src/share/classes/com/sun/tools/javac/comp/Flow.java

Thu, 29 Jul 2010 15:57:43 +0100

author
mcimadamore
date
Thu, 29 Jul 2010 15:57:43 +0100
changeset 617
62f3f07002ea
parent 612
d1bd93028447
child 676
bfdfc13fe641
permissions
-rw-r--r--

6970833: Try-with-resource implementation throws an NPE during Flow analysis
Summary: Updated logic not to rely upon Symbol.implementation (which check in superinterfaces)
Reviewed-by: jjg

duke@1 1 /*
ohair@554 2 * Copyright (c) 1999, 2009, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 //todo: one might eliminate uninits.andSets when monotonic
duke@1 27
duke@1 28 package com.sun.tools.javac.comp;
duke@1 29
mcimadamore@550 30 import java.util.HashMap;
darcy@609 31 import java.util.Map;
darcy@609 32 import java.util.LinkedHashMap;
mcimadamore@550 33
duke@1 34 import com.sun.tools.javac.code.*;
duke@1 35 import com.sun.tools.javac.tree.*;
duke@1 36 import com.sun.tools.javac.util.*;
duke@1 37 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 38
duke@1 39 import com.sun.tools.javac.code.Symbol.*;
mcimadamore@617 40 import com.sun.tools.javac.comp.Resolve;
duke@1 41 import com.sun.tools.javac.tree.JCTree.*;
duke@1 42
duke@1 43 import static com.sun.tools.javac.code.Flags.*;
duke@1 44 import static com.sun.tools.javac.code.Kinds.*;
duke@1 45 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 46
duke@1 47 /** This pass implements dataflow analysis for Java programs.
duke@1 48 * Liveness analysis checks that every statement is reachable.
duke@1 49 * Exception analysis ensures that every checked exception that is
duke@1 50 * thrown is declared or caught. Definite assignment analysis
duke@1 51 * ensures that each variable is assigned when used. Definite
duke@1 52 * unassignment analysis ensures that no final variable is assigned
duke@1 53 * more than once.
duke@1 54 *
duke@1 55 * <p>The second edition of the JLS has a number of problems in the
duke@1 56 * specification of these flow analysis problems. This implementation
duke@1 57 * attempts to address those issues.
duke@1 58 *
duke@1 59 * <p>First, there is no accommodation for a finally clause that cannot
duke@1 60 * complete normally. For liveness analysis, an intervening finally
duke@1 61 * clause can cause a break, continue, or return not to reach its
duke@1 62 * target. For exception analysis, an intervening finally clause can
duke@1 63 * cause any exception to be "caught". For DA/DU analysis, the finally
duke@1 64 * clause can prevent a transfer of control from propagating DA/DU
duke@1 65 * state to the target. In addition, code in the finally clause can
duke@1 66 * affect the DA/DU status of variables.
duke@1 67 *
duke@1 68 * <p>For try statements, we introduce the idea of a variable being
duke@1 69 * definitely unassigned "everywhere" in a block. A variable V is
duke@1 70 * "unassigned everywhere" in a block iff it is unassigned at the
duke@1 71 * beginning of the block and there is no reachable assignment to V
duke@1 72 * in the block. An assignment V=e is reachable iff V is not DA
duke@1 73 * after e. Then we can say that V is DU at the beginning of the
duke@1 74 * catch block iff V is DU everywhere in the try block. Similarly, V
duke@1 75 * is DU at the beginning of the finally block iff V is DU everywhere
duke@1 76 * in the try block and in every catch block. Specifically, the
duke@1 77 * following bullet is added to 16.2.2
duke@1 78 * <pre>
duke@1 79 * V is <em>unassigned everywhere</em> in a block if it is
duke@1 80 * unassigned before the block and there is no reachable
duke@1 81 * assignment to V within the block.
duke@1 82 * </pre>
duke@1 83 * <p>In 16.2.15, the third bullet (and all of its sub-bullets) for all
duke@1 84 * try blocks is changed to
duke@1 85 * <pre>
duke@1 86 * V is definitely unassigned before a catch block iff V is
duke@1 87 * definitely unassigned everywhere in the try block.
duke@1 88 * </pre>
duke@1 89 * <p>The last bullet (and all of its sub-bullets) for try blocks that
duke@1 90 * have a finally block is changed to
duke@1 91 * <pre>
duke@1 92 * V is definitely unassigned before the finally block iff
duke@1 93 * V is definitely unassigned everywhere in the try block
duke@1 94 * and everywhere in each catch block of the try statement.
duke@1 95 * </pre>
duke@1 96 * <p>In addition,
duke@1 97 * <pre>
duke@1 98 * V is definitely assigned at the end of a constructor iff
duke@1 99 * V is definitely assigned after the block that is the body
duke@1 100 * of the constructor and V is definitely assigned at every
duke@1 101 * return that can return from the constructor.
duke@1 102 * </pre>
duke@1 103 * <p>In addition, each continue statement with the loop as its target
duke@1 104 * is treated as a jump to the end of the loop body, and "intervening"
duke@1 105 * finally clauses are treated as follows: V is DA "due to the
duke@1 106 * continue" iff V is DA before the continue statement or V is DA at
duke@1 107 * the end of any intervening finally block. V is DU "due to the
duke@1 108 * continue" iff any intervening finally cannot complete normally or V
duke@1 109 * is DU at the end of every intervening finally block. This "due to
duke@1 110 * the continue" concept is then used in the spec for the loops.
duke@1 111 *
duke@1 112 * <p>Similarly, break statements must consider intervening finally
duke@1 113 * blocks. For liveness analysis, a break statement for which any
duke@1 114 * intervening finally cannot complete normally is not considered to
duke@1 115 * cause the target statement to be able to complete normally. Then
duke@1 116 * we say V is DA "due to the break" iff V is DA before the break or
duke@1 117 * V is DA at the end of any intervening finally block. V is DU "due
duke@1 118 * to the break" iff any intervening finally cannot complete normally
duke@1 119 * or V is DU at the break and at the end of every intervening
duke@1 120 * finally block. (I suspect this latter condition can be
duke@1 121 * simplified.) This "due to the break" is then used in the spec for
duke@1 122 * all statements that can be "broken".
duke@1 123 *
duke@1 124 * <p>The return statement is treated similarly. V is DA "due to a
duke@1 125 * return statement" iff V is DA before the return statement or V is
duke@1 126 * DA at the end of any intervening finally block. Note that we
duke@1 127 * don't have to worry about the return expression because this
duke@1 128 * concept is only used for construcrors.
duke@1 129 *
duke@1 130 * <p>There is no spec in JLS2 for when a variable is definitely
duke@1 131 * assigned at the end of a constructor, which is needed for final
duke@1 132 * fields (8.3.1.2). We implement the rule that V is DA at the end
duke@1 133 * of the constructor iff it is DA and the end of the body of the
duke@1 134 * constructor and V is DA "due to" every return of the constructor.
duke@1 135 *
duke@1 136 * <p>Intervening finally blocks similarly affect exception analysis. An
duke@1 137 * intervening finally that cannot complete normally allows us to ignore
duke@1 138 * an otherwise uncaught exception.
duke@1 139 *
duke@1 140 * <p>To implement the semantics of intervening finally clauses, all
duke@1 141 * nonlocal transfers (break, continue, return, throw, method call that
duke@1 142 * can throw a checked exception, and a constructor invocation that can
duke@1 143 * thrown a checked exception) are recorded in a queue, and removed
duke@1 144 * from the queue when we complete processing the target of the
duke@1 145 * nonlocal transfer. This allows us to modify the queue in accordance
duke@1 146 * with the above rules when we encounter a finally clause. The only
duke@1 147 * exception to this [no pun intended] is that checked exceptions that
duke@1 148 * are known to be caught or declared to be caught in the enclosing
duke@1 149 * method are not recorded in the queue, but instead are recorded in a
duke@1 150 * global variable "Set<Type> thrown" that records the type of all
duke@1 151 * exceptions that can be thrown.
duke@1 152 *
duke@1 153 * <p>Other minor issues the treatment of members of other classes
duke@1 154 * (always considered DA except that within an anonymous class
duke@1 155 * constructor, where DA status from the enclosing scope is
duke@1 156 * preserved), treatment of the case expression (V is DA before the
duke@1 157 * case expression iff V is DA after the switch expression),
duke@1 158 * treatment of variables declared in a switch block (the implied
duke@1 159 * DA/DU status after the switch expression is DU and not DA for
duke@1 160 * variables defined in a switch block), the treatment of boolean ?:
duke@1 161 * expressions (The JLS rules only handle b and c non-boolean; the
duke@1 162 * new rule is that if b and c are boolean valued, then V is
duke@1 163 * (un)assigned after a?b:c when true/false iff V is (un)assigned
duke@1 164 * after b when true/false and V is (un)assigned after c when
duke@1 165 * true/false).
