src/share/classes/com/sun/tools/javac/comp/Check.java

Mon, 09 Mar 2009 23:53:41 -0700

author
tbell
date
Mon, 09 Mar 2009 23:53:41 -0700
changeset 240
8c55d5b0ed71
parent 229
03bcd66bd8e7
parent 236
84a18d7da478
child 252
5caa6c45936a
permissions
-rw-r--r--

Merge

duke@1 1 /*
xdono@229 2 * Copyright 1999-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
duke@1 7 * published by the Free Software Foundation. Sun designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
duke@1 9 * by Sun in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
duke@1 21 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@1 22 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@1 23 * have any questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.comp;
duke@1 27
duke@1 28 import java.util.*;
duke@1 29 import java.util.Set;
duke@1 30
duke@1 31 import com.sun.tools.javac.code.*;
duke@1 32 import com.sun.tools.javac.jvm.*;
duke@1 33 import com.sun.tools.javac.tree.*;
duke@1 34 import com.sun.tools.javac.util.*;
duke@1 35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 36 import com.sun.tools.javac.util.List;
duke@1 37
duke@1 38 import com.sun.tools.javac.tree.JCTree.*;
duke@1 39 import com.sun.tools.javac.code.Lint;
duke@1 40 import com.sun.tools.javac.code.Lint.LintCategory;
duke@1 41 import com.sun.tools.javac.code.Type.*;
duke@1 42 import com.sun.tools.javac.code.Symbol.*;
duke@1 43
duke@1 44 import static com.sun.tools.javac.code.Flags.*;
duke@1 45 import static com.sun.tools.javac.code.Kinds.*;
duke@1 46 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 47
duke@1 48 /** Type checking helper class for the attribution phase.
duke@1 49 *
duke@1 50 * <p><b>This is NOT part of any API supported by Sun Microsystems. If
duke@1 51 * you write code that depends on this, you do so at your own risk.
duke@1 52 * This code and its internal interfaces are subject to change or
duke@1 53 * deletion without notice.</b>
duke@1 54 */
duke@1 55 public class Check {
duke@1 56 protected static final Context.Key<Check> checkKey =
duke@1 57 new Context.Key<Check>();
duke@1 58
jjg@113 59 private final Names names;
duke@1 60 private final Log log;
duke@1 61 private final Symtab syms;
duke@1 62 private final Infer infer;
duke@1 63 private final Target target;
duke@1 64 private final Source source;
duke@1 65 private final Types types;
mcimadamore@89 66 private final JCDiagnostic.Factory diags;
duke@1 67 private final boolean skipAnnotations;
duke@1 68 private final TreeInfo treeinfo;
duke@1 69
duke@1 70 // The set of lint options currently in effect. It is initialized
duke@1 71 // from the context, and then is set/reset as needed by Attr as it
duke@1 72 // visits all the various parts of the trees during attribution.
duke@1 73 private Lint lint;
duke@1 74
duke@1 75 public static Check instance(Context context) {
duke@1 76 Check instance = context.get(checkKey);
duke@1 77 if (instance == null)
duke@1 78 instance = new Check(context);
duke@1 79 return instance;
duke@1 80 }
duke@1 81
duke@1 82 protected Check(Context context) {
duke@1 83 context.put(checkKey, this);
duke@1 84
jjg@113 85 names = Names.instance(context);
duke@1 86 log = Log.instance(context);
duke@1 87 syms = Symtab.instance(context);
duke@1 88 infer = Infer.instance(context);
duke@1 89 this.types = Types.instance(context);
mcimadamore@89 90 diags = JCDiagnostic.Factory.instance(context);
duke@1 91 Options options = Options.instance(context);
duke@1 92 target = Target.instance(context);
duke@1 93 source = Source.instance(context);
duke@1 94 lint = Lint.instance(context);
duke@1 95 treeinfo = TreeInfo.instance(context);
duke@1 96
duke@1 97 Source source = Source.instance(context);
duke@1 98 allowGenerics = source.allowGenerics();
duke@1 99 allowAnnotations = source.allowAnnotations();
duke@1 100 complexInference = options.get("-complexinference") != null;
duke@1 101 skipAnnotations = options.get("skipAnnotations") != null;
duke@1 102
duke@1 103 boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
duke@1 104 boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
jjg@60 105 boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
duke@1 106
jjg@60 107 deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
jjg@60 108 enforceMandatoryWarnings, "deprecated");
jjg@60 109 uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
jjg@60 110 enforceMandatoryWarnings, "unchecked");
duke@1 111 }
duke@1 112
duke@1 113 /** Switch: generics enabled?
duke@1 114 */
duke@1 115 boolean allowGenerics;
duke@1 116
duke@1 117 /** Switch: annotations enabled?
duke@1 118 */
duke@1 119 boolean allowAnnotations;
duke@1 120
duke@1 121 /** Switch: -complexinference option set?
duke@1 122 */
duke@1 123 boolean complexInference;
duke@1 124
duke@1 125 /** A table mapping flat names of all compiled classes in this run to their
duke@1 126 * symbols; maintained from outside.
duke@1 127 */
duke@1 128 public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
duke@1 129
duke@1 130 /** A handler for messages about deprecated usage.
duke@1 131 */
duke@1 132 private MandatoryWarningHandler deprecationHandler;
duke@1 133
duke@1 134 /** A handler for messages about unchecked or unsafe usage.
duke@1 135 */
duke@1 136 private MandatoryWarningHandler uncheckedHandler;
duke@1 137
duke@1 138
duke@1 139 /* *************************************************************************
duke@1 140 * Errors and Warnings
duke@1 141 **************************************************************************/
duke@1 142
duke@1 143 Lint setLint(Lint newLint) {
duke@1 144 Lint prev = lint;
duke@1 145 lint = newLint;
duke@1 146 return prev;
duke@1 147 }
duke@1 148
duke@1 149 /** Warn about deprecated symbol.
duke@1 150 * @param pos Position to be used for error reporting.
duke@1 151 * @param sym The deprecated symbol.
duke@1 152 */
duke@1 153 void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
duke@1 154 if (!lint.isSuppressed(LintCategory.DEPRECATION))
duke@1 155 deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
duke@1 156 }
duke@1 157
duke@1 158 /** Warn about unchecked operation.
duke@1 159 * @param pos Position to be used for error reporting.
duke@1 160 * @param msg A string describing the problem.
duke@1 161 */
duke@1 162 public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
duke@1 163 if (!lint.isSuppressed(LintCategory.UNCHECKED))
duke@1 164 uncheckedHandler.report(pos, msg, args);
duke@1 165 }
duke@1 166
duke@1 167 /**
duke@1 168 * Report any deferred diagnostics.
duke@1 169 */
duke@1 170 public void reportDeferredDiagnostics() {
duke@1 171 deprecationHandler.reportDeferredDiagnostic();
duke@1 172 uncheckedHandler.reportDeferredDiagnostic();
duke@1 173 }
duke@1 174
duke@1 175
duke@1 176 /** Report a failure to complete a class.
duke@1 177 * @param pos Position to be used for error reporting.
duke@1 178 * @param ex The failure to report.
duke@1 179 */
duke@1 180 public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
jjg@12 181 log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
duke@1 182 if (ex instanceof ClassReader.BadClassFile) throw new Abort();
duke@1 183 else return syms.errType;
duke@1 184 }
duke@1 185
duke@1 186 /** Report a type error.
duke@1 187 * @param pos Position to be used for error reporting.
duke@1 188 * @param problem A string describing the error.
duke@1 189 * @param found The type that was found.
duke@1 190 * @param req The type that was required.
duke@1 191 */
duke@1 192 Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) {
duke@1 193 log.error(pos, "prob.found.req",
duke@1 194 problem, found, req);
jjg@110 195 return types.createErrorType(found);
duke@1 196 }
duke@1 197
duke@1 198 Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) {
duke@1 199 log.error(pos, "prob.found.req.1", problem, found, req, explanation);
jjg@110 200 return types.createErrorType(found);
duke@1 201 }
duke@1 202
duke@1 203 /** Report an error that wrong type tag was found.
duke@1 204 * @param pos Position to be used for error reporting.
duke@1 205 * @param required An internationalized string describing the type tag
duke@1 206 * required.
duke@1 207 * @param found The type that was found.
duke@1 208 */
duke@1 209 Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
duke@1 210 log.error(pos, "type.found.req", found, required);
jjg@110 211 return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
duke@1 212 }
duke@1 213
duke@1 214 /** Report an error that symbol cannot be referenced before super
duke@1 215 * has been called.
duke@1 216 * @param pos Position to be used for error reporting.
duke@1 217 * @param sym The referenced symbol.
duke@1 218 */
duke@1 219 void earlyRefError(DiagnosticPosition pos, Symbol sym) {
duke@1 220 log.error(pos, "cant.ref.before.ctor.called", sym);
duke@1 221 }
duke@1 222
duke@1 223 /** Report duplicate declaration error.
duke@1 224 */
duke@1 225 void duplicateError(DiagnosticPosition pos, Symbol sym) {
duke@1 226 if (!sym.type.isErroneous()) {
duke@1 227 log.error(pos, "already.defined", sym, sym.location());
duke@1 228 }
duke@1 229 }
duke@1 230
duke@1 231 /** Report array/varargs duplicate declaration
duke@1 232 */
duke@1 233 void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
duke@1 234 if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
duke@1 235 log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
duke@1 236 }
duke@1 237 }
duke@1 238
duke@1 239 /* ************************************************************************
duke@1 240 * duplicate declaration checking
duke@1 241 *************************************************************************/
duke@1 242
duke@1 243 /** Check that variable does not hide variable with same name in
duke@1 244 * immediately enclosing local scope.
duke@1 245 * @param pos Position for error reporting.
duke@1 246 * @param v The symbol.
duke@1 247 * @param s The scope.
duke@1 248 */
duke@1 249 void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
duke@1 250 if (s.next != null) {
duke@1 251 for (Scope.Entry e = s.next.lookup(v.name);
duke@1 252 e.scope != null && e.sym.owner == v.owner;
duke@1 253 e = e.next()) {
duke@1 254 if (e.sym.kind == VAR &&
duke@1 255 (e.sym.owner.kind & (VAR | MTH)) != 0 &&
duke@1 256 v.name != names.error) {
duke@1 257 duplicateError(pos, e.sym);
duke@1 258 return;
duke@1 259 }
duke@1 260 }
duke@1 261 }
duke@1 262 }
duke@1 263
duke@1 264 /** Check that a class or interface does not hide a class or
duke@1 265 * interface with same name in immediately enclosing local scope.
duke@1 266 * @param pos Position for error reporting.
duke@1 267 * @param c The symbol.
duke@1 268 * @param s The scope.
duke@1 269 */
duke@1 270 void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
duke@1 271 if (s.next != null) {
duke@1 272 for (Scope.Entry e = s.next.lookup(c.name);
duke@1 273 e.scope != null && e.sym.owner == c.owner;
duke@1 274 e = e.next()) {
duke@1 275 if (e.sym.kind == TYP &&
duke@1 276 (e.sym.owner.kind & (VAR | MTH)) != 0 &&
duke@1 277 c.name != names.error) {
duke@1 278 duplicateError(pos, e.sym);
duke@1 279 return;
duke@1 280 }
duke@1 281 }
duke@1 282 }
duke@1 283 }
duke@1 284
duke@1 285 /** Check that class does not have the same name as one of
duke@1 286 * its enclosing classes, or as a class defined in its enclosing scope.
duke@1 287 * return true if class is unique in its enclosing scope.
duke@1 288 * @param pos Position for error reporting.
duke@1 289 * @param name The class name.
duke@1 290 * @param s The enclosing scope.
duke@1 291 */
duke@1 292 boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
duke@1 293 for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
duke@1 294 if (e.sym.kind == TYP && e.sym.name != names.error) {
duke@1 295 duplicateError(pos, e.sym);
duke@1 296 return false;
duke@1 297 }
duke@1 298 }
duke@1 299 for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
duke@1 300 if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
duke@1 301 duplicateError(pos, sym);
duke@1 302 return true;
duke@1 303 }
duke@1 304 }
duke@1 305 return true;
duke@1 306 }
duke@1 307
duke@1 308 /* *************************************************************************
duke@1 309 * Class name generation
duke@1 310 **************************************************************************/
duke@1 311
duke@1 312 /** Return name of local class.
duke@1 313 * This is of the form <enclClass> $ n <classname>
duke@1 314 * where
duke@1 315 * enclClass is the flat name of the enclosing class,
duke@1 316 * classname is the simple name of the local class
duke@1 317 */
duke@1 318 Name localClassName(ClassSymbol c) {
duke@1 319 for (int i=1; ; i++) {
duke@1 320 Name flatname = names.
