src/share/classes/com/sun/tools/javac/code/Types.java

Mon, 23 Aug 2010 15:13:33 -0700

author
jjg
date
Mon, 23 Aug 2010 15:13:33 -0700
changeset 643
a626d8c1de6e
parent 640
995bcdb9a41d
child 657
70ebdef189c9
permissions
-rw-r--r--

6976747: JCDiagnostic: replace "boolean mandatory" with new "Set<JCDiagnostic.Flag>"
Reviewed-by: mcimadamore

duke@1 1 /*
ohair@554 2 * Copyright (c) 2003, 2009, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.code;
duke@1 27
mcimadamore@341 28 import java.lang.ref.SoftReference;
duke@1 29 import java.util.*;
duke@1 30
duke@1 31 import com.sun.tools.javac.util.*;
duke@1 32 import com.sun.tools.javac.util.List;
duke@1 33
duke@1 34 import com.sun.tools.javac.jvm.ClassReader;
duke@1 35 import com.sun.tools.javac.comp.Check;
duke@1 36
duke@1 37 import static com.sun.tools.javac.code.Type.*;
duke@1 38 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 39 import static com.sun.tools.javac.code.Symbol.*;
duke@1 40 import static com.sun.tools.javac.code.Flags.*;
duke@1 41 import static com.sun.tools.javac.code.BoundKind.*;
duke@1 42 import static com.sun.tools.javac.util.ListBuffer.lb;
duke@1 43
duke@1 44 /**
duke@1 45 * Utility class containing various operations on types.
duke@1 46 *
duke@1 47 * <p>Unless other names are more illustrative, the following naming
duke@1 48 * conventions should be observed in this file:
duke@1 49 *
duke@1 50 * <dl>
duke@1 51 * <dt>t</dt>
duke@1 52 * <dd>If the first argument to an operation is a type, it should be named t.</dd>
duke@1 53 * <dt>s</dt>
duke@1 54 * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
duke@1 55 * <dt>ts</dt>
duke@1 56 * <dd>If an operations takes a list of types, the first should be named ts.</dd>
duke@1 57 * <dt>ss</dt>
duke@1 58 * <dd>A second list of types should be named ss.</dd>
duke@1 59 * </dl>
duke@1 60 *
jjg@581 61 * <p><b>This is NOT part of any supported API.
duke@1 62 * If you write code that depends on this, you do so at your own risk.
duke@1 63 * This code and its internal interfaces are subject to change or
duke@1 64 * deletion without notice.</b>
duke@1 65 */
duke@1 66 public class Types {
duke@1 67 protected static final Context.Key<Types> typesKey =
duke@1 68 new Context.Key<Types>();
duke@1 69
duke@1 70 final Symtab syms;
mcimadamore@136 71 final JavacMessages messages;
jjg@113 72 final Names names;
duke@1 73 final boolean allowBoxing;
duke@1 74 final ClassReader reader;
duke@1 75 final Source source;
duke@1 76 final Check chk;
duke@1 77 List<Warner> warnStack = List.nil();
duke@1 78 final Name capturedName;
duke@1 79
duke@1 80 // <editor-fold defaultstate="collapsed" desc="Instantiating">
duke@1 81 public static Types instance(Context context) {
duke@1 82 Types instance = context.get(typesKey);
duke@1 83 if (instance == null)
duke@1 84 instance = new Types(context);
duke@1 85 return instance;
duke@1 86 }
duke@1 87
duke@1 88 protected Types(Context context) {
duke@1 89 context.put(typesKey, this);
duke@1 90 syms = Symtab.instance(context);
jjg@113 91 names = Names.instance(context);
duke@1 92 allowBoxing = Source.instance(context).allowBoxing();
duke@1 93 reader = ClassReader.instance(context);
duke@1 94 source = Source.instance(context);
duke@1 95 chk = Check.instance(context);
duke@1 96 capturedName = names.fromString("<captured wildcard>");
mcimadamore@136 97 messages = JavacMessages.instance(context);
duke@1 98 }
duke@1 99 // </editor-fold>
duke@1 100
duke@1 101 // <editor-fold defaultstate="collapsed" desc="upperBound">
duke@1 102 /**
duke@1 103 * The "rvalue conversion".<br>
duke@1 104 * The upper bound of most types is the type
duke@1 105 * itself. Wildcards, on the other hand have upper
duke@1 106 * and lower bounds.
duke@1 107 * @param t a type
duke@1 108 * @return the upper bound of the given type
duke@1 109 */
duke@1 110 public Type upperBound(Type t) {
duke@1 111 return upperBound.visit(t);
duke@1 112 }
duke@1 113 // where
duke@1 114 private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
duke@1 115
duke@1 116 @Override
duke@1 117 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 118 if (t.isSuperBound())
duke@1 119 return t.bound == null ? syms.objectType : t.bound.bound;
duke@1 120 else
duke@1 121 return visit(t.type);
duke@1 122 }
duke@1 123
duke@1 124 @Override
duke@1 125 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 126 return visit(t.bound);
duke@1 127 }
duke@1 128 };
duke@1 129 // </editor-fold>
duke@1 130
duke@1 131 // <editor-fold defaultstate="collapsed" desc="lowerBound">
duke@1 132 /**
duke@1 133 * The "lvalue conversion".<br>
duke@1 134 * The lower bound of most types is the type
duke@1 135 * itself. Wildcards, on the other hand have upper
duke@1 136 * and lower bounds.
duke@1 137 * @param t a type
duke@1 138 * @return the lower bound of the given type
duke@1 139 */
duke@1 140 public Type lowerBound(Type t) {
duke@1 141 return lowerBound.visit(t);
duke@1 142 }
duke@1 143 // where
duke@1 144 private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
duke@1 145
duke@1 146 @Override
duke@1 147 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 148 return t.isExtendsBound() ? syms.botType : visit(t.type);
duke@1 149 }
duke@1 150
duke@1 151 @Override
duke@1 152 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 153 return visit(t.getLowerBound());
duke@1 154 }
duke@1 155 };
duke@1 156 // </editor-fold>
duke@1 157
duke@1 158 // <editor-fold defaultstate="collapsed" desc="isUnbounded">
duke@1 159 /**
duke@1 160 * Checks that all the arguments to a class are unbounded
duke@1 161 * wildcards or something else that doesn't make any restrictions
duke@1 162 * on the arguments. If a class isUnbounded, a raw super- or
duke@1 163 * subclass can be cast to it without a warning.
duke@1 164 * @param t a type
duke@1 165 * @return true iff the given type is unbounded or raw
duke@1 166 */
duke@1 167 public boolean isUnbounded(Type t) {
duke@1 168 return isUnbounded.visit(t);
duke@1 169 }
duke@1 170 // where
duke@1 171 private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
duke@1 172
duke@1 173 public Boolean visitType(Type t, Void ignored) {
duke@1 174 return true;
duke@1 175 }
duke@1 176
duke@1 177 @Override
duke@1 178 public Boolean visitClassType(ClassType t, Void ignored) {
duke@1 179 List<Type> parms = t.tsym.type.allparams();
duke@1 180 List<Type> args = t.allparams();
duke@1 181 while (parms.nonEmpty()) {
duke@1 182 WildcardType unb = new WildcardType(syms.objectType,
duke@1 183 BoundKind.UNBOUND,
duke@1 184 syms.boundClass,
duke@1 185 (TypeVar)parms.head);
duke@1 186 if (!containsType(args.head, unb))
duke@1 187 return false;
duke@1 188 parms = parms.tail;
duke@1 189 args = args.tail;
duke@1 190 }
duke@1 191 return true;
duke@1 192 }
duke@1 193 };
duke@1 194 // </editor-fold>
duke@1 195
duke@1 196 // <editor-fold defaultstate="collapsed" desc="asSub">
duke@1 197 /**
duke@1 198 * Return the least specific subtype of t that starts with symbol
duke@1 199 * sym. If none exists, return null. The least specific subtype
duke@1 200 * is determined as follows:
duke@1 201 *
duke@1 202 * <p>If there is exactly one parameterized instance of sym that is a
duke@1 203 * subtype of t, that parameterized instance is returned.<br>
duke@1 204 * Otherwise, if the plain type or raw type `sym' is a subtype of
duke@1 205 * type t, the type `sym' itself is returned. Otherwise, null is
duke@1 206 * returned.
duke@1 207 */
duke@1 208 public Type asSub(Type t, Symbol sym) {
duke@1 209 return asSub.visit(t, sym);
duke@1 210 }
duke@1 211 // where
duke@1 212 private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
duke@1 213
duke@1 214 public Type visitType(Type t, Symbol sym) {
duke@1 215 return null;
duke@1 216 }
duke@1 217
duke@1 218 @Override
duke@1 219 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 220 if (t.tsym == sym)
duke@1 221 return t;
duke@1 222 Type base = asSuper(sym.type, t.tsym);
duke@1 223 if (base == null)
duke@1 224 return null;
duke@1 225 ListBuffer<Type> from = new ListBuffer<Type>();
duke@1 226 ListBuffer<Type> to = new ListBuffer<Type>();
duke@1 227 try {
duke@1 228 adapt(base, t, from, to);
duke@1 229 } catch (AdaptFailure ex) {
duke@1 230 return null;
duke@1 231 }
duke@1 232 Type res = subst(sym.type, from.toList(), to.toList());
duke@1 233 if (!isSubtype(res, t))
duke@1 234 return null;
duke@1 235 ListBuffer<Type> openVars = new ListBuffer<Type>();
duke@1 236 for (List<Type> l = sym.type.allparams();
duke@1 237 l.nonEmpty(); l = l.tail)
duke@1 238 if (res.contains(l.head) && !t.contains(l.head))
duke@1 239 openVars.append(l.head);
duke@1 240 if (openVars.nonEmpty()) {
duke@1 241 if (t.isRaw()) {
duke@1 242 // The subtype of a raw type is raw
duke@1 243 res = erasure(res);
duke@1 244 } else {
duke@1 245 // Unbound type arguments default to ?
duke@1 246 List<Type> opens = openVars.toList();
duke@1 247 ListBuffer<Type> qs = new ListBuffer<Type>();
duke@1 248 for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
duke@1 249 qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head));
duke@1 250 }
duke@1 251 res = subst(res, opens, qs.toList());
duke@1 252 }
duke@1 253 }
duke@1 254 return res;
duke@1 255 }
duke@1 256
duke@1 257 @Override
duke@1 258 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 259 return t;
duke@1 260 }
duke@1 261 };
duke@1 262 // </editor-fold>
duke@1 263
duke@1 264 // <editor-fold defaultstate="collapsed" desc="isConvertible">
duke@1 265 /**
duke@1 266 * Is t a subtype of or convertiable via boxing/unboxing
duke@1 267 * convertions to s?
duke@1 268 */
duke@1 269 public boolean isConvertible(Type t, Type s, Warner warn) {
duke@1 270 boolean tPrimitive = t.isPrimitive();
duke@1 271 boolean sPrimitive = s.isPrimitive();
duke@1 272 if (tPrimitive == sPrimitive)
duke@1 273 return isSubtypeUnchecked(t, s, warn);
duke@1 274 if (!allowBoxing) return false;
duke@1 275 return tPrimitive
duke@1 276 ? isSubtype(boxedClass(t).type, s)
duke@1 277 : isSubtype(unboxedType(t), s);
duke@1 278 }
duke@1 279
duke@1 280 /**
duke@1 281 * Is t a subtype of or convertiable via boxing/unboxing
duke@1 282 * convertions to s?
duke@1 283 */
duke@1 284 public boolean isConvertible(Type t, Type s) {
duke@1 285 return isConvertible(t, s, Warner.noWarnings);
duke@1 286 }
duke@1 287 // </editor-fold>
duke@1 288
duke@1 289 // <editor-fold defaultstate="collapsed" desc="isSubtype">
duke@1 290 /**
duke@1 291 * Is t an unchecked subtype of s?
duke@1 292 */
duke@1 293 public boolean isSubtypeUnchecked(Type t, Type s) {
duke@1 294 return isSubtypeUnchecked(t, s, Warner.noWarnings);
duke@1 295 }
duke@1 296 /**
duke@1 297 * Is t an unchecked subtype of s?
duke@1 298 */
duke@1 299 public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
duke@1 300 if (t.tag == ARRAY && s.tag == ARRAY) {
duke@1 301 return (((ArrayType)t).elemtype.tag <= lastBaseTag)
duke@1 302 ? isSameType(elemtype(t), elemtype(s))
duke@1 303 : isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
duke@1 304 } else if (isSubtype(t, s)) {
duke@1 305 return true;
mcimadamore@41 306 }
mcimadamore@41 307 else if (t.tag == TYPEVAR) {
mcimadamore@41 308 return isSubtypeUnchecked(t.getUpperBound(), s, warn);
mcimadamore@41 309 }
mcimadamore@93 310 else if (s.tag == UNDETVAR) {
mcimadamore@93 311 UndetVar uv = (UndetVar)s;
mcimadamore@93 312 if (uv.inst != null)
mcimadamore@93 313 return isSubtypeUnchecked(t, uv.inst, warn);
mcimadamore@93 314 }
mcimadamore@41 315 else if (!s.isRaw()) {
duke@1 316 Type t2 = asSuper(t, s.tsym);
duke@1 317 if (t2 != null && t2.isRaw()) {
duke@1 318 if (isReifiable(s))
duke@1 319 warn.silentUnchecked();
duke@1 320 else
duke@1 321 warn.warnUnchecked();
duke@1 322 return true;
duke@1 323 }
duke@1 324 }
duke@1 325 return false;
duke@1 326 }
duke@1 327
duke@1 328 /**
duke@1 329 * Is t a subtype of s?<br>
duke@1 330 * (not defined for Method and ForAll types)
duke@1 331 */
duke@1 332 final public boolean isSubtype(Type t, Type s) {
duke@1 333 return isSubtype(t, s, true);
duke@1 334 }
duke@1 335 final public boolean isSubtypeNoCapture(Type t, Type s) {
duke@1 336 return isSubtype(t, s, false);
duke@1 337 }
duke@1 338 public boolean isSubtype(Type t, Type s, boolean capture) {
duke@1 339 if (t == s)
duke@1 340 return true;
duke@1 341
duke@1 342 if (s.tag >= firstPartialTag)
duke@1 343 return isSuperType(s, t);
duke@1 344
mcimadamore@299 345 if (s.isCompound()) {
mcimadamore@299 346 for (Type s2 : interfaces(s).prepend(supertype(s))) {
mcimadamore@299 347 if (!isSubtype(t, s2, capture))
mcimadamore@299 348 return false;
mcimadamore@299 349 }
mcimadamore@299 350 return true;
mcimadamore@299 351 }
mcimadamore@299 352
duke@1 353 Type lower = lowerBound(s);
duke@1 354 if (s != lower)
duke@1 355 return isSubtype(capture ? capture(t) : t, lower, false);
duke@1 356
duke@1 357 return isSubtype.visit(capture ? capture(t) : t, s);
duke@1 358 }
duke@1 359 // where
duke@1 360 private TypeRelation isSubtype = new TypeRelation()
duke@1 361 {
duke@1 362 public Boolean visitType(Type t, Type s) {
duke@1 363 switch (t.tag) {
duke@1 364 case BYTE: case CHAR:
duke@1 365 return (t.tag == s.tag ||
duke@1 366 t.tag + 2 <= s.tag && s.tag <= DOUBLE);
duke@1 367 case SHORT: case INT: case LONG: case FLOAT: case DOUBLE:
duke@1 368 return t.tag <= s.tag && s.tag <= DOUBLE;
duke@1 369 case BOOLEAN: case VOID:
duke@1 370 return t.tag == s.tag;
duke@1 371 case TYPEVAR:
duke@1 372 return isSubtypeNoCapture(t.getUpperBound(), s);
duke@1 373 case BOT:
duke@1 374 return
duke@1 375 s.tag == BOT || s.tag == CLASS ||
duke@1 376 s.tag == ARRAY || s.tag == TYPEVAR;
duke@1 377 case NONE:
duke@1 378 return false;
duke@1 379 default:
duke@1 380 throw new AssertionError("isSubtype " + t.tag);
duke@1 381 }
duke@1 382 }
duke@1 383
duke@1 384 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 385
duke@1 386 private boolean containsTypeRecursive(Type t, Type s) {
duke@1 387 TypePair pair = new TypePair(t, s);
duke@1 388 if (cache.add(pair)) {
duke@1 389 try {
duke@1 390 return containsType(t.getTypeArguments(),
duke@1 391 s.getTypeArguments());
duke@1 392 } finally {
duke@1 393 cache.remove(pair);
duke@1 394 }
duke@1 395 } else {
duke@1 396 return containsType(t.getTypeArguments(),
duke@1 397 rewriteSupers(s).getTypeArguments());
duke@1 398 }
duke@1 399 }
duke@1 400
duke@1 401 private Type rewriteSupers(Type t) {
duke@1 402 if (!t.isParameterized())
duke@1 403 return t;
duke@1 404 ListBuffer<Type> from = lb();
duke@1 405 ListBuffer<Type> to = lb();
duke@1 406 adaptSelf(t, from, to);
duke@1 407 if (from.isEmpty())
duke@1 408 return t;
duke@1 409 ListBuffer<Type> rewrite = lb();
duke@1 410 boolean changed = false;
duke@1 411 for (Type orig : to.toList()) {
duke@1 412 Type s = rewriteSupers(orig);
duke@1 413 if (s.isSuperBound() && !s.isExtendsBound()) {
duke@1 414 s = new WildcardType(syms.objectType,
duke@1 415 BoundKind.UNBOUND,
duke@1 416 syms.boundClass);
duke@1 417 changed = true;
duke@1 418 } else if (s != orig) {
duke@1 419 s = new WildcardType(upperBound(s),
duke@1 420 BoundKind.EXTENDS,
duke@1 421 syms.boundClass);
duke@1 422 changed = true;
duke@1 423 }
duke@1 424 rewrite.append(s);
duke@1 425 }
duke@1 426 if (changed)
duke@1 427 return subst(t.tsym.type, from.toList(), rewrite.toList());
duke@1 428 else
duke@1 429 return t;
duke@1 430 }
duke@1 431
duke@1 432 @Override
duke@1 433 public Boolean visitClassType(ClassType t, Type s) {
duke@1 434 Type sup = asSuper(t, s.tsym);
duke@1 435 return sup != null
duke@1 436 && sup.tsym == s.tsym
duke@1 437 // You're not allowed to write
duke@1 438 // Vector<Object> vec = new Vector<String>();
duke@1 439 // But with wildcards you can write
duke@1 440 // Vector<? extends Object> vec = new Vector<String>();
duke@1 441 // which means that subtype checking must be done
duke@1 442 // here instead of same-type checking (via containsType).
duke@1 443 && (!s.isParameterized() || containsTypeRecursive(s, sup))
duke@1 444 && isSubtypeNoCapture(sup.getEnclosingType(),
duke@1 445 s.getEnclosingType());
duke@1 446 }
duke@1 447
duke@1 448 @Override
duke@1 449 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 450 if (s.tag == ARRAY) {
duke@1 451 if (t.elemtype.tag <= lastBaseTag)
duke@1 452 return isSameType(t.elemtype, elemtype(s));
duke@1 453 else
duke@1 454 return isSubtypeNoCapture(t.elemtype, elemtype(s));
duke@1 455 }
duke@1 456
duke@1 457 if (s.tag == CLASS) {
duke@1 458 Name sname = s.tsym.getQualifiedName();
duke@1 459 return sname == names.java_lang_Object
duke@1 460 || sname == names.java_lang_Cloneable
duke@1 461 || sname == names.java_io_Serializable;
duke@1 462 }
duke@1 463
duke@1 464 return false;
duke@1 465 }
duke@1 466
duke@1 467 @Override
duke@1 468 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 469 //todo: test against origin needed? or replace with substitution?
