src/share/classes/com/sun/tools/javac/comp/Lower.java

Thu, 21 Feb 2013 15:19:29 +0000

author
mcimadamore
date
Thu, 21 Feb 2013 15:19:29 +0000
changeset 1595
d686d8a7eb78
parent 1565
d04960f05593
child 1612
69cd2bfd4a31
permissions
-rw-r--r--

8008227: Mixing lambdas with anonymous classes leads to NPE thrown by compiler
Summary: Disentangle cyclic dependency between static-ness of synthetic lambda method and static-ness of classes nested within lambdas
Reviewed-by: jjg

duke@1 1 /*
jjg@1521 2 * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.comp;
duke@1 27
duke@1 28 import java.util.*;
duke@1 29
duke@1 30 import com.sun.tools.javac.code.*;
duke@1 31 import com.sun.tools.javac.jvm.*;
jjg@1157 32 import com.sun.tools.javac.main.Option.PkgInfo;
duke@1 33 import com.sun.tools.javac.tree.*;
duke@1 34 import com.sun.tools.javac.util.*;
duke@1 35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 36 import com.sun.tools.javac.util.List;
duke@1 37
duke@1 38 import com.sun.tools.javac.code.Symbol.*;
duke@1 39 import com.sun.tools.javac.tree.JCTree.*;
duke@1 40 import com.sun.tools.javac.code.Type.*;
duke@1 41
duke@1 42 import com.sun.tools.javac.jvm.Target;
jjg@1280 43 import com.sun.tools.javac.tree.EndPosTable;
duke@1 44
duke@1 45 import static com.sun.tools.javac.code.Flags.*;
jjg@1127 46 import static com.sun.tools.javac.code.Flags.BLOCK;
duke@1 47 import static com.sun.tools.javac.code.Kinds.*;
jjg@1374 48 import static com.sun.tools.javac.code.TypeTag.*;
duke@1 49 import static com.sun.tools.javac.jvm.ByteCodes.*;
jjg@1127 50 import static com.sun.tools.javac.tree.JCTree.Tag.*;
duke@1 51
duke@1 52 /** This pass translates away some syntactic sugar: inner classes,
duke@1 53 * class literals, assertions, foreach loops, etc.
duke@1 54 *
jjg@581 55 * <p><b>This is NOT part of any supported API.
jjg@581 56 * If you write code that depends on this, you do so at your own risk.
duke@1 57 * This code and its internal interfaces are subject to change or
duke@1 58 * deletion without notice.</b>
duke@1 59 */
duke@1 60 public class Lower extends TreeTranslator {
duke@1 61 protected static final Context.Key<Lower> lowerKey =
duke@1 62 new Context.Key<Lower>();
duke@1 63
duke@1 64 public static Lower instance(Context context) {
duke@1 65 Lower instance = context.get(lowerKey);
duke@1 66 if (instance == null)
duke@1 67 instance = new Lower(context);
duke@1 68 return instance;
duke@1 69 }
duke@1 70
jjg@113 71 private Names names;
duke@1 72 private Log log;
duke@1 73 private Symtab syms;
duke@1 74 private Resolve rs;
duke@1 75 private Check chk;
duke@1 76 private Attr attr;
duke@1 77 private TreeMaker make;
duke@1 78 private DiagnosticPosition make_pos;
duke@1 79 private ClassWriter writer;
duke@1 80 private ClassReader reader;
duke@1 81 private ConstFold cfolder;
duke@1 82 private Target target;
duke@1 83 private Source source;
duke@1 84 private boolean allowEnums;
duke@1 85 private final Name dollarAssertionsDisabled;
duke@1 86 private final Name classDollar;
duke@1 87 private Types types;
duke@1 88 private boolean debugLower;
jjg@657 89 private PkgInfo pkginfoOpt;
duke@1 90
duke@1 91 protected Lower(Context context) {
duke@1 92 context.put(lowerKey, this);
jjg@113 93 names = Names.instance(context);
duke@1 94 log = Log.instance(context);
duke@1 95 syms = Symtab.instance(context);
duke@1 96 rs = Resolve.instance(context);
duke@1 97 chk = Check.instance(context);
duke@1 98 attr = Attr.instance(context);
duke@1 99 make = TreeMaker.instance(context);
duke@1 100 writer = ClassWriter.instance(context);
duke@1 101 reader = ClassReader.instance(context);
duke@1 102 cfolder = ConstFold.instance(context);
duke@1 103 target = Target.instance(context);
duke@1 104 source = Source.instance(context);
duke@1 105 allowEnums = source.allowEnums();
duke@1 106 dollarAssertionsDisabled = names.
duke@1 107 fromString(target.syntheticNameChar() + "assertionsDisabled");
duke@1 108 classDollar = names.
duke@1 109 fromString("class" + target.syntheticNameChar());
duke@1 110
duke@1 111 types = Types.instance(context);
duke@1 112 Options options = Options.instance(context);
jjg@700 113 debugLower = options.isSet("debuglower");
jjg@657 114 pkginfoOpt = PkgInfo.get(options);
duke@1 115 }
duke@1 116
duke@1 117 /** The currently enclosing class.
duke@1 118 */
duke@1 119 ClassSymbol currentClass;
duke@1 120
duke@1 121 /** A queue of all translated classes.
duke@1 122 */
duke@1 123 ListBuffer<JCTree> translated;
duke@1 124
duke@1 125 /** Environment for symbol lookup, set by translateTopLevelClass.
duke@1 126 */
duke@1 127 Env<AttrContext> attrEnv;
duke@1 128
duke@1 129 /** A hash table mapping syntax trees to their ending source positions.
duke@1 130 */
ksrini@1138 131 EndPosTable endPosTable;
duke@1 132
duke@1 133 /**************************************************************************
duke@1 134 * Global mappings
duke@1 135 *************************************************************************/
duke@1 136
duke@1 137 /** A hash table mapping local classes to their definitions.
duke@1 138 */
duke@1 139 Map<ClassSymbol, JCClassDecl> classdefs;
duke@1 140
vromero@1432 141 /** A hash table mapping local classes to a list of pruned trees.
vromero@1432 142 */
vromero@1432 143 public Map<ClassSymbol, List<JCTree>> prunedTree = new WeakHashMap<ClassSymbol, List<JCTree>>();
vromero@1432 144
duke@1 145 /** A hash table mapping virtual accessed symbols in outer subclasses
duke@1 146 * to the actually referred symbol in superclasses.
duke@1 147 */
duke@1 148 Map<Symbol,Symbol> actualSymbols;
duke@1 149
duke@1 150 /** The current method definition.
duke@1 151 */
duke@1 152 JCMethodDecl currentMethodDef;
duke@1 153
duke@1 154 /** The current method symbol.
duke@1 155 */
duke@1 156 MethodSymbol currentMethodSym;
duke@1 157
duke@1 158 /** The currently enclosing outermost class definition.
duke@1 159 */
duke@1 160 JCClassDecl outermostClassDef;
duke@1 161
duke@1 162 /** The currently enclosing outermost member definition.
duke@1 163 */
duke@1 164 JCTree outermostMemberDef;
duke@1 165
duke@1 166 /** A navigator class for assembling a mapping from local class symbols
duke@1 167 * to class definition trees.
duke@1 168 * There is only one case; all other cases simply traverse down the tree.
duke@1 169 */
duke@1 170 class ClassMap extends TreeScanner {
duke@1 171
duke@1 172 /** All encountered class defs are entered into classdefs table.
duke@1 173 */
duke@1 174 public void visitClassDef(JCClassDecl tree) {
duke@1 175 classdefs.put(tree.sym, tree);
duke@1 176 super.visitClassDef(tree);
duke@1 177 }
duke@1 178 }
duke@1 179 ClassMap classMap = new ClassMap();
duke@1 180
duke@1 181 /** Map a class symbol to its definition.
duke@1 182 * @param c The class symbol of which we want to determine the definition.
duke@1 183 */
duke@1 184 JCClassDecl classDef(ClassSymbol c) {
duke@1 185 // First lookup the class in the classdefs table.
duke@1 186 JCClassDecl def = classdefs.get(c);
duke@1 187 if (def == null && outermostMemberDef != null) {
duke@1 188 // If this fails, traverse outermost member definition, entering all
duke@1 189 // local classes into classdefs, and try again.
duke@1 190 classMap.scan(outermostMemberDef);
duke@1 191 def = classdefs.get(c);
duke@1 192 }
duke@1 193 if (def == null) {
duke@1 194 // If this fails, traverse outermost class definition, entering all
duke@1 195 // local classes into classdefs, and try again.
duke@1 196 classMap.scan(outermostClassDef);
duke@1 197 def = classdefs.get(c);
duke@1 198 }
duke@1 199 return def;
duke@1 200 }
duke@1 201
duke@1 202 /** A hash table mapping class symbols to lists of free variables.
duke@1 203 * accessed by them. Only free variables of the method immediately containing
duke@1 204 * a class are associated with that class.
duke@1 205 */
duke@1 206 Map<ClassSymbol,List<VarSymbol>> freevarCache;
duke@1 207
duke@1 208 /** A navigator class for collecting the free variables accessed
duke@1 209 * from a local class.
duke@1 210 * There is only one case; all other cases simply traverse down the tree.
duke@1 211 */
duke@1 212 class FreeVarCollector extends TreeScanner {
duke@1 213
duke@1 214 /** The owner of the local class.
duke@1 215 */
duke@1 216 Symbol owner;
duke@1 217
duke@1 218 /** The local class.
duke@1 219 */
duke@1 220 ClassSymbol clazz;
duke@1 221
duke@1 222 /** The list of owner's variables accessed from within the local class,
duke@1 223 * without any duplicates.
duke@1 224 */
duke@1 225 List<VarSymbol> fvs;
duke@1 226
duke@1 227 FreeVarCollector(ClassSymbol clazz) {
duke@1 228 this.clazz = clazz;
duke@1 229 this.owner = clazz.owner;
duke@1 230 this.fvs = List.nil();
duke@1 231 }
duke@1 232
duke@1 233 /** Add free variable to fvs list unless it is already there.
duke@1 234 */
duke@1 235 private void addFreeVar(VarSymbol v) {
duke@1 236 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail)
duke@1 237 if (l.head == v) return;
duke@1 238 fvs = fvs.prepend(v);
duke@1 239 }
duke@1 240
duke@1 241 /** Add all free variables of class c to fvs list
duke@1 242 * unless they are already there.
duke@1 243 */
duke@1 244 private void addFreeVars(ClassSymbol c) {
duke@1 245 List<VarSymbol> fvs = freevarCache.get(c);
duke@1 246 if (fvs != null) {
duke@1 247 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
duke@1 248 addFreeVar(l.head);
duke@1 249 }
duke@1 250 }
duke@1 251 }
duke@1 252
duke@1 253 /** If tree refers to a variable in owner of local class, add it to
duke@1 254 * free variables list.
duke@1 255 */
duke@1 256 public void visitIdent(JCIdent tree) {
duke@1 257 result = tree;
duke@1 258 visitSymbol(tree.sym);
duke@1 259 }
duke@1 260 // where
duke@1 261 private void visitSymbol(Symbol _sym) {
duke@1 262 Symbol sym = _sym;
duke@1 263 if (sym.kind == VAR || sym.kind == MTH) {
duke@1 264 while (sym != null && sym.owner != owner)
duke@1 265 sym = proxies.lookup(proxyName(sym.name)).sym;
duke@1 266 if (sym != null && sym.owner == owner) {
duke@1 267 VarSymbol v = (VarSymbol)sym;
duke@1 268 if (v.getConstValue() == null) {
duke@1 269 addFreeVar(v);
duke@1 270 }
duke@1 271 } else {
duke@1 272 if (outerThisStack.head != null &&
duke@1 273 outerThisStack.head != _sym)
duke@1 274 visitSymbol(outerThisStack.head);
duke@1 275 }
duke@1 276 }
duke@1 277 }
duke@1 278
duke@1 279 /** If tree refers to a class instance creation expression
duke@1 280 * add all free variables of the freshly created class.
duke@1 281 */
duke@1 282 public void visitNewClass(JCNewClass tree) {
duke@1 283 ClassSymbol c = (ClassSymbol)tree.constructor.owner;
duke@1 284 addFreeVars(c);
duke@1 285 if (tree.encl == null &&
duke@1 286 c.hasOuterInstance() &&
duke@1 287 outerThisStack.head != null)
duke@1 288 visitSymbol(outerThisStack.head);
duke@1 289 super.visitNewClass(tree);
duke@1 290 }
duke@1 291
duke@1 292 /** If tree refers to a qualified this or super expression
duke@1 293 * for anything but the current class, add the outer this
duke@1 294 * stack as a free variable.
duke@1 295 */
duke@1 296 public void visitSelect(JCFieldAccess tree) {
duke@1 297 if ((tree.name == names._this || tree.name == names._super) &&
duke@1 298 tree.selected.type.tsym != clazz &&
duke@1 299 outerThisStack.head != null)
duke@1 300 visitSymbol(outerThisStack.head);
duke@1 301 super.visitSelect(tree);
duke@1 302 }
duke@1 303
duke@1 304 /** If tree refers to a superclass constructor call,
duke@1 305 * add all free variables of the superclass.
duke@1 306 */
duke@1 307 public void visitApply(JCMethodInvocation tree) {
duke@1 308 if (TreeInfo.name(tree.meth) == names._super) {
duke@1 309 addFreeVars((ClassSymbol) TreeInfo.symbol(tree.meth).owner);
duke@1 310 Symbol constructor = TreeInfo.symbol(tree.meth);
duke@1 311 ClassSymbol c = (ClassSymbol)constructor.owner;
duke@1 312 if (c.hasOuterInstance() &&
jjg@1127 313 !tree.meth.hasTag(SELECT) &&
duke@1 314 outerThisStack.head != null)
duke@1 315 visitSymbol(outerThisStack.head);
duke@1 316 }
duke@1 317 super.visitApply(tree);
duke@1 318 }
duke@1 319 }
duke@1 320
duke@1 321 /** Return the variables accessed from within a local class, which
duke@1 322 * are declared in the local class' owner.
duke@1 323 * (in reverse order of first access).
duke@1 324 */
duke@1 325 List<VarSymbol> freevars(ClassSymbol c) {
duke@1 326 if ((c.owner.kind & (VAR | MTH)) != 0) {
duke@1 327 List<VarSymbol> fvs = freevarCache.get(c);
duke@1 328 if (fvs == null) {
duke@1 329 FreeVarCollector collector = new FreeVarCollector(c);
duke@1 330 collector.scan(classDef(c));
duke@1 331 fvs = collector.fvs;
duke@1 332 freevarCache.put(c, fvs);
duke@1 333 }
duke@1 334 return fvs;
duke@1 335 } else {
duke@1 336 return List.nil();
duke@1 337 }
duke@1 338 }
duke@1 339
duke@1 340 Map<TypeSymbol,EnumMapping> enumSwitchMap = new LinkedHashMap<TypeSymbol,EnumMapping>();
duke@1 341
duke@1 342 EnumMapping mapForEnum(DiagnosticPosition pos, TypeSymbol enumClass) {
duke@1 343 EnumMapping map = enumSwitchMap.get(enumClass);
duke@1 344 if (map == null)
duke@1 345 enumSwitchMap.put(enumClass, map = new EnumMapping(pos, enumClass));
duke@1 346 return map;
duke@1 347 }
duke@1 348
duke@1 349 /** This map gives a translation table to be used for enum
duke@1 350 * switches.
duke@1 351 *
duke@1 352 * <p>For each enum that appears as the type of a switch
duke@1 353 * expression, we maintain an EnumMapping to assist in the
duke@1 354 * translation, as exemplified by the following example:
duke@1 355 *
duke@1 356 * <p>we translate
duke@1 357 * <pre>
duke@1 358 * switch(colorExpression) {
duke@1 359 * case red: stmt1;
duke@1 360 * case green: stmt2;
duke@1 361 * }
duke@1 362 * </pre>
duke@1 363 * into
duke@1 364 * <pre>
duke@1 365 * switch(Outer$0.$EnumMap$Color[colorExpression.ordinal()]) {
duke@1 366 * case 1: stmt1;
duke@1 367 * case 2: stmt2
duke@1 368 * }
duke@1 369 * </pre>
darcy@430 370 * with the auxiliary table initialized as follows:
duke@1 371 * <pre>
duke@1 372 * class Outer$0 {
duke@1 373 * synthetic final int[] $EnumMap$Color = new int[Color.values().length];
duke@1 374 * static {
duke@1 375 * try { $EnumMap$Color[red.ordinal()] = 1; } catch (NoSuchFieldError ex) {}
duke@1 376 * try { $EnumMap$Color[green.ordinal()] = 2; } catch (NoSuchFieldError ex) {}
duke@1 377 * }
duke@1 378 * }
duke@1 379 * </pre>
duke@1 380 * class EnumMapping provides mapping data and support methods for this translation.
duke@1 381 */
duke@1 382 class EnumMapping {
duke@1 383 EnumMapping(DiagnosticPosition pos, TypeSymbol forEnum) {
duke@1 384 this.forEnum = forEnum;
duke@1 385 this.values = new LinkedHashMap<VarSymbol,Integer>();
duke@1 386 this.pos = pos;
duke@1 387 Name varName = names
duke@1 388 .fromString(target.syntheticNameChar() +
duke@1 389 "SwitchMap" +
duke@1 390 target.syntheticNameChar() +
duke@1 391 writer.xClassName(forEnum.type).toString()
duke@1 392 .replace('/', '.')
duke@1 393 .replace('.', target.syntheticNameChar()));
duke@1 394 ClassSymbol outerCacheClass = outerCacheClass();
duke@1 395 this.mapVar = new VarSymbol(STATIC | SYNTHETIC | FINAL,
duke@1 396 varName,
duke@1 397 new ArrayType(syms.intType, syms.arrayClass),
duke@1 398 outerCacheClass);
duke@1 399 enterSynthetic(pos, mapVar, outerCacheClass.members());
duke@1 400 }
duke@1 401
duke@1 402 DiagnosticPosition pos = null;
duke@1 403
duke@1 404 // the next value to use
duke@1 405 int next = 1; // 0 (unused map elements) go to the default label
duke@1 406
duke@1 407 // the enum for which this is a map
duke@1 408 final TypeSymbol forEnum;
duke@1 409
duke@1 410 // the field containing the map
duke@1 411 final VarSymbol mapVar;
duke@1 412
duke@1 413 // the mapped values
duke@1 414 final Map<VarSymbol,Integer> values;
duke@1 415
duke@1 416 JCLiteral forConstant(VarSymbol v) {
duke@1 417 Integer result = values.get(v);
duke@1 418 if (result == null)
duke@1 419 values.put(v, result = next++);
duke@1 420 return make.Literal(result);
duke@1 421 }
duke@1 422
duke@1 423 // generate the field initializer for the map
duke@1 424 void translate() {
duke@1 425 make.at(pos.getStartPosition());
duke@1 426 JCClassDecl owner = classDef((ClassSymbol)mapVar.owner);
duke@1 427
duke@1 428 // synthetic static final int[] $SwitchMap$Color = new int[Color.values().length];
duke@1 429 MethodSymbol valuesMethod = lookupMethod(pos,
duke@1 430 names.values,
duke@1 431 forEnum.type,
duke@1 432 List.<Type>nil());
duke@1 433 JCExpression size = make // Color.values().length
duke@1 434 .Select(make.App(make.QualIdent(valuesMethod)),
duke@1 435 syms.lengthVar);
duke@1 436 JCExpression mapVarInit = make
duke@1 437 .NewArray(make.Type(syms.intType), List.of(size), null)
duke@1 438 .setType(new ArrayType(syms.intType, syms.arrayClass));
duke@1 439
duke@1 440 // try { $SwitchMap$Color[red.ordinal()] = 1; } catch (java.lang.NoSuchFieldError ex) {}
duke@1 441 ListBuffer<JCStatement> stmts = new ListBuffer<JCStatement>();
duke@1 442 Symbol ordinalMethod = lookupMethod(pos,
duke@1 443 names.ordinal,
duke@1 444 forEnum.type,
duke@1 445 List.<Type>nil());
duke@1 446 List<JCCatch> catcher = List.<JCCatch>nil()
duke@1 447 .prepend(make.Catch(make.VarDef(new VarSymbol(PARAMETER, names.ex,
duke@1 448 syms.noSuchFieldErrorType,
duke@1 449 syms.noSymbol),
duke@1 450 null),
duke@1 451 make.Block(0, List.<JCStatement>nil())));
duke@1 452 for (Map.Entry<VarSymbol,Integer> e : values.entrySet()) {
duke@1 453 VarSymbol enumerator = e.getKey();
duke@1 454 Integer mappedValue = e.getValue();
duke@1 455 JCExpression assign = make
duke@1 456 .Assign(make.Indexed(mapVar,
duke@1 457 make.App(make.Select(make.QualIdent(enumerator),
duke@1 458 ordinalMethod))),
duke@1 459 make.Literal(mappedValue))
duke@1 460 .setType(syms.intType);
duke@1 461 JCStatement exec = make.Exec(assign);
duke@1 462 JCStatement _try = make.Try(make.Block(0, List.of(exec)), catcher, null);
duke@1 463 stmts.append(_try);
duke@1 464 }
duke@1 465
duke@1 466 owner.defs = owner.defs
duke@1 467 .prepend(make.Block(STATIC, stmts.toList()))
duke@1 468 .prepend(make.VarDef(mapVar, mapVarInit));
duke@1 469 }
duke@1 470 }
duke@1 471
duke@1 472
duke@1 473 /**************************************************************************
duke@1 474 * Tree building blocks
duke@1 475 *************************************************************************/
duke@1 476
duke@1 477 /** Equivalent to make.at(pos.getStartPosition()) with side effect of caching
duke@1 478 * pos as make_pos, for use in diagnostics.
duke@1 479 **/
duke@1 480 TreeMaker make_at(DiagnosticPosition pos) {
duke@1 481 make_pos = pos;
duke@1 482 return make.at(pos);
duke@1 483 }
duke@1 484
duke@1 485 /** Make an attributed tree representing a literal. This will be an
duke@1 486 * Ident node in the case of boolean literals, a Literal node in all
duke@1 487 * other cases.
duke@1 488 * @param type The literal's type.
duke@1 489 * @param value The literal's value.
duke@1 490 */
duke@1 491 JCExpression makeLit(Type type, Object value) {
jjg@1374 492 return make.Literal(type.getTag(), value).setType(type.constType(value));
duke@1 493 }
duke@1 494
duke@1 495 /** Make an attributed tree representing null.
duke@1 496 */
duke@1 497 JCExpression makeNull() {
duke@1 498 return makeLit(syms.botType, null);
duke@1 499 }
duke@1 500
duke@1 501 /** Make an attributed class instance creation expression.
duke@1 502 * @param ctype The class type.
duke@1 503 * @param args The constructor arguments.
duke@1 504 */
duke@1 505 JCNewClass makeNewClass(Type ctype, List<JCExpression> args) {
duke@1 506 JCNewClass tree = make.NewClass(null,
duke@1 507 null, make.QualIdent(ctype.tsym), args, null);
duke@1 508 tree.constructor = rs.resolveConstructor(
mcimadamore@1394 509 make_pos, attrEnv, ctype, TreeInfo.types(args), List.<Type>nil());
duke@1 510 tree.type = ctype;
duke@1 511 return tree;
duke@1 512 }
duke@1 513
duke@1 514 /** Make an attributed unary expression.
duke@1 515 * @param optag The operators tree tag.
duke@1 516 * @param arg The operator's argument.
duke@1 517 */
jjg@1127 518 JCUnary makeUnary(JCTree.Tag optag, JCExpression arg) {
duke@1 519 JCUnary tree = make.Unary(optag, arg);
duke@1 520 tree.operator = rs.resolveUnaryOperator(
duke@1 521 make_pos, optag, attrEnv, arg.type);
duke@1 522 tree.type = tree.operator.type.getReturnType();
duke@1 523 return tree;
duke@1 524 }
duke@1 525
duke@1 526 /** Make an attributed binary expression.
duke@1 527 * @param optag The operators tree tag.
duke@1 528 * @param lhs The operator's left argument.
duke@1 529 * @param rhs The operator's right argument.
duke@1 530 */
jjg@1127 531 JCBinary makeBinary(JCTree.Tag optag, JCExpression lhs, JCExpression rhs) {
duke@1 532 JCBinary tree = make.Binary(optag, lhs, rhs);
duke@1 533 tree.operator = rs.resolveBinaryOperator(
duke@1 534 make_pos, optag, attrEnv, lhs.type, rhs.type);
duke@1 535 tree.type = tree.operator.type.getReturnType();
duke@1 536 return tree;
duke@1 537 }
duke@1 538
duke@1 539 /** Make an attributed assignop expression.
duke@1 540 * @param optag The operators tree tag.
duke@1 541 * @param lhs The operator's left argument.
duke@1 542 * @param rhs The operator's right argument.
duke@1 543 */
jjg@1127 544 JCAssignOp makeAssignop(JCTree.Tag optag, JCTree lhs, JCTree rhs) {
duke@1 545 JCAssignOp tree = make.Assignop(optag, lhs, rhs);
duke@1 546 tree.operator = rs.resolveBinaryOperator(
jjg@1127 547 make_pos, tree.getTag().noAssignOp(), attrEnv, lhs.type, rhs.type);
duke@1 548 tree.type = lhs.type;
duke@1 549 return tree;
duke@1 550 }
duke@1 551
duke@1 552 /** Convert tree into string object, unless it has already a
duke@1 553 * reference type..
duke@1 554 */
duke@1 555 JCExpression makeString(JCExpression tree) {
jjg@1374 556 if (!tree.type.isPrimitiveOrVoid()) {
duke@1 557 return tree;
duke@1 558 } else {
duke@1 559 Symbol valueOfSym = lookupMethod(tree.pos(),
duke@1 560 names.valueOf,
duke@1 561 syms.stringType,
duke@1 562 List.of(tree.type));
duke@1 563 return make.App(make.QualIdent(valueOfSym), List.of(tree));
duke@1 564 }
duke@1 565 }
duke@1 566
duke@1 567 /** Create an empty anonymous class definition and enter and complete
duke@1 568 * its symbol. Return the class definition's symbol.
