src/share/classes/com/sun/tools/javac/comp/Flow.java

Tue, 07 Sep 2010 17:33:43 +0100

author
mcimadamore
date
Tue, 07 Sep 2010 17:33:43 +0100
changeset 676
bfdfc13fe641
parent 617
62f3f07002ea
child 724
7755f47542a0
permissions
-rw-r--r--

6970584: Flow.java should be more error-friendly
Summary: Added a post-attribution visitor that fixup uninitialized types/symbol in AST after erroneous attribution
Reviewed-by: jjg

duke@1 1 /*
ohair@554 2 * Copyright (c) 1999, 2009, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 //todo: one might eliminate uninits.andSets when monotonic
duke@1 27
duke@1 28 package com.sun.tools.javac.comp;
duke@1 29
mcimadamore@550 30 import java.util.HashMap;
darcy@609 31 import java.util.Map;
darcy@609 32 import java.util.LinkedHashMap;
mcimadamore@550 33
duke@1 34 import com.sun.tools.javac.code.*;
duke@1 35 import com.sun.tools.javac.tree.*;
duke@1 36 import com.sun.tools.javac.util.*;
duke@1 37 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 38
duke@1 39 import com.sun.tools.javac.code.Symbol.*;
mcimadamore@617 40 import com.sun.tools.javac.comp.Resolve;
duke@1 41 import com.sun.tools.javac.tree.JCTree.*;
duke@1 42
duke@1 43 import static com.sun.tools.javac.code.Flags.*;
duke@1 44 import static com.sun.tools.javac.code.Kinds.*;
duke@1 45 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 46
duke@1 47 /** This pass implements dataflow analysis for Java programs.
duke@1 48 * Liveness analysis checks that every statement is reachable.
duke@1 49 * Exception analysis ensures that every checked exception that is
duke@1 50 * thrown is declared or caught. Definite assignment analysis
duke@1 51 * ensures that each variable is assigned when used. Definite
duke@1 52 * unassignment analysis ensures that no final variable is assigned
duke@1 53 * more than once.
duke@1 54 *
duke@1 55 * <p>The second edition of the JLS has a number of problems in the
duke@1 56 * specification of these flow analysis problems. This implementation
duke@1 57 * attempts to address those issues.
duke@1 58 *
duke@1 59 * <p>First, there is no accommodation for a finally clause that cannot
duke@1 60 * complete normally. For liveness analysis, an intervening finally
duke@1 61 * clause can cause a break, continue, or return not to reach its
duke@1 62 * target. For exception analysis, an intervening finally clause can
duke@1 63 * cause any exception to be "caught". For DA/DU analysis, the finally
duke@1 64 * clause can prevent a transfer of control from propagating DA/DU
duke@1 65 * state to the target. In addition, code in the finally clause can
duke@1 66 * affect the DA/DU status of variables.
duke@1 67 *
duke@1 68 * <p>For try statements, we introduce the idea of a variable being
duke@1 69 * definitely unassigned "everywhere" in a block. A variable V is
duke@1 70 * "unassigned everywhere" in a block iff it is unassigned at the
duke@1 71 * beginning of the block and there is no reachable assignment to V
duke@1 72 * in the block. An assignment V=e is reachable iff V is not DA
duke@1 73 * after e. Then we can say that V is DU at the beginning of the
duke@1 74 * catch block iff V is DU everywhere in the try block. Similarly, V
duke@1 75 * is DU at the beginning of the finally block iff V is DU everywhere
duke@1 76 * in the try block and in every catch block. Specifically, the
duke@1 77 * following bullet is added to 16.2.2
duke@1 78 * <pre>
duke@1 79 * V is <em>unassigned everywhere</em> in a block if it is
duke@1 80 * unassigned before the block and there is no reachable
duke@1 81 * assignment to V within the block.
duke@1 82 * </pre>
duke@1 83 * <p>In 16.2.15, the third bullet (and all of its sub-bullets) for all
duke@1 84 * try blocks is changed to
duke@1 85 * <pre>
duke@1 86 * V is definitely unassigned before a catch block iff V is
duke@1 87 * definitely unassigned everywhere in the try block.
duke@1 88 * </pre>
duke@1 89 * <p>The last bullet (and all of its sub-bullets) for try blocks that
duke@1 90 * have a finally block is changed to
duke@1 91 * <pre>
duke@1 92 * V is definitely unassigned before the finally block iff
duke@1 93 * V is definitely unassigned everywhere in the try block
duke@1 94 * and everywhere in each catch block of the try statement.
duke@1 95 * </pre>
duke@1 96 * <p>In addition,
duke@1 97 * <pre>
duke@1 98 * V is definitely assigned at the end of a constructor iff
duke@1 99 * V is definitely assigned after the block that is the body
duke@1 100 * of the constructor and V is definitely assigned at every
duke@1 101 * return that can return from the constructor.
duke@1 102 * </pre>
duke@1 103 * <p>In addition, each continue statement with the loop as its target
duke@1 104 * is treated as a jump to the end of the loop body, and "intervening"
duke@1 105 * finally clauses are treated as follows: V is DA "due to the
duke@1 106 * continue" iff V is DA before the continue statement or V is DA at
duke@1 107 * the end of any intervening finally block. V is DU "due to the
duke@1 108 * continue" iff any intervening finally cannot complete normally or V
duke@1 109 * is DU at the end of every intervening finally block. This "due to
duke@1 110 * the continue" concept is then used in the spec for the loops.
duke@1 111 *
duke@1 112 * <p>Similarly, break statements must consider intervening finally
duke@1 113 * blocks. For liveness analysis, a break statement for which any
duke@1 114 * intervening finally cannot complete normally is not considered to
duke@1 115 * cause the target statement to be able to complete normally. Then
duke@1 116 * we say V is DA "due to the break" iff V is DA before the break or
duke@1 117 * V is DA at the end of any intervening finally block. V is DU "due
duke@1 118 * to the break" iff any intervening finally cannot complete normally
duke@1 119 * or V is DU at the break and at the end of every intervening
duke@1 120 * finally block. (I suspect this latter condition can be
duke@1 121 * simplified.) This "due to the break" is then used in the spec for
duke@1 122 * all statements that can be "broken".
duke@1 123 *
duke@1 124 * <p>The return statement is treated similarly. V is DA "due to a
duke@1 125 * return statement" iff V is DA before the return statement or V is
duke@1 126 * DA at the end of any intervening finally block. Note that we
duke@1 127 * don't have to worry about the return expression because this
duke@1 128 * concept is only used for construcrors.
duke@1 129 *
duke@1 130 * <p>There is no spec in JLS2 for when a variable is definitely
duke@1 131 * assigned at the end of a constructor, which is needed for final
duke@1 132 * fields (8.3.1.2). We implement the rule that V is DA at the end
duke@1 133 * of the constructor iff it is DA and the end of the body of the
duke@1 134 * constructor and V is DA "due to" every return of the constructor.
duke@1 135 *
duke@1 136 * <p>Intervening finally blocks similarly affect exception analysis. An
duke@1 137 * intervening finally that cannot complete normally allows us to ignore
duke@1 138 * an otherwise uncaught exception.
duke@1 139 *
duke@1 140 * <p>To implement the semantics of intervening finally clauses, all
duke@1 141 * nonlocal transfers (break, continue, return, throw, method call that
duke@1 142 * can throw a checked exception, and a constructor invocation that can
duke@1 143 * thrown a checked exception) are recorded in a queue, and removed
duke@1 144 * from the queue when we complete processing the target of the
duke@1 145 * nonlocal transfer. This allows us to modify the queue in accordance
duke@1 146 * with the above rules when we encounter a finally clause. The only
duke@1 147 * exception to this [no pun intended] is that checked exceptions that
duke@1 148 * are known to be caught or declared to be caught in the enclosing
duke@1 149 * method are not recorded in the queue, but instead are recorded in a
duke@1 150 * global variable "Set<Type> thrown" that records the type of all
duke@1 151 * exceptions that can be thrown.
duke@1 152 *
duke@1 153 * <p>Other minor issues the treatment of members of other classes
duke@1 154 * (always considered DA except that within an anonymous class
duke@1 155 * constructor, where DA status from the enclosing scope is
duke@1 156 * preserved), treatment of the case expression (V is DA before the
duke@1 157 * case expression iff V is DA after the switch expression),
duke@1 158 * treatment of variables declared in a switch block (the implied
duke@1 159 * DA/DU status after the switch expression is DU and not DA for
duke@1 160 * variables defined in a switch block), the treatment of boolean ?:
duke@1 161 * expressions (The JLS rules only handle b and c non-boolean; the
duke@1 162 * new rule is that if b and c are boolean valued, then V is
duke@1 163 * (un)assigned after a?b:c when true/false iff V is (un)assigned
duke@1 164 * after b when true/false and V is (un)assigned after c when
duke@1 165 * true/false).
