src/share/vm/opto/type.cpp

Fri, 27 Sep 2013 08:39:19 +0200

author
rbackman
date
Fri, 27 Sep 2013 08:39:19 +0200
changeset 5791
c9ccd7b85f20
parent 5710
884ed7a10f09
child 5991
b2ee5dc63353
permissions
-rw-r--r--

8024924: Intrinsify java.lang.Math.addExact
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciMethodData.hpp"
    27 #include "ci/ciTypeFlow.hpp"
    28 #include "classfile/symbolTable.hpp"
    29 #include "classfile/systemDictionary.hpp"
    30 #include "compiler/compileLog.hpp"
    31 #include "libadt/dict.hpp"
    32 #include "memory/gcLocker.hpp"
    33 #include "memory/oopFactory.hpp"
    34 #include "memory/resourceArea.hpp"
    35 #include "oops/instanceKlass.hpp"
    36 #include "oops/instanceMirrorKlass.hpp"
    37 #include "oops/objArrayKlass.hpp"
    38 #include "oops/typeArrayKlass.hpp"
    39 #include "opto/matcher.hpp"
    40 #include "opto/node.hpp"
    41 #include "opto/opcodes.hpp"
    42 #include "opto/type.hpp"
    44 // Portions of code courtesy of Clifford Click
    46 // Optimization - Graph Style
    48 // Dictionary of types shared among compilations.
    49 Dict* Type::_shared_type_dict = NULL;
    51 // Array which maps compiler types to Basic Types
    52 Type::TypeInfo Type::_type_info[Type::lastype] = {
    53   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
    54   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
    55   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
    56   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
    57   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
    58   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
    59   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
    60   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
    61   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
    62   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
    64 #ifndef SPARC
    65   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
    66   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
    67   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
    68   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
    69 #else
    70   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
    71   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
    72   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
    73   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
    74 #endif // IA32 || AMD64
    75   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
    76   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
    77   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
    78   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
    79   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
    80   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
    81   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
    82   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
    83   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
    84   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
    85   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
    86   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
    87   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
    88   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
    89   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
    90   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
    91   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
    92   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
    93 };
    95 // Map ideal registers (machine types) to ideal types
    96 const Type *Type::mreg2type[_last_machine_leaf];
    98 // Map basic types to canonical Type* pointers.
    99 const Type* Type::     _const_basic_type[T_CONFLICT+1];
   101 // Map basic types to constant-zero Types.
   102 const Type* Type::            _zero_type[T_CONFLICT+1];
   104 // Map basic types to array-body alias types.
   105 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
   107 //=============================================================================
   108 // Convenience common pre-built types.
   109 const Type *Type::ABIO;         // State-of-machine only
   110 const Type *Type::BOTTOM;       // All values
   111 const Type *Type::CONTROL;      // Control only
   112 const Type *Type::DOUBLE;       // All doubles
   113 const Type *Type::FLOAT;        // All floats
   114 const Type *Type::HALF;         // Placeholder half of doublewide type
   115 const Type *Type::MEMORY;       // Abstract store only
   116 const Type *Type::RETURN_ADDRESS;
   117 const Type *Type::TOP;          // No values in set
   119 //------------------------------get_const_type---------------------------
   120 const Type* Type::get_const_type(ciType* type) {
   121   if (type == NULL) {
   122     return NULL;
   123   } else if (type->is_primitive_type()) {
   124     return get_const_basic_type(type->basic_type());
   125   } else {
   126     return TypeOopPtr::make_from_klass(type->as_klass());
   127   }
   128 }
   130 //---------------------------array_element_basic_type---------------------------------
   131 // Mapping to the array element's basic type.
   132 BasicType Type::array_element_basic_type() const {
   133   BasicType bt = basic_type();
   134   if (bt == T_INT) {
   135     if (this == TypeInt::INT)   return T_INT;
   136     if (this == TypeInt::CHAR)  return T_CHAR;
   137     if (this == TypeInt::BYTE)  return T_BYTE;
   138     if (this == TypeInt::BOOL)  return T_BOOLEAN;
   139     if (this == TypeInt::SHORT) return T_SHORT;
   140     return T_VOID;
   141   }
   142   return bt;
   143 }
   145 //---------------------------get_typeflow_type---------------------------------
   146 // Import a type produced by ciTypeFlow.
   147 const Type* Type::get_typeflow_type(ciType* type) {
   148   switch (type->basic_type()) {
   150   case ciTypeFlow::StateVector::T_BOTTOM:
   151     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
   152     return Type::BOTTOM;
   154   case ciTypeFlow::StateVector::T_TOP:
   155     assert(type == ciTypeFlow::StateVector::top_type(), "");
   156     return Type::TOP;
   158   case ciTypeFlow::StateVector::T_NULL:
   159     assert(type == ciTypeFlow::StateVector::null_type(), "");
   160     return TypePtr::NULL_PTR;
   162   case ciTypeFlow::StateVector::T_LONG2:
   163     // The ciTypeFlow pass pushes a long, then the half.
   164     // We do the same.
   165     assert(type == ciTypeFlow::StateVector::long2_type(), "");
   166     return TypeInt::TOP;
   168   case ciTypeFlow::StateVector::T_DOUBLE2:
   169     // The ciTypeFlow pass pushes double, then the half.
   170     // Our convention is the same.
   171     assert(type == ciTypeFlow::StateVector::double2_type(), "");
   172     return Type::TOP;
   174   case T_ADDRESS:
   175     assert(type->is_return_address(), "");
   176     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
   178   default:
   179     // make sure we did not mix up the cases:
   180     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
   181     assert(type != ciTypeFlow::StateVector::top_type(), "");
   182     assert(type != ciTypeFlow::StateVector::null_type(), "");
   183     assert(type != ciTypeFlow::StateVector::long2_type(), "");
   184     assert(type != ciTypeFlow::StateVector::double2_type(), "");
   185     assert(!type->is_return_address(), "");
   187     return Type::get_const_type(type);
   188   }
   189 }
   192 //-----------------------make_from_constant------------------------------------
   193 const Type* Type::make_from_constant(ciConstant constant,
   194                                      bool require_constant, bool is_autobox_cache) {
   195   switch (constant.basic_type()) {
   196   case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
   197   case T_CHAR:     return TypeInt::make(constant.as_char());
   198   case T_BYTE:     return TypeInt::make(constant.as_byte());
   199   case T_SHORT:    return TypeInt::make(constant.as_short());
   200   case T_INT:      return TypeInt::make(constant.as_int());
   201   case T_LONG:     return TypeLong::make(constant.as_long());
   202   case T_FLOAT:    return TypeF::make(constant.as_float());
   203   case T_DOUBLE:   return TypeD::make(constant.as_double());
   204   case T_ARRAY:
   205   case T_OBJECT:
   206     {
   207       // cases:
   208       //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
   209       //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
   210       // An oop is not scavengable if it is in the perm gen.
   211       ciObject* oop_constant = constant.as_object();
   212       if (oop_constant->is_null_object()) {
   213         return Type::get_zero_type(T_OBJECT);
   214       } else if (require_constant || oop_constant->should_be_constant()) {
   215         return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
   216       }
   217     }
   218   }
   219   // Fall through to failure
   220   return NULL;
   221 }
   224 //------------------------------make-------------------------------------------
   225 // Create a simple Type, with default empty symbol sets.  Then hashcons it
   226 // and look for an existing copy in the type dictionary.
   227 const Type *Type::make( enum TYPES t ) {
   228   return (new Type(t))->hashcons();
   229 }
   231 //------------------------------cmp--------------------------------------------
   232 int Type::cmp( const Type *const t1, const Type *const t2 ) {
   233   if( t1->_base != t2->_base )
   234     return 1;                   // Missed badly
   235   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
   236   return !t1->eq(t2);           // Return ZERO if equal
   237 }
   239 //------------------------------hash-------------------------------------------
   240 int Type::uhash( const Type *const t ) {
   241   return t->hash();
   242 }
   244 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
   246 //--------------------------Initialize_shared----------------------------------
   247 void Type::Initialize_shared(Compile* current) {
   248   // This method does not need to be locked because the first system
   249   // compilations (stub compilations) occur serially.  If they are
   250   // changed to proceed in parallel, then this section will need
   251   // locking.
   253   Arena* save = current->type_arena();
   254   Arena* shared_type_arena = new (mtCompiler)Arena();
   256   current->set_type_arena(shared_type_arena);
   257   _shared_type_dict =
   258     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
   259                                   shared_type_arena, 128 );
   260   current->set_type_dict(_shared_type_dict);
   262   // Make shared pre-built types.
   263   CONTROL = make(Control);      // Control only
   264   TOP     = make(Top);          // No values in set
   265   MEMORY  = make(Memory);       // Abstract store only
   266   ABIO    = make(Abio);         // State-of-machine only
   267   RETURN_ADDRESS=make(Return_Address);
   268   FLOAT   = make(FloatBot);     // All floats
   269   DOUBLE  = make(DoubleBot);    // All doubles
   270   BOTTOM  = make(Bottom);       // Everything
   271   HALF    = make(Half);         // Placeholder half of doublewide type
   273   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
   274   TypeF::ONE  = TypeF::make(1.0); // Float 1
   276   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
   277   TypeD::ONE  = TypeD::make(1.0); // Double 1
   279   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
   280   TypeInt::ZERO    = TypeInt::make( 0);  //  0
   281   TypeInt::ONE     = TypeInt::make( 1);  //  1
   282   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
   283   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
   284   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
   285   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
   286   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
   287   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
   288   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
   289   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
   290   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
   291   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
   292   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
   293   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
   294   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
   295   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
   296   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
   297   // CmpL is overloaded both as the bytecode computation returning
   298   // a trinary (-1,0,+1) integer result AND as an efficient long
   299   // compare returning optimizer ideal-type flags.
   300   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
   301   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
   302   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
   303   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
   304   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
   306   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
   307   TypeLong::ZERO    = TypeLong::make( 0);        //  0
   308   TypeLong::ONE     = TypeLong::make( 1);        //  1
   309   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
   310   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
   311   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
   312   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
   314   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   315   fboth[0] = Type::CONTROL;
   316   fboth[1] = Type::CONTROL;
   317   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
   319   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   320   ffalse[0] = Type::CONTROL;
   321   ffalse[1] = Type::TOP;
   322   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
   324   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   325   fneither[0] = Type::TOP;
   326   fneither[1] = Type::TOP;
   327   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
   329   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   330   ftrue[0] = Type::TOP;
   331   ftrue[1] = Type::CONTROL;
   332   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
   334   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   335   floop[0] = Type::CONTROL;
   336   floop[1] = TypeInt::INT;
   337   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
   339   TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
   340   TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
   341   TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
   343   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
   344   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
   346   const Type **fmembar = TypeTuple::fields(0);
   347   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
   349   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   350   fsc[0] = TypeInt::CC;
   351   fsc[1] = Type::MEMORY;
   352   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
   354   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
   355   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
   356   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
   357   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   358                                            false, 0, oopDesc::mark_offset_in_bytes());
   359   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   360                                            false, 0, oopDesc::klass_offset_in_bytes());
   361   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
   363   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
   365   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
   366   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
   368   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
   370   mreg2type[Op_Node] = Type::BOTTOM;
   371   mreg2type[Op_Set ] = 0;
   372   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
   373   mreg2type[Op_RegI] = TypeInt::INT;
   374   mreg2type[Op_RegP] = TypePtr::BOTTOM;
   375   mreg2type[Op_RegF] = Type::FLOAT;
   376   mreg2type[Op_RegD] = Type::DOUBLE;
   377   mreg2type[Op_RegL] = TypeLong::LONG;
   378   mreg2type[Op_RegFlags] = TypeInt::CC;
   380   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
   382   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
   384 #ifdef _LP64
   385   if (UseCompressedOops) {
   386     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
   387     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
   388   } else
   389 #endif
   390   {
   391     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
   392     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
   393   }
   394   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
   395   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
   396   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
   397   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
   398   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
   399   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
   400   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
   402   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
   403   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
   404   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
   405   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
   406   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
   407   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
   408   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
   409   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
   410   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
   411   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
   412   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
   413   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
   415   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
   416   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
   418   const Type **fi2c = TypeTuple::fields(2);
   419   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
   420   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
   421   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
   423   const Type **intpair = TypeTuple::fields(2);
   424   intpair[0] = TypeInt::INT;
   425   intpair[1] = TypeInt::INT;
   426   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
   428   const Type **longpair = TypeTuple::fields(2);
   429   longpair[0] = TypeLong::LONG;
   430   longpair[1] = TypeLong::LONG;
   431   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
   433   const Type **intccpair = TypeTuple::fields(2);
   434   intccpair[0] = TypeInt::INT;
   435   intccpair[1] = TypeInt::CC;
   436   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
   438   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
   439   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
   440   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
   441   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
   442   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
   443   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
   444   _const_basic_type[T_INT]         = TypeInt::INT;
   445   _const_basic_type[T_LONG]        = TypeLong::LONG;
   446   _const_basic_type[T_FLOAT]       = Type::FLOAT;
   447   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
   448   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
   449   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
   450   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
   451   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
   452   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
   454   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
   455   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
   456   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
   457   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
   458   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
   459   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
   460   _zero_type[T_INT]         = TypeInt::ZERO;
   461   _zero_type[T_LONG]        = TypeLong::ZERO;
   462   _zero_type[T_FLOAT]       = TypeF::ZERO;
   463   _zero_type[T_DOUBLE]      = TypeD::ZERO;
   464   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
   465   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
   466   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
   467   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
   469   // get_zero_type() should not happen for T_CONFLICT
   470   _zero_type[T_CONFLICT]= NULL;
   472   // Vector predefined types, it needs initialized _const_basic_type[].
   473   if (Matcher::vector_size_supported(T_BYTE,4)) {
   474     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
   475   }
   476   if (Matcher::vector_size_supported(T_FLOAT,2)) {
   477     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
   478   }
   479   if (Matcher::vector_size_supported(T_FLOAT,4)) {
   480     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
   481   }
   482   if (Matcher::vector_size_supported(T_FLOAT,8)) {
   483     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
   484   }
   485   mreg2type[Op_VecS] = TypeVect::VECTS;
   486   mreg2type[Op_VecD] = TypeVect::VECTD;
   487   mreg2type[Op_VecX] = TypeVect::VECTX;
   488   mreg2type[Op_VecY] = TypeVect::VECTY;
   490   // Restore working type arena.
   491   current->set_type_arena(save);
   492   current->set_type_dict(NULL);
   493 }
   495 //------------------------------Initialize-------------------------------------
   496 void Type::Initialize(Compile* current) {
   497   assert(current->type_arena() != NULL, "must have created type arena");
   499   if (_shared_type_dict == NULL) {
   500     Initialize_shared(current);
   501   }
   503   Arena* type_arena = current->type_arena();
   505   // Create the hash-cons'ing dictionary with top-level storage allocation
   506   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
   507   current->set_type_dict(tdic);
   509   // Transfer the shared types.
   510   DictI i(_shared_type_dict);
   511   for( ; i.test(); ++i ) {
   512     Type* t = (Type*)i._value;
   513     tdic->Insert(t,t);  // New Type, insert into Type table
   514   }
   515 }
   517 //------------------------------hashcons---------------------------------------
   518 // Do the hash-cons trick.  If the Type already exists in the type table,
   519 // delete the current Type and return the existing Type.  Otherwise stick the
   520 // current Type in the Type table.
   521 const Type *Type::hashcons(void) {
   522   debug_only(base());           // Check the assertion in Type::base().
   523   // Look up the Type in the Type dictionary
   524   Dict *tdic = type_dict();
   525   Type* old = (Type*)(tdic->Insert(this, this, false));
   526   if( old ) {                   // Pre-existing Type?
   527     if( old != this )           // Yes, this guy is not the pre-existing?
   528       delete this;              // Yes, Nuke this guy
   529     assert( old->_dual, "" );
   530     return old;                 // Return pre-existing
   531   }
   533   // Every type has a dual (to make my lattice symmetric).
   534   // Since we just discovered a new Type, compute its dual right now.
   535   assert( !_dual, "" );         // No dual yet
   536   _dual = xdual();              // Compute the dual
   537   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
   538     _dual = this;
   539     return this;
   540   }
   541   assert( !_dual->_dual, "" );  // No reverse dual yet
   542   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
   543   // New Type, insert into Type table
   544   tdic->Insert((void*)_dual,(void*)_dual);
   545   ((Type*)_dual)->_dual = this; // Finish up being symmetric
   546 #ifdef ASSERT
   547   Type *dual_dual = (Type*)_dual->xdual();
   548   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
   549   delete dual_dual;
   550 #endif
   551   return this;                  // Return new Type
   552 }
   554 //------------------------------eq---------------------------------------------
   555 // Structural equality check for Type representations
   556 bool Type::eq( const Type * ) const {
   557   return true;                  // Nothing else can go wrong
   558 }
   560 //------------------------------hash-------------------------------------------
   561 // Type-specific hashing function.
   562 int Type::hash(void) const {
   563   return _base;
   564 }
   566 //------------------------------is_finite--------------------------------------
   567 // Has a finite value
   568 bool Type::is_finite() const {
   569   return false;
   570 }
   572 //------------------------------is_nan-----------------------------------------
   573 // Is not a number (NaN)
   574 bool Type::is_nan()    const {
   575   return false;
   576 }
   578 //----------------------interface_vs_oop---------------------------------------
   579 #ifdef ASSERT
   580 bool Type::interface_vs_oop(const Type *t) const {
   581   bool result = false;
   583   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
   584   const TypePtr*    t_ptr =    t->make_ptr();
   585   if( this_ptr == NULL || t_ptr == NULL )
   586     return result;
   588   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
   589   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
   590   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
   591     bool this_interface = this_inst->klass()->is_interface();
   592     bool    t_interface =    t_inst->klass()->is_interface();
   593     result = this_interface ^ t_interface;
   594   }
   596   return result;
   597 }
   598 #endif
   600 //------------------------------meet-------------------------------------------
   601 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
   602 // commutative and the lattice is symmetric.