duke@1 166 *
duke@1 167 * <p>There is the remaining question of what syntactic forms constitute a
duke@1 168 * reference to a variable. It is conventional to allow this.x on the
duke@1 169 * left-hand-side to initialize a final instance field named x, yet
duke@1 170 * this.x isn't considered a "use" when appearing on a right-hand-side
duke@1 171 * in most implementations. Should parentheses affect what is
duke@1 172 * considered a variable reference? The simplest rule would be to
duke@1 173 * allow unqualified forms only, parentheses optional, and phase out
duke@1 174 * support for assigning to a final field via this.x.
duke@1 175 *
jjg@581 176 * <p><b>This is NOT part of any supported API.
jjg@581 177 * If you write code that depends on this, you do so at your own risk.
duke@1 178 * This code and its internal interfaces are subject to change or
duke@1 179 * deletion without notice.</b>
duke@1 180 */
duke@1 181 public class Flow extends TreeScanner {
duke@1 182 protected static final Context.Key<Flow> flowKey =
duke@1 183 new Context.Key<Flow>();
duke@1 184
jjg@113 185 private final Names names;
duke@1 186 private final Log log;
duke@1 187 private final Symtab syms;
duke@1 188 private final Types types;
duke@1 189 private final Check chk;
duke@1 190 private TreeMaker make;
mcimadamore@617 191 private final Resolve rs;
mcimadamore@617 192 private Env<AttrContext> attrEnv;
duke@1 193 private Lint lint;
mcimadamore@550 194 private final boolean allowRethrowAnalysis;
duke@1 195
duke@1 196 public static Flow instance(Context context) {
duke@1 197 Flow instance = context.get(flowKey);
duke@1 198 if (instance == null)
duke@1 199 instance = new Flow(context);
duke@1 200 return instance;
duke@1 201 }
duke@1 202
duke@1 203 protected Flow(Context context) {
duke@1 204 context.put(flowKey, this);
jjg@113 205 names = Names.instance(context);
duke@1 206 log = Log.instance(context);
duke@1 207 syms = Symtab.instance(context);
duke@1 208 types = Types.instance(context);
duke@1 209 chk = Check.instance(context);
duke@1 210 lint = Lint.instance(context);
mcimadamore@617 211 rs = Resolve.instance(context);
mcimadamore@550 212 Source source = Source.instance(context);
mcimadamore@550 213 allowRethrowAnalysis = source.allowMulticatch();
duke@1 214 }
duke@1 215
duke@1 216 /** A flag that indicates whether the last statement could
duke@1 217 * complete normally.
duke@1 218 */
duke@1 219 private boolean alive;
duke@1 220
duke@1 221 /** The set of definitely assigned variables.
duke@1 222 */
duke@1 223 Bits inits;
duke@1 224
duke@1 225 /** The set of definitely unassigned variables.
duke@1 226 */
duke@1 227 Bits uninits;
duke@1 228
mcimadamore@550 229 HashMap<Symbol, List<Type>> multicatchTypes;
mcimadamore@550 230
duke@1 231 /** The set of variables that are definitely unassigned everywhere
duke@1 232 * in current try block. This variable is maintained lazily; it is
duke@1 233 * updated only when something gets removed from uninits,
duke@1 234 * typically by being assigned in reachable code. To obtain the
duke@1 235 * correct set of variables which are definitely unassigned
duke@1 236 * anywhere in current try block, intersect uninitsTry and
duke@1 237 * uninits.
duke@1 238 */
duke@1 239 Bits uninitsTry;
duke@1 240
duke@1 241 /** When analyzing a condition, inits and uninits are null.
duke@1 242 * Instead we have:
duke@1 243 */
duke@1 244 Bits initsWhenTrue;
duke@1 245 Bits initsWhenFalse;
duke@1 246 Bits uninitsWhenTrue;
duke@1 247 Bits uninitsWhenFalse;
duke@1 248
duke@1 249 /** A mapping from addresses to variable symbols.
duke@1 250 */
duke@1 251 VarSymbol[] vars;
duke@1 252
duke@1 253 /** The current class being defined.
duke@1 254 */
duke@1 255 JCClassDecl classDef;
duke@1 256
duke@1 257 /** The first variable sequence number in this class definition.
duke@1 258 */
duke@1 259 int firstadr;
duke@1 260
duke@1 261 /** The next available variable sequence number.
duke@1 262 */
duke@1 263 int nextadr;
duke@1 264
duke@1 265 /** The list of possibly thrown declarable exceptions.
duke@1 266 */
duke@1 267 List<Type> thrown;
duke@1 268
duke@1 269 /** The list of exceptions that are either caught or declared to be
duke@1 270 * thrown.
duke@1 271 */
duke@1 272 List<Type> caught;
duke@1 273
darcy@609 274 /** The list of unreferenced automatic resources.
darcy@609 275 */
darcy@609 276 Map<VarSymbol, JCVariableDecl> unrefdResources;
darcy@609 277
duke@1 278 /** Set when processing a loop body the second time for DU analysis. */
duke@1 279 boolean loopPassTwo = false;
duke@1 280
duke@1 281 /*-------------------- Environments ----------------------*/
duke@1 282
duke@1 283 /** A pending exit. These are the statements return, break, and
duke@1 284 * continue. In addition, exception-throwing expressions or
duke@1 285 * statements are put here when not known to be caught. This
duke@1 286 * will typically result in an error unless it is within a
duke@1 287 * try-finally whose finally block cannot complete normally.
duke@1 288 */
duke@1 289 static class PendingExit {
duke@1 290 JCTree tree;
duke@1 291 Bits inits;
duke@1 292 Bits uninits;
duke@1 293 Type thrown;
duke@1 294 PendingExit(JCTree tree, Bits inits, Bits uninits) {
duke@1 295 this.tree = tree;
duke@1 296 this.inits = inits.dup();
duke@1 297 this.uninits = uninits.dup();
duke@1 298 }
duke@1 299 PendingExit(JCTree tree, Type thrown) {
duke@1 300 this.tree = tree;
duke@1 301 this.thrown = thrown;
duke@1 302 }
duke@1 303 }
duke@1 304
duke@1 305 /** The currently pending exits that go from current inner blocks
duke@1 306 * to an enclosing block, in source order.
duke@1 307 */
duke@1 308 ListBuffer<PendingExit> pendingExits;
duke@1 309
duke@1 310 /*-------------------- Exceptions ----------------------*/
duke@1 311
duke@1 312 /** Complain that pending exceptions are not caught.
duke@1 313 */
duke@1 314 void errorUncaught() {
duke@1 315 for (PendingExit exit = pendingExits.next();
duke@1 316 exit != null;
duke@1 317 exit = pendingExits.next()) {
duke@1 318 boolean synthetic = classDef != null &&
duke@1 319 classDef.pos == exit.tree.pos;
duke@1 320 log.error(exit.tree.pos(),
duke@1 321 synthetic
duke@1 322 ? "unreported.exception.default.constructor"
duke@1 323 : "unreported.exception.need.to.catch.or.throw",
duke@1 324 exit.thrown);
duke@1 325 }
duke@1 326 }
duke@1 327
duke@1 328 /** Record that exception is potentially thrown and check that it
duke@1 329 * is caught.
duke@1 330 */
duke@1 331 void markThrown(JCTree tree, Type exc) {
duke@1 332 if (!chk.isUnchecked(tree.pos(), exc)) {
duke@1 333 if (!chk.isHandled(exc, caught))
duke@1 334 pendingExits.append(new PendingExit(tree, exc));
duke@1 335 thrown = chk.incl(exc, thrown);
duke@1 336 }
duke@1 337 }
duke@1 338
duke@1 339 /*-------------- Processing variables ----------------------*/
duke@1 340
duke@1 341 /** Do we need to track init/uninit state of this symbol?
duke@1 342 * I.e. is symbol either a local or a blank final variable?
duke@1 343 */
duke@1 344 boolean trackable(VarSymbol sym) {
duke@1 345 return
duke@1 346 (sym.owner.kind == MTH ||
duke@1 347 ((sym.flags() & (FINAL | HASINIT | PARAMETER)) == FINAL &&
duke@1 348 classDef.sym.isEnclosedBy((ClassSymbol)sym.owner)));
duke@1 349 }
duke@1 350
duke@1 351 /** Initialize new trackable variable by setting its address field
duke@1 352 * to the next available sequence number and entering it under that
duke@1 353 * index into the vars array.
duke@1 354 */
duke@1 355 void newVar(VarSymbol sym) {
duke@1 356 if (nextadr == vars.length) {
duke@1 357 VarSymbol[] newvars = new VarSymbol[nextadr * 2];
duke@1 358 System.arraycopy(vars, 0, newvars, 0, nextadr);
duke@1 359 vars = newvars;
duke@1 360 }
duke@1 361 sym.adr = nextadr;
duke@1 362 vars[nextadr] = sym;
duke@1 363 inits.excl(nextadr);
duke@1 364 uninits.incl(nextadr);
duke@1 365 nextadr++;
duke@1 366 }
duke@1 367
duke@1 368 /** Record an initialization of a trackable variable.