duke@1 166 *
duke@1 167 * <p>There is the remaining question of what syntactic forms constitute a
duke@1 168 * reference to a variable. It is conventional to allow this.x on the
duke@1 169 * left-hand-side to initialize a final instance field named x, yet
duke@1 170 * this.x isn't considered a "use" when appearing on a right-hand-side
duke@1 171 * in most implementations. Should parentheses affect what is
duke@1 172 * considered a variable reference? The simplest rule would be to
duke@1 173 * allow unqualified forms only, parentheses optional, and phase out
duke@1 174 * support for assigning to a final field via this.x.
duke@1 175 *
jjg@581 176 * <p><b>This is NOT part of any supported API.
jjg@581 177 * If you write code that depends on this, you do so at your own risk.
duke@1 178 * This code and its internal interfaces are subject to change or
duke@1 179 * deletion without notice.</b>
duke@1 180 */
duke@1 181 public class Flow extends TreeScanner {
duke@1 182 protected static final Context.Key<Flow> flowKey =
duke@1 183 new Context.Key<Flow>();
duke@1 184
jjg@113 185 private final Names names;
duke@1 186 private final Log log;
duke@1 187 private final Symtab syms;
duke@1 188 private final Types types;
duke@1 189 private final Check chk;
duke@1 190 private TreeMaker make;
mcimadamore@617 191 private final Resolve rs;
mcimadamore@617 192 private Env<AttrContext> attrEnv;
duke@1 193 private Lint lint;
mcimadamore@550 194 private final boolean allowRethrowAnalysis;
duke@1 195
duke@1 196 public static Flow instance(Context context) {
duke@1 197 Flow instance = context.get(flowKey);
duke@1 198 if (instance == null)
duke@1 199 instance = new Flow(context);
duke@1 200 return instance;
duke@1 201 }
duke@1 202
duke@1 203 protected Flow(Context context) {
duke@1 204 context.put(flowKey, this);
jjg@113 205 names = Names.instance(context);
duke@1 206 log = Log.instance(context);
duke@1 207 syms = Symtab.instance(context);
duke@1 208 types = Types.instance(context);
duke@1 209 chk = Check.instance(context);
duke@1 210 lint = Lint.instance(context);
mcimadamore@617 211 rs = Resolve.instance(context);
mcimadamore@550 212 Source source = Source.instance(context);
mcimadamore@550 213 allowRethrowAnalysis = source.allowMulticatch();
duke@1 214 }
duke@1 215
duke@1 216 /** A flag that indicates whether the last statement could
duke@1 217 * complete normally.
duke@1 218 */
duke@1 219 private boolean alive;
duke@1 220
duke@1 221 /** The set of definitely assigned variables.
duke@1 222 */
duke@1 223 Bits inits;
duke@1 224
duke@1 225 /** The set of definitely unassigned variables.
duke@1 226 */
duke@1 227 Bits uninits;
duke@1 228
mcimadamore@550 229 HashMap<Symbol, List<Type>> multicatchTypes;
mcimadamore@550 230
duke@1 231 /** The set of variables that are definitely unassigned everywhere
duke@1 232 * in current try block. This variable is maintained lazily; it is
duke@1 233 * updated only when something gets removed from uninits,
duke@1 234 * typically by being assigned in reachable code. To obtain the
duke@1 235 * correct set of variables which are definitely unassigned
duke@1 236 * anywhere in current try block, intersect uninitsTry and
duke@1 237 * uninits.
duke@1 238 */
duke@1 239 Bits uninitsTry;
duke@1 240
duke@1 241 /** When analyzing a condition, inits and uninits are null.
duke@1 242 * Instead we have:
duke@1 243 */
duke@1 244 Bits initsWhenTrue;
duke@1 245 Bits initsWhenFalse;
duke@1 246 Bits uninitsWhenTrue;
duke@1 247 Bits uninitsWhenFalse;
duke@1 248
duke@1 249 /** A mapping from addresses to variable symbols.
duke@1 250 */
duke@1 251 VarSymbol[] vars;
duke@1 252
duke@1 253 /** The current class being defined.
duke@1 254 */
duke@1 255 JCClassDecl classDef;
duke@1 256
duke@1 257 /** The first variable sequence number in this class definition.
duke@1 258 */
duke@1 259 int firstadr;
duke@1 260
duke@1 261 /** The next available variable sequence number.
duke@1 262 */
duke@1 263 int nextadr;
duke@1 264
duke@1 265 /** The list of possibly thrown declarable exceptions.
duke@1 266 */
duke@1 267 List<Type> thrown;
duke@1 268
duke@1 269 /** The list of exceptions that are either caught or declared to be
duke@1 270 * thrown.
duke@1 271 */
duke@1 272 List<Type> caught;
duke@1 273
darcy@609 274 /** The list of unreferenced automatic resources.
darcy@609 275 */
darcy@609 276 Map<VarSymbol, JCVariableDecl> unrefdResources;
darcy@609 277
duke@1 278 /** Set when processing a loop body the second time for DU analysis. */
duke@1 279 boolean loopPassTwo = false;
duke@1 280
duke@1 281 /*-------------------- Environments ----------------------*/
duke@1 282
duke@1 283 /** A pending exit. These are the statements return, break, and
duke@1 284 * continue. In addition, exception-throwing expressions or
duke@1 285 * statements are put here when not known to be caught. This
duke@1 286 * will typically result in an error unless it is within a
duke@1 287 * try-finally whose finally block cannot complete normally.
duke@1 288 */
duke@1 289 static class PendingExit {
duke@1 290 JCTree tree;
duke@1 291 Bits inits;
duke@1 292 Bits uninits;
duke@1 293 Type thrown;
duke@1 294 PendingExit(JCTree tree, Bits inits, Bits uninits) {
duke@1 295 this.tree = tree;
duke@1 296 this.inits = inits.dup();
duke@1 297 this.uninits = uninits.dup();
duke@1 298 }
duke@1 299 PendingExit(JCTree tree, Type thrown) {
duke@1 300 this.tree = tree;
duke@1 301 this.thrown = thrown;
duke@1 302 }
duke@1 303 }
duke@1 304
duke@1 305 /** The currently pending exits that go from current inner blocks
duke@1 306 * to an enclosing block, in source order.
duke@1 307 */
duke@1 308 ListBuffer<PendingExit> pendingExits;
duke@1 309
duke@1 310 /*-------------------- Exceptions ----------------------*/
duke@1 311
duke@1 312 /** Complain that pending exceptions are not caught.
duke@1 313 */
duke@1 314 void errorUncaught() {
duke@1 315 for (PendingExit exit = pendingExits.next();
duke@1 316 exit != null;
duke@1 317 exit = pendingExits.next()) {
duke@1 318 boolean synthetic = classDef != null &&
duke@1 319 classDef.pos == exit.tree.pos;
duke@1 320 log.error(exit.tree.pos(),
duke@1 321 synthetic
duke@1 322 ? "unreported.exception.default.constructor"
duke@1 323 : "unreported.exception.need.to.catch.or.throw",
duke@1 324 exit.thrown);
duke@1 325 }
duke@1 326 }
duke@1 327
duke@1 328 /** Record that exception is potentially thrown and check that it
duke@1 329 * is caught.
duke@1 330 */
duke@1 331 void markThrown(JCTree tree, Type exc) {
duke@1 332 if (!chk.isUnchecked(tree.pos(), exc)) {
duke@1 333 if (!chk.isHandled(exc, caught))
duke@1 334 pendingExits.append(new PendingExit(tree, exc));
duke@1 335 thrown = chk.incl(exc, thrown);
duke@1 336 }
duke@1 337 }
duke@1 338
duke@1 339 /*-------------- Processing variables ----------------------*/
duke@1 340
duke@1 341 /** Do we need to track init/uninit state of this symbol?
duke@1 342 * I.e. is symbol either a local or a blank final variable?
duke@1 343 */
duke@1 344 boolean trackable(VarSymbol sym) {
duke@1 345 return
duke@1 346 (sym.owner.kind == MTH ||
duke@1 347 ((sym.flags() & (FINAL | HASINIT | PARAMETER)) == FINAL &&
duke@1 348 classDef.sym.isEnclosedBy((ClassSymbol)sym.owner)));
duke@1 349 }
duke@1 350
duke@1 351 /** Initialize new trackable variable by setting its address field
duke@1 352 * to the next available sequence number and entering it under that
duke@1 353 * index into the vars array.
duke@1 354 */
duke@1 355 void newVar(VarSymbol sym) {
duke@1 356 if (nextadr == vars.length) {
duke@1 357 VarSymbol[] newvars = new VarSymbol[nextadr * 2];
duke@1 358 System.arraycopy(vars, 0, newvars, 0, nextadr);
duke@1 359 vars = newvars;
duke@1 360 }
duke@1 361 sym.adr = nextadr;
duke@1 362 vars[nextadr] = sym;
duke@1 363 inits.excl(nextadr);
duke@1 364 uninits.incl(nextadr);
duke@1 365 nextadr++;
duke@1 366 }
duke@1 367
duke@1 368 /** Record an initialization of a trackable variable.