   603 const Type *Type::meet( const Type *t ) const {
   604   if (isa_narrowoop() && t->isa_narrowoop()) {
   605     const Type* result = make_ptr()->meet(t->make_ptr());
   606     return result->make_narrowoop();
   607   }
   608   if (isa_narrowklass() && t->isa_narrowklass()) {
   609     const Type* result = make_ptr()->meet(t->make_ptr());
   610     return result->make_narrowklass();
   611   }
   613   const Type *mt = xmeet(t);
   614   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
   615   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
   616 #ifdef ASSERT
   617   assert( mt == t->xmeet(this), "meet not commutative" );
   618   const Type* dual_join = mt->_dual;
   619   const Type *t2t    = dual_join->xmeet(t->_dual);
   620   const Type *t2this = dual_join->xmeet(   _dual);
   622   // Interface meet Oop is Not Symmetric:
   623   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
   624   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
   626   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != _dual) ) {
   627     tty->print_cr("=== Meet Not Symmetric ===");
   628     tty->print("t   =                   ");         t->dump(); tty->cr();
   629     tty->print("this=                   ");            dump(); tty->cr();
   630     tty->print("mt=(t meet this)=       ");        mt->dump(); tty->cr();
   632     tty->print("t_dual=                 ");  t->_dual->dump(); tty->cr();
   633     tty->print("this_dual=              ");     _dual->dump(); tty->cr();
   634     tty->print("mt_dual=                "); mt->_dual->dump(); tty->cr();
   636     tty->print("mt_dual meet t_dual=    "); t2t      ->dump(); tty->cr();
   637     tty->print("mt_dual meet this_dual= "); t2this   ->dump(); tty->cr();
   639     fatal("meet not symmetric" );
   640   }
   641 #endif
   642   return mt;
   643 }
   645 //------------------------------xmeet------------------------------------------
   646 // Compute the MEET of two types.  It returns a new Type object.
   647 const Type *Type::xmeet( const Type *t ) const {
   648   // Perform a fast test for common case; meeting the same types together.
   649   if( this == t ) return this;  // Meeting same type-rep?
   651   // Meeting TOP with anything?
   652   if( _base == Top ) return t;
   654   // Meeting BOTTOM with anything?
   655   if( _base == Bottom ) return BOTTOM;
   657   // Current "this->_base" is one of: Bad, Multi, Control, Top,
   658   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
   659   switch (t->base()) {  // Switch on original type
   661   // Cut in half the number of cases I must handle.  Only need cases for when
   662   // the given enum "t->type" is less than or equal to the local enum "type".
   663   case FloatCon:
   664   case DoubleCon:
   665   case Int:
   666   case Long:
   667     return t->xmeet(this);
   669   case OopPtr:
   670     return t->xmeet(this);
   672   case InstPtr:
   673     return t->xmeet(this);
   675   case MetadataPtr:
   676   case KlassPtr:
   677     return t->xmeet(this);
   679   case AryPtr:
   680     return t->xmeet(this);
   682   case NarrowOop:
   683     return t->xmeet(this);
   685   case NarrowKlass:
   686     return t->xmeet(this);
   688   case Bad:                     // Type check
   689   default:                      // Bogus type not in lattice
   690     typerr(t);
   691     return Type::BOTTOM;
   693   case Bottom:                  // Ye Olde Default
   694     return t;
   696   case FloatTop:
   697     if( _base == FloatTop ) return this;
   698   case FloatBot:                // Float
   699     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
   700     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
   701     typerr(t);
   702     return Type::BOTTOM;
   704   case DoubleTop:
   705     if( _base == DoubleTop ) return this;
   706   case DoubleBot:               // Double
   707     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
   708     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
   709     typerr(t);
   710     return Type::BOTTOM;
   712   // These next few cases must match exactly or it is a compile-time error.
   713   case Control:                 // Control of code
   714   case Abio:                    // State of world outside of program
   715   case Memory:
   716     if( _base == t->_base )  return this;
   717     typerr(t);
   718     return Type::BOTTOM;
   720   case Top:                     // Top of the lattice
   721     return this;
   722   }
   724   // The type is unchanged
   725   return this;
   726 }
   728 //-----------------------------filter------------------------------------------
   729 const Type *Type::filter( const Type *kills ) const {
   730   const Type* ft = join(kills);
   731   if (ft->empty())
   732     return Type::TOP;           // Canonical empty value
   733   return ft;
   734 }
   736 //------------------------------xdual------------------------------------------
   737 // Compute dual right now.
   738 const Type::TYPES Type::dual_type[Type::lastype] = {
   739   Bad,          // Bad
   740   Control,      // Control
   741   Bottom,       // Top
   742   Bad,          // Int - handled in v-call
   743   Bad,          // Long - handled in v-call
   744   Half,         // Half
   745   Bad,          // NarrowOop - handled in v-call
   746   Bad,          // NarrowKlass - handled in v-call
   748   Bad,          // Tuple - handled in v-call
   749   Bad,          // Array - handled in v-call
   750   Bad,          // VectorS - handled in v-call
   751   Bad,          // VectorD - handled in v-call
   752   Bad,          // VectorX - handled in v-call
   753   Bad,          // VectorY - handled in v-call
   755   Bad,          // AnyPtr - handled in v-call
   756   Bad,          // RawPtr - handled in v-call
   757   Bad,          // OopPtr - handled in v-call
   758   Bad,          // InstPtr - handled in v-call
   759   Bad,          // AryPtr - handled in v-call
   761   Bad,          //  MetadataPtr - handled in v-call
   762   Bad,          // KlassPtr - handled in v-call
   764   Bad,          // Function - handled in v-call
   765   Abio,         // Abio
   766   Return_Address,// Return_Address
   767   Memory,       // Memory
   768   FloatBot,     // FloatTop
   769   FloatCon,     // FloatCon
   770   FloatTop,     // FloatBot
   771   DoubleBot,    // DoubleTop
   772   DoubleCon,    // DoubleCon
   773   DoubleTop,    // DoubleBot
   774   Top           // Bottom
   775 };
   777 const Type *Type::xdual() const {
   778   // Note: the base() accessor asserts the sanity of _base.
   779   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
   780   return new Type(_type_info[_base].dual_type);
   781 }
   783 //------------------------------has_memory-------------------------------------
   784 bool Type::has_memory() const {
   785   Type::TYPES tx = base();
   786   if (tx == Memory) return true;
   787   if (tx == Tuple) {
   788     const TypeTuple *t = is_tuple();
   789     for (uint i=0; i < t->cnt(); i++) {
   790       tx = t->field_at(i)->base();
   791       if (tx == Memory)  return true;
   792     }
   793   }
   794   return false;
   795 }
   797 #ifndef PRODUCT
   798 //------------------------------dump2------------------------------------------
   799 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
   800   st->print(_type_info[_base].msg);
   801 }
   803 //------------------------------dump-------------------------------------------
   804 void Type::dump_on(outputStream *st) const {
   805   ResourceMark rm;
   806   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
   807   dump2(d,1, st);
   808   if (is_ptr_to_narrowoop()) {
   809     st->print(" [narrow]");
   810   } else if (is_ptr_to_narrowklass()) {
   811     st->print(" [narrowklass]");
   812   }
   813 }
   814 #endif
   816 //------------------------------singleton--------------------------------------
   817 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
   818 // constants (Ldi nodes).  Singletons are integer, float or double constants.
   819 bool Type::singleton(void) const {
   820   return _base == Top || _base == Half;
   821 }
   823 //------------------------------empty------------------------------------------
   824 // TRUE if Type is a type with no values, FALSE otherwise.
   825 bool Type::empty(void) const {
   826   switch (_base) {
   827   case DoubleTop:
   828   case FloatTop:
   829   case Top:
   830     return true;
   832   case Half:
   833   case Abio:
   834   case Return_Address:
   835   case Memory:
   836   case Bottom:
   837   case FloatBot:
   838   case DoubleBot:
   839     return false;  // never a singleton, therefore never empty
   840   }
   842   ShouldNotReachHere();
   843   return false;
   844 }
   846 //------------------------------dump_stats-------------------------------------
   847 // Dump collected statistics to stderr
   848 #ifndef PRODUCT
   849 void Type::dump_stats() {
   850   tty->print("Types made: %d\n", type_dict()->Size());
   851 }
   852 #endif
   854 //------------------------------typerr-----------------------------------------
   855 void Type::typerr( const Type *t ) const {
   856 #ifndef PRODUCT
   857   tty->print("\nError mixing types: ");
   858   dump();
   859   tty->print(" and ");
   860   t->dump();
   861   tty->print("\n");
   862 #endif
   863   ShouldNotReachHere();
   864 }
   867 //=============================================================================
   868 // Convenience common pre-built types.
   869 const TypeF *TypeF::ZERO;       // Floating point zero
   870 const TypeF *TypeF::ONE;        // Floating point one
   872 //------------------------------make-------------------------------------------
   873 // Create a float constant
   874 const TypeF *TypeF::make(float f) {
   875   return (TypeF*)(new TypeF(f))->hashcons();
   876 }
   878 //------------------------------meet-------------------------------------------
   879 // Compute the MEET of two types.  It returns a new Type object.
   880 const Type *TypeF::xmeet( const Type *t ) const {
   881   // Perform a fast test for common case; meeting the same types together.
   882   if( this == t ) return this;  // Meeting same type-rep?
   884   // Current "this->_base" is FloatCon
   885   switch (t->base()) {          // Switch on original type
   886   case AnyPtr:                  // Mixing with oops happens when javac
   887   case RawPtr:                  // reuses local variables
   888   case OopPtr:
   889   case InstPtr:
   890   case AryPtr:
   891   case MetadataPtr:
   892   case KlassPtr:
   893   case NarrowOop:
   894   case NarrowKlass:
   895   case Int:
   896   case Long:
   897   case DoubleTop:
   898   case DoubleCon:
   899   case DoubleBot:
   900   case Bottom:                  // Ye Olde Default
   901     return Type::BOTTOM;
   903   case FloatBot:
   904     return t;
   906   default:                      // All else is a mistake
   907     typerr(t);
   909   case FloatCon:                // Float-constant vs Float-constant?
   910     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
   911                                 // must compare bitwise as positive zero, negative zero and NaN have
   912                                 // all the same representation in C++
   913       return FLOAT;             // Return generic float
   914                                 // Equal constants
   915   case Top:
   916   case FloatTop:
   917     break;                      // Return the float constant
   918   }
   919   return this;                  // Return the float constant
   920 }
   922 //------------------------------xdual------------------------------------------
   923 // Dual: symmetric
   924 const Type *TypeF::xdual() const {
   925   return this;
   926 }
   928 //------------------------------eq---------------------------------------------
   929 // Structural equality check for Type representations
   930 bool TypeF::eq( const Type *t ) const {
   931   if( g_isnan(_f) ||
   932       g_isnan(t->getf()) ) {
   933     // One or both are NANs.  If both are NANs return true, else false.
   934     return (g_isnan(_f) && g_isnan(t->getf()));
   935   }
   936   if (_f == t->getf()) {
   937     // (NaN is impossible at this point, since it is not equal even to itself)
   938     if (_f == 0.0) {
   939       // difference between positive and negative zero
   940       if (jint_cast(_f) != jint_cast(t->getf()))  return false;
   941     }
   942     return true;
   943   }
   944   return false;
   945 }
   947 //------------------------------hash-------------------------------------------
   948 // Type-specific hashing function.
   949 int TypeF::hash(void) const {
   950   return *(int*)(&_f);
   951 }
   953 //------------------------------is_finite--------------------------------------
   954 // Has a finite value
   955 bool TypeF::is_finite() const {
   956   return g_isfinite(getf()) != 0;
   957 }
   959 //------------------------------is_nan-----------------------------------------
   960 // Is not a number (NaN)
   961 bool TypeF::is_nan()    const {
   962   return g_isnan(getf()) != 0;
   963 }
   965 //------------------------------dump2------------------------------------------
   966 // Dump float constant Type
   967 #ifndef PRODUCT
   968 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
   969   Type::dump2(d,depth, st);
   970   st->print("%f", _f);
   971 }
   972 #endif
   974 //------------------------------singleton--------------------------------------
   975 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
   976 // constants (Ldi nodes).  Singletons are integer, float or double constants
   977 // or a single symbol.
   978 bool TypeF::singleton(void) const {
   979   return true;                  // Always a singleton
   980 }
   982 bool TypeF::empty(void) const {
   983   return false;                 // always exactly a singleton
   984 }
   986 //=============================================================================
   987 // Convenience common pre-built types.
   988 const TypeD *TypeD::ZERO;       // Floating point zero
   989 const TypeD *TypeD::ONE;        // Floating point one
   991 //------------------------------make-------------------------------------------
   992 const TypeD *TypeD::make(double d) {
   993   return (TypeD*)(new TypeD(d))->hashcons();
   994 }
   996 //------------------------------meet-------------------------------------------
   997 // Compute the MEET of two types.  It returns a new Type object.
   998 const Type *TypeD::xmeet( const Type *t ) const {
   999   // Perform a fast test for common case; meeting the same types together.
  1000   if( this == t ) return this;  // Meeting same type-rep?
  1002   // Current "this->_base" is DoubleCon
  1003   switch (t->base()) {          // Switch on original type
  1004   case AnyPtr:                  // Mixing with oops happens when javac
  1005   case RawPtr:                  // reuses local variables
  1006   case OopPtr:
  1007   case InstPtr:
  1008   case AryPtr:
  1009   case MetadataPtr:
  1010   case KlassPtr:
  1011   case NarrowOop:
  1012   case NarrowKlass:
  1013   case Int:
  1014   case Long:
  1015   case FloatTop:
  1016   case FloatCon:
  1017   case FloatBot:
  1018   case Bottom:                  // Ye Olde Default
  1019     return Type::BOTTOM;
  1021   case DoubleBot:
  1022     return t;
  1024   default:                      // All else is a mistake
  1025     typerr(t);
  1027   case DoubleCon:               // Double-constant vs Double-constant?
  1028     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
  1029       return DOUBLE;            // Return generic double
  1030   case Top:
  1031   case DoubleTop:
  1032     break;
  1034   return this;                  // Return the double constant
  1037 //------------------------------xdual------------------------------------------
  1038 // Dual: symmetric
  1039 const Type *TypeD::xdual() const {
  1040   return this;
  1043 //------------------------------eq---------------------------------------------
  1044 // Structural equality check for Type representations
  1045 bool TypeD::eq( const Type *t ) const {
  1046   if( g_isnan(_d) ||
  1047       g_isnan(t->getd()) ) {
  1048     // One or both are NANs.  If both are NANs return true, else false.
  1049     return (g_isnan(_d) && g_isnan(t->getd()));
  1051   if (_d == t->getd()) {
  1052     // (NaN is impossible at this point, since it is not equal even to itself)
  1053     if (_d == 0.0) {
  1054       // difference between positive and negative zero
  1055       if (jlong_cast(_d) != jlong_cast(t->getd()))  return false;
  1057     return true;
  1059   return false;
  1062 //------------------------------hash-------------------------------------------
  1063 // Type-specific hashing function.
  1064 int TypeD::hash(void) const {
  1065   return *(int*)(&_d);
  1068 //------------------------------is_finite--------------------------------------
  1069 // Has a finite value
  1070 bool TypeD::is_finite() const {
  1071   return g_isfinite(getd()) != 0;
  1074 //------------------------------is_nan-----------------------------------------
  1075 // Is not a number (NaN)
  1076 bool TypeD::is_nan()    const {
  1077   return g_isnan(getd()) != 0;
  1080 //------------------------------dump2------------------------------------------
  1081 // Dump double constant Type
  1082 #ifndef PRODUCT
  1083 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
  1084   Type::dump2(d,depth,st);
  1085   st->print("%f", _d);
  1087 #endif
  1089 //------------------------------singleton--------------------------------------
  1090 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1091 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1092 // or a single symbol.
  1093 bool TypeD::singleton(void) const {
  1094   return true;                  // Always a singleton
  1097 bool TypeD::empty(void) const {
  1098   return false;                 // always exactly a singleton
  1101 //=============================================================================
  1102 // Convience common pre-built types.
  1103 const TypeInt *TypeInt::MINUS_1;// -1
  1104 const TypeInt *TypeInt::ZERO;   // 0
  1105 const TypeInt *TypeInt::ONE;    // 1
  1106 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
  1107 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
  1108 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
  1109 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
  1110 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
  1111 const TypeInt *TypeInt::CC_LE;  // [-1,0]
  1112 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
  1113 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
  1114 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
  1115 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
  1116 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
  1117 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
  1118 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
  1119 const TypeInt *TypeInt::INT;    // 32-bit integers
  1120 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
  1122 //------------------------------TypeInt----------------------------------------
  1123 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
  1126 //------------------------------make-------------------------------------------
  1127 const TypeInt *TypeInt::make( jint lo ) {
  1128   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
  1131 static int normalize_int_widen( jint lo, jint hi, int w ) {
  1132   // Certain normalizations keep us sane when comparing types.
  1133   // The 'SMALLINT' covers constants and also CC and its relatives.
  1134   if (lo <= hi) {
  1135     if ((juint)(hi - lo) <= SMALLINT)  w = Type::WidenMin;
  1136     if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
  1137   } else {
  1138     if ((juint)(lo - hi) <= SMALLINT)  w = Type::WidenMin;
  1139     if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
  1141   return w;
  1144 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
  1145   w = normalize_int_widen(lo, hi, w);
  1146   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
  1149 //------------------------------meet-------------------------------------------
  1150 // Compute the MEET of two types.  It returns a new Type representation object
  1151 // with reference count equal to the number of Types pointing at it.
  1152 // Caller should wrap a Types around it.
  1153 const Type *TypeInt::xmeet( const Type *t ) const {
  1154   // Perform a fast test for common case; meeting the same types together.
  1155   if( this == t ) return this;  // Meeting same type?
