src/share/classes/com/sun/tools/javac/comp/Check.java

Mon, 09 Mar 2009 23:53:41 -0700

author
tbell
date
Mon, 09 Mar 2009 23:53:41 -0700
changeset 240
8c55d5b0ed71
parent 229
03bcd66bd8e7
parent 236
84a18d7da478
child 252
5caa6c45936a
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 1999-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Sun designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Sun in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    22  * CA 95054 USA or visit www.sun.com if you need additional information or
    23  * have any questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    31 import com.sun.tools.javac.code.*;
    32 import com.sun.tools.javac.jvm.*;
    33 import com.sun.tools.javac.tree.*;
    34 import com.sun.tools.javac.util.*;
    35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    36 import com.sun.tools.javac.util.List;
    38 import com.sun.tools.javac.tree.JCTree.*;
    39 import com.sun.tools.javac.code.Lint;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Type.*;
    42 import com.sun.tools.javac.code.Symbol.*;
    44 import static com.sun.tools.javac.code.Flags.*;
    45 import static com.sun.tools.javac.code.Kinds.*;
    46 import static com.sun.tools.javac.code.TypeTags.*;
    48 /** Type checking helper class for the attribution phase.
    49  *
    50  *  <p><b>This is NOT part of any API supported by Sun Microsystems.  If
    51  *  you write code that depends on this, you do so at your own risk.
    52  *  This code and its internal interfaces are subject to change or
    53  *  deletion without notice.</b>
    54  */
    55 public class Check {
    56     protected static final Context.Key<Check> checkKey =
    57         new Context.Key<Check>();
    59     private final Names names;
    60     private final Log log;
    61     private final Symtab syms;
    62     private final Infer infer;
    63     private final Target target;
    64     private final Source source;
    65     private final Types types;
    66     private final JCDiagnostic.Factory diags;
    67     private final boolean skipAnnotations;
    68     private final TreeInfo treeinfo;
    70     // The set of lint options currently in effect. It is initialized
    71     // from the context, and then is set/reset as needed by Attr as it
    72     // visits all the various parts of the trees during attribution.
    73     private Lint lint;
    75     public static Check instance(Context context) {
    76         Check instance = context.get(checkKey);
    77         if (instance == null)
    78             instance = new Check(context);
    79         return instance;
    80     }
    82     protected Check(Context context) {
    83         context.put(checkKey, this);
    85         names = Names.instance(context);
    86         log = Log.instance(context);
    87         syms = Symtab.instance(context);
    88         infer = Infer.instance(context);
    89         this.types = Types.instance(context);
    90         diags = JCDiagnostic.Factory.instance(context);
    91         Options options = Options.instance(context);
    92         target = Target.instance(context);
    93         source = Source.instance(context);
    94         lint = Lint.instance(context);
    95         treeinfo = TreeInfo.instance(context);
    97         Source source = Source.instance(context);
    98         allowGenerics = source.allowGenerics();
    99         allowAnnotations = source.allowAnnotations();
   100         complexInference = options.get("-complexinference") != null;
   101         skipAnnotations = options.get("skipAnnotations") != null;
   103         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   104         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   105         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
   107         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
   108                 enforceMandatoryWarnings, "deprecated");
   109         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
   110                 enforceMandatoryWarnings, "unchecked");
   111     }
   113     /** Switch: generics enabled?
   114      */
   115     boolean allowGenerics;
   117     /** Switch: annotations enabled?
   118      */
   119     boolean allowAnnotations;
   121     /** Switch: -complexinference option set?
   122      */
   123     boolean complexInference;
   125     /** A table mapping flat names of all compiled classes in this run to their
   126      *  symbols; maintained from outside.
   127      */
   128     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   130     /** A handler for messages about deprecated usage.
   131      */
   132     private MandatoryWarningHandler deprecationHandler;
   134     /** A handler for messages about unchecked or unsafe usage.
   135      */
   136     private MandatoryWarningHandler uncheckedHandler;
   139 /* *************************************************************************
   140  * Errors and Warnings
   141  **************************************************************************/
   143     Lint setLint(Lint newLint) {
   144         Lint prev = lint;
   145         lint = newLint;
   146         return prev;
   147     }
   149     /** Warn about deprecated symbol.
   150      *  @param pos        Position to be used for error reporting.
   151      *  @param sym        The deprecated symbol.
   152      */
   153     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   154         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   155             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   156     }
   158     /** Warn about unchecked operation.
   159      *  @param pos        Position to be used for error reporting.
   160      *  @param msg        A string describing the problem.
   161      */
   162     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   163         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   164             uncheckedHandler.report(pos, msg, args);
   165     }
   167     /**
   168      * Report any deferred diagnostics.
   169      */
   170     public void reportDeferredDiagnostics() {
   171         deprecationHandler.reportDeferredDiagnostic();
   172         uncheckedHandler.reportDeferredDiagnostic();
   173     }
   176     /** Report a failure to complete a class.
   177      *  @param pos        Position to be used for error reporting.
   178      *  @param ex         The failure to report.
   179      */
   180     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   181         log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
   182         if (ex instanceof ClassReader.BadClassFile) throw new Abort();
   183         else return syms.errType;
   184     }
   186     /** Report a type error.
   187      *  @param pos        Position to be used for error reporting.
   188      *  @param problem    A string describing the error.
   189      *  @param found      The type that was found.
   190      *  @param req        The type that was required.
   191      */
   192     Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) {
   193         log.error(pos, "prob.found.req",
   194                   problem, found, req);
   195         return types.createErrorType(found);
   196     }
   198     Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) {
   199         log.error(pos, "prob.found.req.1", problem, found, req, explanation);
   200         return types.createErrorType(found);
   201     }
   203     /** Report an error that wrong type tag was found.
   204      *  @param pos        Position to be used for error reporting.
   205      *  @param required   An internationalized string describing the type tag
   206      *                    required.
   207      *  @param found      The type that was found.
   208      */
   209     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   210         log.error(pos, "type.found.req", found, required);
   211         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
   212     }
   214     /** Report an error that symbol cannot be referenced before super
   215      *  has been called.
   216      *  @param pos        Position to be used for error reporting.
   217      *  @param sym        The referenced symbol.
   218      */
   219     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   220         log.error(pos, "cant.ref.before.ctor.called", sym);
   221     }
   223     /** Report duplicate declaration error.
   224      */
   225     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   226         if (!sym.type.isErroneous()) {
   227             log.error(pos, "already.defined", sym, sym.location());
   228         }
   229     }
   231     /** Report array/varargs duplicate declaration
   232      */
   233     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   234         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   235             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   236         }
   237     }
   239 /* ************************************************************************
   240  * duplicate declaration checking
   241  *************************************************************************/
   243     /** Check that variable does not hide variable with same name in
   244      *  immediately enclosing local scope.
   245      *  @param pos           Position for error reporting.
   246      *  @param v             The symbol.
   247      *  @param s             The scope.
   248      */
   249     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   250         if (s.next != null) {
   251             for (Scope.Entry e = s.next.lookup(v.name);
   252                  e.scope != null && e.sym.owner == v.owner;
   253                  e = e.next()) {
   254                 if (e.sym.kind == VAR &&
   255                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   256                     v.name != names.error) {
   257                     duplicateError(pos, e.sym);
   258                     return;
   259                 }
   260             }
   261         }
   262     }
   264     /** Check that a class or interface does not hide a class or
   265      *  interface with same name in immediately enclosing local scope.
   266      *  @param pos           Position for error reporting.
   267      *  @param c             The symbol.
   268      *  @param s             The scope.
   269      */
   270     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   271         if (s.next != null) {
   272             for (Scope.Entry e = s.next.lookup(c.name);
   273                  e.scope != null && e.sym.owner == c.owner;
   274                  e = e.next()) {
   275                 if (e.sym.kind == TYP &&
   276                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   277                     c.name != names.error) {
   278                     duplicateError(pos, e.sym);
   279                     return;
   280                 }
   281             }
   282         }
   283     }
   285     /** Check that class does not have the same name as one of
   286      *  its enclosing classes, or as a class defined in its enclosing scope.
   287      *  return true if class is unique in its enclosing scope.
   288      *  @param pos           Position for error reporting.
   289      *  @param name          The class name.
   290      *  @param s             The enclosing scope.
   291      */
   292     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   293         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   294             if (e.sym.kind == TYP && e.sym.name != names.error) {
   295                 duplicateError(pos, e.sym);
   296                 return false;
   297             }
   298         }
   299         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   300             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   301                 duplicateError(pos, sym);
   302                 return true;
   303             }
   304         }
   305         return true;
   306     }
   308 /* *************************************************************************
   309  * Class name generation
   310  **************************************************************************/
   312     /** Return name of local class.
   313      *  This is of the form    <enclClass> $ n <classname>
   314      *  where
   315      *    enclClass is the flat name of the enclosing class,
   316      *    classname is the simple name of the local class
   317      */
   318     Name localClassName(ClassSymbol c) {
   319         for (int i=1; ; i++) {
   320             Name flatname = names.
   321                 fromString("" + c.owner.enclClass().flatname +
   322                            target.syntheticNameChar() + i +
   323                            c.name);
   324             if (compiled.get(flatname) == null) return flatname;
   325         }
   326     }
   328 /* *************************************************************************
   329  * Type Checking
   330  **************************************************************************/
   332     /** Check that a given type is assignable to a given proto-type.