duke@1 321 fromString("" + c.owner.enclClass().flatname +
duke@1 322 target.syntheticNameChar() + i +
duke@1 323 c.name);
duke@1 324 if (compiled.get(flatname) == null) return flatname;
duke@1 325 }
duke@1 326 }
duke@1 327
duke@1 328 /* *************************************************************************
duke@1 329 * Type Checking
duke@1 330 **************************************************************************/
duke@1 331
duke@1 332 /** Check that a given type is assignable to a given proto-type.
duke@1 333 * If it is, return the type, otherwise return errType.
duke@1 334 * @param pos Position to be used for error reporting.
duke@1 335 * @param found The type that was found.
duke@1 336 * @param req The type that was required.
duke@1 337 */
duke@1 338 Type checkType(DiagnosticPosition pos, Type found, Type req) {
duke@1 339 if (req.tag == ERROR)
duke@1 340 return req;
duke@1 341 if (found.tag == FORALL)
duke@1 342 return instantiatePoly(pos, (ForAll)found, req, convertWarner(pos, found, req));
duke@1 343 if (req.tag == NONE)
duke@1 344 return found;
duke@1 345 if (types.isAssignable(found, req, convertWarner(pos, found, req)))
duke@1 346 return found;
duke@1 347 if (found.tag <= DOUBLE && req.tag <= DOUBLE)
mcimadamore@89 348 return typeError(pos, diags.fragment("possible.loss.of.precision"), found, req);
duke@1 349 if (found.isSuperBound()) {
duke@1 350 log.error(pos, "assignment.from.super-bound", found);
jjg@110 351 return types.createErrorType(found);
duke@1 352 }
duke@1 353 if (req.isExtendsBound()) {
duke@1 354 log.error(pos, "assignment.to.extends-bound", req);
jjg@110 355 return types.createErrorType(found);
duke@1 356 }
mcimadamore@89 357 return typeError(pos, diags.fragment("incompatible.types"), found, req);
duke@1 358 }
duke@1 359
duke@1 360 /** Instantiate polymorphic type to some prototype, unless
duke@1 361 * prototype is `anyPoly' in which case polymorphic type
duke@1 362 * is returned unchanged.
duke@1 363 */
duke@1 364 Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) {
duke@1 365 if (pt == Infer.anyPoly && complexInference) {
duke@1 366 return t;
duke@1 367 } else if (pt == Infer.anyPoly || pt.tag == NONE) {
duke@1 368 Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType;
duke@1 369 return instantiatePoly(pos, t, newpt, warn);
duke@1 370 } else if (pt.tag == ERROR) {
duke@1 371 return pt;
duke@1 372 } else {
duke@1 373 try {
duke@1 374 return infer.instantiateExpr(t, pt, warn);
duke@1 375 } catch (Infer.NoInstanceException ex) {
duke@1 376 if (ex.isAmbiguous) {
duke@1 377 JCDiagnostic d = ex.getDiagnostic();
duke@1 378 log.error(pos,
duke@1 379 "undetermined.type" + (d!=null ? ".1" : ""),
duke@1 380 t, d);
jjg@110 381 return types.createErrorType(pt);
duke@1 382 } else {
duke@1 383 JCDiagnostic d = ex.getDiagnostic();
duke@1 384 return typeError(pos,
mcimadamore@89 385 diags.fragment("incompatible.types" + (d!=null ? ".1" : ""), d),
duke@1 386 t, pt);
duke@1 387 }
duke@1 388 }
duke@1 389 }
duke@1 390 }
duke@1 391
duke@1 392 /** Check that a given type can be cast to a given target type.
duke@1 393 * Return the result of the cast.
duke@1 394 * @param pos Position to be used for error reporting.
duke@1 395 * @param found The type that is being cast.
duke@1 396 * @param req The target type of the cast.
duke@1 397 */
duke@1 398 Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
duke@1 399 if (found.tag == FORALL) {
duke@1 400 instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req));
duke@1 401 return req;
duke@1 402 } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
duke@1 403 return req;
duke@1 404 } else {
duke@1 405 return typeError(pos,
mcimadamore@89 406 diags.fragment("inconvertible.types"),
duke@1 407 found, req);
duke@1 408 }
duke@1 409 }
duke@1 410 //where
duke@1 411 /** Is type a type variable, or a (possibly multi-dimensional) array of
duke@1 412 * type variables?
duke@1 413 */
duke@1 414 boolean isTypeVar(Type t) {
duke@1 415 return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
duke@1 416 }
duke@1 417
duke@1 418 /** Check that a type is within some bounds.
duke@1 419 *
duke@1 420 * Used in TypeApply to verify that, e.g., X in V<X> is a valid
duke@1 421 * type argument.
duke@1 422 * @param pos Position to be used for error reporting.
duke@1 423 * @param a The type that should be bounded by bs.
duke@1 424 * @param bs The bound.
duke@1 425 */
duke@1 426 private void checkExtends(DiagnosticPosition pos, Type a, TypeVar bs) {
mcimadamore@154 427 if (a.isUnbound()) {
mcimadamore@154 428 return;
mcimadamore@154 429 } else if (a.tag != WILDCARD) {
mcimadamore@154 430 a = types.upperBound(a);
mcimadamore@154 431 for (List<Type> l = types.getBounds(bs); l.nonEmpty(); l = l.tail) {
mcimadamore@154 432 if (!types.isSubtype(a, l.head)) {
mcimadamore@154 433 log.error(pos, "not.within.bounds", a);
mcimadamore@154 434 return;
mcimadamore@154 435 }
mcimadamore@154 436 }
mcimadamore@154 437 } else if (a.isExtendsBound()) {
mcimadamore@154 438 if (!types.isCastable(bs.getUpperBound(), types.upperBound(a), Warner.noWarnings))
mcimadamore@154 439 log.error(pos, "not.within.bounds", a);
mcimadamore@154 440 } else if (a.isSuperBound()) {
mcimadamore@154 441 if (types.notSoftSubtype(types.lowerBound(a), bs.getUpperBound()))
mcimadamore@154 442 log.error(pos, "not.within.bounds", a);
mcimadamore@154 443 }
mcimadamore@154 444 }
mcimadamore@154 445
mcimadamore@154 446 /** Check that a type is within some bounds.
mcimadamore@154 447 *
mcimadamore@154 448 * Used in TypeApply to verify that, e.g., X in V<X> is a valid
mcimadamore@154 449 * type argument.
mcimadamore@154 450 * @param pos Position to be used for error reporting.
mcimadamore@154 451 * @param a The type that should be bounded by bs.
mcimadamore@154 452 * @param bs The bound.
mcimadamore@154 453 */
mcimadamore@154 454 private void checkCapture(JCTypeApply tree) {
mcimadamore@154 455 List<JCExpression> args = tree.getTypeArguments();
mcimadamore@154 456 for (Type arg : types.capture(tree.type).getTypeArguments()) {
mcimadamore@154 457 if (arg.tag == TYPEVAR && arg.getUpperBound().isErroneous()) {
mcimadamore@154 458 log.error(args.head.pos, "not.within.bounds", args.head.type);
mcimadamore@154 459 break;
mcimadamore@79 460 }
mcimadamore@154 461 args = args.tail;
mcimadamore@79 462 }
mcimadamore@154 463 }
duke@1 464
duke@1 465 /** Check that type is different from 'void'.
duke@1 466 * @param pos Position to be used for error reporting.
duke@1 467 * @param t The type to be checked.
duke@1 468 */
duke@1 469 Type checkNonVoid(DiagnosticPosition pos, Type t) {
duke@1 470 if (t.tag == VOID) {
duke@1 471 log.error(pos, "void.not.allowed.here");
jjg@110 472 return types.createErrorType(t);
duke@1 473 } else {
duke@1 474 return t;
duke@1 475 }
duke@1 476 }
duke@1 477
duke@1 478 /** Check that type is a class or interface type.
duke@1 479 * @param pos Position to be used for error reporting.
duke@1 480 * @param t The type to be checked.
duke@1 481 */
duke@1 482 Type checkClassType(DiagnosticPosition pos, Type t) {
duke@1 483 if (t.tag != CLASS && t.tag != ERROR)
duke@1 484 return typeTagError(pos,
mcimadamore@89 485 diags.fragment("type.req.class"),
duke@1 486 (t.tag == TYPEVAR)
mcimadamore@89 487 ? diags.fragment("type.parameter", t)
duke@1 488 : t);
duke@1 489 else
duke@1 490 return t;
duke@1 491 }
duke@1 492
duke@1 493 /** Check that type is a class or interface type.
duke@1 494 * @param pos Position to be used for error reporting.
duke@1 495 * @param t The type to be checked.
duke@1 496 * @param noBounds True if type bounds are illegal here.
duke@1 497 */
duke@1 498 Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
duke@1 499 t = checkClassType(pos, t);
duke@1 500 if (noBounds && t.isParameterized()) {
duke@1 501 List<Type> args = t.getTypeArguments();
duke@1 502 while (args.nonEmpty()) {
duke@1 503 if (args.head.tag == WILDCARD)
duke@1 504 return typeTagError(pos,
duke@1 505 log.getLocalizedString("type.req.exact"),
duke@1 506 args.head);
duke@1 507 args = args.tail;
duke@1 508 }
duke@1 509 }
duke@1 510 return t;
duke@1 511 }
duke@1 512
duke@1 513 /** Check that type is a reifiable class, interface or array type.
duke@1 514 * @param pos Position to be used for error reporting.
duke@1 515 * @param t The type to be checked.
duke@1 516 */
duke@1 517 Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
duke@1 518 if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
duke@1 519 return typeTagError(pos,
mcimadamore@89 520 diags.fragment("type.req.class.array"),
duke@1 521 t);
duke@1 522 } else if (!types.isReifiable(t)) {
duke@1 523 log.error(pos, "illegal.generic.type.for.instof");
jjg@110 524 return types.createErrorType(t);
duke@1 525 } else {
duke@1 526 return t;
duke@1 527 }
duke@1 528 }
duke@1 529
duke@1 530 /** Check that type is a reference type, i.e. a class, interface or array type
duke@1 531 * or a type variable.
duke@1 532 * @param pos Position to be used for error reporting.
duke@1 533 * @param t The type to be checked.
duke@1 534 */
duke@1 535 Type checkRefType(DiagnosticPosition pos, Type t) {
duke@1 536 switch (t.tag) {
duke@1 537 case CLASS:
duke@1 538 case ARRAY:
duke@1 539 case TYPEVAR:
duke@1 540 case WILDCARD:
duke@1 541 case ERROR:
duke@1 542 return t;
duke@1 543 default:
duke@1 544 return typeTagError(pos,
mcimadamore@89 545 diags.fragment("type.req.ref"),
duke@1 546 t);
duke@1 547 }
duke@1 548 }
duke@1 549
duke@1 550 /** Check that type is a null or reference type.
duke@1 551 * @param pos Position to be used for error reporting.
duke@1 552 * @param t The type to be checked.
duke@1 553 */
duke@1 554 Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
duke@1 555 switch (t.tag) {
duke@1 556 case CLASS:
duke@1 557 case ARRAY:
duke@1 558 case TYPEVAR:
duke@1 559 case WILDCARD:
duke@1 560 case BOT:
duke@1 561 case ERROR:
duke@1 562 return t;
duke@1 563 default:
duke@1 564 return typeTagError(pos,
mcimadamore@89 565 diags.fragment("type.req.ref"),
duke@1 566 t);
duke@1 567 }
duke@1 568 }
duke@1 569
duke@1 570 /** Check that flag set does not contain elements of two conflicting sets. s
duke@1 571 * Return true if it doesn't.
duke@1 572 * @param pos Position to be used for error reporting.
duke@1 573 * @param flags The set of flags to be checked.
duke@1 574 * @param set1 Conflicting flags set #1.
duke@1 575 * @param set2 Conflicting flags set #2.
duke@1 576 */
duke@1 577 boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
duke@1 578 if ((flags & set1) != 0 && (flags & set2) != 0) {
duke@1 579 log.error(pos,
duke@1 580 "illegal.combination.of.modifiers",
mcimadamore@80 581 asFlagSet(TreeInfo.firstFlag(flags & set1)),
mcimadamore@80 582 asFlagSet(TreeInfo.firstFlag(flags & set2)));
duke@1 583 return false;
duke@1 584 } else
duke@1 585 return true;
duke@1 586 }
duke@1 587
duke@1 588 /** Check that given modifiers are legal for given symbol and
duke@1 589 * return modifiers together with any implicit modififiers for that symbol.
duke@1 590 * Warning: we can't use flags() here since this method
duke@1 591 * is called during class enter, when flags() would cause a premature
duke@1 592 * completion.