duke@1 369 */
duke@1 370 void letInit(DiagnosticPosition pos, VarSymbol sym) {
duke@1 371 if (sym.adr >= firstadr && trackable(sym)) {
duke@1 372 if ((sym.flags() & FINAL) != 0) {
duke@1 373 if ((sym.flags() & PARAMETER) != 0) {
mcimadamore@550 374 if ((sym.flags() & DISJOINT) != 0) { //multi-catch parameter
mcimadamore@550 375 log.error(pos, "multicatch.parameter.may.not.be.assigned",
mcimadamore@550 376 sym);
mcimadamore@550 377 }
mcimadamore@550 378 else {
mcimadamore@550 379 log.error(pos, "final.parameter.may.not.be.assigned",
duke@1 380 sym);
mcimadamore@550 381 }
duke@1 382 } else if (!uninits.isMember(sym.adr)) {
duke@1 383 log.error(pos,
duke@1 384 loopPassTwo
duke@1 385 ? "var.might.be.assigned.in.loop"
duke@1 386 : "var.might.already.be.assigned",
duke@1 387 sym);
duke@1 388 } else if (!inits.isMember(sym.adr)) {
duke@1 389 // reachable assignment
duke@1 390 uninits.excl(sym.adr);
duke@1 391 uninitsTry.excl(sym.adr);
duke@1 392 } else {
duke@1 393 //log.rawWarning(pos, "unreachable assignment");//DEBUG
duke@1 394 uninits.excl(sym.adr);
duke@1 395 }
duke@1 396 }
duke@1 397 inits.incl(sym.adr);
duke@1 398 } else if ((sym.flags() & FINAL) != 0) {
duke@1 399 log.error(pos, "var.might.already.be.assigned", sym);
duke@1 400 }
duke@1 401 }
duke@1 402
duke@1 403 /** If tree is either a simple name or of the form this.name or
duke@1 404 * C.this.name, and tree represents a trackable variable,
duke@1 405 * record an initialization of the variable.
duke@1 406 */
duke@1 407 void letInit(JCTree tree) {
duke@1 408 tree = TreeInfo.skipParens(tree);
duke@1 409 if (tree.getTag() == JCTree.IDENT || tree.getTag() == JCTree.SELECT) {
duke@1 410 Symbol sym = TreeInfo.symbol(tree);
duke@1 411 letInit(tree.pos(), (VarSymbol)sym);
duke@1 412 }
duke@1 413 }
duke@1 414
duke@1 415 /** Check that trackable variable is initialized.
duke@1 416 */
duke@1 417 void checkInit(DiagnosticPosition pos, VarSymbol sym) {
duke@1 418 if ((sym.adr >= firstadr || sym.owner.kind != TYP) &&
duke@1 419 trackable(sym) &&
duke@1 420 !inits.isMember(sym.adr)) {
duke@1 421 log.error(pos, "var.might.not.have.been.initialized",
duke@1 422 sym);
duke@1 423 inits.incl(sym.adr);
duke@1 424 }
duke@1 425 }
duke@1 426
duke@1 427 /*-------------------- Handling jumps ----------------------*/
duke@1 428
duke@1 429 /** Record an outward transfer of control. */
duke@1 430 void recordExit(JCTree tree) {
duke@1 431 pendingExits.append(new PendingExit(tree, inits, uninits));
duke@1 432 markDead();
duke@1 433 }
duke@1 434
duke@1 435 /** Resolve all breaks of this statement. */
duke@1 436 boolean resolveBreaks(JCTree tree,
duke@1 437 ListBuffer<PendingExit> oldPendingExits) {
duke@1 438 boolean result = false;
duke@1 439 List<PendingExit> exits = pendingExits.toList();
duke@1 440 pendingExits = oldPendingExits;
duke@1 441 for (; exits.nonEmpty(); exits = exits.tail) {
duke@1 442 PendingExit exit = exits.head;
duke@1 443 if (exit.tree.getTag() == JCTree.BREAK &&
duke@1 444 ((JCBreak) exit.tree).target == tree) {
duke@1 445 inits.andSet(exit.inits);
duke@1 446 uninits.andSet(exit.uninits);
duke@1 447 result = true;
duke@1 448 } else {
duke@1 449 pendingExits.append(exit);
duke@1 450 }
duke@1 451 }
duke@1 452 return result;
duke@1 453 }
duke@1 454
duke@1 455 /** Resolve all continues of this statement. */
duke@1 456 boolean resolveContinues(JCTree tree) {
duke@1 457 boolean result = false;
duke@1 458 List<PendingExit> exits = pendingExits.toList();
duke@1 459 pendingExits = new ListBuffer<PendingExit>();
duke@1 460 for (; exits.nonEmpty(); exits = exits.tail) {
duke@1 461 PendingExit exit = exits.head;
duke@1 462 if (exit.tree.getTag() == JCTree.CONTINUE &&
duke@1 463 ((JCContinue) exit.tree).target == tree) {
duke@1 464 inits.andSet(exit.inits);
duke@1 465 uninits.andSet(exit.uninits);
duke@1 466 result = true;
duke@1 467 } else {
duke@1 468 pendingExits.append(exit);
duke@1 469 }
duke@1 470 }
duke@1 471 return result;
duke@1 472 }
duke@1 473
duke@1 474 /** Record that statement is unreachable.
duke@1 475 */
duke@1 476 void markDead() {
duke@1 477 inits.inclRange(firstadr, nextadr);
duke@1 478 uninits.inclRange(firstadr, nextadr);
duke@1 479 alive = false;
duke@1 480 }
duke@1 481
duke@1 482 /** Split (duplicate) inits/uninits into WhenTrue/WhenFalse sets
duke@1 483 */
duke@1 484 void split() {
duke@1 485 initsWhenFalse = inits.dup();
duke@1 486 uninitsWhenFalse = uninits.dup();
duke@1 487 initsWhenTrue = inits;
duke@1 488 uninitsWhenTrue = uninits;
duke@1 489 inits = uninits = null;
duke@1 490 }
duke@1 491
duke@1 492 /** Merge (intersect) inits/uninits from WhenTrue/WhenFalse sets.
duke@1 493 */
duke@1 494 void merge() {
duke@1 495 inits = initsWhenFalse.andSet(initsWhenTrue);
duke@1 496 uninits = uninitsWhenFalse.andSet(uninitsWhenTrue);
duke@1 497 }
duke@1 498
duke@1 499 /* ************************************************************************
duke@1 500 * Visitor methods for statements and definitions
duke@1 501 *************************************************************************/
duke@1 502
duke@1 503 /** Analyze a definition.
duke@1 504 */
duke@1 505 void scanDef(JCTree tree) {
duke@1 506 scanStat(tree);
duke@1 507 if (tree != null && tree.getTag() == JCTree.BLOCK && !alive) {
duke@1 508 log.error(tree.pos(),
duke@1 509 "initializer.must.be.able.to.complete.normally");
duke@1 510 }
duke@1 511 }
duke@1 512
duke@1 513 /** Analyze a statement. Check that statement is reachable.
duke@1 514 */
duke@1 515 void scanStat(JCTree tree) {
duke@1 516 if (!alive && tree != null) {
duke@1 517 log.error(tree.pos(), "unreachable.stmt");
duke@1 518 if (tree.getTag() != JCTree.SKIP) alive = true;
duke@1 519 }
duke@1 520 scan(tree);
duke@1 521 }
duke@1 522
duke@1 523 /** Analyze list of statements.
duke@1 524 */
duke@1 525 void scanStats(List<? extends JCStatement> trees) {
duke@1 526 if (trees != null)
duke@1 527 for (List<? extends JCStatement> l = trees; l.nonEmpty(); l = l.tail)
duke@1 528 scanStat(l.head);
duke@1 529 }
duke@1 530
duke@1 531 /** Analyze an expression. Make sure to set (un)inits rather than
duke@1 532 * (un)initsWhenTrue(WhenFalse) on exit.
duke@1 533 */
duke@1 534 void scanExpr(JCTree tree) {
duke@1 535 if (tree != null) {
duke@1 536 scan(tree);
duke@1 537 if (inits == null) merge();
duke@1 538 }
duke@1 539 }
duke@1 540
duke@1 541 /** Analyze a list of expressions.
duke@1 542 */
duke@1 543 void scanExprs(List<? extends JCExpression> trees) {
duke@1 544 if (trees != null)
duke@1 545 for (List<? extends JCExpression> l = trees; l.nonEmpty(); l = l.tail)
duke@1 546 scanExpr(l.head);
duke@1 547 }
duke@1 548
duke@1 549 /** Analyze a condition. Make sure to set (un)initsWhenTrue(WhenFalse)
duke@1 550 * rather than (un)inits on exit.