duke@1 470 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
duke@1 471 return true;
duke@1 472
duke@1 473 if (t.inst != null)
duke@1 474 return isSubtypeNoCapture(t.inst, s); // TODO: ", warn"?
duke@1 475
duke@1 476 t.hibounds = t.hibounds.prepend(s);
duke@1 477 return true;
duke@1 478 }
duke@1 479
duke@1 480 @Override
duke@1 481 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 482 return true;
duke@1 483 }
duke@1 484 };
duke@1 485
duke@1 486 /**
duke@1 487 * Is t a subtype of every type in given list `ts'?<br>
duke@1 488 * (not defined for Method and ForAll types)<br>
duke@1 489 * Allows unchecked conversions.
duke@1 490 */
duke@1 491 public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
duke@1 492 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 493 if (!isSubtypeUnchecked(t, l.head, warn))
duke@1 494 return false;
duke@1 495 return true;
duke@1 496 }
duke@1 497
duke@1 498 /**
duke@1 499 * Are corresponding elements of ts subtypes of ss? If lists are
duke@1 500 * of different length, return false.
duke@1 501 */
duke@1 502 public boolean isSubtypes(List<Type> ts, List<Type> ss) {
duke@1 503 while (ts.tail != null && ss.tail != null
duke@1 504 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 505 isSubtype(ts.head, ss.head)) {
duke@1 506 ts = ts.tail;
duke@1 507 ss = ss.tail;
duke@1 508 }
duke@1 509 return ts.tail == null && ss.tail == null;
duke@1 510 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 511 }
duke@1 512
duke@1 513 /**
duke@1 514 * Are corresponding elements of ts subtypes of ss, allowing
duke@1 515 * unchecked conversions? If lists are of different length,
duke@1 516 * return false.
duke@1 517 **/
duke@1 518 public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
duke@1 519 while (ts.tail != null && ss.tail != null
duke@1 520 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 521 isSubtypeUnchecked(ts.head, ss.head, warn)) {
duke@1 522 ts = ts.tail;
duke@1 523 ss = ss.tail;
duke@1 524 }
duke@1 525 return ts.tail == null && ss.tail == null;
duke@1 526 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 527 }
duke@1 528 // </editor-fold>
duke@1 529
duke@1 530 // <editor-fold defaultstate="collapsed" desc="isSuperType">
duke@1 531 /**
duke@1 532 * Is t a supertype of s?
duke@1 533 */
duke@1 534 public boolean isSuperType(Type t, Type s) {
duke@1 535 switch (t.tag) {
duke@1 536 case ERROR:
duke@1 537 return true;
duke@1 538 case UNDETVAR: {
duke@1 539 UndetVar undet = (UndetVar)t;
duke@1 540 if (t == s ||
duke@1 541 undet.qtype == s ||
duke@1 542 s.tag == ERROR ||
duke@1 543 s.tag == BOT) return true;
duke@1 544 if (undet.inst != null)
duke@1 545 return isSubtype(s, undet.inst);
duke@1 546 undet.lobounds = undet.lobounds.prepend(s);
duke@1 547 return true;
duke@1 548 }
duke@1 549 default:
duke@1 550 return isSubtype(s, t);
duke@1 551 }
duke@1 552 }
duke@1 553 // </editor-fold>
duke@1 554
duke@1 555 // <editor-fold defaultstate="collapsed" desc="isSameType">
duke@1 556 /**
duke@1 557 * Are corresponding elements of the lists the same type? If
duke@1 558 * lists are of different length, return false.
duke@1 559 */
duke@1 560 public boolean isSameTypes(List<Type> ts, List<Type> ss) {
duke@1 561 while (ts.tail != null && ss.tail != null
duke@1 562 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 563 isSameType(ts.head, ss.head)) {
duke@1 564 ts = ts.tail;
duke@1 565 ss = ss.tail;
duke@1 566 }
duke@1 567 return ts.tail == null && ss.tail == null;
duke@1 568 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 569 }
duke@1 570
duke@1 571 /**
duke@1 572 * Is t the same type as s?
duke@1 573 */
duke@1 574 public boolean isSameType(Type t, Type s) {
duke@1 575 return isSameType.visit(t, s);
duke@1 576 }
duke@1 577 // where
duke@1 578 private TypeRelation isSameType = new TypeRelation() {
duke@1 579
duke@1 580 public Boolean visitType(Type t, Type s) {
duke@1 581 if (t == s)
duke@1 582 return true;
duke@1 583
duke@1 584 if (s.tag >= firstPartialTag)
duke@1 585 return visit(s, t);
duke@1 586
duke@1 587 switch (t.tag) {
duke@1 588 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 589 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
duke@1 590 return t.tag == s.tag;
mcimadamore@561 591 case TYPEVAR: {
mcimadamore@561 592 if (s.tag == TYPEVAR) {
mcimadamore@561 593 //type-substitution does not preserve type-var types
mcimadamore@561 594 //check that type var symbols and bounds are indeed the same
mcimadamore@561 595 return t.tsym == s.tsym &&
mcimadamore@561 596 visit(t.getUpperBound(), s.getUpperBound());
mcimadamore@561 597 }
mcimadamore@561 598 else {
mcimadamore@561 599 //special case for s == ? super X, where upper(s) = u
mcimadamore@561 600 //check that u == t, where u has been set by Type.withTypeVar
mcimadamore@561 601 return s.isSuperBound() &&
mcimadamore@561 602 !s.isExtendsBound() &&
mcimadamore@561 603 visit(t, upperBound(s));
mcimadamore@561 604 }
mcimadamore@561 605 }
duke@1 606 default:
duke@1 607 throw new AssertionError("isSameType " + t.tag);
duke@1 608 }
duke@1 609 }
duke@1 610
duke@1 611 @Override
duke@1 612 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 613 if (s.tag >= firstPartialTag)
duke@1 614 return visit(s, t);
duke@1 615 else
duke@1 616 return false;
duke@1 617 }
duke@1 618
duke@1 619 @Override
duke@1 620 public Boolean visitClassType(ClassType t, Type s) {
duke@1 621 if (t == s)
duke@1 622 return true;
duke@1 623
duke@1 624 if (s.tag >= firstPartialTag)
duke@1 625 return visit(s, t);
duke@1 626
duke@1 627 if (s.isSuperBound() && !s.isExtendsBound())
duke@1 628 return visit(t, upperBound(s)) && visit(t, lowerBound(s));
duke@1 629
duke@1 630 if (t.isCompound() && s.isCompound()) {
duke@1 631 if (!visit(supertype(t), supertype(s)))
duke@1 632 return false;
duke@1 633
duke@1 634 HashSet<SingletonType> set = new HashSet<SingletonType>();
duke@1 635 for (Type x : interfaces(t))
duke@1 636 set.add(new SingletonType(x));
duke@1 637 for (Type x : interfaces(s)) {
duke@1 638 if (!set.remove(new SingletonType(x)))
duke@1 639 return false;
duke@1 640 }
duke@1 641 return (set.size() == 0);
duke@1 642 }
duke@1 643 return t.tsym == s.tsym
duke@1 644 && visit(t.getEnclosingType(), s.getEnclosingType())
duke@1 645 && containsTypeEquivalent(t.getTypeArguments(), s.getTypeArguments());
duke@1 646 }
duke@1 647
duke@1 648 @Override
duke@1 649 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 650 if (t == s)
duke@1 651 return true;
duke@1 652
duke@1 653 if (s.tag >= firstPartialTag)
duke@1 654 return visit(s, t);
duke@1 655
duke@1 656 return s.tag == ARRAY
duke@1 657 && containsTypeEquivalent(t.elemtype, elemtype(s));
duke@1 658 }
duke@1 659
duke@1 660 @Override
duke@1 661 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 662 // isSameType for methods does not take thrown
duke@1 663 // exceptions into account!
duke@1 664 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
duke@1 665 }
duke@1 666
duke@1 667 @Override
duke@1 668 public Boolean visitPackageType(PackageType t, Type s) {
duke@1 669 return t == s;
duke@1 670 }
duke@1 671
duke@1 672 @Override
duke@1 673 public Boolean visitForAll(ForAll t, Type s) {
duke@1 674 if (s.tag != FORALL)
duke@1 675 return false;
duke@1 676
duke@1 677 ForAll forAll = (ForAll)s;
duke@1 678 return hasSameBounds(t, forAll)
duke@1 679 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 680 }
duke@1 681
duke@1 682 @Override
duke@1 683 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 684 if (s.tag == WILDCARD)
duke@1 685 // FIXME, this might be leftovers from before capture conversion
duke@1 686 return false;
duke@1 687
duke@1 688 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
duke@1 689 return true;
duke@1 690
duke@1 691 if (t.inst != null)
duke@1 692 return visit(t.inst, s);
duke@1 693
duke@1 694 t.inst = fromUnknownFun.apply(s);
duke@1 695 for (List<Type> l = t.lobounds; l.nonEmpty(); l = l.tail) {
duke@1 696 if (!isSubtype(l.head, t.inst))
duke@1 697 return false;
duke@1 698 }
duke@1 699 for (List<Type> l = t.hibounds; l.nonEmpty(); l = l.tail) {
duke@1 700 if (!isSubtype(t.inst, l.head))
duke@1 701 return false;
duke@1 702 }
duke@1 703 return true;
duke@1 704 }
duke@1 705
duke@1 706 @Override
duke@1 707 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 708 return true;
duke@1 709 }
duke@1 710 };
duke@1 711 // </editor-fold>
duke@1 712
duke@1 713 // <editor-fold defaultstate="collapsed" desc="fromUnknownFun">
duke@1 714 /**
duke@1 715 * A mapping that turns all unknown types in this type to fresh
duke@1 716 * unknown variables.
duke@1 717 */
duke@1 718 public Mapping fromUnknownFun = new Mapping("fromUnknownFun") {
duke@1 719 public Type apply(Type t) {
duke@1 720 if (t.tag == UNKNOWN) return new UndetVar(t);
duke@1 721 else return t.map(this);
duke@1 722 }
duke@1 723 };
duke@1 724 // </editor-fold>
duke@1 725
duke@1 726 // <editor-fold defaultstate="collapsed" desc="Contains Type">
duke@1 727 public boolean containedBy(Type t, Type s) {
duke@1 728 switch (t.tag) {
duke@1 729 case UNDETVAR:
duke@1 730 if (s.tag == WILDCARD) {
duke@1 731 UndetVar undetvar = (UndetVar)t;
mcimadamore@210 732 WildcardType wt = (WildcardType)s;
mcimadamore@210 733 switch(wt.kind) {
mcimadamore@210 734 case UNBOUND: //similar to ? extends Object
mcimadamore@210 735 case EXTENDS: {
mcimadamore@210 736 Type bound = upperBound(s);
mcimadamore@210 737 // We should check the new upper bound against any of the
mcimadamore@210 738 // undetvar's lower bounds.
mcimadamore@210 739 for (Type t2 : undetvar.lobounds) {
mcimadamore@210 740 if (!isSubtype(t2, bound))
mcimadamore@210 741 return false;
mcimadamore@210 742 }
mcimadamore@210 743 undetvar.hibounds = undetvar.hibounds.prepend(bound);
mcimadamore@210 744 break;
mcimadamore@210 745 }
mcimadamore@210 746 case SUPER: {
mcimadamore@210 747 Type bound = lowerBound(s);
mcimadamore@210 748 // We should check the new lower bound against any of the
mcimadamore@210 749 // undetvar's lower bounds.
mcimadamore@210 750 for (Type t2 : undetvar.hibounds) {
mcimadamore@210 751 if (!isSubtype(bound, t2))
mcimadamore@210 752 return false;
mcimadamore@210 753 }
mcimadamore@210 754 undetvar.lobounds = undetvar.lobounds.prepend(bound);
mcimadamore@210 755 break;
mcimadamore@210 756 }
mcimadamore@162 757 }
duke@1 758 return true;
duke@1 759 } else {
duke@1 760 return isSameType(t, s);
duke@1 761 }
duke@1 762 case ERROR:
duke@1 763 return true;
duke@1 764 default:
duke@1 765 return containsType(s, t);
duke@1 766 }
duke@1 767 }
duke@1 768
duke@1 769 boolean containsType(List<Type> ts, List<Type> ss) {
duke@1 770 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 771 && containsType(ts.head, ss.head)) {
duke@1 772 ts = ts.tail;
duke@1 773 ss = ss.tail;
duke@1 774 }
duke@1 775 return ts.isEmpty() && ss.isEmpty();
duke@1 776 }
duke@1 777
duke@1 778 /**
duke@1 779 * Check if t contains s.
duke@1 780 *
duke@1 781 * <p>T contains S if:
duke@1 782 *
duke@1 783 * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
duke@1 784 *
duke@1 785 * <p>This relation is only used by ClassType.isSubtype(), that
duke@1 786 * is,
duke@1 787 *
duke@1 788 * <p>{@code C<S> <: C<T> if T contains S.}
duke@1 789 *
duke@1 790 * <p>Because of F-bounds, this relation can lead to infinite
duke@1 791 * recursion. Thus we must somehow break that recursion. Notice
duke@1 792 * that containsType() is only called from ClassType.isSubtype().
duke@1 793 * Since the arguments have already been checked against their
duke@1 794 * bounds, we know:
duke@1 795 *
duke@1 796 * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
duke@1 797 *
duke@1 798 * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
duke@1 799 *
duke@1 800 * @param t a type
duke@1 801 * @param s a type
duke@1 802 */
duke@1 803 public boolean containsType(Type t, Type s) {
duke@1 804 return containsType.visit(t, s);
duke@1 805 }
duke@1 806 // where
duke@1 807 private TypeRelation containsType = new TypeRelation() {
duke@1 808
duke@1 809 private Type U(Type t) {
duke@1 810 while (t.tag == WILDCARD) {
duke@1 811 WildcardType w = (WildcardType)t;
duke@1 812 if (w.isSuperBound())
duke@1 813 return w.bound == null ? syms.objectType : w.bound.bound;
duke@1 814 else
duke@1 815 t = w.type;
duke@1 816 }
duke@1 817 return t;
duke@1 818 }
duke@1 819
duke@1 820 private Type L(Type t) {
duke@1 821 while (t.tag == WILDCARD) {
duke@1 822 WildcardType w = (WildcardType)t;
duke@1 823 if (w.isExtendsBound())
duke@1 824 return syms.botType;
duke@1 825 else
duke@1 826 t = w.type;
duke@1 827 }
duke@1 828 return t;
duke@1 829 }
duke@1 830
duke@1 831 public Boolean visitType(Type t, Type s) {
duke@1 832 if (s.tag >= firstPartialTag)
duke@1 833 return containedBy(s, t);
duke@1 834 else
duke@1 835 return isSameType(t, s);
duke@1 836 }
duke@1 837
duke@1 838 void debugContainsType(WildcardType t, Type s) {
duke@1 839 System.err.println();
duke@1 840 System.err.format(" does %s contain %s?%n", t, s);
duke@1 841 System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
duke@1 842 upperBound(s), s, t, U(t),
duke@1 843 t.isSuperBound()
duke@1 844 || isSubtypeNoCapture(upperBound(s), U(t)));
duke@1 845 System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
duke@1 846 L(t), t, s, lowerBound(s),
duke@1 847 t.isExtendsBound()
duke@1 848 || isSubtypeNoCapture(L(t), lowerBound(s)));
duke@1 849 System.err.println();
duke@1 850 }
duke@1 851
duke@1 852 @Override
duke@1 853 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 854 if (s.tag >= firstPartialTag)
duke@1 855 return containedBy(s, t);
duke@1 856 else {
duke@1 857 // debugContainsType(t, s);
duke@1 858 return isSameWildcard(t, s)
duke@1 859 || isCaptureOf(s, t)
duke@1 860 || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
duke@1 861 (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
duke@1 862 }
duke@1 863 }
duke@1 864
duke@1 865 @Override
duke@1 866 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 867 if (s.tag != WILDCARD)
duke@1 868 return isSameType(t, s);
duke@1 869 else
duke@1 870 return false;
duke@1 871 }
duke@1 872
duke@1 873 @Override
duke@1 874 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 875 return true;
duke@1 876 }
duke@1 877 };
duke@1 878
duke@1 879 public boolean isCaptureOf(Type s, WildcardType t) {
mcimadamore@79 880 if (s.tag != TYPEVAR || !((TypeVar)s).isCaptured())
duke@1 881 return false;
duke@1 882 return isSameWildcard(t, ((CapturedType)s).wildcard);
duke@1 883 }
duke@1 884
duke@1 885 public boolean isSameWildcard(WildcardType t, Type s) {
duke@1 886 if (s.tag != WILDCARD)
duke@1 887 return false;
duke@1 888 WildcardType w = (WildcardType)s;
duke@1 889 return w.kind == t.kind && w.type == t.type;
duke@1 890 }
duke@1 891
duke@1 892 public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
duke@1 893 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 894 && containsTypeEquivalent(ts.head, ss.head)) {
duke@1 895 ts = ts.tail;
duke@1 896 ss = ss.tail;
duke@1 897 }
duke@1 898 return ts.isEmpty() && ss.isEmpty();
duke@1 899 }
duke@1 900 // </editor-fold>
duke@1 901
duke@1 902 // <editor-fold defaultstate="collapsed" desc="isCastable">
duke@1 903 public boolean isCastable(Type t, Type s) {
duke@1 904 return isCastable(t, s, Warner.noWarnings);
duke@1 905 }
duke@1 906
duke@1 907 /**
duke@1 908 * Is t is castable to s?<br>
duke@1 909 * s is assumed to be an erased type.<br>
duke@1 910 * (not defined for Method and ForAll types).