  1157   // Currently "this->_base" is a TypeInt
  1158   switch (t->base()) {          // Switch on original type
  1159   case AnyPtr:                  // Mixing with oops happens when javac
  1160   case RawPtr:                  // reuses local variables
  1161   case OopPtr:
  1162   case InstPtr:
  1163   case AryPtr:
  1164   case MetadataPtr:
  1165   case KlassPtr:
  1166   case NarrowOop:
  1167   case NarrowKlass:
  1168   case Long:
  1169   case FloatTop:
  1170   case FloatCon:
  1171   case FloatBot:
  1172   case DoubleTop:
  1173   case DoubleCon:
  1174   case DoubleBot:
  1175   case Bottom:                  // Ye Olde Default
  1176     return Type::BOTTOM;
  1177   default:                      // All else is a mistake
  1178     typerr(t);
  1179   case Top:                     // No change
  1180     return this;
  1181   case Int:                     // Int vs Int?
  1182     break;
  1185   // Expand covered set
  1186   const TypeInt *r = t->is_int();
  1187   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
  1190 //------------------------------xdual------------------------------------------
  1191 // Dual: reverse hi & lo; flip widen
  1192 const Type *TypeInt::xdual() const {
  1193   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
  1194   return new TypeInt(_hi,_lo,w);
  1197 //------------------------------widen------------------------------------------
  1198 // Only happens for optimistic top-down optimizations.
  1199 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
  1200   // Coming from TOP or such; no widening
  1201   if( old->base() != Int ) return this;
  1202   const TypeInt *ot = old->is_int();
  1204   // If new guy is equal to old guy, no widening
  1205   if( _lo == ot->_lo && _hi == ot->_hi )
  1206     return old;
  1208   // If new guy contains old, then we widened
  1209   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1210     // New contains old
  1211     // If new guy is already wider than old, no widening
  1212     if( _widen > ot->_widen ) return this;
  1213     // If old guy was a constant, do not bother
  1214     if (ot->_lo == ot->_hi)  return this;
  1215     // Now widen new guy.
  1216     // Check for widening too far
  1217     if (_widen == WidenMax) {
  1218       int max = max_jint;
  1219       int min = min_jint;
  1220       if (limit->isa_int()) {
  1221         max = limit->is_int()->_hi;
  1222         min = limit->is_int()->_lo;
  1224       if (min < _lo && _hi < max) {
  1225         // If neither endpoint is extremal yet, push out the endpoint
  1226         // which is closer to its respective limit.
  1227         if (_lo >= 0 ||                 // easy common case
  1228             (juint)(_lo - min) >= (juint)(max - _hi)) {
  1229           // Try to widen to an unsigned range type of 31 bits:
  1230           return make(_lo, max, WidenMax);
  1231         } else {
  1232           return make(min, _hi, WidenMax);
  1235       return TypeInt::INT;
  1237     // Returned widened new guy
  1238     return make(_lo,_hi,_widen+1);
  1241   // If old guy contains new, then we probably widened too far & dropped to
  1242   // bottom.  Return the wider fellow.
  1243   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1244     return old;
  1246   //fatal("Integer value range is not subset");
  1247   //return this;
  1248   return TypeInt::INT;
  1251 //------------------------------narrow---------------------------------------
  1252 // Only happens for pessimistic optimizations.
  1253 const Type *TypeInt::narrow( const Type *old ) const {
  1254   if (_lo >= _hi)  return this;   // already narrow enough
  1255   if (old == NULL)  return this;
  1256   const TypeInt* ot = old->isa_int();
  1257   if (ot == NULL)  return this;
  1258   jint olo = ot->_lo;
  1259   jint ohi = ot->_hi;
  1261   // If new guy is equal to old guy, no narrowing
  1262   if (_lo == olo && _hi == ohi)  return old;
  1264   // If old guy was maximum range, allow the narrowing
  1265   if (olo == min_jint && ohi == max_jint)  return this;
  1267   if (_lo < olo || _hi > ohi)
  1268     return this;                // doesn't narrow; pretty wierd
  1270   // The new type narrows the old type, so look for a "death march".
  1271   // See comments on PhaseTransform::saturate.
  1272   juint nrange = _hi - _lo;
  1273   juint orange = ohi - olo;
  1274   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1275     // Use the new type only if the range shrinks a lot.
  1276     // We do not want the optimizer computing 2^31 point by point.
  1277     return old;
  1280   return this;
  1283 //-----------------------------filter------------------------------------------
  1284 const Type *TypeInt::filter( const Type *kills ) const {
  1285   const TypeInt* ft = join(kills)->isa_int();
  1286   if (ft == NULL || ft->empty())
  1287     return Type::TOP;           // Canonical empty value
  1288   if (ft->_widen < this->_widen) {
  1289     // Do not allow the value of kill->_widen to affect the outcome.
  1290     // The widen bits must be allowed to run freely through the graph.
  1291     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
  1293   return ft;
  1296 //------------------------------eq---------------------------------------------
  1297 // Structural equality check for Type representations
  1298 bool TypeInt::eq( const Type *t ) const {
  1299   const TypeInt *r = t->is_int(); // Handy access
  1300   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
  1303 //------------------------------hash-------------------------------------------
  1304 // Type-specific hashing function.
  1305 int TypeInt::hash(void) const {
  1306   return _lo+_hi+_widen+(int)Type::Int;
  1309 //------------------------------is_finite--------------------------------------
  1310 // Has a finite value
  1311 bool TypeInt::is_finite() const {
  1312   return true;
  1315 //------------------------------dump2------------------------------------------
  1316 // Dump TypeInt
  1317 #ifndef PRODUCT
  1318 static const char* intname(char* buf, jint n) {
  1319   if (n == min_jint)
  1320     return "min";
  1321   else if (n < min_jint + 10000)
  1322     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
  1323   else if (n == max_jint)
  1324     return "max";
  1325   else if (n > max_jint - 10000)
  1326     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
  1327   else
  1328     sprintf(buf, INT32_FORMAT, n);
  1329   return buf;
  1332 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
  1333   char buf[40], buf2[40];
  1334   if (_lo == min_jint && _hi == max_jint)
  1335     st->print("int");
  1336   else if (is_con())
  1337     st->print("int:%s", intname(buf, get_con()));
  1338   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
  1339     st->print("bool");
  1340   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
  1341     st->print("byte");
  1342   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
  1343     st->print("char");
  1344   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
  1345     st->print("short");
  1346   else if (_hi == max_jint)
  1347     st->print("int:>=%s", intname(buf, _lo));
  1348   else if (_lo == min_jint)
  1349     st->print("int:<=%s", intname(buf, _hi));
  1350   else
  1351     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
  1353   if (_widen != 0 && this != TypeInt::INT)
  1354     st->print(":%.*s", _widen, "wwww");
  1356 #endif
  1358 //------------------------------singleton--------------------------------------
  1359 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1360 // constants.
  1361 bool TypeInt::singleton(void) const {
  1362   return _lo >= _hi;
  1365 bool TypeInt::empty(void) const {
  1366   return _lo > _hi;
  1369 //=============================================================================
  1370 // Convenience common pre-built types.
  1371 const TypeLong *TypeLong::MINUS_1;// -1
  1372 const TypeLong *TypeLong::ZERO; // 0
  1373 const TypeLong *TypeLong::ONE;  // 1
  1374 const TypeLong *TypeLong::POS;  // >=0
  1375 const TypeLong *TypeLong::LONG; // 64-bit integers
  1376 const TypeLong *TypeLong::INT;  // 32-bit subrange
  1377 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
  1379 //------------------------------TypeLong---------------------------------------
  1380 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
  1383 //------------------------------make-------------------------------------------
  1384 const TypeLong *TypeLong::make( jlong lo ) {
  1385   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
  1388 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
  1389   // Certain normalizations keep us sane when comparing types.
  1390   // The 'SMALLINT' covers constants.
  1391   if (lo <= hi) {
  1392     if ((julong)(hi - lo) <= SMALLINT)   w = Type::WidenMin;
  1393     if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
  1394   } else {
  1395     if ((julong)(lo - hi) <= SMALLINT)   w = Type::WidenMin;
  1396     if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
  1398   return w;
  1401 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
  1402   w = normalize_long_widen(lo, hi, w);
  1403   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
  1407 //------------------------------meet-------------------------------------------
  1408 // Compute the MEET of two types.  It returns a new Type representation object
  1409 // with reference count equal to the number of Types pointing at it.
  1410 // Caller should wrap a Types around it.
  1411 const Type *TypeLong::xmeet( const Type *t ) const {
  1412   // Perform a fast test for common case; meeting the same types together.
  1413   if( this == t ) return this;  // Meeting same type?
  1415   // Currently "this->_base" is a TypeLong
  1416   switch (t->base()) {          // Switch on original type
  1417   case AnyPtr:                  // Mixing with oops happens when javac
  1418   case RawPtr:                  // reuses local variables
  1419   case OopPtr:
  1420   case InstPtr:
  1421   case AryPtr:
  1422   case MetadataPtr:
  1423   case KlassPtr:
  1424   case NarrowOop:
  1425   case NarrowKlass:
  1426   case Int:
  1427   case FloatTop:
  1428   case FloatCon:
  1429   case FloatBot:
  1430   case DoubleTop:
  1431   case DoubleCon:
  1432   case DoubleBot:
  1433   case Bottom:                  // Ye Olde Default
  1434     return Type::BOTTOM;
  1435   default:                      // All else is a mistake
  1436     typerr(t);
  1437   case Top:                     // No change
  1438     return this;
  1439   case Long:                    // Long vs Long?
  1440     break;
  1443   // Expand covered set
  1444   const TypeLong *r = t->is_long(); // Turn into a TypeLong
  1445   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
  1448 //------------------------------xdual------------------------------------------
  1449 // Dual: reverse hi & lo; flip widen
  1450 const Type *TypeLong::xdual() const {
  1451   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
  1452   return new TypeLong(_hi,_lo,w);
  1455 //------------------------------widen------------------------------------------
  1456 // Only happens for optimistic top-down optimizations.
  1457 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
  1458   // Coming from TOP or such; no widening
  1459   if( old->base() != Long ) return this;
  1460   const TypeLong *ot = old->is_long();
  1462   // If new guy is equal to old guy, no widening
  1463   if( _lo == ot->_lo && _hi == ot->_hi )
  1464     return old;
  1466   // If new guy contains old, then we widened
  1467   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1468     // New contains old
  1469     // If new guy is already wider than old, no widening
  1470     if( _widen > ot->_widen ) return this;
  1471     // If old guy was a constant, do not bother
  1472     if (ot->_lo == ot->_hi)  return this;
  1473     // Now widen new guy.
  1474     // Check for widening too far
  1475     if (_widen == WidenMax) {
  1476       jlong max = max_jlong;
  1477       jlong min = min_jlong;
  1478       if (limit->isa_long()) {
  1479         max = limit->is_long()->_hi;
  1480         min = limit->is_long()->_lo;
  1482       if (min < _lo && _hi < max) {
  1483         // If neither endpoint is extremal yet, push out the endpoint
  1484         // which is closer to its respective limit.
  1485         if (_lo >= 0 ||                 // easy common case
  1486             (julong)(_lo - min) >= (julong)(max - _hi)) {
  1487           // Try to widen to an unsigned range type of 32/63 bits:
  1488           if (max >= max_juint && _hi < max_juint)
  1489             return make(_lo, max_juint, WidenMax);
  1490           else
  1491             return make(_lo, max, WidenMax);
  1492         } else {
  1493           return make(min, _hi, WidenMax);
  1496       return TypeLong::LONG;
  1498     // Returned widened new guy
  1499     return make(_lo,_hi,_widen+1);
  1502   // If old guy contains new, then we probably widened too far & dropped to
  1503   // bottom.  Return the wider fellow.
  1504   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1505     return old;
  1507   //  fatal("Long value range is not subset");
  1508   // return this;
  1509   return TypeLong::LONG;
  1512 //------------------------------narrow----------------------------------------
  1513 // Only happens for pessimistic optimizations.
  1514 const Type *TypeLong::narrow( const Type *old ) const {
  1515   if (_lo >= _hi)  return this;   // already narrow enough
  1516   if (old == NULL)  return this;
  1517   const TypeLong* ot = old->isa_long();
  1518   if (ot == NULL)  return this;
  1519   jlong olo = ot->_lo;
  1520   jlong ohi = ot->_hi;
  1522   // If new guy is equal to old guy, no narrowing
  1523   if (_lo == olo && _hi == ohi)  return old;
  1525   // If old guy was maximum range, allow the narrowing
  1526   if (olo == min_jlong && ohi == max_jlong)  return this;
  1528   if (_lo < olo || _hi > ohi)
  1529     return this;                // doesn't narrow; pretty wierd
  1531   // The new type narrows the old type, so look for a "death march".
  1532   // See comments on PhaseTransform::saturate.
  1533   julong nrange = _hi - _lo;
  1534   julong orange = ohi - olo;
  1535   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1536     // Use the new type only if the range shrinks a lot.
  1537     // We do not want the optimizer computing 2^31 point by point.
  1538     return old;
  1541   return this;
  1544 //-----------------------------filter------------------------------------------
  1545 const Type *TypeLong::filter( const Type *kills ) const {
  1546   const TypeLong* ft = join(kills)->isa_long();
  1547   if (ft == NULL || ft->empty())
  1548     return Type::TOP;           // Canonical empty value
  1549   if (ft->_widen < this->_widen) {
  1550     // Do not allow the value of kill->_widen to affect the outcome.
  1551     // The widen bits must be allowed to run freely through the graph.
  1552     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
  1554   return ft;
  1557 //------------------------------eq---------------------------------------------
  1558 // Structural equality check for Type representations
  1559 bool TypeLong::eq( const Type *t ) const {
  1560   const TypeLong *r = t->is_long(); // Handy access
  1561   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
  1564 //------------------------------hash-------------------------------------------
  1565 // Type-specific hashing function.
  1566 int TypeLong::hash(void) const {
  1567   return (int)(_lo+_hi+_widen+(int)Type::Long);
  1570 //------------------------------is_finite--------------------------------------
  1571 // Has a finite value
  1572 bool TypeLong::is_finite() const {
  1573   return true;
  1576 //------------------------------dump2------------------------------------------
  1577 // Dump TypeLong
  1578 #ifndef PRODUCT
  1579 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
  1580   if (n > x) {
  1581     if (n >= x + 10000)  return NULL;
  1582     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
  1583   } else if (n < x) {
  1584     if (n <= x - 10000)  return NULL;
  1585     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
  1586   } else {
  1587     return xname;
  1589   return buf;
  1592 static const char* longname(char* buf, jlong n) {
  1593   const char* str;
  1594   if (n == min_jlong)
  1595     return "min";
  1596   else if (n < min_jlong + 10000)
  1597     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
  1598   else if (n == max_jlong)
  1599     return "max";
  1600   else if (n > max_jlong - 10000)
  1601     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
  1602   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
  1603     return str;
  1604   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
  1605     return str;
  1606   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
  1607     return str;
  1608   else
  1609     sprintf(buf, JLONG_FORMAT, n);
  1610   return buf;
  1613 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
  1614   char buf[80], buf2[80];
  1615   if (_lo == min_jlong && _hi == max_jlong)
  1616     st->print("long");
  1617   else if (is_con())
  1618     st->print("long:%s", longname(buf, get_con()));
  1619   else if (_hi == max_jlong)
  1620     st->print("long:>=%s", longname(buf, _lo));
  1621   else if (_lo == min_jlong)
  1622     st->print("long:<=%s", longname(buf, _hi));
  1623   else
  1624     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
  1626   if (_widen != 0 && this != TypeLong::LONG)
  1627     st->print(":%.*s", _widen, "wwww");
  1629 #endif
  1631 //------------------------------singleton--------------------------------------
  1632 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1633 // constants
  1634 bool TypeLong::singleton(void) const {
  1635   return _lo >= _hi;
  1638 bool TypeLong::empty(void) const {
  1639   return _lo > _hi;
  1642 //=============================================================================
  1643 // Convenience common pre-built types.
  1644 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
  1645 const TypeTuple *TypeTuple::IFFALSE;
  1646 const TypeTuple *TypeTuple::IFTRUE;
  1647 const TypeTuple *TypeTuple::IFNEITHER;
  1648 const TypeTuple *TypeTuple::LOOPBODY;
  1649 const TypeTuple *TypeTuple::MEMBAR;
  1650 const TypeTuple *TypeTuple::STORECONDITIONAL;
  1651 const TypeTuple *TypeTuple::START_I2C;
  1652 const TypeTuple *TypeTuple::INT_PAIR;
  1653 const TypeTuple *TypeTuple::LONG_PAIR;
  1654 const TypeTuple *TypeTuple::INT_CC_PAIR;
  1657 //------------------------------make-------------------------------------------
  1658 // Make a TypeTuple from the range of a method signature
  1659 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
  1660   ciType* return_type = sig->return_type();
  1661   uint total_fields = TypeFunc::Parms + return_type->size();
  1662   const Type **field_array = fields(total_fields);
  1663   switch (return_type->basic_type()) {
  1664   case T_LONG:
  1665     field_array[TypeFunc::Parms]   = TypeLong::LONG;
  1666     field_array[TypeFunc::Parms+1] = Type::HALF;
  1667     break;
  1668   case T_DOUBLE:
  1669     field_array[TypeFunc::Parms]   = Type::DOUBLE;
  1670     field_array[TypeFunc::Parms+1] = Type::HALF;
  1671     break;
  1672   case T_OBJECT:
  1673   case T_ARRAY:
  1674   case T_BOOLEAN:
  1675   case T_CHAR:
  1676   case T_FLOAT:
  1677   case T_BYTE:
  1678   case T_SHORT:
  1679   case T_INT:
  1680     field_array[TypeFunc::Parms] = get_const_type(return_type);
  1681     break;
  1682   case T_VOID:
  1683     break;
  1684   default:
  1685     ShouldNotReachHere();
  1687   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1690 // Make a TypeTuple from the domain of a method signature
  1691 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
  1692   uint total_fields = TypeFunc::Parms + sig->size();
  1694   uint pos = TypeFunc::Parms;
  1695   const Type **field_array;
  1696   if (recv != NULL) {
  1697     total_fields++;
  1698     field_array = fields(total_fields);
  1699     // Use get_const_type here because it respects UseUniqueSubclasses:
  1700     field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
  1701   } else {
  1702     field_array = fields(total_fields);
  1705   int i = 0;
  1706   while (pos < total_fields) {
  1707     ciType* type = sig->type_at(i);
  1709     switch (type->basic_type()) {
  1710     case T_LONG:
  1711       field_array[pos++] = TypeLong::LONG;
  1712       field_array[pos++] = Type::HALF;
  1713       break;
  1714     case T_DOUBLE:
  1715       field_array[pos++] = Type::DOUBLE;
  1716       field_array[pos++] = Type::HALF;
  1717       break;
  1718     case T_OBJECT:
  1719     case T_ARRAY:
  1720     case T_BOOLEAN:
  1721     case T_CHAR:
  1722     case T_FLOAT:
  1723     case T_BYTE:
  1724     case T_SHORT:
  1725     case T_INT:
  1726       field_array[pos++] = get_const_type(type);
  1727       break;
  1728     default:
  1729       ShouldNotReachHere();
  1731     i++;
  1733   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1736 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
  1737   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
  1740 //------------------------------fields-----------------------------------------
  1741 // Subroutine call type with space allocated for argument types
  1742 const Type **TypeTuple::fields( uint arg_cnt ) {
  1743   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
  1744   flds[TypeFunc::Control  ] = Type::CONTROL;
  1745   flds[TypeFunc::I_O      ] = Type::ABIO;
  1746   flds[TypeFunc::Memory   ] = Type::MEMORY;
  1747   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
  1748   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
  1750   return flds;
  1753 //------------------------------meet-------------------------------------------
  1754 // Compute the MEET of two types.  It returns a new Type object.