duke@1 551 */
duke@1 552 void scanCond(JCTree tree) {
duke@1 553 if (tree.type.isFalse()) {
duke@1 554 if (inits == null) merge();
duke@1 555 initsWhenTrue = inits.dup();
duke@1 556 initsWhenTrue.inclRange(firstadr, nextadr);
duke@1 557 uninitsWhenTrue = uninits.dup();
duke@1 558 uninitsWhenTrue.inclRange(firstadr, nextadr);
duke@1 559 initsWhenFalse = inits;
duke@1 560 uninitsWhenFalse = uninits;
duke@1 561 } else if (tree.type.isTrue()) {
duke@1 562 if (inits == null) merge();
duke@1 563 initsWhenFalse = inits.dup();
duke@1 564 initsWhenFalse.inclRange(firstadr, nextadr);
duke@1 565 uninitsWhenFalse = uninits.dup();
duke@1 566 uninitsWhenFalse.inclRange(firstadr, nextadr);
duke@1 567 initsWhenTrue = inits;
duke@1 568 uninitsWhenTrue = uninits;
duke@1 569 } else {
duke@1 570 scan(tree);
duke@1 571 if (inits != null) split();
duke@1 572 }
duke@1 573 inits = uninits = null;
duke@1 574 }
duke@1 575
duke@1 576 /* ------------ Visitor methods for various sorts of trees -------------*/
duke@1 577
duke@1 578 public void visitClassDef(JCClassDecl tree) {
duke@1 579 if (tree.sym == null) return;
duke@1 580
duke@1 581 JCClassDecl classDefPrev = classDef;
duke@1 582 List<Type> thrownPrev = thrown;
duke@1 583 List<Type> caughtPrev = caught;
duke@1 584 boolean alivePrev = alive;
duke@1 585 int firstadrPrev = firstadr;
duke@1 586 int nextadrPrev = nextadr;
duke@1 587 ListBuffer<PendingExit> pendingExitsPrev = pendingExits;
duke@1 588 Lint lintPrev = lint;
duke@1 589
duke@1 590 pendingExits = new ListBuffer<PendingExit>();
duke@1 591 if (tree.name != names.empty) {
duke@1 592 caught = List.nil();
duke@1 593 firstadr = nextadr;
duke@1 594 }
duke@1 595 classDef = tree;
duke@1 596 thrown = List.nil();
duke@1 597 lint = lint.augment(tree.sym.attributes_field);
duke@1 598
duke@1 599 try {
duke@1 600 // define all the static fields
duke@1 601 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 602 if (l.head.getTag() == JCTree.VARDEF) {
duke@1 603 JCVariableDecl def = (JCVariableDecl)l.head;
duke@1 604 if ((def.mods.flags & STATIC) != 0) {
duke@1 605 VarSymbol sym = def.sym;
duke@1 606 if (trackable(sym))
duke@1 607 newVar(sym);
duke@1 608 }
duke@1 609 }
duke@1 610 }
duke@1 611
duke@1 612 // process all the static initializers
duke@1 613 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 614 if (l.head.getTag() != JCTree.METHODDEF &&
duke@1 615 (TreeInfo.flags(l.head) & STATIC) != 0) {
duke@1 616 scanDef(l.head);
duke@1 617 errorUncaught();
duke@1 618 }
duke@1 619 }
duke@1 620
duke@1 621 // add intersection of all thrown clauses of initial constructors
duke@1 622 // to set of caught exceptions, unless class is anonymous.
duke@1 623 if (tree.name != names.empty) {
duke@1 624 boolean firstConstructor = true;
duke@1 625 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 626 if (TreeInfo.isInitialConstructor(l.head)) {
duke@1 627 List<Type> mthrown =
duke@1 628 ((JCMethodDecl) l.head).sym.type.getThrownTypes();
duke@1 629 if (firstConstructor) {
duke@1 630 caught = mthrown;
duke@1 631 firstConstructor = false;
duke@1 632 } else {
duke@1 633 caught = chk.intersect(mthrown, caught);
duke@1 634 }
duke@1 635 }
duke@1 636 }
duke@1 637 }
duke@1 638
duke@1 639 // define all the instance fields
duke@1 640 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 641 if (l.head.getTag() == JCTree.VARDEF) {
duke@1 642 JCVariableDecl def = (JCVariableDecl)l.head;
duke@1 643 if ((def.mods.flags & STATIC) == 0) {
duke@1 644 VarSymbol sym = def.sym;
duke@1 645 if (trackable(sym))
duke@1 646 newVar(sym);
duke@1 647 }
duke@1 648 }
duke@1 649 }
duke@1 650
duke@1 651 // process all the instance initializers
duke@1 652 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 653 if (l.head.getTag() != JCTree.METHODDEF &&
duke@1 654 (TreeInfo.flags(l.head) & STATIC) == 0) {
duke@1 655 scanDef(l.head);
duke@1 656 errorUncaught();
duke@1 657 }
duke@1 658 }
duke@1 659
duke@1 660 // in an anonymous class, add the set of thrown exceptions to
duke@1 661 // the throws clause of the synthetic constructor and propagate
duke@1 662 // outwards.
duke@1 663 if (tree.name == names.empty) {
duke@1 664 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 665 if (TreeInfo.isInitialConstructor(l.head)) {
duke@1 666 JCMethodDecl mdef = (JCMethodDecl)l.head;
duke@1 667 mdef.thrown = make.Types(thrown);
duke@1 668 mdef.sym.type.setThrown(thrown);
duke@1 669 }
duke@1 670 }
duke@1 671 thrownPrev = chk.union(thrown, thrownPrev);
duke@1 672 }
duke@1 673
duke@1 674 // process all the methods
duke@1 675 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 676 if (l.head.getTag() == JCTree.METHODDEF) {
duke@1 677 scan(l.head);
duke@1 678 errorUncaught();
duke@1 679 }
duke@1 680 }
duke@1 681
duke@1 682 thrown = thrownPrev;
duke@1 683 } finally {
duke@1 684 pendingExits = pendingExitsPrev;
duke@1 685 alive = alivePrev;
duke@1 686 nextadr = nextadrPrev;
duke@1 687 firstadr = firstadrPrev;
duke@1 688 caught = caughtPrev;
duke@1 689 classDef = classDefPrev;
duke@1 690 lint = lintPrev;
duke@1 691 }
duke@1 692 }
duke@1 693
duke@1 694 public void visitMethodDef(JCMethodDecl tree) {
duke@1 695 if (tree.body == null) return;
duke@1 696
duke@1 697 List<Type> caughtPrev = caught;
duke@1 698 List<Type> mthrown = tree.sym.type.getThrownTypes();
duke@1 699 Bits initsPrev = inits.dup();
duke@1 700 Bits uninitsPrev = uninits.dup();
duke@1 701 int nextadrPrev = nextadr;
duke@1 702 int firstadrPrev = firstadr;
duke@1 703 Lint lintPrev = lint;
duke@1 704
duke@1 705 lint = lint.augment(tree.sym.attributes_field);
duke@1 706
duke@1 707 assert pendingExits.isEmpty();
duke@1 708
duke@1 709 try {
duke@1 710 boolean isInitialConstructor =
duke@1 711 TreeInfo.isInitialConstructor(tree);
duke@1 712
duke@1 713 if (!isInitialConstructor)
duke@1 714 firstadr = nextadr;
duke@1 715 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
duke@1 716 JCVariableDecl def = l.head;
duke@1 717 scan(def);
duke@1 718 inits.incl(def.sym.adr);
duke@1 719 uninits.excl(def.sym.adr);
duke@1 720 }
duke@1 721 if (isInitialConstructor)
duke@1 722 caught = chk.union(caught, mthrown);
duke@1 723 else if ((tree.sym.flags() & (BLOCK | STATIC)) != BLOCK)
duke@1 724 caught = mthrown;
duke@1 725 // else we are in an instance initializer block;
duke@1 726 // leave caught unchanged.