duke@1 593 * @param pos Position to be used for error reporting.
duke@1 594 * @param flags The set of modifiers given in a definition.
duke@1 595 * @param sym The defined symbol.
duke@1 596 */
duke@1 597 long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
duke@1 598 long mask;
duke@1 599 long implicit = 0;
duke@1 600 switch (sym.kind) {
duke@1 601 case VAR:
duke@1 602 if (sym.owner.kind != TYP)
duke@1 603 mask = LocalVarFlags;
duke@1 604 else if ((sym.owner.flags_field & INTERFACE) != 0)
duke@1 605 mask = implicit = InterfaceVarFlags;
duke@1 606 else
duke@1 607 mask = VarFlags;
duke@1 608 break;
duke@1 609 case MTH:
duke@1 610 if (sym.name == names.init) {
duke@1 611 if ((sym.owner.flags_field & ENUM) != 0) {
duke@1 612 // enum constructors cannot be declared public or
duke@1 613 // protected and must be implicitly or explicitly
duke@1 614 // private
duke@1 615 implicit = PRIVATE;
duke@1 616 mask = PRIVATE;
duke@1 617 } else
duke@1 618 mask = ConstructorFlags;
duke@1 619 } else if ((sym.owner.flags_field & INTERFACE) != 0)
duke@1 620 mask = implicit = InterfaceMethodFlags;
duke@1 621 else {
duke@1 622 mask = MethodFlags;
duke@1 623 }
duke@1 624 // Imply STRICTFP if owner has STRICTFP set.
duke@1 625 if (((flags|implicit) & Flags.ABSTRACT) == 0)
duke@1 626 implicit |= sym.owner.flags_field & STRICTFP;
duke@1 627 break;
duke@1 628 case TYP:
duke@1 629 if (sym.isLocal()) {
duke@1 630 mask = LocalClassFlags;
jjg@113 631 if (sym.name.isEmpty()) { // Anonymous class
duke@1 632 // Anonymous classes in static methods are themselves static;
duke@1 633 // that's why we admit STATIC here.
duke@1 634 mask |= STATIC;
duke@1 635 // JLS: Anonymous classes are final.
duke@1 636 implicit |= FINAL;
duke@1 637 }
duke@1 638 if ((sym.owner.flags_field & STATIC) == 0 &&
duke@1 639 (flags & ENUM) != 0)
duke@1 640 log.error(pos, "enums.must.be.static");
duke@1 641 } else if (sym.owner.kind == TYP) {
duke@1 642 mask = MemberClassFlags;
duke@1 643 if (sym.owner.owner.kind == PCK ||
duke@1 644 (sym.owner.flags_field & STATIC) != 0)
duke@1 645 mask |= STATIC;
duke@1 646 else if ((flags & ENUM) != 0)
duke@1 647 log.error(pos, "enums.must.be.static");
duke@1 648 // Nested interfaces and enums are always STATIC (Spec ???)
duke@1 649 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
duke@1 650 } else {
duke@1 651 mask = ClassFlags;
duke@1 652 }
duke@1 653 // Interfaces are always ABSTRACT
duke@1 654 if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
duke@1 655
duke@1 656 if ((flags & ENUM) != 0) {
duke@1 657 // enums can't be declared abstract or final
duke@1 658 mask &= ~(ABSTRACT | FINAL);
duke@1 659 implicit |= implicitEnumFinalFlag(tree);
duke@1 660 }
duke@1 661 // Imply STRICTFP if owner has STRICTFP set.
duke@1 662 implicit |= sym.owner.flags_field & STRICTFP;
duke@1 663 break;
duke@1 664 default:
duke@1 665 throw new AssertionError();
duke@1 666 }
duke@1 667 long illegal = flags & StandardFlags & ~mask;
duke@1 668 if (illegal != 0) {
duke@1 669 if ((illegal & INTERFACE) != 0) {
duke@1 670 log.error(pos, "intf.not.allowed.here");
duke@1 671 mask |= INTERFACE;
duke@1 672 }
duke@1 673 else {
duke@1 674 log.error(pos,
mcimadamore@80 675 "mod.not.allowed.here", asFlagSet(illegal));
duke@1 676 }
duke@1 677 }
duke@1 678 else if ((sym.kind == TYP ||
duke@1 679 // ISSUE: Disallowing abstract&private is no longer appropriate
duke@1 680 // in the presence of inner classes. Should it be deleted here?
duke@1 681 checkDisjoint(pos, flags,
duke@1 682 ABSTRACT,
duke@1 683 PRIVATE | STATIC))
duke@1 684 &&
duke@1 685 checkDisjoint(pos, flags,
duke@1 686 ABSTRACT | INTERFACE,
duke@1 687 FINAL | NATIVE | SYNCHRONIZED)
duke@1 688 &&
duke@1 689 checkDisjoint(pos, flags,
duke@1 690 PUBLIC,
duke@1 691 PRIVATE | PROTECTED)
duke@1 692 &&
duke@1 693 checkDisjoint(pos, flags,
duke@1 694 PRIVATE,
duke@1 695 PUBLIC | PROTECTED)
duke@1 696 &&
duke@1 697 checkDisjoint(pos, flags,
duke@1 698 FINAL,
duke@1 699 VOLATILE)
duke@1 700 &&
duke@1 701 (sym.kind == TYP ||
duke@1 702 checkDisjoint(pos, flags,
duke@1 703 ABSTRACT | NATIVE,
duke@1 704 STRICTFP))) {
duke@1 705 // skip
duke@1 706 }
duke@1 707 return flags & (mask | ~StandardFlags) | implicit;
duke@1 708 }
duke@1 709
duke@1 710
duke@1 711 /** Determine if this enum should be implicitly final.
duke@1 712 *
duke@1 713 * If the enum has no specialized enum contants, it is final.
duke@1 714 *
duke@1 715 * If the enum does have specialized enum contants, it is
duke@1 716 * <i>not</i> final.
duke@1 717 */
duke@1 718 private long implicitEnumFinalFlag(JCTree tree) {
duke@1 719 if (tree.getTag() != JCTree.CLASSDEF) return 0;
duke@1 720 class SpecialTreeVisitor extends JCTree.Visitor {
duke@1 721 boolean specialized;
duke@1 722 SpecialTreeVisitor() {
duke@1 723 this.specialized = false;
duke@1 724 };
duke@1 725
duke@1 726 public void visitTree(JCTree tree) { /* no-op */ }
duke@1 727
duke@1 728 public void visitVarDef(JCVariableDecl tree) {
duke@1 729 if ((tree.mods.flags & ENUM) != 0) {
duke@1 730 if (tree.init instanceof JCNewClass &&
duke@1 731 ((JCNewClass) tree.init).def != null) {
duke@1 732 specialized = true;
duke@1 733 }
duke@1 734 }
duke@1 735 }
duke@1 736 }
duke@1 737
duke@1 738 SpecialTreeVisitor sts = new SpecialTreeVisitor();
duke@1 739 JCClassDecl cdef = (JCClassDecl) tree;
duke@1 740 for (JCTree defs: cdef.defs) {
duke@1 741 defs.accept(sts);
duke@1 742 if (sts.specialized) return 0;
duke@1 743 }
duke@1 744 return FINAL;
duke@1 745 }
duke@1 746
duke@1 747 /* *************************************************************************
duke@1 748 * Type Validation
duke@1 749 **************************************************************************/
duke@1 750
duke@1 751 /** Validate a type expression. That is,
duke@1 752 * check that all type arguments of a parametric type are within
duke@1 753 * their bounds. This must be done in a second phase after type attributon
duke@1 754 * since a class might have a subclass as type parameter bound. E.g:
duke@1 755 *
duke@1 756 * class B<A extends C> { ... }
duke@1 757 * class C extends B<C> { ... }
duke@1 758 *
duke@1 759 * and we can't make sure that the bound is already attributed because
duke@1 760 * of possible cycles.
duke@1 761 */
duke@1 762 private Validator validator = new Validator();
duke@1 763
duke@1 764 /** Visitor method: Validate a type expression, if it is not null, catching
duke@1 765 * and reporting any completion failures.
duke@1 766 */
mcimadamore@122 767 void validate(JCTree tree, Env<AttrContext> env) {
duke@1 768 try {
mcimadamore@122 769 if (tree != null) {
mcimadamore@122 770 validator.env = env;
mcimadamore@122 771 tree.accept(validator);
mcimadamore@122 772 checkRaw(tree, env);
mcimadamore@122 773 }
duke@1 774 } catch (CompletionFailure ex) {
duke@1 775 completionError(tree.pos(), ex);
duke@1 776 }
duke@1 777 }
mcimadamore@122 778 //where
mcimadamore@122 779 void checkRaw(JCTree tree, Env<AttrContext> env) {
mcimadamore@122 780 if (lint.isEnabled(Lint.LintCategory.RAW) &&
mcimadamore@122 781 tree.type.tag == CLASS &&
mcimadamore@122 782 !env.enclClass.name.isEmpty() && //anonymous or intersection
mcimadamore@122 783 tree.type.isRaw()) {
mcimadamore@122 784 log.warning(tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
mcimadamore@122 785 }
mcimadamore@122 786 }
duke@1 787
duke@1 788 /** Visitor method: Validate a list of type expressions.
duke@1 789 */
mcimadamore@122 790 void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
duke@1 791 for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
mcimadamore@122 792 validate(l.head, env);
duke@1 793 }
duke@1 794
duke@1 795 /** A visitor class for type validation.
duke@1 796 */
duke@1 797 class Validator extends JCTree.Visitor {
duke@1 798
duke@1 799 public void visitTypeArray(JCArrayTypeTree tree) {
mcimadamore@122 800 validate(tree.elemtype, env);
duke@1 801 }
duke@1 802
duke@1 803 public void visitTypeApply(JCTypeApply tree) {
duke@1 804 if (tree.type.tag == CLASS) {
mcimadamore@158 805 List<Type> formals = tree.type.tsym.type.allparams();
mcimadamore@158 806 List<Type> actuals = tree.type.allparams();
duke@1 807 List<JCExpression> args = tree.arguments;
mcimadamore@158 808 List<Type> forms = tree.type.tsym.type.getTypeArguments();
duke@1 809 ListBuffer<TypeVar> tvars_buf = new ListBuffer<TypeVar>();
duke@1 810
duke@1 811 // For matching pairs of actual argument types `a' and
duke@1 812 // formal type parameters with declared bound `b' ...
duke@1 813 while (args.nonEmpty() && forms.nonEmpty()) {
mcimadamore@122 814 validate(args.head, env);
duke@1 815
duke@1 816 // exact type arguments needs to know their
duke@1 817 // bounds (for upper and lower bound
duke@1 818 // calculations). So we create new TypeVars with
duke@1 819 // bounds substed with actuals.
duke@1 820 tvars_buf.append(types.substBound(((TypeVar)forms.head),
duke@1 821 formals,
mcimadamore@78 822 actuals));
duke@1 823
duke@1 824 args = args.tail;
duke@1 825 forms = forms.tail;
duke@1 826 }
duke@1 827
duke@1 828 args = tree.arguments;
mcimadamore@154 829 List<Type> tvars_cap = types.substBounds(formals,
mcimadamore@154 830 formals,
mcimadamore@158 831 types.capture(tree.type).allparams());
mcimadamore@154 832 while (args.nonEmpty() && tvars_cap.nonEmpty()) {
mcimadamore@154 833 // Let the actual arguments know their bound
mcimadamore@154 834 args.head.type.withTypeVar((TypeVar)tvars_cap.head);
mcimadamore@154 835 args = args.tail;
mcimadamore@154 836 tvars_cap = tvars_cap.tail;
mcimadamore@154 837 }
mcimadamore@154 838
mcimadamore@154 839 args = tree.arguments;
duke@1 840 List<TypeVar> tvars = tvars_buf.toList();
mcimadamore@154 841
duke@1 842 while (args.nonEmpty() && tvars.nonEmpty()) {
mcimadamore@154 843 checkExtends(args.head.pos(),
mcimadamore@154 844 args.head.type,
mcimadamore@154 845 tvars.head);
duke@1 846 args = args.tail;
duke@1 847 tvars = tvars.tail;
duke@1 848 }
duke@1 849
mcimadamore@154 850 checkCapture(tree);
duke@1 851
duke@1 852 // Check that this type is either fully parameterized, or
duke@1 853 // not parameterized at all.