   333      *  If it is, return the type, otherwise return errType.
   334      *  @param pos        Position to be used for error reporting.
   335      *  @param found      The type that was found.
   336      *  @param req        The type that was required.
   337      */
   338     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   339         if (req.tag == ERROR)
   340             return req;
   341         if (found.tag == FORALL)
   342             return instantiatePoly(pos, (ForAll)found, req, convertWarner(pos, found, req));
   343         if (req.tag == NONE)
   344             return found;
   345         if (types.isAssignable(found, req, convertWarner(pos, found, req)))
   346             return found;
   347         if (found.tag <= DOUBLE && req.tag <= DOUBLE)
   348             return typeError(pos, diags.fragment("possible.loss.of.precision"), found, req);
   349         if (found.isSuperBound()) {
   350             log.error(pos, "assignment.from.super-bound", found);
   351             return types.createErrorType(found);
   352         }
   353         if (req.isExtendsBound()) {
   354             log.error(pos, "assignment.to.extends-bound", req);
   355             return types.createErrorType(found);
   356         }
   357         return typeError(pos, diags.fragment("incompatible.types"), found, req);
   358     }
   360     /** Instantiate polymorphic type to some prototype, unless
   361      *  prototype is `anyPoly' in which case polymorphic type
   362      *  is returned unchanged.
   363      */
   364     Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) {
   365         if (pt == Infer.anyPoly && complexInference) {
   366             return t;
   367         } else if (pt == Infer.anyPoly || pt.tag == NONE) {
   368             Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType;
   369             return instantiatePoly(pos, t, newpt, warn);
   370         } else if (pt.tag == ERROR) {
   371             return pt;
   372         } else {
   373             try {
   374                 return infer.instantiateExpr(t, pt, warn);
   375             } catch (Infer.NoInstanceException ex) {
   376                 if (ex.isAmbiguous) {
   377                     JCDiagnostic d = ex.getDiagnostic();
   378                     log.error(pos,
   379                               "undetermined.type" + (d!=null ? ".1" : ""),
   380                               t, d);
   381                     return types.createErrorType(pt);
   382                 } else {
   383                     JCDiagnostic d = ex.getDiagnostic();
   384                     return typeError(pos,
   385                                      diags.fragment("incompatible.types" + (d!=null ? ".1" : ""), d),
   386                                      t, pt);
   387                 }
   388             }
   389         }
   390     }
   392     /** Check that a given type can be cast to a given target type.
   393      *  Return the result of the cast.
   394      *  @param pos        Position to be used for error reporting.
   395      *  @param found      The type that is being cast.
   396      *  @param req        The target type of the cast.
   397      */
   398     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   399         if (found.tag == FORALL) {
   400             instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req));
   401             return req;
   402         } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
   403             return req;
   404         } else {
   405             return typeError(pos,
   406                              diags.fragment("inconvertible.types"),
   407                              found, req);
   408         }
   409     }
   410 //where
   411         /** Is type a type variable, or a (possibly multi-dimensional) array of
   412          *  type variables?
   413          */
   414         boolean isTypeVar(Type t) {
   415             return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
   416         }
   418     /** Check that a type is within some bounds.
   419      *
   420      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   421      *  type argument.
   422      *  @param pos           Position to be used for error reporting.
   423      *  @param a             The type that should be bounded by bs.
   424      *  @param bs            The bound.
   425      */
   426     private void checkExtends(DiagnosticPosition pos, Type a, TypeVar bs) {
   427          if (a.isUnbound()) {
   428              return;
   429          } else if (a.tag != WILDCARD) {
   430              a = types.upperBound(a);
   431              for (List<Type> l = types.getBounds(bs); l.nonEmpty(); l = l.tail) {
   432                  if (!types.isSubtype(a, l.head)) {
   433                      log.error(pos, "not.within.bounds", a);
   434                      return;
   435                  }
   436              }
   437          } else if (a.isExtendsBound()) {
   438              if (!types.isCastable(bs.getUpperBound(), types.upperBound(a), Warner.noWarnings))
   439                  log.error(pos, "not.within.bounds", a);
   440          } else if (a.isSuperBound()) {
   441              if (types.notSoftSubtype(types.lowerBound(a), bs.getUpperBound()))
   442                  log.error(pos, "not.within.bounds", a);
   443          }
   444      }
   446     /** Check that a type is within some bounds.
   447      *
   448      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   449      *  type argument.
   450      *  @param pos           Position to be used for error reporting.
   451      *  @param a             The type that should be bounded by bs.
   452      *  @param bs            The bound.
   453      */
   454     private void checkCapture(JCTypeApply tree) {
   455         List<JCExpression> args = tree.getTypeArguments();
   456         for (Type arg : types.capture(tree.type).getTypeArguments()) {
   457             if (arg.tag == TYPEVAR && arg.getUpperBound().isErroneous()) {
   458                 log.error(args.head.pos, "not.within.bounds", args.head.type);
   459                 break;
   460             }
   461             args = args.tail;
   462         }
   463      }
   465     /** Check that type is different from 'void'.
   466      *  @param pos           Position to be used for error reporting.
   467      *  @param t             The type to be checked.
   468      */
   469     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   470         if (t.tag == VOID) {
   471             log.error(pos, "void.not.allowed.here");
   472             return types.createErrorType(t);
   473         } else {
   474             return t;
   475         }
   476     }
   478     /** Check that type is a class or interface type.
   479      *  @param pos           Position to be used for error reporting.
   480      *  @param t             The type to be checked.
   481      */
   482     Type checkClassType(DiagnosticPosition pos, Type t) {
   483         if (t.tag != CLASS && t.tag != ERROR)
   484             return typeTagError(pos,
   485                                 diags.fragment("type.req.class"),
   486                                 (t.tag == TYPEVAR)
   487                                 ? diags.fragment("type.parameter", t)
   488                                 : t);
   489         else
   490             return t;
   491     }
   493     /** Check that type is a class or interface type.
   494      *  @param pos           Position to be used for error reporting.
   495      *  @param t             The type to be checked.
   496      *  @param noBounds    True if type bounds are illegal here.
   497      */
   498     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   499         t = checkClassType(pos, t);
   500         if (noBounds && t.isParameterized()) {
   501             List<Type> args = t.getTypeArguments();
   502             while (args.nonEmpty()) {
   503                 if (args.head.tag == WILDCARD)
   504                     return typeTagError(pos,
   505                                         log.getLocalizedString("type.req.exact"),
   506                                         args.head);
   507                 args = args.tail;
   508             }
   509         }
   510         return t;
   511     }
   513     /** Check that type is a reifiable class, interface or array type.
   514      *  @param pos           Position to be used for error reporting.
   515      *  @param t             The type to be checked.
   516      */
   517     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
   518         if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
   519             return typeTagError(pos,
   520                                 diags.fragment("type.req.class.array"),
   521                                 t);
   522         } else if (!types.isReifiable(t)) {
   523             log.error(pos, "illegal.generic.type.for.instof");
   524             return types.createErrorType(t);
   525         } else {
   526             return t;
   527         }
   528     }
   530     /** Check that type is a reference type, i.e. a class, interface or array type
   531      *  or a type variable.
   532      *  @param pos           Position to be used for error reporting.
   533      *  @param t             The type to be checked.
   534      */
   535     Type checkRefType(DiagnosticPosition pos, Type t) {
   536         switch (t.tag) {
   537         case CLASS:
   538         case ARRAY:
   539         case TYPEVAR:
   540         case WILDCARD:
   541         case ERROR:
   542             return t;
   543         default:
   544             return typeTagError(pos,
   545                                 diags.fragment("type.req.ref"),
   546                                 t);
   547         }
   548     }
   550     /** Check that type is a null or reference type.
   551      *  @param pos           Position to be used for error reporting.
   552      *  @param t             The type to be checked.
   553      */
   554     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   555         switch (t.tag) {
   556         case CLASS:
   557         case ARRAY:
   558         case TYPEVAR:
   559         case WILDCARD:
   560         case BOT:
   561         case ERROR:
   562             return t;
   563         default:
   564             return typeTagError(pos,
   565                                 diags.fragment("type.req.ref"),
   566                                 t);
   567         }
   568     }
   570     /** Check that flag set does not contain elements of two conflicting sets. s
   571      *  Return true if it doesn't.
   572      *  @param pos           Position to be used for error reporting.
   573      *  @param flags         The set of flags to be checked.
   574      *  @param set1          Conflicting flags set #1.
   575      *  @param set2          Conflicting flags set #2.
   576      */
   577     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   578         if ((flags & set1) != 0 && (flags & set2) != 0) {
   579             log.error(pos,
   580                       "illegal.combination.of.modifiers",
   581                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
   582                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
   583             return false;
   584         } else
   585             return true;
   586     }
   588     /** Check that given modifiers are legal for given symbol and
   589      *  return modifiers together with any implicit modififiers for that symbol.