duke@1 569 * and create
duke@1 570 * @param flags The class symbol's flags
duke@1 571 * @param owner The class symbol's owner
duke@1 572 */
vromero@1542 573 JCClassDecl makeEmptyClass(long flags, ClassSymbol owner) {
vromero@1542 574 return makeEmptyClass(flags, owner, null, true);
vromero@1542 575 }
vromero@1542 576
vromero@1542 577 JCClassDecl makeEmptyClass(long flags, ClassSymbol owner, Name flatname,
vromero@1542 578 boolean addToDefs) {
duke@1 579 // Create class symbol.
duke@1 580 ClassSymbol c = reader.defineClass(names.empty, owner);
vromero@1542 581 if (flatname != null) {
vromero@1542 582 c.flatname = flatname;
vromero@1542 583 } else {
vromero@1542 584 c.flatname = chk.localClassName(c);
vromero@1542 585 }
duke@1 586 c.sourcefile = owner.sourcefile;
duke@1 587 c.completer = null;
mcimadamore@858 588 c.members_field = new Scope(c);
duke@1 589 c.flags_field = flags;
duke@1 590 ClassType ctype = (ClassType) c.type;
duke@1 591 ctype.supertype_field = syms.objectType;
duke@1 592 ctype.interfaces_field = List.nil();
duke@1 593
duke@1 594 JCClassDecl odef = classDef(owner);
duke@1 595
duke@1 596 // Enter class symbol in owner scope and compiled table.
duke@1 597 enterSynthetic(odef.pos(), c, owner.members());
duke@1 598 chk.compiled.put(c.flatname, c);
duke@1 599
duke@1 600 // Create class definition tree.
duke@1 601 JCClassDecl cdef = make.ClassDef(
duke@1 602 make.Modifiers(flags), names.empty,
duke@1 603 List.<JCTypeParameter>nil(),
duke@1 604 null, List.<JCExpression>nil(), List.<JCTree>nil());
duke@1 605 cdef.sym = c;
duke@1 606 cdef.type = c.type;
duke@1 607
duke@1 608 // Append class definition tree to owner's definitions.
vromero@1542 609 if (addToDefs) odef.defs = odef.defs.prepend(cdef);
vromero@1542 610 return cdef;
duke@1 611 }
duke@1 612
duke@1 613 /**************************************************************************
duke@1 614 * Symbol manipulation utilities
duke@1 615 *************************************************************************/
duke@1 616
duke@1 617 /** Enter a synthetic symbol in a given scope, but complain if there was already one there.
duke@1 618 * @param pos Position for error reporting.
duke@1 619 * @param sym The symbol.
duke@1 620 * @param s The scope.
duke@1 621 */
duke@1 622 private void enterSynthetic(DiagnosticPosition pos, Symbol sym, Scope s) {
mcimadamore@359 623 s.enter(sym);
mcimadamore@359 624 }
mcimadamore@359 625
darcy@609 626 /** Create a fresh synthetic name within a given scope - the unique name is
darcy@609 627 * obtained by appending '$' chars at the end of the name until no match
darcy@609 628 * is found.
darcy@609 629 *
darcy@609 630 * @param name base name
darcy@609 631 * @param s scope in which the name has to be unique
darcy@609 632 * @return fresh synthetic name
darcy@609 633 */
darcy@609 634 private Name makeSyntheticName(Name name, Scope s) {
darcy@609 635 do {
darcy@609 636 name = name.append(
darcy@609 637 target.syntheticNameChar(),
darcy@609 638 names.empty);
darcy@609 639 } while (lookupSynthetic(name, s) != null);
darcy@609 640 return name;
darcy@609 641 }
darcy@609 642
mcimadamore@359 643 /** Check whether synthetic symbols generated during lowering conflict
mcimadamore@359 644 * with user-defined symbols.
mcimadamore@359 645 *
mcimadamore@359 646 * @param translatedTrees lowered class trees
mcimadamore@359 647 */
mcimadamore@359 648 void checkConflicts(List<JCTree> translatedTrees) {
mcimadamore@359 649 for (JCTree t : translatedTrees) {
mcimadamore@359 650 t.accept(conflictsChecker);
mcimadamore@359 651 }
mcimadamore@359 652 }
mcimadamore@359 653
mcimadamore@359 654 JCTree.Visitor conflictsChecker = new TreeScanner() {
mcimadamore@359 655
mcimadamore@359 656 TypeSymbol currentClass;
mcimadamore@359 657
mcimadamore@359 658 @Override
mcimadamore@359 659 public void visitMethodDef(JCMethodDecl that) {
mcimadamore@359 660 chk.checkConflicts(that.pos(), that.sym, currentClass);
mcimadamore@359 661 super.visitMethodDef(that);
mcimadamore@359 662 }
mcimadamore@359 663
mcimadamore@359 664 @Override
mcimadamore@359 665 public void visitVarDef(JCVariableDecl that) {
mcimadamore@359 666 if (that.sym.owner.kind == TYP) {
mcimadamore@359 667 chk.checkConflicts(that.pos(), that.sym, currentClass);
mcimadamore@359 668 }
mcimadamore@359 669 super.visitVarDef(that);
mcimadamore@359 670 }
mcimadamore@359 671
mcimadamore@359 672 @Override
mcimadamore@359 673 public void visitClassDef(JCClassDecl that) {
mcimadamore@359 674 TypeSymbol prevCurrentClass = currentClass;
mcimadamore@359 675 currentClass = that.sym;
mcimadamore@359 676 try {
mcimadamore@359 677 super.visitClassDef(that);
mcimadamore@359 678 }
mcimadamore@359 679 finally {
mcimadamore@359 680 currentClass = prevCurrentClass;
duke@1 681 }
duke@1 682 }
mcimadamore@359 683 };
duke@1 684
duke@1 685 /** Look up a synthetic name in a given scope.
jjg@1358 686 * @param s The scope.
duke@1 687 * @param name The name.
duke@1 688 */
duke@1 689 private Symbol lookupSynthetic(Name name, Scope s) {
duke@1 690 Symbol sym = s.lookup(name).sym;
duke@1 691 return (sym==null || (sym.flags()&SYNTHETIC)==0) ? null : sym;
duke@1 692 }
duke@1 693
duke@1 694 /** Look up a method in a given scope.
duke@1 695 */
duke@1 696 private MethodSymbol lookupMethod(DiagnosticPosition pos, Name name, Type qual, List<Type> args) {
mcimadamore@1415 697 return rs.resolveInternalMethod(pos, attrEnv, qual, name, args, List.<Type>nil());
duke@1 698 }
duke@1 699
duke@1 700 /** Look up a constructor.
duke@1 701 */
duke@1 702 private MethodSymbol lookupConstructor(DiagnosticPosition pos, Type qual, List<Type> args) {
duke@1 703 return rs.resolveInternalConstructor(pos, attrEnv, qual, args, null);
duke@1 704 }
duke@1 705
duke@1 706 /** Look up a field.
duke@1 707 */
duke@1 708 private VarSymbol lookupField(DiagnosticPosition pos, Type qual, Name name) {
duke@1 709 return rs.resolveInternalField(pos, attrEnv, qual, name);
duke@1 710 }
duke@1 711
jjg@595 712 /** Anon inner classes are used as access constructor tags.
jjg@595 713 * accessConstructorTag will use an existing anon class if one is available,
jjg@595 714 * and synthethise a class (with makeEmptyClass) if one is not available.
jjg@595 715 * However, there is a small possibility that an existing class will not
jjg@595 716 * be generated as expected if it is inside a conditional with a constant
vromero@1542 717 * expression. If that is found to be the case, create an empty class tree here.
jjg@595 718 */
jjg@595 719 private void checkAccessConstructorTags() {
jjg@595 720 for (List<ClassSymbol> l = accessConstrTags; l.nonEmpty(); l = l.tail) {
jjg@595 721 ClassSymbol c = l.head;
jjg@595 722 if (isTranslatedClassAvailable(c))
jjg@595 723 continue;
jjg@595 724 // Create class definition tree.
vromero@1542 725 JCClassDecl cdec = makeEmptyClass(STATIC | SYNTHETIC,
vromero@1542 726 c.outermostClass(), c.flatname, false);
vromero@1542 727 swapAccessConstructorTag(c, cdec.sym);
vromero@1542 728 translated.append(cdec);
jjg@595 729 }
jjg@595 730 }
jjg@595 731 // where
jjg@595 732 private boolean isTranslatedClassAvailable(ClassSymbol c) {
jjg@595 733 for (JCTree tree: translated) {
jjg@1127 734 if (tree.hasTag(CLASSDEF)
jjg@595 735 && ((JCClassDecl) tree).sym == c) {
jjg@595 736 return true;
jjg@595 737 }
jjg@595 738 }
jjg@595 739 return false;
jjg@595 740 }
jjg@595 741
vromero@1542 742 void swapAccessConstructorTag(ClassSymbol oldCTag, ClassSymbol newCTag) {
vromero@1542 743 for (MethodSymbol methodSymbol : accessConstrs.values()) {
vromero@1542 744 Assert.check(methodSymbol.type.hasTag(METHOD));
vromero@1542 745 MethodType oldMethodType =
vromero@1542 746 (MethodType)methodSymbol.type;
vromero@1542 747 if (oldMethodType.argtypes.head.tsym == oldCTag)
vromero@1542 748 methodSymbol.type =
vromero@1542 749 types.createMethodTypeWithParameters(oldMethodType,
vromero@1542 750 oldMethodType.getParameterTypes().tail
vromero@1542 751 .prepend(newCTag.erasure(types)));
vromero@1542 752 }
vromero@1542 753 }
vromero@1542 754
duke@1 755 /**************************************************************************
duke@1 756 * Access methods
duke@1 757 *************************************************************************/
duke@1 758
duke@1 759 /** Access codes for dereferencing, assignment,
duke@1 760 * and pre/post increment/decrement.
duke@1 761 * Access codes for assignment operations are determined by method accessCode
duke@1 762 * below.
duke@1 763 *
duke@1 764 * All access codes for accesses to the current class are even.
duke@1 765 * If a member of the superclass should be accessed instead (because
duke@1 766 * access was via a qualified super), add one to the corresponding code
duke@1 767 * for the current class, making the number odd.
duke@1 768 * This numbering scheme is used by the backend to decide whether
duke@1 769 * to issue an invokevirtual or invokespecial call.
duke@1 770 *
jjg@1358 771 * @see Gen#visitSelect(JCFieldAccess tree)
duke@1 772 */
duke@1 773 private static final int
duke@1 774 DEREFcode = 0,
duke@1 775 ASSIGNcode = 2,
duke@1 776 PREINCcode = 4,
duke@1 777 PREDECcode = 6,
duke@1 778 POSTINCcode = 8,
duke@1 779 POSTDECcode = 10,
duke@1 780 FIRSTASGOPcode = 12;
duke@1 781
duke@1 782 /** Number of access codes
duke@1 783 */
duke@1 784 private static final int NCODES = accessCode(ByteCodes.lushrl) + 2;
duke@1 785
duke@1 786 /** A mapping from symbols to their access numbers.
duke@1 787 */
duke@1 788 private Map<Symbol,Integer> accessNums;
duke@1 789
duke@1 790 /** A mapping from symbols to an array of access symbols, indexed by
duke@1 791 * access code.
duke@1 792 */
duke@1 793 private Map<Symbol,MethodSymbol[]> accessSyms;
duke@1 794
duke@1 795 /** A mapping from (constructor) symbols to access constructor symbols.
duke@1 796 */
duke@1 797 private Map<Symbol,MethodSymbol> accessConstrs;
duke@1 798
jjg@595 799 /** A list of all class symbols used for access constructor tags.
jjg@595 800 */
jjg@595 801 private List<ClassSymbol> accessConstrTags;
jjg@595 802
duke@1 803 /** A queue for all accessed symbols.
duke@1 804 */
duke@1 805 private ListBuffer<Symbol> accessed;
duke@1 806
duke@1 807 /** Map bytecode of binary operation to access code of corresponding
duke@1 808 * assignment operation. This is always an even number.
duke@1 809 */
duke@1 810 private static int accessCode(int bytecode) {
duke@1 811 if (ByteCodes.iadd <= bytecode && bytecode <= ByteCodes.lxor)
duke@1 812 return (bytecode - iadd) * 2 + FIRSTASGOPcode;
duke@1 813 else if (bytecode == ByteCodes.string_add)
duke@1 814 return (ByteCodes.lxor + 1 - iadd) * 2 + FIRSTASGOPcode;
duke@1 815 else if (ByteCodes.ishll <= bytecode && bytecode <= ByteCodes.lushrl)
duke@1 816 return (bytecode - ishll + ByteCodes.lxor + 2 - iadd) * 2 + FIRSTASGOPcode;
duke@1 817 else
duke@1 818 return -1;
duke@1 819 }
duke@1 820
duke@1 821 /** return access code for identifier,
duke@1 822 * @param tree The tree representing the identifier use.
duke@1 823 * @param enclOp The closest enclosing operation node of tree,
duke@1 824 * null if tree is not a subtree of an operation.
duke@1 825 */
duke@1 826 private static int accessCode(JCTree tree, JCTree enclOp) {
duke@1 827 if (enclOp == null)
duke@1 828 return DEREFcode;
jjg@1127 829 else if (enclOp.hasTag(ASSIGN) &&
duke@1 830 tree == TreeInfo.skipParens(((JCAssign) enclOp).lhs))
duke@1 831 return ASSIGNcode;
jjg@1127 832 else if (enclOp.getTag().isIncOrDecUnaryOp() &&
duke@1 833 tree == TreeInfo.skipParens(((JCUnary) enclOp).arg))
jjg@1127 834 return mapTagToUnaryOpCode(enclOp.getTag());
jjg@1127 835 else if (enclOp.getTag().isAssignop() &&
duke@1 836 tree == TreeInfo.skipParens(((JCAssignOp) enclOp).lhs))
duke@1 837 return accessCode(((OperatorSymbol) ((JCAssignOp) enclOp).operator).opcode);
duke@1 838 else
duke@1 839 return DEREFcode;
duke@1 840 }
duke@1 841
duke@1 842 /** Return binary operator that corresponds to given access code.
duke@1 843 */
duke@1 844 private OperatorSymbol binaryAccessOperator(int acode) {
duke@1 845 for (Scope.Entry e = syms.predefClass.members().elems;
duke@1 846 e != null;
duke@1 847 e = e.sibling) {
duke@1 848 if (e.sym instanceof OperatorSymbol) {
duke@1 849 OperatorSymbol op = (OperatorSymbol)e.sym;
duke@1 850 if (accessCode(op.opcode) == acode) return op;
duke@1 851 }
duke@1 852 }
duke@1 853 return null;
duke@1 854 }
duke@1 855
duke@1 856 /** Return tree tag for assignment operation corresponding
duke@1 857 * to given binary operator.
duke@1 858 */
jjg@1127 859 private static JCTree.Tag treeTag(OperatorSymbol operator) {
duke@1 860 switch (operator.opcode) {
duke@1 861 case ByteCodes.ior: case ByteCodes.lor:
jjg@1127 862 return BITOR_ASG;
duke@1 863 case ByteCodes.ixor: case ByteCodes.lxor:
jjg@1127 864 return BITXOR_ASG;
duke@1 865 case ByteCodes.iand: case ByteCodes.land:
jjg@1127 866 return BITAND_ASG;
duke@1 867 case ByteCodes.ishl: case ByteCodes.lshl:
duke@1 868 case ByteCodes.ishll: case ByteCodes.lshll:
jjg@1127 869 return SL_ASG;
duke@1 870 case ByteCodes.ishr: case ByteCodes.lshr:
duke@1 871 case ByteCodes.ishrl: case ByteCodes.lshrl:
jjg@1127 872 return SR_ASG;
duke@1 873 case ByteCodes.iushr: case ByteCodes.lushr:
duke@1 874 case ByteCodes.iushrl: case ByteCodes.lushrl:
jjg@1127 875 return USR_ASG;
duke@1 876 case ByteCodes.iadd: case ByteCodes.ladd:
duke@1 877 case ByteCodes.fadd: case ByteCodes.dadd:
duke@1 878 case ByteCodes.string_add:
jjg@1127 879 return PLUS_ASG;
duke@1 880 case ByteCodes.isub: case ByteCodes.lsub:
duke@1 881 case ByteCodes.fsub: case ByteCodes.dsub:
jjg@1127 882 return MINUS_ASG;
duke@1 883 case ByteCodes.imul: case ByteCodes.lmul:
duke@1 884 case ByteCodes.fmul: case ByteCodes.dmul:
jjg@1127 885 return MUL_ASG;
duke@1 886 case ByteCodes.idiv: case ByteCodes.ldiv:
duke@1 887 case ByteCodes.fdiv: case ByteCodes.ddiv:
jjg@1127 888 return DIV_ASG;
duke@1 889 case ByteCodes.imod: case ByteCodes.lmod:
duke@1 890 case ByteCodes.fmod: case ByteCodes.dmod:
jjg@1127 891 return MOD_ASG;
duke@1 892 default:
duke@1 893 throw new AssertionError();
duke@1 894 }
duke@1 895 }
duke@1 896
duke@1 897 /** The name of the access method with number `anum' and access code `acode'.
duke@1 898 */
duke@1 899 Name accessName(int anum, int acode) {
duke@1 900 return names.fromString(
duke@1 901 "access" + target.syntheticNameChar() + anum + acode / 10 + acode % 10);
duke@1 902 }
duke@1 903
duke@1 904 /** Return access symbol for a private or protected symbol from an inner class.
duke@1 905 * @param sym The accessed private symbol.
duke@1 906 * @param tree The accessing tree.
duke@1 907 * @param enclOp The closest enclosing operation node of tree,
duke@1 908 * null if tree is not a subtree of an operation.
duke@1 909 * @param protAccess Is access to a protected symbol in another
duke@1 910 * package?
duke@1 911 * @param refSuper Is access via a (qualified) C.super?
duke@1 912 */
duke@1 913 MethodSymbol accessSymbol(Symbol sym, JCTree tree, JCTree enclOp,
duke@1 914 boolean protAccess, boolean refSuper) {
duke@1 915 ClassSymbol accOwner = refSuper && protAccess
duke@1 916 // For access via qualified super (T.super.x), place the
duke@1 917 // access symbol on T.
duke@1 918 ? (ClassSymbol)((JCFieldAccess) tree).selected.type.tsym
duke@1 919 // Otherwise pretend that the owner of an accessed
duke@1 920 // protected symbol is the enclosing class of the current
duke@1 921 // class which is a subclass of the symbol's owner.
duke@1 922 : accessClass(sym, protAccess, tree);
duke@1 923
duke@1 924 Symbol vsym = sym;
duke@1 925 if (sym.owner != accOwner) {
duke@1 926 vsym = sym.clone(accOwner);
duke@1 927 actualSymbols.put(vsym, sym);
duke@1 928 }
duke@1 929
duke@1 930 Integer anum // The access number of the access method.
duke@1 931 = accessNums.get(vsym);
duke@1 932 if (anum == null) {
duke@1 933 anum = accessed.length();
duke@1 934 accessNums.put(vsym, anum);
duke@1 935 accessSyms.put(vsym, new MethodSymbol[NCODES]);
duke@1 936 accessed.append(vsym);
duke@1 937 // System.out.println("accessing " + vsym + " in " + vsym.location());
duke@1 938 }
duke@1 939
duke@1 940 int acode; // The access code of the access method.
duke@1 941 List<Type> argtypes; // The argument types of the access method.
duke@1 942 Type restype; // The result type of the access method.
darcy@430 943 List<Type> thrown; // The thrown exceptions of the access method.
duke@1 944 switch (vsym.kind) {
duke@1 945 case VAR:
duke@1 946 acode = accessCode(tree, enclOp);
duke@1 947 if (acode >= FIRSTASGOPcode) {
duke@1 948 OperatorSymbol operator = binaryAccessOperator(acode);
duke@1 949 if (operator.opcode == string_add)
duke@1 950 argtypes = List.of(syms.objectType);
duke@1 951 else
duke@1 952 argtypes = operator.type.getParameterTypes().tail;
duke@1 953 } else if (acode == ASSIGNcode)
duke@1 954 argtypes = List.of(vsym.erasure(types));
duke@1 955 else
duke@1 956 argtypes = List.nil();
duke@1 957 restype = vsym.erasure(types);
duke@1 958 thrown = List.nil();
duke@1 959 break;
duke@1 960 case MTH:
duke@1 961 acode = DEREFcode;
duke@1 962 argtypes = vsym.erasure(types).getParameterTypes();
duke@1 963 restype = vsym.erasure(types).getReturnType();
duke@1 964 thrown = vsym.type.getThrownTypes();
duke@1 965 break;
duke@1 966 default:
duke@1 967 throw new AssertionError();
duke@1 968 }
duke@1 969
duke@1 970 // For references via qualified super, increment acode by one,
duke@1 971 // making it odd.
duke@1 972 if (protAccess && refSuper) acode++;
duke@1 973
duke@1 974 // Instance access methods get instance as first parameter.
duke@1 975 // For protected symbols this needs to be the instance as a member
duke@1 976 // of the type containing the accessed symbol, not the class
duke@1 977 // containing the access method.
duke@1 978 if ((vsym.flags() & STATIC) == 0) {
duke@1 979 argtypes = argtypes.prepend(vsym.owner.erasure(types));
duke@1 980 }
duke@1 981 MethodSymbol[] accessors = accessSyms.get(vsym);
duke@1 982 MethodSymbol accessor = accessors[acode];
duke@1 983 if (accessor == null) {
duke@1 984 accessor = new MethodSymbol(
duke@1 985 STATIC | SYNTHETIC,
duke@1 986 accessName(anum.intValue(), acode),
duke@1 987 new MethodType(argtypes, restype, thrown, syms.methodClass),
duke@1 988 accOwner);
duke@1 989 enterSynthetic(tree.pos(), accessor, accOwner.members());
duke@1 990 accessors[acode] = accessor;
duke@1 991 }
duke@1 992 return accessor;
duke@1 993 }
duke@1 994
duke@1 995 /** The qualifier to be used for accessing a symbol in an outer class.
duke@1 996 * This is either C.sym or C.this.sym, depending on whether or not
duke@1 997 * sym is static.
duke@1 998 * @param sym The accessed symbol.
duke@1 999 */
duke@1 1000 JCExpression accessBase(DiagnosticPosition pos, Symbol sym) {
duke@1 1001 return (sym.flags() & STATIC) != 0
duke@1 1002 ? access(make.at(pos.getStartPosition()).QualIdent(sym.owner))
duke@1 1003 : makeOwnerThis(pos, sym, true);
duke@1 1004 }
duke@1 1005
duke@1 1006 /** Do we need an access method to reference private symbol?
duke@1 1007 */
duke@1 1008 boolean needsPrivateAccess(Symbol sym) {
duke@1 1009 if ((sym.flags() & PRIVATE) == 0 || sym.owner == currentClass) {
duke@1 1010 return false;
duke@1 1011 } else if (sym.name == names.init && (sym.owner.owner.kind & (VAR | MTH)) != 0) {
duke@1 1012 // private constructor in local class: relax protection
duke@1 1013 sym.flags_field &= ~PRIVATE;
duke@1 1014 return false;
duke@1 1015 } else {
duke@1 1016 return true;
duke@1 1017 }
duke@1 1018 }
duke@1 1019
duke@1 1020 /** Do we need an access method to reference symbol in other package?
duke@1 1021 */
duke@1 1022 boolean needsProtectedAccess(Symbol sym, JCTree tree) {
duke@1 1023 if ((sym.flags() & PROTECTED) == 0 ||
duke@1 1024 sym.owner.owner == currentClass.owner || // fast special case
duke@1 1025 sym.packge() == currentClass.packge())
duke@1 1026 return false;
duke@1 1027 if (!currentClass.isSubClass(sym.owner, types))
duke@1 1028 return true;
duke@1 1029 if ((sym.flags() & STATIC) != 0 ||
jjg@1127 1030 !tree.hasTag(SELECT) ||
duke@1 1031 TreeInfo.name(((JCFieldAccess) tree).selected) == names._super)
duke@1 1032 return false;
duke@1 1033 return !((JCFieldAccess) tree).selected.type.tsym.isSubClass(currentClass, types);
duke@1 1034 }
duke@1 1035
duke@1 1036 /** The class in which an access method for given symbol goes.
duke@1 1037 * @param sym The access symbol
duke@1 1038 * @param protAccess Is access to a protected symbol in another
duke@1 1039 * package?
duke@1 1040 */
duke@1 1041 ClassSymbol accessClass(Symbol sym, boolean protAccess, JCTree tree) {
duke@1 1042 if (protAccess) {
duke@1 1043 Symbol qualifier = null;
duke@1 1044 ClassSymbol c = currentClass;
jjg@1127 1045 if (tree.hasTag(SELECT) && (sym.flags() & STATIC) == 0) {
duke@1 1046 qualifier = ((JCFieldAccess) tree).selected.type.tsym;
duke@1 1047 while (!qualifier.isSubClass(c, types)) {
duke@1 1048 c = c.owner.enclClass();
duke@1 1049 }
duke@1 1050 return c;
duke@1 1051 } else {
duke@1 1052 while (!c.isSubClass(sym.owner, types)) {
duke@1 1053 c = c.owner.enclClass();
duke@1 1054 }
duke@1 1055 }
duke@1 1056 return c;
duke@1 1057 } else {
duke@1 1058 // the symbol is private
duke@1 1059 return sym.owner.enclClass();
duke@1 1060 }
duke@1 1061 }
duke@1 1062
vromero@1432 1063 private void addPrunedInfo(JCTree tree) {
vromero@1432 1064 List<JCTree> infoList = prunedTree.get(currentClass);
vromero@1432 1065 infoList = (infoList == null) ? List.of(tree) : infoList.prepend(tree);
vromero@1432 1066 prunedTree.put(currentClass, infoList);
vromero@1432 1067 }
vromero@1432 1068
duke@1 1069 /** Ensure that identifier is accessible, return tree accessing the identifier.
duke@1 1070 * @param sym The accessed symbol.
duke@1 1071 * @param tree The tree referring to the symbol.
duke@1 1072 * @param enclOp The closest enclosing operation node of tree,
duke@1 1073 * null if tree is not a subtree of an operation.