  1755 const Type *TypeTuple::xmeet( const Type *t ) const {
  1756   // Perform a fast test for common case; meeting the same types together.
  1757   if( this == t ) return this;  // Meeting same type-rep?
  1759   // Current "this->_base" is Tuple
  1760   switch (t->base()) {          // switch on original type
  1762   case Bottom:                  // Ye Olde Default
  1763     return t;
  1765   default:                      // All else is a mistake
  1766     typerr(t);
  1768   case Tuple: {                 // Meeting 2 signatures?
  1769     const TypeTuple *x = t->is_tuple();
  1770     assert( _cnt == x->_cnt, "" );
  1771     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1772     for( uint i=0; i<_cnt; i++ )
  1773       fields[i] = field_at(i)->xmeet( x->field_at(i) );
  1774     return TypeTuple::make(_cnt,fields);
  1776   case Top:
  1777     break;
  1779   return this;                  // Return the double constant
  1782 //------------------------------xdual------------------------------------------
  1783 // Dual: compute field-by-field dual
  1784 const Type *TypeTuple::xdual() const {
  1785   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1786   for( uint i=0; i<_cnt; i++ )
  1787     fields[i] = _fields[i]->dual();
  1788   return new TypeTuple(_cnt,fields);
  1791 //------------------------------eq---------------------------------------------
  1792 // Structural equality check for Type representations
  1793 bool TypeTuple::eq( const Type *t ) const {
  1794   const TypeTuple *s = (const TypeTuple *)t;
  1795   if (_cnt != s->_cnt)  return false;  // Unequal field counts
  1796   for (uint i = 0; i < _cnt; i++)
  1797     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
  1798       return false;             // Missed
  1799   return true;
  1802 //------------------------------hash-------------------------------------------
  1803 // Type-specific hashing function.
  1804 int TypeTuple::hash(void) const {
  1805   intptr_t sum = _cnt;
  1806   for( uint i=0; i<_cnt; i++ )
  1807     sum += (intptr_t)_fields[i];     // Hash on pointers directly
  1808   return sum;
  1811 //------------------------------dump2------------------------------------------
  1812 // Dump signature Type
  1813 #ifndef PRODUCT
  1814 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
  1815   st->print("{");
  1816   if( !depth || d[this] ) {     // Check for recursive print
  1817     st->print("...}");
  1818     return;
  1820   d.Insert((void*)this, (void*)this);   // Stop recursion
  1821   if( _cnt ) {
  1822     uint i;
  1823     for( i=0; i<_cnt-1; i++ ) {
  1824       st->print("%d:", i);
  1825       _fields[i]->dump2(d, depth-1, st);
  1826       st->print(", ");
  1828     st->print("%d:", i);
  1829     _fields[i]->dump2(d, depth-1, st);
  1831   st->print("}");
  1833 #endif
  1835 //------------------------------singleton--------------------------------------
  1836 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1837 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1838 // or a single symbol.
  1839 bool TypeTuple::singleton(void) const {
  1840   return false;                 // Never a singleton
  1843 bool TypeTuple::empty(void) const {
  1844   for( uint i=0; i<_cnt; i++ ) {
  1845     if (_fields[i]->empty())  return true;
  1847   return false;
  1850 //=============================================================================
  1851 // Convenience common pre-built types.
  1853 inline const TypeInt* normalize_array_size(const TypeInt* size) {
  1854   // Certain normalizations keep us sane when comparing types.
  1855   // We do not want arrayOop variables to differ only by the wideness
  1856   // of their index types.  Pick minimum wideness, since that is the
  1857   // forced wideness of small ranges anyway.
  1858   if (size->_widen != Type::WidenMin)
  1859     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
  1860   else
  1861     return size;
  1864 //------------------------------make-------------------------------------------
  1865 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
  1866   if (UseCompressedOops && elem->isa_oopptr()) {
  1867     elem = elem->make_narrowoop();
  1869   size = normalize_array_size(size);
  1870   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
  1873 //------------------------------meet-------------------------------------------
  1874 // Compute the MEET of two types.  It returns a new Type object.
  1875 const Type *TypeAry::xmeet( const Type *t ) const {
  1876   // Perform a fast test for common case; meeting the same types together.
  1877   if( this == t ) return this;  // Meeting same type-rep?
  1879   // Current "this->_base" is Ary
  1880   switch (t->base()) {          // switch on original type
  1882   case Bottom:                  // Ye Olde Default
  1883     return t;
  1885   default:                      // All else is a mistake
  1886     typerr(t);
  1888   case Array: {                 // Meeting 2 arrays?
  1889     const TypeAry *a = t->is_ary();
  1890     return TypeAry::make(_elem->meet(a->_elem),
  1891                          _size->xmeet(a->_size)->is_int(),
  1892                          _stable & a->_stable);
  1894   case Top:
  1895     break;
  1897   return this;                  // Return the double constant
  1900 //------------------------------xdual------------------------------------------
  1901 // Dual: compute field-by-field dual
  1902 const Type *TypeAry::xdual() const {
  1903   const TypeInt* size_dual = _size->dual()->is_int();
  1904   size_dual = normalize_array_size(size_dual);
  1905   return new TypeAry(_elem->dual(), size_dual, !_stable);
  1908 //------------------------------eq---------------------------------------------
  1909 // Structural equality check for Type representations
  1910 bool TypeAry::eq( const Type *t ) const {
  1911   const TypeAry *a = (const TypeAry*)t;
  1912   return _elem == a->_elem &&
  1913     _stable == a->_stable &&
  1914     _size == a->_size;
  1917 //------------------------------hash-------------------------------------------
  1918 // Type-specific hashing function.
  1919 int TypeAry::hash(void) const {
  1920   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
  1923 //----------------------interface_vs_oop---------------------------------------
  1924 #ifdef ASSERT
  1925 bool TypeAry::interface_vs_oop(const Type *t) const {
  1926   const TypeAry* t_ary = t->is_ary();
  1927   if (t_ary) {
  1928     return _elem->interface_vs_oop(t_ary->_elem);
  1930   return false;
  1932 #endif
  1934 //------------------------------dump2------------------------------------------
  1935 #ifndef PRODUCT
  1936 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
  1937   if (_stable)  st->print("stable:");
  1938   _elem->dump2(d, depth, st);
  1939   st->print("[");
  1940   _size->dump2(d, depth, st);
  1941   st->print("]");
  1943 #endif
  1945 //------------------------------singleton--------------------------------------
  1946 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1947 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1948 // or a single symbol.
  1949 bool TypeAry::singleton(void) const {
  1950   return false;                 // Never a singleton
  1953 bool TypeAry::empty(void) const {
  1954   return _elem->empty() || _size->empty();
  1957 //--------------------------ary_must_be_exact----------------------------------
  1958 bool TypeAry::ary_must_be_exact() const {
  1959   if (!UseExactTypes)       return false;
  1960   // This logic looks at the element type of an array, and returns true
  1961   // if the element type is either a primitive or a final instance class.
  1962   // In such cases, an array built on this ary must have no subclasses.
  1963   if (_elem == BOTTOM)      return false;  // general array not exact
  1964   if (_elem == TOP   )      return false;  // inverted general array not exact
  1965   const TypeOopPtr*  toop = NULL;
  1966   if (UseCompressedOops && _elem->isa_narrowoop()) {
  1967     toop = _elem->make_ptr()->isa_oopptr();
  1968   } else {
  1969     toop = _elem->isa_oopptr();
  1971   if (!toop)                return true;   // a primitive type, like int
  1972   ciKlass* tklass = toop->klass();
  1973   if (tklass == NULL)       return false;  // unloaded class
  1974   if (!tklass->is_loaded()) return false;  // unloaded class
  1975   const TypeInstPtr* tinst;
  1976   if (_elem->isa_narrowoop())
  1977     tinst = _elem->make_ptr()->isa_instptr();
  1978   else
  1979     tinst = _elem->isa_instptr();
  1980   if (tinst)
  1981     return tklass->as_instance_klass()->is_final();
  1982   const TypeAryPtr*  tap;
  1983   if (_elem->isa_narrowoop())
  1984     tap = _elem->make_ptr()->isa_aryptr();
  1985   else
  1986     tap = _elem->isa_aryptr();
  1987   if (tap)
  1988     return tap->ary()->ary_must_be_exact();
  1989   return false;
  1992 //==============================TypeVect=======================================
  1993 // Convenience common pre-built types.
  1994 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
  1995 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
  1996 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
  1997 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
  1999 //------------------------------make-------------------------------------------
  2000 const TypeVect* TypeVect::make(const Type *elem, uint length) {
  2001   BasicType elem_bt = elem->array_element_basic_type();
  2002   assert(is_java_primitive(elem_bt), "only primitive types in vector");
  2003   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
  2004   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
  2005   int size = length * type2aelembytes(elem_bt);
  2006   switch (Matcher::vector_ideal_reg(size)) {
  2007   case Op_VecS:
  2008     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
  2009   case Op_VecD:
  2010   case Op_RegD:
  2011     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
  2012   case Op_VecX:
  2013     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
  2014   case Op_VecY:
  2015     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
  2017  ShouldNotReachHere();
  2018   return NULL;
  2021 //------------------------------meet-------------------------------------------
  2022 // Compute the MEET of two types.  It returns a new Type object.
  2023 const Type *TypeVect::xmeet( const Type *t ) const {
  2024   // Perform a fast test for common case; meeting the same types together.
  2025   if( this == t ) return this;  // Meeting same type-rep?
  2027   // Current "this->_base" is Vector
  2028   switch (t->base()) {          // switch on original type
  2030   case Bottom:                  // Ye Olde Default
  2031     return t;
  2033   default:                      // All else is a mistake
  2034     typerr(t);
  2036   case VectorS:
  2037   case VectorD:
  2038   case VectorX:
  2039   case VectorY: {                // Meeting 2 vectors?
  2040     const TypeVect* v = t->is_vect();
  2041     assert(  base() == v->base(), "");
  2042     assert(length() == v->length(), "");
  2043     assert(element_basic_type() == v->element_basic_type(), "");
  2044     return TypeVect::make(_elem->xmeet(v->_elem), _length);
  2046   case Top:
  2047     break;
  2049   return this;
  2052 //------------------------------xdual------------------------------------------
  2053 // Dual: compute field-by-field dual
  2054 const Type *TypeVect::xdual() const {
  2055   return new TypeVect(base(), _elem->dual(), _length);
  2058 //------------------------------eq---------------------------------------------
  2059 // Structural equality check for Type representations
  2060 bool TypeVect::eq(const Type *t) const {
  2061   const TypeVect *v = t->is_vect();
  2062   return (_elem == v->_elem) && (_length == v->_length);
  2065 //------------------------------hash-------------------------------------------
  2066 // Type-specific hashing function.
  2067 int TypeVect::hash(void) const {
  2068   return (intptr_t)_elem + (intptr_t)_length;
  2071 //------------------------------singleton--------------------------------------
  2072 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2073 // constants (Ldi nodes).  Vector is singleton if all elements are the same
  2074 // constant value (when vector is created with Replicate code).
  2075 bool TypeVect::singleton(void) const {
  2076 // There is no Con node for vectors yet.
  2077 //  return _elem->singleton();
  2078   return false;
  2081 bool TypeVect::empty(void) const {
  2082   return _elem->empty();
  2085 //------------------------------dump2------------------------------------------
  2086 #ifndef PRODUCT
  2087 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
  2088   switch (base()) {
  2089   case VectorS:
  2090     st->print("vectors["); break;
  2091   case VectorD:
  2092     st->print("vectord["); break;
  2093   case VectorX:
  2094     st->print("vectorx["); break;
  2095   case VectorY:
  2096     st->print("vectory["); break;
  2097   default:
  2098     ShouldNotReachHere();
  2100   st->print("%d]:{", _length);
  2101   _elem->dump2(d, depth, st);
  2102   st->print("}");
  2104 #endif
  2107 //=============================================================================
  2108 // Convenience common pre-built types.
  2109 const TypePtr *TypePtr::NULL_PTR;
  2110 const TypePtr *TypePtr::NOTNULL;
  2111 const TypePtr *TypePtr::BOTTOM;
  2113 //------------------------------meet-------------------------------------------
  2114 // Meet over the PTR enum
  2115 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
  2116   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
  2117   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
  2118   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
  2119   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
  2120   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
  2121   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
  2122   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
  2123 };
  2125 //------------------------------make-------------------------------------------
  2126 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
  2127   return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
  2130 //------------------------------cast_to_ptr_type-------------------------------
  2131 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
  2132   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
  2133   if( ptr == _ptr ) return this;
  2134   return make(_base, ptr, _offset);
  2137 //------------------------------get_con----------------------------------------
  2138 intptr_t TypePtr::get_con() const {
  2139   assert( _ptr == Null, "" );
  2140   return _offset;
  2143 //------------------------------meet-------------------------------------------
  2144 // Compute the MEET of two types.  It returns a new Type object.
  2145 const Type *TypePtr::xmeet( const Type *t ) const {
  2146   // Perform a fast test for common case; meeting the same types together.
  2147   if( this == t ) return this;  // Meeting same type-rep?
  2149   // Current "this->_base" is AnyPtr
  2150   switch (t->base()) {          // switch on original type
  2151   case Int:                     // Mixing ints & oops happens when javac
  2152   case Long:                    // reuses local variables
  2153   case FloatTop:
  2154   case FloatCon:
  2155   case FloatBot:
  2156   case DoubleTop:
  2157   case DoubleCon:
  2158   case DoubleBot:
  2159   case NarrowOop:
  2160   case NarrowKlass:
  2161   case Bottom:                  // Ye Olde Default
  2162     return Type::BOTTOM;
  2163   case Top:
  2164     return this;
  2166   case AnyPtr: {                // Meeting to AnyPtrs
  2167     const TypePtr *tp = t->is_ptr();
  2168     return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
  2170   case RawPtr:                  // For these, flip the call around to cut down
  2171   case OopPtr:
  2172   case InstPtr:                 // on the cases I have to handle.
  2173   case AryPtr:
  2174   case MetadataPtr:
  2175   case KlassPtr:
  2176     return t->xmeet(this);      // Call in reverse direction
  2177   default:                      // All else is a mistake
  2178     typerr(t);
  2181   return this;
  2184 //------------------------------meet_offset------------------------------------
  2185 int TypePtr::meet_offset( int offset ) const {
  2186   // Either is 'TOP' offset?  Return the other offset!
  2187   if( _offset == OffsetTop ) return offset;
  2188   if( offset == OffsetTop ) return _offset;
  2189   // If either is different, return 'BOTTOM' offset
  2190   if( _offset != offset ) return OffsetBot;
  2191   return _offset;
  2194 //------------------------------dual_offset------------------------------------
  2195 int TypePtr::dual_offset( ) const {
  2196   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
  2197   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
  2198   return _offset;               // Map everything else into self
  2201 //------------------------------xdual------------------------------------------
  2202 // Dual: compute field-by-field dual
  2203 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
  2204   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
  2205 };
  2206 const Type *TypePtr::xdual() const {
  2207   return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
  2210 //------------------------------xadd_offset------------------------------------
  2211 int TypePtr::xadd_offset( intptr_t offset ) const {
  2212   // Adding to 'TOP' offset?  Return 'TOP'!
  2213   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
  2214   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  2215   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
  2216   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  2217   offset += (intptr_t)_offset;
  2218   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
  2220   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  2221   // It is possible to construct a negative offset during PhaseCCP
  2223   return (int)offset;        // Sum valid offsets
  2226 //------------------------------add_offset-------------------------------------
  2227 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
  2228   return make( AnyPtr, _ptr, xadd_offset(offset) );
  2231 //------------------------------eq---------------------------------------------
  2232 // Structural equality check for Type representations
  2233 bool TypePtr::eq( const Type *t ) const {
  2234   const TypePtr *a = (const TypePtr*)t;
  2235   return _ptr == a->ptr() && _offset == a->offset();
  2238 //------------------------------hash-------------------------------------------
  2239 // Type-specific hashing function.
  2240 int TypePtr::hash(void) const {
  2241   return _ptr + _offset;
  2244 //------------------------------dump2------------------------------------------
  2245 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
  2246   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
  2247 };
  2249 #ifndef PRODUCT
  2250 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2251   if( _ptr == Null ) st->print("NULL");
  2252   else st->print("%s *", ptr_msg[_ptr]);
  2253   if( _offset == OffsetTop ) st->print("+top");
  2254   else if( _offset == OffsetBot ) st->print("+bot");
  2255   else if( _offset ) st->print("+%d", _offset);
  2257 #endif
  2259 //------------------------------singleton--------------------------------------
  2260 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2261 // constants
  2262 bool TypePtr::singleton(void) const {
  2263   // TopPTR, Null, AnyNull, Constant are all singletons
  2264   return (_offset != OffsetBot) && !below_centerline(_ptr);
  2267 bool TypePtr::empty(void) const {
  2268   return (_offset == OffsetTop) || above_centerline(_ptr);
  2271 //=============================================================================
  2272 // Convenience common pre-built types.