   590      *  Warning: we can't use flags() here since this method
   591      *  is called during class enter, when flags() would cause a premature
   592      *  completion.
   593      *  @param pos           Position to be used for error reporting.
   594      *  @param flags         The set of modifiers given in a definition.
   595      *  @param sym           The defined symbol.
   596      */
   597     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
   598         long mask;
   599         long implicit = 0;
   600         switch (sym.kind) {
   601         case VAR:
   602             if (sym.owner.kind != TYP)
   603                 mask = LocalVarFlags;
   604             else if ((sym.owner.flags_field & INTERFACE) != 0)
   605                 mask = implicit = InterfaceVarFlags;
   606             else
   607                 mask = VarFlags;
   608             break;
   609         case MTH:
   610             if (sym.name == names.init) {
   611                 if ((sym.owner.flags_field & ENUM) != 0) {
   612                     // enum constructors cannot be declared public or
   613                     // protected and must be implicitly or explicitly
   614                     // private
   615                     implicit = PRIVATE;
   616                     mask = PRIVATE;
   617                 } else
   618                     mask = ConstructorFlags;
   619             }  else if ((sym.owner.flags_field & INTERFACE) != 0)
   620                 mask = implicit = InterfaceMethodFlags;
   621             else {
   622                 mask = MethodFlags;
   623             }
   624             // Imply STRICTFP if owner has STRICTFP set.
   625             if (((flags|implicit) & Flags.ABSTRACT) == 0)
   626               implicit |= sym.owner.flags_field & STRICTFP;
   627             break;
   628         case TYP:
   629             if (sym.isLocal()) {
   630                 mask = LocalClassFlags;
   631                 if (sym.name.isEmpty()) { // Anonymous class
   632                     // Anonymous classes in static methods are themselves static;
   633                     // that's why we admit STATIC here.
   634                     mask |= STATIC;
   635                     // JLS: Anonymous classes are final.
   636                     implicit |= FINAL;
   637                 }
   638                 if ((sym.owner.flags_field & STATIC) == 0 &&
   639                     (flags & ENUM) != 0)
   640                     log.error(pos, "enums.must.be.static");
   641             } else if (sym.owner.kind == TYP) {
   642                 mask = MemberClassFlags;
   643                 if (sym.owner.owner.kind == PCK ||
   644                     (sym.owner.flags_field & STATIC) != 0)
   645                     mask |= STATIC;
   646                 else if ((flags & ENUM) != 0)
   647                     log.error(pos, "enums.must.be.static");
   648                 // Nested interfaces and enums are always STATIC (Spec ???)
   649                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
   650             } else {
   651                 mask = ClassFlags;
   652             }
   653             // Interfaces are always ABSTRACT
   654             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
   656             if ((flags & ENUM) != 0) {
   657                 // enums can't be declared abstract or final
   658                 mask &= ~(ABSTRACT | FINAL);
   659                 implicit |= implicitEnumFinalFlag(tree);
   660             }
   661             // Imply STRICTFP if owner has STRICTFP set.
   662             implicit |= sym.owner.flags_field & STRICTFP;
   663             break;
   664         default:
   665             throw new AssertionError();
   666         }
   667         long illegal = flags & StandardFlags & ~mask;
   668         if (illegal != 0) {
   669             if ((illegal & INTERFACE) != 0) {
   670                 log.error(pos, "intf.not.allowed.here");
   671                 mask |= INTERFACE;
   672             }
   673             else {
   674                 log.error(pos,
   675                           "mod.not.allowed.here", asFlagSet(illegal));
   676             }
   677         }
   678         else if ((sym.kind == TYP ||
   679                   // ISSUE: Disallowing abstract&private is no longer appropriate
   680                   // in the presence of inner classes. Should it be deleted here?
   681                   checkDisjoint(pos, flags,
   682                                 ABSTRACT,
   683                                 PRIVATE | STATIC))
   684                  &&
   685                  checkDisjoint(pos, flags,
   686                                ABSTRACT | INTERFACE,
   687                                FINAL | NATIVE | SYNCHRONIZED)
   688                  &&
   689                  checkDisjoint(pos, flags,
   690                                PUBLIC,
   691                                PRIVATE | PROTECTED)
   692                  &&
   693                  checkDisjoint(pos, flags,
   694                                PRIVATE,
   695                                PUBLIC | PROTECTED)
   696                  &&
   697                  checkDisjoint(pos, flags,
   698                                FINAL,
   699                                VOLATILE)
   700                  &&
   701                  (sym.kind == TYP ||
   702                   checkDisjoint(pos, flags,
   703                                 ABSTRACT | NATIVE,
   704                                 STRICTFP))) {
   705             // skip
   706         }
   707         return flags & (mask | ~StandardFlags) | implicit;
   708     }
   711     /** Determine if this enum should be implicitly final.
   712      *
   713      *  If the enum has no specialized enum contants, it is final.
   714      *
   715      *  If the enum does have specialized enum contants, it is
   716      *  <i>not</i> final.
   717      */
   718     private long implicitEnumFinalFlag(JCTree tree) {
   719         if (tree.getTag() != JCTree.CLASSDEF) return 0;
   720         class SpecialTreeVisitor extends JCTree.Visitor {
   721             boolean specialized;
   722             SpecialTreeVisitor() {
   723                 this.specialized = false;
   724             };
   726             public void visitTree(JCTree tree) { /* no-op */ }
   728             public void visitVarDef(JCVariableDecl tree) {
   729                 if ((tree.mods.flags & ENUM) != 0) {
   730                     if (tree.init instanceof JCNewClass &&
   731                         ((JCNewClass) tree.init).def != null) {
   732                         specialized = true;
   733                     }
   734                 }
   735             }
   736         }
   738         SpecialTreeVisitor sts = new SpecialTreeVisitor();
   739         JCClassDecl cdef = (JCClassDecl) tree;
   740         for (JCTree defs: cdef.defs) {
   741             defs.accept(sts);
   742             if (sts.specialized) return 0;
   743         }
   744         return FINAL;
   745     }
   747 /* *************************************************************************
   748  * Type Validation
   749  **************************************************************************/
   751     /** Validate a type expression. That is,
   752      *  check that all type arguments of a parametric type are within
   753      *  their bounds. This must be done in a second phase after type attributon
   754      *  since a class might have a subclass as type parameter bound. E.g:
   755      *
   756      *  class B<A extends C> { ... }
   757      *  class C extends B<C> { ... }
   758      *
   759      *  and we can't make sure that the bound is already attributed because
   760      *  of possible cycles.
   761      */
   762     private Validator validator = new Validator();
   764     /** Visitor method: Validate a type expression, if it is not null, catching
   765      *  and reporting any completion failures.
   766      */
   767     void validate(JCTree tree, Env<AttrContext> env) {
   768         try {
   769             if (tree != null) {
   770                 validator.env = env;
   771                 tree.accept(validator);
   772                 checkRaw(tree, env);
   773             }
   774         } catch (CompletionFailure ex) {
   775             completionError(tree.pos(), ex);
   776         }
   777     }
   778     //where
   779     void checkRaw(JCTree tree, Env<AttrContext> env) {
   780         if (lint.isEnabled(Lint.LintCategory.RAW) &&
   781             tree.type.tag == CLASS &&
   782             !env.enclClass.name.isEmpty() &&  //anonymous or intersection
   783             tree.type.isRaw()) {
   784             log.warning(tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
   785         }
   786     }
   788     /** Visitor method: Validate a list of type expressions.
   789      */
   790     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
   791         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
   792             validate(l.head, env);
   793     }
   795     /** A visitor class for type validation.
   796      */
   797     class Validator extends JCTree.Visitor {
   799         public void visitTypeArray(JCArrayTypeTree tree) {
   800             validate(tree.elemtype, env);
   801         }
   803         public void visitTypeApply(JCTypeApply tree) {
   804             if (tree.type.tag == CLASS) {
   805                 List<Type> formals = tree.type.tsym.type.allparams();
   806                 List<Type> actuals = tree.type.allparams();
   807                 List<JCExpression> args = tree.arguments;
   808                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
   809                 ListBuffer<TypeVar> tvars_buf = new ListBuffer<TypeVar>();
   811                 // For matching pairs of actual argument types `a' and
   812                 // formal type parameters with declared bound `b' ...
   813                 while (args.nonEmpty() && forms.nonEmpty()) {
   814                     validate(args.head, env);
   816                     // exact type arguments needs to know their
   817                     // bounds (for upper and lower bound
   818                     // calculations).  So we create new TypeVars with
   819                     // bounds substed with actuals.
   820                     tvars_buf.append(types.substBound(((TypeVar)forms.head),
   821                                                       formals,
   822                                                       actuals));
   824                     args = args.tail;
   825                     forms = forms.tail;
   826                 }
   828                 args = tree.arguments;
   829                 List<Type> tvars_cap = types.substBounds(formals,
   830                                           formals,
   831                                           types.capture(tree.type).allparams());
   832                 while (args.nonEmpty() && tvars_cap.nonEmpty()) {
   833                     // Let the actual arguments know their bound
   834                     args.head.type.withTypeVar((TypeVar)tvars_cap.head);
   835                     args = args.tail;
   836                     tvars_cap = tvars_cap.tail;
   837                 }
   839                 args = tree.arguments;
   840                 List<TypeVar> tvars = tvars_buf.toList();
   842                 while (args.nonEmpty() && tvars.nonEmpty()) {
   843                     checkExtends(args.head.pos(),
   844                                  args.head.type,
   845                                  tvars.head);
   846                     args = args.tail;
   847                     tvars = tvars.tail;
   848                 }
   850                 checkCapture(tree);
   852                 // Check that this type is either fully parameterized, or
   853                 // not parameterized at all.