duke@1 727
duke@1 728 alive = true;
duke@1 729 scanStat(tree.body);
duke@1 730
duke@1 731 if (alive && tree.sym.type.getReturnType().tag != VOID)
duke@1 732 log.error(TreeInfo.diagEndPos(tree.body), "missing.ret.stmt");
duke@1 733
duke@1 734 if (isInitialConstructor) {
duke@1 735 for (int i = firstadr; i < nextadr; i++)
duke@1 736 if (vars[i].owner == classDef.sym)
duke@1 737 checkInit(TreeInfo.diagEndPos(tree.body), vars[i]);
duke@1 738 }
duke@1 739 List<PendingExit> exits = pendingExits.toList();
duke@1 740 pendingExits = new ListBuffer<PendingExit>();
duke@1 741 while (exits.nonEmpty()) {
duke@1 742 PendingExit exit = exits.head;
duke@1 743 exits = exits.tail;
duke@1 744 if (exit.thrown == null) {
duke@1 745 assert exit.tree.getTag() == JCTree.RETURN;
duke@1 746 if (isInitialConstructor) {
duke@1 747 inits = exit.inits;
duke@1 748 for (int i = firstadr; i < nextadr; i++)
duke@1 749 checkInit(exit.tree.pos(), vars[i]);
duke@1 750 }
duke@1 751 } else {
duke@1 752 // uncaught throws will be reported later
duke@1 753 pendingExits.append(exit);
duke@1 754 }
duke@1 755 }
duke@1 756 } finally {
duke@1 757 inits = initsPrev;
duke@1 758 uninits = uninitsPrev;
duke@1 759 nextadr = nextadrPrev;
duke@1 760 firstadr = firstadrPrev;
duke@1 761 caught = caughtPrev;
duke@1 762 lint = lintPrev;
duke@1 763 }
duke@1 764 }
duke@1 765
duke@1 766 public void visitVarDef(JCVariableDecl tree) {
duke@1 767 boolean track = trackable(tree.sym);
duke@1 768 if (track && tree.sym.owner.kind == MTH) newVar(tree.sym);
duke@1 769 if (tree.init != null) {
duke@1 770 Lint lintPrev = lint;
duke@1 771 lint = lint.augment(tree.sym.attributes_field);
duke@1 772 try{
duke@1 773 scanExpr(tree.init);
duke@1 774 if (track) letInit(tree.pos(), tree.sym);
duke@1 775 } finally {
duke@1 776 lint = lintPrev;
duke@1 777 }
duke@1 778 }
duke@1 779 }
duke@1 780
duke@1 781 public void visitBlock(JCBlock tree) {
duke@1 782 int nextadrPrev = nextadr;
duke@1 783 scanStats(tree.stats);
duke@1 784 nextadr = nextadrPrev;
duke@1 785 }
duke@1 786
duke@1 787 public void visitDoLoop(JCDoWhileLoop tree) {
duke@1 788 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 789 boolean prevLoopPassTwo = loopPassTwo;
duke@1 790 pendingExits = new ListBuffer<PendingExit>();
duke@1 791 do {
duke@1 792 Bits uninitsEntry = uninits.dup();
duke@1 793 scanStat(tree.body);
duke@1 794 alive |= resolveContinues(tree);
duke@1 795 scanCond(tree.cond);
duke@1 796 if (log.nerrors != 0 ||
duke@1 797 loopPassTwo ||
duke@1 798 uninitsEntry.diffSet(uninitsWhenTrue).nextBit(firstadr)==-1)
duke@1 799 break;
duke@1 800 inits = initsWhenTrue;
duke@1 801 uninits = uninitsEntry.andSet(uninitsWhenTrue);
duke@1 802 loopPassTwo = true;
duke@1 803 alive = true;
duke@1 804 } while (true);
duke@1 805 loopPassTwo = prevLoopPassTwo;
duke@1 806 inits = initsWhenFalse;
duke@1 807 uninits = uninitsWhenFalse;
duke@1 808 alive = alive && !tree.cond.type.isTrue();
duke@1 809 alive |= resolveBreaks(tree, prevPendingExits);
duke@1 810 }
duke@1 811
duke@1 812 public void visitWhileLoop(JCWhileLoop tree) {
duke@1 813 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 814 boolean prevLoopPassTwo = loopPassTwo;
duke@1 815 Bits initsCond;
duke@1 816 Bits uninitsCond;
duke@1 817 pendingExits = new ListBuffer<PendingExit>();
duke@1 818 do {
duke@1 819 Bits uninitsEntry = uninits.dup();
duke@1 820 scanCond(tree.cond);
duke@1 821 initsCond = initsWhenFalse;
duke@1 822 uninitsCond = uninitsWhenFalse;
duke@1 823 inits = initsWhenTrue;
duke@1 824 uninits = uninitsWhenTrue;
duke@1 825 alive = !tree.cond.type.isFalse();
duke@1 826 scanStat(tree.body);
duke@1 827 alive |= resolveContinues(tree);
duke@1 828 if (log.nerrors != 0 ||
duke@1 829 loopPassTwo ||
duke@1 830 uninitsEntry.diffSet(uninits).nextBit(firstadr) == -1)
duke@1 831 break;
duke@1 832 uninits = uninitsEntry.andSet(uninits);
duke@1 833 loopPassTwo = true;
duke@1 834 alive = true;
duke@1 835 } while (true);
duke@1 836 loopPassTwo = prevLoopPassTwo;
duke@1 837 inits = initsCond;
duke@1 838 uninits = uninitsCond;
duke@1 839 alive = resolveBreaks(tree, prevPendingExits) ||
duke@1 840 !tree.cond.type.isTrue();
duke@1 841 }
duke@1 842
duke@1 843 public void visitForLoop(JCForLoop tree) {
duke@1 844 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 845 boolean prevLoopPassTwo = loopPassTwo;
duke@1 846 int nextadrPrev = nextadr;
duke@1 847 scanStats(tree.init);
duke@1 848 Bits initsCond;
duke@1 849 Bits uninitsCond;
duke@1 850 pendingExits = new ListBuffer<PendingExit>();
duke@1 851 do {
duke@1 852 Bits uninitsEntry = uninits.dup();
duke@1 853 if (tree.cond != null) {
duke@1 854 scanCond(tree.cond);
duke@1 855 initsCond = initsWhenFalse;
duke@1 856 uninitsCond = uninitsWhenFalse;
duke@1 857 inits = initsWhenTrue;
duke@1 858 uninits = uninitsWhenTrue;
duke@1 859 alive = !tree.cond.type.isFalse();
duke@1 860 } else {
duke@1 861 initsCond = inits.dup();
duke@1 862 initsCond.inclRange(firstadr, nextadr);
duke@1 863 uninitsCond = uninits.dup();
duke@1 864 uninitsCond.inclRange(firstadr, nextadr);
duke@1 865 alive = true;
duke@1 866 }
duke@1 867 scanStat(tree.body);
duke@1 868 alive |= resolveContinues(tree);
duke@1 869 scan(tree.step);
duke@1 870 if (log.nerrors != 0 ||
duke@1 871 loopPassTwo ||
duke@1 872 uninitsEntry.dup().diffSet(uninits).nextBit(firstadr) == -1)
duke@1 873 break;
duke@1 874 uninits = uninitsEntry.andSet(uninits);
duke@1 875 loopPassTwo = true;
duke@1 876 alive = true;
duke@1 877 } while (true);
duke@1 878 loopPassTwo = prevLoopPassTwo;
duke@1 879 inits = initsCond;
duke@1 880 uninits = uninitsCond;
duke@1 881 alive = resolveBreaks(tree, prevPendingExits) ||
duke@1 882 tree.cond != null && !tree.cond.type.isTrue();
duke@1 883 nextadr = nextadrPrev;
duke@1 884 }
duke@1 885
duke@1 886 public void visitForeachLoop(JCEnhancedForLoop tree) {
duke@1 887 visitVarDef(tree.var);
duke@1 888
duke@1 889 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 890 boolean prevLoopPassTwo = loopPassTwo;
duke@1 891 int nextadrPrev = nextadr;
duke@1 892 scan(tree.expr);
duke@1 893 Bits initsStart = inits.dup();
duke@1 894 Bits uninitsStart = uninits.dup();
duke@1 895
duke@1 896 letInit(tree.pos(), tree.var.sym);
duke@1 897 pendingExits = new ListBuffer<PendingExit>();
duke@1 898 do {
duke@1 899 Bits uninitsEntry = uninits.dup();
duke@1 900 scanStat(tree.body);
duke@1 901 alive |= resolveContinues(tree);
duke@1 902 if (log.nerrors != 0 ||
duke@1 903 loopPassTwo ||
duke@1 904 uninitsEntry.diffSet(uninits).nextBit(firstadr) == -1)
duke@1 905 break;
duke@1 906 uninits = uninitsEntry.andSet(uninits);
duke@1 907 loopPassTwo = true;
duke@1 908 alive = true;
duke@1 909 } while (true);
duke@1 910 loopPassTwo = prevLoopPassTwo;
duke@1 911 inits = initsStart;
duke@1 912 uninits = uninitsStart.andSet(uninits);
duke@1 913 resolveBreaks(tree, prevPendingExits);
duke@1 914 alive = true;
duke@1 915 nextadr = nextadrPrev;
duke@1 916 }
duke@1 917
duke@1 918 public void visitLabelled(JCLabeledStatement tree) {
duke@1 919 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 920 pendingExits = new ListBuffer<PendingExit>();
duke@1 921 scanStat(tree.body);
duke@1 922 alive |= resolveBreaks(tree, prevPendingExits);
duke@1 923 }
duke@1 924
duke@1 925 public void visitSwitch(JCSwitch tree) {
duke@1 926 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 927 pendingExits = new ListBuffer<PendingExit>();
duke@1 928 int nextadrPrev = nextadr;
duke@1 929 scanExpr(tree.selector);
duke@1 930 Bits initsSwitch = inits;
duke@1 931 Bits uninitsSwitch = uninits.dup();
duke@1 932 boolean hasDefault = false;
duke@1 933 for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
duke@1 934 alive = true;
duke@1 935 inits = initsSwitch.dup();
duke@1 936 uninits = uninits.andSet(uninitsSwitch);
duke@1 937 JCCase c = l.head;
duke@1 938 if (c.pat == null)
duke@1 939 hasDefault = true;
duke@1 940 else
duke@1 941 scanExpr(c.pat);
duke@1 942 scanStats(c.stats);
duke@1 943 addVars(c.stats, initsSwitch, uninitsSwitch);
duke@1 944 // Warn about fall-through if lint switch fallthrough enabled.