duke@1 369 */
duke@1 370 void letInit(DiagnosticPosition pos, VarSymbol sym) {
duke@1 371 if (sym.adr >= firstadr && trackable(sym)) {
duke@1 372 if ((sym.flags() & FINAL) != 0) {
duke@1 373 if ((sym.flags() & PARAMETER) != 0) {
mcimadamore@550 374 if ((sym.flags() & DISJOINT) != 0) { //multi-catch parameter
mcimadamore@550 375 log.error(pos, "multicatch.parameter.may.not.be.assigned",
mcimadamore@550 376 sym);
mcimadamore@550 377 }
mcimadamore@550 378 else {
mcimadamore@550 379 log.error(pos, "final.parameter.may.not.be.assigned",
duke@1 380 sym);
mcimadamore@550 381 }
duke@1 382 } else if (!uninits.isMember(sym.adr)) {
duke@1 383 log.error(pos,
duke@1 384 loopPassTwo
duke@1 385 ? "var.might.be.assigned.in.loop"
duke@1 386 : "var.might.already.be.assigned",
duke@1 387 sym);
duke@1 388 } else if (!inits.isMember(sym.adr)) {
duke@1 389 // reachable assignment
duke@1 390 uninits.excl(sym.adr);
duke@1 391 uninitsTry.excl(sym.adr);
duke@1 392 } else {
duke@1 393 //log.rawWarning(pos, "unreachable assignment");//DEBUG
duke@1 394 uninits.excl(sym.adr);
duke@1 395 }
duke@1 396 }
duke@1 397 inits.incl(sym.adr);
duke@1 398 } else if ((sym.flags() & FINAL) != 0) {
duke@1 399 log.error(pos, "var.might.already.be.assigned", sym);
duke@1 400 }
duke@1 401 }
duke@1 402
duke@1 403 /** If tree is either a simple name or of the form this.name or
duke@1 404 * C.this.name, and tree represents a trackable variable,
duke@1 405 * record an initialization of the variable.
duke@1 406 */
duke@1 407 void letInit(JCTree tree) {
duke@1 408 tree = TreeInfo.skipParens(tree);
duke@1 409 if (tree.getTag() == JCTree.IDENT || tree.getTag() == JCTree.SELECT) {
duke@1 410 Symbol sym = TreeInfo.symbol(tree);
mcimadamore@676 411 if (sym.kind == VAR) {
mcimadamore@676 412 letInit(tree.pos(), (VarSymbol)sym);
mcimadamore@676 413 }
duke@1 414 }
duke@1 415 }
duke@1 416
duke@1 417 /** Check that trackable variable is initialized.
duke@1 418 */
duke@1 419 void checkInit(DiagnosticPosition pos, VarSymbol sym) {
duke@1 420 if ((sym.adr >= firstadr || sym.owner.kind != TYP) &&
duke@1 421 trackable(sym) &&
duke@1 422 !inits.isMember(sym.adr)) {
duke@1 423 log.error(pos, "var.might.not.have.been.initialized",
duke@1 424 sym);
duke@1 425 inits.incl(sym.adr);
duke@1 426 }
duke@1 427 }
duke@1 428
duke@1 429 /*-------------------- Handling jumps ----------------------*/
duke@1 430
duke@1 431 /** Record an outward transfer of control. */
duke@1 432 void recordExit(JCTree tree) {
duke@1 433 pendingExits.append(new PendingExit(tree, inits, uninits));
duke@1 434 markDead();
duke@1 435 }
duke@1 436
duke@1 437 /** Resolve all breaks of this statement. */
duke@1 438 boolean resolveBreaks(JCTree tree,
duke@1 439 ListBuffer<PendingExit> oldPendingExits) {
duke@1 440 boolean result = false;
duke@1 441 List<PendingExit> exits = pendingExits.toList();
duke@1 442 pendingExits = oldPendingExits;
duke@1 443 for (; exits.nonEmpty(); exits = exits.tail) {
duke@1 444 PendingExit exit = exits.head;
duke@1 445 if (exit.tree.getTag() == JCTree.BREAK &&
duke@1 446 ((JCBreak) exit.tree).target == tree) {
duke@1 447 inits.andSet(exit.inits);
duke@1 448 uninits.andSet(exit.uninits);
duke@1 449 result = true;
duke@1 450 } else {
duke@1 451 pendingExits.append(exit);
duke@1 452 }
duke@1 453 }
duke@1 454 return result;
duke@1 455 }
duke@1 456
duke@1 457 /** Resolve all continues of this statement. */
duke@1 458 boolean resolveContinues(JCTree tree) {
duke@1 459 boolean result = false;
duke@1 460 List<PendingExit> exits = pendingExits.toList();
duke@1 461 pendingExits = new ListBuffer<PendingExit>();
duke@1 462 for (; exits.nonEmpty(); exits = exits.tail) {
duke@1 463 PendingExit exit = exits.head;
duke@1 464 if (exit.tree.getTag() == JCTree.CONTINUE &&
duke@1 465 ((JCContinue) exit.tree).target == tree) {
duke@1 466 inits.andSet(exit.inits);
duke@1 467 uninits.andSet(exit.uninits);
duke@1 468 result = true;
duke@1 469 } else {
duke@1 470 pendingExits.append(exit);
duke@1 471 }
duke@1 472 }
duke@1 473 return result;
duke@1 474 }
duke@1 475
duke@1 476 /** Record that statement is unreachable.
duke@1 477 */
duke@1 478 void markDead() {
duke@1 479 inits.inclRange(firstadr, nextadr);
duke@1 480 uninits.inclRange(firstadr, nextadr);
duke@1 481 alive = false;
duke@1 482 }
duke@1 483
duke@1 484 /** Split (duplicate) inits/uninits into WhenTrue/WhenFalse sets
duke@1 485 */
mcimadamore@676 486 void split(boolean setToNull) {
duke@1 487 initsWhenFalse = inits.dup();
duke@1 488 uninitsWhenFalse = uninits.dup();
duke@1 489 initsWhenTrue = inits;
duke@1 490 uninitsWhenTrue = uninits;
mcimadamore@676 491 if (setToNull)
mcimadamore@676 492 inits = uninits = null;
duke@1 493 }
duke@1 494
duke@1 495 /** Merge (intersect) inits/uninits from WhenTrue/WhenFalse sets.
duke@1 496 */
duke@1 497 void merge() {
duke@1 498 inits = initsWhenFalse.andSet(initsWhenTrue);
duke@1 499 uninits = uninitsWhenFalse.andSet(uninitsWhenTrue);
duke@1 500 }
duke@1 501
duke@1 502 /* ************************************************************************
duke@1 503 * Visitor methods for statements and definitions
duke@1 504 *************************************************************************/
duke@1 505
duke@1 506 /** Analyze a definition.
duke@1 507 */
duke@1 508 void scanDef(JCTree tree) {
duke@1 509 scanStat(tree);
duke@1 510 if (tree != null && tree.getTag() == JCTree.BLOCK && !alive) {
duke@1 511 log.error(tree.pos(),
duke@1 512 "initializer.must.be.able.to.complete.normally");
duke@1 513 }
duke@1 514 }
duke@1 515
duke@1 516 /** Analyze a statement. Check that statement is reachable.
duke@1 517 */
duke@1 518 void scanStat(JCTree tree) {
duke@1 519 if (!alive && tree != null) {
duke@1 520 log.error(tree.pos(), "unreachable.stmt");
duke@1 521 if (tree.getTag() != JCTree.SKIP) alive = true;
duke@1 522 }
duke@1 523 scan(tree);
duke@1 524 }
duke@1 525
duke@1 526 /** Analyze list of statements.
duke@1 527 */
duke@1 528 void scanStats(List<? extends JCStatement> trees) {
duke@1 529 if (trees != null)
duke@1 530 for (List<? extends JCStatement> l = trees; l.nonEmpty(); l = l.tail)
duke@1 531 scanStat(l.head);
duke@1 532 }
duke@1 533
duke@1 534 /** Analyze an expression. Make sure to set (un)inits rather than
duke@1 535 * (un)initsWhenTrue(WhenFalse) on exit.
duke@1 536 */
duke@1 537 void scanExpr(JCTree tree) {
duke@1 538 if (tree != null) {
duke@1 539 scan(tree);
duke@1 540 if (inits == null) merge();
duke@1 541 }
duke@1 542 }
duke@1 543
duke@1 544 /** Analyze a list of expressions.
duke@1 545 */
duke@1 546 void scanExprs(List<? extends JCExpression> trees) {
duke@1 547 if (trees != null)
duke@1 548 for (List<? extends JCExpression> l = trees; l.nonEmpty(); l = l.tail)
duke@1 549 scanExpr(l.head);
duke@1 550 }
duke@1 551
duke@1 552 /** Analyze a condition. Make sure to set (un)initsWhenTrue(WhenFalse)
duke@1 553 * rather than (un)inits on exit.