duke@1 1074 * @param refSuper Is access via a (qualified) C.super?
duke@1 1075 */
duke@1 1076 JCExpression access(Symbol sym, JCExpression tree, JCExpression enclOp, boolean refSuper) {
duke@1 1077 // Access a free variable via its proxy, or its proxy's proxy
duke@1 1078 while (sym.kind == VAR && sym.owner.kind == MTH &&
duke@1 1079 sym.owner.enclClass() != currentClass) {
duke@1 1080 // A constant is replaced by its constant value.
duke@1 1081 Object cv = ((VarSymbol)sym).getConstValue();
duke@1 1082 if (cv != null) {
duke@1 1083 make.at(tree.pos);
duke@1 1084 return makeLit(sym.type, cv);
duke@1 1085 }
duke@1 1086 // Otherwise replace the variable by its proxy.
duke@1 1087 sym = proxies.lookup(proxyName(sym.name)).sym;
jjg@816 1088 Assert.check(sym != null && (sym.flags_field & FINAL) != 0);
duke@1 1089 tree = make.at(tree.pos).Ident(sym);
duke@1 1090 }
jjg@1127 1091 JCExpression base = (tree.hasTag(SELECT)) ? ((JCFieldAccess) tree).selected : null;
duke@1 1092 switch (sym.kind) {
duke@1 1093 case TYP:
duke@1 1094 if (sym.owner.kind != PCK) {
duke@1 1095 // Convert type idents to
duke@1 1096 // <flat name> or <package name> . <flat name>
duke@1 1097 Name flatname = Convert.shortName(sym.flatName());
duke@1 1098 while (base != null &&
duke@1 1099 TreeInfo.symbol(base) != null &&
duke@1 1100 TreeInfo.symbol(base).kind != PCK) {
jjg@1127 1101 base = (base.hasTag(SELECT))
duke@1 1102 ? ((JCFieldAccess) base).selected
duke@1 1103 : null;
duke@1 1104 }
jjg@1127 1105 if (tree.hasTag(IDENT)) {
duke@1 1106 ((JCIdent) tree).name = flatname;
duke@1 1107 } else if (base == null) {
duke@1 1108 tree = make.at(tree.pos).Ident(sym);
duke@1 1109 ((JCIdent) tree).name = flatname;
duke@1 1110 } else {
duke@1 1111 ((JCFieldAccess) tree).selected = base;
duke@1 1112 ((JCFieldAccess) tree).name = flatname;
duke@1 1113 }
duke@1 1114 }
duke@1 1115 break;
duke@1 1116 case MTH: case VAR:
duke@1 1117 if (sym.owner.kind == TYP) {
duke@1 1118
duke@1 1119 // Access methods are required for
duke@1 1120 // - private members,
duke@1 1121 // - protected members in a superclass of an
duke@1 1122 // enclosing class contained in another package.
duke@1 1123 // - all non-private members accessed via a qualified super.
duke@1 1124 boolean protAccess = refSuper && !needsPrivateAccess(sym)
duke@1 1125 || needsProtectedAccess(sym, tree);
duke@1 1126 boolean accReq = protAccess || needsPrivateAccess(sym);
duke@1 1127
duke@1 1128 // A base has to be supplied for
duke@1 1129 // - simple identifiers accessing variables in outer classes.
duke@1 1130 boolean baseReq =
duke@1 1131 base == null &&
duke@1 1132 sym.owner != syms.predefClass &&
duke@1 1133 !sym.isMemberOf(currentClass, types);
duke@1 1134
duke@1 1135 if (accReq || baseReq) {
duke@1 1136 make.at(tree.pos);
duke@1 1137
duke@1 1138 // Constants are replaced by their constant value.
duke@1 1139 if (sym.kind == VAR) {
duke@1 1140 Object cv = ((VarSymbol)sym).getConstValue();
vromero@1432 1141 if (cv != null) {
vromero@1432 1142 addPrunedInfo(tree);
vromero@1432 1143 return makeLit(sym.type, cv);
vromero@1432 1144 }
duke@1 1145 }
duke@1 1146
duke@1 1147 // Private variables and methods are replaced by calls
duke@1 1148 // to their access methods.
duke@1 1149 if (accReq) {
duke@1 1150 List<JCExpression> args = List.nil();
duke@1 1151 if ((sym.flags() & STATIC) == 0) {
duke@1 1152 // Instance access methods get instance
duke@1 1153 // as first parameter.
duke@1 1154 if (base == null)
duke@1 1155 base = makeOwnerThis(tree.pos(), sym, true);
duke@1 1156 args = args.prepend(base);
duke@1 1157 base = null; // so we don't duplicate code
duke@1 1158 }
duke@1 1159 Symbol access = accessSymbol(sym, tree,
duke@1 1160 enclOp, protAccess,
duke@1 1161 refSuper);
duke@1 1162 JCExpression receiver = make.Select(
duke@1 1163 base != null ? base : make.QualIdent(access.owner),
duke@1 1164 access);
duke@1 1165 return make.App(receiver, args);
duke@1 1166
duke@1 1167 // Other accesses to members of outer classes get a
duke@1 1168 // qualifier.
duke@1 1169 } else if (baseReq) {
duke@1 1170 return make.at(tree.pos).Select(
duke@1 1171 accessBase(tree.pos(), sym), sym).setType(tree.type);
duke@1 1172 }
duke@1 1173 }
duke@1 1174 }
duke@1 1175 }
duke@1 1176 return tree;
duke@1 1177 }
duke@1 1178
duke@1 1179 /** Ensure that identifier is accessible, return tree accessing the identifier.
duke@1 1180 * @param tree The identifier tree.
duke@1 1181 */
duke@1 1182 JCExpression access(JCExpression tree) {
duke@1 1183 Symbol sym = TreeInfo.symbol(tree);
duke@1 1184 return sym == null ? tree : access(sym, tree, null, false);
duke@1 1185 }
duke@1 1186
duke@1 1187 /** Return access constructor for a private constructor,
duke@1 1188 * or the constructor itself, if no access constructor is needed.
duke@1 1189 * @param pos The position to report diagnostics, if any.
duke@1 1190 * @param constr The private constructor.
duke@1 1191 */
duke@1 1192 Symbol accessConstructor(DiagnosticPosition pos, Symbol constr) {
duke@1 1193 if (needsPrivateAccess(constr)) {
duke@1 1194 ClassSymbol accOwner = constr.owner.enclClass();
duke@1 1195 MethodSymbol aconstr = accessConstrs.get(constr);
duke@1 1196 if (aconstr == null) {
duke@1 1197 List<Type> argtypes = constr.type.getParameterTypes();
duke@1 1198 if ((accOwner.flags_field & ENUM) != 0)
duke@1 1199 argtypes = argtypes
duke@1 1200 .prepend(syms.intType)
duke@1 1201 .prepend(syms.stringType);
duke@1 1202 aconstr = new MethodSymbol(
duke@1 1203 SYNTHETIC,
duke@1 1204 names.init,
duke@1 1205 new MethodType(
duke@1 1206 argtypes.append(
duke@1 1207 accessConstructorTag().erasure(types)),
duke@1 1208 constr.type.getReturnType(),
duke@1 1209 constr.type.getThrownTypes(),
duke@1 1210 syms.methodClass),
duke@1 1211 accOwner);
duke@1 1212 enterSynthetic(pos, aconstr, accOwner.members());
duke@1 1213 accessConstrs.put(constr, aconstr);
duke@1 1214 accessed.append(constr);
duke@1 1215 }
duke@1 1216 return aconstr;
duke@1 1217 } else {
duke@1 1218 return constr;
duke@1 1219 }
duke@1 1220 }
duke@1 1221
duke@1 1222 /** Return an anonymous class nested in this toplevel class.
duke@1 1223 */
duke@1 1224 ClassSymbol accessConstructorTag() {
duke@1 1225 ClassSymbol topClass = currentClass.outermostClass();
duke@1 1226 Name flatname = names.fromString("" + topClass.getQualifiedName() +
duke@1 1227 target.syntheticNameChar() +
duke@1 1228 "1");
duke@1 1229 ClassSymbol ctag = chk.compiled.get(flatname);
duke@1 1230 if (ctag == null)
vromero@1542 1231 ctag = makeEmptyClass(STATIC | SYNTHETIC, topClass).sym;
jjg@595 1232 // keep a record of all tags, to verify that all are generated as required
jjg@595 1233 accessConstrTags = accessConstrTags.prepend(ctag);
duke@1 1234 return ctag;
duke@1 1235 }
duke@1 1236
duke@1 1237 /** Add all required access methods for a private symbol to enclosing class.
duke@1 1238 * @param sym The symbol.
duke@1 1239 */
duke@1 1240 void makeAccessible(Symbol sym) {
duke@1 1241 JCClassDecl cdef = classDef(sym.owner.enclClass());
jjg@816 1242 if (cdef == null) Assert.error("class def not found: " + sym + " in " + sym.owner);
duke@1 1243 if (sym.name == names.init) {
duke@1 1244 cdef.defs = cdef.defs.prepend(
duke@1 1245 accessConstructorDef(cdef.pos, sym, accessConstrs.get(sym)));
duke@1 1246 } else {
duke@1 1247 MethodSymbol[] accessors = accessSyms.get(sym);
duke@1 1248 for (int i = 0; i < NCODES; i++) {
duke@1 1249 if (accessors[i] != null)
duke@1 1250 cdef.defs = cdef.defs.prepend(
duke@1 1251 accessDef(cdef.pos, sym, accessors[i], i));
duke@1 1252 }
duke@1 1253 }
duke@1 1254 }
duke@1 1255
jjg@1127 1256 /** Maps unary operator integer codes to JCTree.Tag objects
jjg@1127 1257 * @param unaryOpCode the unary operator code
jjg@1127 1258 */
jjg@1127 1259 private static Tag mapUnaryOpCodeToTag(int unaryOpCode){
jjg@1127 1260 switch (unaryOpCode){
jjg@1127 1261 case PREINCcode:
jjg@1127 1262 return PREINC;
jjg@1127 1263 case PREDECcode:
jjg@1127 1264 return PREDEC;
jjg@1127 1265 case POSTINCcode:
jjg@1127 1266 return POSTINC;
jjg@1127 1267 case POSTDECcode:
jjg@1127 1268 return POSTDEC;
jjg@1127 1269 default:
jjg@1127 1270 return NO_TAG;
jjg@1127 1271 }
jjg@1127 1272 }
jjg@1127 1273
jjg@1127 1274 /** Maps JCTree.Tag objects to unary operator integer codes
jjg@1127 1275 * @param tag the JCTree.Tag
jjg@1127 1276 */
jjg@1127 1277 private static int mapTagToUnaryOpCode(Tag tag){
jjg@1127 1278 switch (tag){
jjg@1127 1279 case PREINC:
jjg@1127 1280 return PREINCcode;
jjg@1127 1281 case PREDEC:
jjg@1127 1282 return PREDECcode;
jjg@1127 1283 case POSTINC:
jjg@1127 1284 return POSTINCcode;
jjg@1127 1285 case POSTDEC:
jjg@1127 1286 return POSTDECcode;
jjg@1127 1287 default:
jjg@1127 1288 return -1;
jjg@1127 1289 }
jjg@1127 1290 }
jjg@1127 1291
duke@1 1292 /** Construct definition of an access method.
duke@1 1293 * @param pos The source code position of the definition.
duke@1 1294 * @param vsym The private or protected symbol.
duke@1 1295 * @param accessor The access method for the symbol.
duke@1 1296 * @param acode The access code.
duke@1 1297 */
duke@1 1298 JCTree accessDef(int pos, Symbol vsym, MethodSymbol accessor, int acode) {
duke@1 1299 // System.err.println("access " + vsym + " with " + accessor);//DEBUG
duke@1 1300 currentClass = vsym.owner.enclClass();
duke@1 1301 make.at(pos);
duke@1 1302 JCMethodDecl md = make.MethodDef(accessor, null);
duke@1 1303
duke@1 1304 // Find actual symbol
duke@1 1305 Symbol sym = actualSymbols.get(vsym);
duke@1 1306 if (sym == null) sym = vsym;
duke@1 1307
duke@1 1308 JCExpression ref; // The tree referencing the private symbol.
duke@1 1309 List<JCExpression> args; // Any additional arguments to be passed along.
duke@1 1310 if ((sym.flags() & STATIC) != 0) {
duke@1 1311 ref = make.Ident(sym);
duke@1 1312 args = make.Idents(md.params);
duke@1 1313 } else {
duke@1 1314 ref = make.Select(make.Ident(md.params.head), sym);
duke@1 1315 args = make.Idents(md.params.tail);
duke@1 1316 }
duke@1 1317 JCStatement stat; // The statement accessing the private symbol.
duke@1 1318 if (sym.kind == VAR) {
duke@1 1319 // Normalize out all odd access codes by taking floor modulo 2:
duke@1 1320 int acode1 = acode - (acode & 1);
duke@1 1321
duke@1 1322 JCExpression expr; // The access method's return value.
duke@1 1323 switch (acode1) {
duke@1 1324 case DEREFcode:
duke@1 1325 expr = ref;
duke@1 1326 break;
duke@1 1327 case ASSIGNcode:
duke@1 1328 expr = make.Assign(ref, args.head);
duke@1 1329 break;
duke@1 1330 case PREINCcode: case POSTINCcode: case PREDECcode: case POSTDECcode:
jjg@1127 1331 expr = makeUnary(mapUnaryOpCodeToTag(acode1), ref);
duke@1 1332 break;
duke@1 1333 default:
duke@1 1334 expr = make.Assignop(
duke@1 1335 treeTag(binaryAccessOperator(acode1)), ref, args.head);
duke@1 1336 ((JCAssignOp) expr).operator = binaryAccessOperator(acode1);
duke@1 1337 }
duke@1 1338 stat = make.Return(expr.setType(sym.type));
duke@1 1339 } else {
duke@1 1340 stat = make.Call(make.App(ref, args));
duke@1 1341 }
duke@1 1342 md.body = make.Block(0, List.of(stat));
duke@1 1343
duke@1 1344 // Make sure all parameters, result types and thrown exceptions
duke@1 1345 // are accessible.
duke@1 1346 for (List<JCVariableDecl> l = md.params; l.nonEmpty(); l = l.tail)
duke@1 1347 l.head.vartype = access(l.head.vartype);
duke@1 1348 md.restype = access(md.restype);
duke@1 1349 for (List<JCExpression> l = md.thrown; l.nonEmpty(); l = l.tail)
duke@1 1350 l.head = access(l.head);
duke@1 1351
duke@1 1352 return md;
duke@1 1353 }
duke@1 1354
duke@1 1355 /** Construct definition of an access constructor.
duke@1 1356 * @param pos The source code position of the definition.
duke@1 1357 * @param constr The private constructor.
duke@1 1358 * @param accessor The access method for the constructor.
duke@1 1359 */
duke@1 1360 JCTree accessConstructorDef(int pos, Symbol constr, MethodSymbol accessor) {
duke@1 1361 make.at(pos);
duke@1 1362 JCMethodDecl md = make.MethodDef(accessor,
duke@1 1363 accessor.externalType(types),
duke@1 1364 null);
duke@1 1365 JCIdent callee = make.Ident(names._this);
duke@1 1366 callee.sym = constr;
duke@1 1367 callee.type = constr.type;
duke@1 1368 md.body =
duke@1 1369 make.Block(0, List.<JCStatement>of(
duke@1 1370 make.Call(
duke@1 1371 make.App(
duke@1 1372 callee,
duke@1 1373 make.Idents(md.params.reverse().tail.reverse())))));
duke@1 1374 return md;
duke@1 1375 }
duke@1 1376
duke@1 1377 /**************************************************************************
duke@1 1378 * Free variables proxies and this$n
duke@1 1379 *************************************************************************/
duke@1 1380
duke@1 1381 /** A scope containing all free variable proxies for currently translated
duke@1 1382 * class, as well as its this$n symbol (if needed).
duke@1 1383 * Proxy scopes are nested in the same way classes are.
duke@1 1384 * Inside a constructor, proxies and any this$n symbol are duplicated
duke@1 1385 * in an additional innermost scope, where they represent the constructor
duke@1 1386 * parameters.
duke@1 1387 */
duke@1 1388 Scope proxies;
duke@1 1389
darcy@609 1390 /** A scope containing all unnamed resource variables/saved
darcy@609 1391 * exception variables for translated TWR blocks
darcy@609 1392 */
darcy@609 1393 Scope twrVars;
darcy@609 1394
duke@1 1395 /** A stack containing the this$n field of the currently translated
duke@1 1396 * classes (if needed) in innermost first order.
duke@1 1397 * Inside a constructor, proxies and any this$n symbol are duplicated
duke@1 1398 * in an additional innermost scope, where they represent the constructor
duke@1 1399 * parameters.
duke@1 1400 */
duke@1 1401 List<VarSymbol> outerThisStack;
duke@1 1402
duke@1 1403 /** The name of a free variable proxy.
duke@1 1404 */
duke@1 1405 Name proxyName(Name name) {
duke@1 1406 return names.fromString("val" + target.syntheticNameChar() + name);
duke@1 1407 }
duke@1 1408
duke@1 1409 /** Proxy definitions for all free variables in given list, in reverse order.
duke@1 1410 * @param pos The source code position of the definition.
duke@1 1411 * @param freevars The free variables.
duke@1 1412 * @param owner The class in which the definitions go.
duke@1 1413 */
duke@1 1414 List<JCVariableDecl> freevarDefs(int pos, List<VarSymbol> freevars, Symbol owner) {
duke@1 1415 long flags = FINAL | SYNTHETIC;
duke@1 1416 if (owner.kind == TYP &&
duke@1 1417 target.usePrivateSyntheticFields())
duke@1 1418 flags |= PRIVATE;
duke@1 1419 List<JCVariableDecl> defs = List.nil();
duke@1 1420 for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail) {
duke@1 1421 VarSymbol v = l.head;
duke@1 1422 VarSymbol proxy = new VarSymbol(
duke@1 1423 flags, proxyName(v.name), v.erasure(types), owner);
duke@1 1424 proxies.enter(proxy);
duke@1 1425 JCVariableDecl vd = make.at(pos).VarDef(proxy, null);
duke@1 1426 vd.vartype = access(vd.vartype);
duke@1 1427 defs = defs.prepend(vd);
duke@1 1428 }
duke@1 1429 return defs;
duke@1 1430 }
duke@1 1431
duke@1 1432 /** The name of a this$n field
duke@1 1433 * @param type The class referenced by the this$n field
duke@1 1434 */
duke@1 1435 Name outerThisName(Type type, Symbol owner) {
duke@1 1436 Type t = type.getEnclosingType();
duke@1 1437 int nestingLevel = 0;
jjg@1374 1438 while (t.hasTag(CLASS)) {
duke@1 1439 t = t.getEnclosingType();
duke@1 1440 nestingLevel++;
duke@1 1441 }
duke@1 1442 Name result = names.fromString("this" + target.syntheticNameChar() + nestingLevel);
duke@1 1443 while (owner.kind == TYP && ((ClassSymbol)owner).members().lookup(result).scope != null)
duke@1 1444 result = names.fromString(result.toString() + target.syntheticNameChar());
duke@1 1445 return result;
duke@1 1446 }
duke@1 1447
mcimadamore@1565 1448 private VarSymbol makeOuterThisVarSymbol(Symbol owner, long flags) {
mcimadamore@1565 1449 if (owner.kind == TYP &&
mcimadamore@1565 1450 target.usePrivateSyntheticFields())
mcimadamore@1565 1451 flags |= PRIVATE;
mcimadamore@1565 1452 Type target = types.erasure(owner.enclClass().type.getEnclosingType());
mcimadamore@1565 1453 VarSymbol outerThis =
mcimadamore@1565 1454 new VarSymbol(flags, outerThisName(target, owner), target, owner);
mcimadamore@1565 1455 outerThisStack = outerThisStack.prepend(outerThis);
mcimadamore@1565 1456 return outerThis;
mcimadamore@1565 1457 }
mcimadamore@1565 1458
mcimadamore@1565 1459 private JCVariableDecl makeOuterThisVarDecl(int pos, VarSymbol sym) {
mcimadamore@1565 1460 JCVariableDecl vd = make.at(pos).VarDef(sym, null);
mcimadamore@1565 1461 vd.vartype = access(vd.vartype);
mcimadamore@1565 1462 return vd;
mcimadamore@1565 1463 }
mcimadamore@1565 1464
mcimadamore@1565 1465 /** Definition for this$n field.
mcimadamore@1565 1466 * @param pos The source code position of the definition.
mcimadamore@1565 1467 * @param owner The method in which the definition goes.
mcimadamore@1565 1468 */
mcimadamore@1565 1469 JCVariableDecl outerThisDef(int pos, MethodSymbol owner) {
mcimadamore@1565 1470 ClassSymbol c = owner.enclClass();
mcimadamore@1565 1471 boolean isMandated =
mcimadamore@1565 1472 // Anonymous constructors
mcimadamore@1565 1473 (owner.isConstructor() && owner.isAnonymous()) ||
mcimadamore@1565 1474 // Constructors of non-private inner member classes
mcimadamore@1565 1475 (owner.isConstructor() && c.isInner() &&
mcimadamore@1565 1476 !c.isPrivate() && !c.isStatic());
mcimadamore@1565 1477 long flags =
mcimadamore@1565 1478 FINAL | (isMandated ? MANDATED : SYNTHETIC);
mcimadamore@1565 1479 VarSymbol outerThis = makeOuterThisVarSymbol(owner, flags);
mcimadamore@1565 1480 owner.extraParams = owner.extraParams.prepend(outerThis);
mcimadamore@1565 1481 return makeOuterThisVarDecl(pos, outerThis);
mcimadamore@1565 1482 }
mcimadamore@1565 1483
duke@1 1484 /** Definition for this$n field.
duke@1 1485 * @param pos The source code position of the definition.
duke@1 1486 * @param owner The class in which the definition goes.
duke@1 1487 */
mcimadamore@1565 1488 JCVariableDecl outerThisDef(int pos, ClassSymbol owner) {
mcimadamore@1565 1489 VarSymbol outerThis = makeOuterThisVarSymbol(owner, FINAL | SYNTHETIC);
mcimadamore@1565 1490 return makeOuterThisVarDecl(pos, outerThis);
duke@1 1491 }
duke@1 1492
duke@1 1493 /** Return a list of trees that load the free variables in given list,
duke@1 1494 * in reverse order.
duke@1 1495 * @param pos The source code position to be used for the trees.
duke@1 1496 * @param freevars The list of free variables.
duke@1 1497 */
duke@1 1498 List<JCExpression> loadFreevars(DiagnosticPosition pos, List<VarSymbol> freevars) {
duke@1 1499 List<JCExpression> args = List.nil();
duke@1 1500 for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail)
duke@1 1501 args = args.prepend(loadFreevar(pos, l.head));
duke@1 1502 return args;
duke@1 1503 }
duke@1 1504 //where
duke@1 1505 JCExpression loadFreevar(DiagnosticPosition pos, VarSymbol v) {
duke@1 1506 return access(v, make.at(pos).Ident(v), null, false);
duke@1 1507 }
duke@1 1508
jjg@1326 1509 /** Construct a tree simulating the expression {@code C.this}.
duke@1 1510 * @param pos The source code position to be used for the tree.
duke@1 1511 * @param c The qualifier class.
duke@1 1512 */
duke@1 1513 JCExpression makeThis(DiagnosticPosition pos, TypeSymbol c) {
duke@1 1514 if (currentClass == c) {
duke@1 1515 // in this case, `this' works fine
duke@1 1516 return make.at(pos).This(c.erasure(types));
duke@1 1517 } else {
duke@1 1518 // need to go via this$n
duke@1 1519 return makeOuterThis(pos, c);
duke@1 1520 }
duke@1 1521 }
duke@1 1522
darcy@884 1523 /**
darcy@884 1524 * Optionally replace a try statement with the desugaring of a
darcy@884 1525 * try-with-resources statement. The canonical desugaring of
darcy@884 1526 *
darcy@884 1527 * try ResourceSpecification
darcy@884 1528 * Block
darcy@884 1529 *
darcy@884 1530 * is
darcy@884 1531 *
darcy@884 1532 * {
darcy@884 1533 * final VariableModifiers_minus_final R #resource = Expression;
darcy@884 1534 * Throwable #primaryException = null;
darcy@884 1535 *
darcy@884 1536 * try ResourceSpecificationtail
darcy@884 1537 * Block
darcy@884 1538 * catch (Throwable #t) {
darcy@884 1539 * #primaryException = t;
darcy@884 1540 * throw #t;
darcy@884 1541 * } finally {
darcy@884 1542 * if (#resource != null) {
darcy@884 1543 * if (#primaryException != null) {
darcy@884 1544 * try {
darcy@884 1545 * #resource.close();
darcy@884 1546 * } catch(Throwable #suppressedException) {
darcy@884 1547 * #primaryException.addSuppressed(#suppressedException);
darcy@884 1548 * }
darcy@884 1549 * } else {
darcy@884 1550 * #resource.close();
darcy@884 1551 * }
darcy@884 1552 * }
darcy@884 1553 * }
darcy@884 1554 *
darcy@609 1555 * @param tree The try statement to inspect.
darcy@884 1556 * @return A a desugared try-with-resources tree, or the original
darcy@884 1557 * try block if there are no resources to manage.