   854                 if (tree.type.getEnclosingType().isRaw())
   855                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
   856                 if (tree.clazz.getTag() == JCTree.SELECT)
   857                     visitSelectInternal((JCFieldAccess)tree.clazz);
   858             }
   859         }
   861         public void visitTypeParameter(JCTypeParameter tree) {
   862             validate(tree.bounds, env);
   863             checkClassBounds(tree.pos(), tree.type);
   864         }
   866         @Override
   867         public void visitWildcard(JCWildcard tree) {
   868             if (tree.inner != null)
   869                 validate(tree.inner, env);
   870         }
   872         public void visitSelect(JCFieldAccess tree) {
   873             if (tree.type.tag == CLASS) {
   874                 visitSelectInternal(tree);
   876                 // Check that this type is either fully parameterized, or
   877                 // not parameterized at all.
   878                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
   879                     log.error(tree.pos(), "improperly.formed.type.param.missing");
   880             }
   881         }
   882         public void visitSelectInternal(JCFieldAccess tree) {
   883             if (tree.type.tsym.isStatic() &&
   884                 tree.selected.type.isParameterized()) {
   885                 // The enclosing type is not a class, so we are
   886                 // looking at a static member type.  However, the
   887                 // qualifying expression is parameterized.
   888                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
   889             } else {
   890                 // otherwise validate the rest of the expression
   891                 tree.selected.accept(this);
   892             }
   893         }
   895         /** Default visitor method: do nothing.
   896          */
   897         public void visitTree(JCTree tree) {
   898         }
   900         Env<AttrContext> env;
   901     }
   903 /* *************************************************************************
   904  * Exception checking
   905  **************************************************************************/
   907     /* The following methods treat classes as sets that contain
   908      * the class itself and all their subclasses
   909      */
   911     /** Is given type a subtype of some of the types in given list?
   912      */
   913     boolean subset(Type t, List<Type> ts) {
   914         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
   915             if (types.isSubtype(t, l.head)) return true;
   916         return false;
   917     }
   919     /** Is given type a subtype or supertype of
   920      *  some of the types in given list?
   921      */
   922     boolean intersects(Type t, List<Type> ts) {
   923         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
   924             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
   925         return false;
   926     }
   928     /** Add type set to given type list, unless it is a subclass of some class
   929      *  in the list.
   930      */
   931     List<Type> incl(Type t, List<Type> ts) {
   932         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
   933     }
   935     /** Remove type set from type set list.
   936      */
   937     List<Type> excl(Type t, List<Type> ts) {
   938         if (ts.isEmpty()) {
   939             return ts;
   940         } else {
   941             List<Type> ts1 = excl(t, ts.tail);
   942             if (types.isSubtype(ts.head, t)) return ts1;
   943             else if (ts1 == ts.tail) return ts;
   944             else return ts1.prepend(ts.head);
   945         }
   946     }
   948     /** Form the union of two type set lists.
   949      */
   950     List<Type> union(List<Type> ts1, List<Type> ts2) {
   951         List<Type> ts = ts1;
   952         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
   953             ts = incl(l.head, ts);
   954         return ts;
   955     }
   957     /** Form the difference of two type lists.
   958      */
   959     List<Type> diff(List<Type> ts1, List<Type> ts2) {
   960         List<Type> ts = ts1;
   961         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
   962             ts = excl(l.head, ts);
   963         return ts;
   964     }
   966     /** Form the intersection of two type lists.
   967      */
   968     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
   969         List<Type> ts = List.nil();
   970         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
   971             if (subset(l.head, ts2)) ts = incl(l.head, ts);
   972         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
   973             if (subset(l.head, ts1)) ts = incl(l.head, ts);
   974         return ts;
   975     }
   977     /** Is exc an exception symbol that need not be declared?
   978      */
   979     boolean isUnchecked(ClassSymbol exc) {
   980         return
   981             exc.kind == ERR ||
   982             exc.isSubClass(syms.errorType.tsym, types) ||
   983             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
   984     }
   986     /** Is exc an exception type that need not be declared?
   987      */
   988     boolean isUnchecked(Type exc) {
   989         return
   990             (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
   991             (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
   992             exc.tag == BOT;
   993     }
   995     /** Same, but handling completion failures.
   996      */
   997     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
   998         try {
   999             return isUnchecked(exc);
  1000         } catch (CompletionFailure ex) {
  1001             completionError(pos, ex);
  1002             return true;
  1006     /** Is exc handled by given exception list?
  1007      */
  1008     boolean isHandled(Type exc, List<Type> handled) {
  1009         return isUnchecked(exc) || subset(exc, handled);
  1012     /** Return all exceptions in thrown list that are not in handled list.
  1013      *  @param thrown     The list of thrown exceptions.
  1014      *  @param handled    The list of handled exceptions.
  1015      */
  1016     List<Type> unHandled(List<Type> thrown, List<Type> handled) {
  1017         List<Type> unhandled = List.nil();
  1018         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
  1019             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
  1020         return unhandled;
  1023 /* *************************************************************************
  1024  * Overriding/Implementation checking
  1025  **************************************************************************/
  1027     /** The level of access protection given by a flag set,
  1028      *  where PRIVATE is highest and PUBLIC is lowest.
  1029      */
  1030     static int protection(long flags) {
  1031         switch ((short)(flags & AccessFlags)) {
  1032         case PRIVATE: return 3;
  1033         case PROTECTED: return 1;
  1034         default:
  1035         case PUBLIC: return 0;
  1036         case 0: return 2;
  1040     /** A customized "cannot override" error message.
  1041      *  @param m      The overriding method.
  1042      *  @param other  The overridden method.
  1043      *  @return       An internationalized string.
  1044      */
  1045     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1046         String key;
  1047         if ((other.owner.flags() & INTERFACE) == 0)
  1048             key = "cant.override";
  1049         else if ((m.owner.flags() & INTERFACE) == 0)
  1050             key = "cant.implement";
  1051         else
  1052             key = "clashes.with";
  1053         return diags.fragment(key, m, m.location(), other, other.location());
  1056     /** A customized "override" warning message.
  1057      *  @param m      The overriding method.
  1058      *  @param other  The overridden method.
  1059      *  @return       An internationalized string.
  1060      */
  1061     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1062         String key;
  1063         if ((other.owner.flags() & INTERFACE) == 0)
  1064             key = "unchecked.override";
  1065         else if ((m.owner.flags() & INTERFACE) == 0)
  1066             key = "unchecked.implement";
  1067         else
  1068             key = "unchecked.clash.with";
  1069         return diags.fragment(key, m, m.location(), other, other.location());
  1072     /** A customized "override" warning message.
  1073      *  @param m      The overriding method.
  1074      *  @param other  The overridden method.
  1075      *  @return       An internationalized string.
  1076      */
  1077     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1078         String key;
  1079         if ((other.owner.flags() & INTERFACE) == 0)
  1080             key = "varargs.override";
  1081         else  if ((m.owner.flags() & INTERFACE) == 0)
  1082             key = "varargs.implement";
  1083         else
  1084             key = "varargs.clash.with";
  1085         return diags.fragment(key, m, m.location(), other, other.location());
  1088     /** Check that this method conforms with overridden method 'other'.
  1089      *  where `origin' is the class where checking started.
  1090      *  Complications:
  1091      *  (1) Do not check overriding of synthetic methods
  1092      *      (reason: they might be final).
  1093      *      todo: check whether this is still necessary.
  1094      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1095      *      than the method it implements. Augment the proxy methods with the
  1096      *      undeclared exceptions in this case.
  1097      *  (3) When generics are enabled, admit the case where an interface proxy
  1098      *      has a result type
  1099      *      extended by the result type of the method it implements.
  1100      *      Change the proxies result type to the smaller type in this case.
  1102      *  @param tree         The tree from which positions
  1103      *                      are extracted for errors.
  1104      *  @param m            The overriding method.
  1105      *  @param other        The overridden method.
  1106      *  @param origin       The class of which the overriding method
  1107      *                      is a member.
  1108      */
  1109     void checkOverride(JCTree tree,
  1110                        MethodSymbol m,
  1111                        MethodSymbol other,
  1112                        ClassSymbol origin) {
  1113         // Don't check overriding of synthetic methods or by bridge methods.
  1114         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1115             return;
  1118         // Error if static method overrides instance method (JLS 8.4.6.2).
  1119         if ((m.flags() & STATIC) != 0 &&
  1120                    (other.flags() & STATIC) == 0) {
  1121             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1122                       cannotOverride(m, other));
  1123             return;
  1126         // Error if instance method overrides static or final
  1127         // method (JLS 8.4.6.1).
