src/share/classes/com/sun/tools/javac/comp/Flow.java

Mon, 07 Feb 2011 18:10:13 +0000

author
mcimadamore
date
Mon, 07 Feb 2011 18:10:13 +0000
changeset 858
96d4226bdd60
parent 820
2d5aff89aaa3
child 878
fa0e4e1916f4
permissions
-rw-r--r--

7007615: java_util/generics/phase2/NameClashTest02 fails since jdk7/pit/b123.
Summary: override clash algorithm is not implemented correctly
Reviewed-by: jjg

duke@1 1 /*
jjg@815 2 * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 //todo: one might eliminate uninits.andSets when monotonic
duke@1 27
duke@1 28 package com.sun.tools.javac.comp;
duke@1 29
mcimadamore@550 30 import java.util.HashMap;
darcy@609 31 import java.util.Map;
darcy@609 32 import java.util.LinkedHashMap;
mcimadamore@550 33
duke@1 34 import com.sun.tools.javac.code.*;
duke@1 35 import com.sun.tools.javac.tree.*;
duke@1 36 import com.sun.tools.javac.util.*;
duke@1 37 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 38
duke@1 39 import com.sun.tools.javac.code.Symbol.*;
duke@1 40 import com.sun.tools.javac.tree.JCTree.*;
duke@1 41
duke@1 42 import static com.sun.tools.javac.code.Flags.*;
duke@1 43 import static com.sun.tools.javac.code.Kinds.*;
duke@1 44 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 45
duke@1 46 /** This pass implements dataflow analysis for Java programs.
duke@1 47 * Liveness analysis checks that every statement is reachable.
duke@1 48 * Exception analysis ensures that every checked exception that is
duke@1 49 * thrown is declared or caught. Definite assignment analysis
duke@1 50 * ensures that each variable is assigned when used. Definite
duke@1 51 * unassignment analysis ensures that no final variable is assigned
duke@1 52 * more than once.
duke@1 53 *
duke@1 54 * <p>The second edition of the JLS has a number of problems in the
duke@1 55 * specification of these flow analysis problems. This implementation
duke@1 56 * attempts to address those issues.
duke@1 57 *
duke@1 58 * <p>First, there is no accommodation for a finally clause that cannot
duke@1 59 * complete normally. For liveness analysis, an intervening finally
duke@1 60 * clause can cause a break, continue, or return not to reach its
duke@1 61 * target. For exception analysis, an intervening finally clause can
duke@1 62 * cause any exception to be "caught". For DA/DU analysis, the finally
duke@1 63 * clause can prevent a transfer of control from propagating DA/DU
duke@1 64 * state to the target. In addition, code in the finally clause can
duke@1 65 * affect the DA/DU status of variables.
duke@1 66 *
duke@1 67 * <p>For try statements, we introduce the idea of a variable being
duke@1 68 * definitely unassigned "everywhere" in a block. A variable V is
duke@1 69 * "unassigned everywhere" in a block iff it is unassigned at the
duke@1 70 * beginning of the block and there is no reachable assignment to V
duke@1 71 * in the block. An assignment V=e is reachable iff V is not DA
duke@1 72 * after e. Then we can say that V is DU at the beginning of the
duke@1 73 * catch block iff V is DU everywhere in the try block. Similarly, V
duke@1 74 * is DU at the beginning of the finally block iff V is DU everywhere
duke@1 75 * in the try block and in every catch block. Specifically, the
duke@1 76 * following bullet is added to 16.2.2
duke@1 77 * <pre>
duke@1 78 * V is <em>unassigned everywhere</em> in a block if it is
duke@1 79 * unassigned before the block and there is no reachable
duke@1 80 * assignment to V within the block.
duke@1 81 * </pre>
duke@1 82 * <p>In 16.2.15, the third bullet (and all of its sub-bullets) for all
duke@1 83 * try blocks is changed to
duke@1 84 * <pre>
duke@1 85 * V is definitely unassigned before a catch block iff V is
duke@1 86 * definitely unassigned everywhere in the try block.
duke@1 87 * </pre>
duke@1 88 * <p>The last bullet (and all of its sub-bullets) for try blocks that
duke@1 89 * have a finally block is changed to
duke@1 90 * <pre>
duke@1 91 * V is definitely unassigned before the finally block iff
duke@1 92 * V is definitely unassigned everywhere in the try block
duke@1 93 * and everywhere in each catch block of the try statement.
duke@1 94 * </pre>
duke@1 95 * <p>In addition,
duke@1 96 * <pre>
duke@1 97 * V is definitely assigned at the end of a constructor iff
duke@1 98 * V is definitely assigned after the block that is the body
duke@1 99 * of the constructor and V is definitely assigned at every
duke@1 100 * return that can return from the constructor.
duke@1 101 * </pre>
duke@1 102 * <p>In addition, each continue statement with the loop as its target
duke@1 103 * is treated as a jump to the end of the loop body, and "intervening"
duke@1 104 * finally clauses are treated as follows: V is DA "due to the
duke@1 105 * continue" iff V is DA before the continue statement or V is DA at
duke@1 106 * the end of any intervening finally block. V is DU "due to the
duke@1 107 * continue" iff any intervening finally cannot complete normally or V
duke@1 108 * is DU at the end of every intervening finally block. This "due to
duke@1 109 * the continue" concept is then used in the spec for the loops.
duke@1 110 *
duke@1 111 * <p>Similarly, break statements must consider intervening finally
duke@1 112 * blocks. For liveness analysis, a break statement for which any
duke@1 113 * intervening finally cannot complete normally is not considered to
duke@1 114 * cause the target statement to be able to complete normally. Then
duke@1 115 * we say V is DA "due to the break" iff V is DA before the break or
duke@1 116 * V is DA at the end of any intervening finally block. V is DU "due
duke@1 117 * to the break" iff any intervening finally cannot complete normally
duke@1 118 * or V is DU at the break and at the end of every intervening
duke@1 119 * finally block. (I suspect this latter condition can be
duke@1 120 * simplified.) This "due to the break" is then used in the spec for
duke@1 121 * all statements that can be "broken".
duke@1 122 *
duke@1 123 * <p>The return statement is treated similarly. V is DA "due to a
duke@1 124 * return statement" iff V is DA before the return statement or V is
duke@1 125 * DA at the end of any intervening finally block. Note that we
duke@1 126 * don't have to worry about the return expression because this
duke@1 127 * concept is only used for construcrors.
duke@1 128 *
duke@1 129 * <p>There is no spec in JLS2 for when a variable is definitely
duke@1 130 * assigned at the end of a constructor, which is needed for final
duke@1 131 * fields (8.3.1.2). We implement the rule that V is DA at the end
duke@1 132 * of the constructor iff it is DA and the end of the body of the
duke@1 133 * constructor and V is DA "due to" every return of the constructor.
duke@1 134 *
duke@1 135 * <p>Intervening finally blocks similarly affect exception analysis. An
duke@1 136 * intervening finally that cannot complete normally allows us to ignore
duke@1 137 * an otherwise uncaught exception.
duke@1 138 *
duke@1 139 * <p>To implement the semantics of intervening finally clauses, all
duke@1 140 * nonlocal transfers (break, continue, return, throw, method call that
duke@1 141 * can throw a checked exception, and a constructor invocation that can
duke@1 142 * thrown a checked exception) are recorded in a queue, and removed
duke@1 143 * from the queue when we complete processing the target of the
duke@1 144 * nonlocal transfer. This allows us to modify the queue in accordance
duke@1 145 * with the above rules when we encounter a finally clause. The only
duke@1 146 * exception to this [no pun intended] is that checked exceptions that
duke@1 147 * are known to be caught or declared to be caught in the enclosing
duke@1 148 * method are not recorded in the queue, but instead are recorded in a
duke@1 149 * global variable "Set<Type> thrown" that records the type of all
duke@1 150 * exceptions that can be thrown.
duke@1 151 *
duke@1 152 * <p>Other minor issues the treatment of members of other classes
duke@1 153 * (always considered DA except that within an anonymous class
duke@1 154 * constructor, where DA status from the enclosing scope is
duke@1 155 * preserved), treatment of the case expression (V is DA before the
duke@1 156 * case expression iff V is DA after the switch expression),
duke@1 157 * treatment of variables declared in a switch block (the implied
duke@1 158 * DA/DU status after the switch expression is DU and not DA for
duke@1 159 * variables defined in a switch block), the treatment of boolean ?:
duke@1 160 * expressions (The JLS rules only handle b and c non-boolean; the
duke@1 161 * new rule is that if b and c are boolean valued, then V is
duke@1 162 * (un)assigned after a?b:c when true/false iff V is (un)assigned
duke@1 163 * after b when true/false and V is (un)assigned after c when
duke@1 164 * true/false).
duke@1 165 *
duke@1 166 * <p>There is the remaining question of what syntactic forms constitute a
duke@1 167 * reference to a variable. It is conventional to allow this.x on the
duke@1 168 * left-hand-side to initialize a final instance field named x, yet
duke@1 169 * this.x isn't considered a "use" when appearing on a right-hand-side
duke@1 170 * in most implementations. Should parentheses affect what is
duke@1 171 * considered a variable reference? The simplest rule would be to
duke@1 172 * allow unqualified forms only, parentheses optional, and phase out
duke@1 173 * support for assigning to a final field via this.x.
