 3173 * A wrapper for a type that allows use in sets.
duke@1 3174 */
duke@1 3175 class SingletonType {
duke@1 3176 final Type t;
duke@1 3177 SingletonType(Type t) {
duke@1 3178 this.t = t;
duke@1 3179 }
duke@1 3180 public int hashCode() {
duke@1 3181 return Types.this.hashCode(t);
duke@1 3182 }
duke@1 3183 public boolean equals(Object obj) {
duke@1 3184 return (obj instanceof SingletonType) &&
duke@1 3185 isSameType(t, ((SingletonType)obj).t);
duke@1 3186 }
duke@1 3187 public String toString() {
duke@1 3188 return t.toString();
duke@1 3189 }
duke@1 3190 }
duke@1 3191 // </editor-fold>
duke@1 3192
duke@1 3193 // <editor-fold defaultstate="collapsed" desc="Visitors">
duke@1 3194 /**
duke@1 3195 * A default visitor for types. All visitor methods except
duke@1 3196 * visitType are implemented by delegating to visitType. Concrete
duke@1 3197 * subclasses must provide an implementation of visitType and can
duke@1 3198 * override other methods as needed.
duke@1 3199 *
duke@1 3200 * @param <R> the return type of the operation implemented by this
duke@1 3201 * visitor; use Void if no return type is needed.
duke@1 3202 * @param <S> the type of the second argument (the first being the
duke@1 3203 * type itself) of the operation implemented by this visitor; use
duke@1 3204 * Void if a second argument is not needed.
duke@1 3205 */
duke@1 3206 public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
duke@1 3207 final public R visit(Type t, S s) { return t.accept(this, s); }
duke@1 3208 public R visitClassType(ClassType t, S s) { return visitType(t, s); }
duke@1 3209 public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
duke@1 3210 public R visitArrayType(ArrayType t, S s) { return visitType(t, s); }
duke@1 3211 public R visitMethodType(MethodType t, S s) { return visitType(t, s); }
duke@1 3212 public R visitPackageType(PackageType t, S s) { return visitType(t, s); }
duke@1 3213 public R visitTypeVar(TypeVar t, S s) { return visitType(t, s); }
duke@1 3214 public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
duke@1 3215 public R visitForAll(ForAll t, S s) { return visitType(t, s); }
duke@1 3216 public R visitUndetVar(UndetVar t, S s) { return visitType(t, s); }
duke@1 3217 public R visitErrorType(ErrorType t, S s) { return visitType(t, s); }
duke@1 3218 }
duke@1 3219
duke@1 3220 /**
duke@1 3221 * A <em>simple</em> visitor for types. This visitor is simple as
duke@1 3222 * captured wildcards, for-all types (generic methods), and
duke@1 3223 * undetermined type variables (part of inference) are hidden.
duke@1 3224 * Captured wildcards are hidden by treating them as type
duke@1 3225 * variables and the rest are hidden by visiting their qtypes.
duke@1 3226 *
duke@1 3227 * @param <R> the return type of the operation implemented by this
duke@1 3228 * visitor; use Void if no return type is needed.
duke@1 3229 * @param <S> the type of the second argument (the first being the
duke@1 3230 * type itself) of the operation implemented by this visitor; use
duke@1 3231 * Void if a second argument is not needed.
duke@1 3232 */
duke@1 3233 public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
duke@1 3234 @Override
duke@1 3235 public R visitCapturedType(CapturedType t, S s) {
duke@1 3236 return visitTypeVar(t, s);
duke@1 3237 }
duke@1 3238 @Override
duke@1 3239 public R visitForAll(ForAll t, S s) {
duke@1 3240 return visit(t.qtype, s);
duke@1 3241 }
duke@1 3242 @Override
duke@1 3243 public R visitUndetVar(UndetVar t, S s) {
duke@1 3244 return visit(t.qtype, s);
duke@1 3245 }
duke@1 3246 }
duke@1 3247
duke@1 3248 /**
duke@1 3249 * A plain relation on types. That is a 2-ary function on the
duke@1 3250 * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
duke@1 3251 * <!-- In plain text: Type x Type -> Boolean -->
duke@1 3252 */
duke@1 3253 public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
duke@1 3254
duke@1 3255 /**
duke@1 3256 * A convenience visitor for implementing operations that only
duke@1 3257 * require one argument (the type itself), that is, unary
duke@1 3258 * operations.
duke@1 3259 *
duke@1 3260 * @param <R> the return type of the operation implemented by this
duke@1 3261 * visitor; use Void if no return type is needed.
duke@1 3262 */
duke@1 3263 public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
duke@1 3264 final public R visit(Type t) { return t.accept(this, null); }
duke@1 3265 }
duke@1 3266
duke@1 3267 /**
duke@1 3268 * A visitor for implementing a mapping from types to types. The
duke@1 3269 * default behavior of this class is to implement the identity
duke@1 3270 * mapping (mapping a type to itself). This can be overridden in
duke@1 3271 * subclasses.
duke@1 3272 *
duke@1 3273 * @param <S> the type of the second argument (the first being the
duke@1 3274 * type itself) of this mapping; use Void if a second argument is
duke@1 3275 * not needed.
duke@1 3276 */
duke@1 3277 public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
duke@1 3278 final public Type visit(Type t) { return t.accept(this, null); }
duke@1 3279 public Type visitType(Type t, S s) { return t; }
duke@1 3280 }
duke@1 3281 // </editor-fold>
duke@1 3282 }

mercurial