  1128         if ((other.flags() & FINAL) != 0 ||
  1129                  (m.flags() & STATIC) == 0 &&
  1130                  (other.flags() & STATIC) != 0) {
  1131             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1132                       cannotOverride(m, other),
  1133                       asFlagSet(other.flags() & (FINAL | STATIC)));
  1134             return;
  1137         if ((m.owner.flags() & ANNOTATION) != 0) {
  1138             // handled in validateAnnotationMethod
  1139             return;
  1142         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1143         if ((origin.flags() & INTERFACE) == 0 &&
  1144                  protection(m.flags()) > protection(other.flags())) {
  1145             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1146                       cannotOverride(m, other),
  1147                       other.flags() == 0 ?
  1148                           Flag.PACKAGE :
  1149                           asFlagSet(other.flags() & AccessFlags));
  1150             return;
  1153         Type mt = types.memberType(origin.type, m);
  1154         Type ot = types.memberType(origin.type, other);
  1155         // Error if overriding result type is different
  1156         // (or, in the case of generics mode, not a subtype) of
  1157         // overridden result type. We have to rename any type parameters
  1158         // before comparing types.
  1159         List<Type> mtvars = mt.getTypeArguments();
  1160         List<Type> otvars = ot.getTypeArguments();
  1161         Type mtres = mt.getReturnType();
  1162         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1164         overrideWarner.warned = false;
  1165         boolean resultTypesOK =
  1166             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1167         if (!resultTypesOK) {
  1168             if (!source.allowCovariantReturns() &&
  1169                 m.owner != origin &&
  1170                 m.owner.isSubClass(other.owner, types)) {
  1171                 // allow limited interoperability with covariant returns
  1172             } else {
  1173                 typeError(TreeInfo.diagnosticPositionFor(m, tree),
  1174                           diags.fragment("override.incompatible.ret",
  1175                                          cannotOverride(m, other)),
  1176                           mtres, otres);
  1177                 return;
  1179         } else if (overrideWarner.warned) {
  1180             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1181                           "prob.found.req",
  1182                           diags.fragment("override.unchecked.ret",
  1183                                               uncheckedOverrides(m, other)),
  1184                           mtres, otres);
  1187         // Error if overriding method throws an exception not reported
  1188         // by overridden method.
  1189         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1190         List<Type> unhandled = unHandled(mt.getThrownTypes(), otthrown);
  1191         if (unhandled.nonEmpty()) {
  1192             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1193                       "override.meth.doesnt.throw",
  1194                       cannotOverride(m, other),
  1195                       unhandled.head);
  1196             return;
  1199         // Optional warning if varargs don't agree
  1200         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1201             && lint.isEnabled(Lint.LintCategory.OVERRIDES)) {
  1202             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1203                         ((m.flags() & Flags.VARARGS) != 0)
  1204                         ? "override.varargs.missing"
  1205                         : "override.varargs.extra",
  1206                         varargsOverrides(m, other));
  1209         // Warn if instance method overrides bridge method (compiler spec ??)
  1210         if ((other.flags() & BRIDGE) != 0) {
  1211             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1212                         uncheckedOverrides(m, other));
  1215         // Warn if a deprecated method overridden by a non-deprecated one.
  1216         if ((other.flags() & DEPRECATED) != 0
  1217             && (m.flags() & DEPRECATED) == 0
  1218             && m.outermostClass() != other.outermostClass()
  1219             && !isDeprecatedOverrideIgnorable(other, origin)) {
  1220             warnDeprecated(TreeInfo.diagnosticPositionFor(m, tree), other);
  1223     // where
  1224         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1225             // If the method, m, is defined in an interface, then ignore the issue if the method
  1226             // is only inherited via a supertype and also implemented in the supertype,
  1227             // because in that case, we will rediscover the issue when examining the method
  1228             // in the supertype.
  1229             // If the method, m, is not defined in an interface, then the only time we need to
  1230             // address the issue is when the method is the supertype implemementation: any other
  1231             // case, we will have dealt with when examining the supertype classes
  1232             ClassSymbol mc = m.enclClass();
  1233             Type st = types.supertype(origin.type);
  1234             if (st.tag != CLASS)
  1235                 return true;
  1236             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1238             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1239                 List<Type> intfs = types.interfaces(origin.type);
  1240                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1242             else
  1243                 return (stimpl != m);
  1247     // used to check if there were any unchecked conversions
  1248     Warner overrideWarner = new Warner();
  1250     /** Check that a class does not inherit two concrete methods
  1251      *  with the same signature.
  1252      *  @param pos          Position to be used for error reporting.
  1253      *  @param site         The class type to be checked.
  1254      */
  1255     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1256         Type sup = types.supertype(site);
  1257         if (sup.tag != CLASS) return;
  1259         for (Type t1 = sup;
  1260              t1.tsym.type.isParameterized();
  1261              t1 = types.supertype(t1)) {
  1262             for (Scope.Entry e1 = t1.tsym.members().elems;
  1263                  e1 != null;
  1264                  e1 = e1.sibling) {
  1265                 Symbol s1 = e1.sym;
  1266                 if (s1.kind != MTH ||
  1267                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1268                     !s1.isInheritedIn(site.tsym, types) ||
  1269                     ((MethodSymbol)s1).implementation(site.tsym,
  1270                                                       types,
  1271                                                       true) != s1)
  1272                     continue;
  1273                 Type st1 = types.memberType(t1, s1);
  1274                 int s1ArgsLength = st1.getParameterTypes().length();
  1275                 if (st1 == s1.type) continue;
  1277                 for (Type t2 = sup;
  1278                      t2.tag == CLASS;
  1279                      t2 = types.supertype(t2)) {
  1280                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1281                          e2.scope != null;
  1282                          e2 = e2.next()) {
  1283                         Symbol s2 = e2.sym;
  1284                         if (s2 == s1 ||
  1285                             s2.kind != MTH ||
  1286                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1287                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1288                             !s2.isInheritedIn(site.tsym, types) ||
  1289                             ((MethodSymbol)s2).implementation(site.tsym,
  1290                                                               types,
  1291                                                               true) != s2)
  1292                             continue;
  1293                         Type st2 = types.memberType(t2, s2);
  1294                         if (types.overrideEquivalent(st1, st2))
  1295                             log.error(pos, "concrete.inheritance.conflict",
  1296                                       s1, t1, s2, t2, sup);
  1303     /** Check that classes (or interfaces) do not each define an abstract
  1304      *  method with same name and arguments but incompatible return types.
  1305      *  @param pos          Position to be used for error reporting.
  1306      *  @param t1           The first argument type.
  1307      *  @param t2           The second argument type.
  1308      */
  1309     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1310                                             Type t1,
  1311                                             Type t2) {
  1312         return checkCompatibleAbstracts(pos, t1, t2,
  1313                                         types.makeCompoundType(t1, t2));
  1316     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1317                                             Type t1,
  1318                                             Type t2,
  1319                                             Type site) {
  1320         Symbol sym = firstIncompatibility(t1, t2, site);
  1321         if (sym != null) {
  1322             log.error(pos, "types.incompatible.diff.ret",
  1323                       t1, t2, sym.name +
  1324                       "(" + types.memberType(t2, sym).getParameterTypes() + ")");
  1325             return false;
  1327         return true;
  1330     /** Return the first method which is defined with same args
  1331      *  but different return types in two given interfaces, or null if none
  1332      *  exists.
  1333      *  @param t1     The first type.
  1334      *  @param t2     The second type.
  1335      *  @param site   The most derived type.
  1336      *  @returns symbol from t2 that conflicts with one in t1.