duke@1 554 */
duke@1 555 void scanCond(JCTree tree) {
duke@1 556 if (tree.type.isFalse()) {
duke@1 557 if (inits == null) merge();
duke@1 558 initsWhenTrue = inits.dup();
duke@1 559 initsWhenTrue.inclRange(firstadr, nextadr);
duke@1 560 uninitsWhenTrue = uninits.dup();
duke@1 561 uninitsWhenTrue.inclRange(firstadr, nextadr);
duke@1 562 initsWhenFalse = inits;
duke@1 563 uninitsWhenFalse = uninits;
duke@1 564 } else if (tree.type.isTrue()) {
duke@1 565 if (inits == null) merge();
duke@1 566 initsWhenFalse = inits.dup();
duke@1 567 initsWhenFalse.inclRange(firstadr, nextadr);
duke@1 568 uninitsWhenFalse = uninits.dup();
duke@1 569 uninitsWhenFalse.inclRange(firstadr, nextadr);
duke@1 570 initsWhenTrue = inits;
duke@1 571 uninitsWhenTrue = uninits;
duke@1 572 } else {
duke@1 573 scan(tree);
mcimadamore@676 574 if (inits != null)
mcimadamore@676 575 split(tree.type != syms.unknownType);
duke@1 576 }
mcimadamore@676 577 if (tree.type != syms.unknownType)
mcimadamore@676 578 inits = uninits = null;
duke@1 579 }
duke@1 580
duke@1 581 /* ------------ Visitor methods for various sorts of trees -------------*/
duke@1 582
duke@1 583 public void visitClassDef(JCClassDecl tree) {
duke@1 584 if (tree.sym == null) return;
duke@1 585
duke@1 586 JCClassDecl classDefPrev = classDef;
duke@1 587 List<Type> thrownPrev = thrown;
duke@1 588 List<Type> caughtPrev = caught;
duke@1 589 boolean alivePrev = alive;
duke@1 590 int firstadrPrev = firstadr;
duke@1 591 int nextadrPrev = nextadr;
duke@1 592 ListBuffer<PendingExit> pendingExitsPrev = pendingExits;
duke@1 593 Lint lintPrev = lint;
duke@1 594
duke@1 595 pendingExits = new ListBuffer<PendingExit>();
duke@1 596 if (tree.name != names.empty) {
duke@1 597 caught = List.nil();
duke@1 598 firstadr = nextadr;
duke@1 599 }
duke@1 600 classDef = tree;
duke@1 601 thrown = List.nil();
duke@1 602 lint = lint.augment(tree.sym.attributes_field);
duke@1 603
duke@1 604 try {
duke@1 605 // define all the static fields
duke@1 606 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 607 if (l.head.getTag() == JCTree.VARDEF) {
duke@1 608 JCVariableDecl def = (JCVariableDecl)l.head;
duke@1 609 if ((def.mods.flags & STATIC) != 0) {
duke@1 610 VarSymbol sym = def.sym;
duke@1 611 if (trackable(sym))
duke@1 612 newVar(sym);
duke@1 613 }
duke@1 614 }
duke@1 615 }
duke@1 616
duke@1 617 // process all the static initializers
duke@1 618 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 619 if (l.head.getTag() != JCTree.METHODDEF &&
duke@1 620 (TreeInfo.flags(l.head) & STATIC) != 0) {
duke@1 621 scanDef(l.head);
duke@1 622 errorUncaught();
duke@1 623 }
duke@1 624 }
duke@1 625
duke@1 626 // add intersection of all thrown clauses of initial constructors
duke@1 627 // to set of caught exceptions, unless class is anonymous.
duke@1 628 if (tree.name != names.empty) {
duke@1 629 boolean firstConstructor = true;
duke@1 630 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 631 if (TreeInfo.isInitialConstructor(l.head)) {
duke@1 632 List<Type> mthrown =
duke@1 633 ((JCMethodDecl) l.head).sym.type.getThrownTypes();
duke@1 634 if (firstConstructor) {
duke@1 635 caught = mthrown;
duke@1 636 firstConstructor = false;
duke@1 637 } else {
duke@1 638 caught = chk.intersect(mthrown, caught);
duke@1 639 }
duke@1 640 }
duke@1 641 }
duke@1 642 }
duke@1 643
duke@1 644 // define all the instance fields
duke@1 645 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 646 if (l.head.getTag() == JCTree.VARDEF) {
duke@1 647 JCVariableDecl def = (JCVariableDecl)l.head;
duke@1 648 if ((def.mods.flags & STATIC) == 0) {
duke@1 649 VarSymbol sym = def.sym;
duke@1 650 if (trackable(sym))
duke@1 651 newVar(sym);
duke@1 652 }
duke@1 653 }
duke@1 654 }
duke@1 655
duke@1 656 // process all the instance initializers
duke@1 657 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 658 if (l.head.getTag() != JCTree.METHODDEF &&
duke@1 659 (TreeInfo.flags(l.head) & STATIC) == 0) {
duke@1 660 scanDef(l.head);
duke@1 661 errorUncaught();
duke@1 662 }
duke@1 663 }
duke@1 664
duke@1 665 // in an anonymous class, add the set of thrown exceptions to
duke@1 666 // the throws clause of the synthetic constructor and propagate
duke@1 667 // outwards.
duke@1 668 if (tree.name == names.empty) {
duke@1 669 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 670 if (TreeInfo.isInitialConstructor(l.head)) {
duke@1 671 JCMethodDecl mdef = (JCMethodDecl)l.head;
duke@1 672 mdef.thrown = make.Types(thrown);
duke@1 673 mdef.sym.type.setThrown(thrown);
duke@1 674 }
duke@1 675 }
duke@1 676 thrownPrev = chk.union(thrown, thrownPrev);
duke@1 677 }
duke@1 678
duke@1 679 // process all the methods
duke@1 680 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 681 if (l.head.getTag() == JCTree.METHODDEF) {
duke@1 682 scan(l.head);
duke@1 683 errorUncaught();
duke@1 684 }
duke@1 685 }
duke@1 686
duke@1 687 thrown = thrownPrev;
duke@1 688 } finally {
duke@1 689 pendingExits = pendingExitsPrev;
duke@1 690 alive = alivePrev;
duke@1 691 nextadr = nextadrPrev;
duke@1 692 firstadr = firstadrPrev;
duke@1 693 caught = caughtPrev;
duke@1 694 classDef = classDefPrev;
duke@1 695 lint = lintPrev;
duke@1 696 }
duke@1 697 }
duke@1 698
duke@1 699 public void visitMethodDef(JCMethodDecl tree) {
duke@1 700 if (tree.body == null) return;
duke@1 701
duke@1 702 List<Type> caughtPrev = caught;
duke@1 703 List<Type> mthrown = tree.sym.type.getThrownTypes();
duke@1 704 Bits initsPrev = inits.dup();
duke@1 705 Bits uninitsPrev = uninits.dup();
duke@1 706 int nextadrPrev = nextadr;
duke@1 707 int firstadrPrev = firstadr;
duke@1 708 Lint lintPrev = lint;
duke@1 709
duke@1 710 lint = lint.augment(tree.sym.attributes_field);
duke@1 711
duke@1 712 assert pendingExits.isEmpty();
duke@1 713
duke@1 714 try {
duke@1 715 boolean isInitialConstructor =
duke@1 716 TreeInfo.isInitialConstructor(tree);
duke@1 717
duke@1 718 if (!isInitialConstructor)
duke@1 719 firstadr = nextadr;
duke@1 720 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
duke@1 721 JCVariableDecl def = l.head;
duke@1 722 scan(def);
duke@1 723 inits.incl(def.sym.adr);
duke@1 724 uninits.excl(def.sym.adr);
duke@1 725 }
duke@1 726 if (isInitialConstructor)
duke@1 727 caught = chk.union(caught, mthrown);
duke@1 728 else if ((tree.sym.flags() & (BLOCK | STATIC)) != BLOCK)
duke@1 729 caught = mthrown;
duke@1 730 // else we are in an instance initializer block;
duke@1 731 // leave caught unchanged.