darcy@609 1558 */
darcy@884 1559 JCTree makeTwrTry(JCTry tree) {
darcy@609 1560 make_at(tree.pos());
darcy@609 1561 twrVars = twrVars.dup();
darcy@884 1562 JCBlock twrBlock = makeTwrBlock(tree.resources, tree.body, 0);
darcy@609 1563 if (tree.catchers.isEmpty() && tree.finalizer == null)
darcy@884 1564 result = translate(twrBlock);
darcy@609 1565 else
darcy@884 1566 result = translate(make.Try(twrBlock, tree.catchers, tree.finalizer));
darcy@609 1567 twrVars = twrVars.leave();
darcy@609 1568 return result;
darcy@609 1569 }
darcy@609 1570
darcy@884 1571 private JCBlock makeTwrBlock(List<JCTree> resources, JCBlock block, int depth) {
darcy@609 1572 if (resources.isEmpty())
darcy@609 1573 return block;
darcy@609 1574
darcy@609 1575 // Add resource declaration or expression to block statements
darcy@609 1576 ListBuffer<JCStatement> stats = new ListBuffer<JCStatement>();
darcy@609 1577 JCTree resource = resources.head;
darcy@609 1578 JCExpression expr = null;
darcy@609 1579 if (resource instanceof JCVariableDecl) {
darcy@609 1580 JCVariableDecl var = (JCVariableDecl) resource;
darcy@609 1581 expr = make.Ident(var.sym).setType(resource.type);
darcy@609 1582 stats.add(var);
darcy@609 1583 } else {
jjg@816 1584 Assert.check(resource instanceof JCExpression);
darcy@609 1585 VarSymbol syntheticTwrVar =
darcy@609 1586 new VarSymbol(SYNTHETIC | FINAL,
darcy@609 1587 makeSyntheticName(names.fromString("twrVar" +
darcy@609 1588 depth), twrVars),
jjg@1374 1589 (resource.type.hasTag(BOT)) ?
darcy@609 1590 syms.autoCloseableType : resource.type,
darcy@609 1591 currentMethodSym);
darcy@609 1592 twrVars.enter(syntheticTwrVar);
darcy@609 1593 JCVariableDecl syntheticTwrVarDecl =
darcy@609 1594 make.VarDef(syntheticTwrVar, (JCExpression)resource);
darcy@609 1595 expr = (JCExpression)make.Ident(syntheticTwrVar);
darcy@609 1596 stats.add(syntheticTwrVarDecl);
darcy@609 1597 }
darcy@609 1598
darcy@609 1599 // Add primaryException declaration
darcy@609 1600 VarSymbol primaryException =
darcy@609 1601 new VarSymbol(SYNTHETIC,
darcy@609 1602 makeSyntheticName(names.fromString("primaryException" +
darcy@609 1603 depth), twrVars),
darcy@609 1604 syms.throwableType,
darcy@609 1605 currentMethodSym);
darcy@609 1606 twrVars.enter(primaryException);
darcy@609 1607 JCVariableDecl primaryExceptionTreeDecl = make.VarDef(primaryException, makeNull());
darcy@609 1608 stats.add(primaryExceptionTreeDecl);
darcy@609 1609
darcy@609 1610 // Create catch clause that saves exception and then rethrows it
darcy@609 1611 VarSymbol param =
darcy@609 1612 new VarSymbol(FINAL|SYNTHETIC,
darcy@609 1613 names.fromString("t" +
darcy@609 1614 target.syntheticNameChar()),
darcy@609 1615 syms.throwableType,
darcy@609 1616 currentMethodSym);
darcy@609 1617 JCVariableDecl paramTree = make.VarDef(param, null);
darcy@609 1618 JCStatement assign = make.Assignment(primaryException, make.Ident(param));
darcy@609 1619 JCStatement rethrowStat = make.Throw(make.Ident(param));
darcy@609 1620 JCBlock catchBlock = make.Block(0L, List.<JCStatement>of(assign, rethrowStat));
darcy@609 1621 JCCatch catchClause = make.Catch(paramTree, catchBlock);
darcy@609 1622
darcy@609 1623 int oldPos = make.pos;
darcy@609 1624 make.at(TreeInfo.endPos(block));
darcy@884 1625 JCBlock finallyClause = makeTwrFinallyClause(primaryException, expr);
darcy@609 1626 make.at(oldPos);
darcy@884 1627 JCTry outerTry = make.Try(makeTwrBlock(resources.tail, block, depth + 1),
darcy@609 1628 List.<JCCatch>of(catchClause),
darcy@609 1629 finallyClause);
darcy@609 1630 stats.add(outerTry);
darcy@609 1631 return make.Block(0L, stats.toList());
darcy@609 1632 }
darcy@609 1633
darcy@884 1634 private JCBlock makeTwrFinallyClause(Symbol primaryException, JCExpression resource) {
darcy@745 1635 // primaryException.addSuppressed(catchException);
darcy@609 1636 VarSymbol catchException =
darcy@609 1637 new VarSymbol(0, make.paramName(2),
darcy@609 1638 syms.throwableType,
darcy@609 1639 currentMethodSym);
darcy@609 1640 JCStatement addSuppressionStatement =
darcy@609 1641 make.Exec(makeCall(make.Ident(primaryException),
darcy@745 1642 names.addSuppressed,
darcy@609 1643 List.<JCExpression>of(make.Ident(catchException))));
darcy@609 1644
darcy@745 1645 // try { resource.close(); } catch (e) { primaryException.addSuppressed(e); }
darcy@609 1646 JCBlock tryBlock =
darcy@609 1647 make.Block(0L, List.<JCStatement>of(makeResourceCloseInvocation(resource)));
darcy@609 1648 JCVariableDecl catchExceptionDecl = make.VarDef(catchException, null);
darcy@609 1649 JCBlock catchBlock = make.Block(0L, List.<JCStatement>of(addSuppressionStatement));
darcy@609 1650 List<JCCatch> catchClauses = List.<JCCatch>of(make.Catch(catchExceptionDecl, catchBlock));
darcy@609 1651 JCTry tryTree = make.Try(tryBlock, catchClauses, null);
darcy@609 1652
darcy@884 1653 // if (primaryException != null) {try...} else resourceClose;
darcy@884 1654 JCIf closeIfStatement = make.If(makeNonNullCheck(make.Ident(primaryException)),
darcy@609 1655 tryTree,
darcy@609 1656 makeResourceCloseInvocation(resource));
darcy@884 1657
darcy@884 1658 // if (#resource != null) { if (primaryException ... }
darcy@884 1659 return make.Block(0L,
darcy@884 1660 List.<JCStatement>of(make.If(makeNonNullCheck(resource),
darcy@884 1661 closeIfStatement,
darcy@884 1662 null)));
darcy@609 1663 }
darcy@609 1664
darcy@609 1665 private JCStatement makeResourceCloseInvocation(JCExpression resource) {
sundar@1260 1666 // convert to AutoCloseable if needed
sundar@1260 1667 if (types.asSuper(resource.type, syms.autoCloseableType.tsym) == null) {
sundar@1260 1668 resource = (JCExpression) convert(resource, syms.autoCloseableType);
sundar@1260 1669 }
sundar@1260 1670
darcy@609 1671 // create resource.close() method invocation
darcy@884 1672 JCExpression resourceClose = makeCall(resource,
darcy@884 1673 names.close,
darcy@884 1674 List.<JCExpression>nil());
darcy@609 1675 return make.Exec(resourceClose);
darcy@609 1676 }
darcy@609 1677
darcy@884 1678 private JCExpression makeNonNullCheck(JCExpression expression) {
jjg@1127 1679 return makeBinary(NE, expression, makeNull());
darcy@884 1680 }
darcy@884 1681
duke@1 1682 /** Construct a tree that represents the outer instance
jjg@1326 1683 * {@code C.this}. Never pick the current `this'.
duke@1 1684 * @param pos The source code position to be used for the tree.
duke@1 1685 * @param c The qualifier class.
duke@1 1686 */
duke@1 1687 JCExpression makeOuterThis(DiagnosticPosition pos, TypeSymbol c) {
duke@1 1688 List<VarSymbol> ots = outerThisStack;
duke@1 1689 if (ots.isEmpty()) {
duke@1 1690 log.error(pos, "no.encl.instance.of.type.in.scope", c);
jjg@816 1691 Assert.error();
duke@1 1692 return makeNull();
duke@1 1693 }
duke@1 1694 VarSymbol ot = ots.head;
duke@1 1695 JCExpression tree = access(make.at(pos).Ident(ot));
duke@1 1696 TypeSymbol otc = ot.type.tsym;
duke@1 1697 while (otc != c) {
duke@1 1698 do {
duke@1 1699 ots = ots.tail;
duke@1 1700 if (ots.isEmpty()) {
duke@1 1701 log.error(pos,
duke@1 1702 "no.encl.instance.of.type.in.scope",
duke@1 1703 c);
jjg@816 1704 Assert.error(); // should have been caught in Attr
duke@1 1705 return tree;
duke@1 1706 }
duke@1 1707 ot = ots.head;
duke@1 1708 } while (ot.owner != otc);
duke@1 1709 if (otc.owner.kind != PCK && !otc.hasOuterInstance()) {
duke@1 1710 chk.earlyRefError(pos, c);
jjg@816 1711 Assert.error(); // should have been caught in Attr
duke@1 1712 return makeNull();
duke@1 1713 }
duke@1 1714 tree = access(make.at(pos).Select(tree, ot));
duke@1 1715 otc = ot.type.tsym;
duke@1 1716 }
duke@1 1717 return tree;
duke@1 1718 }
duke@1 1719
duke@1 1720 /** Construct a tree that represents the closest outer instance
jjg@1326 1721 * {@code C.this} such that the given symbol is a member of C.
duke@1 1722 * @param pos The source code position to be used for the tree.
duke@1 1723 * @param sym The accessed symbol.
duke@1 1724 * @param preciseMatch should we accept a type that is a subtype of
duke@1 1725 * sym's owner, even if it doesn't contain sym
duke@1 1726 * due to hiding, overriding, or non-inheritance
duke@1 1727 * due to protection?
duke@1 1728 */
duke@1 1729 JCExpression makeOwnerThis(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
duke@1 1730 Symbol c = sym.owner;
duke@1 1731 if (preciseMatch ? sym.isMemberOf(currentClass, types)
duke@1 1732 : currentClass.isSubClass(sym.owner, types)) {
duke@1 1733 // in this case, `this' works fine
duke@1 1734 return make.at(pos).This(c.erasure(types));
duke@1 1735 } else {
duke@1 1736 // need to go via this$n
duke@1 1737 return makeOwnerThisN(pos, sym, preciseMatch);
duke@1 1738 }
duke@1 1739 }
duke@1 1740
duke@1 1741 /**
duke@1 1742 * Similar to makeOwnerThis but will never pick "this".
duke@1 1743 */
duke@1 1744 JCExpression makeOwnerThisN(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
duke@1 1745 Symbol c = sym.owner;
duke@1 1746 List<VarSymbol> ots = outerThisStack;
duke@1 1747 if (ots.isEmpty()) {
duke@1 1748 log.error(pos, "no.encl.instance.of.type.in.scope", c);
jjg@816 1749 Assert.error();
duke@1 1750 return makeNull();
duke@1 1751 }
duke@1 1752 VarSymbol ot = ots.head;
duke@1 1753 JCExpression tree = access(make.at(pos).Ident(ot));
duke@1 1754 TypeSymbol otc = ot.type.tsym;
duke@1 1755 while (!(preciseMatch ? sym.isMemberOf(otc, types) : otc.isSubClass(sym.owner, types))) {
duke@1 1756 do {
duke@1 1757 ots = ots.tail;
duke@1 1758 if (ots.isEmpty()) {
duke@1 1759 log.error(pos,
duke@1 1760 "no.encl.instance.of.type.in.scope",
duke@1 1761 c);
jjg@816 1762 Assert.error();
duke@1 1763 return tree;
duke@1 1764 }
duke@1 1765 ot = ots.head;
duke@1 1766 } while (ot.owner != otc);
duke@1 1767 tree = access(make.at(pos).Select(tree, ot));
duke@1 1768 otc = ot.type.tsym;
duke@1 1769 }
duke@1 1770 return tree;
duke@1 1771 }
duke@1 1772
jjg@1326 1773 /** Return tree simulating the assignment {@code this.name = name}, where
duke@1 1774 * name is the name of a free variable.
duke@1 1775 */
duke@1 1776 JCStatement initField(int pos, Name name) {
duke@1 1777 Scope.Entry e = proxies.lookup(name);
duke@1 1778 Symbol rhs = e.sym;
jjg@816 1779 Assert.check(rhs.owner.kind == MTH);
duke@1 1780 Symbol lhs = e.next().sym;
jjg@816 1781 Assert.check(rhs.owner.owner == lhs.owner);
duke@1 1782 make.at(pos);
duke@1 1783 return
duke@1 1784 make.Exec(
duke@1 1785 make.Assign(
duke@1 1786 make.Select(make.This(lhs.owner.erasure(types)), lhs),
duke@1 1787 make.Ident(rhs)).setType(lhs.erasure(types)));
duke@1 1788 }
duke@1 1789
jjg@1326 1790 /** Return tree simulating the assignment {@code this.this$n = this$n}.
duke@1 1791 */
duke@1 1792 JCStatement initOuterThis(int pos) {
duke@1 1793 VarSymbol rhs = outerThisStack.head;
jjg@816 1794 Assert.check(rhs.owner.kind == MTH);
duke@1 1795 VarSymbol lhs = outerThisStack.tail.head;
jjg@816 1796 Assert.check(rhs.owner.owner == lhs.owner);
duke@1 1797 make.at(pos);
duke@1 1798 return
duke@1 1799 make.Exec(
duke@1 1800 make.Assign(
duke@1 1801 make.Select(make.This(lhs.owner.erasure(types)), lhs),
duke@1 1802 make.Ident(rhs)).setType(lhs.erasure(types)));
duke@1 1803 }
duke@1 1804
duke@1 1805 /**************************************************************************
duke@1 1806 * Code for .class
duke@1 1807 *************************************************************************/
duke@1 1808
duke@1 1809 /** Return the symbol of a class to contain a cache of
duke@1 1810 * compiler-generated statics such as class$ and the
duke@1 1811 * $assertionsDisabled flag. We create an anonymous nested class
duke@1 1812 * (unless one already exists) and return its symbol. However,
duke@1 1813 * for backward compatibility in 1.4 and earlier we use the
duke@1 1814 * top-level class itself.
duke@1 1815 */
duke@1 1816 private ClassSymbol outerCacheClass() {
duke@1 1817 ClassSymbol clazz = outermostClassDef.sym;
duke@1 1818 if ((clazz.flags() & INTERFACE) == 0 &&
duke@1 1819 !target.useInnerCacheClass()) return clazz;
duke@1 1820 Scope s = clazz.members();
duke@1 1821 for (Scope.Entry e = s.elems; e != null; e = e.sibling)
duke@1 1822 if (e.sym.kind == TYP &&
duke@1 1823 e.sym.name == names.empty &&
duke@1 1824 (e.sym.flags() & INTERFACE) == 0) return (ClassSymbol) e.sym;
vromero@1542 1825 return makeEmptyClass(STATIC | SYNTHETIC, clazz).sym;
duke@1 1826 }
duke@1 1827
duke@1 1828 /** Return symbol for "class$" method. If there is no method definition
duke@1 1829 * for class$, construct one as follows:
duke@1 1830 *
duke@1 1831 * class class$(String x0) {
duke@1 1832 * try {
duke@1 1833 * return Class.forName(x0);
duke@1 1834 * } catch (ClassNotFoundException x1) {
duke@1 1835 * throw new NoClassDefFoundError(x1.getMessage());
duke@1 1836 * }
duke@1 1837 * }
duke@1 1838 */
duke@1 1839 private MethodSymbol classDollarSym(DiagnosticPosition pos) {
duke@1 1840 ClassSymbol outerCacheClass = outerCacheClass();
duke@1 1841 MethodSymbol classDollarSym =
duke@1 1842 (MethodSymbol)lookupSynthetic(classDollar,
duke@1 1843 outerCacheClass.members());
duke@1 1844 if (classDollarSym == null) {
duke@1 1845 classDollarSym = new MethodSymbol(
duke@1 1846 STATIC | SYNTHETIC,
duke@1 1847 classDollar,
duke@1 1848 new MethodType(
duke@1 1849 List.of(syms.stringType),
duke@1 1850 types.erasure(syms.classType),
duke@1 1851 List.<Type>nil(),
duke@1 1852 syms.methodClass),
duke@1 1853 outerCacheClass);
duke@1 1854 enterSynthetic(pos, classDollarSym, outerCacheClass.members());
duke@1 1855
duke@1 1856 JCMethodDecl md = make.MethodDef(classDollarSym, null);
duke@1 1857 try {
duke@1 1858 md.body = classDollarSymBody(pos, md);
duke@1 1859 } catch (CompletionFailure ex) {
duke@1 1860 md.body = make.Block(0, List.<JCStatement>nil());
duke@1 1861 chk.completionError(pos, ex);
duke@1 1862 }
duke@1 1863 JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
duke@1 1864 outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(md);
duke@1 1865 }
duke@1 1866 return classDollarSym;
duke@1 1867 }
duke@1 1868
duke@1 1869 /** Generate code for class$(String name). */
duke@1 1870 JCBlock classDollarSymBody(DiagnosticPosition pos, JCMethodDecl md) {
duke@1 1871 MethodSymbol classDollarSym = md.sym;
duke@1 1872 ClassSymbol outerCacheClass = (ClassSymbol)classDollarSym.owner;
duke@1 1873
duke@1 1874 JCBlock returnResult;
duke@1 1875
duke@1 1876 // in 1.4.2 and above, we use
duke@1 1877 // Class.forName(String name, boolean init, ClassLoader loader);
duke@1 1878 // which requires we cache the current loader in cl$
duke@1 1879 if (target.classLiteralsNoInit()) {
duke@1 1880 // clsym = "private static ClassLoader cl$"
duke@1 1881 VarSymbol clsym = new VarSymbol(STATIC|SYNTHETIC,
duke@1 1882 names.fromString("cl" + target.syntheticNameChar()),
duke@1 1883 syms.classLoaderType,
duke@1 1884 outerCacheClass);
duke@1 1885 enterSynthetic(pos, clsym, outerCacheClass.members());
duke@1 1886
duke@1 1887 // emit "private static ClassLoader cl$;"
duke@1 1888 JCVariableDecl cldef = make.VarDef(clsym, null);
duke@1 1889 JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
duke@1 1890 outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cldef);
duke@1 1891
duke@1 1892 // newcache := "new cache$1[0]"
duke@1 1893 JCNewArray newcache = make.
duke@1 1894 NewArray(make.Type(outerCacheClass.type),
duke@1 1895 List.<JCExpression>of(make.Literal(INT, 0).setType(syms.intType)),
duke@1 1896 null);
duke@1 1897 newcache.type = new ArrayType(types.erasure(outerCacheClass.type),
duke@1 1898 syms.arrayClass);
duke@1 1899
duke@1 1900 // forNameSym := java.lang.Class.forName(
duke@1 1901 // String s,boolean init,ClassLoader loader)
duke@1 1902 Symbol forNameSym = lookupMethod(make_pos, names.forName,
duke@1 1903 types.erasure(syms.classType),
duke@1 1904 List.of(syms.stringType,
duke@1 1905 syms.booleanType,
duke@1 1906 syms.classLoaderType));
duke@1 1907 // clvalue := "(cl$ == null) ?
duke@1 1908 // $newcache.getClass().getComponentType().getClassLoader() : cl$"
duke@1 1909 JCExpression clvalue =
duke@1 1910 make.Conditional(
jjg@1127 1911 makeBinary(EQ, make.Ident(clsym), makeNull()),
duke@1 1912 make.Assign(
duke@1 1913 make.Ident(clsym),
duke@1 1914 makeCall(
duke@1 1915 makeCall(makeCall(newcache,
duke@1 1916 names.getClass,
duke@1 1917 List.<JCExpression>nil()),
duke@1 1918 names.getComponentType,
duke@1 1919 List.<JCExpression>nil()),
duke@1 1920 names.getClassLoader,
duke@1 1921 List.<JCExpression>nil())).setType(syms.classLoaderType),
duke@1 1922 make.Ident(clsym)).setType(syms.classLoaderType);
duke@1 1923
duke@1 1924 // returnResult := "{ return Class.forName(param1, false, cl$); }"
duke@1 1925 List<JCExpression> args = List.of(make.Ident(md.params.head.sym),
duke@1 1926 makeLit(syms.booleanType, 0),
duke@1 1927 clvalue);
duke@1 1928 returnResult = make.
duke@1 1929 Block(0, List.<JCStatement>of(make.
duke@1 1930 Call(make. // return
duke@1 1931 App(make.
duke@1 1932 Ident(forNameSym), args))));
duke@1 1933 } else {
duke@1 1934 // forNameSym := java.lang.Class.forName(String s)
duke@1 1935 Symbol forNameSym = lookupMethod(make_pos,
duke@1 1936 names.forName,
duke@1 1937 types.erasure(syms.classType),
duke@1 1938 List.of(syms.stringType));
duke@1 1939 // returnResult := "{ return Class.forName(param1); }"
duke@1 1940 returnResult = make.
duke@1 1941 Block(0, List.of(make.
duke@1 1942 Call(make. // return
duke@1 1943 App(make.
duke@1 1944 QualIdent(forNameSym),
duke@1 1945 List.<JCExpression>of(make.
duke@1 1946 Ident(md.params.
duke@1 1947 head.sym))))));
duke@1 1948 }
duke@1 1949
duke@1 1950 // catchParam := ClassNotFoundException e1
duke@1 1951 VarSymbol catchParam =
duke@1 1952 new VarSymbol(0, make.paramName(1),
duke@1 1953 syms.classNotFoundExceptionType,
duke@1 1954 classDollarSym);
duke@1 1955
duke@1 1956 JCStatement rethrow;
duke@1 1957 if (target.hasInitCause()) {
duke@1 1958 // rethrow = "throw new NoClassDefFoundError().initCause(e);
duke@1 1959 JCTree throwExpr =
duke@1 1960 makeCall(makeNewClass(syms.noClassDefFoundErrorType,
duke@1 1961 List.<JCExpression>nil()),
duke@1 1962 names.initCause,
duke@1 1963 List.<JCExpression>of(make.Ident(catchParam)));
duke@1 1964 rethrow = make.Throw(throwExpr);
duke@1 1965 } else {
duke@1 1966 // getMessageSym := ClassNotFoundException.getMessage()
duke@1 1967 Symbol getMessageSym = lookupMethod(make_pos,
duke@1 1968 names.getMessage,
duke@1 1969 syms.classNotFoundExceptionType,
duke@1 1970 List.<Type>nil());
duke@1 1971 // rethrow = "throw new NoClassDefFoundError(e.getMessage());"
duke@1 1972 rethrow = make.
duke@1 1973 Throw(makeNewClass(syms.noClassDefFoundErrorType,
duke@1 1974 List.<JCExpression>of(make.App(make.Select(make.Ident(catchParam),
duke@1 1975 getMessageSym),
duke@1 1976 List.<JCExpression>nil()))));
duke@1 1977 }
duke@1 1978
duke@1 1979 // rethrowStmt := "( $rethrow )"
duke@1 1980 JCBlock rethrowStmt = make.Block(0, List.of(rethrow));
duke@1 1981
duke@1 1982 // catchBlock := "catch ($catchParam) $rethrowStmt"
duke@1 1983 JCCatch catchBlock = make.Catch(make.VarDef(catchParam, null),
duke@1 1984 rethrowStmt);
duke@1 1985
duke@1 1986 // tryCatch := "try $returnResult $catchBlock"
duke@1 1987 JCStatement tryCatch = make.Try(returnResult,
duke@1 1988 List.of(catchBlock), null);
duke@1 1989
duke@1 1990 return make.Block(0, List.of(tryCatch));
duke@1 1991 }
duke@1 1992 // where
duke@1 1993 /** Create an attributed tree of the form left.name(). */
duke@1 1994 private JCMethodInvocation makeCall(JCExpression left, Name name, List<JCExpression> args) {
jjg@816 1995 Assert.checkNonNull(left.type);
duke@1 1996 Symbol funcsym = lookupMethod(make_pos, name, left.type,
duke@1 1997 TreeInfo.types(args));
duke@1 1998 return make.App(make.Select(left, funcsym), args);
duke@1 1999 }
duke@1 2000
duke@1 2001 /** The Name Of The variable to cache T.class values.
duke@1 2002 * @param sig The signature of type T.
duke@1 2003 */
duke@1 2004 private Name cacheName(String sig) {
jjg@1362 2005 StringBuilder buf = new StringBuilder();
duke@1 2006 if (sig.startsWith("[")) {
duke@1 2007 buf = buf.append("array");
duke@1 2008 while (sig.startsWith("[")) {
duke@1 2009 buf = buf.append(target.syntheticNameChar());
duke@1 2010 sig = sig.substring(1);
duke@1 2011 }
duke@1 2012 if (sig.startsWith("L")) {
duke@1 2013 sig = sig.substring(0, sig.length() - 1);
duke@1 2014 }
duke@1 2015 } else {
duke@1 2016 buf = buf.append("class" + target.syntheticNameChar());
duke@1 2017 }
duke@1 2018 buf = buf.append(sig.replace('.', target.syntheticNameChar()));
duke@1 2019 return names.fromString(buf.toString());
duke@1 2020 }
duke@1 2021
duke@1 2022 /** The variable symbol that caches T.class values.
duke@1 2023 * If none exists yet, create a definition.
duke@1 2024 * @param sig The signature of type T.
duke@1 2025 * @param pos The position to report diagnostics, if any.
duke@1 2026 */
duke@1 2027 private VarSymbol cacheSym(DiagnosticPosition pos, String sig) {
duke@1 2028 ClassSymbol outerCacheClass = outerCacheClass();
duke@1 2029 Name cname = cacheName(sig);
duke@1 2030 VarSymbol cacheSym =
duke@1 2031 (VarSymbol)lookupSynthetic(cname, outerCacheClass.members());
duke@1 2032 if (cacheSym == null) {
duke@1 2033 cacheSym = new VarSymbol(
duke@1 2034 STATIC | SYNTHETIC, cname, types.erasure(syms.classType), outerCacheClass);
duke@1 2035 enterSynthetic(pos, cacheSym, outerCacheClass.members());
duke@1 2036
duke@1 2037 JCVariableDecl cacheDef = make.VarDef(cacheSym, null);
duke@1 2038 JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
duke@1 2039 outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cacheDef);
duke@1 2040 }
duke@1 2041 return cacheSym;
duke@1 2042 }
duke@1 2043
duke@1 2044 /** The tree simulating a T.class expression.
duke@1 2045 * @param clazz The tree identifying type T.