duke@1 911 */
duke@1 912 public boolean isCastable(Type t, Type s, Warner warn) {
duke@1 913 if (t == s)
duke@1 914 return true;
duke@1 915
duke@1 916 if (t.isPrimitive() != s.isPrimitive())
duke@1 917 return allowBoxing && isConvertible(t, s, warn);
duke@1 918
duke@1 919 if (warn != warnStack.head) {
duke@1 920 try {
duke@1 921 warnStack = warnStack.prepend(warn);
mcimadamore@185 922 return isCastable.visit(t,s);
duke@1 923 } finally {
duke@1 924 warnStack = warnStack.tail;
duke@1 925 }
duke@1 926 } else {
mcimadamore@185 927 return isCastable.visit(t,s);
duke@1 928 }
duke@1 929 }
duke@1 930 // where
duke@1 931 private TypeRelation isCastable = new TypeRelation() {
duke@1 932
duke@1 933 public Boolean visitType(Type t, Type s) {
duke@1 934 if (s.tag == ERROR)
duke@1 935 return true;
duke@1 936
duke@1 937 switch (t.tag) {
duke@1 938 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 939 case DOUBLE:
duke@1 940 return s.tag <= DOUBLE;
duke@1 941 case BOOLEAN:
duke@1 942 return s.tag == BOOLEAN;
duke@1 943 case VOID:
duke@1 944 return false;
duke@1 945 case BOT:
duke@1 946 return isSubtype(t, s);
duke@1 947 default:
duke@1 948 throw new AssertionError();
duke@1 949 }
duke@1 950 }
duke@1 951
duke@1 952 @Override
duke@1 953 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 954 return isCastable(upperBound(t), s, warnStack.head);
duke@1 955 }
duke@1 956
duke@1 957 @Override
duke@1 958 public Boolean visitClassType(ClassType t, Type s) {
duke@1 959 if (s.tag == ERROR || s.tag == BOT)
duke@1 960 return true;
duke@1 961
duke@1 962 if (s.tag == TYPEVAR) {
mcimadamore@640 963 if (isCastable(t, s.getUpperBound(), Warner.noWarnings)) {
duke@1 964 warnStack.head.warnUnchecked();
duke@1 965 return true;
duke@1 966 } else {
duke@1 967 return false;
duke@1 968 }
duke@1 969 }
duke@1 970
duke@1 971 if (t.isCompound()) {
mcimadamore@211 972 Warner oldWarner = warnStack.head;
mcimadamore@211 973 warnStack.head = Warner.noWarnings;
duke@1 974 if (!visit(supertype(t), s))
duke@1 975 return false;
duke@1 976 for (Type intf : interfaces(t)) {
duke@1 977 if (!visit(intf, s))
duke@1 978 return false;
duke@1 979 }
mcimadamore@211 980 if (warnStack.head.unchecked == true)
mcimadamore@211 981 oldWarner.warnUnchecked();
duke@1 982 return true;
duke@1 983 }
duke@1 984
duke@1 985 if (s.isCompound()) {
duke@1 986 // call recursively to reuse the above code
duke@1 987 return visitClassType((ClassType)s, t);
duke@1 988 }
duke@1 989
duke@1 990 if (s.tag == CLASS || s.tag == ARRAY) {
duke@1 991 boolean upcast;
duke@1 992 if ((upcast = isSubtype(erasure(t), erasure(s)))
duke@1 993 || isSubtype(erasure(s), erasure(t))) {
duke@1 994 if (!upcast && s.tag == ARRAY) {
duke@1 995 if (!isReifiable(s))
duke@1 996 warnStack.head.warnUnchecked();
duke@1 997 return true;
duke@1 998 } else if (s.isRaw()) {
duke@1 999 return true;
duke@1 1000 } else if (t.isRaw()) {
duke@1 1001 if (!isUnbounded(s))
duke@1 1002 warnStack.head.warnUnchecked();
duke@1 1003 return true;
duke@1 1004 }
duke@1 1005 // Assume |a| <: |b|
duke@1 1006 final Type a = upcast ? t : s;
duke@1 1007 final Type b = upcast ? s : t;
duke@1 1008 final boolean HIGH = true;
duke@1 1009 final boolean LOW = false;
duke@1 1010 final boolean DONT_REWRITE_TYPEVARS = false;
duke@1 1011 Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 1012 Type aLow = rewriteQuantifiers(a, LOW, DONT_REWRITE_TYPEVARS);
duke@1 1013 Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 1014 Type bLow = rewriteQuantifiers(b, LOW, DONT_REWRITE_TYPEVARS);
duke@1 1015 Type lowSub = asSub(bLow, aLow.tsym);
duke@1 1016 Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 1017 if (highSub == null) {
duke@1 1018 final boolean REWRITE_TYPEVARS = true;
duke@1 1019 aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
duke@1 1020 aLow = rewriteQuantifiers(a, LOW, REWRITE_TYPEVARS);
duke@1 1021 bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
duke@1 1022 bLow = rewriteQuantifiers(b, LOW, REWRITE_TYPEVARS);
duke@1 1023 lowSub = asSub(bLow, aLow.tsym);
duke@1 1024 highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 1025 }
duke@1 1026 if (highSub != null) {
duke@1 1027 assert a.tsym == highSub.tsym && a.tsym == lowSub.tsym
duke@1 1028 : a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym;
mcimadamore@185 1029 if (!disjointTypes(aHigh.allparams(), highSub.allparams())
mcimadamore@185 1030 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
mcimadamore@185 1031 && !disjointTypes(aLow.allparams(), highSub.allparams())
mcimadamore@185 1032 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
mcimadamore@640 1033 if (s.isInterface() &&
mcimadamore@640 1034 !t.isInterface() &&
mcimadamore@640 1035 t.isFinal() &&
mcimadamore@640 1036 !isSubtype(t, s)) {
mcimadamore@640 1037 return false;
mcimadamore@640 1038 } else if (upcast ? giveWarning(a, b) :
mcimadamore@235 1039 giveWarning(b, a))
duke@1 1040 warnStack.head.warnUnchecked();
duke@1 1041 return true;
duke@1 1042 }
duke@1 1043 }
duke@1 1044 if (isReifiable(s))
duke@1 1045 return isSubtypeUnchecked(a, b);
duke@1 1046 else
duke@1 1047 return isSubtypeUnchecked(a, b, warnStack.head);
duke@1 1048 }
duke@1 1049
duke@1 1050 // Sidecast
duke@1 1051 if (s.tag == CLASS) {
duke@1 1052 if ((s.tsym.flags() & INTERFACE) != 0) {
duke@1 1053 return ((t.tsym.flags() & FINAL) == 0)
duke@1 1054 ? sideCast(t, s, warnStack.head)
duke@1 1055 : sideCastFinal(t, s, warnStack.head);
duke@1 1056 } else if ((t.tsym.flags() & INTERFACE) != 0) {
duke@1 1057 return ((s.tsym.flags() & FINAL) == 0)
duke@1 1058 ? sideCast(t, s, warnStack.head)
duke@1 1059 : sideCastFinal(t, s, warnStack.head);
duke@1 1060 } else {
duke@1 1061 // unrelated class types
duke@1 1062 return false;
duke@1 1063 }
duke@1 1064 }
duke@1 1065 }
duke@1 1066 return false;
duke@1 1067 }
duke@1 1068
duke@1 1069 @Override
duke@1 1070 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 1071 switch (s.tag) {
duke@1 1072 case ERROR:
duke@1 1073 case BOT:
duke@1 1074 return true;
duke@1 1075 case TYPEVAR:
duke@1 1076 if (isCastable(s, t, Warner.noWarnings)) {
duke@1 1077 warnStack.head.warnUnchecked();
duke@1 1078 return true;
duke@1 1079 } else {
duke@1 1080 return false;
duke@1 1081 }
duke@1 1082 case CLASS:
duke@1 1083 return isSubtype(t, s);
duke@1 1084 case ARRAY:
duke@1 1085 if (elemtype(t).tag <= lastBaseTag) {
duke@1 1086 return elemtype(t).tag == elemtype(s).tag;
duke@1 1087 } else {
duke@1 1088 return visit(elemtype(t), elemtype(s));
duke@1 1089 }
duke@1 1090 default:
duke@1 1091 return false;
duke@1 1092 }
duke@1 1093 }
duke@1 1094
duke@1 1095 @Override
duke@1 1096 public Boolean visitTypeVar(TypeVar t, Type s) {
duke@1 1097 switch (s.tag) {
duke@1 1098 case ERROR:
duke@1 1099 case BOT:
duke@1 1100 return true;
duke@1 1101 case TYPEVAR:
duke@1 1102 if (isSubtype(t, s)) {
duke@1 1103 return true;
duke@1 1104 } else if (isCastable(t.bound, s, Warner.noWarnings)) {
duke@1 1105 warnStack.head.warnUnchecked();
duke@1 1106 return true;
duke@1 1107 } else {
duke@1 1108 return false;
duke@1 1109 }
duke@1 1110 default:
duke@1 1111 return isCastable(t.bound, s, warnStack.head);
duke@1 1112 }
duke@1 1113 }
duke@1 1114
duke@1 1115 @Override
duke@1 1116 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 1117 return true;
duke@1 1118 }
duke@1 1119 };
duke@1 1120 // </editor-fold>
duke@1 1121
duke@1 1122 // <editor-fold defaultstate="collapsed" desc="disjointTypes">
duke@1 1123 public boolean disjointTypes(List<Type> ts, List<Type> ss) {
duke@1 1124 while (ts.tail != null && ss.tail != null) {
duke@1 1125 if (disjointType(ts.head, ss.head)) return true;
duke@1 1126 ts = ts.tail;
duke@1 1127 ss = ss.tail;
duke@1 1128 }
duke@1 1129 return false;
duke@1 1130 }
duke@1 1131
duke@1 1132 /**
duke@1 1133 * Two types or wildcards are considered disjoint if it can be
duke@1 1134 * proven that no type can be contained in both. It is
duke@1 1135 * conservative in that it is allowed to say that two types are
duke@1 1136 * not disjoint, even though they actually are.
duke@1 1137 *
duke@1 1138 * The type C<X> is castable to C<Y> exactly if X and Y are not
duke@1 1139 * disjoint.
duke@1 1140 */
duke@1 1141 public boolean disjointType(Type t, Type s) {
duke@1 1142 return disjointType.visit(t, s);
duke@1 1143 }
duke@1 1144 // where
duke@1 1145 private TypeRelation disjointType = new TypeRelation() {
duke@1 1146
duke@1 1147 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 1148
duke@1 1149 public Boolean visitType(Type t, Type s) {
duke@1 1150 if (s.tag == WILDCARD)
duke@1 1151 return visit(s, t);
duke@1 1152 else
duke@1 1153 return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
duke@1 1154 }
duke@1 1155
duke@1 1156 private boolean isCastableRecursive(Type t, Type s) {
duke@1 1157 TypePair pair = new TypePair(t, s);
duke@1 1158 if (cache.add(pair)) {
duke@1 1159 try {
duke@1 1160 return Types.this.isCastable(t, s);
duke@1 1161 } finally {
duke@1 1162 cache.remove(pair);
duke@1 1163 }
duke@1 1164 } else {
duke@1 1165 return true;
duke@1 1166 }
duke@1 1167 }
duke@1 1168
duke@1 1169 private boolean notSoftSubtypeRecursive(Type t, Type s) {
duke@1 1170 TypePair pair = new TypePair(t, s);
duke@1 1171 if (cache.add(pair)) {
duke@1 1172 try {
duke@1 1173 return Types.this.notSoftSubtype(t, s);
duke@1 1174 } finally {
duke@1 1175 cache.remove(pair);
duke@1 1176 }
duke@1 1177 } else {
duke@1 1178 return false;
duke@1 1179 }
duke@1 1180 }
duke@1 1181
duke@1 1182 @Override
duke@1 1183 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 1184 if (t.isUnbound())
duke@1 1185 return false;
duke@1 1186
duke@1 1187 if (s.tag != WILDCARD) {
duke@1 1188 if (t.isExtendsBound())
duke@1 1189 return notSoftSubtypeRecursive(s, t.type);
duke@1 1190 else // isSuperBound()
duke@1 1191 return notSoftSubtypeRecursive(t.type, s);
duke@1 1192 }
duke@1 1193
duke@1 1194 if (s.isUnbound())
duke@1 1195 return false;
duke@1 1196
duke@1 1197 if (t.isExtendsBound()) {
duke@1 1198 if (s.isExtendsBound())
duke@1 1199 return !isCastableRecursive(t.type, upperBound(s));
duke@1 1200 else if (s.isSuperBound())
duke@1 1201 return notSoftSubtypeRecursive(lowerBound(s), t.type);
duke@1 1202 } else if (t.isSuperBound()) {
duke@1 1203 if (s.isExtendsBound())
duke@1 1204 return notSoftSubtypeRecursive(t.type, upperBound(s));
duke@1 1205 }
duke@1 1206 return false;
duke@1 1207 }
duke@1 1208 };
duke@1 1209 // </editor-fold>
duke@1 1210
duke@1 1211 // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
duke@1 1212 /**
duke@1 1213 * Returns the lower bounds of the formals of a method.
duke@1 1214 */
duke@1 1215 public List<Type> lowerBoundArgtypes(Type t) {
duke@1 1216 return map(t.getParameterTypes(), lowerBoundMapping);
duke@1 1217 }
duke@1 1218 private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
duke@1 1219 public Type apply(Type t) {
duke@1 1220 return lowerBound(t);
duke@1 1221 }
duke@1 1222 };
duke@1 1223 // </editor-fold>
duke@1 1224
duke@1 1225 // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
duke@1 1226 /**
duke@1 1227 * This relation answers the question: is impossible that
duke@1 1228 * something of type `t' can be a subtype of `s'? This is
duke@1 1229 * different from the question "is `t' not a subtype of `s'?"
duke@1 1230 * when type variables are involved: Integer is not a subtype of T
duke@1 1231 * where <T extends Number> but it is not true that Integer cannot
duke@1 1232 * possibly be a subtype of T.
duke@1 1233 */
duke@1 1234 public boolean notSoftSubtype(Type t, Type s) {
duke@1 1235 if (t == s) return false;
duke@1 1236 if (t.tag == TYPEVAR) {
duke@1 1237 TypeVar tv = (TypeVar) t;
duke@1 1238 return !isCastable(tv.bound,
mcimadamore@640 1239 relaxBound(s),
duke@1 1240 Warner.noWarnings);
duke@1 1241 }
duke@1 1242 if (s.tag != WILDCARD)
duke@1 1243 s = upperBound(s);
mcimadamore@640 1244
mcimadamore@640 1245 return !isSubtype(t, relaxBound(s));
mcimadamore@640 1246 }
mcimadamore@640 1247
mcimadamore@640 1248 private Type relaxBound(Type t) {
mcimadamore@640 1249 if (t.tag == TYPEVAR) {
mcimadamore@640 1250 while (t.tag == TYPEVAR)
mcimadamore@640 1251 t = t.getUpperBound();
mcimadamore@640 1252 t = rewriteQuantifiers(t, true, true);
mcimadamore@640 1253 }
mcimadamore@640 1254 return t;
duke@1 1255 }
duke@1 1256 // </editor-fold>
duke@1 1257
duke@1 1258 // <editor-fold defaultstate="collapsed" desc="isReifiable">
duke@1 1259 public boolean isReifiable(Type t) {
duke@1 1260 return isReifiable.visit(t);
duke@1 1261 }
duke@1 1262 // where
duke@1 1263 private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
duke@1 1264
duke@1 1265 public Boolean visitType(Type t, Void ignored) {
duke@1 1266 return true;
duke@1 1267 }
duke@1 1268
duke@1 1269 @Override
duke@1 1270 public Boolean visitClassType(ClassType t, Void ignored) {
mcimadamore@356 1271 if (t.isCompound())
mcimadamore@356 1272 return false;
mcimadamore@356 1273 else {
mcimadamore@356 1274 if (!t.isParameterized())
mcimadamore@356 1275 return true;
mcimadamore@356 1276
mcimadamore@356 1277 for (Type param : t.allparams()) {
mcimadamore@356 1278 if (!param.isUnbound())
mcimadamore@356 1279 return false;
mcimadamore@356 1280 }
duke@1 1281 return true;
duke@1 1282 }
duke@1 1283 }
duke@1 1284
duke@1 1285 @Override
duke@1 1286 public Boolean visitArrayType(ArrayType t, Void ignored) {
duke@1 1287 return visit(t.elemtype);
duke@1 1288 }
duke@1 1289
duke@1 1290 @Override
duke@1 1291 public Boolean visitTypeVar(TypeVar t, Void ignored) {
duke@1 1292 return false;
duke@1 1293 }
duke@1 1294 };
duke@1 1295 // </editor-fold>
duke@1 1296
duke@1 1297 // <editor-fold defaultstate="collapsed" desc="Array Utils">
duke@1 1298 public boolean isArray(Type t) {
duke@1 1299 while (t.tag == WILDCARD)
duke@1 1300 t = upperBound(t);
duke@1 1301 return t.tag == ARRAY;
duke@1 1302 }
duke@1 1303
duke@1 1304 /**
duke@1 1305 * The element type of an array.
duke@1 1306 */
duke@1 1307 public Type elemtype(Type t) {
duke@1 1308 switch (t.tag) {
duke@1 1309 case WILDCARD:
duke@1 1310 return elemtype(upperBound(t));
duke@1 1311 case ARRAY:
duke@1 1312 return ((ArrayType)t).elemtype;
duke@1 1313 case FORALL:
duke@1 1314 return elemtype(((ForAll)t).qtype);
duke@1 1315 case ERROR:
duke@1 1316 return t;
duke@1 1317 default:
duke@1 1318 return null;
duke@1 1319 }
duke@1 1320 }
duke@1 1321
duke@1 1322 /**
duke@1 1323 * Mapping to take element type of an arraytype
duke@1 1324 */
duke@1 1325 private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
duke@1 1326 public Type apply(Type t) { return elemtype(t); }
duke@1 1327 };
duke@1 1328
duke@1 1329 /**
duke@1 1330 * The number of dimensions of an array type.
duke@1 1331 */
duke@1 1332 public int dimensions(Type t) {
duke@1 1333 int result = 0;
duke@1 1334 while (t.tag == ARRAY) {
duke@1 1335 result++;
duke@1 1336 t = elemtype(t);
duke@1 1337 }
duke@1 1338 return result;
duke@1 1339 }
duke@1 1340 // </editor-fold>
duke@1 1341
duke@1 1342 // <editor-fold defaultstate="collapsed" desc="asSuper">
duke@1 1343 /**
duke@1 1344 * Return the (most specific) base type of t that starts with the
duke@1 1345 * given symbol. If none exists, return null.
duke@1 1346 *
duke@1 1347 * @param t a type
duke@1 1348 * @param sym a symbol
duke@1 1349 */
duke@1 1350 public Type asSuper(Type t, Symbol sym) {
duke@1 1351 return asSuper.visit(t, sym);
duke@1 1352 }
duke@1 1353 // where
duke@1 1354 private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
duke@1 1355
duke@1 1356 public Type visitType(Type t, Symbol sym) {
duke@1 1357 return null;
duke@1 1358 }
duke@1 1359
duke@1 1360 @Override
duke@1 1361 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1362 if (t.tsym == sym)
duke@1 1363 return t;
duke@1 1364
duke@1 1365 Type st = supertype(t);
mcimadamore@19 1366 if (st.tag == CLASS || st.tag == TYPEVAR || st.tag == ERROR) {
duke@1 1367 Type x = asSuper(st, sym);
duke@1 1368 if (x != null)
duke@1 1369 return x;
duke@1 1370 }
duke@1 1371 if ((sym.flags() & INTERFACE) != 0) {
duke@1 1372 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 1373 Type x = asSuper(l.head, sym);
duke@1 1374 if (x != null)
duke@1 1375 return x;
duke@1 1376 }
duke@1 1377 }
duke@1 1378 return null;
duke@1 1379 }
duke@1 1380
duke@1 1381 @Override
duke@1 1382 public Type visitArrayType(ArrayType t, Symbol sym) {
duke@1 1383 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1384 }
duke@1 1385
duke@1 1386 @Override
duke@1 1387 public Type visitTypeVar(TypeVar t, Symbol sym) {
mcimadamore@19 1388 if (t.tsym == sym)
mcimadamore@19 1389 return t;
mcimadamore@19 1390 else
mcimadamore@19 1391 return asSuper(t.bound, sym);
duke@1 1392 }
duke@1 1393
duke@1 1394 @Override
duke@1 1395 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1396 return t;
duke@1 1397 }
duke@1 1398 };
duke@1 1399
duke@1 1400 /**
duke@1 1401 * Return the base type of t or any of its outer types that starts
duke@1 1402 * with the given symbol. If none exists, return null.
duke@1 1403 *
duke@1 1404 * @param t a type
duke@1 1405 * @param sym a symbol
duke@1 1406 */
duke@1 1407 public Type asOuterSuper(Type t, Symbol sym) {
duke@1 1408 switch (t.tag) {
duke@1 1409 case CLASS:
duke@1 1410 do {
duke@1 1411 Type s = asSuper(t, sym);
duke@1 1412 if (s != null) return s;
duke@1 1413 t = t.getEnclosingType();
duke@1 1414 } while (t.tag == CLASS);
duke@1 1415 return null;
duke@1 1416 case ARRAY:
duke@1 1417 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1418 case TYPEVAR:
duke@1 1419 return asSuper(t, sym);
duke@1 1420 case ERROR:
duke@1 1421 return t;
duke@1 1422 default:
duke@1 1423 return null;
duke@1 1424 }
duke@1 1425 }
duke@1 1426
duke@1 1427 /**
duke@1 1428 * Return the base type of t or any of its enclosing types that
duke@1 1429 * starts with the given symbol. If none exists, return null.