duke@1 174 *
jjg@581 175 * <p><b>This is NOT part of any supported API.
jjg@581 176 * If you write code that depends on this, you do so at your own risk.
duke@1 177 * This code and its internal interfaces are subject to change or
duke@1 178 * deletion without notice.</b>
duke@1 179 */
duke@1 180 public class Flow extends TreeScanner {
duke@1 181 protected static final Context.Key<Flow> flowKey =
duke@1 182 new Context.Key<Flow>();
duke@1 183
jjg@113 184 private final Names names;
duke@1 185 private final Log log;
duke@1 186 private final Symtab syms;
duke@1 187 private final Types types;
duke@1 188 private final Check chk;
duke@1 189 private TreeMaker make;
mcimadamore@617 190 private final Resolve rs;
mcimadamore@617 191 private Env<AttrContext> attrEnv;
duke@1 192 private Lint lint;
mcimadamore@550 193 private final boolean allowRethrowAnalysis;
duke@1 194
duke@1 195 public static Flow instance(Context context) {
duke@1 196 Flow instance = context.get(flowKey);
duke@1 197 if (instance == null)
duke@1 198 instance = new Flow(context);
duke@1 199 return instance;
duke@1 200 }
duke@1 201
duke@1 202 protected Flow(Context context) {
duke@1 203 context.put(flowKey, this);
jjg@113 204 names = Names.instance(context);
duke@1 205 log = Log.instance(context);
duke@1 206 syms = Symtab.instance(context);
duke@1 207 types = Types.instance(context);
duke@1 208 chk = Check.instance(context);
duke@1 209 lint = Lint.instance(context);
mcimadamore@617 210 rs = Resolve.instance(context);
mcimadamore@550 211 Source source = Source.instance(context);
mcimadamore@550 212 allowRethrowAnalysis = source.allowMulticatch();
duke@1 213 }
duke@1 214
duke@1 215 /** A flag that indicates whether the last statement could
duke@1 216 * complete normally.
duke@1 217 */
duke@1 218 private boolean alive;
duke@1 219
duke@1 220 /** The set of definitely assigned variables.
duke@1 221 */
duke@1 222 Bits inits;
duke@1 223
duke@1 224 /** The set of definitely unassigned variables.
duke@1 225 */
duke@1 226 Bits uninits;
duke@1 227
mcimadamore@735 228 HashMap<Symbol, List<Type>> preciseRethrowTypes;
mcimadamore@550 229
duke@1 230 /** The set of variables that are definitely unassigned everywhere
duke@1 231 * in current try block. This variable is maintained lazily; it is
duke@1 232 * updated only when something gets removed from uninits,
duke@1 233 * typically by being assigned in reachable code. To obtain the
duke@1 234 * correct set of variables which are definitely unassigned
duke@1 235 * anywhere in current try block, intersect uninitsTry and
duke@1 236 * uninits.
duke@1 237 */
duke@1 238 Bits uninitsTry;
duke@1 239
duke@1 240 /** When analyzing a condition, inits and uninits are null.
duke@1 241 * Instead we have:
duke@1 242 */
duke@1 243 Bits initsWhenTrue;
duke@1 244 Bits initsWhenFalse;
duke@1 245 Bits uninitsWhenTrue;
duke@1 246 Bits uninitsWhenFalse;
duke@1 247
duke@1 248 /** A mapping from addresses to variable symbols.
duke@1 249 */
duke@1 250 VarSymbol[] vars;
duke@1 251
duke@1 252 /** The current class being defined.
duke@1 253 */
duke@1 254 JCClassDecl classDef;
duke@1 255
duke@1 256 /** The first variable sequence number in this class definition.
duke@1 257 */
duke@1 258 int firstadr;
duke@1 259
duke@1 260 /** The next available variable sequence number.
duke@1 261 */
duke@1 262 int nextadr;
duke@1 263
duke@1 264 /** The list of possibly thrown declarable exceptions.
duke@1 265 */
duke@1 266 List<Type> thrown;
duke@1 267
duke@1 268 /** The list of exceptions that are either caught or declared to be
duke@1 269 * thrown.
duke@1 270 */
duke@1 271 List<Type> caught;
duke@1 272
darcy@609 273 /** The list of unreferenced automatic resources.
darcy@609 274 */
darcy@609 275 Map<VarSymbol, JCVariableDecl> unrefdResources;
darcy@609 276
duke@1 277 /** Set when processing a loop body the second time for DU analysis. */
duke@1 278 boolean loopPassTwo = false;
duke@1 279
duke@1 280 /*-------------------- Environments ----------------------*/
duke@1 281
duke@1 282 /** A pending exit. These are the statements return, break, and
duke@1 283 * continue. In addition, exception-throwing expressions or
duke@1 284 * statements are put here when not known to be caught. This
duke@1 285 * will typically result in an error unless it is within a
duke@1 286 * try-finally whose finally block cannot complete normally.
duke@1 287 */
duke@1 288 static class PendingExit {
duke@1 289 JCTree tree;
duke@1 290 Bits inits;
duke@1 291 Bits uninits;
duke@1 292 Type thrown;
duke@1 293 PendingExit(JCTree tree, Bits inits, Bits uninits) {
duke@1 294 this.tree = tree;
duke@1 295 this.inits = inits.dup();
duke@1 296 this.uninits = uninits.dup();
duke@1 297 }
duke@1 298 PendingExit(JCTree tree, Type thrown) {
duke@1 299 this.tree = tree;
duke@1 300 this.thrown = thrown;
duke@1 301 }
duke@1 302 }
duke@1 303
duke@1 304 /** The currently pending exits that go from current inner blocks
duke@1 305 * to an enclosing block, in source order.
duke@1 306 */
duke@1 307 ListBuffer<PendingExit> pendingExits;
duke@1 308
duke@1 309 /*-------------------- Exceptions ----------------------*/
duke@1 310
duke@1 311 /** Complain that pending exceptions are not caught.
duke@1 312 */
duke@1 313 void errorUncaught() {
duke@1 314 for (PendingExit exit = pendingExits.next();
duke@1 315 exit != null;
duke@1 316 exit = pendingExits.next()) {
duke@1 317 boolean synthetic = classDef != null &&
duke@1 318 classDef.pos == exit.tree.pos;
duke@1 319 log.error(exit.tree.pos(),
duke@1 320 synthetic
duke@1 321 ? "unreported.exception.default.constructor"
duke@1 322 : "unreported.exception.need.to.catch.or.throw",
duke@1 323 exit.thrown);
duke@1 324 }
duke@1 325 }
duke@1 326
duke@1 327 /** Record that exception is potentially thrown and check that it
duke@1 328 * is caught.
duke@1 329 */
duke@1 330 void markThrown(JCTree tree, Type exc) {
duke@1 331 if (!chk.isUnchecked(tree.pos(), exc)) {
duke@1 332 if (!chk.isHandled(exc, caught))
duke@1 333 pendingExits.append(new PendingExit(tree, exc));
mcimadamore@735 334 thrown = chk.incl(exc, thrown);
duke@1 335 }
duke@1 336 }
duke@1 337
duke@1 338 /*-------------- Processing variables ----------------------*/
duke@1 339
duke@1 340 /** Do we need to track init/uninit state of this symbol?
duke@1 341 * I.e. is symbol either a local or a blank final variable?
duke@1 342 */
duke@1 343 boolean trackable(VarSymbol sym) {
duke@1 344 return
duke@1 345 (sym.owner.kind == MTH ||
duke@1 346 ((sym.flags() & (FINAL | HASINIT | PARAMETER)) == FINAL &&
duke@1 347 classDef.sym.isEnclosedBy((ClassSymbol)sym.owner)));
duke@1 348 }
duke@1 349
duke@1 350 /** Initialize new trackable variable by setting its address field
duke@1 351 * to the next available sequence number and entering it under that
duke@1 352 * index into the vars array.
duke@1 353 */
duke@1 354 void newVar(VarSymbol sym) {
duke@1 355 if (nextadr == vars.length) {
duke@1 356 VarSymbol[] newvars = new VarSymbol[nextadr * 2];
duke@1 357 System.arraycopy(vars, 0, newvars, 0, nextadr);
duke@1 358 vars = newvars;
duke@1 359 }
duke@1 360 sym.adr = nextadr;
duke@1 361 vars[nextadr] = sym;
duke@1 362 inits.excl(nextadr);
duke@1 363 uninits.incl(nextadr);
duke@1 364 nextadr++;
duke@1 365 }
duke@1 366
duke@1 367 /** Record an initialization of a trackable variable.