duke@1 2046 */
duke@1 2047 private JCExpression classOf(JCTree clazz) {
duke@1 2048 return classOfType(clazz.type, clazz.pos());
duke@1 2049 }
duke@1 2050
duke@1 2051 private JCExpression classOfType(Type type, DiagnosticPosition pos) {
jjg@1374 2052 switch (type.getTag()) {
duke@1 2053 case BYTE: case SHORT: case CHAR: case INT: case LONG: case FLOAT:
duke@1 2054 case DOUBLE: case BOOLEAN: case VOID:
duke@1 2055 // replace with <BoxedClass>.TYPE
duke@1 2056 ClassSymbol c = types.boxedClass(type);
duke@1 2057 Symbol typeSym =
mcimadamore@1347 2058 rs.accessBase(
duke@1 2059 rs.findIdentInType(attrEnv, c.type, names.TYPE, VAR),
duke@1 2060 pos, c.type, names.TYPE, true);
duke@1 2061 if (typeSym.kind == VAR)
duke@1 2062 ((VarSymbol)typeSym).getConstValue(); // ensure initializer is evaluated
duke@1 2063 return make.QualIdent(typeSym);
duke@1 2064 case CLASS: case ARRAY:
duke@1 2065 if (target.hasClassLiterals()) {
duke@1 2066 VarSymbol sym = new VarSymbol(
duke@1 2067 STATIC | PUBLIC | FINAL, names._class,
duke@1 2068 syms.classType, type.tsym);
duke@1 2069 return make_at(pos).Select(make.Type(type), sym);
duke@1 2070 }
duke@1 2071 // replace with <cache == null ? cache = class$(tsig) : cache>
duke@1 2072 // where
duke@1 2073 // - <tsig> is the type signature of T,
duke@1 2074 // - <cache> is the cache variable for tsig.
duke@1 2075 String sig =
duke@1 2076 writer.xClassName(type).toString().replace('/', '.');
duke@1 2077 Symbol cs = cacheSym(pos, sig);
duke@1 2078 return make_at(pos).Conditional(
jjg@1127 2079 makeBinary(EQ, make.Ident(cs), makeNull()),
duke@1 2080 make.Assign(
duke@1 2081 make.Ident(cs),
duke@1 2082 make.App(
duke@1 2083 make.Ident(classDollarSym(pos)),
duke@1 2084 List.<JCExpression>of(make.Literal(CLASS, sig)
duke@1 2085 .setType(syms.stringType))))
duke@1 2086 .setType(types.erasure(syms.classType)),
duke@1 2087 make.Ident(cs)).setType(types.erasure(syms.classType));
duke@1 2088 default:
duke@1 2089 throw new AssertionError();
duke@1 2090 }
duke@1 2091 }
duke@1 2092
duke@1 2093 /**************************************************************************
duke@1 2094 * Code for enabling/disabling assertions.
duke@1 2095 *************************************************************************/
duke@1 2096
duke@1 2097 // This code is not particularly robust if the user has
duke@1 2098 // previously declared a member named '$assertionsDisabled'.
duke@1 2099 // The same faulty idiom also appears in the translation of
duke@1 2100 // class literals above. We should report an error if a
duke@1 2101 // previous declaration is not synthetic.
duke@1 2102
duke@1 2103 private JCExpression assertFlagTest(DiagnosticPosition pos) {
duke@1 2104 // Outermost class may be either true class or an interface.
duke@1 2105 ClassSymbol outermostClass = outermostClassDef.sym;
duke@1 2106
duke@1 2107 // note that this is a class, as an interface can't contain a statement.
duke@1 2108 ClassSymbol container = currentClass;
duke@1 2109
duke@1 2110 VarSymbol assertDisabledSym =
duke@1 2111 (VarSymbol)lookupSynthetic(dollarAssertionsDisabled,
duke@1 2112 container.members());
duke@1 2113 if (assertDisabledSym == null) {
duke@1 2114 assertDisabledSym =
duke@1 2115 new VarSymbol(STATIC | FINAL | SYNTHETIC,
duke@1 2116 dollarAssertionsDisabled,
duke@1 2117 syms.booleanType,
duke@1 2118 container);
duke@1 2119 enterSynthetic(pos, assertDisabledSym, container.members());
duke@1 2120 Symbol desiredAssertionStatusSym = lookupMethod(pos,
duke@1 2121 names.desiredAssertionStatus,
duke@1 2122 types.erasure(syms.classType),
duke@1 2123 List.<Type>nil());
duke@1 2124 JCClassDecl containerDef = classDef(container);
duke@1 2125 make_at(containerDef.pos());
jjg@1127 2126 JCExpression notStatus = makeUnary(NOT, make.App(make.Select(
duke@1 2127 classOfType(types.erasure(outermostClass.type),
duke@1 2128 containerDef.pos()),
duke@1 2129 desiredAssertionStatusSym)));
duke@1 2130 JCVariableDecl assertDisabledDef = make.VarDef(assertDisabledSym,
duke@1 2131 notStatus);
duke@1 2132 containerDef.defs = containerDef.defs.prepend(assertDisabledDef);
duke@1 2133 }
duke@1 2134 make_at(pos);
jjg@1127 2135 return makeUnary(NOT, make.Ident(assertDisabledSym));
duke@1 2136 }
duke@1 2137
duke@1 2138
duke@1 2139 /**************************************************************************
duke@1 2140 * Building blocks for let expressions
duke@1 2141 *************************************************************************/
duke@1 2142
duke@1 2143 interface TreeBuilder {
duke@1 2144 JCTree build(JCTree arg);
duke@1 2145 }
duke@1 2146
duke@1 2147 /** Construct an expression using the builder, with the given rval
duke@1 2148 * expression as an argument to the builder. However, the rval
duke@1 2149 * expression must be computed only once, even if used multiple
duke@1 2150 * times in the result of the builder. We do that by
duke@1 2151 * constructing a "let" expression that saves the rvalue into a
duke@1 2152 * temporary variable and then uses the temporary variable in
duke@1 2153 * place of the expression built by the builder. The complete
duke@1 2154 * resulting expression is of the form
duke@1 2155 * <pre>
duke@1 2156 * (let <b>TYPE</b> <b>TEMP</b> = <b>RVAL</b>;
duke@1 2157 * in (<b>BUILDER</b>(<b>TEMP</b>)))
duke@1 2158 * </pre>
duke@1 2159 * where <code><b>TEMP</b></code> is a newly declared variable
duke@1 2160 * in the let expression.
duke@1 2161 */
duke@1 2162 JCTree abstractRval(JCTree rval, Type type, TreeBuilder builder) {
duke@1 2163 rval = TreeInfo.skipParens(rval);
duke@1 2164 switch (rval.getTag()) {
jjg@1127 2165 case LITERAL:
duke@1 2166 return builder.build(rval);
jjg@1127 2167 case IDENT:
duke@1 2168 JCIdent id = (JCIdent) rval;
duke@1 2169 if ((id.sym.flags() & FINAL) != 0 && id.sym.owner.kind == MTH)
duke@1 2170 return builder.build(rval);
duke@1 2171 }
duke@1 2172 VarSymbol var =
duke@1 2173 new VarSymbol(FINAL|SYNTHETIC,
jjg@113 2174 names.fromString(
duke@1 2175 target.syntheticNameChar()
duke@1 2176 + "" + rval.hashCode()),
duke@1 2177 type,
duke@1 2178 currentMethodSym);
mcimadamore@4 2179 rval = convert(rval,type);
duke@1 2180 JCVariableDecl def = make.VarDef(var, (JCExpression)rval); // XXX cast
duke@1 2181 JCTree built = builder.build(make.Ident(var));
duke@1 2182 JCTree res = make.LetExpr(def, built);
duke@1 2183 res.type = built.type;
duke@1 2184 return res;
duke@1 2185 }
duke@1 2186
duke@1 2187 // same as above, with the type of the temporary variable computed
duke@1 2188 JCTree abstractRval(JCTree rval, TreeBuilder builder) {
duke@1 2189 return abstractRval(rval, rval.type, builder);
duke@1 2190 }
duke@1 2191
duke@1 2192 // same as above, but for an expression that may be used as either
duke@1 2193 // an rvalue or an lvalue. This requires special handling for
duke@1 2194 // Select expressions, where we place the left-hand-side of the
duke@1 2195 // select in a temporary, and for Indexed expressions, where we
duke@1 2196 // place both the indexed expression and the index value in temps.
duke@1 2197 JCTree abstractLval(JCTree lval, final TreeBuilder builder) {
duke@1 2198 lval = TreeInfo.skipParens(lval);
duke@1 2199 switch (lval.getTag()) {
jjg@1127 2200 case IDENT:
duke@1 2201 return builder.build(lval);
jjg@1127 2202 case SELECT: {
duke@1 2203 final JCFieldAccess s = (JCFieldAccess)lval;
duke@1 2204 JCTree selected = TreeInfo.skipParens(s.selected);
duke@1 2205 Symbol lid = TreeInfo.symbol(s.selected);
duke@1 2206 if (lid != null && lid.kind == TYP) return builder.build(lval);
duke@1 2207 return abstractRval(s.selected, new TreeBuilder() {
duke@1 2208 public JCTree build(final JCTree selected) {
duke@1 2209 return builder.build(make.Select((JCExpression)selected, s.sym));
duke@1 2210 }
duke@1 2211 });
duke@1 2212 }
jjg@1127 2213 case INDEXED: {
duke@1 2214 final JCArrayAccess i = (JCArrayAccess)lval;
duke@1 2215 return abstractRval(i.indexed, new TreeBuilder() {
duke@1 2216 public JCTree build(final JCTree indexed) {
duke@1 2217 return abstractRval(i.index, syms.intType, new TreeBuilder() {
duke@1 2218 public JCTree build(final JCTree index) {
duke@1 2219 JCTree newLval = make.Indexed((JCExpression)indexed,
duke@1 2220 (JCExpression)index);
duke@1 2221 newLval.setType(i.type);
duke@1 2222 return builder.build(newLval);
duke@1 2223 }
duke@1 2224 });
duke@1 2225 }
duke@1 2226 });
duke@1 2227 }
jjg@1127 2228 case TYPECAST: {
mcimadamore@133 2229 return abstractLval(((JCTypeCast)lval).expr, builder);
mcimadamore@133 2230 }
duke@1 2231 }
duke@1 2232 throw new AssertionError(lval);
duke@1 2233 }
duke@1 2234
duke@1 2235 // evaluate and discard the first expression, then evaluate the second.
duke@1 2236 JCTree makeComma(final JCTree expr1, final JCTree expr2) {
duke@1 2237 return abstractRval(expr1, new TreeBuilder() {
duke@1 2238 public JCTree build(final JCTree discarded) {
duke@1 2239 return expr2;
duke@1 2240 }
duke@1 2241 });
duke@1 2242 }
duke@1 2243
duke@1 2244 /**************************************************************************
duke@1 2245 * Translation methods
duke@1 2246 *************************************************************************/
duke@1 2247
duke@1 2248 /** Visitor argument: enclosing operator node.
duke@1 2249 */
duke@1 2250 private JCExpression enclOp;
duke@1 2251
duke@1 2252 /** Visitor method: Translate a single node.
duke@1 2253 * Attach the source position from the old tree to its replacement tree.
duke@1 2254 */
duke@1 2255 public <T extends JCTree> T translate(T tree) {
duke@1 2256 if (tree == null) {
duke@1 2257 return null;
duke@1 2258 } else {
duke@1 2259 make_at(tree.pos());
duke@1 2260 T result = super.translate(tree);
ksrini@1138 2261 if (endPosTable != null && result != tree) {
ksrini@1138 2262 endPosTable.replaceTree(tree, result);
duke@1 2263 }
duke@1 2264 return result;
duke@1 2265 }
duke@1 2266 }
duke@1 2267
duke@1 2268 /** Visitor method: Translate a single node, boxing or unboxing if needed.
duke@1 2269 */
duke@1 2270 public <T extends JCTree> T translate(T tree, Type type) {
duke@1 2271 return (tree == null) ? null : boxIfNeeded(translate(tree), type);
duke@1 2272 }
duke@1 2273
duke@1 2274 /** Visitor method: Translate tree.
duke@1 2275 */
duke@1 2276 public <T extends JCTree> T translate(T tree, JCExpression enclOp) {
duke@1 2277 JCExpression prevEnclOp = this.enclOp;
duke@1 2278 this.enclOp = enclOp;
duke@1 2279 T res = translate(tree);
duke@1 2280 this.enclOp = prevEnclOp;
duke@1 2281 return res;
duke@1 2282 }
duke@1 2283
duke@1 2284 /** Visitor method: Translate list of trees.
duke@1 2285 */
duke@1 2286 public <T extends JCTree> List<T> translate(List<T> trees, JCExpression enclOp) {
duke@1 2287 JCExpression prevEnclOp = this.enclOp;
duke@1 2288 this.enclOp = enclOp;
duke@1 2289 List<T> res = translate(trees);
duke@1 2290 this.enclOp = prevEnclOp;
duke@1 2291 return res;
duke@1 2292 }
duke@1 2293
duke@1 2294 /** Visitor method: Translate list of trees.
duke@1 2295 */
duke@1 2296 public <T extends JCTree> List<T> translate(List<T> trees, Type type) {
duke@1 2297 if (trees == null) return null;
duke@1 2298 for (List<T> l = trees; l.nonEmpty(); l = l.tail)
duke@1 2299 l.head = translate(l.head, type);
duke@1 2300 return trees;
duke@1 2301 }
duke@1 2302
duke@1 2303 public void visitTopLevel(JCCompilationUnit tree) {
jjg@657 2304 if (needPackageInfoClass(tree)) {
duke@1 2305 Name name = names.package_info;
duke@1 2306 long flags = Flags.ABSTRACT | Flags.INTERFACE;
duke@1 2307 if (target.isPackageInfoSynthetic())
duke@1 2308 // package-info is marked SYNTHETIC in JDK 1.6 and later releases
duke@1 2309 flags = flags | Flags.SYNTHETIC;
duke@1 2310 JCClassDecl packageAnnotationsClass
duke@1 2311 = make.ClassDef(make.Modifiers(flags,
duke@1 2312 tree.packageAnnotations),
duke@1 2313 name, List.<JCTypeParameter>nil(),
duke@1 2314 null, List.<JCExpression>nil(), List.<JCTree>nil());
jjg@483 2315 ClassSymbol c = tree.packge.package_info;
jjg@483 2316 c.flags_field |= flags;
jfranck@1313 2317 c.annotations.setAttributes(tree.packge.annotations);
duke@1 2318 ClassType ctype = (ClassType) c.type;
duke@1 2319 ctype.supertype_field = syms.objectType;
duke@1 2320 ctype.interfaces_field = List.nil();
duke@1 2321 packageAnnotationsClass.sym = c;
duke@1 2322
duke@1 2323 translated.append(packageAnnotationsClass);
duke@1 2324 }
duke@1 2325 }
jjg@657 2326 // where
jjg@657 2327 private boolean needPackageInfoClass(JCCompilationUnit tree) {
jjg@657 2328 switch (pkginfoOpt) {
jjg@657 2329 case ALWAYS:
jjg@657 2330 return true;
jjg@657 2331 case LEGACY:
jjg@657 2332 return tree.packageAnnotations.nonEmpty();
jjg@657 2333 case NONEMPTY:
jfranck@1313 2334 for (Attribute.Compound a :
jjg@1521 2335 tree.packge.annotations.getDeclarationAttributes()) {
jjg@657 2336 Attribute.RetentionPolicy p = types.getRetention(a);
jjg@657 2337 if (p != Attribute.RetentionPolicy.SOURCE)
jjg@657 2338 return true;
jjg@657 2339 }
jjg@657 2340 return false;
jjg@657 2341 }
jjg@657 2342 throw new AssertionError();
jjg@657 2343 }
duke@1 2344
duke@1 2345 public void visitClassDef(JCClassDecl tree) {
duke@1 2346 ClassSymbol currentClassPrev = currentClass;
duke@1 2347 MethodSymbol currentMethodSymPrev = currentMethodSym;
duke@1 2348 currentClass = tree.sym;
duke@1 2349 currentMethodSym = null;
duke@1 2350 classdefs.put(currentClass, tree);
duke@1 2351
duke@1 2352 proxies = proxies.dup(currentClass);
duke@1 2353 List<VarSymbol> prevOuterThisStack = outerThisStack;
duke@1 2354
duke@1 2355 // If this is an enum definition
duke@1 2356 if ((tree.mods.flags & ENUM) != 0 &&
duke@1 2357 (types.supertype(currentClass.type).tsym.flags() & ENUM) == 0)
duke@1 2358 visitEnumDef(tree);
duke@1 2359
duke@1 2360 // If this is a nested class, define a this$n field for
duke@1 2361 // it and add to proxies.
duke@1 2362 JCVariableDecl otdef = null;
duke@1 2363 if (currentClass.hasOuterInstance())
duke@1 2364 otdef = outerThisDef(tree.pos, currentClass);
duke@1 2365
duke@1 2366 // If this is a local class, define proxies for all its free variables.
duke@1 2367 List<JCVariableDecl> fvdefs = freevarDefs(
duke@1 2368 tree.pos, freevars(currentClass), currentClass);
duke@1 2369
duke@1 2370 // Recursively translate superclass, interfaces.
duke@1 2371 tree.extending = translate(tree.extending);
duke@1 2372 tree.implementing = translate(tree.implementing);
duke@1 2373
mcimadamore@1086 2374 if (currentClass.isLocal()) {
mcimadamore@1086 2375 ClassSymbol encl = currentClass.owner.enclClass();
mcimadamore@1086 2376 if (encl.trans_local == null) {
mcimadamore@1086 2377 encl.trans_local = List.nil();
mcimadamore@1086 2378 }
mcimadamore@1086 2379 encl.trans_local = encl.trans_local.prepend(currentClass);
mcimadamore@1086 2380 }
mcimadamore@1086 2381
duke@1 2382 // Recursively translate members, taking into account that new members
duke@1 2383 // might be created during the translation and prepended to the member
duke@1 2384 // list `tree.defs'.
duke@1 2385 List<JCTree> seen = List.nil();
duke@1 2386 while (tree.defs != seen) {
duke@1 2387 List<JCTree> unseen = tree.defs;
duke@1 2388 for (List<JCTree> l = unseen; l.nonEmpty() && l != seen; l = l.tail) {
duke@1 2389 JCTree outermostMemberDefPrev = outermostMemberDef;
duke@1 2390 if (outermostMemberDefPrev == null) outermostMemberDef = l.head;
duke@1 2391 l.head = translate(l.head);
duke@1 2392 outermostMemberDef = outermostMemberDefPrev;
duke@1 2393 }
duke@1 2394 seen = unseen;
duke@1 2395 }
duke@1 2396
duke@1 2397 // Convert a protected modifier to public, mask static modifier.
duke@1 2398 if ((tree.mods.flags & PROTECTED) != 0) tree.mods.flags |= PUBLIC;
duke@1 2399 tree.mods.flags &= ClassFlags;
duke@1 2400
duke@1 2401 // Convert name to flat representation, replacing '.' by '$'.
duke@1 2402 tree.name = Convert.shortName(currentClass.flatName());
duke@1 2403
duke@1 2404 // Add this$n and free variables proxy definitions to class.
duke@1 2405 for (List<JCVariableDecl> l = fvdefs; l.nonEmpty(); l = l.tail) {
duke@1 2406 tree.defs = tree.defs.prepend(l.head);
duke@1 2407 enterSynthetic(tree.pos(), l.head.sym, currentClass.members());
duke@1 2408 }
duke@1 2409 if (currentClass.hasOuterInstance()) {
duke@1 2410 tree.defs = tree.defs.prepend(otdef);
duke@1 2411 enterSynthetic(tree.pos(), otdef.sym, currentClass.members());
duke@1 2412 }
duke@1 2413
duke@1 2414 proxies = proxies.leave();
duke@1 2415 outerThisStack = prevOuterThisStack;
duke@1 2416
duke@1 2417 // Append translated tree to `translated' queue.
duke@1 2418 translated.append(tree);
duke@1 2419
duke@1 2420 currentClass = currentClassPrev;
duke@1 2421 currentMethodSym = currentMethodSymPrev;
duke@1 2422
duke@1 2423 // Return empty block {} as a placeholder for an inner class.
duke@1 2424 result = make_at(tree.pos()).Block(0, List.<JCStatement>nil());
duke@1 2425 }
duke@1 2426
duke@1 2427 /** Translate an enum class. */
duke@1 2428 private void visitEnumDef(JCClassDecl tree) {
duke@1 2429 make_at(tree.pos());
duke@1 2430
duke@1 2431 // add the supertype, if needed
duke@1 2432 if (tree.extending == null)
duke@1 2433 tree.extending = make.Type(types.supertype(tree.type));
duke@1 2434
duke@1 2435 // classOfType adds a cache field to tree.defs unless
duke@1 2436 // target.hasClassLiterals().
duke@1 2437 JCExpression e_class = classOfType(tree.sym.type, tree.pos()).
duke@1 2438 setType(types.erasure(syms.classType));
duke@1 2439
duke@1 2440 // process each enumeration constant, adding implicit constructor parameters
duke@1 2441 int nextOrdinal = 0;
duke@1 2442 ListBuffer<JCExpression> values = new ListBuffer<JCExpression>();
duke@1 2443 ListBuffer<JCTree> enumDefs = new ListBuffer<JCTree>();
duke@1 2444 ListBuffer<JCTree> otherDefs = new ListBuffer<JCTree>();
duke@1 2445 for (List<JCTree> defs = tree.defs;
duke@1 2446 defs.nonEmpty();
duke@1 2447 defs=defs.tail) {
jjg@1127 2448 if (defs.head.hasTag(VARDEF) && (((JCVariableDecl) defs.head).mods.flags & ENUM) != 0) {
duke@1 2449 JCVariableDecl var = (JCVariableDecl)defs.head;
duke@1 2450 visitEnumConstantDef(var, nextOrdinal++);
duke@1 2451 values.append(make.QualIdent(var.sym));
duke@1 2452 enumDefs.append(var);
duke@1 2453 } else {
duke@1 2454 otherDefs.append(defs.head);
duke@1 2455 }
duke@1 2456 }
duke@1 2457
duke@1 2458 // private static final T[] #VALUES = { a, b, c };
duke@1 2459 Name valuesName = names.fromString(target.syntheticNameChar() + "VALUES");
duke@1 2460 while (tree.sym.members().lookup(valuesName).scope != null) // avoid name clash
duke@1 2461 valuesName = names.fromString(valuesName + "" + target.syntheticNameChar());
duke@1 2462 Type arrayType = new ArrayType(types.erasure(tree.type), syms.arrayClass);
duke@1 2463 VarSymbol valuesVar = new VarSymbol(PRIVATE|FINAL|STATIC|SYNTHETIC,
duke@1 2464 valuesName,
duke@1 2465 arrayType,
duke@1 2466 tree.type.tsym);
duke@1 2467 JCNewArray newArray = make.NewArray(make.Type(types.erasure(tree.type)),
duke@1 2468 List.<JCExpression>nil(),
duke@1 2469 values.toList());
duke@1 2470 newArray.type = arrayType;
duke@1 2471 enumDefs.append(make.VarDef(valuesVar, newArray));
duke@1 2472 tree.sym.members().enter(valuesVar);
duke@1 2473
duke@1 2474 Symbol valuesSym = lookupMethod(tree.pos(), names.values,
duke@1 2475 tree.type, List.<Type>nil());
jjg@86 2476 List<JCStatement> valuesBody;
jjg@86 2477 if (useClone()) {
jjg@86 2478 // return (T[]) $VALUES.clone();
jjg@86 2479 JCTypeCast valuesResult =
jjg@86 2480 make.TypeCast(valuesSym.type.getReturnType(),
jjg@86 2481 make.App(make.Select(make.Ident(valuesVar),
jjg@86 2482 syms.arrayCloneMethod)));
jjg@86 2483 valuesBody = List.<JCStatement>of(make.Return(valuesResult));
jjg@86 2484 } else {
jjg@86 2485 // template: T[] $result = new T[$values.length];
jjg@86 2486 Name resultName = names.fromString(target.syntheticNameChar() + "result");
jjg@86 2487 while (tree.sym.members().lookup(resultName).scope != null) // avoid name clash
jjg@86 2488 resultName = names.fromString(resultName + "" + target.syntheticNameChar());
jjg@86 2489 VarSymbol resultVar = new VarSymbol(FINAL|SYNTHETIC,
jjg@86 2490 resultName,
jjg@86 2491 arrayType,
jjg@86 2492 valuesSym);
jjg@86 2493 JCNewArray resultArray = make.NewArray(make.Type(types.erasure(tree.type)),
jjg@86 2494 List.of(make.Select(make.Ident(valuesVar), syms.lengthVar)),
jjg@86 2495 null);
jjg@86 2496 resultArray.type = arrayType;
jjg@86 2497 JCVariableDecl decl = make.VarDef(resultVar, resultArray);
jjg@86 2498
jjg@86 2499 // template: System.arraycopy($VALUES, 0, $result, 0, $VALUES.length);
jjg@86 2500 if (systemArraycopyMethod == null) {
jjg@86 2501 systemArraycopyMethod =
jjg@86 2502 new MethodSymbol(PUBLIC | STATIC,
jjg@86 2503 names.fromString("arraycopy"),
jjg@86 2504 new MethodType(List.<Type>of(syms.objectType,
jjg@86 2505 syms.intType,
jjg@86 2506 syms.objectType,
jjg@86 2507 syms.intType,
jjg@86 2508 syms.intType),
jjg@86 2509 syms.voidType,
jjg@86 2510 List.<Type>nil(),
jjg@86 2511 syms.methodClass),
jjg@86 2512 syms.systemType.tsym);
jjg@86 2513 }
jjg@86 2514 JCStatement copy =
jjg@86 2515 make.Exec(make.App(make.Select(make.Ident(syms.systemType.tsym),
jjg@86 2516 systemArraycopyMethod),
jjg@86 2517 List.of(make.Ident(valuesVar), make.Literal(0),
jjg@86 2518 make.Ident(resultVar), make.Literal(0),
jjg@86 2519 make.Select(make.Ident(valuesVar), syms.lengthVar))));
jjg@86 2520
jjg@86 2521 // template: return $result;
jjg@86 2522 JCStatement ret = make.Return(make.Ident(resultVar));
jjg@86 2523 valuesBody = List.<JCStatement>of(decl, copy, ret);
jjg@86 2524 }
jjg@86 2525
duke@1 2526 JCMethodDecl valuesDef =
jjg@86 2527 make.MethodDef((MethodSymbol)valuesSym, make.Block(0, valuesBody));
jjg@86 2528
duke@1 2529 enumDefs.append(valuesDef);
duke@1 2530
jjg@86 2531 if (debugLower)
jjg@86 2532 System.err.println(tree.sym + ".valuesDef = " + valuesDef);
jjg@86 2533
duke@1 2534 /** The template for the following code is:
duke@1 2535 *
duke@1 2536 * public static E valueOf(String name) {
duke@1 2537 * return (E)Enum.valueOf(E.class, name);
duke@1 2538 * }
duke@1 2539 *
duke@1 2540 * where E is tree.sym
duke@1 2541 */
duke@1 2542 MethodSymbol valueOfSym = lookupMethod(tree.pos(),
duke@1 2543 names.valueOf,
duke@1 2544 tree.sym.type,
duke@1 2545 List.of(syms.stringType));
jjg@816 2546 Assert.check((valueOfSym.flags() & STATIC) != 0);
duke@1 2547 VarSymbol nameArgSym = valueOfSym.params.head;
duke@1 2548 JCIdent nameVal = make.Ident(nameArgSym);
duke@1 2549 JCStatement enum_ValueOf =
duke@1 2550 make.Return(make.TypeCast(tree.sym.type,
duke@1 2551 makeCall(make.Ident(syms.enumSym),
duke@1 2552 names.valueOf,
duke@1 2553 List.of(e_class, nameVal))));
duke@1 2554 JCMethodDecl valueOf = make.MethodDef(valueOfSym,
duke@1 2555 make.Block(0, List.of(enum_ValueOf)));
duke@1 2556 nameVal.sym = valueOf.params.head.sym;
duke@1 2557 if (debugLower)
duke@1 2558 System.err.println(tree.sym + ".valueOf = " + valueOf);
duke@1 2559 enumDefs.append(valueOf);
duke@1 2560
duke@1 2561 enumDefs.appendList(otherDefs.toList());
duke@1 2562 tree.defs = enumDefs.toList();
duke@1 2563
duke@1 2564 // Add the necessary members for the EnumCompatibleMode
duke@1 2565 if (target.compilerBootstrap(tree.sym)) {
duke@1 2566 addEnumCompatibleMembers(tree);
duke@1 2567 }
duke@1 2568 }
jjg@86 2569 // where
jjg@86 2570 private MethodSymbol systemArraycopyMethod;
jjg@86 2571 private boolean useClone() {
jjg@86 2572 try {
jjg@86 2573 Scope.Entry e = syms.objectType.tsym.members().lookup(names.clone);
jjg@86 2574 return (e.sym != null);
jjg@86 2575 }
jjg@86 2576 catch (CompletionFailure e) {
jjg@86 2577 return false;
jjg@86 2578 }
jjg@86 2579 }
duke@1 2580
duke@1 2581 /** Translate an enumeration constant and its initializer. */
duke@1 2582 private void visitEnumConstantDef(JCVariableDecl var, int ordinal) {
duke@1 2583 JCNewClass varDef = (JCNewClass)var.init;
duke@1 2584 varDef.args = varDef.args.