  2273 const TypeRawPtr *TypeRawPtr::BOTTOM;
  2274 const TypeRawPtr *TypeRawPtr::NOTNULL;
  2276 //------------------------------make-------------------------------------------
  2277 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
  2278   assert( ptr != Constant, "what is the constant?" );
  2279   assert( ptr != Null, "Use TypePtr for NULL" );
  2280   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
  2283 const TypeRawPtr *TypeRawPtr::make( address bits ) {
  2284   assert( bits, "Use TypePtr for NULL" );
  2285   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
  2288 //------------------------------cast_to_ptr_type-------------------------------
  2289 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
  2290   assert( ptr != Constant, "what is the constant?" );
  2291   assert( ptr != Null, "Use TypePtr for NULL" );
  2292   assert( _bits==0, "Why cast a constant address?");
  2293   if( ptr == _ptr ) return this;
  2294   return make(ptr);
  2297 //------------------------------get_con----------------------------------------
  2298 intptr_t TypeRawPtr::get_con() const {
  2299   assert( _ptr == Null || _ptr == Constant, "" );
  2300   return (intptr_t)_bits;
  2303 //------------------------------meet-------------------------------------------
  2304 // Compute the MEET of two types.  It returns a new Type object.
  2305 const Type *TypeRawPtr::xmeet( const Type *t ) const {
  2306   // Perform a fast test for common case; meeting the same types together.
  2307   if( this == t ) return this;  // Meeting same type-rep?
  2309   // Current "this->_base" is RawPtr
  2310   switch( t->base() ) {         // switch on original type
  2311   case Bottom:                  // Ye Olde Default
  2312     return t;
  2313   case Top:
  2314     return this;
  2315   case AnyPtr:                  // Meeting to AnyPtrs
  2316     break;
  2317   case RawPtr: {                // might be top, bot, any/not or constant
  2318     enum PTR tptr = t->is_ptr()->ptr();
  2319     enum PTR ptr = meet_ptr( tptr );
  2320     if( ptr == Constant ) {     // Cannot be equal constants, so...
  2321       if( tptr == Constant && _ptr != Constant)  return t;
  2322       if( _ptr == Constant && tptr != Constant)  return this;
  2323       ptr = NotNull;            // Fall down in lattice
  2325     return make( ptr );
  2328   case OopPtr:
  2329   case InstPtr:
  2330   case AryPtr:
  2331   case MetadataPtr:
  2332   case KlassPtr:
  2333     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2334   default:                      // All else is a mistake
  2335     typerr(t);
  2338   // Found an AnyPtr type vs self-RawPtr type
  2339   const TypePtr *tp = t->is_ptr();
  2340   switch (tp->ptr()) {
  2341   case TypePtr::TopPTR:  return this;
  2342   case TypePtr::BotPTR:  return t;
  2343   case TypePtr::Null:
  2344     if( _ptr == TypePtr::TopPTR ) return t;
  2345     return TypeRawPtr::BOTTOM;
  2346   case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
  2347   case TypePtr::AnyNull:
  2348     if( _ptr == TypePtr::Constant) return this;
  2349     return make( meet_ptr(TypePtr::AnyNull) );
  2350   default: ShouldNotReachHere();
  2352   return this;
  2355 //------------------------------xdual------------------------------------------
  2356 // Dual: compute field-by-field dual
  2357 const Type *TypeRawPtr::xdual() const {
  2358   return new TypeRawPtr( dual_ptr(), _bits );
  2361 //------------------------------add_offset-------------------------------------
  2362 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
  2363   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
  2364   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
  2365   if( offset == 0 ) return this; // No change
  2366   switch (_ptr) {
  2367   case TypePtr::TopPTR:
  2368   case TypePtr::BotPTR:
  2369   case TypePtr::NotNull:
  2370     return this;
  2371   case TypePtr::Null:
  2372   case TypePtr::Constant: {
  2373     address bits = _bits+offset;
  2374     if ( bits == 0 ) return TypePtr::NULL_PTR;
  2375     return make( bits );
  2377   default:  ShouldNotReachHere();
  2379   return NULL;                  // Lint noise
  2382 //------------------------------eq---------------------------------------------
  2383 // Structural equality check for Type representations
  2384 bool TypeRawPtr::eq( const Type *t ) const {
  2385   const TypeRawPtr *a = (const TypeRawPtr*)t;
  2386   return _bits == a->_bits && TypePtr::eq(t);
  2389 //------------------------------hash-------------------------------------------
  2390 // Type-specific hashing function.
  2391 int TypeRawPtr::hash(void) const {
  2392   return (intptr_t)_bits + TypePtr::hash();
  2395 //------------------------------dump2------------------------------------------
  2396 #ifndef PRODUCT
  2397 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2398   if( _ptr == Constant )
  2399     st->print(INTPTR_FORMAT, _bits);
  2400   else
  2401     st->print("rawptr:%s", ptr_msg[_ptr]);
  2403 #endif
  2405 //=============================================================================
  2406 // Convenience common pre-built type.
  2407 const TypeOopPtr *TypeOopPtr::BOTTOM;
  2409 //------------------------------TypeOopPtr-------------------------------------
  2410 TypeOopPtr::TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id )
  2411   : TypePtr(t, ptr, offset),
  2412     _const_oop(o), _klass(k),
  2413     _klass_is_exact(xk),
  2414     _is_ptr_to_narrowoop(false),
  2415     _is_ptr_to_narrowklass(false),
  2416     _is_ptr_to_boxed_value(false),
  2417     _instance_id(instance_id) {
  2418   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
  2419       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
  2420     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
  2422 #ifdef _LP64
  2423   if (_offset != 0) {
  2424     if (_offset == oopDesc::klass_offset_in_bytes()) {
  2425       _is_ptr_to_narrowklass = UseCompressedClassPointers;
  2426     } else if (klass() == NULL) {
  2427       // Array with unknown body type
  2428       assert(this->isa_aryptr(), "only arrays without klass");
  2429       _is_ptr_to_narrowoop = UseCompressedOops;
  2430     } else if (this->isa_aryptr()) {
  2431       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
  2432                              _offset != arrayOopDesc::length_offset_in_bytes());
  2433     } else if (klass()->is_instance_klass()) {
  2434       ciInstanceKlass* ik = klass()->as_instance_klass();
  2435       ciField* field = NULL;
  2436       if (this->isa_klassptr()) {
  2437         // Perm objects don't use compressed references
  2438       } else if (_offset == OffsetBot || _offset == OffsetTop) {
  2439         // unsafe access
  2440         _is_ptr_to_narrowoop = UseCompressedOops;
  2441       } else { // exclude unsafe ops
  2442         assert(this->isa_instptr(), "must be an instance ptr.");
  2444         if (klass() == ciEnv::current()->Class_klass() &&
  2445             (_offset == java_lang_Class::klass_offset_in_bytes() ||
  2446              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
  2447           // Special hidden fields from the Class.
  2448           assert(this->isa_instptr(), "must be an instance ptr.");
  2449           _is_ptr_to_narrowoop = false;
  2450         } else if (klass() == ciEnv::current()->Class_klass() &&
  2451                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
  2452           // Static fields
  2453           assert(o != NULL, "must be constant");
  2454           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
  2455           ciField* field = k->get_field_by_offset(_offset, true);
  2456           assert(field != NULL, "missing field");
  2457           BasicType basic_elem_type = field->layout_type();
  2458           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
  2459                                                        basic_elem_type == T_ARRAY);
  2460         } else {
  2461           // Instance fields which contains a compressed oop references.
  2462           field = ik->get_field_by_offset(_offset, false);
  2463           if (field != NULL) {
  2464             BasicType basic_elem_type = field->layout_type();
  2465             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
  2466                                                          basic_elem_type == T_ARRAY);
  2467           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
  2468             // Compile::find_alias_type() cast exactness on all types to verify
  2469             // that it does not affect alias type.
  2470             _is_ptr_to_narrowoop = UseCompressedOops;
  2471           } else {
  2472             // Type for the copy start in LibraryCallKit::inline_native_clone().
  2473             _is_ptr_to_narrowoop = UseCompressedOops;
  2479 #endif
  2482 //------------------------------make-------------------------------------------
  2483 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
  2484                                    int offset, int instance_id) {
  2485   assert(ptr != Constant, "no constant generic pointers");
  2486   ciKlass*  k = Compile::current()->env()->Object_klass();
  2487   bool      xk = false;
  2488   ciObject* o = NULL;
  2489   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id))->hashcons();
  2493 //------------------------------cast_to_ptr_type-------------------------------
  2494 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
  2495   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
  2496   if( ptr == _ptr ) return this;
  2497   return make(ptr, _offset, _instance_id);
  2500 //-----------------------------cast_to_instance_id----------------------------
  2501 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
  2502   // There are no instances of a general oop.
  2503   // Return self unchanged.
  2504   return this;
  2507 //-----------------------------cast_to_exactness-------------------------------
  2508 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
  2509   // There is no such thing as an exact general oop.
  2510   // Return self unchanged.
  2511   return this;
  2515 //------------------------------as_klass_type----------------------------------
  2516 // Return the klass type corresponding to this instance or array type.
  2517 // It is the type that is loaded from an object of this type.
  2518 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
  2519   ciKlass* k = klass();
  2520   bool    xk = klass_is_exact();
  2521   if (k == NULL)
  2522     return TypeKlassPtr::OBJECT;
  2523   else
  2524     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
  2528 //------------------------------meet-------------------------------------------
  2529 // Compute the MEET of two types.  It returns a new Type object.
  2530 const Type *TypeOopPtr::xmeet( const Type *t ) const {
  2531   // Perform a fast test for common case; meeting the same types together.
  2532   if( this == t ) return this;  // Meeting same type-rep?
  2534   // Current "this->_base" is OopPtr
  2535   switch (t->base()) {          // switch on original type
  2537   case Int:                     // Mixing ints & oops happens when javac
  2538   case Long:                    // reuses local variables
  2539   case FloatTop:
  2540   case FloatCon:
  2541   case FloatBot:
  2542   case DoubleTop:
  2543   case DoubleCon:
  2544   case DoubleBot:
  2545   case NarrowOop:
  2546   case NarrowKlass:
  2547   case Bottom:                  // Ye Olde Default
  2548     return Type::BOTTOM;
  2549   case Top:
  2550     return this;
  2552   default:                      // All else is a mistake
  2553     typerr(t);
  2555   case RawPtr:
  2556   case MetadataPtr:
  2557   case KlassPtr:
  2558     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2560   case AnyPtr: {
  2561     // Found an AnyPtr type vs self-OopPtr type
  2562     const TypePtr *tp = t->is_ptr();
  2563     int offset = meet_offset(tp->offset());
  2564     PTR ptr = meet_ptr(tp->ptr());
  2565     switch (tp->ptr()) {
  2566     case Null:
  2567       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
  2568       // else fall through:
  2569     case TopPTR:
  2570     case AnyNull: {
  2571       int instance_id = meet_instance_id(InstanceTop);
  2572       return make(ptr, offset, instance_id);
  2574     case BotPTR:
  2575     case NotNull:
  2576       return TypePtr::make(AnyPtr, ptr, offset);
  2577     default: typerr(t);
  2581   case OopPtr: {                 // Meeting to other OopPtrs
  2582     const TypeOopPtr *tp = t->is_oopptr();
  2583     int instance_id = meet_instance_id(tp->instance_id());
  2584     return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id );
  2587   case InstPtr:                  // For these, flip the call around to cut down
  2588   case AryPtr:
  2589     return t->xmeet(this);      // Call in reverse direction
  2591   } // End of switch
  2592   return this;                  // Return the double constant
  2596 //------------------------------xdual------------------------------------------
  2597 // Dual of a pure heap pointer.  No relevant klass or oop information.
  2598 const Type *TypeOopPtr::xdual() const {
  2599   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
  2600   assert(const_oop() == NULL,             "no constants here");
  2601   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
  2604 //--------------------------make_from_klass_common-----------------------------
  2605 // Computes the element-type given a klass.
  2606 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
  2607   if (klass->is_instance_klass()) {
  2608     Compile* C = Compile::current();
  2609     Dependencies* deps = C->dependencies();
  2610     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
  2611     // Element is an instance
  2612     bool klass_is_exact = false;
  2613     if (klass->is_loaded()) {
  2614       // Try to set klass_is_exact.
  2615       ciInstanceKlass* ik = klass->as_instance_klass();
  2616       klass_is_exact = ik->is_final();
  2617       if (!klass_is_exact && klass_change
  2618           && deps != NULL && UseUniqueSubclasses) {
  2619         ciInstanceKlass* sub = ik->unique_concrete_subklass();
  2620         if (sub != NULL) {
  2621           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
  2622           klass = ik = sub;
  2623           klass_is_exact = sub->is_final();
  2626       if (!klass_is_exact && try_for_exact
  2627           && deps != NULL && UseExactTypes) {
  2628         if (!ik->is_interface() && !ik->has_subklass()) {
  2629           // Add a dependence; if concrete subclass added we need to recompile
  2630           deps->assert_leaf_type(ik);
  2631           klass_is_exact = true;
  2635     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
  2636   } else if (klass->is_obj_array_klass()) {
  2637     // Element is an object array. Recursively call ourself.
  2638     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
  2639     bool xk = etype->klass_is_exact();
  2640     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2641     // We used to pass NotNull in here, asserting that the sub-arrays
  2642     // are all not-null.  This is not true in generally, as code can
  2643     // slam NULLs down in the subarrays.
  2644     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
  2645     return arr;
  2646   } else if (klass->is_type_array_klass()) {
  2647     // Element is an typeArray
  2648     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
  2649     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2650     // We used to pass NotNull in here, asserting that the array pointer
  2651     // is not-null. That was not true in general.
  2652     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
  2653     return arr;
  2654   } else {
  2655     ShouldNotReachHere();
  2656     return NULL;
  2660 //------------------------------make_from_constant-----------------------------
  2661 // Make a java pointer from an oop constant
  2662 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
  2663                                                  bool require_constant,
  2664                                                  bool is_autobox_cache) {
  2665   assert(!o->is_null_object(), "null object not yet handled here.");
  2666   ciKlass* klass = o->klass();
  2667   if (klass->is_instance_klass()) {
  2668     // Element is an instance
  2669     if (require_constant) {
  2670       if (!o->can_be_constant())  return NULL;
  2671     } else if (!o->should_be_constant()) {
  2672       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
  2674     return TypeInstPtr::make(o);
  2675   } else if (klass->is_obj_array_klass()) {
  2676     // Element is an object array. Recursively call ourself.
  2677     const TypeOopPtr *etype =
  2678       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
  2679     if (is_autobox_cache) {
  2680       // The pointers in the autobox arrays are always non-null.
  2681       etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
  2683     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2684     // We used to pass NotNull in here, asserting that the sub-arrays
  2685     // are all not-null.  This is not true in generally, as code can
  2686     // slam NULLs down in the subarrays.
  2687     if (require_constant) {
  2688       if (!o->can_be_constant())  return NULL;
  2689     } else if (!o->should_be_constant()) {
  2690       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2692     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, is_autobox_cache);
  2693     return arr;
  2694   } else if (klass->is_type_array_klass()) {
  2695     // Element is an typeArray
  2696     const Type* etype =
  2697       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
  2698     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2699     // We used to pass NotNull in here, asserting that the array pointer
  2700     // is not-null. That was not true in general.
  2701     if (require_constant) {
  2702       if (!o->can_be_constant())  return NULL;
  2703     } else if (!o->should_be_constant()) {
  2704       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2706     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
  2707     return arr;
  2710   fatal("unhandled object type");
  2711   return NULL;
  2714 //------------------------------get_con----------------------------------------
  2715 intptr_t TypeOopPtr::get_con() const {
  2716   assert( _ptr == Null || _ptr == Constant, "" );
  2717   assert( _offset >= 0, "" );
  2719   if (_offset != 0) {
  2720     // After being ported to the compiler interface, the compiler no longer
  2721     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  2722     // to a handle at compile time.  This handle is embedded in the generated
  2723     // code and dereferenced at the time the nmethod is made.  Until that time,
  2724     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  2725     // have access to the addresses!).  This does not seem to currently happen,
  2726     // but this assertion here is to help prevent its occurence.
  2727     tty->print_cr("Found oop constant with non-zero offset");
  2728     ShouldNotReachHere();
  2731   return (intptr_t)const_oop()->constant_encoding();
  2735 //-----------------------------filter------------------------------------------
  2736 // Do not allow interface-vs.-noninterface joins to collapse to top.
  2737 const Type *TypeOopPtr::filter( const Type *kills ) const {
  2739   const Type* ft = join(kills);
  2740   const TypeInstPtr* ftip = ft->isa_instptr();
  2741   const TypeInstPtr* ktip = kills->isa_instptr();
  2742   const TypeKlassPtr* ftkp = ft->isa_klassptr();
  2743   const TypeKlassPtr* ktkp = kills->isa_klassptr();
  2745   if (ft->empty()) {
  2746     // Check for evil case of 'this' being a class and 'kills' expecting an
  2747     // interface.  This can happen because the bytecodes do not contain
  2748     // enough type info to distinguish a Java-level interface variable
  2749     // from a Java-level object variable.  If we meet 2 classes which
  2750     // both implement interface I, but their meet is at 'j/l/O' which
  2751     // doesn't implement I, we have no way to tell if the result should
  2752     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
  2753     // into a Phi which "knows" it's an Interface type we'll have to
  2754     // uplift the type.
  2755     if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
  2756       return kills;             // Uplift to interface
  2757     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
  2758       return kills;             // Uplift to interface
  2760     return Type::TOP;           // Canonical empty value
  2763   // If we have an interface-typed Phi or cast and we narrow to a class type,
  2764   // the join should report back the class.  However, if we have a J/L/Object
  2765   // class-typed Phi and an interface flows in, it's possible that the meet &
  2766   // join report an interface back out.  This isn't possible but happens
  2767   // because the type system doesn't interact well with interfaces.