duke@1 368 */
duke@1 369 void letInit(DiagnosticPosition pos, VarSymbol sym) {
duke@1 370 if (sym.adr >= firstadr && trackable(sym)) {
duke@1 371 if ((sym.flags() & FINAL) != 0) {
duke@1 372 if ((sym.flags() & PARAMETER) != 0) {
jjg@724 373 if ((sym.flags() & DISJUNCTION) != 0) { //multi-catch parameter
mcimadamore@550 374 log.error(pos, "multicatch.parameter.may.not.be.assigned",
mcimadamore@550 375 sym);
mcimadamore@550 376 }
mcimadamore@550 377 else {
mcimadamore@550 378 log.error(pos, "final.parameter.may.not.be.assigned",
duke@1 379 sym);
mcimadamore@550 380 }
duke@1 381 } else if (!uninits.isMember(sym.adr)) {
duke@1 382 log.error(pos,
duke@1 383 loopPassTwo
duke@1 384 ? "var.might.be.assigned.in.loop"
duke@1 385 : "var.might.already.be.assigned",
duke@1 386 sym);
duke@1 387 } else if (!inits.isMember(sym.adr)) {
duke@1 388 // reachable assignment
duke@1 389 uninits.excl(sym.adr);
duke@1 390 uninitsTry.excl(sym.adr);
duke@1 391 } else {
duke@1 392 //log.rawWarning(pos, "unreachable assignment");//DEBUG
duke@1 393 uninits.excl(sym.adr);
duke@1 394 }
duke@1 395 }
duke@1 396 inits.incl(sym.adr);
duke@1 397 } else if ((sym.flags() & FINAL) != 0) {
duke@1 398 log.error(pos, "var.might.already.be.assigned", sym);
duke@1 399 }
duke@1 400 }
duke@1 401
duke@1 402 /** If tree is either a simple name or of the form this.name or
duke@1 403 * C.this.name, and tree represents a trackable variable,
duke@1 404 * record an initialization of the variable.
duke@1 405 */
duke@1 406 void letInit(JCTree tree) {
duke@1 407 tree = TreeInfo.skipParens(tree);
duke@1 408 if (tree.getTag() == JCTree.IDENT || tree.getTag() == JCTree.SELECT) {
duke@1 409 Symbol sym = TreeInfo.symbol(tree);
mcimadamore@676 410 if (sym.kind == VAR) {
mcimadamore@676 411 letInit(tree.pos(), (VarSymbol)sym);
mcimadamore@676 412 }
duke@1 413 }
duke@1 414 }
duke@1 415
duke@1 416 /** Check that trackable variable is initialized.
duke@1 417 */
duke@1 418 void checkInit(DiagnosticPosition pos, VarSymbol sym) {
duke@1 419 if ((sym.adr >= firstadr || sym.owner.kind != TYP) &&
duke@1 420 trackable(sym) &&
duke@1 421 !inits.isMember(sym.adr)) {
duke@1 422 log.error(pos, "var.might.not.have.been.initialized",
duke@1 423 sym);
duke@1 424 inits.incl(sym.adr);
duke@1 425 }
duke@1 426 }
duke@1 427
duke@1 428 /*-------------------- Handling jumps ----------------------*/
duke@1 429
duke@1 430 /** Record an outward transfer of control. */
duke@1 431 void recordExit(JCTree tree) {
duke@1 432 pendingExits.append(new PendingExit(tree, inits, uninits));
duke@1 433 markDead();
duke@1 434 }
duke@1 435
duke@1 436 /** Resolve all breaks of this statement. */
duke@1 437 boolean resolveBreaks(JCTree tree,
duke@1 438 ListBuffer<PendingExit> oldPendingExits) {
duke@1 439 boolean result = false;
duke@1 440 List<PendingExit> exits = pendingExits.toList();
duke@1 441 pendingExits = oldPendingExits;
duke@1 442 for (; exits.nonEmpty(); exits = exits.tail) {
duke@1 443 PendingExit exit = exits.head;
duke@1 444 if (exit.tree.getTag() == JCTree.BREAK &&
duke@1 445 ((JCBreak) exit.tree).target == tree) {
duke@1 446 inits.andSet(exit.inits);
duke@1 447 uninits.andSet(exit.uninits);
duke@1 448 result = true;
duke@1 449 } else {
duke@1 450 pendingExits.append(exit);
duke@1 451 }
duke@1 452 }
duke@1 453 return result;
duke@1 454 }
duke@1 455
duke@1 456 /** Resolve all continues of this statement. */
duke@1 457 boolean resolveContinues(JCTree tree) {
duke@1 458 boolean result = false;
duke@1 459 List<PendingExit> exits = pendingExits.toList();
duke@1 460 pendingExits = new ListBuffer<PendingExit>();
duke@1 461 for (; exits.nonEmpty(); exits = exits.tail) {
duke@1 462 PendingExit exit = exits.head;
duke@1 463 if (exit.tree.getTag() == JCTree.CONTINUE &&
duke@1 464 ((JCContinue) exit.tree).target == tree) {
duke@1 465 inits.andSet(exit.inits);
duke@1 466 uninits.andSet(exit.uninits);
duke@1 467 result = true;
duke@1 468 } else {
duke@1 469 pendingExits.append(exit);
duke@1 470 }
duke@1 471 }
duke@1 472 return result;
duke@1 473 }
duke@1 474
duke@1 475 /** Record that statement is unreachable.
duke@1 476 */
duke@1 477 void markDead() {
duke@1 478 inits.inclRange(firstadr, nextadr);
duke@1 479 uninits.inclRange(firstadr, nextadr);
duke@1 480 alive = false;
duke@1 481 }
duke@1 482
duke@1 483 /** Split (duplicate) inits/uninits into WhenTrue/WhenFalse sets
duke@1 484 */
mcimadamore@676 485 void split(boolean setToNull) {
duke@1 486 initsWhenFalse = inits.dup();
duke@1 487 uninitsWhenFalse = uninits.dup();
duke@1 488 initsWhenTrue = inits;
duke@1 489 uninitsWhenTrue = uninits;
mcimadamore@676 490 if (setToNull)
mcimadamore@676 491 inits = uninits = null;
duke@1 492 }
duke@1 493
duke@1 494 /** Merge (intersect) inits/uninits from WhenTrue/WhenFalse sets.
duke@1 495 */
duke@1 496 void merge() {
duke@1 497 inits = initsWhenFalse.andSet(initsWhenTrue);
duke@1 498 uninits = uninitsWhenFalse.andSet(uninitsWhenTrue);
duke@1 499 }
duke@1 500
duke@1 501 /* ************************************************************************
duke@1 502 * Visitor methods for statements and definitions
duke@1 503 *************************************************************************/
duke@1 504
duke@1 505 /** Analyze a definition.
duke@1 506 */
duke@1 507 void scanDef(JCTree tree) {
duke@1 508 scanStat(tree);
duke@1 509 if (tree != null && tree.getTag() == JCTree.BLOCK && !alive) {
duke@1 510 log.error(tree.pos(),
duke@1 511 "initializer.must.be.able.to.complete.normally");
duke@1 512 }
duke@1 513 }
duke@1 514
duke@1 515 /** Analyze a statement. Check that statement is reachable.
duke@1 516 */
duke@1 517 void scanStat(JCTree tree) {
duke@1 518 if (!alive && tree != null) {
duke@1 519 log.error(tree.pos(), "unreachable.stmt");
duke@1 520 if (tree.getTag() != JCTree.SKIP) alive = true;
duke@1 521 }
duke@1 522 scan(tree);
duke@1 523 }
duke@1 524
duke@1 525 /** Analyze list of statements.
duke@1 526 */
duke@1 527 void scanStats(List<? extends JCStatement> trees) {
duke@1 528 if (trees != null)
duke@1 529 for (List<? extends JCStatement> l = trees; l.nonEmpty(); l = l.tail)
duke@1 530 scanStat(l.head);
duke@1 531 }
duke@1 532
duke@1 533 /** Analyze an expression. Make sure to set (un)inits rather than
duke@1 534 * (un)initsWhenTrue(WhenFalse) on exit.
duke@1 535 */
duke@1 536 void scanExpr(JCTree tree) {
duke@1 537 if (tree != null) {
duke@1 538 scan(tree);
duke@1 539 if (inits == null) merge();
duke@1 540 }
duke@1 541 }
duke@1 542
duke@1 543 /** Analyze a list of expressions.
duke@1 544 */
duke@1 545 void scanExprs(List<? extends JCExpression> trees) {
duke@1 546 if (trees != null)
duke@1 547 for (List<? extends JCExpression> l = trees; l.nonEmpty(); l = l.tail)
duke@1 548 scanExpr(l.head);
duke@1 549 }
duke@1 550
duke@1 551 /** Analyze a condition. Make sure to set (un)initsWhenTrue(WhenFalse)
duke@1 552 * rather than (un)inits on exit.