duke@1 2585 prepend(makeLit(syms.intType, ordinal)).
duke@1 2586 prepend(makeLit(syms.stringType, var.name.toString()));
duke@1 2587 }
duke@1 2588
duke@1 2589 public void visitMethodDef(JCMethodDecl tree) {
duke@1 2590 if (tree.name == names.init && (currentClass.flags_field&ENUM) != 0) {
duke@1 2591 // Add "String $enum$name, int $enum$ordinal" to the beginning of the
duke@1 2592 // argument list for each constructor of an enum.
duke@1 2593 JCVariableDecl nameParam = make_at(tree.pos()).
duke@1 2594 Param(names.fromString(target.syntheticNameChar() +
duke@1 2595 "enum" + target.syntheticNameChar() + "name"),
duke@1 2596 syms.stringType, tree.sym);
duke@1 2597 nameParam.mods.flags |= SYNTHETIC; nameParam.sym.flags_field |= SYNTHETIC;
duke@1 2598 JCVariableDecl ordParam = make.
duke@1 2599 Param(names.fromString(target.syntheticNameChar() +
duke@1 2600 "enum" + target.syntheticNameChar() +
duke@1 2601 "ordinal"),
duke@1 2602 syms.intType, tree.sym);
duke@1 2603 ordParam.mods.flags |= SYNTHETIC; ordParam.sym.flags_field |= SYNTHETIC;
duke@1 2604
duke@1 2605 tree.params = tree.params.prepend(ordParam).prepend(nameParam);
duke@1 2606
duke@1 2607 MethodSymbol m = tree.sym;
mcimadamore@1565 2608 m.extraParams = m.extraParams.prepend(ordParam.sym);
mcimadamore@1565 2609 m.extraParams = m.extraParams.prepend(nameParam.sym);
duke@1 2610 Type olderasure = m.erasure(types);
duke@1 2611 m.erasure_field = new MethodType(
duke@1 2612 olderasure.getParameterTypes().prepend(syms.intType).prepend(syms.stringType),
duke@1 2613 olderasure.getReturnType(),
duke@1 2614 olderasure.getThrownTypes(),
duke@1 2615 syms.methodClass);
duke@1 2616
duke@1 2617 if (target.compilerBootstrap(m.owner)) {
duke@1 2618 // Initialize synthetic name field
duke@1 2619 Symbol nameVarSym = lookupSynthetic(names.fromString("$name"),
duke@1 2620 tree.sym.owner.members());
duke@1 2621 JCIdent nameIdent = make.Ident(nameParam.sym);
duke@1 2622 JCIdent id1 = make.Ident(nameVarSym);
duke@1 2623 JCAssign newAssign = make.Assign(id1, nameIdent);
duke@1 2624 newAssign.type = id1.type;
duke@1 2625 JCExpressionStatement nameAssign = make.Exec(newAssign);
duke@1 2626 nameAssign.type = id1.type;
duke@1 2627 tree.body.stats = tree.body.stats.prepend(nameAssign);
duke@1 2628
duke@1 2629 // Initialize synthetic ordinal field
duke@1 2630 Symbol ordinalVarSym = lookupSynthetic(names.fromString("$ordinal"),
duke@1 2631 tree.sym.owner.members());
duke@1 2632 JCIdent ordIdent = make.Ident(ordParam.sym);
duke@1 2633 id1 = make.Ident(ordinalVarSym);
duke@1 2634 newAssign = make.Assign(id1, ordIdent);
duke@1 2635 newAssign.type = id1.type;
duke@1 2636 JCExpressionStatement ordinalAssign = make.Exec(newAssign);
duke@1 2637 ordinalAssign.type = id1.type;
duke@1 2638 tree.body.stats = tree.body.stats.prepend(ordinalAssign);
duke@1 2639 }
duke@1 2640 }
duke@1 2641
duke@1 2642 JCMethodDecl prevMethodDef = currentMethodDef;
duke@1 2643 MethodSymbol prevMethodSym = currentMethodSym;
duke@1 2644 try {
duke@1 2645 currentMethodDef = tree;
duke@1 2646 currentMethodSym = tree.sym;
duke@1 2647 visitMethodDefInternal(tree);
duke@1 2648 } finally {
duke@1 2649 currentMethodDef = prevMethodDef;
duke@1 2650 currentMethodSym = prevMethodSym;
duke@1 2651 }
duke@1 2652 }
duke@1 2653 //where
duke@1 2654 private void visitMethodDefInternal(JCMethodDecl tree) {
duke@1 2655 if (tree.name == names.init &&
duke@1 2656 (currentClass.isInner() ||
duke@1 2657 (currentClass.owner.kind & (VAR | MTH)) != 0)) {
duke@1 2658 // We are seeing a constructor of an inner class.
duke@1 2659 MethodSymbol m = tree.sym;
duke@1 2660
duke@1 2661 // Push a new proxy scope for constructor parameters.
duke@1 2662 // and create definitions for any this$n and proxy parameters.
duke@1 2663 proxies = proxies.dup(m);
duke@1 2664 List<VarSymbol> prevOuterThisStack = outerThisStack;
duke@1 2665 List<VarSymbol> fvs = freevars(currentClass);
duke@1 2666 JCVariableDecl otdef = null;
duke@1 2667 if (currentClass.hasOuterInstance())
duke@1 2668 otdef = outerThisDef(tree.pos, m);
duke@1 2669 List<JCVariableDecl> fvdefs = freevarDefs(tree.pos, fvs, m);
duke@1 2670
duke@1 2671 // Recursively translate result type, parameters and thrown list.
duke@1 2672 tree.restype = translate(tree.restype);
duke@1 2673 tree.params = translateVarDefs(tree.params);
duke@1 2674 tree.thrown = translate(tree.thrown);
duke@1 2675
duke@1 2676 // when compiling stubs, don't process body
duke@1 2677 if (tree.body == null) {
duke@1 2678 result = tree;
duke@1 2679 return;
duke@1 2680 }
duke@1 2681
duke@1 2682 // Add this$n (if needed) in front of and free variables behind
duke@1 2683 // constructor parameter list.
duke@1 2684 tree.params = tree.params.appendList(fvdefs);
duke@1 2685 if (currentClass.hasOuterInstance())
duke@1 2686 tree.params = tree.params.prepend(otdef);
duke@1 2687
duke@1 2688 // If this is an initial constructor, i.e., it does not start with
duke@1 2689 // this(...), insert initializers for this$n and proxies
duke@1 2690 // before (pre-1.4, after) the call to superclass constructor.
duke@1 2691 JCStatement selfCall = translate(tree.body.stats.head);
duke@1 2692
duke@1 2693 List<JCStatement> added = List.nil();
duke@1 2694 if (fvs.nonEmpty()) {
duke@1 2695 List<Type> addedargtypes = List.nil();
duke@1 2696 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
duke@1 2697 if (TreeInfo.isInitialConstructor(tree))
duke@1 2698 added = added.prepend(
duke@1 2699 initField(tree.body.pos, proxyName(l.head.name)));
duke@1 2700 addedargtypes = addedargtypes.prepend(l.head.erasure(types));
duke@1 2701 }
duke@1 2702 Type olderasure = m.erasure(types);
duke@1 2703 m.erasure_field = new MethodType(
duke@1 2704 olderasure.getParameterTypes().appendList(addedargtypes),
duke@1 2705 olderasure.getReturnType(),
duke@1 2706 olderasure.getThrownTypes(),
duke@1 2707 syms.methodClass);
duke@1 2708 }
duke@1 2709 if (currentClass.hasOuterInstance() &&
duke@1 2710 TreeInfo.isInitialConstructor(tree))
duke@1 2711 {
duke@1 2712 added = added.prepend(initOuterThis(tree.body.pos));
duke@1 2713 }
duke@1 2714
duke@1 2715 // pop local variables from proxy stack
duke@1 2716 proxies = proxies.leave();
duke@1 2717
duke@1 2718 // recursively translate following local statements and
duke@1 2719 // combine with this- or super-call
duke@1 2720 List<JCStatement> stats = translate(tree.body.stats.tail);
duke@1 2721 if (target.initializeFieldsBeforeSuper())
duke@1 2722 tree.body.stats = stats.prepend(selfCall).prependList(added);
duke@1 2723 else
duke@1 2724 tree.body.stats = stats.prependList(added).prepend(selfCall);
duke@1 2725
duke@1 2726 outerThisStack = prevOuterThisStack;
duke@1 2727 } else {
duke@1 2728 super.visitMethodDef(tree);
duke@1 2729 }
duke@1 2730 result = tree;
duke@1 2731 }
duke@1 2732
jjg@1521 2733 public void visitAnnotatedType(JCAnnotatedType tree) {
jjg@1521 2734 // No need to retain type annotations any longer.
jjg@1521 2735 // tree.annotations = translate(tree.annotations);
jjg@1521 2736 tree.underlyingType = translate(tree.underlyingType);
jjg@1521 2737 result = tree.underlyingType;
jjg@1521 2738 }
jjg@1521 2739
duke@1 2740 public void visitTypeCast(JCTypeCast tree) {
duke@1 2741 tree.clazz = translate(tree.clazz);
duke@1 2742 if (tree.type.isPrimitive() != tree.expr.type.isPrimitive())
duke@1 2743 tree.expr = translate(tree.expr, tree.type);
duke@1 2744 else
duke@1 2745 tree.expr = translate(tree.expr);
duke@1 2746 result = tree;
duke@1 2747 }
duke@1 2748
duke@1 2749 public void visitNewClass(JCNewClass tree) {
duke@1 2750 ClassSymbol c = (ClassSymbol)tree.constructor.owner;
duke@1 2751
duke@1 2752 // Box arguments, if necessary
duke@1 2753 boolean isEnum = (tree.constructor.owner.flags() & ENUM) != 0;
duke@1 2754 List<Type> argTypes = tree.constructor.type.getParameterTypes();
duke@1 2755 if (isEnum) argTypes = argTypes.prepend(syms.intType).prepend(syms.stringType);
duke@1 2756 tree.args = boxArgs(argTypes, tree.args, tree.varargsElement);
duke@1 2757 tree.varargsElement = null;
duke@1 2758
duke@1 2759 // If created class is local, add free variables after
duke@1 2760 // explicit constructor arguments.
duke@1 2761 if ((c.owner.kind & (VAR | MTH)) != 0) {
duke@1 2762 tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
duke@1 2763 }
duke@1 2764
duke@1 2765 // If an access constructor is used, append null as a last argument.
duke@1 2766 Symbol constructor = accessConstructor(tree.pos(), tree.constructor);
duke@1 2767 if (constructor != tree.constructor) {
duke@1 2768 tree.args = tree.args.append(makeNull());
duke@1 2769 tree.constructor = constructor;
duke@1 2770 }
duke@1 2771
duke@1 2772 // If created class has an outer instance, and new is qualified, pass
duke@1 2773 // qualifier as first argument. If new is not qualified, pass the
duke@1 2774 // correct outer instance as first argument.
duke@1 2775 if (c.hasOuterInstance()) {
duke@1 2776 JCExpression thisArg;
duke@1 2777 if (tree.encl != null) {
duke@1 2778 thisArg = attr.makeNullCheck(translate(tree.encl));
duke@1 2779 thisArg.type = tree.encl.type;
duke@1 2780 } else if ((c.owner.kind & (MTH | VAR)) != 0) {
duke@1 2781 // local class
duke@1 2782 thisArg = makeThis(tree.pos(), c.type.getEnclosingType().tsym);
duke@1 2783 } else {
duke@1 2784 // nested class
duke@1 2785 thisArg = makeOwnerThis(tree.pos(), c, false);
duke@1 2786 }
duke@1 2787 tree.args = tree.args.prepend(thisArg);
duke@1 2788 }
duke@1 2789 tree.encl = null;
duke@1 2790
duke@1 2791 // If we have an anonymous class, create its flat version, rather
duke@1 2792 // than the class or interface following new.
duke@1 2793 if (tree.def != null) {
duke@1 2794 translate(tree.def);
duke@1 2795 tree.clazz = access(make_at(tree.clazz.pos()).Ident(tree.def.sym));
duke@1 2796 tree.def = null;
duke@1 2797 } else {
duke@1 2798 tree.clazz = access(c, tree.clazz, enclOp, false);
duke@1 2799 }
duke@1 2800 result = tree;
duke@1 2801 }
duke@1 2802
duke@1 2803 // Simplify conditionals with known constant controlling expressions.
duke@1 2804 // This allows us to avoid generating supporting declarations for
duke@1 2805 // the dead code, which will not be eliminated during code generation.
duke@1 2806 // Note that Flow.isFalse and Flow.isTrue only return true
duke@1 2807 // for constant expressions in the sense of JLS 15.27, which
darcy@430 2808 // are guaranteed to have no side-effects. More aggressive
duke@1 2809 // constant propagation would require that we take care to
duke@1 2810 // preserve possible side-effects in the condition expression.
duke@1 2811
duke@1 2812 /** Visitor method for conditional expressions.
duke@1 2813 */
vromero@1432 2814 @Override
duke@1 2815 public void visitConditional(JCConditional tree) {
duke@1 2816 JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
duke@1 2817 if (cond.type.isTrue()) {
duke@1 2818 result = convert(translate(tree.truepart, tree.type), tree.type);
vromero@1432 2819 addPrunedInfo(cond);
duke@1 2820 } else if (cond.type.isFalse()) {
duke@1 2821 result = convert(translate(tree.falsepart, tree.type), tree.type);
vromero@1432 2822 addPrunedInfo(cond);
duke@1 2823 } else {
duke@1 2824 // Condition is not a compile-time constant.
duke@1 2825 tree.truepart = translate(tree.truepart, tree.type);
duke@1 2826 tree.falsepart = translate(tree.falsepart, tree.type);
duke@1 2827 result = tree;
duke@1 2828 }
duke@1 2829 }
duke@1 2830 //where
vromero@1432 2831 private JCTree convert(JCTree tree, Type pt) {
vromero@1432 2832 if (tree.type == pt || tree.type.hasTag(BOT))
vromero@1432 2833 return tree;
vromero@1432 2834 JCTree result = make_at(tree.pos()).TypeCast(make.Type(pt), (JCExpression)tree);
vromero@1432 2835 result.type = (tree.type.constValue() != null) ? cfolder.coerce(tree.type, pt)
vromero@1432 2836 : pt;
vromero@1432 2837 return result;
vromero@1432 2838 }
duke@1 2839
duke@1 2840 /** Visitor method for if statements.
duke@1 2841 */
duke@1 2842 public void visitIf(JCIf tree) {
duke@1 2843 JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
duke@1 2844 if (cond.type.isTrue()) {
duke@1 2845 result = translate(tree.thenpart);
vromero@1432 2846 addPrunedInfo(cond);
duke@1 2847 } else if (cond.type.isFalse()) {
duke@1 2848 if (tree.elsepart != null) {
duke@1 2849 result = translate(tree.elsepart);
duke@1 2850 } else {
duke@1 2851 result = make.Skip();
duke@1 2852 }
vromero@1432 2853 addPrunedInfo(cond);
duke@1 2854 } else {
duke@1 2855 // Condition is not a compile-time constant.
duke@1 2856 tree.thenpart = translate(tree.thenpart);
duke@1 2857 tree.elsepart = translate(tree.elsepart);
duke@1 2858 result = tree;
duke@1 2859 }
duke@1 2860 }
duke@1 2861
duke@1 2862 /** Visitor method for assert statements. Translate them away.
duke@1 2863 */
duke@1 2864 public void visitAssert(JCAssert tree) {
duke@1 2865 DiagnosticPosition detailPos = (tree.detail == null) ? tree.pos() : tree.detail.pos();
duke@1 2866 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 2867 if (!tree.cond.type.isTrue()) {
duke@1 2868 JCExpression cond = assertFlagTest(tree.pos());
duke@1 2869 List<JCExpression> exnArgs = (tree.detail == null) ?
duke@1 2870 List.<JCExpression>nil() : List.of(translate(tree.detail));
duke@1 2871 if (!tree.cond.type.isFalse()) {
duke@1 2872 cond = makeBinary
jjg@1127 2873 (AND,
duke@1 2874 cond,
jjg@1127 2875 makeUnary(NOT, tree.cond));
duke@1 2876 }
duke@1 2877 result =
duke@1 2878 make.If(cond,
duke@1 2879 make_at(detailPos).
duke@1 2880 Throw(makeNewClass(syms.assertionErrorType, exnArgs)),
duke@1 2881 null);
duke@1 2882 } else {
duke@1 2883 result = make.Skip();
duke@1 2884 }
duke@1 2885 }
duke@1 2886
duke@1 2887 public void visitApply(JCMethodInvocation tree) {
duke@1 2888 Symbol meth = TreeInfo.symbol(tree.meth);
duke@1 2889 List<Type> argtypes = meth.type.getParameterTypes();
duke@1 2890 if (allowEnums &&
duke@1 2891 meth.name==names.init &&
duke@1 2892 meth.owner == syms.enumSym)
duke@1 2893 argtypes = argtypes.tail.tail;
duke@1 2894 tree.args = boxArgs(argtypes, tree.args, tree.varargsElement);
duke@1 2895 tree.varargsElement = null;
duke@1 2896 Name methName = TreeInfo.name(tree.meth);
duke@1 2897 if (meth.name==names.init) {
duke@1 2898 // We are seeing a this(...) or super(...) constructor call.
duke@1 2899 // If an access constructor is used, append null as a last argument.
duke@1 2900 Symbol constructor = accessConstructor(tree.pos(), meth);
duke@1 2901 if (constructor != meth) {
duke@1 2902 tree.args = tree.args.append(makeNull());
duke@1 2903 TreeInfo.setSymbol(tree.meth, constructor);
duke@1 2904 }
duke@1 2905
duke@1 2906 // If we are calling a constructor of a local class, add
duke@1 2907 // free variables after explicit constructor arguments.
duke@1 2908 ClassSymbol c = (ClassSymbol)constructor.owner;
duke@1 2909 if ((c.owner.kind & (VAR | MTH)) != 0) {
duke@1 2910 tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
duke@1 2911 }
duke@1 2912
duke@1 2913 // If we are calling a constructor of an enum class, pass
duke@1 2914 // along the name and ordinal arguments
duke@1 2915 if ((c.flags_field&ENUM) != 0 || c.getQualifiedName() == names.java_lang_Enum) {
duke@1 2916 List<JCVariableDecl> params = currentMethodDef.params;
duke@1 2917 if (currentMethodSym.owner.hasOuterInstance())
duke@1 2918 params = params.tail; // drop this$n
duke@1 2919 tree.args = tree.args
duke@1 2920 .prepend(make_at(tree.pos()).Ident(params.tail.head.sym)) // ordinal
duke@1 2921 .prepend(make.Ident(params.head.sym)); // name
duke@1 2922 }
duke@1 2923
duke@1 2924 // If we are calling a constructor of a class with an outer
duke@1 2925 // instance, and the call
duke@1 2926 // is qualified, pass qualifier as first argument in front of
duke@1 2927 // the explicit constructor arguments. If the call
duke@1 2928 // is not qualified, pass the correct outer instance as
duke@1 2929 // first argument.
duke@1 2930 if (c.hasOuterInstance()) {
duke@1 2931 JCExpression thisArg;
jjg@1127 2932 if (tree.meth.hasTag(SELECT)) {
duke@1 2933 thisArg = attr.
duke@1 2934 makeNullCheck(translate(((JCFieldAccess) tree.meth).selected));
duke@1 2935 tree.meth = make.Ident(constructor);
duke@1 2936 ((JCIdent) tree.meth).name = methName;
duke@1 2937 } else if ((c.owner.kind & (MTH | VAR)) != 0 || methName == names._this){
duke@1 2938 // local class or this() call
duke@1 2939 thisArg = makeThis(tree.meth.pos(), c.type.getEnclosingType().tsym);
duke@1 2940 } else {
mcimadamore@901 2941 // super() call of nested class - never pick 'this'
mcimadamore@901 2942 thisArg = makeOwnerThisN(tree.meth.pos(), c, false);
duke@1 2943 }
duke@1 2944 tree.args = tree.args.prepend(thisArg);
duke@1 2945 }
duke@1 2946 } else {
duke@1 2947 // We are seeing a normal method invocation; translate this as usual.
duke@1 2948 tree.meth = translate(tree.meth);
duke@1 2949
duke@1 2950 // If the translated method itself is an Apply tree, we are
duke@1 2951 // seeing an access method invocation. In this case, append
duke@1 2952 // the method arguments to the arguments of the access method.