  2768   if (ftip != NULL && ktip != NULL &&
  2769       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
  2770       ktip->is_loaded() && !ktip->klass()->is_interface()) {
  2771     // Happens in a CTW of rt.jar, 320-341, no extra flags
  2772     assert(!ftip->klass_is_exact(), "interface could not be exact");
  2773     return ktip->cast_to_ptr_type(ftip->ptr());
  2775   // Interface klass type could be exact in opposite to interface type,
  2776   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
  2777   if (ftkp != NULL && ktkp != NULL &&
  2778       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
  2779       !ftkp->klass_is_exact() && // Keep exact interface klass
  2780       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
  2781     return ktkp->cast_to_ptr_type(ftkp->ptr());
  2784   return ft;
  2787 //------------------------------eq---------------------------------------------
  2788 // Structural equality check for Type representations
  2789 bool TypeOopPtr::eq( const Type *t ) const {
  2790   const TypeOopPtr *a = (const TypeOopPtr*)t;
  2791   if (_klass_is_exact != a->_klass_is_exact ||
  2792       _instance_id != a->_instance_id)  return false;
  2793   ciObject* one = const_oop();
  2794   ciObject* two = a->const_oop();
  2795   if (one == NULL || two == NULL) {
  2796     return (one == two) && TypePtr::eq(t);
  2797   } else {
  2798     return one->equals(two) && TypePtr::eq(t);
  2802 //------------------------------hash-------------------------------------------
  2803 // Type-specific hashing function.
  2804 int TypeOopPtr::hash(void) const {
  2805   return
  2806     (const_oop() ? const_oop()->hash() : 0) +
  2807     _klass_is_exact +
  2808     _instance_id +
  2809     TypePtr::hash();
  2812 //------------------------------dump2------------------------------------------
  2813 #ifndef PRODUCT
  2814 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2815   st->print("oopptr:%s", ptr_msg[_ptr]);
  2816   if( _klass_is_exact ) st->print(":exact");
  2817   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
  2818   switch( _offset ) {
  2819   case OffsetTop: st->print("+top"); break;
  2820   case OffsetBot: st->print("+any"); break;
  2821   case         0: break;
  2822   default:        st->print("+%d",_offset); break;
  2824   if (_instance_id == InstanceTop)
  2825     st->print(",iid=top");
  2826   else if (_instance_id != InstanceBot)
  2827     st->print(",iid=%d",_instance_id);
  2829 #endif
  2831 //------------------------------singleton--------------------------------------
  2832 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2833 // constants
  2834 bool TypeOopPtr::singleton(void) const {
  2835   // detune optimizer to not generate constant oop + constant offset as a constant!
  2836   // TopPTR, Null, AnyNull, Constant are all singletons
  2837   return (_offset == 0) && !below_centerline(_ptr);
  2840 //------------------------------add_offset-------------------------------------
  2841 const TypePtr *TypeOopPtr::add_offset( intptr_t offset ) const {
  2842   return make( _ptr, xadd_offset(offset), _instance_id);
  2845 //------------------------------meet_instance_id--------------------------------
  2846 int TypeOopPtr::meet_instance_id( int instance_id ) const {
  2847   // Either is 'TOP' instance?  Return the other instance!
  2848   if( _instance_id == InstanceTop ) return  instance_id;
  2849   if(  instance_id == InstanceTop ) return _instance_id;
  2850   // If either is different, return 'BOTTOM' instance
  2851   if( _instance_id != instance_id ) return InstanceBot;
  2852   return _instance_id;
  2855 //------------------------------dual_instance_id--------------------------------
  2856 int TypeOopPtr::dual_instance_id( ) const {
  2857   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
  2858   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
  2859   return _instance_id;              // Map everything else into self
  2863 //=============================================================================
  2864 // Convenience common pre-built types.
  2865 const TypeInstPtr *TypeInstPtr::NOTNULL;
  2866 const TypeInstPtr *TypeInstPtr::BOTTOM;
  2867 const TypeInstPtr *TypeInstPtr::MIRROR;
  2868 const TypeInstPtr *TypeInstPtr::MARK;
  2869 const TypeInstPtr *TypeInstPtr::KLASS;
  2871 //------------------------------TypeInstPtr-------------------------------------
  2872 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
  2873  : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
  2874    assert(k != NULL &&
  2875           (k->is_loaded() || o == NULL),
  2876           "cannot have constants with non-loaded klass");
  2877 };
  2879 //------------------------------make-------------------------------------------
  2880 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
  2881                                      ciKlass* k,
  2882                                      bool xk,
  2883                                      ciObject* o,
  2884                                      int offset,
  2885                                      int instance_id) {
  2886   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
  2887   // Either const_oop() is NULL or else ptr is Constant
  2888   assert( (!o && ptr != Constant) || (o && ptr == Constant),
  2889           "constant pointers must have a value supplied" );
  2890   // Ptr is never Null
  2891   assert( ptr != Null, "NULL pointers are not typed" );
  2893   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  2894   if (!UseExactTypes)  xk = false;
  2895   if (ptr == Constant) {
  2896     // Note:  This case includes meta-object constants, such as methods.
  2897     xk = true;
  2898   } else if (k->is_loaded()) {
  2899     ciInstanceKlass* ik = k->as_instance_klass();
  2900     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
  2901     if (xk && ik->is_interface())  xk = false;  // no exact interface
  2904   // Now hash this baby
  2905   TypeInstPtr *result =
  2906     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
  2908   return result;
  2911 /**
  2912  *  Create constant type for a constant boxed value
  2913  */
  2914 const Type* TypeInstPtr::get_const_boxed_value() const {
  2915   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
  2916   assert((const_oop() != NULL), "should be called only for constant object");
  2917   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
  2918   BasicType bt = constant.basic_type();
  2919   switch (bt) {
  2920     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
  2921     case T_INT:      return TypeInt::make(constant.as_int());
  2922     case T_CHAR:     return TypeInt::make(constant.as_char());
  2923     case T_BYTE:     return TypeInt::make(constant.as_byte());
  2924     case T_SHORT:    return TypeInt::make(constant.as_short());
  2925     case T_FLOAT:    return TypeF::make(constant.as_float());
  2926     case T_DOUBLE:   return TypeD::make(constant.as_double());
  2927     case T_LONG:     return TypeLong::make(constant.as_long());
  2928     default:         break;
  2930   fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
  2931   return NULL;
  2934 //------------------------------cast_to_ptr_type-------------------------------
  2935 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
  2936   if( ptr == _ptr ) return this;
  2937   // Reconstruct _sig info here since not a problem with later lazy
  2938   // construction, _sig will show up on demand.
  2939   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id);
  2943 //-----------------------------cast_to_exactness-------------------------------
  2944 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
  2945   if( klass_is_exact == _klass_is_exact ) return this;
  2946   if (!UseExactTypes)  return this;
  2947   if (!_klass->is_loaded())  return this;
  2948   ciInstanceKlass* ik = _klass->as_instance_klass();
  2949   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
  2950   if( ik->is_interface() )              return this;  // cannot set xk
  2951   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
  2954 //-----------------------------cast_to_instance_id----------------------------
  2955 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
  2956   if( instance_id == _instance_id ) return this;
  2957   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id);
  2960 //------------------------------xmeet_unloaded---------------------------------
  2961 // Compute the MEET of two InstPtrs when at least one is unloaded.
  2962 // Assume classes are different since called after check for same name/class-loader
  2963 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
  2964     int off = meet_offset(tinst->offset());
  2965     PTR ptr = meet_ptr(tinst->ptr());
  2966     int instance_id = meet_instance_id(tinst->instance_id());
  2968     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
  2969     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
  2970     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
  2971       //
  2972       // Meet unloaded class with java/lang/Object
  2973       //
  2974       // Meet
  2975       //          |                     Unloaded Class
  2976       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
  2977       //  ===================================================================
  2978       //   TOP    | ..........................Unloaded......................|
  2979       //  AnyNull |  U-AN    |................Unloaded......................|
  2980       // Constant | ... O-NN .................................. |   O-BOT   |
  2981       //  NotNull | ... O-NN .................................. |   O-BOT   |
  2982       //  BOTTOM  | ........................Object-BOTTOM ..................|
  2983       //
  2984       assert(loaded->ptr() != TypePtr::Null, "insanity check");
  2985       //
  2986       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
  2987       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass(), false, NULL, off, instance_id ); }
  2988       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
  2989       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
  2990         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
  2991         else                                      { return TypeInstPtr::NOTNULL; }
  2993       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
  2995       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
  2998     // Both are unloaded, not the same class, not Object
  2999     // Or meet unloaded with a different loaded class, not java/lang/Object
  3000     if( ptr != TypePtr::BotPTR ) {
  3001       return TypeInstPtr::NOTNULL;
  3003     return TypeInstPtr::BOTTOM;
  3007 //------------------------------meet-------------------------------------------
  3008 // Compute the MEET of two types.  It returns a new Type object.
  3009 const Type *TypeInstPtr::xmeet( const Type *t ) const {
  3010   // Perform a fast test for common case; meeting the same types together.
  3011   if( this == t ) return this;  // Meeting same type-rep?
  3013   // Current "this->_base" is Pointer
  3014   switch (t->base()) {          // switch on original type
  3016   case Int:                     // Mixing ints & oops happens when javac
  3017   case Long:                    // reuses local variables
  3018   case FloatTop:
  3019   case FloatCon:
  3020   case FloatBot:
  3021   case DoubleTop:
  3022   case DoubleCon:
  3023   case DoubleBot:
  3024   case NarrowOop:
  3025   case NarrowKlass:
  3026   case Bottom:                  // Ye Olde Default
  3027     return Type::BOTTOM;
  3028   case Top:
  3029     return this;
  3031   default:                      // All else is a mistake
  3032     typerr(t);
  3034   case MetadataPtr:
  3035   case KlassPtr:
  3036   case RawPtr: return TypePtr::BOTTOM;
  3038   case AryPtr: {                // All arrays inherit from Object class
  3039     const TypeAryPtr *tp = t->is_aryptr();
  3040     int offset = meet_offset(tp->offset());
  3041     PTR ptr = meet_ptr(tp->ptr());
  3042     int instance_id = meet_instance_id(tp->instance_id());
  3043     switch (ptr) {
  3044     case TopPTR:
  3045     case AnyNull:                // Fall 'down' to dual of object klass
  3046       if (klass()->equals(ciEnv::current()->Object_klass())) {
  3047         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
  3048       } else {
  3049         // cannot subclass, so the meet has to fall badly below the centerline
  3050         ptr = NotNull;
  3051         instance_id = InstanceBot;
  3052         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id);
  3054     case Constant:
  3055     case NotNull:
  3056     case BotPTR:                // Fall down to object klass
  3057       // LCA is object_klass, but if we subclass from the top we can do better
  3058       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
  3059         // If 'this' (InstPtr) is above the centerline and it is Object class
  3060         // then we can subclass in the Java class hierarchy.
  3061         if (klass()->equals(ciEnv::current()->Object_klass())) {
  3062           // that is, tp's array type is a subtype of my klass
  3063           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
  3064                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
  3067       // The other case cannot happen, since I cannot be a subtype of an array.
  3068       // The meet falls down to Object class below centerline.
  3069       if( ptr == Constant )
  3070          ptr = NotNull;
  3071       instance_id = InstanceBot;
  3072       return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id );
  3073     default: typerr(t);
  3077   case OopPtr: {                // Meeting to OopPtrs
  3078     // Found a OopPtr type vs self-InstPtr type
  3079     const TypeOopPtr *tp = t->is_oopptr();
  3080     int offset = meet_offset(tp->offset());
  3081     PTR ptr = meet_ptr(tp->ptr());
  3082     switch (tp->ptr()) {
  3083     case TopPTR:
  3084     case AnyNull: {
  3085       int instance_id = meet_instance_id(InstanceTop);
  3086       return make(ptr, klass(), klass_is_exact(),
  3087                   (ptr == Constant ? const_oop() : NULL), offset, instance_id);
  3089     case NotNull:
  3090     case BotPTR: {
  3091       int instance_id = meet_instance_id(tp->instance_id());
  3092       return TypeOopPtr::make(ptr, offset, instance_id);
  3094     default: typerr(t);
  3098   case AnyPtr: {                // Meeting to AnyPtrs
  3099     // Found an AnyPtr type vs self-InstPtr type
  3100     const TypePtr *tp = t->is_ptr();
  3101     int offset = meet_offset(tp->offset());
  3102     PTR ptr = meet_ptr(tp->ptr());
  3103     switch (tp->ptr()) {
  3104     case Null:
  3105       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
  3106       // else fall through to AnyNull
  3107     case TopPTR:
  3108     case AnyNull: {
  3109       int instance_id = meet_instance_id(InstanceTop);
  3110       return make( ptr, klass(), klass_is_exact(),
  3111                    (ptr == Constant ? const_oop() : NULL), offset, instance_id);
  3113     case NotNull:
  3114     case BotPTR:
  3115       return TypePtr::make( AnyPtr, ptr, offset );
  3116     default: typerr(t);
  3120   /*
  3121                  A-top         }
  3122                /   |   \       }  Tops
  3123            B-top A-any C-top   }
  3124               | /  |  \ |      }  Any-nulls
  3125            B-any   |   C-any   }
  3126               |    |    |
  3127            B-con A-con C-con   } constants; not comparable across classes
  3128               |    |    |
  3129            B-not   |   C-not   }
  3130               | \  |  / |      }  not-nulls
  3131            B-bot A-not C-bot   }
  3132                \   |   /       }  Bottoms
  3133                  A-bot         }
  3134   */
  3136   case InstPtr: {                // Meeting 2 Oops?
  3137     // Found an InstPtr sub-type vs self-InstPtr type
  3138     const TypeInstPtr *tinst = t->is_instptr();
  3139     int off = meet_offset( tinst->offset() );
  3140     PTR ptr = meet_ptr( tinst->ptr() );
  3141     int instance_id = meet_instance_id(tinst->instance_id());
  3143     // Check for easy case; klasses are equal (and perhaps not loaded!)
  3144     // If we have constants, then we created oops so classes are loaded
  3145     // and we can handle the constants further down.  This case handles
  3146     // both-not-loaded or both-loaded classes
  3147     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
  3148       return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
  3151     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  3152     ciKlass* tinst_klass = tinst->klass();
  3153     ciKlass* this_klass  = this->klass();
  3154     bool tinst_xk = tinst->klass_is_exact();
  3155     bool this_xk  = this->klass_is_exact();
  3156     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
  3157       // One of these classes has not been loaded
  3158       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
  3159 #ifndef PRODUCT
  3160       if( PrintOpto && Verbose ) {
  3161         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
  3162         tty->print("  this == "); this->dump(); tty->cr();
  3163         tty->print(" tinst == "); tinst->dump(); tty->cr();
  3165 #endif
  3166       return unloaded_meet;
  3169     // Handle mixing oops and interfaces first.
  3170     if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
  3171       ciKlass *tmp = tinst_klass; // Swap interface around
  3172       tinst_klass = this_klass;
  3173       this_klass = tmp;
  3174       bool tmp2 = tinst_xk;
  3175       tinst_xk = this_xk;
  3176       this_xk = tmp2;
  3178     if (tinst_klass->is_interface() &&
  3179         !(this_klass->is_interface() ||
  3180           // Treat java/lang/Object as an honorary interface,
  3181           // because we need a bottom for the interface hierarchy.
  3182           this_klass == ciEnv::current()->Object_klass())) {
  3183       // Oop meets interface!
  3185       // See if the oop subtypes (implements) interface.
  3186       ciKlass *k;
  3187       bool xk;
  3188       if( this_klass->is_subtype_of( tinst_klass ) ) {
  3189         // Oop indeed subtypes.  Now keep oop or interface depending
  3190         // on whether we are both above the centerline or either is
  3191         // below the centerline.  If we are on the centerline
  3192         // (e.g., Constant vs. AnyNull interface), use the constant.
  3193         k  = below_centerline(ptr) ? tinst_klass : this_klass;
  3194         // If we are keeping this_klass, keep its exactness too.
  3195         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
  3196       } else {                  // Does not implement, fall to Object
  3197         // Oop does not implement interface, so mixing falls to Object
  3198         // just like the verifier does (if both are above the
  3199         // centerline fall to interface)
  3200         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
  3201         xk = above_centerline(ptr) ? tinst_xk : false;
  3202         // Watch out for Constant vs. AnyNull interface.
  3203         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
  3204         instance_id = InstanceBot;
  3206       ciObject* o = NULL;  // the Constant value, if any
  3207       if (ptr == Constant) {
  3208         // Find out which constant.
  3209         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
  3211       return make( ptr, k, xk, o, off, instance_id );
  3214     // Either oop vs oop or interface vs interface or interface vs Object
  3216     // !!! Here's how the symmetry requirement breaks down into invariants:
  3217     // If we split one up & one down AND they subtype, take the down man.
  3218     // If we split one up & one down AND they do NOT subtype, "fall hard".
  3219     // If both are up and they subtype, take the subtype class.
  3220     // If both are up and they do NOT subtype, "fall hard".
  3221     // If both are down and they subtype, take the supertype class.
  3222     // If both are down and they do NOT subtype, "fall hard".
  3223     // Constants treated as down.
  3225     // Now, reorder the above list; observe that both-down+subtype is also
  3226     // "fall hard"; "fall hard" becomes the default case:
  3227     // If we split one up & one down AND they subtype, take the down man.
  3228     // If both are up and they subtype, take the subtype class.
  3230     // If both are down and they subtype, "fall hard".
  3231     // If both are down and they do NOT subtype, "fall hard".
  3232     // If both are up and they do NOT subtype, "fall hard".
  3233     // If we split one up & one down AND they do NOT subtype, "fall hard".
  3235     // If a proper subtype is exact, and we return it, we return it exactly.
  3236     // If a proper supertype is exact, there can be no subtyping relationship!