duke@1 732
duke@1 733 alive = true;
duke@1 734 scanStat(tree.body);
duke@1 735
duke@1 736 if (alive && tree.sym.type.getReturnType().tag != VOID)
duke@1 737 log.error(TreeInfo.diagEndPos(tree.body), "missing.ret.stmt");
duke@1 738
duke@1 739 if (isInitialConstructor) {
duke@1 740 for (int i = firstadr; i < nextadr; i++)
duke@1 741 if (vars[i].owner == classDef.sym)
duke@1 742 checkInit(TreeInfo.diagEndPos(tree.body), vars[i]);
duke@1 743 }
duke@1 744 List<PendingExit> exits = pendingExits.toList();
duke@1 745 pendingExits = new ListBuffer<PendingExit>();
duke@1 746 while (exits.nonEmpty()) {
duke@1 747 PendingExit exit = exits.head;
duke@1 748 exits = exits.tail;
duke@1 749 if (exit.thrown == null) {
duke@1 750 assert exit.tree.getTag() == JCTree.RETURN;
duke@1 751 if (isInitialConstructor) {
duke@1 752 inits = exit.inits;
duke@1 753 for (int i = firstadr; i < nextadr; i++)
duke@1 754 checkInit(exit.tree.pos(), vars[i]);
duke@1 755 }
duke@1 756 } else {
duke@1 757 // uncaught throws will be reported later
duke@1 758 pendingExits.append(exit);
duke@1 759 }
duke@1 760 }
duke@1 761 } finally {
duke@1 762 inits = initsPrev;
duke@1 763 uninits = uninitsPrev;
duke@1 764 nextadr = nextadrPrev;
duke@1 765 firstadr = firstadrPrev;
duke@1 766 caught = caughtPrev;
duke@1 767 lint = lintPrev;
duke@1 768 }
duke@1 769 }
duke@1 770
duke@1 771 public void visitVarDef(JCVariableDecl tree) {
duke@1 772 boolean track = trackable(tree.sym);
duke@1 773 if (track && tree.sym.owner.kind == MTH) newVar(tree.sym);
duke@1 774 if (tree.init != null) {
duke@1 775 Lint lintPrev = lint;
duke@1 776 lint = lint.augment(tree.sym.attributes_field);
duke@1 777 try{
duke@1 778 scanExpr(tree.init);
duke@1 779 if (track) letInit(tree.pos(), tree.sym);
duke@1 780 } finally {
duke@1 781 lint = lintPrev;
duke@1 782 }
duke@1 783 }
duke@1 784 }
duke@1 785
duke@1 786 public void visitBlock(JCBlock tree) {
duke@1 787 int nextadrPrev = nextadr;
duke@1 788 scanStats(tree.stats);
duke@1 789 nextadr = nextadrPrev;
duke@1 790 }
duke@1 791
duke@1 792 public void visitDoLoop(JCDoWhileLoop tree) {
duke@1 793 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 794 boolean prevLoopPassTwo = loopPassTwo;
duke@1 795 pendingExits = new ListBuffer<PendingExit>();
duke@1 796 do {
duke@1 797 Bits uninitsEntry = uninits.dup();
duke@1 798 scanStat(tree.body);
duke@1 799 alive |= resolveContinues(tree);
duke@1 800 scanCond(tree.cond);
duke@1 801 if (log.nerrors != 0 ||
duke@1 802 loopPassTwo ||
duke@1 803 uninitsEntry.diffSet(uninitsWhenTrue).nextBit(firstadr)==-1)
duke@1 804 break;
duke@1 805 inits = initsWhenTrue;
duke@1 806 uninits = uninitsEntry.andSet(uninitsWhenTrue);
duke@1 807 loopPassTwo = true;
duke@1 808 alive = true;
duke@1 809 } while (true);
duke@1 810 loopPassTwo = prevLoopPassTwo;
duke@1 811 inits = initsWhenFalse;
duke@1 812 uninits = uninitsWhenFalse;
duke@1 813 alive = alive && !tree.cond.type.isTrue();
duke@1 814 alive |= resolveBreaks(tree, prevPendingExits);
duke@1 815 }
duke@1 816
duke@1 817 public void visitWhileLoop(JCWhileLoop tree) {
duke@1 818 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 819 boolean prevLoopPassTwo = loopPassTwo;
duke@1 820 Bits initsCond;
duke@1 821 Bits uninitsCond;
duke@1 822 pendingExits = new ListBuffer<PendingExit>();
duke@1 823 do {
duke@1 824 Bits uninitsEntry = uninits.dup();
duke@1 825 scanCond(tree.cond);
duke@1 826 initsCond = initsWhenFalse;
duke@1 827 uninitsCond = uninitsWhenFalse;
duke@1 828 inits = initsWhenTrue;
duke@1 829 uninits = uninitsWhenTrue;
duke@1 830 alive = !tree.cond.type.isFalse();
duke@1 831 scanStat(tree.body);
duke@1 832 alive |= resolveContinues(tree);
duke@1 833 if (log.nerrors != 0 ||
duke@1 834 loopPassTwo ||
duke@1 835 uninitsEntry.diffSet(uninits).nextBit(firstadr) == -1)
duke@1 836 break;
duke@1 837 uninits = uninitsEntry.andSet(uninits);
duke@1 838 loopPassTwo = true;
duke@1 839 alive = true;
duke@1 840 } while (true);
duke@1 841 loopPassTwo = prevLoopPassTwo;
duke@1 842 inits = initsCond;
duke@1 843 uninits = uninitsCond;
duke@1 844 alive = resolveBreaks(tree, prevPendingExits) ||
duke@1 845 !tree.cond.type.isTrue();
duke@1 846 }
duke@1 847
duke@1 848 public void visitForLoop(JCForLoop tree) {
duke@1 849 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 850 boolean prevLoopPassTwo = loopPassTwo;
duke@1 851 int nextadrPrev = nextadr;
duke@1 852 scanStats(tree.init);
duke@1 853 Bits initsCond;
duke@1 854 Bits uninitsCond;
duke@1 855 pendingExits = new ListBuffer<PendingExit>();
duke@1 856 do {
duke@1 857 Bits uninitsEntry = uninits.dup();
duke@1 858 if (tree.cond != null) {
duke@1 859 scanCond(tree.cond);
duke@1 860 initsCond = initsWhenFalse;
duke@1 861 uninitsCond = uninitsWhenFalse;
duke@1 862 inits = initsWhenTrue;
duke@1 863 uninits = uninitsWhenTrue;
duke@1 864 alive = !tree.cond.type.isFalse();
duke@1 865 } else {
duke@1 866 initsCond = inits.dup();
duke@1 867 initsCond.inclRange(firstadr, nextadr);
duke@1 868 uninitsCond = uninits.dup();
duke@1 869 uninitsCond.inclRange(firstadr, nextadr);
duke@1 870 alive = true;
duke@1 871 }
duke@1 872 scanStat(tree.body);
duke@1 873 alive |= resolveContinues(tree);
duke@1 874 scan(tree.step);
duke@1 875 if (log.nerrors != 0 ||
duke@1 876 loopPassTwo ||
duke@1 877 uninitsEntry.dup().diffSet(uninits).nextBit(firstadr) == -1)
duke@1 878 break;
duke@1 879 uninits = uninitsEntry.andSet(uninits);
duke@1 880 loopPassTwo = true;
duke@1 881 alive = true;
duke@1 882 } while (true);
duke@1 883 loopPassTwo = prevLoopPassTwo;
duke@1 884 inits = initsCond;
duke@1 885 uninits = uninitsCond;
duke@1 886 alive = resolveBreaks(tree, prevPendingExits) ||
duke@1 887 tree.cond != null && !tree.cond.type.isTrue();
duke@1 888 nextadr = nextadrPrev;
duke@1 889 }
duke@1 890
duke@1 891 public void visitForeachLoop(JCEnhancedForLoop tree) {
duke@1 892 visitVarDef(tree.var);
duke@1 893
duke@1 894 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 895 boolean prevLoopPassTwo = loopPassTwo;
duke@1 896 int nextadrPrev = nextadr;
duke@1 897 scan(tree.expr);
duke@1 898 Bits initsStart = inits.dup();
duke@1 899 Bits uninitsStart = uninits.dup();
duke@1 900
duke@1 901 letInit(tree.pos(), tree.var.sym);
duke@1 902 pendingExits = new ListBuffer<PendingExit>();
duke@1 903 do {
duke@1 904 Bits uninitsEntry = uninits.dup();
duke@1 905 scanStat(tree.body);
duke@1 906 alive |= resolveContinues(tree);
duke@1 907 if (log.nerrors != 0 ||
duke@1 908 loopPassTwo ||
duke@1 909 uninitsEntry.diffSet(uninits).nextBit(firstadr) == -1)
duke@1 910 break;
duke@1 911 uninits = uninitsEntry.andSet(uninits);
duke@1 912 loopPassTwo = true;
duke@1 913 alive = true;
duke@1 914 } while (true);
duke@1 915 loopPassTwo = prevLoopPassTwo;
duke@1 916 inits = initsStart;
duke@1 917 uninits = uninitsStart.andSet(uninits);
duke@1 918 resolveBreaks(tree, prevPendingExits);
duke@1 919 alive = true;
duke@1 920 nextadr = nextadrPrev;
duke@1 921 }
duke@1 922
duke@1 923 public void visitLabelled(JCLabeledStatement tree) {
duke@1 924 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 925 pendingExits = new ListBuffer<PendingExit>();
duke@1 926 scanStat(tree.body);
duke@1 927 alive |= resolveBreaks(tree, prevPendingExits);
duke@1 928 }
duke@1 929
duke@1 930 public void visitSwitch(JCSwitch tree) {
duke@1 931 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 932 pendingExits = new ListBuffer<PendingExit>();
duke@1 933 int nextadrPrev = nextadr;
duke@1 934 scanExpr(tree.selector);
duke@1 935 Bits initsSwitch = inits;
duke@1 936 Bits uninitsSwitch = uninits.dup();
duke@1 937 boolean hasDefault = false;
duke@1 938 for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
duke@1 939 alive = true;
duke@1 940 inits = initsSwitch.dup();
duke@1 941 uninits = uninits.andSet(uninitsSwitch);
duke@1 942 JCCase c = l.head;
duke@1 943 if (c.pat == null)
duke@1 944 hasDefault = true;
duke@1 945 else
duke@1 946 scanExpr(c.pat);
duke@1 947 scanStats(c.stats);
duke@1 948 addVars(c.stats, initsSwitch, uninitsSwitch);
duke@1 949 // Warn about fall-through if lint switch fallthrough enabled.