jjg@1127 2953 if (tree.meth.hasTag(APPLY)) {
duke@1 2954 JCMethodInvocation app = (JCMethodInvocation)tree.meth;
duke@1 2955 app.args = tree.args.prependList(app.args);
duke@1 2956 result = app;
duke@1 2957 return;
duke@1 2958 }
duke@1 2959 }
duke@1 2960 result = tree;
duke@1 2961 }
duke@1 2962
duke@1 2963 List<JCExpression> boxArgs(List<Type> parameters, List<JCExpression> _args, Type varargsElement) {
duke@1 2964 List<JCExpression> args = _args;
duke@1 2965 if (parameters.isEmpty()) return args;
duke@1 2966 boolean anyChanges = false;
duke@1 2967 ListBuffer<JCExpression> result = new ListBuffer<JCExpression>();
duke@1 2968 while (parameters.tail.nonEmpty()) {
duke@1 2969 JCExpression arg = translate(args.head, parameters.head);
duke@1 2970 anyChanges |= (arg != args.head);
duke@1 2971 result.append(arg);
duke@1 2972 args = args.tail;
duke@1 2973 parameters = parameters.tail;
duke@1 2974 }
duke@1 2975 Type parameter = parameters.head;
duke@1 2976 if (varargsElement != null) {
duke@1 2977 anyChanges = true;
duke@1 2978 ListBuffer<JCExpression> elems = new ListBuffer<JCExpression>();
duke@1 2979 while (args.nonEmpty()) {
duke@1 2980 JCExpression arg = translate(args.head, varargsElement);
duke@1 2981 elems.append(arg);
duke@1 2982 args = args.tail;
duke@1 2983 }
duke@1 2984 JCNewArray boxedArgs = make.NewArray(make.Type(varargsElement),
duke@1 2985 List.<JCExpression>nil(),
duke@1 2986 elems.toList());
duke@1 2987 boxedArgs.type = new ArrayType(varargsElement, syms.arrayClass);
duke@1 2988 result.append(boxedArgs);
duke@1 2989 } else {
duke@1 2990 if (args.length() != 1) throw new AssertionError(args);
duke@1 2991 JCExpression arg = translate(args.head, parameter);
duke@1 2992 anyChanges |= (arg != args.head);
duke@1 2993 result.append(arg);
duke@1 2994 if (!anyChanges) return _args;
duke@1 2995 }
duke@1 2996 return result.toList();
duke@1 2997 }
duke@1 2998
duke@1 2999 /** Expand a boxing or unboxing conversion if needed. */
duke@1 3000 @SuppressWarnings("unchecked") // XXX unchecked
duke@1 3001 <T extends JCTree> T boxIfNeeded(T tree, Type type) {
duke@1 3002 boolean havePrimitive = tree.type.isPrimitive();
duke@1 3003 if (havePrimitive == type.isPrimitive())
duke@1 3004 return tree;
duke@1 3005 if (havePrimitive) {
duke@1 3006 Type unboxedTarget = types.unboxedType(type);
jjg@1374 3007 if (!unboxedTarget.hasTag(NONE)) {
mcimadamore@253 3008 if (!types.isSubtype(tree.type, unboxedTarget)) //e.g. Character c = 89;
mcimadamore@253 3009 tree.type = unboxedTarget.constType(tree.type.constValue());
duke@1 3010 return (T)boxPrimitive((JCExpression)tree, type);
duke@1 3011 } else {
duke@1 3012 tree = (T)boxPrimitive((JCExpression)tree);
duke@1 3013 }
duke@1 3014 } else {
duke@1 3015 tree = (T)unbox((JCExpression)tree, type);
duke@1 3016 }
duke@1 3017 return tree;
duke@1 3018 }
duke@1 3019
duke@1 3020 /** Box up a single primitive expression. */
duke@1 3021 JCExpression boxPrimitive(JCExpression tree) {
duke@1 3022 return boxPrimitive(tree, types.boxedClass(tree.type).type);
duke@1 3023 }
duke@1 3024
duke@1 3025 /** Box up a single primitive expression. */
duke@1 3026 JCExpression boxPrimitive(JCExpression tree, Type box) {
duke@1 3027 make_at(tree.pos());
duke@1 3028 if (target.boxWithConstructors()) {
duke@1 3029 Symbol ctor = lookupConstructor(tree.pos(),
duke@1 3030 box,
duke@1 3031 List.<Type>nil()
duke@1 3032 .prepend(tree.type));
duke@1 3033 return make.Create(ctor, List.of(tree));
duke@1 3034 } else {
duke@1 3035 Symbol valueOfSym = lookupMethod(tree.pos(),
duke@1 3036 names.valueOf,
duke@1 3037 box,
duke@1 3038 List.<Type>nil()
duke@1 3039 .prepend(tree.type));
duke@1 3040 return make.App(make.QualIdent(valueOfSym), List.of(tree));
duke@1 3041 }
duke@1 3042 }
duke@1 3043
duke@1 3044 /** Unbox an object to a primitive value. */
duke@1 3045 JCExpression unbox(JCExpression tree, Type primitive) {
duke@1 3046 Type unboxedType = types.unboxedType(tree.type);
jjg@1374 3047 if (unboxedType.hasTag(NONE)) {
jrose@665 3048 unboxedType = primitive;
jrose@665 3049 if (!unboxedType.isPrimitive())
jrose@665 3050 throw new AssertionError(unboxedType);
jrose@665 3051 make_at(tree.pos());
jrose@665 3052 tree = make.TypeCast(types.boxedClass(unboxedType).type, tree);
jrose@665 3053 } else {
jrose@665 3054 // There must be a conversion from unboxedType to primitive.
jrose@665 3055 if (!types.isSubtype(unboxedType, primitive))
jrose@665 3056 throw new AssertionError(tree);
jrose@665 3057 }
duke@1 3058 make_at(tree.pos());
duke@1 3059 Symbol valueSym = lookupMethod(tree.pos(),
duke@1 3060 unboxedType.tsym.name.append(names.Value), // x.intValue()
duke@1 3061 tree.type,
duke@1 3062 List.<Type>nil());
duke@1 3063 return make.App(make.Select(tree, valueSym));
duke@1 3064 }
duke@1 3065
duke@1 3066 /** Visitor method for parenthesized expressions.
duke@1 3067 * If the subexpression has changed, omit the parens.
duke@1 3068 */
duke@1 3069 public void visitParens(JCParens tree) {
duke@1 3070 JCTree expr = translate(tree.expr);
duke@1 3071 result = ((expr == tree.expr) ? tree : expr);
duke@1 3072 }
duke@1 3073
duke@1 3074 public void visitIndexed(JCArrayAccess tree) {
duke@1 3075 tree.indexed = translate(tree.indexed);
duke@1 3076 tree.index = translate(tree.index, syms.intType);
duke@1 3077 result = tree;
duke@1 3078 }
duke@1 3079
duke@1 3080 public void visitAssign(JCAssign tree) {
duke@1 3081 tree.lhs = translate(tree.lhs, tree);
duke@1 3082 tree.rhs = translate(tree.rhs, tree.lhs.type);
duke@1 3083
duke@1 3084 // If translated left hand side is an Apply, we are
duke@1 3085 // seeing an access method invocation. In this case, append
duke@1 3086 // right hand side as last argument of the access method.
jjg@1127 3087 if (tree.lhs.hasTag(APPLY)) {
duke@1 3088 JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
duke@1 3089 app.args = List.of(tree.rhs).prependList(app.args);
duke@1 3090 result = app;
duke@1 3091 } else {
duke@1 3092 result = tree;
duke@1 3093 }
duke@1 3094 }
duke@1 3095
duke@1 3096 public void visitAssignop(final JCAssignOp tree) {
vromero@1557 3097 final boolean boxingReq = !tree.lhs.type.isPrimitive() &&
vromero@1557 3098 tree.operator.type.getReturnType().isPrimitive();
vromero@1557 3099
vromero@1557 3100 // boxing required; need to rewrite as x = (unbox typeof x)(x op y);
vromero@1557 3101 // or if x == (typeof x)z then z = (unbox typeof x)((typeof x)z op y)
vromero@1557 3102 // (but without recomputing x)
vromero@1557 3103 JCTree newTree = abstractLval(tree.lhs, new TreeBuilder() {
vromero@1557 3104 public JCTree build(final JCTree lhs) {
vromero@1557 3105 JCTree.Tag newTag = tree.getTag().noAssignOp();
vromero@1557 3106 // Erasure (TransTypes) can change the type of
vromero@1557 3107 // tree.lhs. However, we can still get the
vromero@1557 3108 // unerased type of tree.lhs as it is stored
vromero@1557 3109 // in tree.type in Attr.
vromero@1557 3110 Symbol newOperator = rs.resolveBinaryOperator(tree.pos(),
vromero@1557 3111 newTag,
vromero@1557 3112 attrEnv,
vromero@1557 3113 tree.type,
vromero@1557 3114 tree.rhs.type);
vromero@1557 3115 JCExpression expr = (JCExpression)lhs;
vromero@1557 3116 if (expr.type != tree.type)
vromero@1557 3117 expr = make.TypeCast(tree.type, expr);
vromero@1557 3118 JCBinary opResult = make.Binary(newTag, expr, tree.rhs);
vromero@1557 3119 opResult.operator = newOperator;
vromero@1557 3120 opResult.type = newOperator.type.getReturnType();
vromero@1557 3121 JCExpression newRhs = boxingReq ?
vromero@1557 3122 make.TypeCast(types.unboxedType(tree.type),
vromero@1557 3123 opResult) :
vromero@1557 3124 opResult;
vromero@1557 3125 return make.Assign((JCExpression)lhs, newRhs).setType(tree.type);
vromero@1557 3126 }
vromero@1557 3127 });
vromero@1557 3128 result = translate(newTree);
duke@1 3129 }
duke@1 3130
duke@1 3131 /** Lower a tree of the form e++ or e-- where e is an object type */
duke@1 3132 JCTree lowerBoxedPostop(final JCUnary tree) {
duke@1 3133 // translate to tmp1=lval(e); tmp2=tmp1; tmp1 OP 1; tmp2
duke@1 3134 // or
duke@1 3135 // translate to tmp1=lval(e); tmp2=tmp1; (typeof tree)tmp1 OP 1; tmp2
duke@1 3136 // where OP is += or -=
jjg@1127 3137 final boolean cast = TreeInfo.skipParens(tree.arg).hasTag(TYPECAST);
mcimadamore@133 3138 return abstractLval(tree.arg, new TreeBuilder() {
duke@1 3139 public JCTree build(final JCTree tmp1) {
duke@1 3140 return abstractRval(tmp1, tree.arg.type, new TreeBuilder() {
duke@1 3141 public JCTree build(final JCTree tmp2) {
jjg@1127 3142 JCTree.Tag opcode = (tree.hasTag(POSTINC))
jjg@1127 3143 ? PLUS_ASG : MINUS_ASG;
duke@1 3144 JCTree lhs = cast
duke@1 3145 ? make.TypeCast(tree.arg.type, (JCExpression)tmp1)
duke@1 3146 : tmp1;
duke@1 3147 JCTree update = makeAssignop(opcode,
duke@1 3148 lhs,
duke@1 3149 make.Literal(1));
duke@1 3150 return makeComma(update, tmp2);
duke@1 3151 }
duke@1 3152 });
duke@1 3153 }
duke@1 3154 });
duke@1 3155 }
duke@1 3156
duke@1 3157 public void visitUnary(JCUnary tree) {
jjg@1127 3158 boolean isUpdateOperator = tree.getTag().isIncOrDecUnaryOp();
duke@1 3159 if (isUpdateOperator && !tree.arg.type.isPrimitive()) {
duke@1 3160 switch(tree.getTag()) {
jjg@1127 3161 case PREINC: // ++ e
duke@1 3162 // translate to e += 1
jjg@1127 3163 case PREDEC: // -- e
duke@1 3164 // translate to e -= 1
duke@1 3165 {
jjg@1127 3166 JCTree.Tag opcode = (tree.hasTag(PREINC))
jjg@1127 3167 ? PLUS_ASG : MINUS_ASG;
duke@1 3168 JCAssignOp newTree = makeAssignop(opcode,
duke@1 3169 tree.arg,
duke@1 3170 make.Literal(1));
duke@1 3171 result = translate(newTree, tree.type);
duke@1 3172 return;
duke@1 3173 }
jjg@1127 3174 case POSTINC: // e ++
jjg@1127 3175 case POSTDEC: // e --
duke@1 3176 {
duke@1 3177 result = translate(lowerBoxedPostop(tree), tree.type);
duke@1 3178 return;
duke@1 3179 }
duke@1 3180 }
duke@1 3181 throw new AssertionError(tree);
duke@1 3182 }
duke@1 3183
duke@1 3184 tree.arg = boxIfNeeded(translate(tree.arg, tree), tree.type);
duke@1 3185
jjg@1127 3186 if (tree.hasTag(NOT) && tree.arg.type.constValue() != null) {
duke@1 3187 tree.type = cfolder.fold1(bool_not, tree.arg.type);
duke@1 3188 }
duke@1 3189
duke@1 3190 // If translated left hand side is an Apply, we are
duke@1 3191 // seeing an access method invocation. In this case, return
darcy@430 3192 // that access method invocation as result.
jjg@1127 3193 if (isUpdateOperator && tree.arg.hasTag(APPLY)) {
duke@1 3194 result = tree.arg;
duke@1 3195 } else {
duke@1 3196 result = tree;
duke@1 3197 }
duke@1 3198 }
duke@1 3199
duke@1 3200 public void visitBinary(JCBinary tree) {
duke@1 3201 List<Type> formals = tree.operator.type.getParameterTypes();
duke@1 3202 JCTree lhs = tree.lhs = translate(tree.lhs, formals.head);
duke@1 3203 switch (tree.getTag()) {
jjg@1127 3204 case OR:
duke@1 3205 if (lhs.type.isTrue()) {
duke@1 3206 result = lhs;
duke@1 3207 return;
duke@1 3208 }
duke@1 3209 if (lhs.type.isFalse()) {
duke@1 3210 result = translate(tree.rhs, formals.tail.head);
duke@1 3211 return;
duke@1 3212 }
duke@1 3213 break;
jjg@1127 3214 case AND:
duke@1 3215 if (lhs.type.isFalse()) {
duke@1 3216 result = lhs;
duke@1 3217 return;
duke@1 3218 }
duke@1 3219 if (lhs.type.isTrue()) {
duke@1 3220 result = translate(tree.rhs, formals.tail.head);
duke@1 3221 return;
duke@1 3222 }
duke@1 3223 break;
duke@1 3224 }
duke@1 3225 tree.rhs = translate(tree.rhs, formals.tail.head);
duke@1 3226 result = tree;
duke@1 3227 }
duke@1 3228
duke@1 3229 public void visitIdent(JCIdent tree) {
duke@1 3230 result = access(tree.sym, tree, enclOp, false);
duke@1 3231 }
duke@1 3232
duke@1 3233 /** Translate away the foreach loop. */
duke@1 3234 public void visitForeachLoop(JCEnhancedForLoop tree) {
duke@1 3235 if (types.elemtype(tree.expr.type) == null)
duke@1 3236 visitIterableForeachLoop(tree);
duke@1 3237 else
duke@1 3238 visitArrayForeachLoop(tree);
duke@1 3239 }
duke@1 3240 // where
duke@1 3241 /**
darcy@430 3242 * A statement of the form
duke@1 3243 *
duke@1 3244 * <pre>
duke@1 3245 * for ( T v : arrayexpr ) stmt;
duke@1 3246 * </pre>
duke@1 3247 *
duke@1 3248 * (where arrayexpr is of an array type) gets translated to
duke@1 3249 *
jjg@1326 3250 * <pre>{@code
duke@1 3251 * for ( { arraytype #arr = arrayexpr;
duke@1 3252 * int #len = array.length;
duke@1 3253 * int #i = 0; };
duke@1 3254 * #i < #len; i$++ ) {
duke@1 3255 * T v = arr$[#i];
duke@1 3256 * stmt;
duke@1 3257 * }
jjg@1326 3258 * }</pre>
duke@1 3259 *
duke@1 3260 * where #arr, #len, and #i are freshly named synthetic local variables.
duke@1 3261 */
duke@1 3262 private void visitArrayForeachLoop(JCEnhancedForLoop tree) {
duke@1 3263 make_at(tree.expr.pos());
duke@1 3264 VarSymbol arraycache = new VarSymbol(0,
duke@1 3265 names.fromString("arr" + target.syntheticNameChar()),
duke@1 3266 tree.expr.type,
duke@1 3267 currentMethodSym);
duke@1 3268 JCStatement arraycachedef = make.VarDef(arraycache, tree.expr);
duke@1 3269 VarSymbol lencache = new VarSymbol(0,
duke@1 3270 names.fromString("len" + target.syntheticNameChar()),
duke@1 3271 syms.intType,
duke@1 3272 currentMethodSym);
duke@1 3273 JCStatement lencachedef = make.
duke@1 3274 VarDef(lencache, make.Select(make.Ident(arraycache), syms.lengthVar));
duke@1 3275 VarSymbol index = new VarSymbol(0,
duke@1 3276 names.fromString("i" + target.syntheticNameChar()),
duke@1 3277 syms.intType,
duke@1 3278 currentMethodSym);
duke@1 3279
duke@1 3280 JCVariableDecl indexdef = make.VarDef(index, make.Literal(INT, 0));
duke@1 3281 indexdef.init.type = indexdef.type = syms.intType.constType(0);
duke@1 3282
duke@1 3283 List<JCStatement> loopinit = List.of(arraycachedef, lencachedef, indexdef);
jjg@1127 3284 JCBinary cond = makeBinary(LT, make.Ident(index), make.Ident(lencache));
jjg@1127 3285
jjg@1127 3286 JCExpressionStatement step = make.Exec(makeUnary(PREINC, make.Ident(index)));
duke@1 3287
duke@1 3288 Type elemtype = types.elemtype(tree.expr.type);
mcimadamore@33 3289 JCExpression loopvarinit = make.Indexed(make.Ident(arraycache),
mcimadamore@33 3290 make.Ident(index)).setType(elemtype);
mcimadamore@33 3291 JCVariableDecl loopvardef = (JCVariableDecl)make.VarDef(tree.var.mods,
mcimadamore@33 3292 tree.var.name,
mcimadamore@33 3293 tree.var.vartype,
mcimadamore@33 3294 loopvarinit).setType(tree.var.type);
mcimadamore@33 3295 loopvardef.sym = tree.var.sym;
duke@1 3296 JCBlock body = make.
mcimadamore@33 3297 Block(0, List.of(loopvardef, tree.body));
duke@1 3298
duke@1 3299 result = translate(make.
duke@1 3300 ForLoop(loopinit,
duke@1 3301 cond,
duke@1 3302 List.of(step),
duke@1 3303 body));
duke@1 3304 patchTargets(body, tree, result);
duke@1 3305 }
duke@1 3306 /** Patch up break and continue targets. */
duke@1 3307 private void patchTargets(JCTree body, final JCTree src, final JCTree dest) {
duke@1 3308 class Patcher extends TreeScanner {
duke@1 3309 public void visitBreak(JCBreak tree) {
duke@1 3310 if (tree.target == src)
duke@1 3311 tree.target = dest;
duke@1 3312 }
duke@1 3313 public void visitContinue(JCContinue tree) {
duke@1 3314 if (tree.target == src)
duke@1 3315 tree.target = dest;
duke@1 3316 }
duke@1 3317 public void visitClassDef(JCClassDecl tree) {}
duke@1 3318 }
duke@1 3319 new Patcher().scan(body);
duke@1 3320 }
duke@1 3321 /**
duke@1 3322 * A statement of the form
duke@1 3323 *
duke@1 3324 * <pre>
duke@1 3325 * for ( T v : coll ) stmt ;
duke@1 3326 * </pre>
duke@1 3327 *
jjg@1326 3328 * (where coll implements {@code Iterable<? extends T>}) gets translated to
duke@1 3329 *
jjg@1326 3330 * <pre>{@code
duke@1 3331 * for ( Iterator<? extends T> #i = coll.iterator(); #i.hasNext(); ) {
duke@1 3332 * T v = (T) #i.next();
duke@1 3333 * stmt;
duke@1 3334 * }
jjg@1326 3335 * }</pre>
duke@1 3336 *
duke@1 3337 * where #i is a freshly named synthetic local variable.
duke@1 3338 */
duke@1 3339 private void visitIterableForeachLoop(JCEnhancedForLoop tree) {
duke@1 3340 make_at(tree.expr.pos());
duke@1 3341 Type iteratorTarget = syms.objectType;
duke@1 3342 Type iterableType = types.asSuper(types.upperBound(tree.expr.type),
duke@1 3343 syms.iterableType.tsym);
duke@1 3344 if (iterableType.getTypeArguments().nonEmpty())
duke@1 3345 iteratorTarget = types.erasure(iterableType.getTypeArguments().head);
duke@1 3346 Type eType = tree.expr.type;
duke@1 3347 tree.expr.type = types.erasure(eType);
jjg@1374 3348 if (eType.hasTag(TYPEVAR) && eType.getUpperBound().isCompound())
duke@1 3349 tree.expr = make.TypeCast(types.erasure(iterableType), tree.expr);
duke@1 3350 Symbol iterator = lookupMethod(tree.expr.pos(),
duke@1 3351 names.iterator,
duke@1 3352 types.erasure(syms.iterableType),
duke@1 3353 List.<Type>nil());
duke@1 3354 VarSymbol itvar = new VarSymbol(0, names.fromString("i" + target.syntheticNameChar()),
duke@1 3355 types.erasure(iterator.type.getReturnType()),
duke@1 3356 currentMethodSym);
duke@1 3357 JCStatement init = make.
duke@1 3358 VarDef(itvar,
duke@1 3359 make.App(make.Select(tree.expr, iterator)));
duke@1 3360 Symbol hasNext = lookupMethod(tree.expr.pos(),
duke@1 3361 names.hasNext,
duke@1 3362 itvar.type,
duke@1 3363 List.<Type>nil());
duke@1 3364 JCMethodInvocation cond = make.App(make.Select(make.Ident(itvar), hasNext));
duke@1 3365 Symbol next = lookupMethod(tree.expr.pos(),
duke@1 3366 names.next,
duke@1 3367 itvar.type,
duke@1 3368 List.<Type>nil());
duke@1 3369 JCExpression vardefinit = make.App(make.Select(make.Ident(itvar), next));
mcimadamore@81 3370 if (tree.var.type.isPrimitive())
mcimadamore@81 3371 vardefinit = make.TypeCast(types.upperBound(iteratorTarget), vardefinit);
mcimadamore@81 3372 else
mcimadamore@81 3373 vardefinit = make.TypeCast(tree.var.type, vardefinit);
mcimadamore@33 3374 JCVariableDecl indexDef = (JCVariableDecl)make.VarDef(tree.var.mods,
mcimadamore@33 3375 tree.var.name,
mcimadamore@33 3376 tree.var.vartype,
mcimadamore@33 3377 vardefinit).setType(tree.var.type);
mcimadamore@33 3378 indexDef.sym = tree.var.sym;
duke@1 3379 JCBlock body = make.Block(0, List.of(indexDef, tree.body));
mcimadamore@237 3380 body.endpos = TreeInfo.endPos(tree.body);
duke@1 3381 result = translate(make.
duke@1 3382 ForLoop(List.of(init),
duke@1 3383 cond,
duke@1 3384 List.<JCExpressionStatement>nil(),
duke@1 3385 body));
duke@1 3386 patchTargets(body, tree, result);
duke@1 3387 }
duke@1 3388
duke@1 3389 public void visitVarDef(JCVariableDecl tree) {
duke@1 3390 MethodSymbol oldMethodSym = currentMethodSym;
duke@1 3391 tree.mods = translate(tree.mods);
duke@1 3392 tree.vartype = translate(tree.vartype);
duke@1 3393 if (currentMethodSym == null) {
duke@1 3394 // A class or instance field initializer.
duke@1 3395 currentMethodSym =
duke@1 3396 new MethodSymbol((tree.mods.flags&STATIC) | BLOCK,
duke@1 3397 names.empty, null,
duke@1 3398 currentClass);
duke@1 3399 }
duke@1 3400 if (tree.init != null) tree.init = translate(tree.init, tree.type);
duke@1 3401 result = tree;
duke@1 3402 currentMethodSym = oldMethodSym;
duke@1 3403 }
duke@1 3404
duke@1 3405 public void visitBlock(JCBlock tree) {
duke@1 3406 MethodSymbol oldMethodSym = currentMethodSym;
duke@1 3407 if (currentMethodSym == null) {
duke@1 3408 // Block is a static or instance initializer.
duke@1 3409 currentMethodSym =
duke@1 3410 new MethodSymbol(tree.flags | BLOCK,
duke@1 3411 names.empty, null,
duke@1 3412 currentClass);
duke@1 3413 }
duke@1 3414 super.visitBlock(tree);
duke@1 3415 currentMethodSym = oldMethodSym;
duke@1 3416 }
duke@1 3417
duke@1 3418 public void visitDoLoop(JCDoWhileLoop tree) {
duke@1 3419 tree.body = translate(tree.body);
duke@1 3420 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 3421 result = tree;
duke@1 3422 }
duke@1 3423
duke@1 3424 public void visitWhileLoop(JCWhileLoop tree) {
duke@1 3425 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 3426 tree.body = translate(tree.body);
duke@1 3427 result = tree;
duke@1 3428 }
duke@1 3429
duke@1 3430 public void visitForLoop(JCForLoop tree) {
duke@1 3431 tree.init = translate(tree.init);
duke@1 3432 if (tree.cond != null)
duke@1 3433 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 3434 tree.step = translate(tree.step);
duke@1 3435 tree.body = translate(tree.body);
duke@1 3436 result = tree;
duke@1 3437 }
duke@1 3438
duke@1 3439 public void visitReturn(JCReturn tree) {
duke@1 3440 if (tree.expr != null)
duke@1 3441 tree.expr = translate(tree.expr,
duke@1 3442 types.erasure(currentMethodDef
duke@1 3443 .restype.type));
duke@1 3444 result = tree;
duke@1 3445 }
duke@1 3446
duke@1 3447 public void visitSwitch(JCSwitch tree) {
duke@1 3448 Type selsuper = types.supertype(tree.selector.type);
duke@1 3449 boolean enumSwitch = selsuper != null &&
duke@1 3450 (tree.selector.type.tsym.flags() & ENUM) != 0;
darcy@430 3451 boolean stringSwitch = selsuper != null &&
darcy@430 3452 types.isSameType(tree.selector.type, syms.stringType);
darcy@430 3453 Type target = enumSwitch ? tree.selector.type :
darcy@430 3454 (stringSwitch? syms.stringType : syms.intType);
duke@1 3455 tree.selector = translate(tree.selector, target);
duke@1 3456 tree.cases = translateCases(tree.cases);
duke@1 3457 if (enumSwitch) {
duke@1 3458 result = visitEnumSwitch(tree);
darcy@430 3459 } else if (stringSwitch) {
darcy@430 3460 result = visitStringSwitch(tree);
duke@1 3461 } else {
duke@1 3462 result = tree;
duke@1 3463 }
duke@1 3464 }
duke@1 3465
duke@1 3466 public JCTree visitEnumSwitch(JCSwitch tree) {
duke@1 3467 TypeSymbol enumSym = tree.selector.type.tsym;
duke@1 3468 EnumMapping map = mapForEnum(tree.pos(), enumSym);
duke@1 3469 make_at(tree.pos());
duke@1 3470 Symbol ordinalMethod = lookupMethod(tree.pos(),
duke@1 3471 names.ordinal,
duke@1 3472 tree.selector.type,
duke@1 3473 List.<Type>nil());
duke@1 3474 JCArrayAccess selector = make.Indexed(map.mapVar,
duke@1 3475 make.App(make.Select(tree.selector,
duke@1 3476 ordinalMethod)));
duke@1 3477 ListBuffer<JCCase> cases = new ListBuffer<JCCase>();
duke@1 3478 for (JCCase c : tree.cases) {
duke@1 3479 if (c.pat != null) {
duke@1 3480 VarSymbol label = (VarSymbol)TreeInfo.symbol(c.pat);
duke@1 3481 JCLiteral pat = map.forConstant(label);
duke@1 3482 cases.append(make.Case(pat, c.stats));
duke@1 3483 } else {
duke@1 3484 cases.append(c);
duke@1 3485 }
duke@1 3486 }
darcy@443 3487 JCSwitch enumSwitch = make.Switch(selector, cases.toList());
darcy@443 3488 patchTargets(enumSwitch, tree, enumSwitch);
darcy@443 3489 return enumSwitch;
duke@1 3490 }
duke@1 3491
darcy@430 3492 public JCTree visitStringSwitch(JCSwitch tree) {
darcy@430 3493 List<JCCase> caseList = tree.getCases();
darcy@430 3494 int alternatives = caseList.size();
darcy@430 3495
darcy@430 3496 if (alternatives == 0) { // Strange but legal possibility
darcy@430 3497 return make.at(tree.pos()).Exec(attr.makeNullCheck(tree.getExpression()));
darcy@430 3498 } else {
darcy@430 3499 /*
darcy@430 3500 * The general approach used is to translate a single
darcy@430 3501 * string switch statement into a series of two chained
darcy@430 3502 * switch statements: the first a synthesized statement
darcy@430 3503 * switching on the argument string's hash value and
darcy@430 3504 * computing a string's position in the list of original
darcy@430 3505 * case labels, if any, followed by a second switch on the
darcy@430 3506 * computed integer value. The second switch has the same
darcy@430 3507 * code structure as the original string switch statement
darcy@430 3508 * except that the string case labels are replaced with
darcy@430 3509 * positional integer constants starting at 0.