  3237     // If both types are equal to the subtype, exactness is and-ed below the
  3238     // centerline and or-ed above it.  (N.B. Constants are always exact.)
  3240     // Check for subtyping:
  3241     ciKlass *subtype = NULL;
  3242     bool subtype_exact = false;
  3243     if( tinst_klass->equals(this_klass) ) {
  3244       subtype = this_klass;
  3245       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
  3246     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
  3247       subtype = this_klass;     // Pick subtyping class
  3248       subtype_exact = this_xk;
  3249     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
  3250       subtype = tinst_klass;    // Pick subtyping class
  3251       subtype_exact = tinst_xk;
  3254     if( subtype ) {
  3255       if( above_centerline(ptr) ) { // both are up?
  3256         this_klass = tinst_klass = subtype;
  3257         this_xk = tinst_xk = subtype_exact;
  3258       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
  3259         this_klass = tinst_klass; // tinst is down; keep down man
  3260         this_xk = tinst_xk;
  3261       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
  3262         tinst_klass = this_klass; // this is down; keep down man
  3263         tinst_xk = this_xk;
  3264       } else {
  3265         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
  3269     // Check for classes now being equal
  3270     if (tinst_klass->equals(this_klass)) {
  3271       // If the klasses are equal, the constants may still differ.  Fall to
  3272       // NotNull if they do (neither constant is NULL; that is a special case
  3273       // handled elsewhere).
  3274       ciObject* o = NULL;             // Assume not constant when done
  3275       ciObject* this_oop  = const_oop();
  3276       ciObject* tinst_oop = tinst->const_oop();
  3277       if( ptr == Constant ) {
  3278         if (this_oop != NULL && tinst_oop != NULL &&
  3279             this_oop->equals(tinst_oop) )
  3280           o = this_oop;
  3281         else if (above_centerline(this ->_ptr))
  3282           o = tinst_oop;
  3283         else if (above_centerline(tinst ->_ptr))
  3284           o = this_oop;
  3285         else
  3286           ptr = NotNull;
  3288       return make( ptr, this_klass, this_xk, o, off, instance_id );
  3289     } // Else classes are not equal
  3291     // Since klasses are different, we require a LCA in the Java
  3292     // class hierarchy - which means we have to fall to at least NotNull.
  3293     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  3294       ptr = NotNull;
  3295     instance_id = InstanceBot;
  3297     // Now we find the LCA of Java classes
  3298     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
  3299     return make( ptr, k, false, NULL, off, instance_id );
  3300   } // End of case InstPtr
  3302   } // End of switch
  3303   return this;                  // Return the double constant
  3307 //------------------------java_mirror_type--------------------------------------
  3308 ciType* TypeInstPtr::java_mirror_type() const {
  3309   // must be a singleton type
  3310   if( const_oop() == NULL )  return NULL;
  3312   // must be of type java.lang.Class
  3313   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
  3315   return const_oop()->as_instance()->java_mirror_type();
  3319 //------------------------------xdual------------------------------------------
  3320 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
  3321 // inheritance mechanism.
  3322 const Type *TypeInstPtr::xdual() const {
  3323   return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
  3326 //------------------------------eq---------------------------------------------
  3327 // Structural equality check for Type representations
  3328 bool TypeInstPtr::eq( const Type *t ) const {
  3329   const TypeInstPtr *p = t->is_instptr();
  3330   return
  3331     klass()->equals(p->klass()) &&
  3332     TypeOopPtr::eq(p);          // Check sub-type stuff
  3335 //------------------------------hash-------------------------------------------
  3336 // Type-specific hashing function.
  3337 int TypeInstPtr::hash(void) const {
  3338   int hash = klass()->hash() + TypeOopPtr::hash();
  3339   return hash;
  3342 //------------------------------dump2------------------------------------------
  3343 // Dump oop Type
  3344 #ifndef PRODUCT
  3345 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  3346   // Print the name of the klass.
  3347   klass()->print_name_on(st);
  3349   switch( _ptr ) {
  3350   case Constant:
  3351     // TO DO: Make CI print the hex address of the underlying oop.
  3352     if (WizardMode || Verbose) {
  3353       const_oop()->print_oop(st);
  3355   case BotPTR:
  3356     if (!WizardMode && !Verbose) {
  3357       if( _klass_is_exact ) st->print(":exact");
  3358       break;
  3360   case TopPTR:
  3361   case AnyNull:
  3362   case NotNull:
  3363     st->print(":%s", ptr_msg[_ptr]);
  3364     if( _klass_is_exact ) st->print(":exact");
  3365     break;
  3368   if( _offset ) {               // Dump offset, if any
  3369     if( _offset == OffsetBot )      st->print("+any");
  3370     else if( _offset == OffsetTop ) st->print("+unknown");
  3371     else st->print("+%d", _offset);
  3374   st->print(" *");
  3375   if (_instance_id == InstanceTop)
  3376     st->print(",iid=top");
  3377   else if (_instance_id != InstanceBot)
  3378     st->print(",iid=%d",_instance_id);
  3380 #endif
  3382 //------------------------------add_offset-------------------------------------
  3383 const TypePtr *TypeInstPtr::add_offset( intptr_t offset ) const {
  3384   return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
  3387 //=============================================================================
  3388 // Convenience common pre-built types.
  3389 const TypeAryPtr *TypeAryPtr::RANGE;
  3390 const TypeAryPtr *TypeAryPtr::OOPS;
  3391 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
  3392 const TypeAryPtr *TypeAryPtr::BYTES;
  3393 const TypeAryPtr *TypeAryPtr::SHORTS;
  3394 const TypeAryPtr *TypeAryPtr::CHARS;
  3395 const TypeAryPtr *TypeAryPtr::INTS;
  3396 const TypeAryPtr *TypeAryPtr::LONGS;
  3397 const TypeAryPtr *TypeAryPtr::FLOATS;
  3398 const TypeAryPtr *TypeAryPtr::DOUBLES;
  3400 //------------------------------make-------------------------------------------
  3401 const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
  3402   assert(!(k == NULL && ary->_elem->isa_int()),
  3403          "integral arrays must be pre-equipped with a class");
  3404   if (!xk)  xk = ary->ary_must_be_exact();
  3405   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3406   if (!UseExactTypes)  xk = (ptr == Constant);
  3407   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false))->hashcons();
  3410 //------------------------------make-------------------------------------------
  3411 const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, bool is_autobox_cache) {
  3412   assert(!(k == NULL && ary->_elem->isa_int()),
  3413          "integral arrays must be pre-equipped with a class");
  3414   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
  3415   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
  3416   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3417   if (!UseExactTypes)  xk = (ptr == Constant);
  3418   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache))->hashcons();
  3421 //------------------------------cast_to_ptr_type-------------------------------
  3422 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
  3423   if( ptr == _ptr ) return this;
  3424   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id);
  3428 //-----------------------------cast_to_exactness-------------------------------
  3429 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
  3430   if( klass_is_exact == _klass_is_exact ) return this;
  3431   if (!UseExactTypes)  return this;
  3432   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
  3433   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
  3436 //-----------------------------cast_to_instance_id----------------------------
  3437 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
  3438   if( instance_id == _instance_id ) return this;
  3439   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id);
  3442 //-----------------------------narrow_size_type-------------------------------
  3443 // Local cache for arrayOopDesc::max_array_length(etype),
  3444 // which is kind of slow (and cached elsewhere by other users).
  3445 static jint max_array_length_cache[T_CONFLICT+1];
  3446 static jint max_array_length(BasicType etype) {
  3447   jint& cache = max_array_length_cache[etype];
  3448   jint res = cache;
  3449   if (res == 0) {
  3450     switch (etype) {
  3451     case T_NARROWOOP:
  3452       etype = T_OBJECT;
  3453       break;
  3454     case T_NARROWKLASS:
  3455     case T_CONFLICT:
  3456     case T_ILLEGAL:
  3457     case T_VOID:
  3458       etype = T_BYTE;           // will produce conservatively high value
  3460     cache = res = arrayOopDesc::max_array_length(etype);
  3462   return res;
  3465 // Narrow the given size type to the index range for the given array base type.
  3466 // Return NULL if the resulting int type becomes empty.
  3467 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
  3468   jint hi = size->_hi;
  3469   jint lo = size->_lo;
  3470   jint min_lo = 0;
  3471   jint max_hi = max_array_length(elem()->basic_type());
  3472   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
  3473   bool chg = false;
  3474   if (lo < min_lo) {
  3475     lo = min_lo;
  3476     if (size->is_con()) {
  3477       hi = lo;
  3479     chg = true;
  3481   if (hi > max_hi) {
  3482     hi = max_hi;
  3483     if (size->is_con()) {
  3484       lo = hi;
  3486     chg = true;
  3488   // Negative length arrays will produce weird intermediate dead fast-path code
  3489   if (lo > hi)
  3490     return TypeInt::ZERO;
  3491   if (!chg)
  3492     return size;
  3493   return TypeInt::make(lo, hi, Type::WidenMin);
  3496 //-------------------------------cast_to_size----------------------------------
  3497 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
  3498   assert(new_size != NULL, "");
  3499   new_size = narrow_size_type(new_size);
  3500   if (new_size == size())  return this;
  3501   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
  3502   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
  3506 //------------------------------cast_to_stable---------------------------------
  3507 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
  3508   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
  3509     return this;
  3511   const Type* elem = this->elem();
  3512   const TypePtr* elem_ptr = elem->make_ptr();
  3514   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
  3515     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
  3516     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
  3519   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
  3521   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
  3524 //-----------------------------stable_dimension--------------------------------
  3525 int TypeAryPtr::stable_dimension() const {
  3526   if (!is_stable())  return 0;
  3527   int dim = 1;
  3528   const TypePtr* elem_ptr = elem()->make_ptr();
  3529   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
  3530     dim += elem_ptr->is_aryptr()->stable_dimension();
  3531   return dim;
  3534 //------------------------------eq---------------------------------------------
  3535 // Structural equality check for Type representations
  3536 bool TypeAryPtr::eq( const Type *t ) const {
  3537   const TypeAryPtr *p = t->is_aryptr();
  3538   return
  3539     _ary == p->_ary &&  // Check array
  3540     TypeOopPtr::eq(p);  // Check sub-parts
  3543 //------------------------------hash-------------------------------------------
  3544 // Type-specific hashing function.
  3545 int TypeAryPtr::hash(void) const {
  3546   return (intptr_t)_ary + TypeOopPtr::hash();
  3549 //------------------------------meet-------------------------------------------
  3550 // Compute the MEET of two types.  It returns a new Type object.
  3551 const Type *TypeAryPtr::xmeet( const Type *t ) const {
  3552   // Perform a fast test for common case; meeting the same types together.
  3553   if( this == t ) return this;  // Meeting same type-rep?
  3554   // Current "this->_base" is Pointer
  3555   switch (t->base()) {          // switch on original type
  3557   // Mixing ints & oops happens when javac reuses local variables
  3558   case Int:
  3559   case Long:
  3560   case FloatTop:
  3561   case FloatCon:
  3562   case FloatBot:
  3563   case DoubleTop:
  3564   case DoubleCon:
  3565   case DoubleBot:
  3566   case NarrowOop:
  3567   case NarrowKlass:
  3568   case Bottom:                  // Ye Olde Default
  3569     return Type::BOTTOM;
  3570   case Top:
  3571     return this;
  3573   default:                      // All else is a mistake
  3574     typerr(t);
  3576   case OopPtr: {                // Meeting to OopPtrs
  3577     // Found a OopPtr type vs self-AryPtr type
  3578     const TypeOopPtr *tp = t->is_oopptr();
  3579     int offset = meet_offset(tp->offset());
  3580     PTR ptr = meet_ptr(tp->ptr());
  3581     switch (tp->ptr()) {
  3582     case TopPTR:
  3583     case AnyNull: {
  3584       int instance_id = meet_instance_id(InstanceTop);
  3585       return make(ptr, (ptr == Constant ? const_oop() : NULL),
  3586                   _ary, _klass, _klass_is_exact, offset, instance_id);
  3588     case BotPTR:
  3589     case NotNull: {
  3590       int instance_id = meet_instance_id(tp->instance_id());
  3591       return TypeOopPtr::make(ptr, offset, instance_id);
  3593     default: ShouldNotReachHere();
  3597   case AnyPtr: {                // Meeting two AnyPtrs
  3598     // Found an AnyPtr type vs self-AryPtr type
  3599     const TypePtr *tp = t->is_ptr();
  3600     int offset = meet_offset(tp->offset());
  3601     PTR ptr = meet_ptr(tp->ptr());
  3602     switch (tp->ptr()) {
  3603     case TopPTR:
  3604       return this;
  3605     case BotPTR:
  3606     case NotNull:
  3607       return TypePtr::make(AnyPtr, ptr, offset);
  3608     case Null:
  3609       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
  3610       // else fall through to AnyNull
  3611     case AnyNull: {
  3612       int instance_id = meet_instance_id(InstanceTop);
  3613       return make( ptr, (ptr == Constant ? const_oop() : NULL),
  3614                   _ary, _klass, _klass_is_exact, offset, instance_id);
  3616     default: ShouldNotReachHere();
  3620   case MetadataPtr:
  3621   case KlassPtr:
  3622   case RawPtr: return TypePtr::BOTTOM;
  3624   case AryPtr: {                // Meeting 2 references?
  3625     const TypeAryPtr *tap = t->is_aryptr();
  3626     int off = meet_offset(tap->offset());
  3627     const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
  3628     PTR ptr = meet_ptr(tap->ptr());
  3629     int instance_id = meet_instance_id(tap->instance_id());
  3630     ciKlass* lazy_klass = NULL;
  3631     if (tary->_elem->isa_int()) {
  3632       // Integral array element types have irrelevant lattice relations.
  3633       // It is the klass that determines array layout, not the element type.
  3634       if (_klass == NULL)
  3635         lazy_klass = tap->_klass;
  3636       else if (tap->_klass == NULL || tap->_klass == _klass) {
  3637         lazy_klass = _klass;
  3638       } else {
  3639         // Something like byte[int+] meets char[int+].
  3640         // This must fall to bottom, not (int[-128..65535])[int+].
  3641         instance_id = InstanceBot;
  3642         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
  3644     } else // Non integral arrays.
  3645     // Must fall to bottom if exact klasses in upper lattice
  3646     // are not equal or super klass is exact.
  3647     if ( above_centerline(ptr) && klass() != tap->klass() &&
  3648          // meet with top[] and bottom[] are processed further down:
  3649          tap ->_klass != NULL  && this->_klass != NULL   &&
  3650          // both are exact and not equal:
  3651         ((tap ->_klass_is_exact && this->_klass_is_exact) ||
  3652          // 'tap'  is exact and super or unrelated:
  3653          (tap ->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
  3654          // 'this' is exact and super or unrelated:
  3655          (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
  3656       tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
  3657       return make( NotNull, NULL, tary, lazy_klass, false, off, InstanceBot );
  3660     bool xk = false;
  3661     switch (tap->ptr()) {
  3662     case AnyNull:
  3663     case TopPTR:
  3664       // Compute new klass on demand, do not use tap->_klass
  3665       xk = (tap->_klass_is_exact | this->_klass_is_exact);
  3666       return make( ptr, const_oop(), tary, lazy_klass, xk, off, instance_id );
  3667     case Constant: {
  3668       ciObject* o = const_oop();
  3669       if( _ptr == Constant ) {
  3670         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
  3671           xk = (klass() == tap->klass());
  3672           ptr = NotNull;
  3673           o = NULL;
  3674           instance_id = InstanceBot;
  3675         } else {
  3676           xk = true;
  3678       } else if( above_centerline(_ptr) ) {
  3679         o = tap->const_oop();
  3680         xk = true;
  3681       } else {
  3682         // Only precise for identical arrays
  3683         xk = this->_klass_is_exact && (klass() == tap->klass());
  3685       return TypeAryPtr::make( ptr, o, tary, lazy_klass, xk, off, instance_id );
  3687     case NotNull:
  3688     case BotPTR:
  3689       // Compute new klass on demand, do not use tap->_klass
  3690       if (above_centerline(this->_ptr))
  3691             xk = tap->_klass_is_exact;
  3692       else if (above_centerline(tap->_ptr))
  3693             xk = this->_klass_is_exact;
  3694       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
  3695               (klass() == tap->klass()); // Only precise for identical arrays
  3696       return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, instance_id );
  3697     default: ShouldNotReachHere();
  3701   // All arrays inherit from Object class
  3702   case InstPtr: {
  3703     const TypeInstPtr *tp = t->is_instptr();
  3704     int offset = meet_offset(tp->offset());
  3705     PTR ptr = meet_ptr(tp->ptr());
  3706     int instance_id = meet_instance_id(tp->instance_id());
  3707     switch (ptr) {
  3708     case TopPTR:
  3709     case AnyNull:                // Fall 'down' to dual of object klass
  3710       if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
  3711         return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
  3712       } else {
  3713         // cannot subclass, so the meet has to fall badly below the centerline
  3714         ptr = NotNull;
  3715         instance_id = InstanceBot;
  3716         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
  3718     case Constant:
  3719     case NotNull:
  3720     case BotPTR:                // Fall down to object klass
  3721       // LCA is object_klass, but if we subclass from the top we can do better
  3722       if (above_centerline(tp->ptr())) {
  3723         // If 'tp'  is above the centerline and it is Object class
  3724         // then we can subclass in the Java class hierarchy.
  3725         if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
  3726           // that is, my array type is a subtype of 'tp' klass
  3727           return make( ptr, (ptr == Constant ? const_oop() : NULL),
  3728                        _ary, _klass, _klass_is_exact, offset, instance_id );
  3731       // The other case cannot happen, since t cannot be a subtype of an array.
  3732       // The meet falls down to Object class below centerline.