duke@1 854 if (tree.type.getEnclosingType().isRaw())
duke@1 855 log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
duke@1 856 if (tree.clazz.getTag() == JCTree.SELECT)
duke@1 857 visitSelectInternal((JCFieldAccess)tree.clazz);
duke@1 858 }
duke@1 859 }
duke@1 860
duke@1 861 public void visitTypeParameter(JCTypeParameter tree) {
mcimadamore@122 862 validate(tree.bounds, env);
duke@1 863 checkClassBounds(tree.pos(), tree.type);
duke@1 864 }
duke@1 865
duke@1 866 @Override
duke@1 867 public void visitWildcard(JCWildcard tree) {
duke@1 868 if (tree.inner != null)
mcimadamore@122 869 validate(tree.inner, env);
duke@1 870 }
duke@1 871
duke@1 872 public void visitSelect(JCFieldAccess tree) {
duke@1 873 if (tree.type.tag == CLASS) {
duke@1 874 visitSelectInternal(tree);
duke@1 875
duke@1 876 // Check that this type is either fully parameterized, or
duke@1 877 // not parameterized at all.
duke@1 878 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
duke@1 879 log.error(tree.pos(), "improperly.formed.type.param.missing");
duke@1 880 }
duke@1 881 }
duke@1 882 public void visitSelectInternal(JCFieldAccess tree) {
mcimadamore@122 883 if (tree.type.tsym.isStatic() &&
duke@1 884 tree.selected.type.isParameterized()) {
duke@1 885 // The enclosing type is not a class, so we are
duke@1 886 // looking at a static member type. However, the
duke@1 887 // qualifying expression is parameterized.
duke@1 888 log.error(tree.pos(), "cant.select.static.class.from.param.type");
duke@1 889 } else {
duke@1 890 // otherwise validate the rest of the expression
mcimadamore@122 891 tree.selected.accept(this);
duke@1 892 }
duke@1 893 }
duke@1 894
duke@1 895 /** Default visitor method: do nothing.
duke@1 896 */
duke@1 897 public void visitTree(JCTree tree) {
duke@1 898 }
mcimadamore@122 899
mcimadamore@122 900 Env<AttrContext> env;
duke@1 901 }
duke@1 902
duke@1 903 /* *************************************************************************
duke@1 904 * Exception checking
duke@1 905 **************************************************************************/
duke@1 906
duke@1 907 /* The following methods treat classes as sets that contain
duke@1 908 * the class itself and all their subclasses
duke@1 909 */
duke@1 910
duke@1 911 /** Is given type a subtype of some of the types in given list?
duke@1 912 */
duke@1 913 boolean subset(Type t, List<Type> ts) {
duke@1 914 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 915 if (types.isSubtype(t, l.head)) return true;
duke@1 916 return false;
duke@1 917 }
duke@1 918
duke@1 919 /** Is given type a subtype or supertype of
duke@1 920 * some of the types in given list?
duke@1 921 */
duke@1 922 boolean intersects(Type t, List<Type> ts) {
duke@1 923 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 924 if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
duke@1 925 return false;
duke@1 926 }
duke@1 927
duke@1 928 /** Add type set to given type list, unless it is a subclass of some class
duke@1 929 * in the list.
duke@1 930 */
duke@1 931 List<Type> incl(Type t, List<Type> ts) {
duke@1 932 return subset(t, ts) ? ts : excl(t, ts).prepend(t);
duke@1 933 }
duke@1 934
duke@1 935 /** Remove type set from type set list.
duke@1 936 */
duke@1 937 List<Type> excl(Type t, List<Type> ts) {
duke@1 938 if (ts.isEmpty()) {
duke@1 939 return ts;
duke@1 940 } else {
duke@1 941 List<Type> ts1 = excl(t, ts.tail);
duke@1 942 if (types.isSubtype(ts.head, t)) return ts1;
duke@1 943 else if (ts1 == ts.tail) return ts;
duke@1 944 else return ts1.prepend(ts.head);
duke@1 945 }
duke@1 946 }
duke@1 947
duke@1 948 /** Form the union of two type set lists.
duke@1 949 */
duke@1 950 List<Type> union(List<Type> ts1, List<Type> ts2) {
duke@1 951 List<Type> ts = ts1;
duke@1 952 for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
duke@1 953 ts = incl(l.head, ts);
duke@1 954 return ts;
duke@1 955 }
duke@1 956
duke@1 957 /** Form the difference of two type lists.
duke@1 958 */
duke@1 959 List<Type> diff(List<Type> ts1, List<Type> ts2) {
duke@1 960 List<Type> ts = ts1;
duke@1 961 for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
duke@1 962 ts = excl(l.head, ts);
duke@1 963 return ts;
duke@1 964 }
duke@1 965
duke@1 966 /** Form the intersection of two type lists.
duke@1 967 */
duke@1 968 public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
duke@1 969 List<Type> ts = List.nil();
duke@1 970 for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
duke@1 971 if (subset(l.head, ts2)) ts = incl(l.head, ts);
duke@1 972 for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
duke@1 973 if (subset(l.head, ts1)) ts = incl(l.head, ts);
duke@1 974 return ts;
duke@1 975 }
duke@1 976
duke@1 977 /** Is exc an exception symbol that need not be declared?
duke@1 978 */
duke@1 979 boolean isUnchecked(ClassSymbol exc) {
duke@1 980 return
duke@1 981 exc.kind == ERR ||
duke@1 982 exc.isSubClass(syms.errorType.tsym, types) ||
duke@1 983 exc.isSubClass(syms.runtimeExceptionType.tsym, types);
duke@1 984 }
duke@1 985
duke@1 986 /** Is exc an exception type that need not be declared?
duke@1 987 */
duke@1 988 boolean isUnchecked(Type exc) {
duke@1 989 return
duke@1 990 (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
duke@1 991 (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
duke@1 992 exc.tag == BOT;
duke@1 993 }
duke@1 994
duke@1 995 /** Same, but handling completion failures.
duke@1 996 */
duke@1 997 boolean isUnchecked(DiagnosticPosition pos, Type exc) {
duke@1 998 try {
duke@1 999 return isUnchecked(exc);
duke@1 1000 } catch (CompletionFailure ex) {
duke@1 1001 completionError(pos, ex);
duke@1 1002 return true;
duke@1 1003 }
duke@1 1004 }
duke@1 1005
duke@1 1006 /** Is exc handled by given exception list?
duke@1 1007 */
duke@1 1008 boolean isHandled(Type exc, List<Type> handled) {
duke@1 1009 return isUnchecked(exc) || subset(exc, handled);
duke@1 1010 }
duke@1 1011
duke@1 1012 /** Return all exceptions in thrown list that are not in handled list.
duke@1 1013 * @param thrown The list of thrown exceptions.
duke@1 1014 * @param handled The list of handled exceptions.
duke@1 1015 */
duke@1 1016 List<Type> unHandled(List<Type> thrown, List<Type> handled) {
duke@1 1017 List<Type> unhandled = List.nil();
duke@1 1018 for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
duke@1 1019 if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
duke@1 1020 return unhandled;
duke@1 1021 }
duke@1 1022
duke@1 1023 /* *************************************************************************
duke@1 1024 * Overriding/Implementation checking
duke@1 1025 **************************************************************************/
duke@1 1026
duke@1 1027 /** The level of access protection given by a flag set,
duke@1 1028 * where PRIVATE is highest and PUBLIC is lowest.
duke@1 1029 */
duke@1 1030 static int protection(long flags) {
duke@1 1031 switch ((short)(flags & AccessFlags)) {
duke@1 1032 case PRIVATE: return 3;
duke@1 1033 case PROTECTED: return 1;
duke@1 1034 default:
duke@1 1035 case PUBLIC: return 0;
duke@1 1036 case 0: return 2;
duke@1 1037 }
duke@1 1038 }
duke@1 1039
duke@1 1040 /** A customized "cannot override" error message.
duke@1 1041 * @param m The overriding method.
duke@1 1042 * @param other The overridden method.
duke@1 1043 * @return An internationalized string.
duke@1 1044 */
mcimadamore@89 1045 Object cannotOverride(MethodSymbol m, MethodSymbol other) {
duke@1 1046 String key;
duke@1 1047 if ((other.owner.flags() & INTERFACE) == 0)
duke@1 1048 key = "cant.override";
duke@1 1049 else if ((m.owner.flags() & INTERFACE) == 0)
duke@1 1050 key = "cant.implement";
duke@1 1051 else
duke@1 1052 key = "clashes.with";
mcimadamore@89 1053 return diags.fragment(key, m, m.location(), other, other.location());
duke@1 1054 }
duke@1 1055
duke@1 1056 /** A customized "override" warning message.
duke@1 1057 * @param m The overriding method.
duke@1 1058 * @param other The overridden method.
duke@1 1059 * @return An internationalized string.
duke@1 1060 */
mcimadamore@89 1061 Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
duke@1 1062 String key;
duke@1 1063 if ((other.owner.flags() & INTERFACE) == 0)
duke@1 1064 key = "unchecked.override";
duke@1 1065 else if ((m.owner.flags() & INTERFACE) == 0)
duke@1 1066 key = "unchecked.implement";
duke@1 1067 else
duke@1 1068 key = "unchecked.clash.with";
mcimadamore@89 1069 return diags.fragment(key, m, m.location(), other, other.location());
duke@1 1070 }
duke@1 1071
duke@1 1072 /** A customized "override" warning message.
duke@1 1073 * @param m The overriding method.
duke@1 1074 * @param other The overridden method.
duke@1 1075 * @return An internationalized string.
duke@1 1076 */
mcimadamore@89 1077 Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
duke@1 1078 String key;
duke@1 1079 if ((other.owner.flags() & INTERFACE) == 0)
duke@1 1080 key = "varargs.override";
duke@1 1081 else if ((m.owner.flags() & INTERFACE) == 0)
duke@1 1082 key = "varargs.implement";
duke@1 1083 else
duke@1 1084 key = "varargs.clash.with";
mcimadamore@89 1085 return diags.fragment(key, m, m.location(), other, other.location());
duke@1 1086 }
duke@1 1087
duke@1 1088 /** Check that this method conforms with overridden method 'other'.
duke@1 1089 * where `origin' is the class where checking started.
duke@1 1090 * Complications:
duke@1 1091 * (1) Do not check overriding of synthetic methods
duke@1 1092 * (reason: they might be final).
duke@1 1093 * todo: check whether this is still necessary.
duke@1 1094 * (2) Admit the case where an interface proxy throws fewer exceptions
duke@1 1095 * than the method it implements. Augment the proxy methods with the
duke@1 1096 * undeclared exceptions in this case.
duke@1 1097 * (3) When generics are enabled, admit the case where an interface proxy
duke@1 1098 * has a result type
duke@1 1099 * extended by the result type of the method it implements.
duke@1 1100 * Change the proxies result type to the smaller type in this case.
duke@1 1101 *
duke@1 1102 * @param tree The tree from which positions
duke@1 1103 * are extracted for errors.
duke@1 1104 * @param m The overriding method.
duke@1 1105 * @param other The overridden method.
duke@1 1106 * @param origin The class of which the overriding method
duke@1 1107 * is a member.
duke@1 1108 */
duke@1 1109 void checkOverride(JCTree tree,
duke@1 1110 MethodSymbol m,
duke@1 1111 MethodSymbol other,
duke@1 1112 ClassSymbol origin) {
duke@1 1113 // Don't check overriding of synthetic methods or by bridge methods.
duke@1 1114 if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
duke@1 1115 return;
duke@1 1116 }
duke@1 1117
duke@1 1118 // Error if static method overrides instance method (JLS 8.4.6.2).
duke@1 1119 if ((m.flags() & STATIC) != 0 &&
duke@1 1120 (other.flags() & STATIC) == 0) {
duke@1 1121 log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
duke@1 1122 cannotOverride(m, other));
duke@1 1123 return;
duke@1 1124 }
duke@1 1125
duke@1 1126 // Error if instance method overrides static or final
duke@1 1127 // method (JLS 8.4.6.1).
duke@1 1128 if ((other.flags() & FINAL) != 0 ||
duke@1 1129 (m.flags() & STATIC) == 0 &&
duke@1 1130 (other.flags() & STATIC) != 0) {
duke@1 1131 log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
duke@1 1132 cannotOverride(m, other),
mcimadamore@80 1133 asFlagSet(other.flags() & (FINAL | STATIC)));
duke@1 1134 return;
duke@1 1135 }
duke@1 1136
duke@1 1137 if ((m.owner.flags() & ANNOTATION) != 0) {
duke@1 1138 // handled in validateAnnotationMethod
duke@1 1139 return;
duke@1 1140 }
duke@1 1141
duke@1 1142 // Error if overriding method has weaker access (JLS 8.4.6.3).
duke@1 1143 if ((origin.flags() & INTERFACE) == 0 &&
duke@1 1144 protection(m.flags()) > protection(other.flags())) {
duke@1 1145 log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
duke@1 1146 cannotOverride(m, other),
mcimadamore@80 1147 other.flags() == 0 ?
