src/share/classes/com/sun/tools/javac/comp/Flow.java

Fri, 16 Jul 2010 19:35:24 -0700

author
darcy
date
Fri, 16 Jul 2010 19:35:24 -0700
changeset 609
13354e1abba7
parent 581
f2fdd52e4e87
child 612
d1bd93028447
permissions
-rw-r--r--

6911256: Project Coin: Support Automatic Resource Management (ARM) blocks in the compiler
6964740: Project Coin: More tests for ARM compiler changes
6965277: Project Coin: Correctness issues in ARM implementation
6967065: add -Xlint warning category for Automatic Resource Management (ARM)
Reviewed-by: jjb, darcy, mcimadamore, jjg, briangoetz
Contributed-by: tball@google.com

duke@1 1 /*
ohair@554 2 * Copyright (c) 1999, 2009, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 //todo: one might eliminate uninits.andSets when monotonic
duke@1 27
duke@1 28 package com.sun.tools.javac.comp;
duke@1 29
mcimadamore@550 30 import java.util.HashMap;
darcy@609 31 import java.util.Map;
darcy@609 32 import java.util.LinkedHashMap;
mcimadamore@550 33
duke@1 34 import com.sun.tools.javac.code.*;
duke@1 35 import com.sun.tools.javac.tree.*;
duke@1 36 import com.sun.tools.javac.util.*;
duke@1 37 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 38
duke@1 39 import com.sun.tools.javac.code.Symbol.*;
duke@1 40 import com.sun.tools.javac.tree.JCTree.*;
duke@1 41
duke@1 42 import static com.sun.tools.javac.code.Flags.*;
duke@1 43 import static com.sun.tools.javac.code.Kinds.*;
duke@1 44 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 45
duke@1 46 /** This pass implements dataflow analysis for Java programs.
duke@1 47 * Liveness analysis checks that every statement is reachable.
duke@1 48 * Exception analysis ensures that every checked exception that is
duke@1 49 * thrown is declared or caught. Definite assignment analysis
duke@1 50 * ensures that each variable is assigned when used. Definite
duke@1 51 * unassignment analysis ensures that no final variable is assigned
duke@1 52 * more than once.
duke@1 53 *
duke@1 54 * <p>The second edition of the JLS has a number of problems in the
duke@1 55 * specification of these flow analysis problems. This implementation
duke@1 56 * attempts to address those issues.
duke@1 57 *
duke@1 58 * <p>First, there is no accommodation for a finally clause that cannot
duke@1 59 * complete normally. For liveness analysis, an intervening finally
duke@1 60 * clause can cause a break, continue, or return not to reach its
duke@1 61 * target. For exception analysis, an intervening finally clause can
duke@1 62 * cause any exception to be "caught". For DA/DU analysis, the finally
duke@1 63 * clause can prevent a transfer of control from propagating DA/DU
duke@1 64 * state to the target. In addition, code in the finally clause can
duke@1 65 * affect the DA/DU status of variables.
duke@1 66 *
duke@1 67 * <p>For try statements, we introduce the idea of a variable being
duke@1 68 * definitely unassigned "everywhere" in a block. A variable V is
duke@1 69 * "unassigned everywhere" in a block iff it is unassigned at the
duke@1 70 * beginning of the block and there is no reachable assignment to V
duke@1 71 * in the block. An assignment V=e is reachable iff V is not DA
duke@1 72 * after e. Then we can say that V is DU at the beginning of the
duke@1 73 * catch block iff V is DU everywhere in the try block. Similarly, V
duke@1 74 * is DU at the beginning of the finally block iff V is DU everywhere
duke@1 75 * in the try block and in every catch block. Specifically, the
duke@1 76 * following bullet is added to 16.2.2
duke@1 77 * <pre>
duke@1 78 * V is <em>unassigned everywhere</em> in a block if it is
duke@1 79 * unassigned before the block and there is no reachable
duke@1 80 * assignment to V within the block.
duke@1 81 * </pre>
duke@1 82 * <p>In 16.2.15, the third bullet (and all of its sub-bullets) for all
duke@1 83 * try blocks is changed to
duke@1 84 * <pre>
duke@1 85 * V is definitely unassigned before a catch block iff V is
duke@1 86 * definitely unassigned everywhere in the try block.
duke@1 87 * </pre>
duke@1 88 * <p>The last bullet (and all of its sub-bullets) for try blocks that
duke@1 89 * have a finally block is changed to
duke@1 90 * <pre>
duke@1 91 * V is definitely unassigned before the finally block iff
duke@1 92 * V is definitely unassigned everywhere in the try block
duke@1 93 * and everywhere in each catch block of the try statement.
duke@1 94 * </pre>
duke@1 95 * <p>In addition,
duke@1 96 * <pre>
duke@1 97 * V is definitely assigned at the end of a constructor iff
duke@1 98 * V is definitely assigned after the block that is the body
duke@1 99 * of the constructor and V is definitely assigned at every
duke@1 100 * return that can return from the constructor.
duke@1 101 * </pre>
duke@1 102 * <p>In addition, each continue statement with the loop as its target
duke@1 103 * is treated as a jump to the end of the loop body, and "intervening"
duke@1 104 * finally clauses are treated as follows: V is DA "due to the
duke@1 105 * continue" iff V is DA before the continue statement or V is DA at
duke@1 106 * the end of any intervening finally block. V is DU "due to the
duke@1 107 * continue" iff any intervening finally cannot complete normally or V
duke@1 108 * is DU at the end of every intervening finally block. This "due to
duke@1 109 * the continue" concept is then used in the spec for the loops.
duke@1 110 *
duke@1 111 * <p>Similarly, break statements must consider intervening finally
duke@1 112 * blocks. For liveness analysis, a break statement for which any
duke@1 113 * intervening finally cannot complete normally is not considered to
duke@1 114 * cause the target statement to be able to complete normally. Then
duke@1 115 * we say V is DA "due to the break" iff V is DA before the break or
duke@1 116 * V is DA at the end of any intervening finally block. V is DU "due
duke@1 117 * to the break" iff any intervening finally cannot complete normally
duke@1 118 * or V is DU at the break and at the end of every intervening
duke@1 119 * finally block. (I suspect this latter condition can be
duke@1 120 * simplified.) This "due to the break" is then used in the spec for
duke@1 121 * all statements that can be "broken".
duke@1 122 *
duke@1 123 * <p>The return statement is treated similarly. V is DA "due to a
duke@1 124 * return statement" iff V is DA before the return statement or V is
duke@1 125 * DA at the end of any intervening finally block. Note that we
duke@1 126 * don't have to worry about the return expression because this
duke@1 127 * concept is only used for construcrors.
duke@1 128 *
duke@1 129 * <p>There is no spec in JLS2 for when a variable is definitely
duke@1 130 * assigned at the end of a constructor, which is needed for final
duke@1 131 * fields (8.3.1.2). We implement the rule that V is DA at the end
duke@1 132 * of the constructor iff it is DA and the end of the body of the
duke@1 133 * constructor and V is DA "due to" every return of the constructor.
duke@1 134 *
duke@1 135 * <p>Intervening finally blocks similarly affect exception analysis. An
duke@1 136 * intervening finally that cannot complete normally allows us to ignore
duke@1 137 * an otherwise uncaught exception.
duke@1 138 *
duke@1 139 * <p>To implement the semantics of intervening finally clauses, all
duke@1 140 * nonlocal transfers (break, continue, return, throw, method call that
duke@1 141 * can throw a checked exception, and a constructor invocation that can
duke@1 142 * thrown a checked exception) are recorded in a queue, and removed
duke@1 143 * from the queue when we complete processing the target of the
duke@1 144 * nonlocal transfer. This allows us to modify the queue in accordance
duke@1 145 * with the above rules when we encounter a finally clause. The only
duke@1 146 * exception to this [no pun intended] is that checked exceptions that
duke@1 147 * are known to be caught or declared to be caught in the enclosing
duke@1 148 * method are not recorded in the queue, but instead are recorded in a
duke@1 149 * global variable "Set<Type> thrown" that records the type of all
duke@1 150 * exceptions that can be thrown.
duke@1 151 *
duke@1 152 * <p>Other minor issues the treatment of members of other classes
duke@1 153 * (always considered DA except that within an anonymous class
duke@1 154 * constructor, where DA status from the enclosing scope is
duke@1 155 * preserved), treatment of the case expression (V is DA before the
duke@1 156 * case expression iff V is DA after the switch expression),
duke@1 157 * treatment of variables declared in a switch block (the implied
duke@1 158 * DA/DU status after the switch expression is DU and not DA for
duke@1 159 * variables defined in a switch block), the treatment of boolean ?:
duke@1 160 * expressions (The JLS rules only handle b and c non-boolean; the
duke@1 161 * new rule is that if b and c are boolean valued, then V is
duke@1 162 * (un)assigned after a?b:c when true/false iff V is (un)assigned
duke@1 163 * after b when true/false and V is (un)assigned after c when
duke@1 164 * true/false).