duke@1 1430 *
duke@1 1431 * @param t a type
duke@1 1432 * @param sym a symbol
duke@1 1433 */
duke@1 1434 public Type asEnclosingSuper(Type t, Symbol sym) {
duke@1 1435 switch (t.tag) {
duke@1 1436 case CLASS:
duke@1 1437 do {
duke@1 1438 Type s = asSuper(t, sym);
duke@1 1439 if (s != null) return s;
duke@1 1440 Type outer = t.getEnclosingType();
duke@1 1441 t = (outer.tag == CLASS) ? outer :
duke@1 1442 (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
duke@1 1443 Type.noType;
duke@1 1444 } while (t.tag == CLASS);
duke@1 1445 return null;
duke@1 1446 case ARRAY:
duke@1 1447 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1448 case TYPEVAR:
duke@1 1449 return asSuper(t, sym);
duke@1 1450 case ERROR:
duke@1 1451 return t;
duke@1 1452 default:
duke@1 1453 return null;
duke@1 1454 }
duke@1 1455 }
duke@1 1456 // </editor-fold>
duke@1 1457
duke@1 1458 // <editor-fold defaultstate="collapsed" desc="memberType">
duke@1 1459 /**
duke@1 1460 * The type of given symbol, seen as a member of t.
duke@1 1461 *
duke@1 1462 * @param t a type
duke@1 1463 * @param sym a symbol
duke@1 1464 */
duke@1 1465 public Type memberType(Type t, Symbol sym) {
duke@1 1466 return (sym.flags() & STATIC) != 0
duke@1 1467 ? sym.type
duke@1 1468 : memberType.visit(t, sym);
mcimadamore@341 1469 }
duke@1 1470 // where
duke@1 1471 private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
duke@1 1472
duke@1 1473 public Type visitType(Type t, Symbol sym) {
duke@1 1474 return sym.type;
duke@1 1475 }
duke@1 1476
duke@1 1477 @Override
duke@1 1478 public Type visitWildcardType(WildcardType t, Symbol sym) {
duke@1 1479 return memberType(upperBound(t), sym);
duke@1 1480 }
duke@1 1481
duke@1 1482 @Override
duke@1 1483 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1484 Symbol owner = sym.owner;
duke@1 1485 long flags = sym.flags();
duke@1 1486 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
duke@1 1487 Type base = asOuterSuper(t, owner);
mcimadamore@134 1488 //if t is an intersection type T = CT & I1 & I2 ... & In
mcimadamore@134 1489 //its supertypes CT, I1, ... In might contain wildcards
mcimadamore@134 1490 //so we need to go through capture conversion
mcimadamore@134 1491 base = t.isCompound() ? capture(base) : base;
duke@1 1492 if (base != null) {
duke@1 1493 List<Type> ownerParams = owner.type.allparams();
duke@1 1494 List<Type> baseParams = base.allparams();
duke@1 1495 if (ownerParams.nonEmpty()) {
duke@1 1496 if (baseParams.isEmpty()) {
duke@1 1497 // then base is a raw type
duke@1 1498 return erasure(sym.type);
duke@1 1499 } else {
duke@1 1500 return subst(sym.type, ownerParams, baseParams);
duke@1 1501 }
duke@1 1502 }
duke@1 1503 }
duke@1 1504 }
duke@1 1505 return sym.type;
duke@1 1506 }
duke@1 1507
duke@1 1508 @Override
duke@1 1509 public Type visitTypeVar(TypeVar t, Symbol sym) {
duke@1 1510 return memberType(t.bound, sym);
duke@1 1511 }
duke@1 1512
duke@1 1513 @Override
duke@1 1514 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1515 return t;
duke@1 1516 }
duke@1 1517 };
duke@1 1518 // </editor-fold>
duke@1 1519
duke@1 1520 // <editor-fold defaultstate="collapsed" desc="isAssignable">
duke@1 1521 public boolean isAssignable(Type t, Type s) {
duke@1 1522 return isAssignable(t, s, Warner.noWarnings);
duke@1 1523 }
duke@1 1524
duke@1 1525 /**
duke@1 1526 * Is t assignable to s?<br>
duke@1 1527 * Equivalent to subtype except for constant values and raw
duke@1 1528 * types.<br>
duke@1 1529 * (not defined for Method and ForAll types)
duke@1 1530 */
duke@1 1531 public boolean isAssignable(Type t, Type s, Warner warn) {
duke@1 1532 if (t.tag == ERROR)
duke@1 1533 return true;
duke@1 1534 if (t.tag <= INT && t.constValue() != null) {
duke@1 1535 int value = ((Number)t.constValue()).intValue();
duke@1 1536 switch (s.tag) {
duke@1 1537 case BYTE:
duke@1 1538 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
duke@1 1539 return true;
duke@1 1540 break;
duke@1 1541 case CHAR:
duke@1 1542 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
duke@1 1543 return true;
duke@1 1544 break;
duke@1 1545 case SHORT:
duke@1 1546 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
duke@1 1547 return true;
duke@1 1548 break;
duke@1 1549 case INT:
duke@1 1550 return true;
duke@1 1551 case CLASS:
duke@1 1552 switch (unboxedType(s).tag) {
duke@1 1553 case BYTE:
duke@1 1554 case CHAR:
duke@1 1555 case SHORT:
duke@1 1556 return isAssignable(t, unboxedType(s), warn);
duke@1 1557 }
duke@1 1558 break;
duke@1 1559 }
duke@1 1560 }
duke@1 1561 return isConvertible(t, s, warn);
duke@1 1562 }
duke@1 1563 // </editor-fold>
duke@1 1564
duke@1 1565 // <editor-fold defaultstate="collapsed" desc="erasure">
duke@1 1566 /**
duke@1 1567 * The erasure of t {@code |t|} -- the type that results when all
duke@1 1568 * type parameters in t are deleted.
duke@1 1569 */
duke@1 1570 public Type erasure(Type t) {
mcimadamore@30 1571 return erasure(t, false);
mcimadamore@30 1572 }
mcimadamore@30 1573 //where
mcimadamore@30 1574 private Type erasure(Type t, boolean recurse) {
duke@1 1575 if (t.tag <= lastBaseTag)
duke@1 1576 return t; /* fast special case */
duke@1 1577 else
mcimadamore@30 1578 return erasure.visit(t, recurse);
mcimadamore@341 1579 }
duke@1 1580 // where
mcimadamore@30 1581 private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
mcimadamore@30 1582 public Type visitType(Type t, Boolean recurse) {
duke@1 1583 if (t.tag <= lastBaseTag)
duke@1 1584 return t; /*fast special case*/
duke@1 1585 else
mcimadamore@30 1586 return t.map(recurse ? erasureRecFun : erasureFun);
duke@1 1587 }
duke@1 1588
duke@1 1589 @Override
mcimadamore@30 1590 public Type visitWildcardType(WildcardType t, Boolean recurse) {
mcimadamore@30 1591 return erasure(upperBound(t), recurse);
duke@1 1592 }
duke@1 1593
duke@1 1594 @Override
mcimadamore@30 1595 public Type visitClassType(ClassType t, Boolean recurse) {
mcimadamore@30 1596 Type erased = t.tsym.erasure(Types.this);
mcimadamore@30 1597 if (recurse) {
mcimadamore@30 1598 erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
mcimadamore@30 1599 }
mcimadamore@30 1600 return erased;
duke@1 1601 }
duke@1 1602
duke@1 1603 @Override
mcimadamore@30 1604 public Type visitTypeVar(TypeVar t, Boolean recurse) {
mcimadamore@30 1605 return erasure(t.bound, recurse);
duke@1 1606 }
duke@1 1607
duke@1 1608 @Override
mcimadamore@30 1609 public Type visitErrorType(ErrorType t, Boolean recurse) {
duke@1 1610 return t;
duke@1 1611 }
duke@1 1612 };
mcimadamore@30 1613
duke@1 1614 private Mapping erasureFun = new Mapping ("erasure") {
duke@1 1615 public Type apply(Type t) { return erasure(t); }
duke@1 1616 };
duke@1 1617
mcimadamore@30 1618 private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
mcimadamore@30 1619 public Type apply(Type t) { return erasureRecursive(t); }
mcimadamore@30 1620 };
mcimadamore@30 1621
duke@1 1622 public List<Type> erasure(List<Type> ts) {
duke@1 1623 return Type.map(ts, erasureFun);
duke@1 1624 }
mcimadamore@30 1625
mcimadamore@30 1626 public Type erasureRecursive(Type t) {
mcimadamore@30 1627 return erasure(t, true);
mcimadamore@30 1628 }
mcimadamore@30 1629
mcimadamore@30 1630 public List<Type> erasureRecursive(List<Type> ts) {
mcimadamore@30 1631 return Type.map(ts, erasureRecFun);
mcimadamore@30 1632 }
duke@1 1633 // </editor-fold>
duke@1 1634
duke@1 1635 // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
duke@1 1636 /**
duke@1 1637 * Make a compound type from non-empty list of types
duke@1 1638 *
duke@1 1639 * @param bounds the types from which the compound type is formed
duke@1 1640 * @param supertype is objectType if all bounds are interfaces,
duke@1 1641 * null otherwise.
duke@1 1642 */
duke@1 1643 public Type makeCompoundType(List<Type> bounds,
duke@1 1644 Type supertype) {
duke@1 1645 ClassSymbol bc =
duke@1 1646 new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
duke@1 1647 Type.moreInfo
duke@1 1648 ? names.fromString(bounds.toString())
duke@1 1649 : names.empty,
duke@1 1650 syms.noSymbol);
duke@1 1651 if (bounds.head.tag == TYPEVAR)
duke@1 1652 // error condition, recover
mcimadamore@121 1653 bc.erasure_field = syms.objectType;
mcimadamore@121 1654 else
mcimadamore@121 1655 bc.erasure_field = erasure(bounds.head);
mcimadamore@121 1656 bc.members_field = new Scope(bc);
duke@1 1657 ClassType bt = (ClassType)bc.type;
duke@1 1658 bt.allparams_field = List.nil();
duke@1 1659 if (supertype != null) {
duke@1 1660 bt.supertype_field = supertype;
duke@1 1661 bt.interfaces_field = bounds;
duke@1 1662 } else {
duke@1 1663 bt.supertype_field = bounds.head;
duke@1 1664 bt.interfaces_field = bounds.tail;
duke@1 1665 }
duke@1 1666 assert bt.supertype_field.tsym.completer != null
duke@1 1667 || !bt.supertype_field.isInterface()
duke@1 1668 : bt.supertype_field;
duke@1 1669 return bt;
duke@1 1670 }
duke@1 1671
duke@1 1672 /**
duke@1 1673 * Same as {@link #makeCompoundType(List,Type)}, except that the
duke@1 1674 * second parameter is computed directly. Note that this might
duke@1 1675 * cause a symbol completion. Hence, this version of
duke@1 1676 * makeCompoundType may not be called during a classfile read.
duke@1 1677 */
duke@1 1678 public Type makeCompoundType(List<Type> bounds) {
duke@1 1679 Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
duke@1 1680 supertype(bounds.head) : null;
duke@1 1681 return makeCompoundType(bounds, supertype);
duke@1 1682 }
duke@1 1683
duke@1 1684 /**
duke@1 1685 * A convenience wrapper for {@link #makeCompoundType(List)}; the
duke@1 1686 * arguments are converted to a list and passed to the other
duke@1 1687 * method. Note that this might cause a symbol completion.
duke@1 1688 * Hence, this version of makeCompoundType may not be called
duke@1 1689 * during a classfile read.
duke@1 1690 */
duke@1 1691 public Type makeCompoundType(Type bound1, Type bound2) {
duke@1 1692 return makeCompoundType(List.of(bound1, bound2));
duke@1 1693 }
duke@1 1694 // </editor-fold>
duke@1 1695
duke@1 1696 // <editor-fold defaultstate="collapsed" desc="supertype">
duke@1 1697 public Type supertype(Type t) {
duke@1 1698 return supertype.visit(t);
duke@1 1699 }
duke@1 1700 // where
duke@1 1701 private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
duke@1 1702
duke@1 1703 public Type visitType(Type t, Void ignored) {
duke@1 1704 // A note on wildcards: there is no good way to
duke@1 1705 // determine a supertype for a super bounded wildcard.
duke@1 1706 return null;
duke@1 1707 }
duke@1 1708
duke@1 1709 @Override
duke@1 1710 public Type visitClassType(ClassType t, Void ignored) {
duke@1 1711 if (t.supertype_field == null) {
duke@1 1712 Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
duke@1 1713 // An interface has no superclass; its supertype is Object.
duke@1 1714 if (t.isInterface())
duke@1 1715 supertype = ((ClassType)t.tsym.type).supertype_field;
duke@1 1716 if (t.supertype_field == null) {
duke@1 1717 List<Type> actuals = classBound(t).allparams();
duke@1 1718 List<Type> formals = t.tsym.type.allparams();
mcimadamore@30 1719 if (t.hasErasedSupertypes()) {
mcimadamore@30 1720 t.supertype_field = erasureRecursive(supertype);
mcimadamore@30 1721 } else if (formals.nonEmpty()) {
duke@1 1722 t.supertype_field = subst(supertype, formals, actuals);
duke@1 1723 }
mcimadamore@30 1724 else {
mcimadamore@30 1725 t.supertype_field = supertype;
mcimadamore@30 1726 }
duke@1 1727 }
duke@1 1728 }
duke@1 1729 return t.supertype_field;
duke@1 1730 }
duke@1 1731
duke@1 1732 /**
duke@1 1733 * The supertype is always a class type. If the type
duke@1 1734 * variable's bounds start with a class type, this is also
duke@1 1735 * the supertype. Otherwise, the supertype is
duke@1 1736 * java.lang.Object.
duke@1 1737 */
duke@1 1738 @Override
duke@1 1739 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 1740 if (t.bound.tag == TYPEVAR ||
duke@1 1741 (!t.bound.isCompound() && !t.bound.isInterface())) {
duke@1 1742 return t.bound;
duke@1 1743 } else {
duke@1 1744 return supertype(t.bound);
duke@1 1745 }
duke@1 1746 }
duke@1 1747
duke@1 1748 @Override
duke@1 1749 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 1750 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
duke@1 1751 return arraySuperType();
duke@1 1752 else
duke@1 1753 return new ArrayType(supertype(t.elemtype), t.tsym);
duke@1 1754 }
duke@1 1755
duke@1 1756 @Override
duke@1 1757 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 1758 return t;
duke@1 1759 }
duke@1 1760 };
duke@1 1761 // </editor-fold>
duke@1 1762
duke@1 1763 // <editor-fold defaultstate="collapsed" desc="interfaces">
duke@1 1764 /**
duke@1 1765 * Return the interfaces implemented by this class.
duke@1 1766 */
duke@1 1767 public List<Type> interfaces(Type t) {
duke@1 1768 return interfaces.visit(t);
duke@1 1769 }
duke@1 1770 // where
duke@1 1771 private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
duke@1 1772
duke@1 1773 public List<Type> visitType(Type t, Void ignored) {
duke@1 1774 return List.nil();
duke@1 1775 }
duke@1 1776
duke@1 1777 @Override
duke@1 1778 public List<Type> visitClassType(ClassType t, Void ignored) {
duke@1 1779 if (t.interfaces_field == null) {
duke@1 1780 List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
duke@1 1781 if (t.interfaces_field == null) {
duke@1 1782 // If t.interfaces_field is null, then t must
duke@1 1783 // be a parameterized type (not to be confused
duke@1 1784 // with a generic type declaration).
duke@1 1785 // Terminology:
duke@1 1786 // Parameterized type: List<String>
duke@1 1787 // Generic type declaration: class List<E> { ... }
duke@1 1788 // So t corresponds to List<String> and
duke@1 1789 // t.tsym.type corresponds to List<E>.
duke@1 1790 // The reason t must be parameterized type is
duke@1 1791 // that completion will happen as a side
duke@1 1792 // effect of calling
duke@1 1793 // ClassSymbol.getInterfaces. Since
duke@1 1794 // t.interfaces_field is null after
duke@1 1795 // completion, we can assume that t is not the
duke@1 1796 // type of a class/interface declaration.
duke@1 1797 assert t != t.tsym.type : t.toString();
duke@1 1798 List<Type> actuals = t.allparams();
duke@1 1799 List<Type> formals = t.tsym.type.allparams();
mcimadamore@30 1800 if (t.hasErasedSupertypes()) {
mcimadamore@30 1801 t.interfaces_field = erasureRecursive(interfaces);
mcimadamore@30 1802 } else if (formals.nonEmpty()) {
duke@1 1803 t.interfaces_field =
duke@1 1804 upperBounds(subst(interfaces, formals, actuals));
duke@1 1805 }
mcimadamore@30 1806 else {
mcimadamore@30 1807 t.interfaces_field = interfaces;
mcimadamore@30 1808 }
duke@1 1809 }
duke@1 1810 }
duke@1 1811 return t.interfaces_field;
duke@1 1812 }
duke@1 1813
duke@1 1814 @Override
duke@1 1815 public List<Type> visitTypeVar(TypeVar t, Void ignored) {
duke@1 1816 if (t.bound.isCompound())
duke@1 1817 return interfaces(t.bound);
duke@1 1818
duke@1 1819 if (t.bound.isInterface())
duke@1 1820 return List.of(t.bound);
duke@1 1821
duke@1 1822 return List.nil();
duke@1 1823 }
duke@1 1824 };
duke@1 1825 // </editor-fold>
duke@1 1826
duke@1 1827 // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
duke@1 1828 Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
duke@1 1829
duke@1 1830 public boolean isDerivedRaw(Type t) {
duke@1 1831 Boolean result = isDerivedRawCache.get(t);
duke@1 1832 if (result == null) {
duke@1 1833 result = isDerivedRawInternal(t);
duke@1 1834 isDerivedRawCache.put(t, result);
duke@1 1835 }
duke@1 1836 return result;
duke@1 1837 }
duke@1 1838
duke@1 1839 public boolean isDerivedRawInternal(Type t) {
duke@1 1840 if (t.isErroneous())
duke@1 1841 return false;
duke@1 1842 return
duke@1 1843 t.isRaw() ||
duke@1 1844 supertype(t) != null && isDerivedRaw(supertype(t)) ||
duke@1 1845 isDerivedRaw(interfaces(t));
duke@1 1846 }
duke@1 1847
duke@1 1848 public boolean isDerivedRaw(List<Type> ts) {
duke@1 1849 List<Type> l = ts;
duke@1 1850 while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
duke@1 1851 return l.nonEmpty();
duke@1 1852 }
duke@1 1853 // </editor-fold>
duke@1 1854
duke@1 1855 // <editor-fold defaultstate="collapsed" desc="setBounds">
duke@1 1856 /**
duke@1 1857 * Set the bounds field of the given type variable to reflect a
duke@1 1858 * (possibly multiple) list of bounds.
duke@1 1859 * @param t a type variable
duke@1 1860 * @param bounds the bounds, must be nonempty
duke@1 1861 * @param supertype is objectType if all bounds are interfaces,
duke@1 1862 * null otherwise.
duke@1 1863 */
duke@1 1864 public void setBounds(TypeVar t, List<Type> bounds, Type supertype) {
duke@1 1865 if (bounds.tail.isEmpty())
duke@1 1866 t.bound = bounds.head;
duke@1 1867 else
duke@1 1868 t.bound = makeCompoundType(bounds, supertype);
duke@1 1869 t.rank_field = -1;
duke@1 1870 }
duke@1 1871
duke@1 1872 /**
duke@1 1873 * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
mcimadamore@563 1874 * third parameter is computed directly, as follows: if all
mcimadamore@563 1875 * all bounds are interface types, the computed supertype is Object,
mcimadamore@563 1876 * otherwise the supertype is simply left null (in this case, the supertype
mcimadamore@563 1877 * is assumed to be the head of the bound list passed as second argument).