duke@1 553 */
duke@1 554 void scanCond(JCTree tree) {
duke@1 555 if (tree.type.isFalse()) {
duke@1 556 if (inits == null) merge();
duke@1 557 initsWhenTrue = inits.dup();
duke@1 558 initsWhenTrue.inclRange(firstadr, nextadr);
duke@1 559 uninitsWhenTrue = uninits.dup();
duke@1 560 uninitsWhenTrue.inclRange(firstadr, nextadr);
duke@1 561 initsWhenFalse = inits;
duke@1 562 uninitsWhenFalse = uninits;
duke@1 563 } else if (tree.type.isTrue()) {
duke@1 564 if (inits == null) merge();
duke@1 565 initsWhenFalse = inits.dup();
duke@1 566 initsWhenFalse.inclRange(firstadr, nextadr);
duke@1 567 uninitsWhenFalse = uninits.dup();
duke@1 568 uninitsWhenFalse.inclRange(firstadr, nextadr);
duke@1 569 initsWhenTrue = inits;
duke@1 570 uninitsWhenTrue = uninits;
duke@1 571 } else {
duke@1 572 scan(tree);
mcimadamore@676 573 if (inits != null)
mcimadamore@676 574 split(tree.type != syms.unknownType);
duke@1 575 }
mcimadamore@676 576 if (tree.type != syms.unknownType)
mcimadamore@676 577 inits = uninits = null;
duke@1 578 }
duke@1 579
duke@1 580 /* ------------ Visitor methods for various sorts of trees -------------*/
duke@1 581
duke@1 582 public void visitClassDef(JCClassDecl tree) {
duke@1 583 if (tree.sym == null) return;
duke@1 584
duke@1 585 JCClassDecl classDefPrev = classDef;
duke@1 586 List<Type> thrownPrev = thrown;
duke@1 587 List<Type> caughtPrev = caught;
duke@1 588 boolean alivePrev = alive;
duke@1 589 int firstadrPrev = firstadr;
duke@1 590 int nextadrPrev = nextadr;
duke@1 591 ListBuffer<PendingExit> pendingExitsPrev = pendingExits;
duke@1 592 Lint lintPrev = lint;
duke@1 593
duke@1 594 pendingExits = new ListBuffer<PendingExit>();
duke@1 595 if (tree.name != names.empty) {
duke@1 596 caught = List.nil();
duke@1 597 firstadr = nextadr;
duke@1 598 }
duke@1 599 classDef = tree;
duke@1 600 thrown = List.nil();
duke@1 601 lint = lint.augment(tree.sym.attributes_field);
duke@1 602
duke@1 603 try {
duke@1 604 // define all the static fields
duke@1 605 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 606 if (l.head.getTag() == JCTree.VARDEF) {
duke@1 607 JCVariableDecl def = (JCVariableDecl)l.head;
duke@1 608 if ((def.mods.flags & STATIC) != 0) {
duke@1 609 VarSymbol sym = def.sym;
duke@1 610 if (trackable(sym))
duke@1 611 newVar(sym);
duke@1 612 }
duke@1 613 }
duke@1 614 }
duke@1 615
duke@1 616 // process all the static initializers
duke@1 617 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 618 if (l.head.getTag() != JCTree.METHODDEF &&
duke@1 619 (TreeInfo.flags(l.head) & STATIC) != 0) {
duke@1 620 scanDef(l.head);
duke@1 621 errorUncaught();
duke@1 622 }
duke@1 623 }
duke@1 624
duke@1 625 // add intersection of all thrown clauses of initial constructors
duke@1 626 // to set of caught exceptions, unless class is anonymous.
duke@1 627 if (tree.name != names.empty) {
duke@1 628 boolean firstConstructor = true;
duke@1 629 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 630 if (TreeInfo.isInitialConstructor(l.head)) {
duke@1 631 List<Type> mthrown =
duke@1 632 ((JCMethodDecl) l.head).sym.type.getThrownTypes();
duke@1 633 if (firstConstructor) {
duke@1 634 caught = mthrown;
duke@1 635 firstConstructor = false;
duke@1 636 } else {
duke@1 637 caught = chk.intersect(mthrown, caught);
duke@1 638 }
duke@1 639 }
duke@1 640 }
duke@1 641 }
duke@1 642
duke@1 643 // define all the instance fields
duke@1 644 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 645 if (l.head.getTag() == JCTree.VARDEF) {
duke@1 646 JCVariableDecl def = (JCVariableDecl)l.head;
duke@1 647 if ((def.mods.flags & STATIC) == 0) {
duke@1 648 VarSymbol sym = def.sym;
duke@1 649 if (trackable(sym))
duke@1 650 newVar(sym);
duke@1 651 }
duke@1 652 }
duke@1 653 }
duke@1 654
duke@1 655 // process all the instance initializers
duke@1 656 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 657 if (l.head.getTag() != JCTree.METHODDEF &&
duke@1 658 (TreeInfo.flags(l.head) & STATIC) == 0) {
duke@1 659 scanDef(l.head);
duke@1 660 errorUncaught();
duke@1 661 }
duke@1 662 }
duke@1 663
duke@1 664 // in an anonymous class, add the set of thrown exceptions to
duke@1 665 // the throws clause of the synthetic constructor and propagate
duke@1 666 // outwards.
duke@1 667 if (tree.name == names.empty) {
duke@1 668 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 669 if (TreeInfo.isInitialConstructor(l.head)) {
duke@1 670 JCMethodDecl mdef = (JCMethodDecl)l.head;
duke@1 671 mdef.thrown = make.Types(thrown);
duke@1 672 mdef.sym.type.setThrown(thrown);
duke@1 673 }
duke@1 674 }
duke@1 675 thrownPrev = chk.union(thrown, thrownPrev);
duke@1 676 }
duke@1 677
duke@1 678 // process all the methods
duke@1 679 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 680 if (l.head.getTag() == JCTree.METHODDEF) {
duke@1 681 scan(l.head);
duke@1 682 errorUncaught();
duke@1 683 }
duke@1 684 }
duke@1 685
duke@1 686 thrown = thrownPrev;
duke@1 687 } finally {
duke@1 688 pendingExits = pendingExitsPrev;
duke@1 689 alive = alivePrev;
duke@1 690 nextadr = nextadrPrev;
duke@1 691 firstadr = firstadrPrev;
duke@1 692 caught = caughtPrev;
duke@1 693 classDef = classDefPrev;
duke@1 694 lint = lintPrev;
duke@1 695 }
duke@1 696 }
duke@1 697
duke@1 698 public void visitMethodDef(JCMethodDecl tree) {
duke@1 699 if (tree.body == null) return;
duke@1 700
duke@1 701 List<Type> caughtPrev = caught;
duke@1 702 List<Type> mthrown = tree.sym.type.getThrownTypes();
duke@1 703 Bits initsPrev = inits.dup();
duke@1 704 Bits uninitsPrev = uninits.dup();
duke@1 705 int nextadrPrev = nextadr;
duke@1 706 int firstadrPrev = firstadr;
duke@1 707 Lint lintPrev = lint;
duke@1 708
duke@1 709 lint = lint.augment(tree.sym.attributes_field);
duke@1 710
jjg@816 711 Assert.check(pendingExits.isEmpty());
duke@1 712
duke@1 713 try {
duke@1 714 boolean isInitialConstructor =
duke@1 715 TreeInfo.isInitialConstructor(tree);
duke@1 716
duke@1 717 if (!isInitialConstructor)
duke@1 718 firstadr = nextadr;
duke@1 719 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
duke@1 720 JCVariableDecl def = l.head;
duke@1 721 scan(def);
duke@1 722 inits.incl(def.sym.adr);
duke@1 723 uninits.excl(def.sym.adr);
duke@1 724 }
duke@1 725 if (isInitialConstructor)
duke@1 726 caught = chk.union(caught, mthrown);
duke@1 727 else if ((tree.sym.flags() & (BLOCK | STATIC)) != BLOCK)
duke@1 728 caught = mthrown;
duke@1 729 // else we are in an instance initializer block;
duke@1 730 // leave caught unchanged.