duke@1 165 *
duke@1 166 * <p>There is the remaining question of what syntactic forms constitute a
duke@1 167 * reference to a variable. It is conventional to allow this.x on the
duke@1 168 * left-hand-side to initialize a final instance field named x, yet
duke@1 169 * this.x isn't considered a "use" when appearing on a right-hand-side
duke@1 170 * in most implementations. Should parentheses affect what is
duke@1 171 * considered a variable reference? The simplest rule would be to
duke@1 172 * allow unqualified forms only, parentheses optional, and phase out
duke@1 173 * support for assigning to a final field via this.x.
duke@1 174 *
jjg@581 175 * <p><b>This is NOT part of any supported API.
jjg@581 176 * If you write code that depends on this, you do so at your own risk.
duke@1 177 * This code and its internal interfaces are subject to change or
duke@1 178 * deletion without notice.</b>
duke@1 179 */
duke@1 180 public class Flow extends TreeScanner {
duke@1 181 protected static final Context.Key<Flow> flowKey =
duke@1 182 new Context.Key<Flow>();
duke@1 183
jjg@113 184 private final Names names;
duke@1 185 private final Log log;
duke@1 186 private final Symtab syms;
duke@1 187 private final Types types;
duke@1 188 private final Check chk;
duke@1 189 private TreeMaker make;
duke@1 190 private Lint lint;
mcimadamore@550 191 private final boolean allowRethrowAnalysis;
duke@1 192
duke@1 193 public static Flow instance(Context context) {
duke@1 194 Flow instance = context.get(flowKey);
duke@1 195 if (instance == null)
duke@1 196 instance = new Flow(context);
duke@1 197 return instance;
duke@1 198 }
duke@1 199
duke@1 200 protected Flow(Context context) {
duke@1 201 context.put(flowKey, this);
jjg@113 202 names = Names.instance(context);
duke@1 203 log = Log.instance(context);
duke@1 204 syms = Symtab.instance(context);
duke@1 205 types = Types.instance(context);
duke@1 206 chk = Check.instance(context);
duke@1 207 lint = Lint.instance(context);
mcimadamore@550 208 Source source = Source.instance(context);
mcimadamore@550 209 allowRethrowAnalysis = source.allowMulticatch();
duke@1 210 }
duke@1 211
duke@1 212 /** A flag that indicates whether the last statement could
duke@1 213 * complete normally.
duke@1 214 */
duke@1 215 private boolean alive;
duke@1 216
duke@1 217 /** The set of definitely assigned variables.
duke@1 218 */
duke@1 219 Bits inits;
duke@1 220
duke@1 221 /** The set of definitely unassigned variables.
duke@1 222 */
duke@1 223 Bits uninits;
duke@1 224
mcimadamore@550 225 HashMap<Symbol, List<Type>> multicatchTypes;
mcimadamore@550 226
duke@1 227 /** The set of variables that are definitely unassigned everywhere
duke@1 228 * in current try block. This variable is maintained lazily; it is
duke@1 229 * updated only when something gets removed from uninits,
duke@1 230 * typically by being assigned in reachable code. To obtain the
duke@1 231 * correct set of variables which are definitely unassigned
duke@1 232 * anywhere in current try block, intersect uninitsTry and
duke@1 233 * uninits.
duke@1 234 */
duke@1 235 Bits uninitsTry;
duke@1 236
duke@1 237 /** When analyzing a condition, inits and uninits are null.
duke@1 238 * Instead we have:
duke@1 239 */
duke@1 240 Bits initsWhenTrue;
duke@1 241 Bits initsWhenFalse;
duke@1 242 Bits uninitsWhenTrue;
duke@1 243 Bits uninitsWhenFalse;
duke@1 244
duke@1 245 /** A mapping from addresses to variable symbols.
duke@1 246 */
duke@1 247 VarSymbol[] vars;
duke@1 248
duke@1 249 /** The current class being defined.
duke@1 250 */
duke@1 251 JCClassDecl classDef;
duke@1 252
duke@1 253 /** The first variable sequence number in this class definition.
duke@1 254 */
duke@1 255 int firstadr;
duke@1 256
duke@1 257 /** The next available variable sequence number.
duke@1 258 */
duke@1 259 int nextadr;
duke@1 260
duke@1 261 /** The list of possibly thrown declarable exceptions.
duke@1 262 */
duke@1 263 List<Type> thrown;
duke@1 264
duke@1 265 /** The list of exceptions that are either caught or declared to be
duke@1 266 * thrown.
duke@1 267 */
duke@1 268 List<Type> caught;
duke@1 269
darcy@609 270 /** The list of unreferenced automatic resources.
darcy@609 271 */
darcy@609 272 Map<VarSymbol, JCVariableDecl> unrefdResources;
darcy@609 273
duke@1 274 /** Set when processing a loop body the second time for DU analysis. */
duke@1 275 boolean loopPassTwo = false;
duke@1 276
duke@1 277 /*-------------------- Environments ----------------------*/
duke@1 278
duke@1 279 /** A pending exit. These are the statements return, break, and
duke@1 280 * continue. In addition, exception-throwing expressions or
duke@1 281 * statements are put here when not known to be caught. This
duke@1 282 * will typically result in an error unless it is within a
duke@1 283 * try-finally whose finally block cannot complete normally.
duke@1 284 */
duke@1 285 static class PendingExit {
duke@1 286 JCTree tree;
duke@1 287 Bits inits;
duke@1 288 Bits uninits;
duke@1 289 Type thrown;
duke@1 290 PendingExit(JCTree tree, Bits inits, Bits uninits) {
duke@1 291 this.tree = tree;
duke@1 292 this.inits = inits.dup();
duke@1 293 this.uninits = uninits.dup();
duke@1 294 }
duke@1 295 PendingExit(JCTree tree, Type thrown) {
duke@1 296 this.tree = tree;
duke@1 297 this.thrown = thrown;
duke@1 298 }
duke@1 299 }
duke@1 300
duke@1 301 /** The currently pending exits that go from current inner blocks
duke@1 302 * to an enclosing block, in source order.
duke@1 303 */
duke@1 304 ListBuffer<PendingExit> pendingExits;
duke@1 305
duke@1 306 /*-------------------- Exceptions ----------------------*/
duke@1 307
duke@1 308 /** Complain that pending exceptions are not caught.
duke@1 309 */
duke@1 310 void errorUncaught() {
duke@1 311 for (PendingExit exit = pendingExits.next();
duke@1 312 exit != null;
duke@1 313 exit = pendingExits.next()) {
duke@1 314 boolean synthetic = classDef != null &&
duke@1 315 classDef.pos == exit.tree.pos;
duke@1 316 log.error(exit.tree.pos(),
duke@1 317 synthetic
duke@1 318 ? "unreported.exception.default.constructor"
duke@1 319 : "unreported.exception.need.to.catch.or.throw",
duke@1 320 exit.thrown);
duke@1 321 }
duke@1 322 }
duke@1 323
duke@1 324 /** Record that exception is potentially thrown and check that it
duke@1 325 * is caught.
duke@1 326 */
duke@1 327 void markThrown(JCTree tree, Type exc) {
duke@1 328 if (!chk.isUnchecked(tree.pos(), exc)) {
duke@1 329 if (!chk.isHandled(exc, caught))
duke@1 330 pendingExits.append(new PendingExit(tree, exc));
duke@1 331 thrown = chk.incl(exc, thrown);
duke@1 332 }
duke@1 333 }
duke@1 334
duke@1 335 /*-------------- Processing variables ----------------------*/
duke@1 336
duke@1 337 /** Do we need to track init/uninit state of this symbol?
duke@1 338 * I.e. is symbol either a local or a blank final variable?
duke@1 339 */
duke@1 340 boolean trackable(VarSymbol sym) {
duke@1 341 return
duke@1 342 (sym.owner.kind == MTH ||
duke@1 343 ((sym.flags() & (FINAL | HASINIT | PARAMETER)) == FINAL &&
duke@1 344 classDef.sym.isEnclosedBy((ClassSymbol)sym.owner)));
duke@1 345 }
duke@1 346
duke@1 347 /** Initialize new trackable variable by setting its address field
duke@1 348 * to the next available sequence number and entering it under that
duke@1 349 * index into the vars array.
duke@1 350 */
duke@1 351 void newVar(VarSymbol sym) {
duke@1 352 if (nextadr == vars.length) {
duke@1 353 VarSymbol[] newvars = new VarSymbol[nextadr * 2];
duke@1 354 System.arraycopy(vars, 0, newvars, 0, nextadr);
duke@1 355 vars = newvars;
duke@1 356 }
duke@1 357 sym.adr = nextadr;
duke@1 358 vars[nextadr] = sym;
duke@1 359 inits.excl(nextadr);
duke@1 360 uninits.incl(nextadr);
duke@1 361 nextadr++;
duke@1 362 }
duke@1 363
duke@1 364 /** Record an initialization of a trackable variable.