mcimadamore@563 1878 * Note that this check might cause a symbol completion. Hence, this version of
duke@1 1879 * setBounds may not be called during a classfile read.
duke@1 1880 */
duke@1 1881 public void setBounds(TypeVar t, List<Type> bounds) {
duke@1 1882 Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
mcimadamore@563 1883 syms.objectType : null;
duke@1 1884 setBounds(t, bounds, supertype);
duke@1 1885 t.rank_field = -1;
duke@1 1886 }
duke@1 1887 // </editor-fold>
duke@1 1888
duke@1 1889 // <editor-fold defaultstate="collapsed" desc="getBounds">
duke@1 1890 /**
duke@1 1891 * Return list of bounds of the given type variable.
duke@1 1892 */
duke@1 1893 public List<Type> getBounds(TypeVar t) {
duke@1 1894 if (t.bound.isErroneous() || !t.bound.isCompound())
duke@1 1895 return List.of(t.bound);
duke@1 1896 else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
duke@1 1897 return interfaces(t).prepend(supertype(t));
duke@1 1898 else
duke@1 1899 // No superclass was given in bounds.
duke@1 1900 // In this case, supertype is Object, erasure is first interface.
duke@1 1901 return interfaces(t);
duke@1 1902 }
duke@1 1903 // </editor-fold>
duke@1 1904
duke@1 1905 // <editor-fold defaultstate="collapsed" desc="classBound">
duke@1 1906 /**
duke@1 1907 * If the given type is a (possibly selected) type variable,
duke@1 1908 * return the bounding class of this type, otherwise return the
duke@1 1909 * type itself.
duke@1 1910 */
duke@1 1911 public Type classBound(Type t) {
duke@1 1912 return classBound.visit(t);
duke@1 1913 }
duke@1 1914 // where
duke@1 1915 private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
duke@1 1916
duke@1 1917 public Type visitType(Type t, Void ignored) {
duke@1 1918 return t;
duke@1 1919 }
duke@1 1920
duke@1 1921 @Override
duke@1 1922 public Type visitClassType(ClassType t, Void ignored) {
duke@1 1923 Type outer1 = classBound(t.getEnclosingType());
duke@1 1924 if (outer1 != t.getEnclosingType())
duke@1 1925 return new ClassType(outer1, t.getTypeArguments(), t.tsym);
duke@1 1926 else
duke@1 1927 return t;
duke@1 1928 }
duke@1 1929
duke@1 1930 @Override
duke@1 1931 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 1932 return classBound(supertype(t));
duke@1 1933 }
duke@1 1934
duke@1 1935 @Override
duke@1 1936 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 1937 return t;
duke@1 1938 }
duke@1 1939 };
duke@1 1940 // </editor-fold>
duke@1 1941
duke@1 1942 // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
duke@1 1943 /**
duke@1 1944 * Returns true iff the first signature is a <em>sub
duke@1 1945 * signature</em> of the other. This is <b>not</b> an equivalence
duke@1 1946 * relation.
duke@1 1947 *
duke@1 1948 * @see "The Java Language Specification, Third Ed. (8.4.2)."
duke@1 1949 * @see #overrideEquivalent(Type t, Type s)
duke@1 1950 * @param t first signature (possibly raw).
duke@1 1951 * @param s second signature (could be subjected to erasure).
duke@1 1952 * @return true if t is a sub signature of s.
duke@1 1953 */
duke@1 1954 public boolean isSubSignature(Type t, Type s) {
duke@1 1955 return hasSameArgs(t, s) || hasSameArgs(t, erasure(s));
duke@1 1956 }
duke@1 1957
duke@1 1958 /**
duke@1 1959 * Returns true iff these signatures are related by <em>override
duke@1 1960 * equivalence</em>. This is the natural extension of
duke@1 1961 * isSubSignature to an equivalence relation.
duke@1 1962 *
duke@1 1963 * @see "The Java Language Specification, Third Ed. (8.4.2)."
duke@1 1964 * @see #isSubSignature(Type t, Type s)
duke@1 1965 * @param t a signature (possible raw, could be subjected to
duke@1 1966 * erasure).
duke@1 1967 * @param s a signature (possible raw, could be subjected to
duke@1 1968 * erasure).
duke@1 1969 * @return true if either argument is a sub signature of the other.
duke@1 1970 */
duke@1 1971 public boolean overrideEquivalent(Type t, Type s) {
duke@1 1972 return hasSameArgs(t, s) ||
duke@1 1973 hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
duke@1 1974 }
duke@1 1975
mcimadamore@341 1976 private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, MethodSymbol>>> implCache_check =
mcimadamore@341 1977 new WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, MethodSymbol>>>();
mcimadamore@341 1978
mcimadamore@341 1979 private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, MethodSymbol>>> implCache_nocheck =
mcimadamore@341 1980 new WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, MethodSymbol>>>();
mcimadamore@341 1981
mcimadamore@341 1982 public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, Types types, boolean checkResult) {
mcimadamore@341 1983 Map<MethodSymbol, SoftReference<Map<TypeSymbol, MethodSymbol>>> implCache = checkResult ?
mcimadamore@341 1984 implCache_check : implCache_nocheck;
mcimadamore@341 1985 SoftReference<Map<TypeSymbol, MethodSymbol>> ref_cache = implCache.get(ms);
mcimadamore@341 1986 Map<TypeSymbol, MethodSymbol> cache = ref_cache != null ? ref_cache.get() : null;
mcimadamore@341 1987 if (cache == null) {
mcimadamore@341 1988 cache = new HashMap<TypeSymbol, MethodSymbol>();
mcimadamore@341 1989 implCache.put(ms, new SoftReference<Map<TypeSymbol, MethodSymbol>>(cache));
mcimadamore@341 1990 }
mcimadamore@341 1991 MethodSymbol impl = cache.get(origin);
mcimadamore@341 1992 if (impl == null) {
mcimadamore@341 1993 for (Type t = origin.type; t.tag == CLASS || t.tag == TYPEVAR; t = types.supertype(t)) {
mcimadamore@341 1994 while (t.tag == TYPEVAR)
mcimadamore@341 1995 t = t.getUpperBound();
mcimadamore@341 1996 TypeSymbol c = t.tsym;
mcimadamore@341 1997 for (Scope.Entry e = c.members().lookup(ms.name);
mcimadamore@341 1998 e.scope != null;
mcimadamore@341 1999 e = e.next()) {
mcimadamore@341 2000 if (e.sym.kind == Kinds.MTH) {
mcimadamore@341 2001 MethodSymbol m = (MethodSymbol) e.sym;
mcimadamore@341 2002 if (m.overrides(ms, origin, types, checkResult) &&
mcimadamore@341 2003 (m.flags() & SYNTHETIC) == 0) {
mcimadamore@341 2004 impl = m;
mcimadamore@341 2005 cache.put(origin, m);
mcimadamore@341 2006 return impl;
mcimadamore@341 2007 }
mcimadamore@341 2008 }
mcimadamore@341 2009 }
mcimadamore@341 2010 }
mcimadamore@341 2011 }
mcimadamore@341 2012 return impl;
mcimadamore@341 2013 }
mcimadamore@341 2014
duke@1 2015 /**
duke@1 2016 * Does t have the same arguments as s? It is assumed that both
duke@1 2017 * types are (possibly polymorphic) method types. Monomorphic
duke@1 2018 * method types "have the same arguments", if their argument lists
duke@1 2019 * are equal. Polymorphic method types "have the same arguments",
duke@1 2020 * if they have the same arguments after renaming all type
duke@1 2021 * variables of one to corresponding type variables in the other,
duke@1 2022 * where correspondence is by position in the type parameter list.
duke@1 2023 */
duke@1 2024 public boolean hasSameArgs(Type t, Type s) {
duke@1 2025 return hasSameArgs.visit(t, s);
duke@1 2026 }
duke@1 2027 // where
duke@1 2028 private TypeRelation hasSameArgs = new TypeRelation() {
duke@1 2029
duke@1 2030 public Boolean visitType(Type t, Type s) {
duke@1 2031 throw new AssertionError();
duke@1 2032 }
duke@1 2033
duke@1 2034 @Override
duke@1 2035 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 2036 return s.tag == METHOD
duke@1 2037 && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
duke@1 2038 }
duke@1 2039
duke@1 2040 @Override
duke@1 2041 public Boolean visitForAll(ForAll t, Type s) {
duke@1 2042 if (s.tag != FORALL)
duke@1 2043 return false;
duke@1 2044
duke@1 2045 ForAll forAll = (ForAll)s;
duke@1 2046 return hasSameBounds(t, forAll)
duke@1 2047 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 2048 }
duke@1 2049
duke@1 2050 @Override
duke@1 2051 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 2052 return false;
duke@1 2053 }
duke@1 2054 };
duke@1 2055 // </editor-fold>
duke@1 2056
duke@1 2057 // <editor-fold defaultstate="collapsed" desc="subst">
duke@1 2058 public List<Type> subst(List<Type> ts,
duke@1 2059 List<Type> from,
duke@1 2060 List<Type> to) {
duke@1 2061 return new Subst(from, to).subst(ts);
duke@1 2062 }
duke@1 2063
duke@1 2064 /**
duke@1 2065 * Substitute all occurrences of a type in `from' with the
duke@1 2066 * corresponding type in `to' in 't'. Match lists `from' and `to'
duke@1 2067 * from the right: If lists have different length, discard leading
duke@1 2068 * elements of the longer list.
duke@1 2069 */
duke@1 2070 public Type subst(Type t, List<Type> from, List<Type> to) {
duke@1 2071 return new Subst(from, to).subst(t);
duke@1 2072 }
duke@1 2073
duke@1 2074 private class Subst extends UnaryVisitor<Type> {
duke@1 2075 List<Type> from;
duke@1 2076 List<Type> to;
duke@1 2077
duke@1 2078 public Subst(List<Type> from, List<Type> to) {
duke@1 2079 int fromLength = from.length();
duke@1 2080 int toLength = to.length();
duke@1 2081 while (fromLength > toLength) {
duke@1 2082 fromLength--;
duke@1 2083 from = from.tail;
duke@1 2084 }
duke@1 2085 while (fromLength < toLength) {
duke@1 2086 toLength--;
duke@1 2087 to = to.tail;
duke@1 2088 }
duke@1 2089 this.from = from;
duke@1 2090 this.to = to;
duke@1 2091 }
duke@1 2092
duke@1 2093 Type subst(Type t) {
duke@1 2094 if (from.tail == null)
duke@1 2095 return t;
duke@1 2096 else
duke@1 2097 return visit(t);
mcimadamore@238 2098 }
duke@1 2099
duke@1 2100 List<Type> subst(List<Type> ts) {
duke@1 2101 if (from.tail == null)
duke@1 2102 return ts;
duke@1 2103 boolean wild = false;
duke@1 2104 if (ts.nonEmpty() && from.nonEmpty()) {
duke@1 2105 Type head1 = subst(ts.head);
duke@1 2106 List<Type> tail1 = subst(ts.tail);
duke@1 2107 if (head1 != ts.head || tail1 != ts.tail)
duke@1 2108 return tail1.prepend(head1);
duke@1 2109 }
duke@1 2110 return ts;
duke@1 2111 }
duke@1 2112
duke@1 2113 public Type visitType(Type t, Void ignored) {
duke@1 2114 return t;
duke@1 2115 }
duke@1 2116
duke@1 2117 @Override
duke@1 2118 public Type visitMethodType(MethodType t, Void ignored) {
duke@1 2119 List<Type> argtypes = subst(t.argtypes);
duke@1 2120 Type restype = subst(t.restype);
duke@1 2121 List<Type> thrown = subst(t.thrown);
duke@1 2122 if (argtypes == t.argtypes &&
duke@1 2123 restype == t.restype &&
duke@1 2124 thrown == t.thrown)
duke@1 2125 return t;
duke@1 2126 else
duke@1 2127 return new MethodType(argtypes, restype, thrown, t.tsym);
duke@1 2128 }
duke@1 2129
duke@1 2130 @Override
duke@1 2131 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 2132 for (List<Type> from = this.from, to = this.to;
duke@1 2133 from.nonEmpty();
duke@1 2134 from = from.tail, to = to.tail) {
duke@1 2135 if (t == from.head) {
duke@1 2136 return to.head.withTypeVar(t);
duke@1 2137 }
duke@1 2138 }
duke@1 2139 return t;
duke@1 2140 }
duke@1 2141
duke@1 2142 @Override
duke@1 2143 public Type visitClassType(ClassType t, Void ignored) {
duke@1 2144 if (!t.isCompound()) {
duke@1 2145 List<Type> typarams = t.getTypeArguments();
duke@1 2146 List<Type> typarams1 = subst(typarams);
duke@1 2147 Type outer = t.getEnclosingType();
duke@1 2148 Type outer1 = subst(outer);
duke@1 2149 if (typarams1 == typarams && outer1 == outer)
duke@1 2150 return t;
duke@1 2151 else
duke@1 2152 return new ClassType(outer1, typarams1, t.tsym);
duke@1 2153 } else {
duke@1 2154 Type st = subst(supertype(t));
duke@1 2155 List<Type> is = upperBounds(subst(interfaces(t)));
duke@1 2156 if (st == supertype(t) && is == interfaces(t))
duke@1 2157 return t;
duke@1 2158 else
duke@1 2159 return makeCompoundType(is.prepend(st));
duke@1 2160 }
duke@1 2161 }
duke@1 2162
duke@1 2163 @Override
duke@1 2164 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 2165 Type bound = t.type;
duke@1 2166 if (t.kind != BoundKind.UNBOUND)
duke@1 2167 bound = subst(bound);
duke@1 2168 if (bound == t.type) {
duke@1 2169 return t;
duke@1 2170 } else {
duke@1 2171 if (t.isExtendsBound() && bound.isExtendsBound())
duke@1 2172 bound = upperBound(bound);
duke@1 2173 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
duke@1 2174 }
duke@1 2175 }
duke@1 2176
duke@1 2177 @Override
duke@1 2178 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 2179 Type elemtype = subst(t.elemtype);
duke@1 2180 if (elemtype == t.elemtype)
duke@1 2181 return t;
duke@1 2182 else
duke@1 2183 return new ArrayType(upperBound(elemtype), t.tsym);
duke@1 2184 }
duke@1 2185
duke@1 2186 @Override
duke@1 2187 public Type visitForAll(ForAll t, Void ignored) {
duke@1 2188 List<Type> tvars1 = substBounds(t.tvars, from, to);
duke@1 2189 Type qtype1 = subst(t.qtype);
duke@1 2190 if (tvars1 == t.tvars && qtype1 == t.qtype) {
duke@1 2191 return t;
duke@1 2192 } else if (tvars1 == t.tvars) {
duke@1 2193 return new ForAll(tvars1, qtype1);
duke@1 2194 } else {
duke@1 2195 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
duke@1 2196 }
duke@1 2197 }
duke@1 2198
duke@1 2199 @Override
duke@1 2200 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 2201 return t;
duke@1 2202 }
duke@1 2203 }
duke@1 2204
duke@1 2205 public List<Type> substBounds(List<Type> tvars,
duke@1 2206 List<Type> from,
duke@1 2207 List<Type> to) {
duke@1 2208 if (tvars.isEmpty())
duke@1 2209 return tvars;
duke@1 2210 ListBuffer<Type> newBoundsBuf = lb();
duke@1 2211 boolean changed = false;
duke@1 2212 // calculate new bounds
duke@1 2213 for (Type t : tvars) {
duke@1 2214 TypeVar tv = (TypeVar) t;
duke@1 2215 Type bound = subst(tv.bound, from, to);
duke@1 2216 if (bound != tv.bound)
duke@1 2217 changed = true;
duke@1 2218 newBoundsBuf.append(bound);
duke@1 2219 }
duke@1 2220 if (!changed)
duke@1 2221 return tvars;
duke@1 2222 ListBuffer<Type> newTvars = lb();
duke@1 2223 // create new type variables without bounds
duke@1 2224 for (Type t : tvars) {
duke@1 2225 newTvars.append(new TypeVar(t.tsym, null, syms.botType));
duke@1 2226 }
duke@1 2227 // the new bounds should use the new type variables in place
duke@1 2228 // of the old
duke@1 2229 List<Type> newBounds = newBoundsBuf.toList();
duke@1 2230 from = tvars;
duke@1 2231 to = newTvars.toList();
duke@1 2232 for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
duke@1 2233 newBounds.head = subst(newBounds.head, from, to);
duke@1 2234 }
duke@1 2235 newBounds = newBoundsBuf.toList();
duke@1 2236 // set the bounds of new type variables to the new bounds
duke@1 2237 for (Type t : newTvars.toList()) {
duke@1 2238 TypeVar tv = (TypeVar) t;
duke@1 2239 tv.bound = newBounds.head;
duke@1 2240 newBounds = newBounds.tail;
duke@1 2241 }
duke@1 2242 return newTvars.toList();
duke@1 2243 }
duke@1 2244
duke@1 2245 public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
duke@1 2246 Type bound1 = subst(t.bound, from, to);
duke@1 2247 if (bound1 == t.bound)
duke@1 2248 return t;
mcimadamore@212 2249 else {
mcimadamore@212 2250 // create new type variable without bounds
mcimadamore@212 2251 TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
mcimadamore@212 2252 // the new bound should use the new type variable in place
mcimadamore@212 2253 // of the old
mcimadamore@212 2254 tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
mcimadamore@212 2255 return tv;
mcimadamore@212 2256 }
duke@1 2257 }
duke@1 2258 // </editor-fold>
duke@1 2259
duke@1 2260 // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
duke@1 2261 /**
duke@1 2262 * Does t have the same bounds for quantified variables as s?
duke@1 2263 */
duke@1 2264 boolean hasSameBounds(ForAll t, ForAll s) {
duke@1 2265 List<Type> l1 = t.tvars;
duke@1 2266 List<Type> l2 = s.tvars;
duke@1 2267 while (l1.nonEmpty() && l2.nonEmpty() &&
duke@1 2268 isSameType(l1.head.getUpperBound(),
duke@1 2269 subst(l2.head.getUpperBound(),
duke@1 2270 s.tvars,
duke@1 2271 t.tvars))) {
duke@1 2272 l1 = l1.tail;
duke@1 2273 l2 = l2.tail;
duke@1 2274 }
duke@1 2275 return l1.isEmpty() && l2.isEmpty();
duke@1 2276 }
duke@1 2277 // </editor-fold>
duke@1 2278
duke@1 2279 // <editor-fold defaultstate="collapsed" desc="newInstances">
duke@1 2280 /** Create new vector of type variables from list of variables
duke@1 2281 * changing all recursive bounds from old to new list.
duke@1 2282 */
duke@1 2283 public List<Type> newInstances(List<Type> tvars) {
duke@1 2284 List<Type> tvars1 = Type.map(tvars, newInstanceFun);
duke@1 2285 for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
duke@1 2286 TypeVar tv = (TypeVar) l.head;
duke@1 2287 tv.bound = subst(tv.bound, tvars, tvars1);
duke@1 2288 }
duke@1 2289 return tvars1;
duke@1 2290 }
duke@1 2291 static private Mapping newInstanceFun = new Mapping("newInstanceFun") {
duke@1 2292 public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
duke@1 2293 };
duke@1 2294 // </editor-fold>
duke@1 2295
jjg@110 2296 // <editor-fold defaultstate="collapsed" desc="createErrorType">
jjg@110 2297 public Type createErrorType(Type originalType) {
jjg@110 2298 return new ErrorType(originalType, syms.errSymbol);
jjg@110 2299 }
jjg@110 2300
jjg@110 2301 public Type createErrorType(ClassSymbol c, Type originalType) {
jjg@110 2302 return new ErrorType(c, originalType);
jjg@110 2303 }
jjg@110 2304
jjg@110 2305 public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
jjg@110 2306 return new ErrorType(name, container, originalType);
jjg@110 2307 }
jjg@110 2308 // </editor-fold>
jjg@110 2309
duke@1 2310 // <editor-fold defaultstate="collapsed" desc="rank">
duke@1 2311 /**
duke@1 2312 * The rank of a class is the length of the longest path between
duke@1 2313 * the class and java.lang.Object in the class inheritance
duke@1 2314 * graph. Undefined for all but reference types.