darcy@430 3510 *
darcy@430 3511 * The first switch statement can be thought of as an
darcy@430 3512 * inlined map from strings to their position in the case
darcy@430 3513 * label list. An alternate implementation would use an
darcy@430 3514 * actual Map for this purpose, as done for enum switches.
darcy@430 3515 *
darcy@430 3516 * With some additional effort, it would be possible to
darcy@430 3517 * use a single switch statement on the hash code of the
darcy@430 3518 * argument, but care would need to be taken to preserve
darcy@430 3519 * the proper control flow in the presence of hash
darcy@430 3520 * collisions and other complications, such as
darcy@430 3521 * fallthroughs. Switch statements with one or two
darcy@430 3522 * alternatives could also be specially translated into
darcy@430 3523 * if-then statements to omit the computation of the hash
darcy@430 3524 * code.
darcy@430 3525 *
darcy@430 3526 * The generated code assumes that the hashing algorithm
darcy@430 3527 * of String is the same in the compilation environment as
darcy@430 3528 * in the environment the code will run in. The string
darcy@430 3529 * hashing algorithm in the SE JDK has been unchanged
darcy@443 3530 * since at least JDK 1.2. Since the algorithm has been
darcy@443 3531 * specified since that release as well, it is very
darcy@443 3532 * unlikely to be changed in the future.
darcy@443 3533 *
darcy@443 3534 * Different hashing algorithms, such as the length of the
darcy@443 3535 * strings or a perfect hashing algorithm over the
darcy@443 3536 * particular set of case labels, could potentially be
darcy@443 3537 * used instead of String.hashCode.
darcy@430 3538 */
darcy@430 3539
darcy@430 3540 ListBuffer<JCStatement> stmtList = new ListBuffer<JCStatement>();
darcy@430 3541
darcy@430 3542 // Map from String case labels to their original position in
darcy@430 3543 // the list of case labels.
darcy@430 3544 Map<String, Integer> caseLabelToPosition =
darcy@430 3545 new LinkedHashMap<String, Integer>(alternatives + 1, 1.0f);
darcy@430 3546
darcy@430 3547 // Map of hash codes to the string case labels having that hashCode.
darcy@430 3548 Map<Integer, Set<String>> hashToString =
darcy@430 3549 new LinkedHashMap<Integer, Set<String>>(alternatives + 1, 1.0f);
darcy@430 3550
darcy@430 3551 int casePosition = 0;
darcy@430 3552 for(JCCase oneCase : caseList) {
darcy@430 3553 JCExpression expression = oneCase.getExpression();
darcy@430 3554
darcy@430 3555 if (expression != null) { // expression for a "default" case is null
darcy@430 3556 String labelExpr = (String) expression.type.constValue();
darcy@430 3557 Integer mapping = caseLabelToPosition.put(labelExpr, casePosition);
jjg@816 3558 Assert.checkNull(mapping);
darcy@430 3559 int hashCode = labelExpr.hashCode();
darcy@430 3560
darcy@430 3561 Set<String> stringSet = hashToString.get(hashCode);
darcy@430 3562 if (stringSet == null) {
darcy@430 3563 stringSet = new LinkedHashSet<String>(1, 1.0f);
darcy@430 3564 stringSet.add(labelExpr);
darcy@430 3565 hashToString.put(hashCode, stringSet);
darcy@430 3566 } else {
darcy@430 3567 boolean added = stringSet.add(labelExpr);
jjg@816 3568 Assert.check(added);
darcy@430 3569 }
darcy@430 3570 }
darcy@430 3571 casePosition++;
darcy@430 3572 }
darcy@430 3573
darcy@430 3574 // Synthesize a switch statement that has the effect of
darcy@430 3575 // mapping from a string to the integer position of that
darcy@430 3576 // string in the list of case labels. This is done by
darcy@430 3577 // switching on the hashCode of the string followed by an
darcy@430 3578 // if-then-else chain comparing the input for equality
darcy@430 3579 // with all the case labels having that hash value.
darcy@430 3580
darcy@430 3581 /*
darcy@430 3582 * s$ = top of stack;
darcy@430 3583 * tmp$ = -1;
darcy@430 3584 * switch($s.hashCode()) {
darcy@430 3585 * case caseLabel.hashCode:
darcy@430 3586 * if (s$.equals("caseLabel_1")
darcy@430 3587 * tmp$ = caseLabelToPosition("caseLabel_1");
darcy@430 3588 * else if (s$.equals("caseLabel_2"))
darcy@430 3589 * tmp$ = caseLabelToPosition("caseLabel_2");
darcy@430 3590 * ...
darcy@430 3591 * break;
darcy@430 3592 * ...
darcy@430 3593 * }
darcy@430 3594 */
darcy@430 3595
darcy@430 3596 VarSymbol dollar_s = new VarSymbol(FINAL|SYNTHETIC,
darcy@430 3597 names.fromString("s" + tree.pos + target.syntheticNameChar()),
darcy@430 3598 syms.stringType,
darcy@430 3599 currentMethodSym);
darcy@430 3600 stmtList.append(make.at(tree.pos()).VarDef(dollar_s, tree.getExpression()).setType(dollar_s.type));
darcy@430 3601
darcy@430 3602 VarSymbol dollar_tmp = new VarSymbol(SYNTHETIC,
darcy@430 3603 names.fromString("tmp" + tree.pos + target.syntheticNameChar()),
darcy@430 3604 syms.intType,
darcy@430 3605 currentMethodSym);
darcy@430 3606 JCVariableDecl dollar_tmp_def =
darcy@430 3607 (JCVariableDecl)make.VarDef(dollar_tmp, make.Literal(INT, -1)).setType(dollar_tmp.type);
darcy@430 3608 dollar_tmp_def.init.type = dollar_tmp.type = syms.intType;
darcy@430 3609 stmtList.append(dollar_tmp_def);
darcy@430 3610 ListBuffer<JCCase> caseBuffer = ListBuffer.lb();
darcy@430 3611 // hashCode will trigger nullcheck on original switch expression
darcy@430 3612 JCMethodInvocation hashCodeCall = makeCall(make.Ident(dollar_s),
darcy@430 3613 names.hashCode,
darcy@430 3614 List.<JCExpression>nil()).setType(syms.intType);
darcy@430 3615 JCSwitch switch1 = make.Switch(hashCodeCall,
darcy@430 3616 caseBuffer.toList());
darcy@430 3617 for(Map.Entry<Integer, Set<String>> entry : hashToString.entrySet()) {
darcy@430 3618 int hashCode = entry.getKey();
darcy@430 3619 Set<String> stringsWithHashCode = entry.getValue();
jjg@816 3620 Assert.check(stringsWithHashCode.size() >= 1);
darcy@430 3621
darcy@430 3622 JCStatement elsepart = null;
darcy@430 3623 for(String caseLabel : stringsWithHashCode ) {
darcy@430 3624 JCMethodInvocation stringEqualsCall = makeCall(make.Ident(dollar_s),
darcy@430 3625 names.equals,
darcy@430 3626 List.<JCExpression>of(make.Literal(caseLabel)));
darcy@430 3627 elsepart = make.If(stringEqualsCall,
darcy@430 3628 make.Exec(make.Assign(make.Ident(dollar_tmp),
darcy@430 3629 make.Literal(caseLabelToPosition.get(caseLabel))).
darcy@430 3630 setType(dollar_tmp.type)),
darcy@430 3631 elsepart);
darcy@430 3632 }
darcy@430 3633
darcy@430 3634 ListBuffer<JCStatement> lb = ListBuffer.lb();
darcy@430 3635 JCBreak breakStmt = make.Break(null);
darcy@430 3636 breakStmt.target = switch1;
darcy@430 3637 lb.append(elsepart).append(breakStmt);
darcy@430 3638
darcy@430 3639 caseBuffer.append(make.Case(make.Literal(hashCode), lb.toList()));
darcy@430 3640 }
darcy@430 3641
darcy@430 3642 switch1.cases = caseBuffer.toList();
darcy@430 3643 stmtList.append(switch1);
darcy@430 3644
darcy@430 3645 // Make isomorphic switch tree replacing string labels
darcy@430 3646 // with corresponding integer ones from the label to
darcy@430 3647 // position map.
darcy@430 3648
darcy@430 3649 ListBuffer<JCCase> lb = ListBuffer.lb();
darcy@430 3650 JCSwitch switch2 = make.Switch(make.Ident(dollar_tmp), lb.toList());
darcy@430 3651 for(JCCase oneCase : caseList ) {
darcy@430 3652 // Rewire up old unlabeled break statements to the
darcy@430 3653 // replacement switch being created.
darcy@430 3654 patchTargets(oneCase, tree, switch2);
darcy@430 3655
darcy@430 3656 boolean isDefault = (oneCase.getExpression() == null);
darcy@430 3657 JCExpression caseExpr;
darcy@430 3658 if (isDefault)
darcy@430 3659 caseExpr = null;
darcy@430 3660 else {
darcy@1063 3661 caseExpr = make.Literal(caseLabelToPosition.get((String)TreeInfo.skipParens(oneCase.
darcy@1063 3662 getExpression()).
darcy@430 3663 type.constValue()));
darcy@430 3664 }
darcy@430 3665
darcy@430 3666 lb.append(make.Case(caseExpr,
darcy@430 3667 oneCase.getStatements()));
darcy@430 3668 }
darcy@430 3669
darcy@430 3670 switch2.cases = lb.toList();
darcy@430 3671 stmtList.append(switch2);
darcy@430 3672
darcy@430 3673 return make.Block(0L, stmtList.toList());
darcy@430 3674 }
darcy@430 3675 }
darcy@430 3676
duke@1 3677 public void visitNewArray(JCNewArray tree) {
duke@1 3678 tree.elemtype = translate(tree.elemtype);
duke@1 3679 for (List<JCExpression> t = tree.dims; t.tail != null; t = t.tail)
duke@1 3680 if (t.head != null) t.head = translate(t.head, syms.intType);
duke@1 3681 tree.elems = translate(tree.elems, types.elemtype(tree.type));
duke@1 3682 result = tree;
duke@1 3683 }
duke@1 3684
duke@1 3685 public void visitSelect(JCFieldAccess tree) {
duke@1 3686 // need to special case-access of the form C.super.x
mcimadamore@1393 3687 // these will always need an access method, unless C
mcimadamore@1393 3688 // is a default interface subclassed by the current class.
duke@1 3689 boolean qualifiedSuperAccess =
jjg@1127 3690 tree.selected.hasTag(SELECT) &&
mcimadamore@1393 3691 TreeInfo.name(tree.selected) == names._super &&
mcimadamore@1415 3692 !types.isDirectSuperInterface(((JCFieldAccess)tree.selected).selected.type.tsym, currentClass);
duke@1 3693 tree.selected = translate(tree.selected);
mcimadamore@1393 3694 if (tree.name == names._class) {
duke@1 3695 result = classOf(tree.selected);
mcimadamore@1393 3696 }
mcimadamore@1393 3697 else if (tree.name == names._super &&
mcimadamore@1415 3698 types.isDirectSuperInterface(tree.selected.type.tsym, currentClass)) {
mcimadamore@1393 3699 //default super call!! Not a classic qualified super call
mcimadamore@1393 3700 TypeSymbol supSym = tree.selected.type.tsym;
mcimadamore@1393 3701 Assert.checkNonNull(types.asSuper(currentClass.type, supSym));
mcimadamore@1393 3702 result = tree;
mcimadamore@1393 3703 }
mcimadamore@1393 3704 else if (tree.name == names._this || tree.name == names._super) {
duke@1 3705 result = makeThis(tree.pos(), tree.selected.type.tsym);
mcimadamore@1393 3706 }
duke@1 3707 else
duke@1 3708 result = access(tree.sym, tree, enclOp, qualifiedSuperAccess);
duke@1 3709 }
duke@1 3710
duke@1 3711 public void visitLetExpr(LetExpr tree) {
duke@1 3712 tree.defs = translateVarDefs(tree.defs);
duke@1 3713 tree.expr = translate(tree.expr, tree.type);
duke@1 3714 result = tree;
duke@1 3715 }
duke@1 3716
duke@1 3717 // There ought to be nothing to rewrite here;
duke@1 3718 // we don't generate code.
duke@1 3719 public void visitAnnotation(JCAnnotation tree) {
duke@1 3720 result = tree;
duke@1 3721 }
duke@1 3722
darcy@609 3723 @Override
darcy@609 3724 public void visitTry(JCTry tree) {
darcy@609 3725 if (tree.resources.isEmpty()) {
darcy@609 3726 super.visitTry(tree);
darcy@609 3727 } else {
darcy@884 3728 result = makeTwrTry(tree);
darcy@609 3729 }
darcy@609 3730 }
darcy@609 3731
duke@1 3732 /**************************************************************************
duke@1 3733 * main method
duke@1 3734 *************************************************************************/
duke@1 3735
duke@1 3736 /** Translate a toplevel class and return a list consisting of
duke@1 3737 * the translated class and translated versions of all inner classes.
duke@1 3738 * @param env The attribution environment current at the class definition.
duke@1 3739 * We need this for resolving some additional symbols.
duke@1 3740 * @param cdef The tree representing the class definition.
duke@1 3741 */
duke@1 3742 public List<JCTree> translateTopLevelClass(Env<AttrContext> env, JCTree cdef, TreeMaker make) {
duke@1 3743 ListBuffer<JCTree> translated = null;
duke@1 3744 try {
duke@1 3745 attrEnv = env;
duke@1 3746 this.make = make;
ksrini@1138 3747 endPosTable = env.toplevel.endPositions;
duke@1 3748 currentClass = null;
duke@1 3749 currentMethodDef = null;
jjg@1127 3750 outermostClassDef = (cdef.hasTag(CLASSDEF)) ? (JCClassDecl)cdef : null;
duke@1 3751 outermostMemberDef = null;
duke@1 3752 this.translated = new ListBuffer<JCTree>();
duke@1 3753 classdefs = new HashMap<ClassSymbol,JCClassDecl>();
duke@1 3754 actualSymbols = new HashMap<Symbol,Symbol>();
duke@1 3755 freevarCache = new HashMap<ClassSymbol,List<VarSymbol>>();
duke@1 3756 proxies = new Scope(syms.noSymbol);
darcy@609 3757 twrVars = new Scope(syms.noSymbol);
duke@1 3758 outerThisStack = List.nil();
duke@1 3759 accessNums = new HashMap<Symbol,Integer>();
duke@1 3760 accessSyms = new HashMap<Symbol,MethodSymbol[]>();
duke@1 3761 accessConstrs = new HashMap<Symbol,MethodSymbol>();
jjg@595 3762 accessConstrTags = List.nil();
duke@1 3763 accessed = new ListBuffer<Symbol>();
duke@1 3764 translate(cdef, (JCExpression)null);
duke@1 3765 for (List<Symbol> l = accessed.toList(); l.nonEmpty(); l = l.tail)
duke@1 3766 makeAccessible(l.head);
duke@1 3767 for (EnumMapping map : enumSwitchMap.values())
duke@1 3768 map.translate();
mcimadamore@359 3769 checkConflicts(this.translated.toList());
jjg@595 3770 checkAccessConstructorTags();
duke@1 3771 translated = this.translated;
duke@1 3772 } finally {
duke@1 3773 // note that recursive invocations of this method fail hard
duke@1 3774 attrEnv = null;
duke@1 3775 this.make = null;
ksrini@1138 3776 endPosTable = null;
duke@1 3777 currentClass = null;
duke@1 3778 currentMethodDef = null;
duke@1 3779 outermostClassDef = null;
duke@1 3780 outermostMemberDef = null;
duke@1 3781 this.translated = null;
duke@1 3782 classdefs = null;
duke@1 3783 actualSymbols = null;
duke@1 3784 freevarCache = null;
duke@1 3785 proxies = null;
duke@1 3786 outerThisStack = null;
duke@1 3787 accessNums = null;
duke@1 3788 accessSyms = null;
duke@1 3789 accessConstrs = null;
jjg@595 3790 accessConstrTags = null;
duke@1 3791 accessed = null;
duke@1 3792 enumSwitchMap.clear();
duke@1 3793 }
duke@1 3794 return translated.toList();
duke@1 3795 }
duke@1 3796
duke@1 3797 //////////////////////////////////////////////////////////////
duke@1 3798 // The following contributed by Borland for bootstrapping purposes
duke@1 3799 //////////////////////////////////////////////////////////////
duke@1 3800 private void addEnumCompatibleMembers(JCClassDecl cdef) {
duke@1 3801 make_at(null);
duke@1 3802
duke@1 3803 // Add the special enum fields
duke@1 3804 VarSymbol ordinalFieldSym = addEnumOrdinalField(cdef);
duke@1 3805 VarSymbol nameFieldSym = addEnumNameField(cdef);
duke@1 3806
duke@1 3807 // Add the accessor methods for name and ordinal
duke@1 3808 MethodSymbol ordinalMethodSym = addEnumFieldOrdinalMethod(cdef, ordinalFieldSym);
duke@1 3809 MethodSymbol nameMethodSym = addEnumFieldNameMethod(cdef, nameFieldSym);
duke@1 3810
duke@1 3811 // Add the toString method
duke@1 3812 addEnumToString(cdef, nameFieldSym);
duke@1 3813
duke@1 3814 // Add the compareTo method
duke@1 3815 addEnumCompareTo(cdef, ordinalFieldSym);
duke@1 3816 }
duke@1 3817
duke@1 3818 private VarSymbol addEnumOrdinalField(JCClassDecl cdef) {
duke@1 3819 VarSymbol ordinal = new VarSymbol(PRIVATE|FINAL|SYNTHETIC,
duke@1 3820 names.fromString("$ordinal"),
duke@1 3821 syms.intType,
duke@1 3822 cdef.sym);
duke@1 3823 cdef.sym.members().enter(ordinal);
duke@1 3824 cdef.defs = cdef.defs.prepend(make.VarDef(ordinal, null));
duke@1 3825 return ordinal;
duke@1 3826 }
duke@1 3827
duke@1 3828 private VarSymbol addEnumNameField(JCClassDecl cdef) {
duke@1 3829 VarSymbol name = new VarSymbol(PRIVATE|FINAL|SYNTHETIC,
duke@1 3830 names.fromString("$name"),
duke@1 3831 syms.stringType,
duke@1 3832 cdef.sym);
duke@1 3833 cdef.sym.members().enter(name);
duke@1 3834 cdef.defs = cdef.defs.prepend(make.VarDef(name, null));
duke@1 3835 return name;
duke@1 3836 }
duke@1 3837
duke@1 3838 private MethodSymbol addEnumFieldOrdinalMethod(JCClassDecl cdef, VarSymbol ordinalSymbol) {
duke@1 3839 // Add the accessor methods for ordinal
duke@1 3840 Symbol ordinalSym = lookupMethod(cdef.pos(),
duke@1 3841 names.ordinal,
duke@1 3842 cdef.type,
duke@1 3843 List.<Type>nil());
duke@1 3844
jjg@816 3845 Assert.check(ordinalSym instanceof MethodSymbol);
duke@1 3846
duke@1 3847 JCStatement ret = make.Return(make.Ident(ordinalSymbol));
duke@1 3848 cdef.defs = cdef.defs.append(make.MethodDef((MethodSymbol)ordinalSym,
duke@1 3849 make.Block(0L, List.of(ret))));
duke@1 3850
duke@1 3851 return (MethodSymbol)ordinalSym;
duke@1 3852 }
duke@1 3853
duke@1 3854 private MethodSymbol addEnumFieldNameMethod(JCClassDecl cdef, VarSymbol nameSymbol) {
duke@1 3855 // Add the accessor methods for name
duke@1 3856 Symbol nameSym = lookupMethod(cdef.pos(),
duke@1 3857 names._name,
duke@1 3858 cdef.type,
duke@1 3859 List.<Type>nil());
duke@1 3860
jjg@816 3861 Assert.check(nameSym instanceof MethodSymbol);
duke@1 3862
duke@1 3863 JCStatement ret = make.Return(make.Ident(nameSymbol));
duke@1 3864
duke@1 3865 cdef.defs = cdef.defs.append(make.MethodDef((MethodSymbol)nameSym,
duke@1 3866 make.Block(0L, List.of(ret))));
duke@1 3867
duke@1 3868 return (MethodSymbol)nameSym;
duke@1 3869 }
duke@1 3870
duke@1 3871 private MethodSymbol addEnumToString(JCClassDecl cdef,
duke@1 3872 VarSymbol nameSymbol) {
duke@1 3873 Symbol toStringSym = lookupMethod(cdef.pos(),
duke@1 3874 names.toString,
duke@1 3875 cdef.type,
duke@1 3876 List.<Type>nil());
duke@1 3877
duke@1 3878 JCTree toStringDecl = null;
duke@1 3879 if (toStringSym != null)
duke@1 3880 toStringDecl = TreeInfo.declarationFor(toStringSym, cdef);
duke@1 3881
duke@1 3882 if (toStringDecl != null)
duke@1 3883 return (MethodSymbol)toStringSym;
duke@1 3884
duke@1 3885 JCStatement ret = make.Return(make.Ident(nameSymbol));
duke@1 3886
duke@1 3887 JCTree resTypeTree = make.Type(syms.stringType);
duke@1 3888
duke@1 3889 MethodType toStringType = new MethodType(List.<Type>nil(),
duke@1 3890 syms.stringType,
duke@1 3891 List.<Type>nil(),
duke@1 3892 cdef.sym);
duke@1 3893 toStringSym = new MethodSymbol(PUBLIC,
duke@1 3894 names.toString,
duke@1 3895 toStringType,
duke@1 3896 cdef.type.tsym);
duke@1 3897 toStringDecl = make.MethodDef((MethodSymbol)toStringSym,
duke@1 3898 make.Block(0L, List.of(ret)));
duke@1 3899
duke@1 3900 cdef.defs = cdef.defs.prepend(toStringDecl);
duke@1 3901 cdef.sym.members().enter(toStringSym);
duke@1 3902
duke@1 3903 return (MethodSymbol)toStringSym;
duke@1 3904 }
duke@1 3905
duke@1 3906 private MethodSymbol addEnumCompareTo(JCClassDecl cdef, VarSymbol ordinalSymbol) {
duke@1 3907 Symbol compareToSym = lookupMethod(cdef.pos(),
duke@1 3908 names.compareTo,
duke@1 3909 cdef.type,
duke@1 3910 List.of(cdef.sym.type));
duke@1 3911
jjg@816 3912 Assert.check(compareToSym instanceof MethodSymbol);
duke@1 3913
duke@1 3914 JCMethodDecl compareToDecl = (JCMethodDecl) TreeInfo.declarationFor(compareToSym, cdef);
duke@1 3915
duke@1 3916 ListBuffer<JCStatement> blockStatements = new ListBuffer<JCStatement>();
duke@1 3917
duke@1 3918 JCModifiers mod1 = make.Modifiers(0L);
jjg@113 3919 Name oName = names.fromString("o");
duke@1 3920 JCVariableDecl par1 = make.Param(oName, cdef.type, compareToSym);
duke@1 3921
duke@1 3922 JCIdent paramId1 = make.Ident(names.java_lang_Object);
duke@1 3923 paramId1.type = cdef.type;
duke@1 3924 paramId1.sym = par1.sym;
duke@1 3925
duke@1 3926 ((MethodSymbol)compareToSym).params = List.of(par1.sym);
duke@1 3927
duke@1 3928 JCIdent par1UsageId = make.Ident(par1.sym);
duke@1 3929 JCIdent castTargetIdent = make.Ident(cdef.sym);
duke@1 3930 JCTypeCast cast = make.TypeCast(castTargetIdent, par1UsageId);
duke@1 3931 cast.setType(castTargetIdent.type);
duke@1 3932
jjg@113 3933 Name otherName = names.fromString("other");
duke@1 3934
duke@1 3935 VarSymbol otherVarSym = new VarSymbol(mod1.flags,
duke@1 3936 otherName,
duke@1 3937 cdef.type,
duke@1 3938 compareToSym);
duke@1 3939 JCVariableDecl otherVar = make.VarDef(otherVarSym, cast);
duke@1 3940 blockStatements.append(otherVar);
duke@1 3941
duke@1 3942 JCIdent id1 = make.Ident(ordinalSymbol);
duke@1 3943
duke@1 3944 JCIdent fLocUsageId = make.Ident(otherVarSym);
duke@1 3945 JCExpression sel = make.Select(fLocUsageId, ordinalSymbol);
jjg@1127 3946 JCBinary bin = makeBinary(MINUS, id1, sel);
duke@1 3947 JCReturn ret = make.Return(bin);
duke@1 3948 blockStatements.append(ret);
duke@1 3949 JCMethodDecl compareToMethod = make.MethodDef((MethodSymbol)compareToSym,
duke@1 3950 make.Block(0L,
duke@1 3951 blockStatements.toList()));
duke@1 3952 compareToMethod.params = List.of(par1);
duke@1 3953 cdef.defs = cdef.defs.append(compareToMethod);
duke@1 3954
duke@1 3955 return (MethodSymbol)compareToSym;
duke@1 3956 }
duke@1 3957 //////////////////////////////////////////////////////////////
duke@1 3958 // The above contributed by Borland for bootstrapping purposes
duke@1 3959 //////////////////////////////////////////////////////////////
duke@1 3960 }

mercurial