  1337      */
  1338     private Symbol firstIncompatibility(Type t1, Type t2, Type site) {
  1339         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1340         closure(t1, interfaces1);
  1341         Map<TypeSymbol,Type> interfaces2;
  1342         if (t1 == t2)
  1343             interfaces2 = interfaces1;
  1344         else
  1345             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1347         for (Type t3 : interfaces1.values()) {
  1348             for (Type t4 : interfaces2.values()) {
  1349                 Symbol s = firstDirectIncompatibility(t3, t4, site);
  1350                 if (s != null) return s;
  1353         return null;
  1356     /** Compute all the supertypes of t, indexed by type symbol. */
  1357     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1358         if (t.tag != CLASS) return;
  1359         if (typeMap.put(t.tsym, t) == null) {
  1360             closure(types.supertype(t), typeMap);
  1361             for (Type i : types.interfaces(t))
  1362                 closure(i, typeMap);
  1366     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1367     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1368         if (t.tag != CLASS) return;
  1369         if (typesSkip.get(t.tsym) != null) return;
  1370         if (typeMap.put(t.tsym, t) == null) {
  1371             closure(types.supertype(t), typesSkip, typeMap);
  1372             for (Type i : types.interfaces(t))
  1373                 closure(i, typesSkip, typeMap);
  1377     /** Return the first method in t2 that conflicts with a method from t1. */
  1378     private Symbol firstDirectIncompatibility(Type t1, Type t2, Type site) {
  1379         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1380             Symbol s1 = e1.sym;
  1381             Type st1 = null;
  1382             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
  1383             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1384             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1385             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1386                 Symbol s2 = e2.sym;
  1387                 if (s1 == s2) continue;
  1388                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
  1389                 if (st1 == null) st1 = types.memberType(t1, s1);
  1390                 Type st2 = types.memberType(t2, s2);
  1391                 if (types.overrideEquivalent(st1, st2)) {
  1392                     List<Type> tvars1 = st1.getTypeArguments();
  1393                     List<Type> tvars2 = st2.getTypeArguments();
  1394                     Type rt1 = st1.getReturnType();
  1395                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1396                     boolean compat =
  1397                         types.isSameType(rt1, rt2) ||
  1398                         rt1.tag >= CLASS && rt2.tag >= CLASS &&
  1399                         (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
  1400                          types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
  1401                          checkCommonOverriderIn(s1,s2,site);
  1402                     if (!compat) return s2;
  1406         return null;
  1408     //WHERE
  1409     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
  1410         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
  1411         Type st1 = types.memberType(site, s1);
  1412         Type st2 = types.memberType(site, s2);
  1413         closure(site, supertypes);
  1414         for (Type t : supertypes.values()) {
  1415             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
  1416                 Symbol s3 = e.sym;
  1417                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
  1418                 Type st3 = types.memberType(site,s3);
  1419                 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
  1420                     if (s3.owner == site.tsym) {
  1421                         return true;
  1423                     List<Type> tvars1 = st1.getTypeArguments();
  1424                     List<Type> tvars2 = st2.getTypeArguments();
  1425                     List<Type> tvars3 = st3.getTypeArguments();
  1426                     Type rt1 = st1.getReturnType();
  1427                     Type rt2 = st2.getReturnType();
  1428                     Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
  1429                     Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
  1430                     boolean compat =
  1431                         rt13.tag >= CLASS && rt23.tag >= CLASS &&
  1432                         (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
  1433                          types.covariantReturnType(rt23, rt2, Warner.noWarnings));
  1434                     if (compat)
  1435                         return true;
  1439         return false;
  1442     /** Check that a given method conforms with any method it overrides.
  1443      *  @param tree         The tree from which positions are extracted
  1444      *                      for errors.
  1445      *  @param m            The overriding method.
  1446      */
  1447     void checkOverride(JCTree tree, MethodSymbol m) {
  1448         ClassSymbol origin = (ClassSymbol)m.owner;
  1449         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1450             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1451                 log.error(tree.pos(), "enum.no.finalize");
  1452                 return;
  1454         for (Type t = types.supertype(origin.type); t.tag == CLASS;
  1455              t = types.supertype(t)) {
  1456             TypeSymbol c = t.tsym;
  1457             Scope.Entry e = c.members().lookup(m.name);
  1458             while (e.scope != null) {
  1459                 if (m.overrides(e.sym, origin, types, false))
  1460                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  1461                 else if (e.sym.isInheritedIn(origin, types) && !m.isConstructor()) {
  1462                     Type er1 = m.erasure(types);
  1463                     Type er2 = e.sym.erasure(types);
  1464                     if (types.isSameType(er1,er2)) {
  1465                             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1466                                     "name.clash.same.erasure.no.override",
  1467                                     m, m.location(),
  1468                                     e.sym, e.sym.location());
  1471                 e = e.next();
  1476     /** Check that all abstract members of given class have definitions.
  1477      *  @param pos          Position to be used for error reporting.
  1478      *  @param c            The class.
  1479      */
  1480     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  1481         try {
  1482             MethodSymbol undef = firstUndef(c, c);
  1483             if (undef != null) {
  1484                 if ((c.flags() & ENUM) != 0 &&
  1485                     types.supertype(c.type).tsym == syms.enumSym &&
  1486                     (c.flags() & FINAL) == 0) {
  1487                     // add the ABSTRACT flag to an enum
  1488                     c.flags_field |= ABSTRACT;
  1489                 } else {
  1490                     MethodSymbol undef1 =
  1491                         new MethodSymbol(undef.flags(), undef.name,
  1492                                          types.memberType(c.type, undef), undef.owner);
  1493                     log.error(pos, "does.not.override.abstract",
  1494                               c, undef1, undef1.location());
  1497         } catch (CompletionFailure ex) {
  1498             completionError(pos, ex);
  1501 //where
  1502         /** Return first abstract member of class `c' that is not defined
  1503          *  in `impl', null if there is none.
  1504          */
  1505         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  1506             MethodSymbol undef = null;
  1507             // Do not bother to search in classes that are not abstract,
  1508             // since they cannot have abstract members.
  1509             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1510                 Scope s = c.members();
  1511                 for (Scope.Entry e = s.elems;
  1512                      undef == null && e != null;
  1513                      e = e.sibling) {
  1514                     if (e.sym.kind == MTH &&
  1515                         (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
  1516                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  1517                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  1518                         if (implmeth == null || implmeth == absmeth)
  1519                             undef = absmeth;
  1522                 if (undef == null) {
  1523                     Type st = types.supertype(c.type);
  1524                     if (st.tag == CLASS)
  1525                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
  1527                 for (List<Type> l = types.interfaces(c.type);
  1528                      undef == null && l.nonEmpty();
  1529                      l = l.tail) {
  1530                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  1533             return undef;
  1536     /** Check for cyclic references. Issue an error if the
  1537      *  symbol of the type referred to has a LOCKED flag set.
  1539      *  @param pos      Position to be used for error reporting.
  1540      *  @param t        The type referred to.
  1541      */
  1542     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  1543         checkNonCyclicInternal(pos, t);
  1547     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  1548         checkNonCyclic1(pos, t, List.<TypeVar>nil());
  1551     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
  1552         final TypeVar tv;
  1553         if  (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
  1554             return;
  1555         if (seen.contains(t)) {
  1556             tv = (TypeVar)t;
  1557             tv.bound = types.createErrorType(t);
  1558             log.error(pos, "cyclic.inheritance", t);
  1559         } else if (t.tag == TYPEVAR) {
  1560             tv = (TypeVar)t;
  1561             seen = seen.prepend(tv);
  1562             for (Type b : types.getBounds(tv))
  1563                 checkNonCyclic1(pos, b, seen);
  1567     /** Check for cyclic references. Issue an error if the
  1568      *  symbol of the type referred to has a LOCKED flag set.
  1570      *  @param pos      Position to be used for error reporting.
  1571      *  @param t        The type referred to.
  1572      *  @returns        True if the check completed on all attributed classes
  1573      */
  1574     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  1575         boolean complete = true; // was the check complete?
  1576         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  1577         Symbol c = t.tsym;
  1578         if ((c.flags_field & ACYCLIC) != 0) return true;
  1580         if ((c.flags_field & LOCKED) != 0) {
  1581             noteCyclic(pos, (ClassSymbol)c);
  1582         } else if (!c.type.isErroneous()) {
  1583             try {
  1584                 c.flags_field |= LOCKED;
  1585                 if (c.type.tag == CLASS) {
  1586                     ClassType clazz = (ClassType)c.type;
  1587                     if (clazz.interfaces_field != null)
  1588                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  1589                             complete &= checkNonCyclicInternal(pos, l.head);
  1590                     if (clazz.supertype_field != null) {
  1591                         Type st = clazz.supertype_field;
  1592                         if (st != null && st.tag == CLASS)
  1593                             complete &= checkNonCyclicInternal(pos, st);
  1595                     if (c.owner.kind == TYP)
  1596                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  1598             } finally {
  1599                 c.flags_field &= ~LOCKED;
  1602         if (complete)
  1603             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  1604         if (complete) c.flags_field |= ACYCLIC;
  1605         return complete;
  1608     /** Note that we found an inheritance cycle. */
  1609     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  1610         log.error(pos, "cyclic.inheritance", c);
  1611         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  1612             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
  1613         Type st = types.supertype(c.type);
  1614         if (st.tag == CLASS)
  1615             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
  1616         c.type = types.createErrorType(c, c.type);
  1617         c.flags_field |= ACYCLIC;
  1620     /** Check that all methods which implement some
  1621      *  method conform to the method they implement.
  1622      *  @param tree         The class definition whose members are checked.
  1623      */
  1624     void checkImplementations(JCClassDecl tree) {
  1625         checkImplementations(tree, tree.sym);
  1627 //where
  1628         /** Check that all methods which implement some
  1629          *  method in `ic' conform to the method they implement.
  1630          */
  1631         void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
  1632             ClassSymbol origin = tree.sym;
  1633             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  1634                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  1635                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  1636                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  1637                         if (e.sym.kind == MTH &&
  1638                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  1639                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  1640                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  1641                             if (implmeth != null && implmeth != absmeth &&
  1642                                 (implmeth.owner.flags() & INTERFACE) ==
  1643                                 (origin.flags() & INTERFACE)) {
  1644                                 // don't check if implmeth is in a class, yet
  1645                                 // origin is an interface. This case arises only
  1646                                 // if implmeth is declared in Object. The reason is
  1647                                 // that interfaces really don't inherit from
  1648                                 // Object it's just that the compiler represents
  1649                                 // things that way.