duke@1 945 if (!loopPassTwo &&
duke@1 946 alive &&
duke@1 947 lint.isEnabled(Lint.LintCategory.FALLTHROUGH) &&
duke@1 948 c.stats.nonEmpty() && l.tail.nonEmpty())
jjg@612 949 log.warning(Lint.LintCategory.FALLTHROUGH,
jjg@612 950 l.tail.head.pos(),
duke@1 951 "possible.fall-through.into.case");
duke@1 952 }
duke@1 953 if (!hasDefault) {
duke@1 954 inits.andSet(initsSwitch);
duke@1 955 alive = true;
duke@1 956 }
duke@1 957 alive |= resolveBreaks(tree, prevPendingExits);
duke@1 958 nextadr = nextadrPrev;
duke@1 959 }
duke@1 960 // where
duke@1 961 /** Add any variables defined in stats to inits and uninits. */
duke@1 962 private static void addVars(List<JCStatement> stats, Bits inits,
duke@1 963 Bits uninits) {
duke@1 964 for (;stats.nonEmpty(); stats = stats.tail) {
duke@1 965 JCTree stat = stats.head;
duke@1 966 if (stat.getTag() == JCTree.VARDEF) {
duke@1 967 int adr = ((JCVariableDecl) stat).sym.adr;
duke@1 968 inits.excl(adr);
duke@1 969 uninits.incl(adr);
duke@1 970 }
duke@1 971 }
duke@1 972 }
duke@1 973
duke@1 974 public void visitTry(JCTry tree) {
duke@1 975 List<Type> caughtPrev = caught;
duke@1 976 List<Type> thrownPrev = thrown;
darcy@609 977 Map<VarSymbol, JCVariableDecl> unrefdResourcesPrev = unrefdResources;
duke@1 978 thrown = List.nil();
mcimadamore@550 979 for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
mcimadamore@550 980 List<JCExpression> subClauses = TreeInfo.isMultiCatch(l.head) ?
mcimadamore@550 981 ((JCTypeDisjoint)l.head.param.vartype).components :
mcimadamore@550 982 List.of(l.head.param.vartype);
mcimadamore@550 983 for (JCExpression ct : subClauses) {
mcimadamore@550 984 caught = chk.incl(ct.type, caught);
mcimadamore@550 985 }
mcimadamore@550 986 }
duke@1 987 Bits uninitsTryPrev = uninitsTry;
duke@1 988 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 989 pendingExits = new ListBuffer<PendingExit>();
duke@1 990 Bits initsTry = inits.dup();
duke@1 991 uninitsTry = uninits.dup();
darcy@609 992 unrefdResources = new LinkedHashMap<VarSymbol, JCVariableDecl>();
darcy@609 993 for (JCTree resource : tree.resources) {
darcy@609 994 if (resource instanceof JCVariableDecl) {
darcy@609 995 JCVariableDecl vdecl = (JCVariableDecl) resource;
darcy@609 996 visitVarDef(vdecl);
darcy@609 997 unrefdResources.put(vdecl.sym, vdecl);
darcy@609 998 } else if (resource instanceof JCExpression) {
darcy@609 999 scanExpr((JCExpression) resource);
darcy@609 1000 } else {
darcy@609 1001 throw new AssertionError(tree); // parser error
darcy@609 1002 }
darcy@609 1003 }
darcy@609 1004 for (JCTree resource : tree.resources) {
darcy@609 1005 List<Type> closeableSupertypes = resource.type.isCompound() ?
darcy@609 1006 types.interfaces(resource.type).prepend(types.supertype(resource.type)) :
darcy@609 1007 List.of(resource.type);
darcy@609 1008 for (Type sup : closeableSupertypes) {
darcy@609 1009 if (types.asSuper(sup, syms.autoCloseableType.tsym) != null) {
mcimadamore@617 1010 Symbol closeMethod = rs.resolveInternalMethod(tree,
mcimadamore@617 1011 attrEnv,
mcimadamore@617 1012 sup,
mcimadamore@617 1013 names.close,
mcimadamore@617 1014 List.<Type>nil(),
mcimadamore@617 1015 List.<Type>nil());
mcimadamore@617 1016 if (closeMethod.kind == MTH) {
mcimadamore@617 1017 for (Type t : ((MethodSymbol)closeMethod).getThrownTypes()) {
mcimadamore@617 1018 markThrown(tree.body, t);
mcimadamore@617 1019 }
darcy@609 1020 }
darcy@609 1021 }
darcy@609 1022 }
darcy@609 1023 }
duke@1 1024 scanStat(tree.body);
duke@1 1025 List<Type> thrownInTry = thrown;
duke@1 1026 thrown = thrownPrev;
duke@1 1027 caught = caughtPrev;
duke@1 1028 boolean aliveEnd = alive;
duke@1 1029 uninitsTry.andSet(uninits);
duke@1 1030 Bits initsEnd = inits;
duke@1 1031 Bits uninitsEnd = uninits;
duke@1 1032 int nextadrCatch = nextadr;
duke@1 1033
darcy@609 1034 if (!unrefdResources.isEmpty() &&
darcy@609 1035 lint.isEnabled(Lint.LintCategory.ARM)) {
darcy@609 1036 for (Map.Entry<VarSymbol, JCVariableDecl> e : unrefdResources.entrySet()) {
darcy@609 1037 log.warning(e.getValue().pos(),
darcy@609 1038 "automatic.resource.not.referenced", e.getKey());
darcy@609 1039 }
darcy@609 1040 }
darcy@609 1041
duke@1 1042 List<Type> caughtInTry = List.nil();
duke@1 1043 for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
duke@1 1044 alive = true;
duke@1 1045 JCVariableDecl param = l.head.param;
mcimadamore@550 1046 List<JCExpression> subClauses = TreeInfo.isMultiCatch(l.head) ?
mcimadamore@550 1047 ((JCTypeDisjoint)l.head.param.vartype).components :
mcimadamore@550 1048 List.of(l.head.param.vartype);
mcimadamore@550 1049 List<Type> ctypes = List.nil();
mcimadamore@550 1050 List<Type> rethrownTypes = chk.diff(thrownInTry, caughtInTry);
mcimadamore@550 1051 for (JCExpression ct : subClauses) {
mcimadamore@550 1052 Type exc = ct.type;
mcimadamore@550 1053 ctypes = ctypes.append(exc);
mcimadamore@550 1054 if (types.isSameType(exc, syms.objectType))
mcimadamore@550 1055 continue;
mcimadamore@550 1056 if (chk.subset(exc, caughtInTry)) {
mcimadamore@550 1057 log.error(l.head.pos(),
mcimadamore@550 1058 "except.already.caught", exc);
mcimadamore@550 1059 } else if (!chk.isUnchecked(l.head.pos(), exc) &&
mcimadamore@550 1060 exc.tsym != syms.throwableType.tsym &&
mcimadamore@550 1061 exc.tsym != syms.exceptionType.tsym &&
mcimadamore@550 1062 !chk.intersects(exc, thrownInTry)) {
mcimadamore@550 1063 log.error(l.head.pos(),
mcimadamore@550 1064 "except.never.thrown.in.try", exc);
mcimadamore@550 1065 }
mcimadamore@550 1066 caughtInTry = chk.incl(exc, caughtInTry);
duke@1 1067 }
duke@1 1068 inits = initsTry.dup();
duke@1 1069 uninits = uninitsTry.dup();
duke@1 1070 scan(param);
duke@1 1071 inits.incl(param.sym.adr);
duke@1 1072 uninits.excl(param.sym.adr);
mcimadamore@550 1073 multicatchTypes.put(param.sym, chk.intersect(ctypes, rethrownTypes));
duke@1 1074 scanStat(l.head.body);
duke@1 1075 initsEnd.andSet(inits);
duke@1 1076 uninitsEnd.andSet(uninits);
duke@1 1077 nextadr = nextadrCatch;
mcimadamore@550 1078 multicatchTypes.remove(param.sym);
duke@1 1079 aliveEnd |= alive;
duke@1 1080 }
duke@1 1081 if (tree.finalizer != null) {
duke@1 1082 List<Type> savedThrown = thrown;
duke@1 1083 thrown = List.nil();
duke@1 1084 inits = initsTry.dup();
duke@1 1085 uninits = uninitsTry.dup();
duke@1 1086 ListBuffer<PendingExit> exits = pendingExits;
duke@1 1087 pendingExits = prevPendingExits;
duke@1 1088 alive = true;
duke@1 1089 scanStat(tree.finalizer);
duke@1 1090 if (!alive) {
duke@1 1091 // discard exits and exceptions from try and finally
duke@1 1092 thrown = chk.union(thrown, thrownPrev);
duke@1 1093 if (!loopPassTwo &&
duke@1 1094 lint.isEnabled(Lint.LintCategory.FINALLY)) {
jjg@612 1095 log.warning(Lint.LintCategory.FINALLY,
jjg@612 1096 TreeInfo.diagEndPos(tree.finalizer),
jjg@612 1097 "finally.cannot.complete");
duke@1 1098 }
duke@1 1099 } else {
duke@1 1100 thrown = chk.union(thrown, chk.diff(thrownInTry, caughtInTry));
duke@1 1101 thrown = chk.union(thrown, savedThrown);
duke@1 1102 uninits.andSet(uninitsEnd);
duke@1 1103 // FIX: this doesn't preserve source order of exits in catch
duke@1 1104 // versus finally!