mcimadamore@80 1148 Flag.PACKAGE :
mcimadamore@80 1149 asFlagSet(other.flags() & AccessFlags));
duke@1 1150 return;
duke@1 1151 }
duke@1 1152
duke@1 1153 Type mt = types.memberType(origin.type, m);
duke@1 1154 Type ot = types.memberType(origin.type, other);
duke@1 1155 // Error if overriding result type is different
duke@1 1156 // (or, in the case of generics mode, not a subtype) of
duke@1 1157 // overridden result type. We have to rename any type parameters
duke@1 1158 // before comparing types.
duke@1 1159 List<Type> mtvars = mt.getTypeArguments();
duke@1 1160 List<Type> otvars = ot.getTypeArguments();
duke@1 1161 Type mtres = mt.getReturnType();
duke@1 1162 Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
duke@1 1163
duke@1 1164 overrideWarner.warned = false;
duke@1 1165 boolean resultTypesOK =
tbell@202 1166 types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
duke@1 1167 if (!resultTypesOK) {
duke@1 1168 if (!source.allowCovariantReturns() &&
duke@1 1169 m.owner != origin &&
duke@1 1170 m.owner.isSubClass(other.owner, types)) {
duke@1 1171 // allow limited interoperability with covariant returns
duke@1 1172 } else {
duke@1 1173 typeError(TreeInfo.diagnosticPositionFor(m, tree),
mcimadamore@89 1174 diags.fragment("override.incompatible.ret",
duke@1 1175 cannotOverride(m, other)),
duke@1 1176 mtres, otres);
duke@1 1177 return;
duke@1 1178 }
duke@1 1179 } else if (overrideWarner.warned) {
duke@1 1180 warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
duke@1 1181 "prob.found.req",
mcimadamore@89 1182 diags.fragment("override.unchecked.ret",
duke@1 1183 uncheckedOverrides(m, other)),
duke@1 1184 mtres, otres);
duke@1 1185 }
duke@1 1186
duke@1 1187 // Error if overriding method throws an exception not reported
duke@1 1188 // by overridden method.
duke@1 1189 List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
duke@1 1190 List<Type> unhandled = unHandled(mt.getThrownTypes(), otthrown);
duke@1 1191 if (unhandled.nonEmpty()) {
duke@1 1192 log.error(TreeInfo.diagnosticPositionFor(m, tree),
duke@1 1193 "override.meth.doesnt.throw",
duke@1 1194 cannotOverride(m, other),
duke@1 1195 unhandled.head);
duke@1 1196 return;
duke@1 1197 }
duke@1 1198
duke@1 1199 // Optional warning if varargs don't agree
duke@1 1200 if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
duke@1 1201 && lint.isEnabled(Lint.LintCategory.OVERRIDES)) {
duke@1 1202 log.warning(TreeInfo.diagnosticPositionFor(m, tree),
duke@1 1203 ((m.flags() & Flags.VARARGS) != 0)
duke@1 1204 ? "override.varargs.missing"
duke@1 1205 : "override.varargs.extra",
duke@1 1206 varargsOverrides(m, other));
duke@1 1207 }
duke@1 1208
duke@1 1209 // Warn if instance method overrides bridge method (compiler spec ??)
duke@1 1210 if ((other.flags() & BRIDGE) != 0) {
duke@1 1211 log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
duke@1 1212 uncheckedOverrides(m, other));
duke@1 1213 }
duke@1 1214
duke@1 1215 // Warn if a deprecated method overridden by a non-deprecated one.
duke@1 1216 if ((other.flags() & DEPRECATED) != 0
duke@1 1217 && (m.flags() & DEPRECATED) == 0
duke@1 1218 && m.outermostClass() != other.outermostClass()
duke@1 1219 && !isDeprecatedOverrideIgnorable(other, origin)) {
duke@1 1220 warnDeprecated(TreeInfo.diagnosticPositionFor(m, tree), other);
duke@1 1221 }
duke@1 1222 }
duke@1 1223 // where
duke@1 1224 private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
duke@1 1225 // If the method, m, is defined in an interface, then ignore the issue if the method
duke@1 1226 // is only inherited via a supertype and also implemented in the supertype,
duke@1 1227 // because in that case, we will rediscover the issue when examining the method
duke@1 1228 // in the supertype.
duke@1 1229 // If the method, m, is not defined in an interface, then the only time we need to
duke@1 1230 // address the issue is when the method is the supertype implemementation: any other
duke@1 1231 // case, we will have dealt with when examining the supertype classes
duke@1 1232 ClassSymbol mc = m.enclClass();
duke@1 1233 Type st = types.supertype(origin.type);
duke@1 1234 if (st.tag != CLASS)
duke@1 1235 return true;
duke@1 1236 MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
duke@1 1237
duke@1 1238 if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
duke@1 1239 List<Type> intfs = types.interfaces(origin.type);
duke@1 1240 return (intfs.contains(mc.type) ? false : (stimpl != null));
duke@1 1241 }
duke@1 1242 else
duke@1 1243 return (stimpl != m);
duke@1 1244 }
duke@1 1245
duke@1 1246
duke@1 1247 // used to check if there were any unchecked conversions
duke@1 1248 Warner overrideWarner = new Warner();
duke@1 1249
duke@1 1250 /** Check that a class does not inherit two concrete methods
duke@1 1251 * with the same signature.
duke@1 1252 * @param pos Position to be used for error reporting.
duke@1 1253 * @param site The class type to be checked.
duke@1 1254 */
duke@1 1255 public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
duke@1 1256 Type sup = types.supertype(site);
duke@1 1257 if (sup.tag != CLASS) return;
duke@1 1258
duke@1 1259 for (Type t1 = sup;
duke@1 1260 t1.tsym.type.isParameterized();
duke@1 1261 t1 = types.supertype(t1)) {
duke@1 1262 for (Scope.Entry e1 = t1.tsym.members().elems;
duke@1 1263 e1 != null;
duke@1 1264 e1 = e1.sibling) {
duke@1 1265 Symbol s1 = e1.sym;
duke@1 1266 if (s1.kind != MTH ||
duke@1 1267 (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
duke@1 1268 !s1.isInheritedIn(site.tsym, types) ||
duke@1 1269 ((MethodSymbol)s1).implementation(site.tsym,
duke@1 1270 types,
duke@1 1271 true) != s1)
duke@1 1272 continue;
duke@1 1273 Type st1 = types.memberType(t1, s1);
duke@1 1274 int s1ArgsLength = st1.getParameterTypes().length();
duke@1 1275 if (st1 == s1.type) continue;
duke@1 1276
duke@1 1277 for (Type t2 = sup;
duke@1 1278 t2.tag == CLASS;
duke@1 1279 t2 = types.supertype(t2)) {
mcimadamore@24 1280 for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
duke@1 1281 e2.scope != null;
duke@1 1282 e2 = e2.next()) {
duke@1 1283 Symbol s2 = e2.sym;
duke@1 1284 if (s2 == s1 ||
duke@1 1285 s2.kind != MTH ||
duke@1 1286 (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
duke@1 1287 s2.type.getParameterTypes().length() != s1ArgsLength ||
duke@1 1288 !s2.isInheritedIn(site.tsym, types) ||
duke@1 1289 ((MethodSymbol)s2).implementation(site.tsym,
duke@1 1290 types,
duke@1 1291 true) != s2)
duke@1 1292 continue;
duke@1 1293 Type st2 = types.memberType(t2, s2);
duke@1 1294 if (types.overrideEquivalent(st1, st2))
duke@1 1295 log.error(pos, "concrete.inheritance.conflict",
duke@1 1296 s1, t1, s2, t2, sup);
duke@1 1297 }
duke@1 1298 }
duke@1 1299 }
duke@1 1300 }
duke@1 1301 }
duke@1 1302
duke@1 1303 /** Check that classes (or interfaces) do not each define an abstract
duke@1 1304 * method with same name and arguments but incompatible return types.
duke@1 1305 * @param pos Position to be used for error reporting.
duke@1 1306 * @param t1 The first argument type.
duke@1 1307 * @param t2 The second argument type.
duke@1 1308 */
duke@1 1309 public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
duke@1 1310 Type t1,
duke@1 1311 Type t2) {
duke@1 1312 return checkCompatibleAbstracts(pos, t1, t2,
duke@1 1313 types.makeCompoundType(t1, t2));
duke@1 1314 }
duke@1 1315
duke@1 1316 public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
duke@1 1317 Type t1,
duke@1 1318 Type t2,
duke@1 1319 Type site) {
duke@1 1320 Symbol sym = firstIncompatibility(t1, t2, site);
duke@1 1321 if (sym != null) {
duke@1 1322 log.error(pos, "types.incompatible.diff.ret",
duke@1 1323 t1, t2, sym.name +
duke@1 1324 "(" + types.memberType(t2, sym).getParameterTypes() + ")");
duke@1 1325 return false;
duke@1 1326 }
duke@1 1327 return true;
duke@1 1328 }
duke@1 1329
duke@1 1330 /** Return the first method which is defined with same args
duke@1 1331 * but different return types in two given interfaces, or null if none
duke@1 1332 * exists.
duke@1 1333 * @param t1 The first type.
duke@1 1334 * @param t2 The second type.
duke@1 1335 * @param site The most derived type.
duke@1 1336 * @returns symbol from t2 that conflicts with one in t1.
duke@1 1337 */
duke@1 1338 private Symbol firstIncompatibility(Type t1, Type t2, Type site) {
duke@1 1339 Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
duke@1 1340 closure(t1, interfaces1);
duke@1 1341 Map<TypeSymbol,Type> interfaces2;
duke@1 1342 if (t1 == t2)
duke@1 1343 interfaces2 = interfaces1;
duke@1 1344 else
duke@1 1345 closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
duke@1 1346
duke@1 1347 for (Type t3 : interfaces1.values()) {
duke@1 1348 for (Type t4 : interfaces2.values()) {
duke@1 1349 Symbol s = firstDirectIncompatibility(t3, t4, site);
duke@1 1350 if (s != null) return s;
duke@1 1351 }
duke@1 1352 }
duke@1 1353 return null;
duke@1 1354 }
duke@1 1355
duke@1 1356 /** Compute all the supertypes of t, indexed by type symbol. */
duke@1 1357 private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
duke@1 1358 if (t.tag != CLASS) return;
duke@1 1359 if (typeMap.put(t.tsym, t) == null) {
duke@1 1360 closure(types.supertype(t), typeMap);
duke@1 1361 for (Type i : types.interfaces(t))
duke@1 1362 closure(i, typeMap);
duke@1 1363 }
duke@1 1364 }
duke@1 1365
duke@1 1366 /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
duke@1 1367 private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
duke@1 1368 if (t.tag != CLASS) return;
duke@1 1369 if (typesSkip.get(t.tsym) != null) return;
duke@1 1370 if (typeMap.put(t.tsym, t) == null) {
duke@1 1371 closure(types.supertype(t), typesSkip, typeMap);
duke@1 1372 for (Type i : types.interfaces(t))
duke@1 1373 closure(i, typesSkip, typeMap);
duke@1 1374 }
duke@1 1375 }
duke@1 1376
duke@1 1377 /** Return the first method in t2 that conflicts with a method from t1. */
duke@1 1378 private Symbol firstDirectIncompatibility(Type t1, Type t2, Type site) {
duke@1 1379 for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
duke@1 1380 Symbol s1 = e1.sym;
duke@1 1381 Type st1 = null;
duke@1 1382 if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
duke@1 1383 Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
duke@1 1384 if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
duke@1 1385 for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
duke@1 1386 Symbol s2 = e2.sym;
duke@1 1387 if (s1 == s2) continue;
duke@1 1388 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
duke@1 1389 if (st1 == null) st1 = types.memberType(t1, s1);
duke@1 1390 Type st2 = types.memberType(t2, s2);
duke@1 1391 if (types.overrideEquivalent(st1, st2)) {
duke@1 1392 List<Type> tvars1 = st1.getTypeArguments();
duke@1 1393 List<Type> tvars2 = st2.getTypeArguments();
duke@1 1394 Type rt1 = st1.getReturnType();
duke@1 1395 Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
duke@1 1396 boolean compat =
duke@1 1397 types.isSameType(rt1, rt2) ||
duke@1 1398 rt1.tag >= CLASS && rt2.tag >= CLASS &&
duke@1 1399 (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
mcimadamore@59 1400 types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
mcimadamore@59 1401 checkCommonOverriderIn(s1,s2,site);
duke@1 1402 if (!compat) return s2;
duke@1 1403 }
duke@1 1404 }
duke@1 1405 }
duke@1 1406 return null;
duke@1 1407 }
mcimadamore@59 1408 //WHERE
mcimadamore@59 1409 boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
mcimadamore@59 1410 Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
mcimadamore@59 1411 Type st1 = types.memberType(site, s1);
mcimadamore@59 1412 Type st2 = types.memberType(site, s2);
mcimadamore@59 1413 closure(site, supertypes);
mcimadamore@59 1414 for (Type t : supertypes.values()) {
mcimadamore@59 1415 for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
mcimadamore@59 1416 Symbol s3 = e.sym;
mcimadamore@59 1417 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
mcimadamore@59 1418 Type st3 = types.memberType(site,s3);
mcimadamore@59 1419 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
mcimadamore@59 1420 if (s3.owner == site.tsym) {
mcimadamore@59 1421 return true;
mcimadamore@59 1422 }
mcimadamore@59 1423 List<Type> tvars1 = st1.getTypeArguments();
mcimadamore@59 1424 List<Type> tvars2 = st2.getTypeArguments();
mcimadamore@59 1425 List<Type> tvars3 = st3.getTypeArguments();
mcimadamore@59 1426 Type rt1 = st1.getReturnType();
mcimadamore@59 1427 Type rt2 = st2.getReturnType();
mcimadamore@59 1428 Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
mcimadamore@59 1429 Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
mcimadamore@59 1430 boolean compat =
mcimadamore@59 1431 rt13.tag >= CLASS && rt23.tag >= CLASS &&
mcimadamore@59 1432 (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
mcimadamore@59 1433 types.covariantReturnType(rt23, rt2, Warner.noWarnings));
mcimadamore@59 1434 if (compat)
mcimadamore@59 1435 return true;
mcimadamore@59 1436 }
mcimadamore@59 1437 }
mcimadamore@59 1438 }
mcimadamore@59 1439 return false;
mcimadamore@59 1440 }
duke@1 1441
duke@1 1442 /** Check that a given method conforms with any method it overrides.