  1650                                 checkOverride(tree, implmeth, absmeth, origin);
  1658     /** Check that all abstract methods implemented by a class are
  1659      *  mutually compatible.
  1660      *  @param pos          Position to be used for error reporting.
  1661      *  @param c            The class whose interfaces are checked.
  1662      */
  1663     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  1664         List<Type> supertypes = types.interfaces(c);
  1665         Type supertype = types.supertype(c);
  1666         if (supertype.tag == CLASS &&
  1667             (supertype.tsym.flags() & ABSTRACT) != 0)
  1668             supertypes = supertypes.prepend(supertype);
  1669         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  1670             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  1671                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  1672                 return;
  1673             for (List<Type> m = supertypes; m != l; m = m.tail)
  1674                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  1675                     return;
  1677         checkCompatibleConcretes(pos, c);
  1680     /** Check that class c does not implement directly or indirectly
  1681      *  the same parameterized interface with two different argument lists.
  1682      *  @param pos          Position to be used for error reporting.
  1683      *  @param type         The type whose interfaces are checked.
  1684      */
  1685     void checkClassBounds(DiagnosticPosition pos, Type type) {
  1686         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  1688 //where
  1689         /** Enter all interfaces of type `type' into the hash table `seensofar'
  1690          *  with their class symbol as key and their type as value. Make
  1691          *  sure no class is entered with two different types.
  1692          */
  1693         void checkClassBounds(DiagnosticPosition pos,
  1694                               Map<TypeSymbol,Type> seensofar,
  1695                               Type type) {
  1696             if (type.isErroneous()) return;
  1697             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  1698                 Type it = l.head;
  1699                 Type oldit = seensofar.put(it.tsym, it);
  1700                 if (oldit != null) {
  1701                     List<Type> oldparams = oldit.allparams();
  1702                     List<Type> newparams = it.allparams();
  1703                     if (!types.containsTypeEquivalent(oldparams, newparams))
  1704                         log.error(pos, "cant.inherit.diff.arg",
  1705                                   it.tsym, Type.toString(oldparams),
  1706                                   Type.toString(newparams));
  1708                 checkClassBounds(pos, seensofar, it);
  1710             Type st = types.supertype(type);
  1711             if (st != null) checkClassBounds(pos, seensofar, st);
  1714     /** Enter interface into into set.
  1715      *  If it existed already, issue a "repeated interface" error.
  1716      */
  1717     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  1718         if (its.contains(it))
  1719             log.error(pos, "repeated.interface");
  1720         else {
  1721             its.add(it);
  1725 /* *************************************************************************
  1726  * Check annotations
  1727  **************************************************************************/
  1729     /** Annotation types are restricted to primitives, String, an
  1730      *  enum, an annotation, Class, Class<?>, Class<? extends
  1731      *  Anything>, arrays of the preceding.
  1732      */
  1733     void validateAnnotationType(JCTree restype) {
  1734         // restype may be null if an error occurred, so don't bother validating it
  1735         if (restype != null) {
  1736             validateAnnotationType(restype.pos(), restype.type);
  1740     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  1741         if (type.isPrimitive()) return;
  1742         if (types.isSameType(type, syms.stringType)) return;
  1743         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  1744         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  1745         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  1746         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  1747             validateAnnotationType(pos, types.elemtype(type));
  1748             return;
  1750         log.error(pos, "invalid.annotation.member.type");
  1753     /**
  1754      * "It is also a compile-time error if any method declared in an
  1755      * annotation type has a signature that is override-equivalent to
  1756      * that of any public or protected method declared in class Object
  1757      * or in the interface annotation.Annotation."
  1759      * @jls3 9.6 Annotation Types
  1760      */
  1761     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  1762         for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
  1763             Scope s = sup.tsym.members();
  1764             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  1765                 if (e.sym.kind == MTH &&
  1766                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  1767                     types.overrideEquivalent(m.type, e.sym.type))
  1768                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  1773     /** Check the annotations of a symbol.
  1774      */
  1775     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  1776         if (skipAnnotations) return;
  1777         for (JCAnnotation a : annotations)
  1778             validateAnnotation(a, s);
  1781     /** Check an annotation of a symbol.
  1782      */
  1783     public void validateAnnotation(JCAnnotation a, Symbol s) {
  1784         validateAnnotation(a);
  1786         if (!annotationApplicable(a, s))
  1787             log.error(a.pos(), "annotation.type.not.applicable");
  1789         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  1790             if (!isOverrider(s))
  1791                 log.error(a.pos(), "method.does.not.override.superclass");
  1795     /** Is s a method symbol that overrides a method in a superclass? */
  1796     boolean isOverrider(Symbol s) {
  1797         if (s.kind != MTH || s.isStatic())
  1798             return false;
  1799         MethodSymbol m = (MethodSymbol)s;
  1800         TypeSymbol owner = (TypeSymbol)m.owner;
  1801         for (Type sup : types.closure(owner.type)) {
  1802             if (sup == owner.type)
  1803                 continue; // skip "this"
  1804             Scope scope = sup.tsym.members();
  1805             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  1806                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  1807                     return true;
  1810         return false;
  1813     /** Is the annotation applicable to the symbol? */
  1814     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  1815         Attribute.Compound atTarget =
  1816             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  1817         if (atTarget == null) return true;
  1818         Attribute atValue = atTarget.member(names.value);
  1819         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
  1820         Attribute.Array arr = (Attribute.Array) atValue;
  1821         for (Attribute app : arr.values) {
  1822             if (!(app instanceof Attribute.Enum)) return true; // recovery
  1823             Attribute.Enum e = (Attribute.Enum) app;
  1824             if (e.value.name == names.TYPE)
  1825                 { if (s.kind == TYP) return true; }
  1826             else if (e.value.name == names.FIELD)
  1827                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  1828             else if (e.value.name == names.METHOD)
  1829                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  1830             else if (e.value.name == names.PARAMETER)
  1831                 { if (s.kind == VAR &&
  1832                       s.owner.kind == MTH &&
  1833                       (s.flags() & PARAMETER) != 0)
  1834                     return true;
  1836             else if (e.value.name == names.CONSTRUCTOR)
  1837                 { if (s.kind == MTH && s.isConstructor()) return true; }
  1838             else if (e.value.name == names.LOCAL_VARIABLE)
  1839                 { if (s.kind == VAR && s.owner.kind == MTH &&
  1840                       (s.flags() & PARAMETER) == 0)
  1841                     return true;
  1843             else if (e.value.name == names.ANNOTATION_TYPE)
  1844                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  1845                     return true;
  1847             else if (e.value.name == names.PACKAGE)
  1848                 { if (s.kind == PCK) return true; }
  1849             else
  1850                 return true; // recovery
  1852         return false;
  1855     /** Check an annotation value.
  1856      */
  1857     public void validateAnnotation(JCAnnotation a) {
  1858         if (a.type.isErroneous()) return;
  1860         // collect an inventory of the members
  1861         Set<MethodSymbol> members = new HashSet<MethodSymbol>();
  1862         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  1863              e != null;
  1864              e = e.sibling)
  1865             if (e.sym.kind == MTH)
  1866                 members.add((MethodSymbol) e.sym);
  1868         // count them off as they're annotated
  1869         for (JCTree arg : a.args) {
  1870             if (arg.getTag() != JCTree.ASSIGN) continue; // recovery
  1871             JCAssign assign = (JCAssign) arg;
  1872             Symbol m = TreeInfo.symbol(assign.lhs);
  1873             if (m == null || m.type.isErroneous()) continue;
  1874             if (!members.remove(m))
  1875                 log.error(arg.pos(), "duplicate.annotation.member.value",
  1876                           m.name, a.type);
  1877             if (assign.rhs.getTag() == ANNOTATION)
  1878                 validateAnnotation((JCAnnotation)assign.rhs);
  1881         // all the remaining ones better have default values
  1882         for (MethodSymbol m : members)
  1883             if (m.defaultValue == null && !m.type.isErroneous())
  1884                 log.error(a.pos(), "annotation.missing.default.value",
  1885                           a.type, m.name);
  1887         // special case: java.lang.annotation.Target must not have
  1888         // repeated values in its value member
  1889         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  1890             a.args.tail == null)
  1891             return;
  1893         if (a.args.head.getTag() != JCTree.ASSIGN) return; // error recovery
  1894         JCAssign assign = (JCAssign) a.args.head;
  1895         Symbol m = TreeInfo.symbol(assign.lhs);
  1896         if (m.name != names.value) return;
  1897         JCTree rhs = assign.rhs;
  1898         if (rhs.getTag() != JCTree.NEWARRAY) return;
  1899         JCNewArray na = (JCNewArray) rhs;
  1900         Set<Symbol> targets = new HashSet<Symbol>();
  1901         for (JCTree elem : na.elems) {
  1902             if (!targets.add(TreeInfo.symbol(elem))) {
  1903                 log.error(elem.pos(), "repeated.annotation.target");
  1908     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  1909         if (allowAnnotations &&
  1910             lint.isEnabled(Lint.LintCategory.DEP_ANN) &&
  1911             (s.flags() & DEPRECATED) != 0 &&
  1912             !syms.deprecatedType.isErroneous() &&
  1913             s.attribute(syms.deprecatedType.tsym) == null) {
  1914             log.warning(pos, "missing.deprecated.annotation");
  1918 /* *************************************************************************
  1919  * Check for recursive annotation elements.