duke@1 950 if (!loopPassTwo &&
duke@1 951 alive &&
duke@1 952 lint.isEnabled(Lint.LintCategory.FALLTHROUGH) &&
duke@1 953 c.stats.nonEmpty() && l.tail.nonEmpty())
jjg@612 954 log.warning(Lint.LintCategory.FALLTHROUGH,
jjg@612 955 l.tail.head.pos(),
duke@1 956 "possible.fall-through.into.case");
duke@1 957 }
duke@1 958 if (!hasDefault) {
duke@1 959 inits.andSet(initsSwitch);
duke@1 960 alive = true;
duke@1 961 }
duke@1 962 alive |= resolveBreaks(tree, prevPendingExits);
duke@1 963 nextadr = nextadrPrev;
duke@1 964 }
duke@1 965 // where
duke@1 966 /** Add any variables defined in stats to inits and uninits. */
duke@1 967 private static void addVars(List<JCStatement> stats, Bits inits,
duke@1 968 Bits uninits) {
duke@1 969 for (;stats.nonEmpty(); stats = stats.tail) {
duke@1 970 JCTree stat = stats.head;
duke@1 971 if (stat.getTag() == JCTree.VARDEF) {
duke@1 972 int adr = ((JCVariableDecl) stat).sym.adr;
duke@1 973 inits.excl(adr);
duke@1 974 uninits.incl(adr);
duke@1 975 }
duke@1 976 }
duke@1 977 }
duke@1 978
duke@1 979 public void visitTry(JCTry tree) {
duke@1 980 List<Type> caughtPrev = caught;
duke@1 981 List<Type> thrownPrev = thrown;
darcy@609 982 Map<VarSymbol, JCVariableDecl> unrefdResourcesPrev = unrefdResources;
duke@1 983 thrown = List.nil();
mcimadamore@550 984 for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
mcimadamore@550 985 List<JCExpression> subClauses = TreeInfo.isMultiCatch(l.head) ?
mcimadamore@550 986 ((JCTypeDisjoint)l.head.param.vartype).components :
mcimadamore@550 987 List.of(l.head.param.vartype);
mcimadamore@550 988 for (JCExpression ct : subClauses) {
mcimadamore@550 989 caught = chk.incl(ct.type, caught);
mcimadamore@550 990 }
mcimadamore@550 991 }
duke@1 992 Bits uninitsTryPrev = uninitsTry;
duke@1 993 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 994 pendingExits = new ListBuffer<PendingExit>();
duke@1 995 Bits initsTry = inits.dup();
duke@1 996 uninitsTry = uninits.dup();
darcy@609 997 unrefdResources = new LinkedHashMap<VarSymbol, JCVariableDecl>();
darcy@609 998 for (JCTree resource : tree.resources) {
darcy@609 999 if (resource instanceof JCVariableDecl) {
darcy@609 1000 JCVariableDecl vdecl = (JCVariableDecl) resource;
darcy@609 1001 visitVarDef(vdecl);
darcy@609 1002 unrefdResources.put(vdecl.sym, vdecl);
darcy@609 1003 } else if (resource instanceof JCExpression) {
darcy@609 1004 scanExpr((JCExpression) resource);
darcy@609 1005 } else {
darcy@609 1006 throw new AssertionError(tree); // parser error
darcy@609 1007 }
darcy@609 1008 }
darcy@609 1009 for (JCTree resource : tree.resources) {
darcy@609 1010 List<Type> closeableSupertypes = resource.type.isCompound() ?
darcy@609 1011 types.interfaces(resource.type).prepend(types.supertype(resource.type)) :
darcy@609 1012 List.of(resource.type);
darcy@609 1013 for (Type sup : closeableSupertypes) {
darcy@609 1014 if (types.asSuper(sup, syms.autoCloseableType.tsym) != null) {
mcimadamore@676 1015 Symbol closeMethod = rs.resolveQualifiedMethod(tree,
mcimadamore@617 1016 attrEnv,
mcimadamore@617 1017 sup,
mcimadamore@617 1018 names.close,
mcimadamore@617 1019 List.<Type>nil(),
mcimadamore@617 1020 List.<Type>nil());
mcimadamore@617 1021 if (closeMethod.kind == MTH) {
mcimadamore@617 1022 for (Type t : ((MethodSymbol)closeMethod).getThrownTypes()) {
mcimadamore@617 1023 markThrown(tree.body, t);
mcimadamore@617 1024 }
darcy@609 1025 }
darcy@609 1026 }
darcy@609 1027 }
darcy@609 1028 }
duke@1 1029 scanStat(tree.body);
duke@1 1030 List<Type> thrownInTry = thrown;
duke@1 1031 thrown = thrownPrev;
duke@1 1032 caught = caughtPrev;
duke@1 1033 boolean aliveEnd = alive;
duke@1 1034 uninitsTry.andSet(uninits);
duke@1 1035 Bits initsEnd = inits;
duke@1 1036 Bits uninitsEnd = uninits;
duke@1 1037 int nextadrCatch = nextadr;
duke@1 1038
darcy@609 1039 if (!unrefdResources.isEmpty() &&
darcy@609 1040 lint.isEnabled(Lint.LintCategory.ARM)) {
darcy@609 1041 for (Map.Entry<VarSymbol, JCVariableDecl> e : unrefdResources.entrySet()) {
darcy@609 1042 log.warning(e.getValue().pos(),
darcy@609 1043 "automatic.resource.not.referenced", e.getKey());
darcy@609 1044 }
darcy@609 1045 }
darcy@609 1046
duke@1 1047 List<Type> caughtInTry = List.nil();
duke@1 1048 for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
duke@1 1049 alive = true;
duke@1 1050 JCVariableDecl param = l.head.param;
mcimadamore@550 1051 List<JCExpression> subClauses = TreeInfo.isMultiCatch(l.head) ?
mcimadamore@550 1052 ((JCTypeDisjoint)l.head.param.vartype).components :
mcimadamore@550 1053 List.of(l.head.param.vartype);
mcimadamore@550 1054 List<Type> ctypes = List.nil();
mcimadamore@550 1055 List<Type> rethrownTypes = chk.diff(thrownInTry, caughtInTry);
mcimadamore@550 1056 for (JCExpression ct : subClauses) {
mcimadamore@550 1057 Type exc = ct.type;
mcimadamore@676 1058 if (exc != syms.unknownType) {
mcimadamore@676 1059 ctypes = ctypes.append(exc);
mcimadamore@676 1060 if (types.isSameType(exc, syms.objectType))
mcimadamore@676 1061 continue;
mcimadamore@676 1062 if (chk.subset(exc, caughtInTry)) {
mcimadamore@676 1063 log.error(l.head.pos(),
mcimadamore@676 1064 "except.already.caught", exc);
mcimadamore@676 1065 } else if (!chk.isUnchecked(l.head.pos(), exc) &&
mcimadamore@676 1066 exc.tsym != syms.throwableType.tsym &&
mcimadamore@676 1067 exc.tsym != syms.exceptionType.tsym &&
mcimadamore@676 1068 !chk.intersects(exc, thrownInTry)) {
mcimadamore@676 1069 log.error(l.head.pos(),
mcimadamore@676 1070 "except.never.thrown.in.try", exc);
mcimadamore@676 1071 }
mcimadamore@676 1072 caughtInTry = chk.incl(exc, caughtInTry);
mcimadamore@550 1073 }
duke@1 1074 }
duke@1 1075 inits = initsTry.dup();
duke@1 1076 uninits = uninitsTry.dup();
duke@1 1077 scan(param);
duke@1 1078 inits.incl(param.sym.adr);
duke@1 1079 uninits.excl(param.sym.adr);
mcimadamore@550 1080 multicatchTypes.put(param.sym, chk.intersect(ctypes, rethrownTypes));
duke@1 1081 scanStat(l.head.body);
duke@1 1082 initsEnd.andSet(inits);
duke@1 1083 uninitsEnd.andSet(uninits);
duke@1 1084 nextadr = nextadrCatch;
mcimadamore@550 1085 multicatchTypes.remove(param.sym);
duke@1 1086 aliveEnd |= alive;
duke@1 1087 }
duke@1 1088 if (tree.finalizer != null) {
duke@1 1089 List<Type> savedThrown = thrown;
duke@1 1090 thrown = List.nil();
duke@1 1091 inits = initsTry.dup();
duke@1 1092 uninits = uninitsTry.dup();
duke@1 1093 ListBuffer<PendingExit> exits = pendingExits;
duke@1 1094 pendingExits = prevPendingExits;
duke@1 1095 alive = true;
duke@1 1096 scanStat(tree.finalizer);
duke@1 1097 if (!alive) {
duke@1 1098 // discard exits and exceptions from try and finally
duke@1 1099 thrown = chk.union(thrown, thrownPrev);
duke@1 1100 if (!loopPassTwo &&
duke@1 1101 lint.isEnabled(Lint.LintCategory.FINALLY)) {
jjg@612 1102 log.warning(Lint.LintCategory.FINALLY,
jjg@612 1103 TreeInfo.diagEndPos(tree.finalizer),
jjg@612 1104 "finally.cannot.complete");
duke@1 1105 }
duke@1 1106 } else {
duke@1 1107 thrown = chk.union(thrown, chk.diff(thrownInTry, caughtInTry));
duke@1 1108 thrown = chk.union(thrown, savedThrown);
duke@1 1109 uninits.andSet(uninitsEnd);
duke@1 1110 // FIX: this doesn't preserve source order of exits in catch
duke@1 1111 // versus finally!