duke@1 1443 * @param tree The tree from which positions are extracted
duke@1 1444 * for errors.
duke@1 1445 * @param m The overriding method.
duke@1 1446 */
duke@1 1447 void checkOverride(JCTree tree, MethodSymbol m) {
duke@1 1448 ClassSymbol origin = (ClassSymbol)m.owner;
duke@1 1449 if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
duke@1 1450 if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
duke@1 1451 log.error(tree.pos(), "enum.no.finalize");
duke@1 1452 return;
duke@1 1453 }
duke@1 1454 for (Type t = types.supertype(origin.type); t.tag == CLASS;
duke@1 1455 t = types.supertype(t)) {
duke@1 1456 TypeSymbol c = t.tsym;
duke@1 1457 Scope.Entry e = c.members().lookup(m.name);
duke@1 1458 while (e.scope != null) {
duke@1 1459 if (m.overrides(e.sym, origin, types, false))
duke@1 1460 checkOverride(tree, m, (MethodSymbol)e.sym, origin);
mcimadamore@24 1461 else if (e.sym.isInheritedIn(origin, types) && !m.isConstructor()) {
mcimadamore@24 1462 Type er1 = m.erasure(types);
mcimadamore@24 1463 Type er2 = e.sym.erasure(types);
mcimadamore@24 1464 if (types.isSameType(er1,er2)) {
mcimadamore@24 1465 log.error(TreeInfo.diagnosticPositionFor(m, tree),
mcimadamore@24 1466 "name.clash.same.erasure.no.override",
mcimadamore@24 1467 m, m.location(),
mcimadamore@24 1468 e.sym, e.sym.location());
mcimadamore@24 1469 }
mcimadamore@24 1470 }
duke@1 1471 e = e.next();
duke@1 1472 }
duke@1 1473 }
duke@1 1474 }
duke@1 1475
duke@1 1476 /** Check that all abstract members of given class have definitions.
duke@1 1477 * @param pos Position to be used for error reporting.
duke@1 1478 * @param c The class.
duke@1 1479 */
duke@1 1480 void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
duke@1 1481 try {
duke@1 1482 MethodSymbol undef = firstUndef(c, c);
duke@1 1483 if (undef != null) {
duke@1 1484 if ((c.flags() & ENUM) != 0 &&
duke@1 1485 types.supertype(c.type).tsym == syms.enumSym &&
duke@1 1486 (c.flags() & FINAL) == 0) {
duke@1 1487 // add the ABSTRACT flag to an enum
duke@1 1488 c.flags_field |= ABSTRACT;
duke@1 1489 } else {
duke@1 1490 MethodSymbol undef1 =
duke@1 1491 new MethodSymbol(undef.flags(), undef.name,
duke@1 1492 types.memberType(c.type, undef), undef.owner);
duke@1 1493 log.error(pos, "does.not.override.abstract",
duke@1 1494 c, undef1, undef1.location());
duke@1 1495 }
duke@1 1496 }
duke@1 1497 } catch (CompletionFailure ex) {
duke@1 1498 completionError(pos, ex);
duke@1 1499 }
duke@1 1500 }
duke@1 1501 //where
duke@1 1502 /** Return first abstract member of class `c' that is not defined
duke@1 1503 * in `impl', null if there is none.
duke@1 1504 */
duke@1 1505 private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
duke@1 1506 MethodSymbol undef = null;
duke@1 1507 // Do not bother to search in classes that are not abstract,
duke@1 1508 // since they cannot have abstract members.
duke@1 1509 if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
duke@1 1510 Scope s = c.members();
duke@1 1511 for (Scope.Entry e = s.elems;
duke@1 1512 undef == null && e != null;
duke@1 1513 e = e.sibling) {
duke@1 1514 if (e.sym.kind == MTH &&
duke@1 1515 (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
duke@1 1516 MethodSymbol absmeth = (MethodSymbol)e.sym;
duke@1 1517 MethodSymbol implmeth = absmeth.implementation(impl, types, true);
duke@1 1518 if (implmeth == null || implmeth == absmeth)
duke@1 1519 undef = absmeth;
duke@1 1520 }
duke@1 1521 }
duke@1 1522 if (undef == null) {
duke@1 1523 Type st = types.supertype(c.type);
duke@1 1524 if (st.tag == CLASS)
duke@1 1525 undef = firstUndef(impl, (ClassSymbol)st.tsym);
duke@1 1526 }
duke@1 1527 for (List<Type> l = types.interfaces(c.type);
duke@1 1528 undef == null && l.nonEmpty();
duke@1 1529 l = l.tail) {
duke@1 1530 undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
duke@1 1531 }
duke@1 1532 }
duke@1 1533 return undef;
duke@1 1534 }
duke@1 1535
duke@1 1536 /** Check for cyclic references. Issue an error if the
duke@1 1537 * symbol of the type referred to has a LOCKED flag set.
duke@1 1538 *
duke@1 1539 * @param pos Position to be used for error reporting.
duke@1 1540 * @param t The type referred to.
duke@1 1541 */
duke@1 1542 void checkNonCyclic(DiagnosticPosition pos, Type t) {
duke@1 1543 checkNonCyclicInternal(pos, t);
duke@1 1544 }
duke@1 1545
duke@1 1546
duke@1 1547 void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
mcimadamore@236 1548 checkNonCyclic1(pos, t, List.<TypeVar>nil());
duke@1 1549 }
duke@1 1550
mcimadamore@236 1551 private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
duke@1 1552 final TypeVar tv;
mcimadamore@42 1553 if (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
mcimadamore@42 1554 return;
duke@1 1555 if (seen.contains(t)) {
duke@1 1556 tv = (TypeVar)t;
jjg@110 1557 tv.bound = types.createErrorType(t);
duke@1 1558 log.error(pos, "cyclic.inheritance", t);
duke@1 1559 } else if (t.tag == TYPEVAR) {
duke@1 1560 tv = (TypeVar)t;
mcimadamore@236 1561 seen = seen.prepend(tv);
duke@1 1562 for (Type b : types.getBounds(tv))
duke@1 1563 checkNonCyclic1(pos, b, seen);
duke@1 1564 }
duke@1 1565 }
duke@1 1566
duke@1 1567 /** Check for cyclic references. Issue an error if the
duke@1 1568 * symbol of the type referred to has a LOCKED flag set.
duke@1 1569 *
duke@1 1570 * @param pos Position to be used for error reporting.
duke@1 1571 * @param t The type referred to.
duke@1 1572 * @returns True if the check completed on all attributed classes
duke@1 1573 */
duke@1 1574 private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
duke@1 1575 boolean complete = true; // was the check complete?
duke@1 1576 //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
duke@1 1577 Symbol c = t.tsym;
duke@1 1578 if ((c.flags_field & ACYCLIC) != 0) return true;
duke@1 1579
duke@1 1580 if ((c.flags_field & LOCKED) != 0) {
duke@1 1581 noteCyclic(pos, (ClassSymbol)c);
duke@1 1582 } else if (!c.type.isErroneous()) {
duke@1 1583 try {
duke@1 1584 c.flags_field |= LOCKED;
duke@1 1585 if (c.type.tag == CLASS) {
duke@1 1586 ClassType clazz = (ClassType)c.type;
duke@1 1587 if (clazz.interfaces_field != null)
duke@1 1588 for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
duke@1 1589 complete &= checkNonCyclicInternal(pos, l.head);
duke@1 1590 if (clazz.supertype_field != null) {
duke@1 1591 Type st = clazz.supertype_field;
duke@1 1592 if (st != null && st.tag == CLASS)
duke@1 1593 complete &= checkNonCyclicInternal(pos, st);
duke@1 1594 }
duke@1 1595 if (c.owner.kind == TYP)
duke@1 1596 complete &= checkNonCyclicInternal(pos, c.owner.type);
duke@1 1597 }
duke@1 1598 } finally {
duke@1 1599 c.flags_field &= ~LOCKED;
duke@1 1600 }
duke@1 1601 }
duke@1 1602 if (complete)
duke@1 1603 complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
duke@1 1604 if (complete) c.flags_field |= ACYCLIC;
duke@1 1605 return complete;
duke@1 1606 }
duke@1 1607
duke@1 1608 /** Note that we found an inheritance cycle. */
duke@1 1609 private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
duke@1 1610 log.error(pos, "cyclic.inheritance", c);
duke@1 1611 for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
jjg@110 1612 l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
duke@1 1613 Type st = types.supertype(c.type);
duke@1 1614 if (st.tag == CLASS)
jjg@110 1615 ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
jjg@110 1616 c.type = types.createErrorType(c, c.type);
duke@1 1617 c.flags_field |= ACYCLIC;
duke@1 1618 }
duke@1 1619
duke@1 1620 /** Check that all methods which implement some
duke@1 1621 * method conform to the method they implement.
duke@1 1622 * @param tree The class definition whose members are checked.
duke@1 1623 */
duke@1 1624 void checkImplementations(JCClassDecl tree) {
duke@1 1625 checkImplementations(tree, tree.sym);
duke@1 1626 }
duke@1 1627 //where
duke@1 1628 /** Check that all methods which implement some
duke@1 1629 * method in `ic' conform to the method they implement.
duke@1 1630 */
duke@1 1631 void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
duke@1 1632 ClassSymbol origin = tree.sym;
duke@1 1633 for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
duke@1 1634 ClassSymbol lc = (ClassSymbol)l.head.tsym;
duke@1 1635 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
duke@1 1636 for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
duke@1 1637 if (e.sym.kind == MTH &&
duke@1 1638 (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
duke@1 1639 MethodSymbol absmeth = (MethodSymbol)e.sym;
duke@1 1640 MethodSymbol implmeth = absmeth.implementation(origin, types, false);
duke@1 1641 if (implmeth != null && implmeth != absmeth &&
duke@1 1642 (implmeth.owner.flags() & INTERFACE) ==
duke@1 1643 (origin.flags() & INTERFACE)) {
duke@1 1644 // don't check if implmeth is in a class, yet
duke@1 1645 // origin is an interface. This case arises only
duke@1 1646 // if implmeth is declared in Object. The reason is
duke@1 1647 // that interfaces really don't inherit from
duke@1 1648 // Object it's just that the compiler represents
duke@1 1649 // things that way.
duke@1 1650 checkOverride(tree, implmeth, absmeth, origin);
duke@1 1651 }
duke@1 1652 }
duke@1 1653 }
duke@1 1654 }
duke@1 1655 }
duke@1 1656 }
duke@1 1657
duke@1 1658 /** Check that all abstract methods implemented by a class are
duke@1 1659 * mutually compatible.
duke@1 1660 * @param pos Position to be used for error reporting.
duke@1 1661 * @param c The class whose interfaces are checked.