duke@1 731
duke@1 732 alive = true;
duke@1 733 scanStat(tree.body);
duke@1 734
duke@1 735 if (alive && tree.sym.type.getReturnType().tag != VOID)
duke@1 736 log.error(TreeInfo.diagEndPos(tree.body), "missing.ret.stmt");
duke@1 737
duke@1 738 if (isInitialConstructor) {
duke@1 739 for (int i = firstadr; i < nextadr; i++)
duke@1 740 if (vars[i].owner == classDef.sym)
duke@1 741 checkInit(TreeInfo.diagEndPos(tree.body), vars[i]);
duke@1 742 }
duke@1 743 List<PendingExit> exits = pendingExits.toList();
duke@1 744 pendingExits = new ListBuffer<PendingExit>();
duke@1 745 while (exits.nonEmpty()) {
duke@1 746 PendingExit exit = exits.head;
duke@1 747 exits = exits.tail;
duke@1 748 if (exit.thrown == null) {
jjg@816 749 Assert.check(exit.tree.getTag() == JCTree.RETURN);
duke@1 750 if (isInitialConstructor) {
duke@1 751 inits = exit.inits;
duke@1 752 for (int i = firstadr; i < nextadr; i++)
duke@1 753 checkInit(exit.tree.pos(), vars[i]);
duke@1 754 }
duke@1 755 } else {
duke@1 756 // uncaught throws will be reported later
duke@1 757 pendingExits.append(exit);
duke@1 758 }
duke@1 759 }
duke@1 760 } finally {
duke@1 761 inits = initsPrev;
duke@1 762 uninits = uninitsPrev;
duke@1 763 nextadr = nextadrPrev;
duke@1 764 firstadr = firstadrPrev;
duke@1 765 caught = caughtPrev;
duke@1 766 lint = lintPrev;
duke@1 767 }
duke@1 768 }
duke@1 769
duke@1 770 public void visitVarDef(JCVariableDecl tree) {
duke@1 771 boolean track = trackable(tree.sym);
duke@1 772 if (track && tree.sym.owner.kind == MTH) newVar(tree.sym);
duke@1 773 if (tree.init != null) {
duke@1 774 Lint lintPrev = lint;
duke@1 775 lint = lint.augment(tree.sym.attributes_field);
duke@1 776 try{
duke@1 777 scanExpr(tree.init);
duke@1 778 if (track) letInit(tree.pos(), tree.sym);
duke@1 779 } finally {
duke@1 780 lint = lintPrev;
duke@1 781 }
duke@1 782 }
duke@1 783 }
duke@1 784
duke@1 785 public void visitBlock(JCBlock tree) {
duke@1 786 int nextadrPrev = nextadr;
duke@1 787 scanStats(tree.stats);
duke@1 788 nextadr = nextadrPrev;
duke@1 789 }
duke@1 790
duke@1 791 public void visitDoLoop(JCDoWhileLoop tree) {
duke@1 792 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 793 boolean prevLoopPassTwo = loopPassTwo;
duke@1 794 pendingExits = new ListBuffer<PendingExit>();
duke@1 795 do {
duke@1 796 Bits uninitsEntry = uninits.dup();
duke@1 797 scanStat(tree.body);
duke@1 798 alive |= resolveContinues(tree);
duke@1 799 scanCond(tree.cond);
duke@1 800 if (log.nerrors != 0 ||
duke@1 801 loopPassTwo ||
duke@1 802 uninitsEntry.diffSet(uninitsWhenTrue).nextBit(firstadr)==-1)
duke@1 803 break;
duke@1 804 inits = initsWhenTrue;
duke@1 805 uninits = uninitsEntry.andSet(uninitsWhenTrue);
duke@1 806 loopPassTwo = true;
duke@1 807 alive = true;
duke@1 808 } while (true);
duke@1 809 loopPassTwo = prevLoopPassTwo;
duke@1 810 inits = initsWhenFalse;
duke@1 811 uninits = uninitsWhenFalse;
duke@1 812 alive = alive && !tree.cond.type.isTrue();
duke@1 813 alive |= resolveBreaks(tree, prevPendingExits);
duke@1 814 }
duke@1 815
duke@1 816 public void visitWhileLoop(JCWhileLoop tree) {
duke@1 817 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 818 boolean prevLoopPassTwo = loopPassTwo;
duke@1 819 Bits initsCond;
duke@1 820 Bits uninitsCond;
duke@1 821 pendingExits = new ListBuffer<PendingExit>();
duke@1 822 do {
duke@1 823 Bits uninitsEntry = uninits.dup();
duke@1 824 scanCond(tree.cond);
duke@1 825 initsCond = initsWhenFalse;
duke@1 826 uninitsCond = uninitsWhenFalse;
duke@1 827 inits = initsWhenTrue;
duke@1 828 uninits = uninitsWhenTrue;
duke@1 829 alive = !tree.cond.type.isFalse();
duke@1 830 scanStat(tree.body);
duke@1 831 alive |= resolveContinues(tree);
duke@1 832 if (log.nerrors != 0 ||
duke@1 833 loopPassTwo ||
duke@1 834 uninitsEntry.diffSet(uninits).nextBit(firstadr) == -1)
duke@1 835 break;
duke@1 836 uninits = uninitsEntry.andSet(uninits);
duke@1 837 loopPassTwo = true;
duke@1 838 alive = true;
duke@1 839 } while (true);
duke@1 840 loopPassTwo = prevLoopPassTwo;
duke@1 841 inits = initsCond;
duke@1 842 uninits = uninitsCond;
duke@1 843 alive = resolveBreaks(tree, prevPendingExits) ||
duke@1 844 !tree.cond.type.isTrue();
duke@1 845 }
duke@1 846
duke@1 847 public void visitForLoop(JCForLoop tree) {
duke@1 848 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 849 boolean prevLoopPassTwo = loopPassTwo;
duke@1 850 int nextadrPrev = nextadr;
duke@1 851 scanStats(tree.init);
duke@1 852 Bits initsCond;
duke@1 853 Bits uninitsCond;
duke@1 854 pendingExits = new ListBuffer<PendingExit>();
duke@1 855 do {
duke@1 856 Bits uninitsEntry = uninits.dup();
duke@1 857 if (tree.cond != null) {
duke@1 858 scanCond(tree.cond);
duke@1 859 initsCond = initsWhenFalse;
duke@1 860 uninitsCond = uninitsWhenFalse;
duke@1 861 inits = initsWhenTrue;
duke@1 862 uninits = uninitsWhenTrue;
duke@1 863 alive = !tree.cond.type.isFalse();
duke@1 864 } else {
duke@1 865 initsCond = inits.dup();
duke@1 866 initsCond.inclRange(firstadr, nextadr);
duke@1 867 uninitsCond = uninits.dup();
duke@1 868 uninitsCond.inclRange(firstadr, nextadr);
duke@1 869 alive = true;
duke@1 870 }
duke@1 871 scanStat(tree.body);
duke@1 872 alive |= resolveContinues(tree);
duke@1 873 scan(tree.step);
duke@1 874 if (log.nerrors != 0 ||
duke@1 875 loopPassTwo ||
duke@1 876 uninitsEntry.dup().diffSet(uninits).nextBit(firstadr) == -1)
duke@1 877 break;
duke@1 878 uninits = uninitsEntry.andSet(uninits);
duke@1 879 loopPassTwo = true;
duke@1 880 alive = true;
duke@1 881 } while (true);
duke@1 882 loopPassTwo = prevLoopPassTwo;
duke@1 883 inits = initsCond;
duke@1 884 uninits = uninitsCond;
duke@1 885 alive = resolveBreaks(tree, prevPendingExits) ||
duke@1 886 tree.cond != null && !tree.cond.type.isTrue();
duke@1 887 nextadr = nextadrPrev;
mcimadamore@773 888 inits.excludeFrom(nextadr);
mcimadamore@773 889 uninits.excludeFrom(nextadr);
duke@1 890 }
duke@1 891
duke@1 892 public void visitForeachLoop(JCEnhancedForLoop tree) {
duke@1 893 visitVarDef(tree.var);
duke@1 894
duke@1 895 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 896 boolean prevLoopPassTwo = loopPassTwo;
duke@1 897 int nextadrPrev = nextadr;
duke@1 898 scan(tree.expr);
duke@1 899 Bits initsStart = inits.dup();
duke@1 900 Bits uninitsStart = uninits.dup();
duke@1 901
duke@1 902 letInit(tree.pos(), tree.var.sym);
duke@1 903 pendingExits = new ListBuffer<PendingExit>();
duke@1 904 do {
duke@1 905 Bits uninitsEntry = uninits.dup();
duke@1 906 scanStat(tree.body);
duke@1 907 alive |= resolveContinues(tree);
duke@1 908 if (log.nerrors != 0 ||
duke@1 909 loopPassTwo ||
duke@1 910 uninitsEntry.diffSet(uninits).nextBit(firstadr) == -1)
duke@1 911 break;
duke@1 912 uninits = uninitsEntry.andSet(uninits);
duke@1 913 loopPassTwo = true;
duke@1 914 alive = true;
duke@1 915 } while (true);
duke@1 916 loopPassTwo = prevLoopPassTwo;
duke@1 917 inits = initsStart;
duke@1 918 uninits = uninitsStart.andSet(uninits);
duke@1 919 resolveBreaks(tree, prevPendingExits);
duke@1 920 alive = true;
duke@1 921 nextadr = nextadrPrev;
duke@1 922 }
duke@1 923
duke@1 924 public void visitLabelled(JCLabeledStatement tree) {
duke@1 925 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 926 pendingExits = new ListBuffer<PendingExit>();
duke@1 927 scanStat(tree.body);
duke@1 928 alive |= resolveBreaks(tree, prevPendingExits);
duke@1 929 }
duke@1 930
duke@1 931 public void visitSwitch(JCSwitch tree) {
duke@1 932 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 933 pendingExits = new ListBuffer<PendingExit>();
duke@1 934 int nextadrPrev = nextadr;
duke@1 935 scanExpr(tree.selector);
duke@1 936 Bits initsSwitch = inits;
duke@1 937 Bits uninitsSwitch = uninits.dup();
duke@1 938 boolean hasDefault = false;
duke@1 939 for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
duke@1 940 alive = true;
duke@1 941 inits = initsSwitch.dup();
duke@1 942 uninits = uninits.andSet(uninitsSwitch);
duke@1 943 JCCase c = l.head;
duke@1 944 if (c.pat == null)
duke@1 945 hasDefault = true;
duke@1 946 else
duke@1 947 scanExpr(c.pat);
duke@1 948 scanStats(c.stats);
duke@1 949 addVars(c.stats, initsSwitch, uninitsSwitch);
duke@1 950 // Warn about fall-through if lint switch fallthrough enabled.