duke@1 365 */
duke@1 366 void letInit(DiagnosticPosition pos, VarSymbol sym) {
duke@1 367 if (sym.adr >= firstadr && trackable(sym)) {
duke@1 368 if ((sym.flags() & FINAL) != 0) {
duke@1 369 if ((sym.flags() & PARAMETER) != 0) {
mcimadamore@550 370 if ((sym.flags() & DISJOINT) != 0) { //multi-catch parameter
mcimadamore@550 371 log.error(pos, "multicatch.parameter.may.not.be.assigned",
mcimadamore@550 372 sym);
mcimadamore@550 373 }
mcimadamore@550 374 else {
mcimadamore@550 375 log.error(pos, "final.parameter.may.not.be.assigned",
duke@1 376 sym);
mcimadamore@550 377 }
duke@1 378 } else if (!uninits.isMember(sym.adr)) {
duke@1 379 log.error(pos,
duke@1 380 loopPassTwo
duke@1 381 ? "var.might.be.assigned.in.loop"
duke@1 382 : "var.might.already.be.assigned",
duke@1 383 sym);
duke@1 384 } else if (!inits.isMember(sym.adr)) {
duke@1 385 // reachable assignment
duke@1 386 uninits.excl(sym.adr);
duke@1 387 uninitsTry.excl(sym.adr);
duke@1 388 } else {
duke@1 389 //log.rawWarning(pos, "unreachable assignment");//DEBUG
duke@1 390 uninits.excl(sym.adr);
duke@1 391 }
duke@1 392 }
duke@1 393 inits.incl(sym.adr);
duke@1 394 } else if ((sym.flags() & FINAL) != 0) {
duke@1 395 log.error(pos, "var.might.already.be.assigned", sym);
duke@1 396 }
duke@1 397 }
duke@1 398
duke@1 399 /** If tree is either a simple name or of the form this.name or
duke@1 400 * C.this.name, and tree represents a trackable variable,
duke@1 401 * record an initialization of the variable.
duke@1 402 */
duke@1 403 void letInit(JCTree tree) {
duke@1 404 tree = TreeInfo.skipParens(tree);
duke@1 405 if (tree.getTag() == JCTree.IDENT || tree.getTag() == JCTree.SELECT) {
duke@1 406 Symbol sym = TreeInfo.symbol(tree);
duke@1 407 letInit(tree.pos(), (VarSymbol)sym);
duke@1 408 }
duke@1 409 }
duke@1 410
duke@1 411 /** Check that trackable variable is initialized.
duke@1 412 */
duke@1 413 void checkInit(DiagnosticPosition pos, VarSymbol sym) {
duke@1 414 if ((sym.adr >= firstadr || sym.owner.kind != TYP) &&
duke@1 415 trackable(sym) &&
duke@1 416 !inits.isMember(sym.adr)) {
duke@1 417 log.error(pos, "var.might.not.have.been.initialized",
duke@1 418 sym);
duke@1 419 inits.incl(sym.adr);
duke@1 420 }
duke@1 421 }
duke@1 422
duke@1 423 /*-------------------- Handling jumps ----------------------*/
duke@1 424
duke@1 425 /** Record an outward transfer of control. */
duke@1 426 void recordExit(JCTree tree) {
duke@1 427 pendingExits.append(new PendingExit(tree, inits, uninits));
duke@1 428 markDead();
duke@1 429 }
duke@1 430
duke@1 431 /** Resolve all breaks of this statement. */
duke@1 432 boolean resolveBreaks(JCTree tree,
duke@1 433 ListBuffer<PendingExit> oldPendingExits) {
duke@1 434 boolean result = false;
duke@1 435 List<PendingExit> exits = pendingExits.toList();
duke@1 436 pendingExits = oldPendingExits;
duke@1 437 for (; exits.nonEmpty(); exits = exits.tail) {
duke@1 438 PendingExit exit = exits.head;
duke@1 439 if (exit.tree.getTag() == JCTree.BREAK &&
duke@1 440 ((JCBreak) exit.tree).target == tree) {
duke@1 441 inits.andSet(exit.inits);
duke@1 442 uninits.andSet(exit.uninits);
duke@1 443 result = true;
duke@1 444 } else {
duke@1 445 pendingExits.append(exit);
duke@1 446 }
duke@1 447 }
duke@1 448 return result;
duke@1 449 }
duke@1 450
duke@1 451 /** Resolve all continues of this statement. */
duke@1 452 boolean resolveContinues(JCTree tree) {
duke@1 453 boolean result = false;
duke@1 454 List<PendingExit> exits = pendingExits.toList();
duke@1 455 pendingExits = new ListBuffer<PendingExit>();
duke@1 456 for (; exits.nonEmpty(); exits = exits.tail) {
duke@1 457 PendingExit exit = exits.head;
duke@1 458 if (exit.tree.getTag() == JCTree.CONTINUE &&
duke@1 459 ((JCContinue) exit.tree).target == tree) {
duke@1 460 inits.andSet(exit.inits);
duke@1 461 uninits.andSet(exit.uninits);
duke@1 462 result = true;
duke@1 463 } else {
duke@1 464 pendingExits.append(exit);
duke@1 465 }
duke@1 466 }
duke@1 467 return result;
duke@1 468 }
duke@1 469
duke@1 470 /** Record that statement is unreachable.
duke@1 471 */
duke@1 472 void markDead() {
duke@1 473 inits.inclRange(firstadr, nextadr);
duke@1 474 uninits.inclRange(firstadr, nextadr);
duke@1 475 alive = false;
duke@1 476 }
duke@1 477
duke@1 478 /** Split (duplicate) inits/uninits into WhenTrue/WhenFalse sets
duke@1 479 */
duke@1 480 void split() {
duke@1 481 initsWhenFalse = inits.dup();
duke@1 482 uninitsWhenFalse = uninits.dup();
duke@1 483 initsWhenTrue = inits;
duke@1 484 uninitsWhenTrue = uninits;
duke@1 485 inits = uninits = null;
duke@1 486 }
duke@1 487
duke@1 488 /** Merge (intersect) inits/uninits from WhenTrue/WhenFalse sets.
duke@1 489 */
duke@1 490 void merge() {
duke@1 491 inits = initsWhenFalse.andSet(initsWhenTrue);
duke@1 492 uninits = uninitsWhenFalse.andSet(uninitsWhenTrue);
duke@1 493 }
duke@1 494
duke@1 495 /* ************************************************************************
duke@1 496 * Visitor methods for statements and definitions
duke@1 497 *************************************************************************/
duke@1 498
duke@1 499 /** Analyze a definition.
duke@1 500 */
duke@1 501 void scanDef(JCTree tree) {
duke@1 502 scanStat(tree);
duke@1 503 if (tree != null && tree.getTag() == JCTree.BLOCK && !alive) {
duke@1 504 log.error(tree.pos(),
duke@1 505 "initializer.must.be.able.to.complete.normally");
duke@1 506 }
duke@1 507 }
duke@1 508
duke@1 509 /** Analyze a statement. Check that statement is reachable.
duke@1 510 */
duke@1 511 void scanStat(JCTree tree) {
duke@1 512 if (!alive && tree != null) {
duke@1 513 log.error(tree.pos(), "unreachable.stmt");
duke@1 514 if (tree.getTag() != JCTree.SKIP) alive = true;
duke@1 515 }
duke@1 516 scan(tree);
duke@1 517 }
duke@1 518
duke@1 519 /** Analyze list of statements.
duke@1 520 */
duke@1 521 void scanStats(List<? extends JCStatement> trees) {
duke@1 522 if (trees != null)
duke@1 523 for (List<? extends JCStatement> l = trees; l.nonEmpty(); l = l.tail)
duke@1 524 scanStat(l.head);
duke@1 525 }
duke@1 526
duke@1 527 /** Analyze an expression. Make sure to set (un)inits rather than
duke@1 528 * (un)initsWhenTrue(WhenFalse) on exit.
duke@1 529 */
duke@1 530 void scanExpr(JCTree tree) {
duke@1 531 if (tree != null) {
duke@1 532 scan(tree);
duke@1 533 if (inits == null) merge();
duke@1 534 }
duke@1 535 }
duke@1 536
duke@1 537 /** Analyze a list of expressions.
duke@1 538 */
duke@1 539 void scanExprs(List<? extends JCExpression> trees) {
duke@1 540 if (trees != null)
duke@1 541 for (List<? extends JCExpression> l = trees; l.nonEmpty(); l = l.tail)
duke@1 542 scanExpr(l.head);
duke@1 543 }
duke@1 544
duke@1 545 /** Analyze a condition. Make sure to set (un)initsWhenTrue(WhenFalse)
duke@1 546 * rather than (un)inits on exit.