duke@1 1662 */
duke@1 1663 void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
duke@1 1664 List<Type> supertypes = types.interfaces(c);
duke@1 1665 Type supertype = types.supertype(c);
duke@1 1666 if (supertype.tag == CLASS &&
duke@1 1667 (supertype.tsym.flags() & ABSTRACT) != 0)
duke@1 1668 supertypes = supertypes.prepend(supertype);
duke@1 1669 for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
duke@1 1670 if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
duke@1 1671 !checkCompatibleAbstracts(pos, l.head, l.head, c))
duke@1 1672 return;
duke@1 1673 for (List<Type> m = supertypes; m != l; m = m.tail)
duke@1 1674 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
duke@1 1675 return;
duke@1 1676 }
duke@1 1677 checkCompatibleConcretes(pos, c);
duke@1 1678 }
duke@1 1679
duke@1 1680 /** Check that class c does not implement directly or indirectly
duke@1 1681 * the same parameterized interface with two different argument lists.
duke@1 1682 * @param pos Position to be used for error reporting.
duke@1 1683 * @param type The type whose interfaces are checked.
duke@1 1684 */
duke@1 1685 void checkClassBounds(DiagnosticPosition pos, Type type) {
duke@1 1686 checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
duke@1 1687 }
duke@1 1688 //where
duke@1 1689 /** Enter all interfaces of type `type' into the hash table `seensofar'
duke@1 1690 * with their class symbol as key and their type as value. Make
duke@1 1691 * sure no class is entered with two different types.
duke@1 1692 */
duke@1 1693 void checkClassBounds(DiagnosticPosition pos,
duke@1 1694 Map<TypeSymbol,Type> seensofar,
duke@1 1695 Type type) {
duke@1 1696 if (type.isErroneous()) return;
duke@1 1697 for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
duke@1 1698 Type it = l.head;
duke@1 1699 Type oldit = seensofar.put(it.tsym, it);
duke@1 1700 if (oldit != null) {
duke@1 1701 List<Type> oldparams = oldit.allparams();
duke@1 1702 List<Type> newparams = it.allparams();
duke@1 1703 if (!types.containsTypeEquivalent(oldparams, newparams))
duke@1 1704 log.error(pos, "cant.inherit.diff.arg",
duke@1 1705 it.tsym, Type.toString(oldparams),
duke@1 1706 Type.toString(newparams));
duke@1 1707 }
duke@1 1708 checkClassBounds(pos, seensofar, it);
duke@1 1709 }
duke@1 1710 Type st = types.supertype(type);
duke@1 1711 if (st != null) checkClassBounds(pos, seensofar, st);
duke@1 1712 }
duke@1 1713
duke@1 1714 /** Enter interface into into set.
duke@1 1715 * If it existed already, issue a "repeated interface" error.
duke@1 1716 */
duke@1 1717 void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
duke@1 1718 if (its.contains(it))
duke@1 1719 log.error(pos, "repeated.interface");
duke@1 1720 else {
duke@1 1721 its.add(it);
duke@1 1722 }
duke@1 1723 }
duke@1 1724
duke@1 1725 /* *************************************************************************
duke@1 1726 * Check annotations
duke@1 1727 **************************************************************************/
duke@1 1728
duke@1 1729 /** Annotation types are restricted to primitives, String, an
duke@1 1730 * enum, an annotation, Class, Class<?>, Class<? extends
duke@1 1731 * Anything>, arrays of the preceding.
duke@1 1732 */
duke@1 1733 void validateAnnotationType(JCTree restype) {
duke@1 1734 // restype may be null if an error occurred, so don't bother validating it
duke@1 1735 if (restype != null) {
duke@1 1736 validateAnnotationType(restype.pos(), restype.type);
duke@1 1737 }
duke@1 1738 }
duke@1 1739
duke@1 1740 void validateAnnotationType(DiagnosticPosition pos, Type type) {
duke@1 1741 if (type.isPrimitive()) return;
duke@1 1742 if (types.isSameType(type, syms.stringType)) return;
duke@1 1743 if ((type.tsym.flags() & Flags.ENUM) != 0) return;
duke@1 1744 if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
duke@1 1745 if (types.lowerBound(type).tsym == syms.classType.tsym) return;
duke@1 1746 if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
duke@1 1747 validateAnnotationType(pos, types.elemtype(type));
duke@1 1748 return;
duke@1 1749 }
duke@1 1750 log.error(pos, "invalid.annotation.member.type");
duke@1 1751 }
duke@1 1752
duke@1 1753 /**
duke@1 1754 * "It is also a compile-time error if any method declared in an
duke@1 1755 * annotation type has a signature that is override-equivalent to
duke@1 1756 * that of any public or protected method declared in class Object
duke@1 1757 * or in the interface annotation.Annotation."
duke@1 1758 *
duke@1 1759 * @jls3 9.6 Annotation Types
duke@1 1760 */
duke@1 1761 void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
duke@1 1762 for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
duke@1 1763 Scope s = sup.tsym.members();
duke@1 1764 for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
duke@1 1765 if (e.sym.kind == MTH &&
duke@1 1766 (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
duke@1 1767 types.overrideEquivalent(m.type, e.sym.type))
duke@1 1768 log.error(pos, "intf.annotation.member.clash", e.sym, sup);
duke@1 1769 }
duke@1 1770 }
duke@1 1771 }
duke@1 1772
duke@1 1773 /** Check the annotations of a symbol.
duke@1 1774 */
duke@1 1775 public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
duke@1 1776 if (skipAnnotations) return;
duke@1 1777 for (JCAnnotation a : annotations)
duke@1 1778 validateAnnotation(a, s);
duke@1 1779 }
duke@1 1780
duke@1 1781 /** Check an annotation of a symbol.
duke@1 1782 */
duke@1 1783 public void validateAnnotation(JCAnnotation a, Symbol s) {
duke@1 1784 validateAnnotation(a);
duke@1 1785
duke@1 1786 if (!annotationApplicable(a, s))
duke@1 1787 log.error(a.pos(), "annotation.type.not.applicable");
duke@1 1788
duke@1 1789 if (a.annotationType.type.tsym == syms.overrideType.tsym) {
duke@1 1790 if (!isOverrider(s))
duke@1 1791 log.error(a.pos(), "method.does.not.override.superclass");
duke@1 1792 }
duke@1 1793 }
duke@1 1794
duke@1 1795 /** Is s a method symbol that overrides a method in a superclass? */
duke@1 1796 boolean isOverrider(Symbol s) {
duke@1 1797 if (s.kind != MTH || s.isStatic())
duke@1 1798 return false;
duke@1 1799 MethodSymbol m = (MethodSymbol)s;
duke@1 1800 TypeSymbol owner = (TypeSymbol)m.owner;
duke@1 1801 for (Type sup : types.closure(owner.type)) {
duke@1 1802 if (sup == owner.type)
duke@1 1803 continue; // skip "this"
duke@1 1804 Scope scope = sup.tsym.members();
duke@1 1805 for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
duke@1 1806 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
duke@1 1807 return true;
duke@1 1808 }
duke@1 1809 }
duke@1 1810 return false;
duke@1 1811 }
duke@1 1812
duke@1 1813 /** Is the annotation applicable to the symbol? */
duke@1 1814 boolean annotationApplicable(JCAnnotation a, Symbol s) {
duke@1 1815 Attribute.Compound atTarget =
duke@1 1816 a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
duke@1 1817 if (atTarget == null) return true;
duke@1 1818 Attribute atValue = atTarget.member(names.value);
duke@1 1819 if (!(atValue instanceof Attribute.Array)) return true; // error recovery
duke@1 1820 Attribute.Array arr = (Attribute.Array) atValue;
duke@1 1821 for (Attribute app : arr.values) {
duke@1 1822 if (!(app instanceof Attribute.Enum)) return true; // recovery
duke@1 1823 Attribute.Enum e = (Attribute.Enum) app;
duke@1 1824 if (e.value.name == names.TYPE)
duke@1 1825 { if (s.kind == TYP) return true; }
duke@1 1826 else if (e.value.name == names.FIELD)
duke@1 1827 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
duke@1 1828 else if (e.value.name == names.METHOD)
duke@1 1829 { if (s.kind == MTH && !s.isConstructor()) return true; }
duke@1 1830 else if (e.value.name == names.PARAMETER)
duke@1 1831 { if (s.kind == VAR &&
duke@1 1832 s.owner.kind == MTH &&
duke@1 1833 (s.flags() & PARAMETER) != 0)
duke@1 1834 return true;
duke@1 1835 }
duke@1 1836 else if (e.value.name == names.CONSTRUCTOR)
duke@1 1837 { if (s.kind == MTH && s.isConstructor()) return true; }
duke@1 1838 else if (e.value.name == names.LOCAL_VARIABLE)
duke@1 1839 { if (s.kind == VAR && s.owner.kind == MTH &&
duke@1 1840 (s.flags() & PARAMETER) == 0)
duke@1 1841 return true;
duke@1 1842 }
duke@1 1843 else if (e.value.name == names.ANNOTATION_TYPE)
duke@1 1844 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
duke@1 1845 return true;
duke@1 1846 }
duke@1 1847 else if (e.value.name == names.PACKAGE)
duke@1 1848 { if (s.kind == PCK) return true; }
duke@1 1849 else
duke@1 1850 return true; // recovery
duke@1 1851 }
duke@1 1852 return false;
duke@1 1853 }
duke@1 1854
duke@1 1855 /** Check an annotation value.
duke@1 1856 */
duke@1 1857 public void validateAnnotation(JCAnnotation a) {
duke@1 1858 if (a.type.isErroneous()) return;
duke@1 1859
duke@1 1860 // collect an inventory of the members
duke@1 1861 Set<MethodSymbol> members = new HashSet<MethodSymbol>();
duke@1 1862 for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
duke@1 1863 e != null;
duke@1 1864 e = e.sibling)
duke@1 1865 if (e.sym.kind == MTH)
duke@1 1866 members.add((MethodSymbol) e.sym);
duke@1 1867
duke@1 1868 // count them off as they're annotated
duke@1 1869 for (JCTree arg : a.args) {
duke@1 1870 if (arg.getTag() != JCTree.ASSIGN) continue; // recovery
duke@1 1871 JCAssign assign = (JCAssign) arg;
duke@1 1872 Symbol m = TreeInfo.symbol(assign.lhs);
duke@1 1873 if (m == null || m.type.isErroneous()) continue;
duke@1 1874 if (!members.remove(m))
duke@1 1875 log.error(arg.pos(), "duplicate.annotation.member.value",
duke@1 1876 m.name, a.type);
duke@1 1877 if (assign.rhs.getTag() == ANNOTATION)
duke@1 1878 validateAnnotation((JCAnnotation)assign.rhs);
duke@1 1879 }
duke@1 1880
duke@1 1881 // all the remaining ones better have default values
duke@1 1882 for (MethodSymbol m : members)
duke@1 1883 if (m.defaultValue == null && !m.type.isErroneous())
duke@1 1884 log.error(a.pos(), "annotation.missing.default.value",
duke@1 1885 a.type, m.name);
duke@1 1886
duke@1 1887 // special case: java.lang.annotation.Target must not have
duke@1 1888 // repeated values in its value member
duke@1 1889 if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
duke@1 1890 a.args.tail == null)
duke@1 1891 return;
duke@1 1892
duke@1 1893 if (a.args.head.getTag() != JCTree.ASSIGN) return; // error recovery
duke@1 1894 JCAssign assign = (JCAssign) a.args.head;
duke@1 1895 Symbol m = TreeInfo.symbol(assign.lhs);
duke@1 1896 if (m.name != names.value) return;
duke@1 1897 JCTree rhs = assign.rhs;
duke@1 1898 if (rhs.getTag() != JCTree.NEWARRAY) return;
duke@1 1899 JCNewArray na = (JCNewArray) rhs;
duke@1 1900 Set<Symbol> targets = new HashSet<Symbol>();
duke@1 1901 for (JCTree elem : na.elems) {
duke@1 1902 if (!targets.add(TreeInfo.symbol(elem))) {
duke@1 1903 log.error(elem.pos(), "repeated.annotation.target");
duke@1 1904 }
duke@1 1905 }
duke@1 1906 }
duke@1 1907
duke@1 1908 void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
duke@1 1909 if (allowAnnotations &&
duke@1 1910 lint.isEnabled(Lint.LintCategory.DEP_ANN) &&
duke@1 1911 (s.flags() & DEPRECATED) != 0 &&
duke@1 1912 !syms.deprecatedType.isErroneous() &&
duke@1 1913 s.attribute(syms.deprecatedType.tsym) == null) {
duke@1 1914 log.warning(pos, "missing.deprecated.annotation");
duke@1 1915 }
duke@1 1916 }
duke@1 1917
duke@1 1918 /* *************************************************************************
duke@1 1919 * Check for recursive annotation elements.