duke@1 951 if (!loopPassTwo &&
duke@1 952 alive &&
duke@1 953 lint.isEnabled(Lint.LintCategory.FALLTHROUGH) &&
duke@1 954 c.stats.nonEmpty() && l.tail.nonEmpty())
jjg@612 955 log.warning(Lint.LintCategory.FALLTHROUGH,
jjg@612 956 l.tail.head.pos(),
duke@1 957 "possible.fall-through.into.case");
duke@1 958 }
duke@1 959 if (!hasDefault) {
duke@1 960 inits.andSet(initsSwitch);
duke@1 961 alive = true;
duke@1 962 }
duke@1 963 alive |= resolveBreaks(tree, prevPendingExits);
duke@1 964 nextadr = nextadrPrev;
duke@1 965 }
duke@1 966 // where
duke@1 967 /** Add any variables defined in stats to inits and uninits. */
duke@1 968 private static void addVars(List<JCStatement> stats, Bits inits,
duke@1 969 Bits uninits) {
duke@1 970 for (;stats.nonEmpty(); stats = stats.tail) {
duke@1 971 JCTree stat = stats.head;
duke@1 972 if (stat.getTag() == JCTree.VARDEF) {
duke@1 973 int adr = ((JCVariableDecl) stat).sym.adr;
duke@1 974 inits.excl(adr);
duke@1 975 uninits.incl(adr);
duke@1 976 }
duke@1 977 }
duke@1 978 }
duke@1 979
duke@1 980 public void visitTry(JCTry tree) {
duke@1 981 List<Type> caughtPrev = caught;
duke@1 982 List<Type> thrownPrev = thrown;
darcy@609 983 Map<VarSymbol, JCVariableDecl> unrefdResourcesPrev = unrefdResources;
duke@1 984 thrown = List.nil();
mcimadamore@550 985 for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
mcimadamore@550 986 List<JCExpression> subClauses = TreeInfo.isMultiCatch(l.head) ?
jjg@724 987 ((JCTypeDisjunction)l.head.param.vartype).alternatives :
mcimadamore@550 988 List.of(l.head.param.vartype);
mcimadamore@550 989 for (JCExpression ct : subClauses) {
mcimadamore@550 990 caught = chk.incl(ct.type, caught);
mcimadamore@550 991 }
mcimadamore@550 992 }
duke@1 993 Bits uninitsTryPrev = uninitsTry;
duke@1 994 ListBuffer<PendingExit> prevPendingExits = pendingExits;
duke@1 995 pendingExits = new ListBuffer<PendingExit>();
duke@1 996 Bits initsTry = inits.dup();
duke@1 997 uninitsTry = uninits.dup();
darcy@609 998 unrefdResources = new LinkedHashMap<VarSymbol, JCVariableDecl>();
darcy@609 999 for (JCTree resource : tree.resources) {
darcy@609 1000 if (resource instanceof JCVariableDecl) {
darcy@609 1001 JCVariableDecl vdecl = (JCVariableDecl) resource;
darcy@609 1002 visitVarDef(vdecl);
darcy@609 1003 unrefdResources.put(vdecl.sym, vdecl);
darcy@609 1004 } else if (resource instanceof JCExpression) {
darcy@609 1005 scanExpr((JCExpression) resource);
darcy@609 1006 } else {
darcy@609 1007 throw new AssertionError(tree); // parser error
darcy@609 1008 }
darcy@609 1009 }
darcy@609 1010 for (JCTree resource : tree.resources) {
darcy@609 1011 List<Type> closeableSupertypes = resource.type.isCompound() ?
darcy@609 1012 types.interfaces(resource.type).prepend(types.supertype(resource.type)) :
darcy@609 1013 List.of(resource.type);
darcy@609 1014 for (Type sup : closeableSupertypes) {
darcy@609 1015 if (types.asSuper(sup, syms.autoCloseableType.tsym) != null) {
mcimadamore@676 1016 Symbol closeMethod = rs.resolveQualifiedMethod(tree,
mcimadamore@617 1017 attrEnv,
mcimadamore@617 1018 sup,
mcimadamore@617 1019 names.close,
mcimadamore@617 1020 List.<Type>nil(),
mcimadamore@617 1021 List.<Type>nil());
mcimadamore@617 1022 if (closeMethod.kind == MTH) {
mcimadamore@617 1023 for (Type t : ((MethodSymbol)closeMethod).getThrownTypes()) {
mcimadamore@617 1024 markThrown(tree.body, t);
mcimadamore@617 1025 }
darcy@609 1026 }
darcy@609 1027 }
darcy@609 1028 }
darcy@609 1029 }
duke@1 1030 scanStat(tree.body);
duke@1 1031 List<Type> thrownInTry = thrown;
duke@1 1032 thrown = thrownPrev;
duke@1 1033 caught = caughtPrev;
duke@1 1034 boolean aliveEnd = alive;
duke@1 1035 uninitsTry.andSet(uninits);
duke@1 1036 Bits initsEnd = inits;
duke@1 1037 Bits uninitsEnd = uninits;
duke@1 1038 int nextadrCatch = nextadr;
duke@1 1039
darcy@609 1040 if (!unrefdResources.isEmpty() &&
mcimadamore@743 1041 lint.isEnabled(Lint.LintCategory.TRY)) {
darcy@609 1042 for (Map.Entry<VarSymbol, JCVariableDecl> e : unrefdResources.entrySet()) {
mcimadamore@743 1043 log.warning(Lint.LintCategory.TRY, e.getValue().pos(),
mcimadamore@743 1044 "try.resource.not.referenced", e.getKey());
darcy@609 1045 }
darcy@609 1046 }
darcy@609 1047
duke@1 1048 List<Type> caughtInTry = List.nil();
duke@1 1049 for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
duke@1 1050 alive = true;
duke@1 1051 JCVariableDecl param = l.head.param;
mcimadamore@550 1052 List<JCExpression> subClauses = TreeInfo.isMultiCatch(l.head) ?
jjg@724 1053 ((JCTypeDisjunction)l.head.param.vartype).alternatives :
mcimadamore@550 1054 List.of(l.head.param.vartype);
mcimadamore@550 1055 List<Type> ctypes = List.nil();
mcimadamore@550 1056 List<Type> rethrownTypes = chk.diff(thrownInTry, caughtInTry);
mcimadamore@550 1057 for (JCExpression ct : subClauses) {
mcimadamore@550 1058 Type exc = ct.type;
mcimadamore@676 1059 if (exc != syms.unknownType) {
mcimadamore@676 1060 ctypes = ctypes.append(exc);
mcimadamore@676 1061 if (types.isSameType(exc, syms.objectType))
mcimadamore@676 1062 continue;
mcimadamore@676 1063 if (chk.subset(exc, caughtInTry)) {
mcimadamore@676 1064 log.error(l.head.pos(),
mcimadamore@676 1065 "except.already.caught", exc);
mcimadamore@676 1066 } else if (!chk.isUnchecked(l.head.pos(), exc) &&
mcimadamore@676 1067 exc.tsym != syms.throwableType.tsym &&
mcimadamore@676 1068 exc.tsym != syms.exceptionType.tsym &&
mcimadamore@676 1069 !chk.intersects(exc, thrownInTry)) {
mcimadamore@676 1070 log.error(l.head.pos(),
mcimadamore@676 1071 "except.never.thrown.in.try", exc);
mcimadamore@676 1072 }
mcimadamore@676 1073 caughtInTry = chk.incl(exc, caughtInTry);
mcimadamore@550 1074 }
duke@1 1075 }
duke@1 1076 inits = initsTry.dup();
duke@1 1077 uninits = uninitsTry.dup();
duke@1 1078 scan(param);
duke@1 1079 inits.incl(param.sym.adr);
duke@1 1080 uninits.excl(param.sym.adr);
mcimadamore@735 1081 preciseRethrowTypes.put(param.sym, chk.intersect(ctypes, rethrownTypes));
duke@1 1082 scanStat(l.head.body);
duke@1 1083 initsEnd.andSet(inits);
duke@1 1084 uninitsEnd.andSet(uninits);
duke@1 1085 nextadr = nextadrCatch;
mcimadamore@735 1086 preciseRethrowTypes.remove(param.sym);
duke@1 1087 aliveEnd |= alive;
duke@1 1088 }
duke@1 1089 if (tree.finalizer != null) {
duke@1 1090 List<Type> savedThrown = thrown;
duke@1 1091 thrown = List.nil();
duke@1 1092 inits = initsTry.dup();
duke@1 1093 uninits = uninitsTry.dup();
duke@1 1094 ListBuffer<PendingExit> exits = pendingExits;
duke@1 1095 pendingExits = prevPendingExits;
duke@1 1096 alive = true;
duke@1 1097 scanStat(tree.finalizer);
duke@1 1098 if (!alive) {
duke@1 1099 // discard exits and exceptions from try and finally
duke@1 1100 thrown = chk.union(thrown, thrownPrev);
duke@1 1101 if (!loopPassTwo &&
duke@1 1102 lint.isEnabled(Lint.LintCategory.FINALLY)) {
jjg@612 1103 log.warning(Lint.LintCategory.FINALLY,
jjg@612 1104 TreeInfo.diagEndPos(tree.finalizer),
jjg@612 1105 "finally.cannot.complete");
duke@1 1106 }
duke@1 1107 } else {
duke@1 1108 thrown = chk.union(thrown, chk.diff(thrownInTry, caughtInTry));
duke@1 1109 thrown = chk.union(thrown, savedThrown);
duke@1 1110 uninits.andSet(uninitsEnd);
duke@1 1111 // FIX: this doesn't preserve source order of exits in catch
duke@1 1112 // versus finally!