duke@1 547 */
duke@1 548 void scanCond(JCTree tree) {
duke@1 549 if (tree.type.isFalse()) {
duke@1 550 if (inits == null) merge();
duke@1 551 initsWhenTrue = inits.dup();
duke@1 552 initsWhenTrue.inclRange(firstadr, nextadr);
duke@1 553 uninitsWhenTrue = uninits.dup();
duke@1 554 uninitsWhenTrue.inclRange(firstadr, nextadr);
duke@1 555 initsWhenFalse = inits;
duke@1 556 uninitsWhenFalse = uninits;
duke@1 557 } else if (tree.type.isTrue()) {
duke@1 558 if (inits == null) merge();
duke@1 559 initsWhenFalse = inits.dup();
duke@1 560 initsWhenFalse.inclRange(firstadr, nextadr);
duke@1 561 uninitsWhenFalse = uninits.dup();
duke@1 562 uninitsWhenFalse.inclRange(firstadr, nextadr);
duke@1 563 initsWhenTrue = inits;
duke@1 564 uninitsWhenTrue = uninits;
duke@1 565 } else {
duke@1 566 scan(tree);
duke@1 567 if (inits != null) split();
duke@1 568 }
duke@1 569 inits = uninits = null;
duke@1 570 }
duke@1 571
duke@1 572 /* ------------ Visitor methods for various sorts of trees -------------*/
duke@1 573
duke@1 574 public void visitClassDef(JCClassDecl tree) {
duke@1 575 if (tree.sym == null) return;
duke@1 576
duke@1 577 JCClassDecl classDefPrev = classDef;
duke@1 578 List<Type> thrownPrev = thrown;
duke@1 579 List<Type> caughtPrev = caught;
duke@1 580 boolean alivePrev = alive;
duke@1 581 int firstadrPrev = firstadr;
duke@1 582 int nextadrPrev = nextadr;
duke@1 583 ListBuffer<PendingExit> pendingExitsPrev = pendingExits;
duke@1 584 Lint lintPrev = lint;
duke@1 585
duke@1 586 pendingExits = new ListBuffer<PendingExit>();
duke@1 587 if (tree.name != names.empty) {
duke@1 588 caught = List.nil();
duke@1 589 firstadr = nextadr;
duke@1 590 }
duke@1 591 classDef = tree;
duke@1 592 thrown = List.nil();
duke@1 593 lint = lint.augment(tree.sym.attributes_field);
duke@1 594
duke@1 595 try {
duke@1 596 // define all the static fields
duke@1 597 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 598 if (l.head.getTag() == JCTree.VARDEF) {
duke@1 599 JCVariableDecl def = (JCVariableDecl)l.head;
duke@1 600 if ((def.mods.flags & STATIC) != 0) {
duke@1 601 VarSymbol sym = def.sym;
duke@1 602 if (trackable(sym))
duke@1 603 newVar(sym);
duke@1 604 }
duke@1 605 }
duke@1 606 }
duke@1 607
duke@1 608 // process all the static initializers
duke@1 609 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 610 if (l.head.getTag() != JCTree.METHODDEF &&
duke@1 611 (TreeInfo.flags(l.head) & STATIC) != 0) {
duke@1 612 scanDef(l.head);
duke@1 613 errorUncaught();
duke@1 614 }
duke@1 615 }
duke@1 616
duke@1 617 // add intersection of all thrown clauses of initial constructors
duke@1 618 // to set of caught exceptions, unless class is anonymous.
duke@1 619 if (tree.name != names.empty) {
duke@1 620 boolean firstConstructor = true;
duke@1 621 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 622 if (TreeInfo.isInitialConstructor(l.head)) {
duke@1 623 List<Type> mthrown =
duke@1 624 ((JCMethodDecl) l.head).sym.type.getThrownTypes();
duke@1 625 if (firstConstructor) {
duke@1 626 caught = mthrown;
duke@1 627 firstConstructor = false;
duke@1 628 } else {
duke@1 629 caught = chk.intersect(mthrown, caught);
duke@1 630 }
duke@1 631 }
duke@1 632 }
duke@1 633 }
duke@1 634
duke@1 635 // define all the instance fields
duke@1 636 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 637 if (l.head.getTag() == JCTree.VARDEF) {
duke@1 638 JCVariableDecl def = (JCVariableDecl)l.head;
duke@1 639 if ((def.mods.flags & STATIC) == 0) {
duke@1 640 VarSymbol sym = def.sym;
duke@1 641 if (trackable(sym))
duke@1 642 newVar(sym);
duke@1 643 }
duke@1 644 }
duke@1 645 }
duke@1 646
duke@1 647 // process all the instance initializers
duke@1 648 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 649 if (l.head.getTag() != JCTree.METHODDEF &&
duke@1 650 (TreeInfo.flags(l.head) & STATIC) == 0) {
duke@1 651 scanDef(l.head);
duke@1 652 errorUncaught();
duke@1 653 }
duke@1 654 }
duke@1 655
duke@1 656 // in an anonymous class, add the set of thrown exceptions to
duke@1 657 // the throws clause of the synthetic constructor and propagate
duke@1 658 // outwards.
duke@1 659 if (tree.name == names.empty) {
duke@1 660 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 661 if (TreeInfo.isInitialConstructor(l.head)) {
duke@1 662 JCMethodDecl mdef = (JCMethodDecl)l.head;
duke@1 663 mdef.thrown = make.Types(thrown);
duke@1 664 mdef.sym.type.setThrown(thrown);
duke@1 665 }
duke@1 666 }
duke@1 667 thrownPrev = chk.union(thrown, thrownPrev);
duke@1 668 }
duke@1 669
duke@1 670 // process all the methods
duke@1 671 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 672 if (l.head.getTag() == JCTree.METHODDEF) {
duke@1 673 scan(l.head);
duke@1 674 errorUncaught();
duke@1 675 }
duke@1 676 }
duke@1 677
duke@1 678 thrown = thrownPrev;
duke@1 679 } finally {
duke@1 680 pendingExits = pendingExitsPrev;
duke@1 681 alive = alivePrev;
duke@1 682 nextadr = nextadrPrev;
duke@1 683 firstadr = firstadrPrev;
duke@1 684 caught = caughtPrev;
duke@1 685 classDef = classDefPrev;
duke@1 686 lint = lintPrev;
duke@1 687 }
duke@1 688 }
duke@1 689
duke@1 690 public void visitMethodDef(JCMethodDecl tree) {
duke@1 691 if (tree.body == null) return;
duke@1 692
duke@1 693 List<Type> caughtPrev = caught;
duke@1 694 List<Type> mthrown = tree.sym.type.getThrownTypes();
duke@1 695 Bits initsPrev = inits.dup();
duke@1 696 Bits uninitsPrev = uninits.dup();
duke@1 697 int nextadrPrev = nextadr;
duke@1 698 int firstadrPrev = firstadr;
duke@1 699 Lint lintPrev = lint;
duke@1 700
duke@1 701 lint = lint.augment(tree.sym.attributes_field);
duke@1 702
duke@1 703 assert pendingExits.isEmpty();
duke@1 704
duke@1 705 try {
duke@1 706 boolean isInitialConstructor =
duke@1 707 TreeInfo.isInitialConstructor(tree);
duke@1 708
duke@1 709 if (!isInitialConstructor)
duke@1 710 firstadr = nextadr;
duke@1 711 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
duke@1 712 JCVariableDecl def = l.head;
duke@1 713 scan(def);
duke@1 714 inits.incl(def.sym.adr);
duke@1 715 uninits.excl(def.sym.adr);
duke@1 716 }
duke@1 717 if (isInitialConstructor)
duke@1 718 caught = chk.union(caught, mthrown);
duke@1 719 else if ((tree.sym.flags() & (BLOCK | STATIC)) != BLOCK)
duke@1 720 caught = mthrown;
duke@1 721 // else we are in an instance initializer block;
duke@1 722 // leave caught unchanged.