duke@1 1112 while (exits.nonEmpty()) {
duke@1 1113 PendingExit exit = exits.next();
duke@1 1114 if (exit.inits != null) {
duke@1 1115 exit.inits.orSet(inits);
duke@1 1116 exit.uninits.andSet(uninits);
duke@1 1117 }
duke@1 1118 pendingExits.append(exit);
duke@1 1119 }
duke@1 1120 inits.orSet(initsEnd);
duke@1 1121 alive = aliveEnd;
duke@1 1122 }
duke@1 1123 } else {
duke@1 1124 thrown = chk.union(thrown, chk.diff(thrownInTry, caughtInTry));
duke@1 1125 inits = initsEnd;
duke@1 1126 uninits = uninitsEnd;
duke@1 1127 alive = aliveEnd;
duke@1 1128 ListBuffer<PendingExit> exits = pendingExits;
duke@1 1129 pendingExits = prevPendingExits;
duke@1 1130 while (exits.nonEmpty()) pendingExits.append(exits.next());
duke@1 1131 }
duke@1 1132 uninitsTry.andSet(uninitsTryPrev).andSet(uninits);
darcy@609 1133 unrefdResources = unrefdResourcesPrev;
duke@1 1134 }
duke@1 1135
duke@1 1136 public void visitConditional(JCConditional tree) {
duke@1 1137 scanCond(tree.cond);
duke@1 1138 Bits initsBeforeElse = initsWhenFalse;
duke@1 1139 Bits uninitsBeforeElse = uninitsWhenFalse;
duke@1 1140 inits = initsWhenTrue;
duke@1 1141 uninits = uninitsWhenTrue;
duke@1 1142 if (tree.truepart.type.tag == BOOLEAN &&
duke@1 1143 tree.falsepart.type.tag == BOOLEAN) {
duke@1 1144 // if b and c are boolean valued, then
duke@1 1145 // v is (un)assigned after a?b:c when true iff
duke@1 1146 // v is (un)assigned after b when true and
duke@1 1147 // v is (un)assigned after c when true
duke@1 1148 scanCond(tree.truepart);
duke@1 1149 Bits initsAfterThenWhenTrue = initsWhenTrue.dup();
duke@1 1150 Bits initsAfterThenWhenFalse = initsWhenFalse.dup();
duke@1 1151 Bits uninitsAfterThenWhenTrue = uninitsWhenTrue.dup();
duke@1 1152 Bits uninitsAfterThenWhenFalse = uninitsWhenFalse.dup();
duke@1 1153 inits = initsBeforeElse;
duke@1 1154 uninits = uninitsBeforeElse;
duke@1 1155 scanCond(tree.falsepart);
duke@1 1156 initsWhenTrue.andSet(initsAfterThenWhenTrue);
duke@1 1157 initsWhenFalse.andSet(initsAfterThenWhenFalse);
duke@1 1158 uninitsWhenTrue.andSet(uninitsAfterThenWhenTrue);
duke@1 1159 uninitsWhenFalse.andSet(uninitsAfterThenWhenFalse);
duke@1 1160 } else {
duke@1 1161 scanExpr(tree.truepart);
duke@1 1162 Bits initsAfterThen = inits.dup();
duke@1 1163 Bits uninitsAfterThen = uninits.dup();
duke@1 1164 inits = initsBeforeElse;
duke@1 1165 uninits = uninitsBeforeElse;
duke@1 1166 scanExpr(tree.falsepart);
duke@1 1167 inits.andSet(initsAfterThen);
duke@1 1168 uninits.andSet(uninitsAfterThen);
duke@1 1169 }
duke@1 1170 }
duke@1 1171
duke@1 1172 public void visitIf(JCIf tree) {
duke@1 1173 scanCond(tree.cond);
duke@1 1174 Bits initsBeforeElse = initsWhenFalse;
duke@1 1175 Bits uninitsBeforeElse = uninitsWhenFalse;
duke@1 1176 inits = initsWhenTrue;
duke@1 1177 uninits = uninitsWhenTrue;
duke@1 1178 scanStat(tree.thenpart);
duke@1 1179 if (tree.elsepart != null) {
duke@1 1180 boolean aliveAfterThen = alive;
duke@1 1181 alive = true;
duke@1 1182 Bits initsAfterThen = inits.dup();
duke@1 1183 Bits uninitsAfterThen = uninits.dup();
duke@1 1184 inits = initsBeforeElse;
duke@1 1185 uninits = uninitsBeforeElse;
duke@1 1186 scanStat(tree.elsepart);
duke@1 1187 inits.andSet(initsAfterThen);
duke@1 1188 uninits.andSet(uninitsAfterThen);
duke@1 1189 alive = alive | aliveAfterThen;
duke@1 1190 } else {
duke@1 1191 inits.andSet(initsBeforeElse);
duke@1 1192 uninits.andSet(uninitsBeforeElse);
duke@1 1193 alive = true;
duke@1 1194 }
duke@1 1195 }
duke@1 1196
duke@1 1197
duke@1 1198
duke@1 1199 public void visitBreak(JCBreak tree) {
duke@1 1200 recordExit(tree);
duke@1 1201 }
duke@1 1202
duke@1 1203 public void visitContinue(JCContinue tree) {
duke@1 1204 recordExit(tree);
duke@1 1205 }
duke@1 1206
duke@1 1207 public void visitReturn(JCReturn tree) {
duke@1 1208 scanExpr(tree.expr);
duke@1 1209 // if not initial constructor, should markDead instead of recordExit
duke@1 1210 recordExit(tree);
duke@1 1211 }
duke@1 1212
duke@1 1213 public void visitThrow(JCThrow tree) {
duke@1 1214 scanExpr(tree.expr);
mcimadamore@550 1215 Symbol sym = TreeInfo.symbol(tree.expr);
mcimadamore@550 1216 if (sym != null &&
mcimadamore@550 1217 sym.kind == VAR &&
mcimadamore@550 1218 (sym.flags() & FINAL) != 0 &&
mcimadamore@550 1219 multicatchTypes.get(sym) != null &&
mcimadamore@550 1220 allowRethrowAnalysis) {
mcimadamore@550 1221 for (Type t : multicatchTypes.get(sym)) {
mcimadamore@550 1222 markThrown(tree, t);
mcimadamore@550 1223 }
mcimadamore@550 1224 }
mcimadamore@550 1225 else {
mcimadamore@550 1226 markThrown(tree, tree.expr.type);
mcimadamore@550 1227 }
duke@1 1228 markDead();
duke@1 1229 }
duke@1 1230
duke@1 1231 public void visitApply(JCMethodInvocation tree) {
duke@1 1232 scanExpr(tree.meth);
duke@1 1233 scanExprs(tree.args);
duke@1 1234 for (List<Type> l = tree.meth.type.getThrownTypes(); l.nonEmpty(); l = l.tail)
duke@1 1235 markThrown(tree, l.head);
duke@1 1236 }
duke@1 1237
duke@1 1238 public void visitNewClass(JCNewClass tree) {
duke@1 1239 scanExpr(tree.encl);
duke@1 1240 scanExprs(tree.args);
duke@1 1241 // scan(tree.def);
mcimadamore@186 1242 for (List<Type> l = tree.constructorType.getThrownTypes();
duke@1 1243 l.nonEmpty();
mcimadamore@186 1244 l = l.tail) {
duke@1 1245 markThrown(tree, l.head);
mcimadamore@186 1246 }
mcimadamore@186 1247 List<Type> caughtPrev = caught;
mcimadamore@186 1248 try {
mcimadamore@186 1249 // If the new class expression defines an anonymous class,
mcimadamore@186 1250 // analysis of the anonymous constructor may encounter thrown
mcimadamore@186 1251 // types which are unsubstituted type variables.
mcimadamore@186 1252 // However, since the constructor's actual thrown types have
mcimadamore@186 1253 // already been marked as thrown, it is safe to simply include
mcimadamore@186 1254 // each of the constructor's formal thrown types in the set of
mcimadamore@186 1255 // 'caught/declared to be thrown' types, for the duration of
mcimadamore@186 1256 // the class def analysis.