duke@1 1113 while (exits.nonEmpty()) {
duke@1 1114 PendingExit exit = exits.next();
duke@1 1115 if (exit.inits != null) {
duke@1 1116 exit.inits.orSet(inits);
duke@1 1117 exit.uninits.andSet(uninits);
duke@1 1118 }
duke@1 1119 pendingExits.append(exit);
duke@1 1120 }
duke@1 1121 inits.orSet(initsEnd);
duke@1 1122 alive = aliveEnd;
duke@1 1123 }
duke@1 1124 } else {
duke@1 1125 thrown = chk.union(thrown, chk.diff(thrownInTry, caughtInTry));
duke@1 1126 inits = initsEnd;
duke@1 1127 uninits = uninitsEnd;
duke@1 1128 alive = aliveEnd;
duke@1 1129 ListBuffer<PendingExit> exits = pendingExits;
duke@1 1130 pendingExits = prevPendingExits;
duke@1 1131 while (exits.nonEmpty()) pendingExits.append(exits.next());
duke@1 1132 }
duke@1 1133 uninitsTry.andSet(uninitsTryPrev).andSet(uninits);
darcy@609 1134 unrefdResources = unrefdResourcesPrev;
duke@1 1135 }
duke@1 1136
duke@1 1137 public void visitConditional(JCConditional tree) {
duke@1 1138 scanCond(tree.cond);
duke@1 1139 Bits initsBeforeElse = initsWhenFalse;
duke@1 1140 Bits uninitsBeforeElse = uninitsWhenFalse;
duke@1 1141 inits = initsWhenTrue;
duke@1 1142 uninits = uninitsWhenTrue;
duke@1 1143 if (tree.truepart.type.tag == BOOLEAN &&
duke@1 1144 tree.falsepart.type.tag == BOOLEAN) {
duke@1 1145 // if b and c are boolean valued, then
duke@1 1146 // v is (un)assigned after a?b:c when true iff
duke@1 1147 // v is (un)assigned after b when true and
duke@1 1148 // v is (un)assigned after c when true
duke@1 1149 scanCond(tree.truepart);
duke@1 1150 Bits initsAfterThenWhenTrue = initsWhenTrue.dup();
duke@1 1151 Bits initsAfterThenWhenFalse = initsWhenFalse.dup();
duke@1 1152 Bits uninitsAfterThenWhenTrue = uninitsWhenTrue.dup();
duke@1 1153 Bits uninitsAfterThenWhenFalse = uninitsWhenFalse.dup();
duke@1 1154 inits = initsBeforeElse;
duke@1 1155 uninits = uninitsBeforeElse;
duke@1 1156 scanCond(tree.falsepart);
duke@1 1157 initsWhenTrue.andSet(initsAfterThenWhenTrue);
duke@1 1158 initsWhenFalse.andSet(initsAfterThenWhenFalse);
duke@1 1159 uninitsWhenTrue.andSet(uninitsAfterThenWhenTrue);
duke@1 1160 uninitsWhenFalse.andSet(uninitsAfterThenWhenFalse);
duke@1 1161 } else {
duke@1 1162 scanExpr(tree.truepart);
duke@1 1163 Bits initsAfterThen = inits.dup();
duke@1 1164 Bits uninitsAfterThen = uninits.dup();
duke@1 1165 inits = initsBeforeElse;
duke@1 1166 uninits = uninitsBeforeElse;
duke@1 1167 scanExpr(tree.falsepart);
duke@1 1168 inits.andSet(initsAfterThen);
duke@1 1169 uninits.andSet(uninitsAfterThen);
duke@1 1170 }
duke@1 1171 }
duke@1 1172
duke@1 1173 public void visitIf(JCIf tree) {
duke@1 1174 scanCond(tree.cond);
duke@1 1175 Bits initsBeforeElse = initsWhenFalse;
duke@1 1176 Bits uninitsBeforeElse = uninitsWhenFalse;
duke@1 1177 inits = initsWhenTrue;
duke@1 1178 uninits = uninitsWhenTrue;
duke@1 1179 scanStat(tree.thenpart);
duke@1 1180 if (tree.elsepart != null) {
duke@1 1181 boolean aliveAfterThen = alive;
duke@1 1182 alive = true;
duke@1 1183 Bits initsAfterThen = inits.dup();
duke@1 1184 Bits uninitsAfterThen = uninits.dup();
duke@1 1185 inits = initsBeforeElse;
duke@1 1186 uninits = uninitsBeforeElse;
duke@1 1187 scanStat(tree.elsepart);
duke@1 1188 inits.andSet(initsAfterThen);
duke@1 1189 uninits.andSet(uninitsAfterThen);
duke@1 1190 alive = alive | aliveAfterThen;
duke@1 1191 } else {
duke@1 1192 inits.andSet(initsBeforeElse);
duke@1 1193 uninits.andSet(uninitsBeforeElse);
duke@1 1194 alive = true;
duke@1 1195 }
duke@1 1196 }
duke@1 1197
duke@1 1198
duke@1 1199
duke@1 1200 public void visitBreak(JCBreak tree) {
duke@1 1201 recordExit(tree);
duke@1 1202 }
duke@1 1203
duke@1 1204 public void visitContinue(JCContinue tree) {
duke@1 1205 recordExit(tree);
duke@1 1206 }
duke@1 1207
duke@1 1208 public void visitReturn(JCReturn tree) {
duke@1 1209 scanExpr(tree.expr);
duke@1 1210 // if not initial constructor, should markDead instead of recordExit
duke@1 1211 recordExit(tree);
duke@1 1212 }
duke@1 1213
duke@1 1214 public void visitThrow(JCThrow tree) {
duke@1 1215 scanExpr(tree.expr);
mcimadamore@550 1216 Symbol sym = TreeInfo.symbol(tree.expr);
mcimadamore@550 1217 if (sym != null &&
mcimadamore@550 1218 sym.kind == VAR &&
mcimadamore@735 1219 (sym.flags() & (FINAL | EFFECTIVELY_FINAL)) != 0 &&
mcimadamore@735 1220 preciseRethrowTypes.get(sym) != null &&
mcimadamore@550 1221 allowRethrowAnalysis) {
mcimadamore@735 1222 for (Type t : preciseRethrowTypes.get(sym)) {
mcimadamore@550 1223 markThrown(tree, t);
mcimadamore@550 1224 }
mcimadamore@550 1225 }
mcimadamore@550 1226 else {
mcimadamore@550 1227 markThrown(tree, tree.expr.type);
mcimadamore@550 1228 }
duke@1 1229 markDead();
duke@1 1230 }
duke@1 1231
duke@1 1232 public void visitApply(JCMethodInvocation tree) {
duke@1 1233 scanExpr(tree.meth);
duke@1 1234 scanExprs(tree.args);
duke@1 1235 for (List<Type> l = tree.meth.type.getThrownTypes(); l.nonEmpty(); l = l.tail)
duke@1 1236 markThrown(tree, l.head);
duke@1 1237 }
duke@1 1238
duke@1 1239 public void visitNewClass(JCNewClass tree) {
duke@1 1240 scanExpr(tree.encl);
duke@1 1241 scanExprs(tree.args);
duke@1 1242 // scan(tree.def);
mcimadamore@186 1243 for (List<Type> l = tree.constructorType.getThrownTypes();
duke@1 1244 l.nonEmpty();
mcimadamore@186 1245 l = l.tail) {
duke@1 1246 markThrown(tree, l.head);
mcimadamore@186 1247 }
mcimadamore@186 1248 List<Type> caughtPrev = caught;
mcimadamore@186 1249 try {
mcimadamore@186 1250 // If the new class expression defines an anonymous class,
mcimadamore@186 1251 // analysis of the anonymous constructor may encounter thrown
mcimadamore@186 1252 // types which are unsubstituted type variables.
mcimadamore@186 1253 // However, since the constructor's actual thrown types have
mcimadamore@186 1254 // already been marked as thrown, it is safe to simply include
mcimadamore@186 1255 // each of the constructor's formal thrown types in the set of
mcimadamore@186 1256 // 'caught/declared to be thrown' types, for the duration of
mcimadamore@186 1257 // the class def analysis.