duke@1 723
duke@1 724 alive = true;
duke@1 725 scanStat(tree.body);
duke@1 726
duke@1 727 if (alive && tree.sym.type.getReturnType().tag != VOID)
duke@1 728 log.error(TreeInfo.diagEndPos(tree.body), "missing.ret.stmt");
duke@1 729
duke@1 730 if (isInitialConstructor) {
duke@1 731 for (int i = firstadr; i < nextadr; i++)
duke@1 732 if (vars[i].owner == classDef.sym)
duke@1 733 checkInit(TreeInfo.diagEndPos(tree.body), vars[i]);
duke@1 734 }
duke@1 735 List<PendingExit> exits = pendingExits.toList();
duke@1 736 pendingExits = new ListBuffer<PendingExit>();
duke@1 737 while (exits.nonEmpty()) {
duke@1 738 PendingExit exit = exits.head;
duke@1 739 exits = exits.tail;
duke@1 740 if (exit.thrown == null) {
duke@1 741 assert exit.tree.getTag() == JCTree.RETURN;
duke@1 742 if (isInitialConstructor) {
duke@1 743 inits = exit.inits;
duke@1 744 for (int i = firstadr; i < nextadr; i++)
duke@1 745 checkInit(exit.tree.pos(), vars[i]);
duke@1 746 }
duke@1 747 } else {
duke@1 748 // uncaught throws will be reported later
duke@1 749 pendingExits.append(exit);
duke@1 750 }
duke@1 751 }
duke@1 752 } finally {
duke@1 753 inits = initsPrev;
duke@1 754 uninits = uninitsPrev;
duke@1 755 nextadr = nextadrPrev;
duke@1 756 firstadr = firstadrPrev;
duke@1 757 caught = caughtPrev;
duke@1 758 lint = lintPrev;
duke@1 759 }
duke@1 760 }
duke@1 761
duke@1 762 public void visitVarDef(JCVariableDecl tree) {
duke@1 763 boolean track = trackable(tree.sym);
duke@1 764 if (track && tree.sym.owner.kind == MTH) newVar(tree.sym);
duke@1 765 if (tree.init != null) {
duke@1 766 Lint lintPrev = lint;
duke@1 767 lint = lint.augment(tree.sym.attributes_field);
duke@1 768 try{
duke@1 769 scanExpr(tree.init);
duke@1 770 if (track) letInit(tree.pos(), tree.sym);
duke@1 771 } finally {
duke@1 772 lint = lintPrev;
duke@1 773 }
duke@1 774 }
duke@1 775 }
duke@1 776
duke@1 777 public void visitBlock(JCBlock tree) {
duke@1 778 int nextadrPrev = nextadr;
duke@1 779 scanStats(tree.stats);
duke@1 780 nextadr = nextadrPrev;
duke@1 781 }
duke@1 782
duke@1 783 public void visitDoLoop(JCDoWhileLoop tree) {
duke@1 784 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 785 boolean prevLoopPassTwo = loopPassTwo;
duke@1 786 pendingExits = new ListBuffer<PendingExit>();
duke@1 787 do {
duke@1 788 Bits uninitsEntry = uninits.dup();
duke@1 789 scanStat(tree.body);
duke@1 790 alive |= resolveContinues(tree);
duke@1 791 scanCond(tree.cond);
duke@1 792 if (log.nerrors != 0 ||
duke@1 793 loopPassTwo ||
duke@1 794 uninitsEntry.diffSet(uninitsWhenTrue).nextBit(firstadr)==-1)
duke@1 795 break;
duke@1 796 inits = initsWhenTrue;
duke@1 797 uninits = uninitsEntry.andSet(uninitsWhenTrue);
duke@1 798 loopPassTwo = true;
duke@1 799 alive = true;
duke@1 800 } while (true);
duke@1 801 loopPassTwo = prevLoopPassTwo;
duke@1 802 inits = initsWhenFalse;
duke@1 803 uninits = uninitsWhenFalse;
duke@1 804 alive = alive && !tree.cond.type.isTrue();
duke@1 805 alive |= resolveBreaks(tree, prevPendingExits);
duke@1 806 }
duke@1 807
duke@1 808 public void visitWhileLoop(JCWhileLoop tree) {
duke@1 809 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 810 boolean prevLoopPassTwo = loopPassTwo;
duke@1 811 Bits initsCond;
duke@1 812 Bits uninitsCond;
duke@1 813 pendingExits = new ListBuffer<PendingExit>();
duke@1 814 do {
duke@1 815 Bits uninitsEntry = uninits.dup();
duke@1 816 scanCond(tree.cond);
duke@1 817 initsCond = initsWhenFalse;
duke@1 818 uninitsCond = uninitsWhenFalse;
duke@1 819 inits = initsWhenTrue;
duke@1 820 uninits = uninitsWhenTrue;
duke@1 821 alive = !tree.cond.type.isFalse();
duke@1 822 scanStat(tree.body);
duke@1 823 alive |= resolveContinues(tree);
duke@1 824 if (log.nerrors != 0 ||
duke@1 825 loopPassTwo ||
duke@1 826 uninitsEntry.diffSet(uninits).nextBit(firstadr) == -1)
duke@1 827 break;
duke@1 828 uninits = uninitsEntry.andSet(uninits);
duke@1 829 loopPassTwo = true;
duke@1 830 alive = true;
duke@1 831 } while (true);
duke@1 832 loopPassTwo = prevLoopPassTwo;
duke@1 833 inits = initsCond;
duke@1 834 uninits = uninitsCond;
duke@1 835 alive = resolveBreaks(tree, prevPendingExits) ||
duke@1 836 !tree.cond.type.isTrue();
duke@1 837 }
duke@1 838
duke@1 839 public void visitForLoop(JCForLoop tree) {
duke@1 840 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 841 boolean prevLoopPassTwo = loopPassTwo;
duke@1 842 int nextadrPrev = nextadr;
duke@1 843 scanStats(tree.init);
duke@1 844 Bits initsCond;
duke@1 845 Bits uninitsCond;
duke@1 846 pendingExits = new ListBuffer<PendingExit>();
duke@1 847 do {
duke@1 848 Bits uninitsEntry = uninits.dup();
duke@1 849 if (tree.cond != null) {
duke@1 850 scanCond(tree.cond);
duke@1 851 initsCond = initsWhenFalse;
duke@1 852 uninitsCond = uninitsWhenFalse;
duke@1 853 inits = initsWhenTrue;
duke@1 854 uninits = uninitsWhenTrue;
duke@1 855 alive = !tree.cond.type.isFalse();
duke@1 856 } else {
duke@1 857 initsCond = inits.dup();
duke@1 858 initsCond.inclRange(firstadr, nextadr);
duke@1 859 uninitsCond = uninits.dup();
duke@1 860 uninitsCond.inclRange(firstadr, nextadr);
duke@1 861 alive = true;
duke@1 862 }
duke@1 863 scanStat(tree.body);
duke@1 864 alive |= resolveContinues(tree);
duke@1 865 scan(tree.step);
duke@1 866 if (log.nerrors != 0 ||
duke@1 867 loopPassTwo ||
duke@1 868 uninitsEntry.dup().diffSet(uninits).nextBit(firstadr) == -1)
duke@1 869 break;
duke@1 870 uninits = uninitsEntry.andSet(uninits);
duke@1 871 loopPassTwo = true;
duke@1 872 alive = true;
duke@1 873 } while (true);
duke@1 874 loopPassTwo = prevLoopPassTwo;
duke@1 875 inits = initsCond;
duke@1 876 uninits = uninitsCond;
duke@1 877 alive = resolveBreaks(tree, prevPendingExits) ||
duke@1 878 tree.cond != null && !tree.cond.type.isTrue();
duke@1 879 nextadr = nextadrPrev;
duke@1 880 }
duke@1 881
duke@1 882 public void visitForeachLoop(JCEnhancedForLoop tree) {
duke@1 883 visitVarDef(tree.var);
duke@1 884
duke@1 885 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 886 boolean prevLoopPassTwo = loopPassTwo;
duke@1 887 int nextadrPrev = nextadr;
duke@1 888 scan(tree.expr);
duke@1 889 Bits initsStart = inits.dup();
duke@1 890 Bits uninitsStart = uninits.dup();
duke@1 891
duke@1 892 letInit(tree.pos(), tree.var.sym);
duke@1 893 pendingExits = new ListBuffer<PendingExit>();
duke@1 894 do {
duke@1 895 Bits uninitsEntry = uninits.dup();
duke@1 896 scanStat(tree.body);
duke@1 897 alive |= resolveContinues(tree);
duke@1 898 if (log.nerrors != 0 ||
duke@1 899 loopPassTwo ||
duke@1 900 uninitsEntry.diffSet(uninits).nextBit(firstadr) == -1)
duke@1 901 break;
duke@1 902 uninits = uninitsEntry.andSet(uninits);
duke@1 903 loopPassTwo = true;
duke@1 904 alive = true;
duke@1 905 } while (true);
duke@1 906 loopPassTwo = prevLoopPassTwo;
duke@1 907 inits = initsStart;
duke@1 908 uninits = uninitsStart.andSet(uninits);
duke@1 909 resolveBreaks(tree, prevPendingExits);
duke@1 910 alive = true;
duke@1 911 nextadr = nextadrPrev;
duke@1 912 }
duke@1 913
duke@1 914 public void visitLabelled(JCLabeledStatement tree) {
duke@1 915 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 916 pendingExits = new ListBuffer<PendingExit>();
duke@1 917 scanStat(tree.body);
duke@1 918 alive |= resolveBreaks(tree, prevPendingExits);
duke@1 919 }
duke@1 920
duke@1 921 public void visitSwitch(JCSwitch tree) {
duke@1 922 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 923 pendingExits = new ListBuffer<PendingExit>();
duke@1 924 int nextadrPrev = nextadr;
duke@1 925 scanExpr(tree.selector);
duke@1 926 Bits initsSwitch = inits;
duke@1 927 Bits uninitsSwitch = uninits.dup();
duke@1 928 boolean hasDefault = false;
duke@1 929 for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
duke@1 930 alive = true;
duke@1 931 inits = initsSwitch.dup();
duke@1 932 uninits = uninits.andSet(uninitsSwitch);
duke@1 933 JCCase c = l.head;
duke@1 934 if (c.pat == null)
duke@1 935 hasDefault = true;
duke@1 936 else
duke@1 937 scanExpr(c.pat);
duke@1 938 scanStats(c.stats);
duke@1 939 addVars(c.stats, initsSwitch, uninitsSwitch);
duke@1 940 // Warn about fall-through if lint switch fallthrough enabled.