duke@1 2315 */
duke@1 2316 public int rank(Type t) {
duke@1 2317 switch(t.tag) {
duke@1 2318 case CLASS: {
duke@1 2319 ClassType cls = (ClassType)t;
duke@1 2320 if (cls.rank_field < 0) {
duke@1 2321 Name fullname = cls.tsym.getQualifiedName();
jjg@113 2322 if (fullname == names.java_lang_Object)
duke@1 2323 cls.rank_field = 0;
duke@1 2324 else {
duke@1 2325 int r = rank(supertype(cls));
duke@1 2326 for (List<Type> l = interfaces(cls);
duke@1 2327 l.nonEmpty();
duke@1 2328 l = l.tail) {
duke@1 2329 if (rank(l.head) > r)
duke@1 2330 r = rank(l.head);
duke@1 2331 }
duke@1 2332 cls.rank_field = r + 1;
duke@1 2333 }
duke@1 2334 }
duke@1 2335 return cls.rank_field;
duke@1 2336 }
duke@1 2337 case TYPEVAR: {
duke@1 2338 TypeVar tvar = (TypeVar)t;
duke@1 2339 if (tvar.rank_field < 0) {
duke@1 2340 int r = rank(supertype(tvar));
duke@1 2341 for (List<Type> l = interfaces(tvar);
duke@1 2342 l.nonEmpty();
duke@1 2343 l = l.tail) {
duke@1 2344 if (rank(l.head) > r) r = rank(l.head);
duke@1 2345 }
duke@1 2346 tvar.rank_field = r + 1;
duke@1 2347 }
duke@1 2348 return tvar.rank_field;
duke@1 2349 }
duke@1 2350 case ERROR:
duke@1 2351 return 0;
duke@1 2352 default:
duke@1 2353 throw new AssertionError();
duke@1 2354 }
duke@1 2355 }
duke@1 2356 // </editor-fold>
duke@1 2357
mcimadamore@121 2358 /**
mcimadamore@238 2359 * Helper method for generating a string representation of a given type
mcimadamore@121 2360 * accordingly to a given locale
mcimadamore@121 2361 */
mcimadamore@121 2362 public String toString(Type t, Locale locale) {
mcimadamore@238 2363 return Printer.createStandardPrinter(messages).visit(t, locale);
mcimadamore@121 2364 }
mcimadamore@121 2365
mcimadamore@121 2366 /**
mcimadamore@238 2367 * Helper method for generating a string representation of a given type
mcimadamore@121 2368 * accordingly to a given locale
mcimadamore@121 2369 */
mcimadamore@121 2370 public String toString(Symbol t, Locale locale) {
mcimadamore@238 2371 return Printer.createStandardPrinter(messages).visit(t, locale);
mcimadamore@121 2372 }
mcimadamore@121 2373
duke@1 2374 // <editor-fold defaultstate="collapsed" desc="toString">
duke@1 2375 /**
duke@1 2376 * This toString is slightly more descriptive than the one on Type.
mcimadamore@121 2377 *
mcimadamore@121 2378 * @deprecated Types.toString(Type t, Locale l) provides better support
mcimadamore@121 2379 * for localization
duke@1 2380 */
mcimadamore@121 2381 @Deprecated
duke@1 2382 public String toString(Type t) {
duke@1 2383 if (t.tag == FORALL) {
duke@1 2384 ForAll forAll = (ForAll)t;
duke@1 2385 return typaramsString(forAll.tvars) + forAll.qtype;
duke@1 2386 }
duke@1 2387 return "" + t;
duke@1 2388 }
duke@1 2389 // where
duke@1 2390 private String typaramsString(List<Type> tvars) {
duke@1 2391 StringBuffer s = new StringBuffer();
duke@1 2392 s.append('<');
duke@1 2393 boolean first = true;
duke@1 2394 for (Type t : tvars) {
duke@1 2395 if (!first) s.append(", ");
duke@1 2396 first = false;
duke@1 2397 appendTyparamString(((TypeVar)t), s);
duke@1 2398 }
duke@1 2399 s.append('>');
duke@1 2400 return s.toString();
duke@1 2401 }
duke@1 2402 private void appendTyparamString(TypeVar t, StringBuffer buf) {
duke@1 2403 buf.append(t);
duke@1 2404 if (t.bound == null ||
duke@1 2405 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
duke@1 2406 return;
duke@1 2407 buf.append(" extends "); // Java syntax; no need for i18n
duke@1 2408 Type bound = t.bound;
duke@1 2409 if (!bound.isCompound()) {
duke@1 2410 buf.append(bound);
duke@1 2411 } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
duke@1 2412 buf.append(supertype(t));
duke@1 2413 for (Type intf : interfaces(t)) {
duke@1 2414 buf.append('&');
duke@1 2415 buf.append(intf);
duke@1 2416 }
duke@1 2417 } else {
duke@1 2418 // No superclass was given in bounds.
duke@1 2419 // In this case, supertype is Object, erasure is first interface.
duke@1 2420 boolean first = true;
duke@1 2421 for (Type intf : interfaces(t)) {
duke@1 2422 if (!first) buf.append('&');
duke@1 2423 first = false;
duke@1 2424 buf.append(intf);
duke@1 2425 }
duke@1 2426 }
duke@1 2427 }
duke@1 2428 // </editor-fold>
duke@1 2429
duke@1 2430 // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
duke@1 2431 /**
duke@1 2432 * A cache for closures.
duke@1 2433 *
duke@1 2434 * <p>A closure is a list of all the supertypes and interfaces of
duke@1 2435 * a class or interface type, ordered by ClassSymbol.precedes
duke@1 2436 * (that is, subclasses come first, arbitrary but fixed
duke@1 2437 * otherwise).
duke@1 2438 */
duke@1 2439 private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
duke@1 2440
duke@1 2441 /**
duke@1 2442 * Returns the closure of a class or interface type.
duke@1 2443 */
duke@1 2444 public List<Type> closure(Type t) {
duke@1 2445 List<Type> cl = closureCache.get(t);
duke@1 2446 if (cl == null) {
duke@1 2447 Type st = supertype(t);
duke@1 2448 if (!t.isCompound()) {
duke@1 2449 if (st.tag == CLASS) {
duke@1 2450 cl = insert(closure(st), t);
duke@1 2451 } else if (st.tag == TYPEVAR) {
duke@1 2452 cl = closure(st).prepend(t);
duke@1 2453 } else {
duke@1 2454 cl = List.of(t);
duke@1 2455 }
duke@1 2456 } else {
duke@1 2457 cl = closure(supertype(t));
duke@1 2458 }
duke@1 2459 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
duke@1 2460 cl = union(cl, closure(l.head));
duke@1 2461 closureCache.put(t, cl);
duke@1 2462 }
duke@1 2463 return cl;
duke@1 2464 }
duke@1 2465
duke@1 2466 /**
duke@1 2467 * Insert a type in a closure
duke@1 2468 */
duke@1 2469 public List<Type> insert(List<Type> cl, Type t) {
duke@1 2470 if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
duke@1 2471 return cl.prepend(t);
duke@1 2472 } else if (cl.head.tsym.precedes(t.tsym, this)) {
duke@1 2473 return insert(cl.tail, t).prepend(cl.head);
duke@1 2474 } else {
duke@1 2475 return cl;
duke@1 2476 }
duke@1 2477 }
duke@1 2478
duke@1 2479 /**
duke@1 2480 * Form the union of two closures
duke@1 2481 */
duke@1 2482 public List<Type> union(List<Type> cl1, List<Type> cl2) {
duke@1 2483 if (cl1.isEmpty()) {
duke@1 2484 return cl2;
duke@1 2485 } else if (cl2.isEmpty()) {
duke@1 2486 return cl1;
duke@1 2487 } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
duke@1 2488 return union(cl1.tail, cl2).prepend(cl1.head);
duke@1 2489 } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
duke@1 2490 return union(cl1, cl2.tail).prepend(cl2.head);
duke@1 2491 } else {
duke@1 2492 return union(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 2493 }
duke@1 2494 }
duke@1 2495
duke@1 2496 /**
duke@1 2497 * Intersect two closures
duke@1 2498 */
duke@1 2499 public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
duke@1 2500 if (cl1 == cl2)
duke@1 2501 return cl1;
duke@1 2502 if (cl1.isEmpty() || cl2.isEmpty())
duke@1 2503 return List.nil();
duke@1 2504 if (cl1.head.tsym.precedes(cl2.head.tsym, this))
duke@1 2505 return intersect(cl1.tail, cl2);
duke@1 2506 if (cl2.head.tsym.precedes(cl1.head.tsym, this))
duke@1 2507 return intersect(cl1, cl2.tail);
duke@1 2508 if (isSameType(cl1.head, cl2.head))
duke@1 2509 return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 2510 if (cl1.head.tsym == cl2.head.tsym &&
duke@1 2511 cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
duke@1 2512 if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
duke@1 2513 Type merge = merge(cl1.head,cl2.head);
duke@1 2514 return intersect(cl1.tail, cl2.tail).prepend(merge);
duke@1 2515 }
duke@1 2516 if (cl1.head.isRaw() || cl2.head.isRaw())
duke@1 2517 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
duke@1 2518 }
duke@1 2519 return intersect(cl1.tail, cl2.tail);
duke@1 2520 }
duke@1 2521 // where
duke@1 2522 class TypePair {
duke@1 2523 final Type t1;
duke@1 2524 final Type t2;
duke@1 2525 TypePair(Type t1, Type t2) {
duke@1 2526 this.t1 = t1;
duke@1 2527 this.t2 = t2;
duke@1 2528 }
duke@1 2529 @Override
duke@1 2530 public int hashCode() {
jjg@507 2531 return 127 * Types.hashCode(t1) + Types.hashCode(t2);
duke@1 2532 }
duke@1 2533 @Override
duke@1 2534 public boolean equals(Object obj) {
duke@1 2535 if (!(obj instanceof TypePair))
duke@1 2536 return false;
duke@1 2537 TypePair typePair = (TypePair)obj;
duke@1 2538 return isSameType(t1, typePair.t1)
duke@1 2539 && isSameType(t2, typePair.t2);
duke@1 2540 }
duke@1 2541 }
duke@1 2542 Set<TypePair> mergeCache = new HashSet<TypePair>();
duke@1 2543 private Type merge(Type c1, Type c2) {
duke@1 2544 ClassType class1 = (ClassType) c1;
duke@1 2545 List<Type> act1 = class1.getTypeArguments();
duke@1 2546 ClassType class2 = (ClassType) c2;
duke@1 2547 List<Type> act2 = class2.getTypeArguments();
duke@1 2548 ListBuffer<Type> merged = new ListBuffer<Type>();
duke@1 2549 List<Type> typarams = class1.tsym.type.getTypeArguments();
duke@1 2550
duke@1 2551 while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
duke@1 2552 if (containsType(act1.head, act2.head)) {
duke@1 2553 merged.append(act1.head);
duke@1 2554 } else if (containsType(act2.head, act1.head)) {
duke@1 2555 merged.append(act2.head);
duke@1 2556 } else {
duke@1 2557 TypePair pair = new TypePair(c1, c2);
duke@1 2558 Type m;
duke@1 2559 if (mergeCache.add(pair)) {
duke@1 2560 m = new WildcardType(lub(upperBound(act1.head),
duke@1 2561 upperBound(act2.head)),
duke@1 2562 BoundKind.EXTENDS,
duke@1 2563 syms.boundClass);
duke@1 2564 mergeCache.remove(pair);
duke@1 2565 } else {
duke@1 2566 m = new WildcardType(syms.objectType,
duke@1 2567 BoundKind.UNBOUND,
duke@1 2568 syms.boundClass);
duke@1 2569 }
duke@1 2570 merged.append(m.withTypeVar(typarams.head));
duke@1 2571 }
duke@1 2572 act1 = act1.tail;
duke@1 2573 act2 = act2.tail;
duke@1 2574 typarams = typarams.tail;
duke@1 2575 }
duke@1 2576 assert(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
duke@1 2577 return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
duke@1 2578 }
duke@1 2579
duke@1 2580 /**
duke@1 2581 * Return the minimum type of a closure, a compound type if no
duke@1 2582 * unique minimum exists.
duke@1 2583 */
duke@1 2584 private Type compoundMin(List<Type> cl) {
duke@1 2585 if (cl.isEmpty()) return syms.objectType;
duke@1 2586 List<Type> compound = closureMin(cl);
duke@1 2587 if (compound.isEmpty())
duke@1 2588 return null;
duke@1 2589 else if (compound.tail.isEmpty())
duke@1 2590 return compound.head;
duke@1 2591 else
duke@1 2592 return makeCompoundType(compound);
duke@1 2593 }
duke@1 2594
duke@1 2595 /**
duke@1 2596 * Return the minimum types of a closure, suitable for computing
duke@1 2597 * compoundMin or glb.
duke@1 2598 */
duke@1 2599 private List<Type> closureMin(List<Type> cl) {
duke@1 2600 ListBuffer<Type> classes = lb();
duke@1 2601 ListBuffer<Type> interfaces = lb();
duke@1 2602 while (!cl.isEmpty()) {
duke@1 2603 Type current = cl.head;
duke@1 2604 if (current.isInterface())
duke@1 2605 interfaces.append(current);
duke@1 2606 else
duke@1 2607 classes.append(current);
duke@1 2608 ListBuffer<Type> candidates = lb();
duke@1 2609 for (Type t : cl.tail) {
duke@1 2610 if (!isSubtypeNoCapture(current, t))
duke@1 2611 candidates.append(t);
duke@1 2612 }
duke@1 2613 cl = candidates.toList();
duke@1 2614 }
duke@1 2615 return classes.appendList(interfaces).toList();
duke@1 2616 }
duke@1 2617
duke@1 2618 /**
duke@1 2619 * Return the least upper bound of pair of types. if the lub does
duke@1 2620 * not exist return null.
duke@1 2621 */
duke@1 2622 public Type lub(Type t1, Type t2) {
duke@1 2623 return lub(List.of(t1, t2));
duke@1 2624 }
duke@1 2625
duke@1 2626 /**
duke@1 2627 * Return the least upper bound (lub) of set of types. If the lub
duke@1 2628 * does not exist return the type of null (bottom).
duke@1 2629 */
duke@1 2630 public Type lub(List<Type> ts) {
duke@1 2631 final int ARRAY_BOUND = 1;
duke@1 2632 final int CLASS_BOUND = 2;
duke@1 2633 int boundkind = 0;
duke@1 2634 for (Type t : ts) {
duke@1 2635 switch (t.tag) {
duke@1 2636 case CLASS:
duke@1 2637 boundkind |= CLASS_BOUND;
duke@1 2638 break;
duke@1 2639 case ARRAY:
duke@1 2640 boundkind |= ARRAY_BOUND;
duke@1 2641 break;
duke@1 2642 case TYPEVAR:
duke@1 2643 do {
duke@1 2644 t = t.getUpperBound();
duke@1 2645 } while (t.tag == TYPEVAR);
duke@1 2646 if (t.tag == ARRAY) {
duke@1 2647 boundkind |= ARRAY_BOUND;
duke@1 2648 } else {
duke@1 2649 boundkind |= CLASS_BOUND;
duke@1 2650 }
duke@1 2651 break;
duke@1 2652 default:
duke@1 2653 if (t.isPrimitive())
mcimadamore@5 2654 return syms.errType;
duke@1 2655 }
duke@1 2656 }
duke@1 2657 switch (boundkind) {
duke@1 2658 case 0:
duke@1 2659 return syms.botType;
duke@1 2660
duke@1 2661 case ARRAY_BOUND:
duke@1 2662 // calculate lub(A[], B[])
duke@1 2663 List<Type> elements = Type.map(ts, elemTypeFun);
duke@1 2664 for (Type t : elements) {
duke@1 2665 if (t.isPrimitive()) {
duke@1 2666 // if a primitive type is found, then return
duke@1 2667 // arraySuperType unless all the types are the
duke@1 2668 // same
duke@1 2669 Type first = ts.head;
duke@1 2670 for (Type s : ts.tail) {
duke@1 2671 if (!isSameType(first, s)) {
duke@1 2672 // lub(int[], B[]) is Cloneable & Serializable
duke@1 2673 return arraySuperType();
duke@1 2674 }
duke@1 2675 }
duke@1 2676 // all the array types are the same, return one
duke@1 2677 // lub(int[], int[]) is int[]
duke@1 2678 return first;
duke@1 2679 }
duke@1 2680 }
duke@1 2681 // lub(A[], B[]) is lub(A, B)[]
duke@1 2682 return new ArrayType(lub(elements), syms.arrayClass);
duke@1 2683
duke@1 2684 case CLASS_BOUND:
duke@1 2685 // calculate lub(A, B)
duke@1 2686 while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
duke@1 2687 ts = ts.tail;
duke@1 2688 assert !ts.isEmpty();
duke@1 2689 List<Type> cl = closure(ts.head);
duke@1 2690 for (Type t : ts.tail) {
duke@1 2691 if (t.tag == CLASS || t.tag == TYPEVAR)
duke@1 2692 cl = intersect(cl, closure(t));
duke@1 2693 }
duke@1 2694 return compoundMin(cl);
duke@1 2695
duke@1 2696 default:
duke@1 2697 // calculate lub(A, B[])
duke@1 2698 List<Type> classes = List.of(arraySuperType());
duke@1 2699 for (Type t : ts) {
duke@1 2700 if (t.tag != ARRAY) // Filter out any arrays
duke@1 2701 classes = classes.prepend(t);
duke@1 2702 }
duke@1 2703 // lub(A, B[]) is lub(A, arraySuperType)
duke@1 2704 return lub(classes);
duke@1 2705 }
duke@1 2706 }
duke@1 2707 // where
duke@1 2708 private Type arraySuperType = null;
duke@1 2709 private Type arraySuperType() {
duke@1 2710 // initialized lazily to avoid problems during compiler startup
duke@1 2711 if (arraySuperType == null) {
duke@1 2712 synchronized (this) {
duke@1 2713 if (arraySuperType == null) {
duke@1 2714 // JLS 10.8: all arrays implement Cloneable and Serializable.