mcimadamore@186 1258 if (tree.def != null)
mcimadamore@186 1259 for (List<Type> l = tree.constructor.type.getThrownTypes();
mcimadamore@186 1260 l.nonEmpty();
mcimadamore@186 1261 l = l.tail) {
mcimadamore@186 1262 caught = chk.incl(l.head, caught);
mcimadamore@186 1263 }
mcimadamore@186 1264 scan(tree.def);
mcimadamore@186 1265 }
mcimadamore@186 1266 finally {
mcimadamore@186 1267 caught = caughtPrev;
mcimadamore@186 1268 }
duke@1 1269 }
duke@1 1270
duke@1 1271 public void visitNewArray(JCNewArray tree) {
duke@1 1272 scanExprs(tree.dims);
duke@1 1273 scanExprs(tree.elems);
duke@1 1274 }
duke@1 1275
duke@1 1276 public void visitAssert(JCAssert tree) {
duke@1 1277 Bits initsExit = inits.dup();
duke@1 1278 Bits uninitsExit = uninits.dup();
duke@1 1279 scanCond(tree.cond);
duke@1 1280 uninitsExit.andSet(uninitsWhenTrue);
duke@1 1281 if (tree.detail != null) {
duke@1 1282 inits = initsWhenFalse;
duke@1 1283 uninits = uninitsWhenFalse;
duke@1 1284 scanExpr(tree.detail);
duke@1 1285 }
duke@1 1286 inits = initsExit;
duke@1 1287 uninits = uninitsExit;
duke@1 1288 }
duke@1 1289
duke@1 1290 public void visitAssign(JCAssign tree) {
duke@1 1291 JCTree lhs = TreeInfo.skipParens(tree.lhs);
duke@1 1292 if (!(lhs instanceof JCIdent)) scanExpr(lhs);
duke@1 1293 scanExpr(tree.rhs);
duke@1 1294 letInit(lhs);
duke@1 1295 }
duke@1 1296
duke@1 1297 public void visitAssignop(JCAssignOp tree) {
duke@1 1298 scanExpr(tree.lhs);
duke@1 1299 scanExpr(tree.rhs);
duke@1 1300 letInit(tree.lhs);
duke@1 1301 }
duke@1 1302
duke@1 1303 public void visitUnary(JCUnary tree) {
duke@1 1304 switch (tree.getTag()) {
duke@1 1305 case JCTree.NOT:
duke@1 1306 scanCond(tree.arg);
duke@1 1307 Bits t = initsWhenFalse;
duke@1 1308 initsWhenFalse = initsWhenTrue;
duke@1 1309 initsWhenTrue = t;
duke@1 1310 t = uninitsWhenFalse;
duke@1 1311 uninitsWhenFalse = uninitsWhenTrue;
duke@1 1312 uninitsWhenTrue = t;
duke@1 1313 break;
duke@1 1314 case JCTree.PREINC: case JCTree.POSTINC:
duke@1 1315 case JCTree.PREDEC: case JCTree.POSTDEC:
duke@1 1316 scanExpr(tree.arg);
duke@1 1317 letInit(tree.arg);
duke@1 1318 break;
duke@1 1319 default:
duke@1 1320 scanExpr(tree.arg);
duke@1 1321 }
duke@1 1322 }
duke@1 1323
duke@1 1324 public void visitBinary(JCBinary tree) {
duke@1 1325 switch (tree.getTag()) {
duke@1 1326 case JCTree.AND:
duke@1 1327 scanCond(tree.lhs);
duke@1 1328 Bits initsWhenFalseLeft = initsWhenFalse;
duke@1 1329 Bits uninitsWhenFalseLeft = uninitsWhenFalse;
duke@1 1330 inits = initsWhenTrue;
duke@1 1331 uninits = uninitsWhenTrue;
duke@1 1332 scanCond(tree.rhs);
duke@1 1333 initsWhenFalse.andSet(initsWhenFalseLeft);
duke@1 1334 uninitsWhenFalse.andSet(uninitsWhenFalseLeft);
duke@1 1335 break;
duke@1 1336 case JCTree.OR:
duke@1 1337 scanCond(tree.lhs);
duke@1 1338 Bits initsWhenTrueLeft = initsWhenTrue;
duke@1 1339 Bits uninitsWhenTrueLeft = uninitsWhenTrue;
duke@1 1340 inits = initsWhenFalse;
duke@1 1341 uninits = uninitsWhenFalse;
duke@1 1342 scanCond(tree.rhs);
duke@1 1343 initsWhenTrue.andSet(initsWhenTrueLeft);
duke@1 1344 uninitsWhenTrue.andSet(uninitsWhenTrueLeft);
duke@1 1345 break;
duke@1 1346 default:
duke@1 1347 scanExpr(tree.lhs);
duke@1 1348 scanExpr(tree.rhs);
duke@1 1349 }
duke@1 1350 }
duke@1 1351
duke@1 1352 public void visitIdent(JCIdent tree) {
darcy@609 1353 if (tree.sym.kind == VAR) {
duke@1 1354 checkInit(tree.pos(), (VarSymbol)tree.sym);
darcy@609 1355 referenced(tree.sym);
darcy@609 1356 }
darcy@609 1357 }
darcy@609 1358
darcy@609 1359 void referenced(Symbol sym) {
darcy@609 1360 if (unrefdResources != null && unrefdResources.containsKey(sym)) {
darcy@609 1361 unrefdResources.remove(sym);
darcy@609 1362 }
duke@1 1363 }
duke@1 1364
duke@1 1365 public void visitTypeCast(JCTypeCast tree) {
duke@1 1366 super.visitTypeCast(tree);
duke@1 1367 if (!tree.type.isErroneous()
duke@1 1368 && lint.isEnabled(Lint.LintCategory.CAST)
jjg@308 1369 && types.isSameType(tree.expr.type, tree.clazz.type)
mcimadamore@742 1370 && !is292targetTypeCast(tree)) {
jjg@612 1371 log.warning(Lint.LintCategory.CAST,
jjg@612 1372 tree.pos(), "redundant.cast", tree.expr.type);
duke@1 1373 }
duke@1 1374 }
mcimadamore@742 1375 //where
mcimadamore@742 1376 private boolean is292targetTypeCast(JCTypeCast tree) {
mcimadamore@742 1377 boolean is292targetTypeCast = false;
mcimadamore@820 1378 JCExpression expr = TreeInfo.skipParens(tree.expr);
mcimadamore@820 1379 if (expr.getTag() == JCTree.APPLY) {
mcimadamore@820 1380 JCMethodInvocation apply = (JCMethodInvocation)expr;
mcimadamore@742 1381 Symbol sym = TreeInfo.symbol(apply.meth);
mcimadamore@742 1382 is292targetTypeCast = sym != null &&
mcimadamore@742 1383 sym.kind == MTH &&
mcimadamore@742 1384 (sym.flags() & POLYMORPHIC_SIGNATURE) != 0;
mcimadamore@742 1385 }
mcimadamore@742 1386 return is292targetTypeCast;
mcimadamore@742 1387 }
duke@1 1388
duke@1 1389 public void visitTopLevel(JCCompilationUnit tree) {
duke@1 1390 // Do nothing for TopLevel since each class is visited individually
duke@1 1391 }
duke@1 1392
duke@1 1393 /**************************************************************************
duke@1 1394 * main method
duke@1 1395 *************************************************************************/
duke@1 1396
duke@1 1397 /** Perform definite assignment/unassignment analysis on a tree.
duke@1 1398 */
mcimadamore@617 1399 public void analyzeTree(Env<AttrContext> env, TreeMaker make) {
duke@1 1400 try {
mcimadamore@617 1401 attrEnv = env;
mcimadamore@617 1402 JCTree tree = env.tree;
duke@1 1403 this.make = make;
duke@1 1404 inits = new Bits();
duke@1 1405 uninits = new Bits();
duke@1 1406 uninitsTry = new Bits();
duke@1 1407 initsWhenTrue = initsWhenFalse =
duke@1 1408 uninitsWhenTrue = uninitsWhenFalse = null;
duke@1 1409 if (vars == null)
duke@1 1410 vars = new VarSymbol[32];
duke@1 1411 else
duke@1 1412 for (int i=0; i<vars.length; i++)
duke@1 1413 vars[i] = null;
duke@1 1414 firstadr = 0;
duke@1 1415 nextadr = 0;
duke@1 1416 pendingExits = new ListBuffer<PendingExit>();
mcimadamore@735 1417 preciseRethrowTypes = new HashMap<Symbol, List<Type>>();
duke@1 1418 alive = true;
duke@1 1419 this.thrown = this.caught = null;
duke@1 1420 this.classDef = null;
duke@1 1421 scan(tree);
duke@1 1422 } finally {
duke@1 1423 // note that recursive invocations of this method fail hard
duke@1 1424 inits = uninits = uninitsTry = null;
duke@1 1425 initsWhenTrue = initsWhenFalse =
duke@1 1426 uninitsWhenTrue = uninitsWhenFalse = null;
duke@1 1427 if (vars != null) for (int i=0; i<vars.length; i++)
duke@1 1428 vars[i] = null;
duke@1 1429 firstadr = 0;
duke@1 1430 nextadr = 0;
duke@1 1431 pendingExits = null;
duke@1 1432 this.make = null;
duke@1 1433 this.thrown = this.caught = null;
duke@1 1434 this.classDef = null;
duke@1 1435 }
duke@1 1436 }
duke@1 1437 }

mercurial