duke@1 941 if (!loopPassTwo &&
duke@1 942 alive &&
duke@1 943 lint.isEnabled(Lint.LintCategory.FALLTHROUGH) &&
duke@1 944 c.stats.nonEmpty() && l.tail.nonEmpty())
duke@1 945 log.warning(l.tail.head.pos(),
duke@1 946 "possible.fall-through.into.case");
duke@1 947 }
duke@1 948 if (!hasDefault) {
duke@1 949 inits.andSet(initsSwitch);
duke@1 950 alive = true;
duke@1 951 }
duke@1 952 alive |= resolveBreaks(tree, prevPendingExits);
duke@1 953 nextadr = nextadrPrev;
duke@1 954 }
duke@1 955 // where
duke@1 956 /** Add any variables defined in stats to inits and uninits. */
duke@1 957 private static void addVars(List<JCStatement> stats, Bits inits,
duke@1 958 Bits uninits) {
duke@1 959 for (;stats.nonEmpty(); stats = stats.tail) {
duke@1 960 JCTree stat = stats.head;
duke@1 961 if (stat.getTag() == JCTree.VARDEF) {
duke@1 962 int adr = ((JCVariableDecl) stat).sym.adr;
duke@1 963 inits.excl(adr);
duke@1 964 uninits.incl(adr);
duke@1 965 }
duke@1 966 }
duke@1 967 }
duke@1 968
duke@1 969 public void visitTry(JCTry tree) {
duke@1 970 List<Type> caughtPrev = caught;
duke@1 971 List<Type> thrownPrev = thrown;
darcy@609 972 Map<VarSymbol, JCVariableDecl> unrefdResourcesPrev = unrefdResources;
duke@1 973 thrown = List.nil();
mcimadamore@550 974 for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
mcimadamore@550 975 List<JCExpression> subClauses = TreeInfo.isMultiCatch(l.head) ?
mcimadamore@550 976 ((JCTypeDisjoint)l.head.param.vartype).components :
mcimadamore@550 977 List.of(l.head.param.vartype);
mcimadamore@550 978 for (JCExpression ct : subClauses) {
mcimadamore@550 979 caught = chk.incl(ct.type, caught);
mcimadamore@550 980 }
mcimadamore@550 981 }
duke@1 982 Bits uninitsTryPrev = uninitsTry;
duke@1 983 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 984 pendingExits = new ListBuffer<PendingExit>();
duke@1 985 Bits initsTry = inits.dup();
duke@1 986 uninitsTry = uninits.dup();
darcy@609 987 unrefdResources = new LinkedHashMap<VarSymbol, JCVariableDecl>();
darcy@609 988 for (JCTree resource : tree.resources) {
darcy@609 989 if (resource instanceof JCVariableDecl) {
darcy@609 990 JCVariableDecl vdecl = (JCVariableDecl) resource;
darcy@609 991 visitVarDef(vdecl);
darcy@609 992 unrefdResources.put(vdecl.sym, vdecl);
darcy@609 993 } else if (resource instanceof JCExpression) {
darcy@609 994 scanExpr((JCExpression) resource);
darcy@609 995 } else {
darcy@609 996 throw new AssertionError(tree); // parser error
darcy@609 997 }
darcy@609 998 }
darcy@609 999 for (JCTree resource : tree.resources) {
darcy@609 1000 MethodSymbol topCloseMethod = (MethodSymbol)syms.autoCloseableType.tsym.members().lookup(names.close).sym;
darcy@609 1001 List<Type> closeableSupertypes = resource.type.isCompound() ?
darcy@609 1002 types.interfaces(resource.type).prepend(types.supertype(resource.type)) :
darcy@609 1003 List.of(resource.type);
darcy@609 1004 for (Type sup : closeableSupertypes) {
darcy@609 1005 if (types.asSuper(sup, syms.autoCloseableType.tsym) != null) {
darcy@609 1006 MethodSymbol closeMethod = types.implementation(topCloseMethod, sup.tsym, types, true);
darcy@609 1007 for (Type t : closeMethod.getThrownTypes()) {
darcy@609 1008 markThrown(tree.body, t);
darcy@609 1009 }
darcy@609 1010 }
darcy@609 1011 }
darcy@609 1012 }
duke@1 1013 scanStat(tree.body);
duke@1 1014 List<Type> thrownInTry = thrown;
duke@1 1015 thrown = thrownPrev;
duke@1 1016 caught = caughtPrev;
duke@1 1017 boolean aliveEnd = alive;
duke@1 1018 uninitsTry.andSet(uninits);
duke@1 1019 Bits initsEnd = inits;
duke@1 1020 Bits uninitsEnd = uninits;
duke@1 1021 int nextadrCatch = nextadr;
duke@1 1022
darcy@609 1023 if (!unrefdResources.isEmpty() &&
darcy@609 1024 lint.isEnabled(Lint.LintCategory.ARM)) {
darcy@609 1025 for (Map.Entry<VarSymbol, JCVariableDecl> e : unrefdResources.entrySet()) {
darcy@609 1026 log.warning(e.getValue().pos(),
darcy@609 1027 "automatic.resource.not.referenced", e.getKey());
darcy@609 1028 }
darcy@609 1029 }
darcy@609 1030
duke@1 1031 List<Type> caughtInTry = List.nil();
duke@1 1032 for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
duke@1 1033 alive = true;
duke@1 1034 JCVariableDecl param = l.head.param;
mcimadamore@550 1035 List<JCExpression> subClauses = TreeInfo.isMultiCatch(l.head) ?
mcimadamore@550 1036 ((JCTypeDisjoint)l.head.param.vartype).components :
mcimadamore@550 1037 List.of(l.head.param.vartype);
mcimadamore@550 1038 List<Type> ctypes = List.nil();
mcimadamore@550 1039 List<Type> rethrownTypes = chk.diff(thrownInTry, caughtInTry);
mcimadamore@550 1040 for (JCExpression ct : subClauses) {
mcimadamore@550 1041 Type exc = ct.type;
mcimadamore@550 1042 ctypes = ctypes.append(exc);
mcimadamore@550 1043 if (types.isSameType(exc, syms.objectType))
mcimadamore@550 1044 continue;
mcimadamore@550 1045 if (chk.subset(exc, caughtInTry)) {
mcimadamore@550 1046 log.error(l.head.pos(),
mcimadamore@550 1047 "except.already.caught", exc);
mcimadamore@550 1048 } else if (!chk.isUnchecked(l.head.pos(), exc) &&
mcimadamore@550 1049 exc.tsym != syms.throwableType.tsym &&
mcimadamore@550 1050 exc.tsym != syms.exceptionType.tsym &&
mcimadamore@550 1051 !chk.intersects(exc, thrownInTry)) {
mcimadamore@550 1052 log.error(l.head.pos(),
mcimadamore@550 1053 "except.never.thrown.in.try", exc);
mcimadamore@550 1054 }
mcimadamore@550 1055 caughtInTry = chk.incl(exc, caughtInTry);
duke@1 1056 }
duke@1 1057 inits = initsTry.dup();
duke@1 1058 uninits = uninitsTry.dup();
duke@1 1059 scan(param);
duke@1 1060 inits.incl(param.sym.adr);
duke@1 1061 uninits.excl(param.sym.adr);
mcimadamore@550 1062 multicatchTypes.put(param.sym, chk.intersect(ctypes, rethrownTypes));
duke@1 1063 scanStat(l.head.body);
duke@1 1064 initsEnd.andSet(inits);
duke@1 1065 uninitsEnd.andSet(uninits);
duke@1 1066 nextadr = nextadrCatch;
mcimadamore@550 1067 multicatchTypes.remove(param.sym);
duke@1 1068 aliveEnd |= alive;
duke@1 1069 }
duke@1 1070 if (tree.finalizer != null) {
duke@1 1071 List<Type> savedThrown = thrown;
duke@1 1072 thrown = List.nil();
duke@1 1073 inits = initsTry.dup();
duke@1 1074 uninits = uninitsTry.dup();
duke@1 1075 ListBuffer<PendingExit> exits = pendingExits;
duke@1 1076 pendingExits = prevPendingExits;
duke@1 1077 alive = true;
duke@1 1078 scanStat(tree.finalizer);
duke@1 1079 if (!alive) {
duke@1 1080 // discard exits and exceptions from try and finally
duke@1 1081 thrown = chk.union(thrown, thrownPrev);
duke@1 1082 if (!loopPassTwo &&
duke@1 1083 lint.isEnabled(Lint.LintCategory.FINALLY)) {
duke@1 1084 log.warning(TreeInfo.diagEndPos(tree.finalizer),
duke@1 1085 "finally.cannot.complete");
duke@1 1086 }
duke@1 1087 } else {
duke@1 1088 thrown = chk.union(thrown, chk.diff(thrownInTry, caughtInTry));
duke@1 1089 thrown = chk.union(thrown, savedThrown);
duke@1 1090 uninits.andSet(uninitsEnd);
duke@1 1091 // FIX: this doesn't preserve source order of exits in catch
duke@1 1092 // versus finally!