duke@1 2715 arraySuperType = makeCompoundType(List.of(syms.serializableType,
duke@1 2716 syms.cloneableType),
duke@1 2717 syms.objectType);
duke@1 2718 }
duke@1 2719 }
duke@1 2720 }
duke@1 2721 return arraySuperType;
duke@1 2722 }
duke@1 2723 // </editor-fold>
duke@1 2724
duke@1 2725 // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
mcimadamore@210 2726 public Type glb(List<Type> ts) {
mcimadamore@210 2727 Type t1 = ts.head;
mcimadamore@210 2728 for (Type t2 : ts.tail) {
mcimadamore@210 2729 if (t1.isErroneous())
mcimadamore@210 2730 return t1;
mcimadamore@210 2731 t1 = glb(t1, t2);
mcimadamore@210 2732 }
mcimadamore@210 2733 return t1;
mcimadamore@210 2734 }
mcimadamore@210 2735 //where
duke@1 2736 public Type glb(Type t, Type s) {
duke@1 2737 if (s == null)
duke@1 2738 return t;
duke@1 2739 else if (isSubtypeNoCapture(t, s))
duke@1 2740 return t;
duke@1 2741 else if (isSubtypeNoCapture(s, t))
duke@1 2742 return s;
duke@1 2743
duke@1 2744 List<Type> closure = union(closure(t), closure(s));
duke@1 2745 List<Type> bounds = closureMin(closure);
duke@1 2746
duke@1 2747 if (bounds.isEmpty()) { // length == 0
duke@1 2748 return syms.objectType;
duke@1 2749 } else if (bounds.tail.isEmpty()) { // length == 1
duke@1 2750 return bounds.head;
duke@1 2751 } else { // length > 1
duke@1 2752 int classCount = 0;
duke@1 2753 for (Type bound : bounds)
duke@1 2754 if (!bound.isInterface())
duke@1 2755 classCount++;
duke@1 2756 if (classCount > 1)
jjg@110 2757 return createErrorType(t);
duke@1 2758 }
duke@1 2759 return makeCompoundType(bounds);
duke@1 2760 }
duke@1 2761 // </editor-fold>
duke@1 2762
duke@1 2763 // <editor-fold defaultstate="collapsed" desc="hashCode">
duke@1 2764 /**
duke@1 2765 * Compute a hash code on a type.
duke@1 2766 */
duke@1 2767 public static int hashCode(Type t) {
duke@1 2768 return hashCode.visit(t);
duke@1 2769 }
duke@1 2770 // where
duke@1 2771 private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
duke@1 2772
duke@1 2773 public Integer visitType(Type t, Void ignored) {
duke@1 2774 return t.tag;
duke@1 2775 }
duke@1 2776
duke@1 2777 @Override
duke@1 2778 public Integer visitClassType(ClassType t, Void ignored) {
duke@1 2779 int result = visit(t.getEnclosingType());
duke@1 2780 result *= 127;
duke@1 2781 result += t.tsym.flatName().hashCode();
duke@1 2782 for (Type s : t.getTypeArguments()) {
duke@1 2783 result *= 127;
duke@1 2784 result += visit(s);
duke@1 2785 }
duke@1 2786 return result;
duke@1 2787 }
duke@1 2788
duke@1 2789 @Override
duke@1 2790 public Integer visitWildcardType(WildcardType t, Void ignored) {
duke@1 2791 int result = t.kind.hashCode();
duke@1 2792 if (t.type != null) {
duke@1 2793 result *= 127;
duke@1 2794 result += visit(t.type);
duke@1 2795 }
duke@1 2796 return result;
duke@1 2797 }
duke@1 2798
duke@1 2799 @Override
duke@1 2800 public Integer visitArrayType(ArrayType t, Void ignored) {
duke@1 2801 return visit(t.elemtype) + 12;
duke@1 2802 }
duke@1 2803
duke@1 2804 @Override
duke@1 2805 public Integer visitTypeVar(TypeVar t, Void ignored) {
duke@1 2806 return System.identityHashCode(t.tsym);
duke@1 2807 }
duke@1 2808
duke@1 2809 @Override
duke@1 2810 public Integer visitUndetVar(UndetVar t, Void ignored) {
duke@1 2811 return System.identityHashCode(t);
duke@1 2812 }
duke@1 2813
duke@1 2814 @Override
duke@1 2815 public Integer visitErrorType(ErrorType t, Void ignored) {
duke@1 2816 return 0;
duke@1 2817 }
duke@1 2818 };
duke@1 2819 // </editor-fold>
duke@1 2820
duke@1 2821 // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
duke@1 2822 /**
duke@1 2823 * Does t have a result that is a subtype of the result type of s,
duke@1 2824 * suitable for covariant returns? It is assumed that both types
duke@1 2825 * are (possibly polymorphic) method types. Monomorphic method
duke@1 2826 * types are handled in the obvious way. Polymorphic method types
duke@1 2827 * require renaming all type variables of one to corresponding
duke@1 2828 * type variables in the other, where correspondence is by
duke@1 2829 * position in the type parameter list. */
duke@1 2830 public boolean resultSubtype(Type t, Type s, Warner warner) {
duke@1 2831 List<Type> tvars = t.getTypeArguments();
duke@1 2832 List<Type> svars = s.getTypeArguments();
duke@1 2833 Type tres = t.getReturnType();
duke@1 2834 Type sres = subst(s.getReturnType(), svars, tvars);
duke@1 2835 return covariantReturnType(tres, sres, warner);
duke@1 2836 }
duke@1 2837
duke@1 2838 /**
duke@1 2839 * Return-Type-Substitutable.
duke@1 2840 * @see <a href="http://java.sun.com/docs/books/jls/">The Java
duke@1 2841 * Language Specification, Third Ed. (8.4.5)</a>
duke@1 2842 */
duke@1 2843 public boolean returnTypeSubstitutable(Type r1, Type r2) {
duke@1 2844 if (hasSameArgs(r1, r2))
tbell@202 2845 return resultSubtype(r1, r2, Warner.noWarnings);
duke@1 2846 else
duke@1 2847 return covariantReturnType(r1.getReturnType(),
tbell@202 2848 erasure(r2.getReturnType()),
tbell@202 2849 Warner.noWarnings);
tbell@202 2850 }
tbell@202 2851
tbell@202 2852 public boolean returnTypeSubstitutable(Type r1,
tbell@202 2853 Type r2, Type r2res,
tbell@202 2854 Warner warner) {
tbell@202 2855 if (isSameType(r1.getReturnType(), r2res))
tbell@202 2856 return true;
tbell@202 2857 if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
tbell@202 2858 return false;
tbell@202 2859
tbell@202 2860 if (hasSameArgs(r1, r2))
tbell@202 2861 return covariantReturnType(r1.getReturnType(), r2res, warner);
tbell@202 2862 if (!source.allowCovariantReturns())
tbell@202 2863 return false;
tbell@202 2864 if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
tbell@202 2865 return true;
tbell@202 2866 if (!isSubtype(r1.getReturnType(), erasure(r2res)))
tbell@202 2867 return false;
tbell@202 2868 warner.warnUnchecked();
tbell@202 2869 return true;
duke@1 2870 }
duke@1 2871
duke@1 2872 /**
duke@1 2873 * Is t an appropriate return type in an overrider for a
duke@1 2874 * method that returns s?
duke@1 2875 */
duke@1 2876 public boolean covariantReturnType(Type t, Type s, Warner warner) {
tbell@202 2877 return
tbell@202 2878 isSameType(t, s) ||
tbell@202 2879 source.allowCovariantReturns() &&
duke@1 2880 !t.isPrimitive() &&
tbell@202 2881 !s.isPrimitive() &&
tbell@202 2882 isAssignable(t, s, warner);
duke@1 2883 }
duke@1 2884 // </editor-fold>
duke@1 2885
duke@1 2886 // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
duke@1 2887 /**
duke@1 2888 * Return the class that boxes the given primitive.
duke@1 2889 */
duke@1 2890 public ClassSymbol boxedClass(Type t) {
duke@1 2891 return reader.enterClass(syms.boxedName[t.tag]);
duke@1 2892 }
duke@1 2893
duke@1 2894 /**
duke@1 2895 * Return the primitive type corresponding to a boxed type.
duke@1 2896 */
duke@1 2897 public Type unboxedType(Type t) {
duke@1 2898 if (allowBoxing) {
duke@1 2899 for (int i=0; i<syms.boxedName.length; i++) {
duke@1 2900 Name box = syms.boxedName[i];
duke@1 2901 if (box != null &&
duke@1 2902 asSuper(t, reader.enterClass(box)) != null)
duke@1 2903 return syms.typeOfTag[i];
duke@1 2904 }
duke@1 2905 }
duke@1 2906 return Type.noType;
duke@1 2907 }
duke@1 2908 // </editor-fold>
duke@1 2909
duke@1 2910 // <editor-fold defaultstate="collapsed" desc="Capture conversion">
duke@1 2911 /*
duke@1 2912 * JLS 3rd Ed. 5.1.10 Capture Conversion:
duke@1 2913 *
duke@1 2914 * Let G name a generic type declaration with n formal type
duke@1 2915 * parameters A1 ... An with corresponding bounds U1 ... Un. There
duke@1 2916 * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
duke@1 2917 * where, for 1 <= i <= n:
duke@1 2918 *
duke@1 2919 * + If Ti is a wildcard type argument (4.5.1) of the form ? then
duke@1 2920 * Si is a fresh type variable whose upper bound is
duke@1 2921 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
duke@1 2922 * type.
duke@1 2923 *
duke@1 2924 * + If Ti is a wildcard type argument of the form ? extends Bi,
duke@1 2925 * then Si is a fresh type variable whose upper bound is
duke@1 2926 * glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
duke@1 2927 * the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
duke@1 2928 * a compile-time error if for any two classes (not interfaces)
duke@1 2929 * Vi and Vj,Vi is not a subclass of Vj or vice versa.
duke@1 2930 *
duke@1 2931 * + If Ti is a wildcard type argument of the form ? super Bi,
duke@1 2932 * then Si is a fresh type variable whose upper bound is
duke@1 2933 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
duke@1 2934 *
duke@1 2935 * + Otherwise, Si = Ti.
duke@1 2936 *
duke@1 2937 * Capture conversion on any type other than a parameterized type
duke@1 2938 * (4.5) acts as an identity conversion (5.1.1). Capture
duke@1 2939 * conversions never require a special action at run time and
duke@1 2940 * therefore never throw an exception at run time.
duke@1 2941 *
duke@1 2942 * Capture conversion is not applied recursively.
duke@1 2943 */
duke@1 2944 /**
duke@1 2945 * Capture conversion as specified by JLS 3rd Ed.
duke@1 2946 */
mcimadamore@299 2947
mcimadamore@299 2948 public List<Type> capture(List<Type> ts) {
mcimadamore@299 2949 List<Type> buf = List.nil();
mcimadamore@299 2950 for (Type t : ts) {
mcimadamore@299 2951 buf = buf.prepend(capture(t));
mcimadamore@299 2952 }
mcimadamore@299 2953 return buf.reverse();
mcimadamore@299 2954 }
duke@1 2955 public Type capture(Type t) {
duke@1 2956 if (t.tag != CLASS)
duke@1 2957 return t;
mcimadamore@637 2958 if (t.getEnclosingType() != Type.noType) {
mcimadamore@637 2959 Type capturedEncl = capture(t.getEnclosingType());
mcimadamore@637 2960 if (capturedEncl != t.getEnclosingType()) {
mcimadamore@637 2961 Type type1 = memberType(capturedEncl, t.tsym);
mcimadamore@637 2962 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
mcimadamore@637 2963 }
mcimadamore@637 2964 }
duke@1 2965 ClassType cls = (ClassType)t;
duke@1 2966 if (cls.isRaw() || !cls.isParameterized())
duke@1 2967 return cls;
duke@1 2968
duke@1 2969 ClassType G = (ClassType)cls.asElement().asType();
duke@1 2970 List<Type> A = G.getTypeArguments();
duke@1 2971 List<Type> T = cls.getTypeArguments();
duke@1 2972 List<Type> S = freshTypeVariables(T);
duke@1 2973
duke@1 2974 List<Type> currentA = A;
duke@1 2975 List<Type> currentT = T;
duke@1 2976 List<Type> currentS = S;
duke@1 2977 boolean captured = false;
duke@1 2978 while (!currentA.isEmpty() &&
duke@1 2979 !currentT.isEmpty() &&
duke@1 2980 !currentS.isEmpty()) {
duke@1 2981 if (currentS.head != currentT.head) {
duke@1 2982 captured = true;
duke@1 2983 WildcardType Ti = (WildcardType)currentT.head;
duke@1 2984 Type Ui = currentA.head.getUpperBound();
duke@1 2985 CapturedType Si = (CapturedType)currentS.head;
duke@1 2986 if (Ui == null)
duke@1 2987 Ui = syms.objectType;
duke@1 2988 switch (Ti.kind) {
duke@1 2989 case UNBOUND:
duke@1 2990 Si.bound = subst(Ui, A, S);
duke@1 2991 Si.lower = syms.botType;
duke@1 2992 break;
duke@1 2993 case EXTENDS:
duke@1 2994 Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
duke@1 2995 Si.lower = syms.botType;
duke@1 2996 break;
duke@1 2997 case SUPER:
duke@1 2998 Si.bound = subst(Ui, A, S);
duke@1 2999 Si.lower = Ti.getSuperBound();
duke@1 3000 break;
duke@1 3001 }
duke@1 3002 if (Si.bound == Si.lower)
duke@1 3003 currentS.head = Si.bound;
duke@1 3004 }
duke@1 3005 currentA = currentA.tail;
duke@1 3006 currentT = currentT.tail;
duke@1 3007 currentS = currentS.tail;
duke@1 3008 }
duke@1 3009 if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
duke@1 3010 return erasure(t); // some "rare" type involved
duke@1 3011
duke@1 3012 if (captured)
duke@1 3013 return new ClassType(cls.getEnclosingType(), S, cls.tsym);
duke@1 3014 else
duke@1 3015 return t;
duke@1 3016 }
duke@1 3017 // where
mcimadamore@238 3018 public List<Type> freshTypeVariables(List<Type> types) {
duke@1 3019 ListBuffer<Type> result = lb();
duke@1 3020 for (Type t : types) {
duke@1 3021 if (t.tag == WILDCARD) {
duke@1 3022 Type bound = ((WildcardType)t).getExtendsBound();
duke@1 3023 if (bound == null)
duke@1 3024 bound = syms.objectType;
duke@1 3025 result.append(new CapturedType(capturedName,
duke@1 3026 syms.noSymbol,
duke@1 3027 bound,
duke@1 3028 syms.botType,
duke@1 3029 (WildcardType)t));
duke@1 3030 } else {
duke@1 3031 result.append(t);
duke@1 3032 }
duke@1 3033 }
duke@1 3034 return result.toList();
duke@1 3035 }
duke@1 3036 // </editor-fold>
duke@1 3037
duke@1 3038 // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
duke@1 3039 private List<Type> upperBounds(List<Type> ss) {
duke@1 3040 if (ss.isEmpty()) return ss;
duke@1 3041 Type head = upperBound(ss.head);
duke@1 3042 List<Type> tail = upperBounds(ss.tail);
duke@1 3043 if (head != ss.head || tail != ss.tail)
duke@1 3044 return tail.prepend(head);
duke@1 3045 else
duke@1 3046 return ss;
duke@1 3047 }
duke@1 3048
duke@1 3049 private boolean sideCast(Type from, Type to, Warner warn) {
duke@1 3050 // We are casting from type $from$ to type $to$, which are
duke@1 3051 // non-final unrelated types. This method
duke@1 3052 // tries to reject a cast by transferring type parameters
duke@1 3053 // from $to$ to $from$ by common superinterfaces.
duke@1 3054 boolean reverse = false;
duke@1 3055 Type target = to;
duke@1 3056 if ((to.tsym.flags() & INTERFACE) == 0) {
duke@1 3057 assert (from.tsym.flags() & INTERFACE) != 0;
duke@1 3058 reverse = true;
duke@1 3059 to = from;
duke@1 3060 from = target;
duke@1 3061 }
duke@1 3062 List<Type> commonSupers = superClosure(to, erasure(from));
duke@1 3063 boolean giveWarning = commonSupers.isEmpty();
duke@1 3064 // The arguments to the supers could be unified here to
duke@1 3065 // get a more accurate analysis
duke@1 3066 while (commonSupers.nonEmpty()) {
duke@1 3067 Type t1 = asSuper(from, commonSupers.head.tsym);
duke@1 3068 Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
duke@1 3069 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 3070 return false;
duke@1 3071 giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
duke@1 3072 commonSupers = commonSupers.tail;
duke@1 3073 }
mcimadamore@187 3074 if (giveWarning && !isReifiable(reverse ? from : to))
duke@1 3075 warn.warnUnchecked();
duke@1 3076 if (!source.allowCovariantReturns())
duke@1 3077 // reject if there is a common method signature with
duke@1 3078 // incompatible return types.
duke@1 3079 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 3080 return true;
duke@1 3081 }
duke@1 3082
duke@1 3083 private boolean sideCastFinal(Type from, Type to, Warner warn) {
duke@1 3084 // We are casting from type $from$ to type $to$, which are
duke@1 3085 // unrelated types one of which is final and the other of
duke@1 3086 // which is an interface. This method
duke@1 3087 // tries to reject a cast by transferring type parameters
duke@1 3088 // from the final class to the interface.
duke@1 3089 boolean reverse = false;
duke@1 3090 Type target = to;
duke@1 3091 if ((to.tsym.flags() & INTERFACE) == 0) {
duke@1 3092 assert (from.tsym.flags() & INTERFACE) != 0;
duke@1 3093 reverse = true;
duke@1 3094 to = from;
duke@1 3095 from = target;
duke@1 3096 }
duke@1 3097 assert (from.tsym.flags() & FINAL) != 0;
duke@1 3098 Type t1 = asSuper(from, to.tsym);
duke@1 3099 if (t1 == null) return false;
duke@1 3100 Type t2 = to;
duke@1 3101 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 3102 return false;
duke@1 3103 if (!source.allowCovariantReturns())
duke@1 3104 // reject if there is a common method signature with
duke@1 3105 // incompatible return types.
duke@1 3106 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 3107 if (!isReifiable(target) &&
duke@1 3108 (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
duke@1 3109 warn.warnUnchecked();
duke@1 3110 return true;
duke@1 3111 }
duke@1 3112
duke@1 3113 private boolean giveWarning(Type from, Type to) {
mcimadamore@235 3114 Type subFrom = asSub(from, to.tsym);
mcimadamore@235 3115 return to.isParameterized() &&
mcimadamore@235 3116 (!(isUnbounded(to) ||
mcimadamore@235 3117 isSubtype(from, to) ||
mcimadamore@235 3118 ((subFrom != null) && isSameType(subFrom, to))));
duke@1 3119 }
duke@1 3120
duke@1 3121 private List<Type> superClosure(Type t, Type s) {
duke@1 3122 List<Type> cl = List.nil();
duke@1 3123 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 3124 if (isSubtype(s, erasure(l.head))) {
duke@1 3125 cl = insert(cl, l.head);
duke@1 3126 } else {
duke@1 3127 cl = union(cl, superClosure(l.head, s));
duke@1 3128 }
duke@1 3129 }
duke@1 3130 return cl;
duke@1 3131 }
duke@1 3132
duke@1 3133 private boolean containsTypeEquivalent(Type t, Type s) {
duke@1 3134 return
duke@1 3135 isSameType(t, s) || // shortcut
duke@1 3136 containsType(t, s) && containsType(s, t);
duke@1 3137 }
duke@1 3138
mcimadamore@138 3139 // <editor-fold defaultstate="collapsed" desc="adapt">
duke@1 3140 /**
duke@1 3141 * Adapt a type by computing a substitution which maps a source
duke@1 3142 * type to a target type.
duke@1 3143 *
duke@1 3144 * @param source the source type
duke@1 3145 * @param target the target type
duke@1 3146 * @param from the type variables of the computed substitution
duke@1 3147 * @param to the types of the computed substitution.