  1920  **************************************************************************/
  1922     /** Check for cycles in the graph of annotation elements.
  1923      */
  1924     void checkNonCyclicElements(JCClassDecl tree) {
  1925         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  1926         assert (tree.sym.flags_field & LOCKED) == 0;
  1927         try {
  1928             tree.sym.flags_field |= LOCKED;
  1929             for (JCTree def : tree.defs) {
  1930                 if (def.getTag() != JCTree.METHODDEF) continue;
  1931                 JCMethodDecl meth = (JCMethodDecl)def;
  1932                 checkAnnotationResType(meth.pos(), meth.restype.type);
  1934         } finally {
  1935             tree.sym.flags_field &= ~LOCKED;
  1936             tree.sym.flags_field |= ACYCLIC_ANN;
  1940     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  1941         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  1942             return;
  1943         if ((tsym.flags_field & LOCKED) != 0) {
  1944             log.error(pos, "cyclic.annotation.element");
  1945             return;
  1947         try {
  1948             tsym.flags_field |= LOCKED;
  1949             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  1950                 Symbol s = e.sym;
  1951                 if (s.kind != Kinds.MTH)
  1952                     continue;
  1953                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  1955         } finally {
  1956             tsym.flags_field &= ~LOCKED;
  1957             tsym.flags_field |= ACYCLIC_ANN;
  1961     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  1962         switch (type.tag) {
  1963         case TypeTags.CLASS:
  1964             if ((type.tsym.flags() & ANNOTATION) != 0)
  1965                 checkNonCyclicElementsInternal(pos, type.tsym);
  1966             break;
  1967         case TypeTags.ARRAY:
  1968             checkAnnotationResType(pos, types.elemtype(type));
  1969             break;
  1970         default:
  1971             break; // int etc
  1975 /* *************************************************************************
  1976  * Check for cycles in the constructor call graph.
  1977  **************************************************************************/
  1979     /** Check for cycles in the graph of constructors calling other
  1980      *  constructors.
  1981      */
  1982     void checkCyclicConstructors(JCClassDecl tree) {
  1983         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  1985         // enter each constructor this-call into the map
  1986         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  1987             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  1988             if (app == null) continue;
  1989             JCMethodDecl meth = (JCMethodDecl) l.head;
  1990             if (TreeInfo.name(app.meth) == names._this) {
  1991                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  1992             } else {
  1993                 meth.sym.flags_field |= ACYCLIC;
  1997         // Check for cycles in the map
  1998         Symbol[] ctors = new Symbol[0];
  1999         ctors = callMap.keySet().toArray(ctors);
  2000         for (Symbol caller : ctors) {
  2001             checkCyclicConstructor(tree, caller, callMap);
  2005     /** Look in the map to see if the given constructor is part of a
  2006      *  call cycle.
  2007      */
  2008     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  2009                                         Map<Symbol,Symbol> callMap) {
  2010         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  2011             if ((ctor.flags_field & LOCKED) != 0) {
  2012                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  2013                           "recursive.ctor.invocation");
  2014             } else {
  2015                 ctor.flags_field |= LOCKED;
  2016                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  2017                 ctor.flags_field &= ~LOCKED;
  2019             ctor.flags_field |= ACYCLIC;
  2023 /* *************************************************************************
  2024  * Miscellaneous
  2025  **************************************************************************/
  2027     /**
  2028      * Return the opcode of the operator but emit an error if it is an
  2029      * error.
  2030      * @param pos        position for error reporting.
  2031      * @param operator   an operator
  2032      * @param tag        a tree tag
  2033      * @param left       type of left hand side
  2034      * @param right      type of right hand side
  2035      */
  2036     int checkOperator(DiagnosticPosition pos,
  2037                        OperatorSymbol operator,
  2038                        int tag,
  2039                        Type left,
  2040                        Type right) {
  2041         if (operator.opcode == ByteCodes.error) {
  2042             log.error(pos,
  2043                       "operator.cant.be.applied",
  2044                       treeinfo.operatorName(tag),
  2045                       List.of(left, right));
  2047         return operator.opcode;
  2051     /**
  2052      *  Check for division by integer constant zero
  2053      *  @param pos           Position for error reporting.
  2054      *  @param operator      The operator for the expression
  2055      *  @param operand       The right hand operand for the expression
  2056      */
  2057     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  2058         if (operand.constValue() != null
  2059             && lint.isEnabled(Lint.LintCategory.DIVZERO)
  2060             && operand.tag <= LONG
  2061             && ((Number) (operand.constValue())).longValue() == 0) {
  2062             int opc = ((OperatorSymbol)operator).opcode;
  2063             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  2064                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  2065                 log.warning(pos, "div.zero");
  2070     /**
  2071      * Check for empty statements after if
  2072      */
  2073     void checkEmptyIf(JCIf tree) {
  2074         if (tree.thenpart.getTag() == JCTree.SKIP && tree.elsepart == null && lint.isEnabled(Lint.LintCategory.EMPTY))
  2075             log.warning(tree.thenpart.pos(), "empty.if");
  2078     /** Check that symbol is unique in given scope.
  2079      *  @param pos           Position for error reporting.
  2080      *  @param sym           The symbol.
  2081      *  @param s             The scope.
  2082      */
  2083     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  2084         if (sym.type.isErroneous())
  2085             return true;
  2086         if (sym.owner.name == names.any) return false;
  2087         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  2088             if (sym != e.sym &&
  2089                 sym.kind == e.sym.kind &&
  2090                 sym.name != names.error &&
  2091                 (sym.kind != MTH || types.overrideEquivalent(sym.type, e.sym.type))) {
  2092                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS))
  2093                     varargsDuplicateError(pos, sym, e.sym);
  2094                 else
  2095                     duplicateError(pos, e.sym);
  2096                 return false;
  2099         return true;
  2102     /** Check that single-type import is not already imported or top-level defined,
  2103      *  but make an exception for two single-type imports which denote the same type.
  2104      *  @param pos           Position for error reporting.
  2105      *  @param sym           The symbol.
  2106      *  @param s             The scope
  2107      */
  2108     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2109         return checkUniqueImport(pos, sym, s, false);
  2112     /** Check that static single-type import is not already imported or top-level defined,
  2113      *  but make an exception for two single-type imports which denote the same type.
  2114      *  @param pos           Position for error reporting.
  2115      *  @param sym           The symbol.
  2116      *  @param s             The scope
  2117      *  @param staticImport  Whether or not this was a static import
  2118      */
  2119     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2120         return checkUniqueImport(pos, sym, s, true);
  2123     /** Check that single-type import is not already imported or top-level defined,
  2124      *  but make an exception for two single-type imports which denote the same type.
  2125      *  @param pos           Position for error reporting.
  2126      *  @param sym           The symbol.
  2127      *  @param s             The scope.
  2128      *  @param staticImport  Whether or not this was a static import
  2129      */
  2130     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  2131         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  2132             // is encountered class entered via a class declaration?
  2133             boolean isClassDecl = e.scope == s;
  2134             if ((isClassDecl || sym != e.sym) &&
  2135                 sym.kind == e.sym.kind &&
  2136                 sym.name != names.error) {
  2137                 if (!e.sym.type.isErroneous()) {
  2138                     String what = e.sym.toString();
  2139                     if (!isClassDecl) {
  2140                         if (staticImport)
  2141                             log.error(pos, "already.defined.static.single.import", what);
  2142                         else
  2143                             log.error(pos, "already.defined.single.import", what);
  2145                     else if (sym != e.sym)
  2146                         log.error(pos, "already.defined.this.unit", what);
  2148                 return false;
  2151         return true;
  2154     /** Check that a qualified name is in canonical form (for import decls).
  2155      */
  2156     public void checkCanonical(JCTree tree) {
  2157         if (!isCanonical(tree))
  2158             log.error(tree.pos(), "import.requires.canonical",
  2159                       TreeInfo.symbol(tree));
  2161         // where
  2162         private boolean isCanonical(JCTree tree) {
  2163             while (tree.getTag() == JCTree.SELECT) {
  2164                 JCFieldAccess s = (JCFieldAccess) tree;
  2165                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  2166                     return false;
  2167                 tree = s.selected;
  2169             return true;
  2172     private class ConversionWarner extends Warner {
  2173         final String key;
  2174         final Type found;
  2175         final Type expected;
  2176         public ConversionWarner(DiagnosticPosition pos, String key, Type found, Type expected) {
  2177             super(pos);
  2178             this.key = key;
  2179             this.found = found;
  2180             this.expected = expected;
  2183         public void warnUnchecked() {
  2184             boolean warned = this.warned;
  2185             super.warnUnchecked();
  2186             if (warned) return; // suppress redundant diagnostics
  2187             Object problem = diags.fragment(key);
  2188             Check.this.warnUnchecked(pos(), "prob.found.req", problem, found, expected);
  2192     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  2193         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  2196     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  2197         return new ConversionWarner(pos, "unchecked.assign", found, expected);

mercurial