mcimadamore@186 1257 if (tree.def != null)
mcimadamore@186 1258 for (List<Type> l = tree.constructor.type.getThrownTypes();
mcimadamore@186 1259 l.nonEmpty();
mcimadamore@186 1260 l = l.tail) {
mcimadamore@186 1261 caught = chk.incl(l.head, caught);
mcimadamore@186 1262 }
mcimadamore@186 1263 scan(tree.def);
mcimadamore@186 1264 }
mcimadamore@186 1265 finally {
mcimadamore@186 1266 caught = caughtPrev;
mcimadamore@186 1267 }
duke@1 1268 }
duke@1 1269
duke@1 1270 public void visitNewArray(JCNewArray tree) {
duke@1 1271 scanExprs(tree.dims);
duke@1 1272 scanExprs(tree.elems);
duke@1 1273 }
duke@1 1274
duke@1 1275 public void visitAssert(JCAssert tree) {
duke@1 1276 Bits initsExit = inits.dup();
duke@1 1277 Bits uninitsExit = uninits.dup();
duke@1 1278 scanCond(tree.cond);
duke@1 1279 uninitsExit.andSet(uninitsWhenTrue);
duke@1 1280 if (tree.detail != null) {
duke@1 1281 inits = initsWhenFalse;
duke@1 1282 uninits = uninitsWhenFalse;
duke@1 1283 scanExpr(tree.detail);
duke@1 1284 }
duke@1 1285 inits = initsExit;
duke@1 1286 uninits = uninitsExit;
duke@1 1287 }
duke@1 1288
duke@1 1289 public void visitAssign(JCAssign tree) {
duke@1 1290 JCTree lhs = TreeInfo.skipParens(tree.lhs);
duke@1 1291 if (!(lhs instanceof JCIdent)) scanExpr(lhs);
duke@1 1292 scanExpr(tree.rhs);
duke@1 1293 letInit(lhs);
duke@1 1294 }
duke@1 1295
duke@1 1296 public void visitAssignop(JCAssignOp tree) {
duke@1 1297 scanExpr(tree.lhs);
duke@1 1298 scanExpr(tree.rhs);
duke@1 1299 letInit(tree.lhs);
duke@1 1300 }
duke@1 1301
duke@1 1302 public void visitUnary(JCUnary tree) {
duke@1 1303 switch (tree.getTag()) {
duke@1 1304 case JCTree.NOT:
duke@1 1305 scanCond(tree.arg);
duke@1 1306 Bits t = initsWhenFalse;
duke@1 1307 initsWhenFalse = initsWhenTrue;
duke@1 1308 initsWhenTrue = t;
duke@1 1309 t = uninitsWhenFalse;
duke@1 1310 uninitsWhenFalse = uninitsWhenTrue;
duke@1 1311 uninitsWhenTrue = t;
duke@1 1312 break;
duke@1 1313 case JCTree.PREINC: case JCTree.POSTINC:
duke@1 1314 case JCTree.PREDEC: case JCTree.POSTDEC:
duke@1 1315 scanExpr(tree.arg);
duke@1 1316 letInit(tree.arg);
duke@1 1317 break;
duke@1 1318 default:
duke@1 1319 scanExpr(tree.arg);
duke@1 1320 }
duke@1 1321 }
duke@1 1322
duke@1 1323 public void visitBinary(JCBinary tree) {
duke@1 1324 switch (tree.getTag()) {
duke@1 1325 case JCTree.AND:
duke@1 1326 scanCond(tree.lhs);
duke@1 1327 Bits initsWhenFalseLeft = initsWhenFalse;
duke@1 1328 Bits uninitsWhenFalseLeft = uninitsWhenFalse;
duke@1 1329 inits = initsWhenTrue;
duke@1 1330 uninits = uninitsWhenTrue;
duke@1 1331 scanCond(tree.rhs);
duke@1 1332 initsWhenFalse.andSet(initsWhenFalseLeft);
duke@1 1333 uninitsWhenFalse.andSet(uninitsWhenFalseLeft);
duke@1 1334 break;
duke@1 1335 case JCTree.OR:
duke@1 1336 scanCond(tree.lhs);
duke@1 1337 Bits initsWhenTrueLeft = initsWhenTrue;
duke@1 1338 Bits uninitsWhenTrueLeft = uninitsWhenTrue;
duke@1 1339 inits = initsWhenFalse;
duke@1 1340 uninits = uninitsWhenFalse;
duke@1 1341 scanCond(tree.rhs);
duke@1 1342 initsWhenTrue.andSet(initsWhenTrueLeft);
duke@1 1343 uninitsWhenTrue.andSet(uninitsWhenTrueLeft);
duke@1 1344 break;
duke@1 1345 default:
duke@1 1346 scanExpr(tree.lhs);
duke@1 1347 scanExpr(tree.rhs);
duke@1 1348 }
duke@1 1349 }
duke@1 1350
jjg@308 1351 public void visitAnnotatedType(JCAnnotatedType tree) {
jjg@308 1352 // annotations don't get scanned
jjg@308 1353 tree.underlyingType.accept(this);
jjg@308 1354 }
jjg@308 1355
duke@1 1356 public void visitIdent(JCIdent tree) {
darcy@609 1357 if (tree.sym.kind == VAR) {
duke@1 1358 checkInit(tree.pos(), (VarSymbol)tree.sym);
darcy@609 1359 referenced(tree.sym);
darcy@609 1360 }
darcy@609 1361 }
darcy@609 1362
darcy@609 1363 void referenced(Symbol sym) {
darcy@609 1364 if (unrefdResources != null && unrefdResources.containsKey(sym)) {
darcy@609 1365 unrefdResources.remove(sym);
darcy@609 1366 }
duke@1 1367 }
duke@1 1368
duke@1 1369 public void visitTypeCast(JCTypeCast tree) {
duke@1 1370 super.visitTypeCast(tree);
duke@1 1371 if (!tree.type.isErroneous()
duke@1 1372 && lint.isEnabled(Lint.LintCategory.CAST)
jjg@308 1373 && types.isSameType(tree.expr.type, tree.clazz.type)
jjg@308 1374 && !(ignoreAnnotatedCasts && containsTypeAnnotation(tree.clazz))) {
jjg@612 1375 log.warning(Lint.LintCategory.CAST,
jjg@612 1376 tree.pos(), "redundant.cast", tree.expr.type);
duke@1 1377 }
duke@1 1378 }
duke@1 1379
duke@1 1380 public void visitTopLevel(JCCompilationUnit tree) {
duke@1 1381 // Do nothing for TopLevel since each class is visited individually
duke@1 1382 }
duke@1 1383
duke@1 1384 /**************************************************************************
jjg@308 1385 * utility methods for ignoring type-annotated casts lint checking
jjg@308 1386 *************************************************************************/
jjg@308 1387 private static final boolean ignoreAnnotatedCasts = true;
jjg@308 1388 private static class AnnotationFinder extends TreeScanner {
jjg@308 1389 public boolean foundTypeAnno = false;
jjg@308 1390 public void visitAnnotation(JCAnnotation tree) {
jjg@308 1391 foundTypeAnno = foundTypeAnno || (tree instanceof JCTypeAnnotation);
jjg@308 1392 }
jjg@308 1393 }
jjg@308 1394
jjg@308 1395 private boolean containsTypeAnnotation(JCTree e) {
jjg@308 1396 AnnotationFinder finder = new AnnotationFinder();
jjg@308 1397 finder.scan(e);
jjg@308 1398 return finder.foundTypeAnno;
jjg@308 1399 }
jjg@308 1400
jjg@308 1401 /**************************************************************************
duke@1 1402 * main method
duke@1 1403 *************************************************************************/
duke@1 1404
duke@1 1405 /** Perform definite assignment/unassignment analysis on a tree.
duke@1 1406 */
mcimadamore@617 1407 public void analyzeTree(Env<AttrContext> env, TreeMaker make) {
duke@1 1408 try {
mcimadamore@617 1409 attrEnv = env;
mcimadamore@617 1410 JCTree tree = env.tree;
duke@1 1411 this.make = make;
duke@1 1412 inits = new Bits();
duke@1 1413 uninits = new Bits();
duke@1 1414 uninitsTry = new Bits();
duke@1 1415 initsWhenTrue = initsWhenFalse =
duke@1 1416 uninitsWhenTrue = uninitsWhenFalse = null;
duke@1 1417 if (vars == null)
duke@1 1418 vars = new VarSymbol[32];
duke@1 1419 else
duke@1 1420 for (int i=0; i<vars.length; i++)
duke@1 1421 vars[i] = null;
duke@1 1422 firstadr = 0;
duke@1 1423 nextadr = 0;
duke@1 1424 pendingExits = new ListBuffer<PendingExit>();
mcimadamore@550 1425 multicatchTypes = new HashMap<Symbol, List<Type>>();
duke@1 1426 alive = true;
duke@1 1427 this.thrown = this.caught = null;
duke@1 1428 this.classDef = null;
duke@1 1429 scan(tree);
duke@1 1430 } finally {
duke@1 1431 // note that recursive invocations of this method fail hard
duke@1 1432 inits = uninits = uninitsTry = null;
duke@1 1433 initsWhenTrue = initsWhenFalse =
duke@1 1434 uninitsWhenTrue = uninitsWhenFalse = null;
duke@1 1435 if (vars != null) for (int i=0; i<vars.length; i++)
duke@1 1436 vars[i] = null;
duke@1 1437 firstadr = 0;
duke@1 1438 nextadr = 0;
duke@1 1439 pendingExits = null;
duke@1 1440 this.make = null;
duke@1 1441 this.thrown = this.caught = null;
duke@1 1442 this.classDef = null;
duke@1 1443 }
duke@1 1444 }
duke@1 1445 }

mercurial