duke@1 3148 */
duke@1 3149 public void adapt(Type source,
duke@1 3150 Type target,
duke@1 3151 ListBuffer<Type> from,
duke@1 3152 ListBuffer<Type> to) throws AdaptFailure {
mcimadamore@138 3153 new Adapter(from, to).adapt(source, target);
mcimadamore@138 3154 }
mcimadamore@138 3155
mcimadamore@138 3156 class Adapter extends SimpleVisitor<Void, Type> {
mcimadamore@138 3157
mcimadamore@138 3158 ListBuffer<Type> from;
mcimadamore@138 3159 ListBuffer<Type> to;
mcimadamore@138 3160 Map<Symbol,Type> mapping;
mcimadamore@138 3161
mcimadamore@138 3162 Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
mcimadamore@138 3163 this.from = from;
mcimadamore@138 3164 this.to = to;
mcimadamore@138 3165 mapping = new HashMap<Symbol,Type>();
duke@1 3166 }
mcimadamore@138 3167
mcimadamore@138 3168 public void adapt(Type source, Type target) throws AdaptFailure {
mcimadamore@138 3169 visit(source, target);
mcimadamore@138 3170 List<Type> fromList = from.toList();
mcimadamore@138 3171 List<Type> toList = to.toList();
mcimadamore@138 3172 while (!fromList.isEmpty()) {
mcimadamore@138 3173 Type val = mapping.get(fromList.head.tsym);
mcimadamore@138 3174 if (toList.head != val)
mcimadamore@138 3175 toList.head = val;
mcimadamore@138 3176 fromList = fromList.tail;
mcimadamore@138 3177 toList = toList.tail;
mcimadamore@138 3178 }
mcimadamore@138 3179 }
mcimadamore@138 3180
mcimadamore@138 3181 @Override
mcimadamore@138 3182 public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
mcimadamore@138 3183 if (target.tag == CLASS)
mcimadamore@138 3184 adaptRecursive(source.allparams(), target.allparams());
mcimadamore@138 3185 return null;
mcimadamore@138 3186 }
mcimadamore@138 3187
mcimadamore@138 3188 @Override
mcimadamore@138 3189 public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
mcimadamore@138 3190 if (target.tag == ARRAY)
mcimadamore@138 3191 adaptRecursive(elemtype(source), elemtype(target));
mcimadamore@138 3192 return null;
mcimadamore@138 3193 }
mcimadamore@138 3194
mcimadamore@138 3195 @Override
mcimadamore@138 3196 public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
mcimadamore@138 3197 if (source.isExtendsBound())
mcimadamore@138 3198 adaptRecursive(upperBound(source), upperBound(target));
mcimadamore@138 3199 else if (source.isSuperBound())
mcimadamore@138 3200 adaptRecursive(lowerBound(source), lowerBound(target));
mcimadamore@138 3201 return null;
mcimadamore@138 3202 }
mcimadamore@138 3203
mcimadamore@138 3204 @Override
mcimadamore@138 3205 public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
mcimadamore@138 3206 // Check to see if there is
mcimadamore@138 3207 // already a mapping for $source$, in which case
mcimadamore@138 3208 // the old mapping will be merged with the new
mcimadamore@138 3209 Type val = mapping.get(source.tsym);
mcimadamore@138 3210 if (val != null) {
mcimadamore@138 3211 if (val.isSuperBound() && target.isSuperBound()) {
mcimadamore@138 3212 val = isSubtype(lowerBound(val), lowerBound(target))
mcimadamore@138 3213 ? target : val;
mcimadamore@138 3214 } else if (val.isExtendsBound() && target.isExtendsBound()) {
mcimadamore@138 3215 val = isSubtype(upperBound(val), upperBound(target))
mcimadamore@138 3216 ? val : target;
mcimadamore@138 3217 } else if (!isSameType(val, target)) {
mcimadamore@138 3218 throw new AdaptFailure();
duke@1 3219 }
mcimadamore@138 3220 } else {
mcimadamore@138 3221 val = target;
mcimadamore@138 3222 from.append(source);
mcimadamore@138 3223 to.append(target);
mcimadamore@138 3224 }
mcimadamore@138 3225 mapping.put(source.tsym, val);
mcimadamore@138 3226 return null;
mcimadamore@138 3227 }
mcimadamore@138 3228
mcimadamore@138 3229 @Override
mcimadamore@138 3230 public Void visitType(Type source, Type target) {
mcimadamore@138 3231 return null;
mcimadamore@138 3232 }
mcimadamore@138 3233
mcimadamore@138 3234 private Set<TypePair> cache = new HashSet<TypePair>();
mcimadamore@138 3235
mcimadamore@138 3236 private void adaptRecursive(Type source, Type target) {
mcimadamore@138 3237 TypePair pair = new TypePair(source, target);
mcimadamore@138 3238 if (cache.add(pair)) {
mcimadamore@138 3239 try {
mcimadamore@138 3240 visit(source, target);
mcimadamore@138 3241 } finally {
mcimadamore@138 3242 cache.remove(pair);
duke@1 3243 }
duke@1 3244 }
duke@1 3245 }
mcimadamore@138 3246
mcimadamore@138 3247 private void adaptRecursive(List<Type> source, List<Type> target) {
mcimadamore@138 3248 if (source.length() == target.length()) {
mcimadamore@138 3249 while (source.nonEmpty()) {
mcimadamore@138 3250 adaptRecursive(source.head, target.head);
mcimadamore@138 3251 source = source.tail;
mcimadamore@138 3252 target = target.tail;
mcimadamore@138 3253 }
duke@1 3254 }
duke@1 3255 }
duke@1 3256 }
duke@1 3257
mcimadamore@138 3258 public static class AdaptFailure extends RuntimeException {
mcimadamore@138 3259 static final long serialVersionUID = -7490231548272701566L;
mcimadamore@138 3260 }
mcimadamore@138 3261
duke@1 3262 private void adaptSelf(Type t,
duke@1 3263 ListBuffer<Type> from,
duke@1 3264 ListBuffer<Type> to) {
duke@1 3265 try {
duke@1 3266 //if (t.tsym.type != t)
duke@1 3267 adapt(t.tsym.type, t, from, to);
duke@1 3268 } catch (AdaptFailure ex) {
duke@1 3269 // Adapt should never fail calculating a mapping from
duke@1 3270 // t.tsym.type to t as there can be no merge problem.
duke@1 3271 throw new AssertionError(ex);
duke@1 3272 }
duke@1 3273 }
mcimadamore@138 3274 // </editor-fold>
duke@1 3275
duke@1 3276 /**
duke@1 3277 * Rewrite all type variables (universal quantifiers) in the given
duke@1 3278 * type to wildcards (existential quantifiers). This is used to
duke@1 3279 * determine if a cast is allowed. For example, if high is true
duke@1 3280 * and {@code T <: Number}, then {@code List<T>} is rewritten to
duke@1 3281 * {@code List<? extends Number>}. Since {@code List<Integer> <:
duke@1 3282 * List<? extends Number>} a {@code List<T>} can be cast to {@code
duke@1 3283 * List<Integer>} with a warning.
duke@1 3284 * @param t a type
duke@1 3285 * @param high if true return an upper bound; otherwise a lower
duke@1 3286 * bound
duke@1 3287 * @param rewriteTypeVars only rewrite captured wildcards if false;
duke@1 3288 * otherwise rewrite all type variables
duke@1 3289 * @return the type rewritten with wildcards (existential
duke@1 3290 * quantifiers) only
duke@1 3291 */
duke@1 3292 private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
mcimadamore@640 3293 return new Rewriter(high, rewriteTypeVars).visit(t);
mcimadamore@157 3294 }
mcimadamore@157 3295
mcimadamore@157 3296 class Rewriter extends UnaryVisitor<Type> {
mcimadamore@157 3297
mcimadamore@157 3298 boolean high;
mcimadamore@157 3299 boolean rewriteTypeVars;
mcimadamore@157 3300
mcimadamore@157 3301 Rewriter(boolean high, boolean rewriteTypeVars) {
mcimadamore@157 3302 this.high = high;
mcimadamore@157 3303 this.rewriteTypeVars = rewriteTypeVars;
mcimadamore@157 3304 }
mcimadamore@157 3305
mcimadamore@640 3306 @Override
mcimadamore@640 3307 public Type visitClassType(ClassType t, Void s) {
mcimadamore@157 3308 ListBuffer<Type> rewritten = new ListBuffer<Type>();
mcimadamore@157 3309 boolean changed = false;
mcimadamore@640 3310 for (Type arg : t.allparams()) {
mcimadamore@157 3311 Type bound = visit(arg);
mcimadamore@157 3312 if (arg != bound) {
mcimadamore@157 3313 changed = true;
mcimadamore@157 3314 }
mcimadamore@157 3315 rewritten.append(bound);
duke@1 3316 }
mcimadamore@157 3317 if (changed)
mcimadamore@640 3318 return subst(t.tsym.type,
mcimadamore@640 3319 t.tsym.type.allparams(),
mcimadamore@640 3320 rewritten.toList());
mcimadamore@157 3321 else
mcimadamore@157 3322 return t;
duke@1 3323 }
mcimadamore@157 3324
mcimadamore@157 3325 public Type visitType(Type t, Void s) {
mcimadamore@157 3326 return high ? upperBound(t) : lowerBound(t);
mcimadamore@157 3327 }
mcimadamore@157 3328
mcimadamore@157 3329 @Override
mcimadamore@157 3330 public Type visitCapturedType(CapturedType t, Void s) {
mcimadamore@640 3331 Type bound = visitWildcardType(t.wildcard, null);
mcimadamore@640 3332 return (bound.contains(t)) ?
mcimadamore@640 3333 (high ? syms.objectType : syms.botType) :
mcimadamore@640 3334 bound;
mcimadamore@157 3335 }
mcimadamore@157 3336
mcimadamore@157 3337 @Override
mcimadamore@157 3338 public Type visitTypeVar(TypeVar t, Void s) {
mcimadamore@640 3339 if (rewriteTypeVars) {
mcimadamore@640 3340 Type bound = high ?
mcimadamore@640 3341 (t.bound.contains(t) ?
mcimadamore@640 3342 syms.objectType :
mcimadamore@640 3343 visit(t.bound)) :
mcimadamore@640 3344 syms.botType;
mcimadamore@640 3345 return rewriteAsWildcardType(bound, t);
mcimadamore@640 3346 }
mcimadamore@157 3347 else
mcimadamore@157 3348 return t;
mcimadamore@157 3349 }
mcimadamore@157 3350
mcimadamore@157 3351 @Override
mcimadamore@157 3352 public Type visitWildcardType(WildcardType t, Void s) {
mcimadamore@157 3353 Type bound = high ? t.getExtendsBound() :
mcimadamore@157 3354 t.getSuperBound();
mcimadamore@157 3355 if (bound == null)
mcimadamore@640 3356 bound = high ? syms.objectType : syms.botType;
mcimadamore@640 3357 return rewriteAsWildcardType(visit(bound), t.bound);
mcimadamore@640 3358 }
mcimadamore@640 3359
mcimadamore@640 3360 private Type rewriteAsWildcardType(Type bound, TypeVar formal) {
mcimadamore@640 3361 return high ?
mcimadamore@640 3362 makeExtendsWildcard(B(bound), formal) :
mcimadamore@640 3363 makeSuperWildcard(B(bound), formal);
mcimadamore@640 3364 }
mcimadamore@640 3365
mcimadamore@640 3366 Type B(Type t) {
mcimadamore@640 3367 while (t.tag == WILDCARD) {
mcimadamore@640 3368 WildcardType w = (WildcardType)t;
mcimadamore@640 3369 t = high ?
mcimadamore@640 3370 w.getExtendsBound() :
mcimadamore@640 3371 w.getSuperBound();
mcimadamore@640 3372 if (t == null) {
mcimadamore@640 3373 t = high ? syms.objectType : syms.botType;
mcimadamore@640 3374 }
mcimadamore@640 3375 }
mcimadamore@640 3376 return t;
mcimadamore@157 3377 }
duke@1 3378 }
duke@1 3379
mcimadamore@640 3380
duke@1 3381 /**
duke@1 3382 * Create a wildcard with the given upper (extends) bound; create
duke@1 3383 * an unbounded wildcard if bound is Object.
duke@1 3384 *
duke@1 3385 * @param bound the upper bound
duke@1 3386 * @param formal the formal type parameter that will be
duke@1 3387 * substituted by the wildcard
duke@1 3388 */
duke@1 3389 private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
duke@1 3390 if (bound == syms.objectType) {
duke@1 3391 return new WildcardType(syms.objectType,
duke@1 3392 BoundKind.UNBOUND,
duke@1 3393 syms.boundClass,
duke@1 3394 formal);
duke@1 3395 } else {
duke@1 3396 return new WildcardType(bound,
duke@1 3397 BoundKind.EXTENDS,
duke@1 3398 syms.boundClass,
duke@1 3399 formal);
duke@1 3400 }
duke@1 3401 }
duke@1 3402
duke@1 3403 /**
duke@1 3404 * Create a wildcard with the given lower (super) bound; create an
duke@1 3405 * unbounded wildcard if bound is bottom (type of {@code null}).
duke@1 3406 *
duke@1 3407 * @param bound the lower bound
duke@1 3408 * @param formal the formal type parameter that will be
duke@1 3409 * substituted by the wildcard
duke@1 3410 */
duke@1 3411 private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
duke@1 3412 if (bound.tag == BOT) {
duke@1 3413 return new WildcardType(syms.objectType,
duke@1 3414 BoundKind.UNBOUND,
duke@1 3415 syms.boundClass,
duke@1 3416 formal);
duke@1 3417 } else {
duke@1 3418 return new WildcardType(bound,
duke@1 3419 BoundKind.SUPER,
duke@1 3420 syms.boundClass,
duke@1 3421 formal);
duke@1 3422 }
duke@1 3423 }
duke@1 3424
duke@1 3425 /**
duke@1 3426 * A wrapper for a type that allows use in sets.
duke@1 3427 */
duke@1 3428 class SingletonType {
duke@1 3429 final Type t;
duke@1 3430 SingletonType(Type t) {
duke@1 3431 this.t = t;
duke@1 3432 }
duke@1 3433 public int hashCode() {
jjg@507 3434 return Types.hashCode(t);
duke@1 3435 }
duke@1 3436 public boolean equals(Object obj) {
duke@1 3437 return (obj instanceof SingletonType) &&
duke@1 3438 isSameType(t, ((SingletonType)obj).t);
duke@1 3439 }
duke@1 3440 public String toString() {
duke@1 3441 return t.toString();
duke@1 3442 }
duke@1 3443 }
duke@1 3444 // </editor-fold>
duke@1 3445
duke@1 3446 // <editor-fold defaultstate="collapsed" desc="Visitors">
duke@1 3447 /**
duke@1 3448 * A default visitor for types. All visitor methods except
duke@1 3449 * visitType are implemented by delegating to visitType. Concrete
duke@1 3450 * subclasses must provide an implementation of visitType and can
duke@1 3451 * override other methods as needed.
duke@1 3452 *
duke@1 3453 * @param <R> the return type of the operation implemented by this
duke@1 3454 * visitor; use Void if no return type is needed.
duke@1 3455 * @param <S> the type of the second argument (the first being the
duke@1 3456 * type itself) of the operation implemented by this visitor; use
duke@1 3457 * Void if a second argument is not needed.
duke@1 3458 */
duke@1 3459 public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
duke@1 3460 final public R visit(Type t, S s) { return t.accept(this, s); }
duke@1 3461 public R visitClassType(ClassType t, S s) { return visitType(t, s); }
duke@1 3462 public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
duke@1 3463 public R visitArrayType(ArrayType t, S s) { return visitType(t, s); }
duke@1 3464 public R visitMethodType(MethodType t, S s) { return visitType(t, s); }
duke@1 3465 public R visitPackageType(PackageType t, S s) { return visitType(t, s); }
duke@1 3466 public R visitTypeVar(TypeVar t, S s) { return visitType(t, s); }
duke@1 3467 public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
duke@1 3468 public R visitForAll(ForAll t, S s) { return visitType(t, s); }
duke@1 3469 public R visitUndetVar(UndetVar t, S s) { return visitType(t, s); }
duke@1 3470 public R visitErrorType(ErrorType t, S s) { return visitType(t, s); }
duke@1 3471 }
duke@1 3472
duke@1 3473 /**
mcimadamore@121 3474 * A default visitor for symbols. All visitor methods except
mcimadamore@121 3475 * visitSymbol are implemented by delegating to visitSymbol. Concrete
mcimadamore@121 3476 * subclasses must provide an implementation of visitSymbol and can
mcimadamore@121 3477 * override other methods as needed.
mcimadamore@121 3478 *
mcimadamore@121 3479 * @param <R> the return type of the operation implemented by this
mcimadamore@121 3480 * visitor; use Void if no return type is needed.
mcimadamore@121 3481 * @param <S> the type of the second argument (the first being the
mcimadamore@121 3482 * symbol itself) of the operation implemented by this visitor; use
mcimadamore@121 3483 * Void if a second argument is not needed.
mcimadamore@121 3484 */
mcimadamore@121 3485 public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
mcimadamore@121 3486 final public R visit(Symbol s, S arg) { return s.accept(this, arg); }
mcimadamore@121 3487 public R visitClassSymbol(ClassSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3488 public R visitMethodSymbol(MethodSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3489 public R visitOperatorSymbol(OperatorSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3490 public R visitPackageSymbol(PackageSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3491 public R visitTypeSymbol(TypeSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3492 public R visitVarSymbol(VarSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3493 }
mcimadamore@121 3494
mcimadamore@121 3495 /**
duke@1 3496 * A <em>simple</em> visitor for types. This visitor is simple as
duke@1 3497 * captured wildcards, for-all types (generic methods), and
duke@1 3498 * undetermined type variables (part of inference) are hidden.
duke@1 3499 * Captured wildcards are hidden by treating them as type
duke@1 3500 * variables and the rest are hidden by visiting their qtypes.
duke@1 3501 *
duke@1 3502 * @param <R> the return type of the operation implemented by this
duke@1 3503 * visitor; use Void if no return type is needed.
duke@1 3504 * @param <S> the type of the second argument (the first being the
duke@1 3505 * type itself) of the operation implemented by this visitor; use
duke@1 3506 * Void if a second argument is not needed.
duke@1 3507 */
duke@1 3508 public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
duke@1 3509 @Override
duke@1 3510 public R visitCapturedType(CapturedType t, S s) {
duke@1 3511 return visitTypeVar(t, s);
duke@1 3512 }
duke@1 3513 @Override
duke@1 3514 public R visitForAll(ForAll t, S s) {
duke@1 3515 return visit(t.qtype, s);
duke@1 3516 }
duke@1 3517 @Override
duke@1 3518 public R visitUndetVar(UndetVar t, S s) {
duke@1 3519 return visit(t.qtype, s);
duke@1 3520 }
duke@1 3521 }
duke@1 3522
duke@1 3523 /**
duke@1 3524 * A plain relation on types. That is a 2-ary function on the
duke@1 3525 * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
duke@1 3526 * <!-- In plain text: Type x Type -> Boolean -->
duke@1 3527 */
duke@1 3528 public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
duke@1 3529
duke@1 3530 /**
duke@1 3531 * A convenience visitor for implementing operations that only
duke@1 3532 * require one argument (the type itself), that is, unary
duke@1 3533 * operations.
duke@1 3534 *
duke@1 3535 * @param <R> the return type of the operation implemented by this
duke@1 3536 * visitor; use Void if no return type is needed.
duke@1 3537 */
duke@1 3538 public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
duke@1 3539 final public R visit(Type t) { return t.accept(this, null); }
duke@1 3540 }
duke@1 3541
duke@1 3542 /**
duke@1 3543 * A visitor for implementing a mapping from types to types. The
duke@1 3544 * default behavior of this class is to implement the identity
duke@1 3545 * mapping (mapping a type to itself). This can be overridden in
duke@1 3546 * subclasses.
duke@1 3547 *
duke@1 3548 * @param <S> the type of the second argument (the first being the
duke@1 3549 * type itself) of this mapping; use Void if a second argument is
duke@1 3550 * not needed.
duke@1 3551 */
duke@1 3552 public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
duke@1 3553 final public Type visit(Type t) { return t.accept(this, null); }
duke@1 3554 public Type visitType(Type t, S s) { return t; }
duke@1 3555 }
duke@1 3556 // </editor-fold>
duke@1 3557 }

mercurial