duke@1 1093 while (exits.nonEmpty()) {
duke@1 1094 PendingExit exit = exits.next();
duke@1 1095 if (exit.inits != null) {
duke@1 1096 exit.inits.orSet(inits);
duke@1 1097 exit.uninits.andSet(uninits);
duke@1 1098 }
duke@1 1099 pendingExits.append(exit);
duke@1 1100 }
duke@1 1101 inits.orSet(initsEnd);
duke@1 1102 alive = aliveEnd;
duke@1 1103 }
duke@1 1104 } else {
duke@1 1105 thrown = chk.union(thrown, chk.diff(thrownInTry, caughtInTry));
duke@1 1106 inits = initsEnd;
duke@1 1107 uninits = uninitsEnd;
duke@1 1108 alive = aliveEnd;
duke@1 1109 ListBuffer<PendingExit> exits = pendingExits;
duke@1 1110 pendingExits = prevPendingExits;
duke@1 1111 while (exits.nonEmpty()) pendingExits.append(exits.next());
duke@1 1112 }
duke@1 1113 uninitsTry.andSet(uninitsTryPrev).andSet(uninits);
darcy@609 1114 unrefdResources = unrefdResourcesPrev;
duke@1 1115 }
duke@1 1116
duke@1 1117 public void visitConditional(JCConditional tree) {
duke@1 1118 scanCond(tree.cond);
duke@1 1119 Bits initsBeforeElse = initsWhenFalse;
duke@1 1120 Bits uninitsBeforeElse = uninitsWhenFalse;
duke@1 1121 inits = initsWhenTrue;
duke@1 1122 uninits = uninitsWhenTrue;
duke@1 1123 if (tree.truepart.type.tag == BOOLEAN &&
duke@1 1124 tree.falsepart.type.tag == BOOLEAN) {
duke@1 1125 // if b and c are boolean valued, then
duke@1 1126 // v is (un)assigned after a?b:c when true iff
duke@1 1127 // v is (un)assigned after b when true and
duke@1 1128 // v is (un)assigned after c when true
duke@1 1129 scanCond(tree.truepart);
duke@1 1130 Bits initsAfterThenWhenTrue = initsWhenTrue.dup();
duke@1 1131 Bits initsAfterThenWhenFalse = initsWhenFalse.dup();
duke@1 1132 Bits uninitsAfterThenWhenTrue = uninitsWhenTrue.dup();
duke@1 1133 Bits uninitsAfterThenWhenFalse = uninitsWhenFalse.dup();
duke@1 1134 inits = initsBeforeElse;
duke@1 1135 uninits = uninitsBeforeElse;
duke@1 1136 scanCond(tree.falsepart);
duke@1 1137 initsWhenTrue.andSet(initsAfterThenWhenTrue);
duke@1 1138 initsWhenFalse.andSet(initsAfterThenWhenFalse);
duke@1 1139 uninitsWhenTrue.andSet(uninitsAfterThenWhenTrue);
duke@1 1140 uninitsWhenFalse.andSet(uninitsAfterThenWhenFalse);
duke@1 1141 } else {
duke@1 1142 scanExpr(tree.truepart);
duke@1 1143 Bits initsAfterThen = inits.dup();
duke@1 1144 Bits uninitsAfterThen = uninits.dup();
duke@1 1145 inits = initsBeforeElse;
duke@1 1146 uninits = uninitsBeforeElse;
duke@1 1147 scanExpr(tree.falsepart);
duke@1 1148 inits.andSet(initsAfterThen);
duke@1 1149 uninits.andSet(uninitsAfterThen);
duke@1 1150 }
duke@1 1151 }
duke@1 1152
duke@1 1153 public void visitIf(JCIf tree) {
duke@1 1154 scanCond(tree.cond);
duke@1 1155 Bits initsBeforeElse = initsWhenFalse;
duke@1 1156 Bits uninitsBeforeElse = uninitsWhenFalse;
duke@1 1157 inits = initsWhenTrue;
duke@1 1158 uninits = uninitsWhenTrue;
duke@1 1159 scanStat(tree.thenpart);
duke@1 1160 if (tree.elsepart != null) {
duke@1 1161 boolean aliveAfterThen = alive;
duke@1 1162 alive = true;
duke@1 1163 Bits initsAfterThen = inits.dup();
duke@1 1164 Bits uninitsAfterThen = uninits.dup();
duke@1 1165 inits = initsBeforeElse;
duke@1 1166 uninits = uninitsBeforeElse;
duke@1 1167 scanStat(tree.elsepart);
duke@1 1168 inits.andSet(initsAfterThen);
duke@1 1169 uninits.andSet(uninitsAfterThen);
duke@1 1170 alive = alive | aliveAfterThen;
duke@1 1171 } else {
duke@1 1172 inits.andSet(initsBeforeElse);
duke@1 1173 uninits.andSet(uninitsBeforeElse);
duke@1 1174 alive = true;
duke@1 1175 }
duke@1 1176 }
duke@1 1177
duke@1 1178
duke@1 1179
duke@1 1180 public void visitBreak(JCBreak tree) {
duke@1 1181 recordExit(tree);
duke@1 1182 }
duke@1 1183
duke@1 1184 public void visitContinue(JCContinue tree) {
duke@1 1185 recordExit(tree);
duke@1 1186 }
duke@1 1187
duke@1 1188 public void visitReturn(JCReturn tree) {
duke@1 1189 scanExpr(tree.expr);
duke@1 1190 // if not initial constructor, should markDead instead of recordExit
duke@1 1191 recordExit(tree);
duke@1 1192 }
duke@1 1193
duke@1 1194 public void visitThrow(JCThrow tree) {
duke@1 1195 scanExpr(tree.expr);
mcimadamore@550 1196 Symbol sym = TreeInfo.symbol(tree.expr);
mcimadamore@550 1197 if (sym != null &&
mcimadamore@550 1198 sym.kind == VAR &&
mcimadamore@550 1199 (sym.flags() & FINAL) != 0 &&
mcimadamore@550 1200 multicatchTypes.get(sym) != null &&
mcimadamore@550 1201 allowRethrowAnalysis) {
mcimadamore@550 1202 for (Type t : multicatchTypes.get(sym)) {
mcimadamore@550 1203 markThrown(tree, t);
mcimadamore@550 1204 }
mcimadamore@550 1205 }
mcimadamore@550 1206 else {
mcimadamore@550 1207 markThrown(tree, tree.expr.type);
mcimadamore@550 1208 }
duke@1 1209 markDead();
duke@1 1210 }
duke@1 1211
duke@1 1212 public void visitApply(JCMethodInvocation tree) {
duke@1 1213 scanExpr(tree.meth);
duke@1 1214 scanExprs(tree.args);
duke@1 1215 for (List<Type> l = tree.meth.type.getThrownTypes(); l.nonEmpty(); l = l.tail)
duke@1 1216 markThrown(tree, l.head);
duke@1 1217 }
duke@1 1218
duke@1 1219 public void visitNewClass(JCNewClass tree) {
duke@1 1220 scanExpr(tree.encl);
duke@1 1221 scanExprs(tree.args);
duke@1 1222 // scan(tree.def);
mcimadamore@186 1223 for (List<Type> l = tree.constructorType.getThrownTypes();
duke@1 1224 l.nonEmpty();
mcimadamore@186 1225 l = l.tail) {
duke@1 1226 markThrown(tree, l.head);
mcimadamore@186 1227 }
mcimadamore@186 1228 List<Type> caughtPrev = caught;
mcimadamore@186 1229 try {
mcimadamore@186 1230 // If the new class expression defines an anonymous class,
mcimadamore@186 1231 // analysis of the anonymous constructor may encounter thrown
mcimadamore@186 1232 // types which are unsubstituted type variables.
mcimadamore@186 1233 // However, since the constructor's actual thrown types have
mcimadamore@186 1234 // already been marked as thrown, it is safe to simply include
mcimadamore@186 1235 // each of the constructor's formal thrown types in the set of
mcimadamore@186 1236 // 'caught/declared to be thrown' types, for the duration of
mcimadamore@186 1237 // the class def analysis.