duke@1 1105 while (exits.nonEmpty()) {
duke@1 1106 PendingExit exit = exits.next();
duke@1 1107 if (exit.inits != null) {
duke@1 1108 exit.inits.orSet(inits);
duke@1 1109 exit.uninits.andSet(uninits);
duke@1 1110 }
duke@1 1111 pendingExits.append(exit);
duke@1 1112 }
duke@1 1113 inits.orSet(initsEnd);
duke@1 1114 alive = aliveEnd;
duke@1 1115 }
duke@1 1116 } else {
duke@1 1117 thrown = chk.union(thrown, chk.diff(thrownInTry, caughtInTry));
duke@1 1118 inits = initsEnd;
duke@1 1119 uninits = uninitsEnd;
duke@1 1120 alive = aliveEnd;
duke@1 1121 ListBuffer<PendingExit> exits = pendingExits;
duke@1 1122 pendingExits = prevPendingExits;
duke@1 1123 while (exits.nonEmpty()) pendingExits.append(exits.next());
duke@1 1124 }
duke@1 1125 uninitsTry.andSet(uninitsTryPrev).andSet(uninits);
darcy@609 1126 unrefdResources = unrefdResourcesPrev;
duke@1 1127 }
duke@1 1128
duke@1 1129 public void visitConditional(JCConditional tree) {
duke@1 1130 scanCond(tree.cond);
duke@1 1131 Bits initsBeforeElse = initsWhenFalse;
duke@1 1132 Bits uninitsBeforeElse = uninitsWhenFalse;
duke@1 1133 inits = initsWhenTrue;
duke@1 1134 uninits = uninitsWhenTrue;
duke@1 1135 if (tree.truepart.type.tag == BOOLEAN &&
duke@1 1136 tree.falsepart.type.tag == BOOLEAN) {
duke@1 1137 // if b and c are boolean valued, then
duke@1 1138 // v is (un)assigned after a?b:c when true iff
duke@1 1139 // v is (un)assigned after b when true and
duke@1 1140 // v is (un)assigned after c when true
duke@1 1141 scanCond(tree.truepart);
duke@1 1142 Bits initsAfterThenWhenTrue = initsWhenTrue.dup();
duke@1 1143 Bits initsAfterThenWhenFalse = initsWhenFalse.dup();
duke@1 1144 Bits uninitsAfterThenWhenTrue = uninitsWhenTrue.dup();
duke@1 1145 Bits uninitsAfterThenWhenFalse = uninitsWhenFalse.dup();
duke@1 1146 inits = initsBeforeElse;
duke@1 1147 uninits = uninitsBeforeElse;
duke@1 1148 scanCond(tree.falsepart);
duke@1 1149 initsWhenTrue.andSet(initsAfterThenWhenTrue);
duke@1 1150 initsWhenFalse.andSet(initsAfterThenWhenFalse);
duke@1 1151 uninitsWhenTrue.andSet(uninitsAfterThenWhenTrue);
duke@1 1152 uninitsWhenFalse.andSet(uninitsAfterThenWhenFalse);
duke@1 1153 } else {
duke@1 1154 scanExpr(tree.truepart);
duke@1 1155 Bits initsAfterThen = inits.dup();
duke@1 1156 Bits uninitsAfterThen = uninits.dup();
duke@1 1157 inits = initsBeforeElse;
duke@1 1158 uninits = uninitsBeforeElse;
duke@1 1159 scanExpr(tree.falsepart);
duke@1 1160 inits.andSet(initsAfterThen);
duke@1 1161 uninits.andSet(uninitsAfterThen);
duke@1 1162 }
duke@1 1163 }
duke@1 1164
duke@1 1165 public void visitIf(JCIf tree) {
duke@1 1166 scanCond(tree.cond);
duke@1 1167 Bits initsBeforeElse = initsWhenFalse;
duke@1 1168 Bits uninitsBeforeElse = uninitsWhenFalse;
duke@1 1169 inits = initsWhenTrue;
duke@1 1170 uninits = uninitsWhenTrue;
duke@1 1171 scanStat(tree.thenpart);
duke@1 1172 if (tree.elsepart != null) {
duke@1 1173 boolean aliveAfterThen = alive;
duke@1 1174 alive = true;
duke@1 1175 Bits initsAfterThen = inits.dup();
duke@1 1176 Bits uninitsAfterThen = uninits.dup();
duke@1 1177 inits = initsBeforeElse;
duke@1 1178 uninits = uninitsBeforeElse;
duke@1 1179 scanStat(tree.elsepart);
duke@1 1180 inits.andSet(initsAfterThen);
duke@1 1181 uninits.andSet(uninitsAfterThen);
duke@1 1182 alive = alive | aliveAfterThen;
duke@1 1183 } else {
duke@1 1184 inits.andSet(initsBeforeElse);
duke@1 1185 uninits.andSet(uninitsBeforeElse);
duke@1 1186 alive = true;
duke@1 1187 }
duke@1 1188 }
duke@1 1189
duke@1 1190
duke@1 1191
duke@1 1192 public void visitBreak(JCBreak tree) {
duke@1 1193 recordExit(tree);
duke@1 1194 }
duke@1 1195
duke@1 1196 public void visitContinue(JCContinue tree) {
duke@1 1197 recordExit(tree);
duke@1 1198 }
duke@1 1199
duke@1 1200 public void visitReturn(JCReturn tree) {
duke@1 1201 scanExpr(tree.expr);
duke@1 1202 // if not initial constructor, should markDead instead of recordExit
duke@1 1203 recordExit(tree);
duke@1 1204 }
duke@1 1205
duke@1 1206 public void visitThrow(JCThrow tree) {
duke@1 1207 scanExpr(tree.expr);
mcimadamore@550 1208 Symbol sym = TreeInfo.symbol(tree.expr);
mcimadamore@550 1209 if (sym != null &&
mcimadamore@550 1210 sym.kind == VAR &&
mcimadamore@550 1211 (sym.flags() & FINAL) != 0 &&
mcimadamore@550 1212 multicatchTypes.get(sym) != null &&
mcimadamore@550 1213 allowRethrowAnalysis) {
mcimadamore@550 1214 for (Type t : multicatchTypes.get(sym)) {
mcimadamore@550 1215 markThrown(tree, t);
mcimadamore@550 1216 }
mcimadamore@550 1217 }
mcimadamore@550 1218 else {
mcimadamore@550 1219 markThrown(tree, tree.expr.type);
mcimadamore@550 1220 }
duke@1 1221 markDead();
duke@1 1222 }
duke@1 1223
duke@1 1224 public void visitApply(JCMethodInvocation tree) {
duke@1 1225 scanExpr(tree.meth);
duke@1 1226 scanExprs(tree.args);
duke@1 1227 for (List<Type> l = tree.meth.type.getThrownTypes(); l.nonEmpty(); l = l.tail)
duke@1 1228 markThrown(tree, l.head);
duke@1 1229 }
duke@1 1230
duke@1 1231 public void visitNewClass(JCNewClass tree) {
duke@1 1232 scanExpr(tree.encl);
duke@1 1233 scanExprs(tree.args);
duke@1 1234 // scan(tree.def);
mcimadamore@186 1235 for (List<Type> l = tree.constructorType.getThrownTypes();
duke@1 1236 l.nonEmpty();
mcimadamore@186 1237 l = l.tail) {
duke@1 1238 markThrown(tree, l.head);
mcimadamore@186 1239 }
mcimadamore@186 1240 List<Type> caughtPrev = caught;
mcimadamore@186 1241 try {
mcimadamore@186 1242 // If the new class expression defines an anonymous class,
mcimadamore@186 1243 // analysis of the anonymous constructor may encounter thrown
mcimadamore@186 1244 // types which are unsubstituted type variables.
mcimadamore@186 1245 // However, since the constructor's actual thrown types have
mcimadamore@186 1246 // already been marked as thrown, it is safe to simply include
mcimadamore@186 1247 // each of the constructor's formal thrown types in the set of
mcimadamore@186 1248 // 'caught/declared to be thrown' types, for the duration of
mcimadamore@186 1249 // the class def analysis.