duke@1 1920 **************************************************************************/
duke@1 1921
duke@1 1922 /** Check for cycles in the graph of annotation elements.
duke@1 1923 */
duke@1 1924 void checkNonCyclicElements(JCClassDecl tree) {
duke@1 1925 if ((tree.sym.flags_field & ANNOTATION) == 0) return;
duke@1 1926 assert (tree.sym.flags_field & LOCKED) == 0;
duke@1 1927 try {
duke@1 1928 tree.sym.flags_field |= LOCKED;
duke@1 1929 for (JCTree def : tree.defs) {
duke@1 1930 if (def.getTag() != JCTree.METHODDEF) continue;
duke@1 1931 JCMethodDecl meth = (JCMethodDecl)def;
duke@1 1932 checkAnnotationResType(meth.pos(), meth.restype.type);
duke@1 1933 }
duke@1 1934 } finally {
duke@1 1935 tree.sym.flags_field &= ~LOCKED;
duke@1 1936 tree.sym.flags_field |= ACYCLIC_ANN;
duke@1 1937 }
duke@1 1938 }
duke@1 1939
duke@1 1940 void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
duke@1 1941 if ((tsym.flags_field & ACYCLIC_ANN) != 0)
duke@1 1942 return;
duke@1 1943 if ((tsym.flags_field & LOCKED) != 0) {
duke@1 1944 log.error(pos, "cyclic.annotation.element");
duke@1 1945 return;
duke@1 1946 }
duke@1 1947 try {
duke@1 1948 tsym.flags_field |= LOCKED;
duke@1 1949 for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
duke@1 1950 Symbol s = e.sym;
duke@1 1951 if (s.kind != Kinds.MTH)
duke@1 1952 continue;
duke@1 1953 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
duke@1 1954 }
duke@1 1955 } finally {
duke@1 1956 tsym.flags_field &= ~LOCKED;
duke@1 1957 tsym.flags_field |= ACYCLIC_ANN;
duke@1 1958 }
duke@1 1959 }
duke@1 1960
duke@1 1961 void checkAnnotationResType(DiagnosticPosition pos, Type type) {
duke@1 1962 switch (type.tag) {
duke@1 1963 case TypeTags.CLASS:
duke@1 1964 if ((type.tsym.flags() & ANNOTATION) != 0)
duke@1 1965 checkNonCyclicElementsInternal(pos, type.tsym);
duke@1 1966 break;
duke@1 1967 case TypeTags.ARRAY:
duke@1 1968 checkAnnotationResType(pos, types.elemtype(type));
duke@1 1969 break;
duke@1 1970 default:
duke@1 1971 break; // int etc
duke@1 1972 }
duke@1 1973 }
duke@1 1974
duke@1 1975 /* *************************************************************************
duke@1 1976 * Check for cycles in the constructor call graph.
duke@1 1977 **************************************************************************/
duke@1 1978
duke@1 1979 /** Check for cycles in the graph of constructors calling other
duke@1 1980 * constructors.
duke@1 1981 */
duke@1 1982 void checkCyclicConstructors(JCClassDecl tree) {
duke@1 1983 Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
duke@1 1984
duke@1 1985 // enter each constructor this-call into the map
duke@1 1986 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 1987 JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
duke@1 1988 if (app == null) continue;
duke@1 1989 JCMethodDecl meth = (JCMethodDecl) l.head;
duke@1 1990 if (TreeInfo.name(app.meth) == names._this) {
duke@1 1991 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
duke@1 1992 } else {
duke@1 1993 meth.sym.flags_field |= ACYCLIC;
duke@1 1994 }
duke@1 1995 }
duke@1 1996
duke@1 1997 // Check for cycles in the map
duke@1 1998 Symbol[] ctors = new Symbol[0];
duke@1 1999 ctors = callMap.keySet().toArray(ctors);
duke@1 2000 for (Symbol caller : ctors) {
duke@1 2001 checkCyclicConstructor(tree, caller, callMap);
duke@1 2002 }
duke@1 2003 }
duke@1 2004
duke@1 2005 /** Look in the map to see if the given constructor is part of a
duke@1 2006 * call cycle.
duke@1 2007 */
duke@1 2008 private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
duke@1 2009 Map<Symbol,Symbol> callMap) {
duke@1 2010 if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
duke@1 2011 if ((ctor.flags_field & LOCKED) != 0) {
duke@1 2012 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
duke@1 2013 "recursive.ctor.invocation");
duke@1 2014 } else {
duke@1 2015 ctor.flags_field |= LOCKED;
duke@1 2016 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
duke@1 2017 ctor.flags_field &= ~LOCKED;
duke@1 2018 }
duke@1 2019 ctor.flags_field |= ACYCLIC;
duke@1 2020 }
duke@1 2021 }
duke@1 2022
duke@1 2023 /* *************************************************************************
duke@1 2024 * Miscellaneous
duke@1 2025 **************************************************************************/
duke@1 2026
duke@1 2027 /**
duke@1 2028 * Return the opcode of the operator but emit an error if it is an
duke@1 2029 * error.
duke@1 2030 * @param pos position for error reporting.
duke@1 2031 * @param operator an operator
duke@1 2032 * @param tag a tree tag
duke@1 2033 * @param left type of left hand side
duke@1 2034 * @param right type of right hand side
duke@1 2035 */
duke@1 2036 int checkOperator(DiagnosticPosition pos,
duke@1 2037 OperatorSymbol operator,
duke@1 2038 int tag,
duke@1 2039 Type left,
duke@1 2040 Type right) {
duke@1 2041 if (operator.opcode == ByteCodes.error) {
duke@1 2042 log.error(pos,
duke@1 2043 "operator.cant.be.applied",
duke@1 2044 treeinfo.operatorName(tag),
mcimadamore@80 2045 List.of(left, right));
duke@1 2046 }
duke@1 2047 return operator.opcode;
duke@1 2048 }
duke@1 2049
duke@1 2050
duke@1 2051 /**
duke@1 2052 * Check for division by integer constant zero
duke@1 2053 * @param pos Position for error reporting.
duke@1 2054 * @param operator The operator for the expression
duke@1 2055 * @param operand The right hand operand for the expression
duke@1 2056 */
duke@1 2057 void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
duke@1 2058 if (operand.constValue() != null
duke@1 2059 && lint.isEnabled(Lint.LintCategory.DIVZERO)
duke@1 2060 && operand.tag <= LONG
duke@1 2061 && ((Number) (operand.constValue())).longValue() == 0) {
duke@1 2062 int opc = ((OperatorSymbol)operator).opcode;
duke@1 2063 if (opc == ByteCodes.idiv || opc == ByteCodes.imod
duke@1 2064 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
duke@1 2065 log.warning(pos, "div.zero");
duke@1 2066 }
duke@1 2067 }
duke@1 2068 }
duke@1 2069
duke@1 2070 /**
duke@1 2071 * Check for empty statements after if
duke@1 2072 */
duke@1 2073 void checkEmptyIf(JCIf tree) {
duke@1 2074 if (tree.thenpart.getTag() == JCTree.SKIP && tree.elsepart == null && lint.isEnabled(Lint.LintCategory.EMPTY))
duke@1 2075 log.warning(tree.thenpart.pos(), "empty.if");
duke@1 2076 }
duke@1 2077
duke@1 2078 /** Check that symbol is unique in given scope.
duke@1 2079 * @param pos Position for error reporting.
duke@1 2080 * @param sym The symbol.
duke@1 2081 * @param s The scope.
duke@1 2082 */
duke@1 2083 boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
duke@1 2084 if (sym.type.isErroneous())
duke@1 2085 return true;
duke@1 2086 if (sym.owner.name == names.any) return false;
duke@1 2087 for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
duke@1 2088 if (sym != e.sym &&
duke@1 2089 sym.kind == e.sym.kind &&
duke@1 2090 sym.name != names.error &&
duke@1 2091 (sym.kind != MTH || types.overrideEquivalent(sym.type, e.sym.type))) {
duke@1 2092 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS))
duke@1 2093 varargsDuplicateError(pos, sym, e.sym);
duke@1 2094 else
duke@1 2095 duplicateError(pos, e.sym);
duke@1 2096 return false;
duke@1 2097 }
duke@1 2098 }
duke@1 2099 return true;
duke@1 2100 }
duke@1 2101
duke@1 2102 /** Check that single-type import is not already imported or top-level defined,
duke@1 2103 * but make an exception for two single-type imports which denote the same type.
duke@1 2104 * @param pos Position for error reporting.
duke@1 2105 * @param sym The symbol.
duke@1 2106 * @param s The scope
duke@1 2107 */
duke@1 2108 boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
duke@1 2109 return checkUniqueImport(pos, sym, s, false);
duke@1 2110 }
duke@1 2111
duke@1 2112 /** Check that static single-type import is not already imported or top-level defined,
duke@1 2113 * but make an exception for two single-type imports which denote the same type.
duke@1 2114 * @param pos Position for error reporting.
duke@1 2115 * @param sym The symbol.
duke@1 2116 * @param s The scope
duke@1 2117 * @param staticImport Whether or not this was a static import
duke@1 2118 */
duke@1 2119 boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
duke@1 2120 return checkUniqueImport(pos, sym, s, true);
duke@1 2121 }
duke@1 2122
duke@1 2123 /** Check that single-type import is not already imported or top-level defined,
duke@1 2124 * but make an exception for two single-type imports which denote the same type.
duke@1 2125 * @param pos Position for error reporting.
duke@1 2126 * @param sym The symbol.
duke@1 2127 * @param s The scope.
duke@1 2128 * @param staticImport Whether or not this was a static import
duke@1 2129 */
duke@1 2130 private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
duke@1 2131 for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
duke@1 2132 // is encountered class entered via a class declaration?
duke@1 2133 boolean isClassDecl = e.scope == s;
duke@1 2134 if ((isClassDecl || sym != e.sym) &&
duke@1 2135 sym.kind == e.sym.kind &&
duke@1 2136 sym.name != names.error) {
duke@1 2137 if (!e.sym.type.isErroneous()) {
duke@1 2138 String what = e.sym.toString();
duke@1 2139 if (!isClassDecl) {
duke@1 2140 if (staticImport)
duke@1 2141 log.error(pos, "already.defined.static.single.import", what);
duke@1 2142 else
duke@1 2143 log.error(pos, "already.defined.single.import", what);
duke@1 2144 }
duke@1 2145 else if (sym != e.sym)
duke@1 2146 log.error(pos, "already.defined.this.unit", what);
duke@1 2147 }
duke@1 2148 return false;
duke@1 2149 }
duke@1 2150 }
duke@1 2151 return true;
duke@1 2152 }
duke@1 2153
duke@1 2154 /** Check that a qualified name is in canonical form (for import decls).
duke@1 2155 */
duke@1 2156 public void checkCanonical(JCTree tree) {
duke@1 2157 if (!isCanonical(tree))
duke@1 2158 log.error(tree.pos(), "import.requires.canonical",
duke@1 2159 TreeInfo.symbol(tree));
duke@1 2160 }
duke@1 2161 // where
duke@1 2162 private boolean isCanonical(JCTree tree) {
duke@1 2163 while (tree.getTag() == JCTree.SELECT) {
duke@1 2164 JCFieldAccess s = (JCFieldAccess) tree;
duke@1 2165 if (s.sym.owner != TreeInfo.symbol(s.selected))
duke@1 2166 return false;
duke@1 2167 tree = s.selected;
duke@1 2168 }
duke@1 2169 return true;
duke@1 2170 }
duke@1 2171
duke@1 2172 private class ConversionWarner extends Warner {
duke@1 2173 final String key;
duke@1 2174 final Type found;
duke@1 2175 final Type expected;
duke@1 2176 public ConversionWarner(DiagnosticPosition pos, String key, Type found, Type expected) {
duke@1 2177 super(pos);
duke@1 2178 this.key = key;
duke@1 2179 this.found = found;
duke@1 2180 this.expected = expected;
duke@1 2181 }
duke@1 2182
duke@1 2183 public void warnUnchecked() {
duke@1 2184 boolean warned = this.warned;
duke@1 2185 super.warnUnchecked();
duke@1 2186 if (warned) return; // suppress redundant diagnostics
mcimadamore@89 2187 Object problem = diags.fragment(key);
duke@1 2188 Check.this.warnUnchecked(pos(), "prob.found.req", problem, found, expected);
duke@1 2189 }
duke@1 2190 }
duke@1 2191
duke@1 2192 public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
duke@1 2193 return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
duke@1 2194 }
duke@1 2195
duke@1 2196 public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
duke@1 2197 return new ConversionWarner(pos, "unchecked.assign", found, expected);
duke@1 2198 }
duke@1 2199 }

mercurial