mcimadamore@186 1238 if (tree.def != null)
mcimadamore@186 1239 for (List<Type> l = tree.constructor.type.getThrownTypes();
mcimadamore@186 1240 l.nonEmpty();
mcimadamore@186 1241 l = l.tail) {
mcimadamore@186 1242 caught = chk.incl(l.head, caught);
mcimadamore@186 1243 }
mcimadamore@186 1244 scan(tree.def);
mcimadamore@186 1245 }
mcimadamore@186 1246 finally {
mcimadamore@186 1247 caught = caughtPrev;
mcimadamore@186 1248 }
duke@1 1249 }
duke@1 1250
duke@1 1251 public void visitNewArray(JCNewArray tree) {
duke@1 1252 scanExprs(tree.dims);
duke@1 1253 scanExprs(tree.elems);
duke@1 1254 }
duke@1 1255
duke@1 1256 public void visitAssert(JCAssert tree) {
duke@1 1257 Bits initsExit = inits.dup();
duke@1 1258 Bits uninitsExit = uninits.dup();
duke@1 1259 scanCond(tree.cond);
duke@1 1260 uninitsExit.andSet(uninitsWhenTrue);
duke@1 1261 if (tree.detail != null) {
duke@1 1262 inits = initsWhenFalse;
duke@1 1263 uninits = uninitsWhenFalse;
duke@1 1264 scanExpr(tree.detail);
duke@1 1265 }
duke@1 1266 inits = initsExit;
duke@1 1267 uninits = uninitsExit;
duke@1 1268 }
duke@1 1269
duke@1 1270 public void visitAssign(JCAssign tree) {
duke@1 1271 JCTree lhs = TreeInfo.skipParens(tree.lhs);
duke@1 1272 if (!(lhs instanceof JCIdent)) scanExpr(lhs);
duke@1 1273 scanExpr(tree.rhs);
duke@1 1274 letInit(lhs);
duke@1 1275 }
duke@1 1276
duke@1 1277 public void visitAssignop(JCAssignOp tree) {
duke@1 1278 scanExpr(tree.lhs);
duke@1 1279 scanExpr(tree.rhs);
duke@1 1280 letInit(tree.lhs);
duke@1 1281 }
duke@1 1282
duke@1 1283 public void visitUnary(JCUnary tree) {
duke@1 1284 switch (tree.getTag()) {
duke@1 1285 case JCTree.NOT:
duke@1 1286 scanCond(tree.arg);
duke@1 1287 Bits t = initsWhenFalse;
duke@1 1288 initsWhenFalse = initsWhenTrue;
duke@1 1289 initsWhenTrue = t;
duke@1 1290 t = uninitsWhenFalse;
duke@1 1291 uninitsWhenFalse = uninitsWhenTrue;
duke@1 1292 uninitsWhenTrue = t;
duke@1 1293 break;
duke@1 1294 case JCTree.PREINC: case JCTree.POSTINC:
duke@1 1295 case JCTree.PREDEC: case JCTree.POSTDEC:
duke@1 1296 scanExpr(tree.arg);
duke@1 1297 letInit(tree.arg);
duke@1 1298 break;
duke@1 1299 default:
duke@1 1300 scanExpr(tree.arg);
duke@1 1301 }
duke@1 1302 }
duke@1 1303
duke@1 1304 public void visitBinary(JCBinary tree) {
duke@1 1305 switch (tree.getTag()) {
duke@1 1306 case JCTree.AND:
duke@1 1307 scanCond(tree.lhs);
duke@1 1308 Bits initsWhenFalseLeft = initsWhenFalse;
duke@1 1309 Bits uninitsWhenFalseLeft = uninitsWhenFalse;
duke@1 1310 inits = initsWhenTrue;
duke@1 1311 uninits = uninitsWhenTrue;
duke@1 1312 scanCond(tree.rhs);
duke@1 1313 initsWhenFalse.andSet(initsWhenFalseLeft);
duke@1 1314 uninitsWhenFalse.andSet(uninitsWhenFalseLeft);
duke@1 1315 break;
duke@1 1316 case JCTree.OR:
duke@1 1317 scanCond(tree.lhs);
duke@1 1318 Bits initsWhenTrueLeft = initsWhenTrue;
duke@1 1319 Bits uninitsWhenTrueLeft = uninitsWhenTrue;
duke@1 1320 inits = initsWhenFalse;
duke@1 1321 uninits = uninitsWhenFalse;
duke@1 1322 scanCond(tree.rhs);
duke@1 1323 initsWhenTrue.andSet(initsWhenTrueLeft);
duke@1 1324 uninitsWhenTrue.andSet(uninitsWhenTrueLeft);
duke@1 1325 break;
duke@1 1326 default:
duke@1 1327 scanExpr(tree.lhs);
duke@1 1328 scanExpr(tree.rhs);
duke@1 1329 }
duke@1 1330 }
duke@1 1331
jjg@308 1332 public void visitAnnotatedType(JCAnnotatedType tree) {
jjg@308 1333 // annotations don't get scanned
jjg@308 1334 tree.underlyingType.accept(this);
jjg@308 1335 }
jjg@308 1336
duke@1 1337 public void visitIdent(JCIdent tree) {
darcy@609 1338 if (tree.sym.kind == VAR) {
duke@1 1339 checkInit(tree.pos(), (VarSymbol)tree.sym);
darcy@609 1340 referenced(tree.sym);
darcy@609 1341 }
darcy@609 1342 }
darcy@609 1343
darcy@609 1344 void referenced(Symbol sym) {
darcy@609 1345 if (unrefdResources != null && unrefdResources.containsKey(sym)) {
darcy@609 1346 unrefdResources.remove(sym);
darcy@609 1347 }
duke@1 1348 }
duke@1 1349
duke@1 1350 public void visitTypeCast(JCTypeCast tree) {
duke@1 1351 super.visitTypeCast(tree);
duke@1 1352 if (!tree.type.isErroneous()
duke@1 1353 && lint.isEnabled(Lint.LintCategory.CAST)
jjg@308 1354 && types.isSameType(tree.expr.type, tree.clazz.type)
jjg@308 1355 && !(ignoreAnnotatedCasts && containsTypeAnnotation(tree.clazz))) {
duke@1 1356 log.warning(tree.pos(), "redundant.cast", tree.expr.type);
duke@1 1357 }
duke@1 1358 }
duke@1 1359
duke@1 1360 public void visitTopLevel(JCCompilationUnit tree) {
duke@1 1361 // Do nothing for TopLevel since each class is visited individually
duke@1 1362 }
duke@1 1363
duke@1 1364 /**************************************************************************
jjg@308 1365 * utility methods for ignoring type-annotated casts lint checking
jjg@308 1366 *************************************************************************/
jjg@308 1367 private static final boolean ignoreAnnotatedCasts = true;
jjg@308 1368 private static class AnnotationFinder extends TreeScanner {
jjg@308 1369 public boolean foundTypeAnno = false;
jjg@308 1370 public void visitAnnotation(JCAnnotation tree) {
jjg@308 1371 foundTypeAnno = foundTypeAnno || (tree instanceof JCTypeAnnotation);
jjg@308 1372 }
jjg@308 1373 }
jjg@308 1374
jjg@308 1375 private boolean containsTypeAnnotation(JCTree e) {
jjg@308 1376 AnnotationFinder finder = new AnnotationFinder();
jjg@308 1377 finder.scan(e);
jjg@308 1378 return finder.foundTypeAnno;
jjg@308 1379 }
jjg@308 1380
jjg@308 1381 /**************************************************************************
duke@1 1382 * main method
duke@1 1383 *************************************************************************/
duke@1 1384
duke@1 1385 /** Perform definite assignment/unassignment analysis on a tree.
duke@1 1386 */
duke@1 1387 public void analyzeTree(JCTree tree, TreeMaker make) {
duke@1 1388 try {
duke@1 1389 this.make = make;
duke@1 1390 inits = new Bits();
duke@1 1391 uninits = new Bits();
duke@1 1392 uninitsTry = new Bits();
duke@1 1393 initsWhenTrue = initsWhenFalse =
duke@1 1394 uninitsWhenTrue = uninitsWhenFalse = null;
duke@1 1395 if (vars == null)
duke@1 1396 vars = new VarSymbol[32];
duke@1 1397 else
duke@1 1398 for (int i=0; i<vars.length; i++)
duke@1 1399 vars[i] = null;
duke@1 1400 firstadr = 0;
duke@1 1401 nextadr = 0;
duke@1 1402 pendingExits = new ListBuffer<PendingExit>();
mcimadamore@550 1403 multicatchTypes = new HashMap<Symbol, List<Type>>();
duke@1 1404 alive = true;
duke@1 1405 this.thrown = this.caught = null;
duke@1 1406 this.classDef = null;
duke@1 1407 scan(tree);
duke@1 1408 } finally {
duke@1 1409 // note that recursive invocations of this method fail hard
duke@1 1410 inits = uninits = uninitsTry = null;
duke@1 1411 initsWhenTrue = initsWhenFalse =
duke@1 1412 uninitsWhenTrue = uninitsWhenFalse = null;
duke@1 1413 if (vars != null) for (int i=0; i<vars.length; i++)
duke@1 1414 vars[i] = null;
duke@1 1415 firstadr = 0;
duke@1 1416 nextadr = 0;
duke@1 1417 pendingExits = null;
duke@1 1418 this.make = null;
duke@1 1419 this.thrown = this.caught = null;
duke@1 1420 this.classDef = null;
duke@1 1421 }
duke@1 1422 }
duke@1 1423 }

mercurial