mcimadamore@186 1250 if (tree.def != null)
mcimadamore@186 1251 for (List<Type> l = tree.constructor.type.getThrownTypes();
mcimadamore@186 1252 l.nonEmpty();
mcimadamore@186 1253 l = l.tail) {
mcimadamore@186 1254 caught = chk.incl(l.head, caught);
mcimadamore@186 1255 }
mcimadamore@186 1256 scan(tree.def);
mcimadamore@186 1257 }
mcimadamore@186 1258 finally {
mcimadamore@186 1259 caught = caughtPrev;
mcimadamore@186 1260 }
duke@1 1261 }
duke@1 1262
duke@1 1263 public void visitNewArray(JCNewArray tree) {
duke@1 1264 scanExprs(tree.dims);
duke@1 1265 scanExprs(tree.elems);
duke@1 1266 }
duke@1 1267
duke@1 1268 public void visitAssert(JCAssert tree) {
duke@1 1269 Bits initsExit = inits.dup();
duke@1 1270 Bits uninitsExit = uninits.dup();
duke@1 1271 scanCond(tree.cond);
duke@1 1272 uninitsExit.andSet(uninitsWhenTrue);
duke@1 1273 if (tree.detail != null) {
duke@1 1274 inits = initsWhenFalse;
duke@1 1275 uninits = uninitsWhenFalse;
duke@1 1276 scanExpr(tree.detail);
duke@1 1277 }
duke@1 1278 inits = initsExit;
duke@1 1279 uninits = uninitsExit;
duke@1 1280 }
duke@1 1281
duke@1 1282 public void visitAssign(JCAssign tree) {
duke@1 1283 JCTree lhs = TreeInfo.skipParens(tree.lhs);
duke@1 1284 if (!(lhs instanceof JCIdent)) scanExpr(lhs);
duke@1 1285 scanExpr(tree.rhs);
duke@1 1286 letInit(lhs);
duke@1 1287 }
duke@1 1288
duke@1 1289 public void visitAssignop(JCAssignOp tree) {
duke@1 1290 scanExpr(tree.lhs);
duke@1 1291 scanExpr(tree.rhs);
duke@1 1292 letInit(tree.lhs);
duke@1 1293 }
duke@1 1294
duke@1 1295 public void visitUnary(JCUnary tree) {
duke@1 1296 switch (tree.getTag()) {
duke@1 1297 case JCTree.NOT:
duke@1 1298 scanCond(tree.arg);
duke@1 1299 Bits t = initsWhenFalse;
duke@1 1300 initsWhenFalse = initsWhenTrue;
duke@1 1301 initsWhenTrue = t;
duke@1 1302 t = uninitsWhenFalse;
duke@1 1303 uninitsWhenFalse = uninitsWhenTrue;
duke@1 1304 uninitsWhenTrue = t;
duke@1 1305 break;
duke@1 1306 case JCTree.PREINC: case JCTree.POSTINC:
duke@1 1307 case JCTree.PREDEC: case JCTree.POSTDEC:
duke@1 1308 scanExpr(tree.arg);
duke@1 1309 letInit(tree.arg);
duke@1 1310 break;
duke@1 1311 default:
duke@1 1312 scanExpr(tree.arg);
duke@1 1313 }
duke@1 1314 }
duke@1 1315
duke@1 1316 public void visitBinary(JCBinary tree) {
duke@1 1317 switch (tree.getTag()) {
duke@1 1318 case JCTree.AND:
duke@1 1319 scanCond(tree.lhs);
duke@1 1320 Bits initsWhenFalseLeft = initsWhenFalse;
duke@1 1321 Bits uninitsWhenFalseLeft = uninitsWhenFalse;
duke@1 1322 inits = initsWhenTrue;
duke@1 1323 uninits = uninitsWhenTrue;
duke@1 1324 scanCond(tree.rhs);
duke@1 1325 initsWhenFalse.andSet(initsWhenFalseLeft);
duke@1 1326 uninitsWhenFalse.andSet(uninitsWhenFalseLeft);
duke@1 1327 break;
duke@1 1328 case JCTree.OR:
duke@1 1329 scanCond(tree.lhs);
duke@1 1330 Bits initsWhenTrueLeft = initsWhenTrue;
duke@1 1331 Bits uninitsWhenTrueLeft = uninitsWhenTrue;
duke@1 1332 inits = initsWhenFalse;
duke@1 1333 uninits = uninitsWhenFalse;
duke@1 1334 scanCond(tree.rhs);
duke@1 1335 initsWhenTrue.andSet(initsWhenTrueLeft);
duke@1 1336 uninitsWhenTrue.andSet(uninitsWhenTrueLeft);
duke@1 1337 break;
duke@1 1338 default:
duke@1 1339 scanExpr(tree.lhs);
duke@1 1340 scanExpr(tree.rhs);
duke@1 1341 }
duke@1 1342 }
duke@1 1343
jjg@308 1344 public void visitAnnotatedType(JCAnnotatedType tree) {
jjg@308 1345 // annotations don't get scanned
jjg@308 1346 tree.underlyingType.accept(this);
jjg@308 1347 }
jjg@308 1348
duke@1 1349 public void visitIdent(JCIdent tree) {
darcy@609 1350 if (tree.sym.kind == VAR) {
duke@1 1351 checkInit(tree.pos(), (VarSymbol)tree.sym);
darcy@609 1352 referenced(tree.sym);
darcy@609 1353 }
darcy@609 1354 }
darcy@609 1355
darcy@609 1356 void referenced(Symbol sym) {
darcy@609 1357 if (unrefdResources != null && unrefdResources.containsKey(sym)) {
darcy@609 1358 unrefdResources.remove(sym);
darcy@609 1359 }
duke@1 1360 }
duke@1 1361
duke@1 1362 public void visitTypeCast(JCTypeCast tree) {
duke@1 1363 super.visitTypeCast(tree);
duke@1 1364 if (!tree.type.isErroneous()
duke@1 1365 && lint.isEnabled(Lint.LintCategory.CAST)
jjg@308 1366 && types.isSameType(tree.expr.type, tree.clazz.type)
jjg@308 1367 && !(ignoreAnnotatedCasts && containsTypeAnnotation(tree.clazz))) {
jjg@612 1368 log.warning(Lint.LintCategory.CAST,
jjg@612 1369 tree.pos(), "redundant.cast", tree.expr.type);
duke@1 1370 }
duke@1 1371 }
duke@1 1372
duke@1 1373 public void visitTopLevel(JCCompilationUnit tree) {
duke@1 1374 // Do nothing for TopLevel since each class is visited individually
duke@1 1375 }
duke@1 1376
duke@1 1377 /**************************************************************************
jjg@308 1378 * utility methods for ignoring type-annotated casts lint checking
jjg@308 1379 *************************************************************************/
jjg@308 1380 private static final boolean ignoreAnnotatedCasts = true;
jjg@308 1381 private static class AnnotationFinder extends TreeScanner {
jjg@308 1382 public boolean foundTypeAnno = false;
jjg@308 1383 public void visitAnnotation(JCAnnotation tree) {
jjg@308 1384 foundTypeAnno = foundTypeAnno || (tree instanceof JCTypeAnnotation);
jjg@308 1385 }
jjg@308 1386 }
jjg@308 1387
jjg@308 1388 private boolean containsTypeAnnotation(JCTree e) {
jjg@308 1389 AnnotationFinder finder = new AnnotationFinder();
jjg@308 1390 finder.scan(e);
jjg@308 1391 return finder.foundTypeAnno;
jjg@308 1392 }
jjg@308 1393
jjg@308 1394 /**************************************************************************
duke@1 1395 * main method
duke@1 1396 *************************************************************************/
duke@1 1397
duke@1 1398 /** Perform definite assignment/unassignment analysis on a tree.
duke@1 1399 */
mcimadamore@617 1400 public void analyzeTree(Env<AttrContext> env, TreeMaker make) {
duke@1 1401 try {
mcimadamore@617 1402 attrEnv = env;
mcimadamore@617 1403 JCTree tree = env.tree;
duke@1 1404 this.make = make;
duke@1 1405 inits = new Bits();
duke@1 1406 uninits = new Bits();
duke@1 1407 uninitsTry = new Bits();
duke@1 1408 initsWhenTrue = initsWhenFalse =
duke@1 1409 uninitsWhenTrue = uninitsWhenFalse = null;
duke@1 1410 if (vars == null)
duke@1 1411 vars = new VarSymbol[32];
duke@1 1412 else
duke@1 1413 for (int i=0; i<vars.length; i++)
duke@1 1414 vars[i] = null;
duke@1 1415 firstadr = 0;
duke@1 1416 nextadr = 0;
duke@1 1417 pendingExits = new ListBuffer<PendingExit>();
mcimadamore@550 1418 multicatchTypes = new HashMap<Symbol, List<Type>>();
duke@1 1419 alive = true;
duke@1 1420 this.thrown = this.caught = null;
duke@1 1421 this.classDef = null;
duke@1 1422 scan(tree);
duke@1 1423 } finally {
duke@1 1424 // note that recursive invocations of this method fail hard
duke@1 1425 inits = uninits = uninitsTry = null;
duke@1 1426 initsWhenTrue = initsWhenFalse =
duke@1 1427 uninitsWhenTrue = uninitsWhenFalse = null;
duke@1 1428 if (vars != null) for (int i=0; i<vars.length; i++)
duke@1 1429 vars[i] = null;
duke@1 1430 firstadr = 0;
duke@1 1431 nextadr = 0;
duke@1 1432 pendingExits = null;
duke@1 1433 this.make = null;
duke@1 1434 this.thrown = this.caught = null;
duke@1 1435 this.classDef = null;
duke@1 1436 }
duke@1 1437 }
duke@1 1438 }

mercurial