  3733       if( ptr == Constant )
  3734          ptr = NotNull;
  3735       instance_id = InstanceBot;
  3736       return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
  3737     default: typerr(t);
  3741   return this;                  // Lint noise
  3744 //------------------------------xdual------------------------------------------
  3745 // Dual: compute field-by-field dual
  3746 const Type *TypeAryPtr::xdual() const {
  3747   return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache() );
  3750 //----------------------interface_vs_oop---------------------------------------
  3751 #ifdef ASSERT
  3752 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
  3753   const TypeAryPtr* t_aryptr = t->isa_aryptr();
  3754   if (t_aryptr) {
  3755     return _ary->interface_vs_oop(t_aryptr->_ary);
  3757   return false;
  3759 #endif
  3761 //------------------------------dump2------------------------------------------
  3762 #ifndef PRODUCT
  3763 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  3764   _ary->dump2(d,depth,st);
  3765   switch( _ptr ) {
  3766   case Constant:
  3767     const_oop()->print(st);
  3768     break;
  3769   case BotPTR:
  3770     if (!WizardMode && !Verbose) {
  3771       if( _klass_is_exact ) st->print(":exact");
  3772       break;
  3774   case TopPTR:
  3775   case AnyNull:
  3776   case NotNull:
  3777     st->print(":%s", ptr_msg[_ptr]);
  3778     if( _klass_is_exact ) st->print(":exact");
  3779     break;
  3782   if( _offset != 0 ) {
  3783     int header_size = objArrayOopDesc::header_size() * wordSize;
  3784     if( _offset == OffsetTop )       st->print("+undefined");
  3785     else if( _offset == OffsetBot )  st->print("+any");
  3786     else if( _offset < header_size ) st->print("+%d", _offset);
  3787     else {
  3788       BasicType basic_elem_type = elem()->basic_type();
  3789       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  3790       int elem_size = type2aelembytes(basic_elem_type);
  3791       st->print("[%d]", (_offset - array_base)/elem_size);
  3794   st->print(" *");
  3795   if (_instance_id == InstanceTop)
  3796     st->print(",iid=top");
  3797   else if (_instance_id != InstanceBot)
  3798     st->print(",iid=%d",_instance_id);
  3800 #endif
  3802 bool TypeAryPtr::empty(void) const {
  3803   if (_ary->empty())       return true;
  3804   return TypeOopPtr::empty();
  3807 //------------------------------add_offset-------------------------------------
  3808 const TypePtr *TypeAryPtr::add_offset( intptr_t offset ) const {
  3809   return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
  3813 //=============================================================================
  3815 //------------------------------hash-------------------------------------------
  3816 // Type-specific hashing function.
  3817 int TypeNarrowPtr::hash(void) const {
  3818   return _ptrtype->hash() + 7;
  3821 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
  3822   return _ptrtype->singleton();
  3825 bool TypeNarrowPtr::empty(void) const {
  3826   return _ptrtype->empty();
  3829 intptr_t TypeNarrowPtr::get_con() const {
  3830   return _ptrtype->get_con();
  3833 bool TypeNarrowPtr::eq( const Type *t ) const {
  3834   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
  3835   if (tc != NULL) {
  3836     if (_ptrtype->base() != tc->_ptrtype->base()) {
  3837       return false;
  3839     return tc->_ptrtype->eq(_ptrtype);
  3841   return false;
  3844 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
  3845   const TypePtr* odual = _ptrtype->dual()->is_ptr();
  3846   return make_same_narrowptr(odual);
  3850 const Type *TypeNarrowPtr::filter( const Type *kills ) const {
  3851   if (isa_same_narrowptr(kills)) {
  3852     const Type* ft =_ptrtype->filter(is_same_narrowptr(kills)->_ptrtype);
  3853     if (ft->empty())
  3854       return Type::TOP;           // Canonical empty value
  3855     if (ft->isa_ptr()) {
  3856       return make_hash_same_narrowptr(ft->isa_ptr());
  3858     return ft;
  3859   } else if (kills->isa_ptr()) {
  3860     const Type* ft = _ptrtype->join(kills);
  3861     if (ft->empty())
  3862       return Type::TOP;           // Canonical empty value
  3863     return ft;
  3864   } else {
  3865     return Type::TOP;
  3869 //------------------------------xmeet------------------------------------------
  3870 // Compute the MEET of two types.  It returns a new Type object.
  3871 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
  3872   // Perform a fast test for common case; meeting the same types together.
  3873   if( this == t ) return this;  // Meeting same type-rep?
  3875   if (t->base() == base()) {
  3876     const Type* result = _ptrtype->xmeet(t->make_ptr());
  3877     if (result->isa_ptr()) {
  3878       return make_hash_same_narrowptr(result->is_ptr());
  3880     return result;
  3883   // Current "this->_base" is NarrowKlass or NarrowOop
  3884   switch (t->base()) {          // switch on original type
  3886   case Int:                     // Mixing ints & oops happens when javac
  3887   case Long:                    // reuses local variables
  3888   case FloatTop:
  3889   case FloatCon:
  3890   case FloatBot:
  3891   case DoubleTop:
  3892   case DoubleCon:
  3893   case DoubleBot:
  3894   case AnyPtr:
  3895   case RawPtr:
  3896   case OopPtr:
  3897   case InstPtr:
  3898   case AryPtr:
  3899   case MetadataPtr:
  3900   case KlassPtr:
  3901   case NarrowOop:
  3902   case NarrowKlass:
  3904   case Bottom:                  // Ye Olde Default
  3905     return Type::BOTTOM;
  3906   case Top:
  3907     return this;
  3909   default:                      // All else is a mistake
  3910     typerr(t);
  3912   } // End of switch
  3914   return this;
  3917 #ifndef PRODUCT
  3918 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
  3919   _ptrtype->dump2(d, depth, st);
  3921 #endif
  3923 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
  3924 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
  3927 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
  3928   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
  3932 #ifndef PRODUCT
  3933 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
  3934   st->print("narrowoop: ");
  3935   TypeNarrowPtr::dump2(d, depth, st);
  3937 #endif
  3939 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
  3941 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
  3942   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
  3945 #ifndef PRODUCT
  3946 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
  3947   st->print("narrowklass: ");
  3948   TypeNarrowPtr::dump2(d, depth, st);
  3950 #endif
  3953 //------------------------------eq---------------------------------------------
  3954 // Structural equality check for Type representations
  3955 bool TypeMetadataPtr::eq( const Type *t ) const {
  3956   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
  3957   ciMetadata* one = metadata();
  3958   ciMetadata* two = a->metadata();
  3959   if (one == NULL || two == NULL) {
  3960     return (one == two) && TypePtr::eq(t);
  3961   } else {
  3962     return one->equals(two) && TypePtr::eq(t);
  3966 //------------------------------hash-------------------------------------------
  3967 // Type-specific hashing function.
  3968 int TypeMetadataPtr::hash(void) const {
  3969   return
  3970     (metadata() ? metadata()->hash() : 0) +
  3971     TypePtr::hash();
  3974 //------------------------------singleton--------------------------------------
  3975 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  3976 // constants
  3977 bool TypeMetadataPtr::singleton(void) const {
  3978   // detune optimizer to not generate constant metadta + constant offset as a constant!
  3979   // TopPTR, Null, AnyNull, Constant are all singletons
  3980   return (_offset == 0) && !below_centerline(_ptr);
  3983 //------------------------------add_offset-------------------------------------
  3984 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
  3985   return make( _ptr, _metadata, xadd_offset(offset));
  3988 //-----------------------------filter------------------------------------------
  3989 // Do not allow interface-vs.-noninterface joins to collapse to top.
  3990 const Type *TypeMetadataPtr::filter( const Type *kills ) const {
  3991   const TypeMetadataPtr* ft = join(kills)->isa_metadataptr();
  3992   if (ft == NULL || ft->empty())
  3993     return Type::TOP;           // Canonical empty value
  3994   return ft;
  3997  //------------------------------get_con----------------------------------------
  3998 intptr_t TypeMetadataPtr::get_con() const {
  3999   assert( _ptr == Null || _ptr == Constant, "" );
  4000   assert( _offset >= 0, "" );
  4002   if (_offset != 0) {
  4003     // After being ported to the compiler interface, the compiler no longer
  4004     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  4005     // to a handle at compile time.  This handle is embedded in the generated
  4006     // code and dereferenced at the time the nmethod is made.  Until that time,
  4007     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  4008     // have access to the addresses!).  This does not seem to currently happen,
  4009     // but this assertion here is to help prevent its occurence.
  4010     tty->print_cr("Found oop constant with non-zero offset");
  4011     ShouldNotReachHere();
  4014   return (intptr_t)metadata()->constant_encoding();
  4017 //------------------------------cast_to_ptr_type-------------------------------
  4018 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
  4019   if( ptr == _ptr ) return this;
  4020   return make(ptr, metadata(), _offset);
  4023 //------------------------------meet-------------------------------------------
  4024 // Compute the MEET of two types.  It returns a new Type object.
  4025 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
  4026   // Perform a fast test for common case; meeting the same types together.
  4027   if( this == t ) return this;  // Meeting same type-rep?
  4029   // Current "this->_base" is OopPtr
  4030   switch (t->base()) {          // switch on original type
  4032   case Int:                     // Mixing ints & oops happens when javac
  4033   case Long:                    // reuses local variables
  4034   case FloatTop:
  4035   case FloatCon:
  4036   case FloatBot:
  4037   case DoubleTop:
  4038   case DoubleCon:
  4039   case DoubleBot:
  4040   case NarrowOop:
  4041   case NarrowKlass:
  4042   case Bottom:                  // Ye Olde Default
  4043     return Type::BOTTOM;
  4044   case Top:
  4045     return this;
  4047   default:                      // All else is a mistake
  4048     typerr(t);
  4050   case AnyPtr: {
  4051     // Found an AnyPtr type vs self-OopPtr type
  4052     const TypePtr *tp = t->is_ptr();
  4053     int offset = meet_offset(tp->offset());
  4054     PTR ptr = meet_ptr(tp->ptr());
  4055     switch (tp->ptr()) {
  4056     case Null:
  4057       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
  4058       // else fall through:
  4059     case TopPTR:
  4060     case AnyNull: {
  4061       return make(ptr, NULL, offset);
  4063     case BotPTR:
  4064     case NotNull:
  4065       return TypePtr::make(AnyPtr, ptr, offset);
  4066     default: typerr(t);
  4070   case RawPtr:
  4071   case KlassPtr:
  4072   case OopPtr:
  4073   case InstPtr:
  4074   case AryPtr:
  4075     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  4077   case MetadataPtr: {
  4078     const TypeMetadataPtr *tp = t->is_metadataptr();
  4079     int offset = meet_offset(tp->offset());
  4080     PTR tptr = tp->ptr();
  4081     PTR ptr = meet_ptr(tptr);
  4082     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
  4083     if (tptr == TopPTR || _ptr == TopPTR ||
  4084         metadata()->equals(tp->metadata())) {
  4085       return make(ptr, md, offset);
  4087     // metadata is different
  4088     if( ptr == Constant ) {  // Cannot be equal constants, so...
  4089       if( tptr == Constant && _ptr != Constant)  return t;
  4090       if( _ptr == Constant && tptr != Constant)  return this;
  4091       ptr = NotNull;            // Fall down in lattice
  4093     return make(ptr, NULL, offset);
  4094     break;
  4096   } // End of switch
  4097   return this;                  // Return the double constant
  4101 //------------------------------xdual------------------------------------------
  4102 // Dual of a pure metadata pointer.
  4103 const Type *TypeMetadataPtr::xdual() const {
  4104   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
  4107 //------------------------------dump2------------------------------------------
  4108 #ifndef PRODUCT
  4109 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  4110   st->print("metadataptr:%s", ptr_msg[_ptr]);
  4111   if( metadata() ) st->print(INTPTR_FORMAT, metadata());
  4112   switch( _offset ) {
  4113   case OffsetTop: st->print("+top"); break;
  4114   case OffsetBot: st->print("+any"); break;
  4115   case         0: break;
  4116   default:        st->print("+%d",_offset); break;
  4119 #endif
  4122 //=============================================================================
  4123 // Convenience common pre-built type.
  4124 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
  4126 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
  4127   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
  4130 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
  4131   return make(Constant, m, 0);
  4133 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
  4134   return make(Constant, m, 0);
  4137 //------------------------------make-------------------------------------------
  4138 // Create a meta data constant
  4139 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
  4140   assert(m == NULL || !m->is_klass(), "wrong type");
  4141   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
  4145 //=============================================================================
  4146 // Convenience common pre-built types.
  4148 // Not-null object klass or below
  4149 const TypeKlassPtr *TypeKlassPtr::OBJECT;
  4150 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
  4152 //------------------------------TypeKlassPtr-----------------------------------
  4153 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
  4154   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
  4157 //------------------------------make-------------------------------------------
  4158 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
  4159 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
  4160   assert( k != NULL, "Expect a non-NULL klass");
  4161   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
  4162   TypeKlassPtr *r =
  4163     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
  4165   return r;
  4168 //------------------------------eq---------------------------------------------
  4169 // Structural equality check for Type representations
  4170 bool TypeKlassPtr::eq( const Type *t ) const {
  4171   const TypeKlassPtr *p = t->is_klassptr();
  4172   return
  4173     klass()->equals(p->klass()) &&
  4174     TypePtr::eq(p);
  4177 //------------------------------hash-------------------------------------------
  4178 // Type-specific hashing function.
  4179 int TypeKlassPtr::hash(void) const {
  4180   return klass()->hash() + TypePtr::hash();
  4183 //------------------------------singleton--------------------------------------
  4184 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  4185 // constants
  4186 bool TypeKlassPtr::singleton(void) const {
  4187   // detune optimizer to not generate constant klass + constant offset as a constant!
  4188   // TopPTR, Null, AnyNull, Constant are all singletons
  4189   return (_offset == 0) && !below_centerline(_ptr);
  4192 //----------------------compute_klass------------------------------------------
  4193 // Compute the defining klass for this class
  4194 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
  4195   // Compute _klass based on element type.
  4196   ciKlass* k_ary = NULL;
  4197   const TypeInstPtr *tinst;
  4198   const TypeAryPtr *tary;
  4199   const Type* el = elem();
  4200   if (el->isa_narrowoop()) {
  4201     el = el->make_ptr();
  4204   // Get element klass
  4205   if ((tinst = el->isa_instptr()) != NULL) {
  4206     // Compute array klass from element klass
  4207     k_ary = ciObjArrayKlass::make(tinst->klass());
  4208   } else if ((tary = el->isa_aryptr()) != NULL) {
  4209     // Compute array klass from element klass
  4210     ciKlass* k_elem = tary->klass();
  4211     // If element type is something like bottom[], k_elem will be null.
  4212     if (k_elem != NULL)
  4213       k_ary = ciObjArrayKlass::make(k_elem);
  4214   } else if ((el->base() == Type::Top) ||
  4215              (el->base() == Type::Bottom)) {
  4216     // element type of Bottom occurs from meet of basic type
  4217     // and object; Top occurs when doing join on Bottom.
  4218     // Leave k_ary at NULL.
  4219   } else {
  4220     // Cannot compute array klass directly from basic type,
  4221     // since subtypes of TypeInt all have basic type T_INT.
  4222 #ifdef ASSERT
  4223     if (verify && el->isa_int()) {
  4224       // Check simple cases when verifying klass.
  4225       BasicType bt = T_ILLEGAL;
  4226       if (el == TypeInt::BYTE) {
  4227         bt = T_BYTE;
  4228       } else if (el == TypeInt::SHORT) {
  4229         bt = T_SHORT;
  4230       } else if (el == TypeInt::CHAR) {
  4231         bt = T_CHAR;
  4232       } else if (el == TypeInt::INT) {
  4233         bt = T_INT;
  4234       } else {
  4235         return _klass; // just return specified klass
  4237       return ciTypeArrayKlass::make(bt);
  4239 #endif
  4240     assert(!el->isa_int(),
  4241            "integral arrays must be pre-equipped with a class");
  4242     // Compute array klass directly from basic type
  4243     k_ary = ciTypeArrayKlass::make(el->basic_type());
  4245   return k_ary;
  4248 //------------------------------klass------------------------------------------
  4249 // Return the defining klass for this class
  4250 ciKlass* TypeAryPtr::klass() const {
  4251   if( _klass ) return _klass;   // Return cached value, if possible
  4253   // Oops, need to compute _klass and cache it
  4254   ciKlass* k_ary = compute_klass();
  4256   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
  4257     // The _klass field acts as a cache of the underlying
  4258     // ciKlass for this array type.  In order to set the field,
  4259     // we need to cast away const-ness.
  4260     //
  4261     // IMPORTANT NOTE: we *never* set the _klass field for the
  4262     // type TypeAryPtr::OOPS.  This Type is shared between all
  4263     // active compilations.  However, the ciKlass which represents
  4264     // this Type is *not* shared between compilations, so caching
  4265     // this value would result in fetching a dangling pointer.
  4266     //
  4267     // Recomputing the underlying ciKlass for each request is
  4268     // a bit less efficient than caching, but calls to
  4269     // TypeAryPtr::OOPS->klass() are not common enough to matter.
  4270     ((TypeAryPtr*)this)->_klass = k_ary;
  4271     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
  4272         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
  4273       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
  4276   return k_ary;
  4280 //------------------------------add_offset-------------------------------------
  4281 // Access internals of klass object
  4282 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
  4283   return make( _ptr, klass(), xadd_offset(offset) );
  4286 //------------------------------cast_to_ptr_type-------------------------------
  4287 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
  4288   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
  4289   if( ptr == _ptr ) return this;
  4290   return make(ptr, _klass, _offset);
  4294 //-----------------------------cast_to_exactness-------------------------------
  4295 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
  4296   if( klass_is_exact == _klass_is_exact ) return this;
  4297   if (!UseExactTypes)  return this;
  4298   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
  4302 //-----------------------------as_instance_type--------------------------------
  4303 // Corresponding type for an instance of the given class.
  4304 // It will be NotNull, and exact if and only if the klass type is exact.
  4305 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
  4306   ciKlass* k = klass();
  4307   bool    xk = klass_is_exact();
  4308   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
  4309   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
  4310   guarantee(toop != NULL, "need type for given klass");
  4311   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
  4312   return toop->cast_to_exactness(xk)->is_oopptr();
  4316 //------------------------------xmeet------------------------------------------
  4317 // Compute the MEET of two types, return a new Type object.
  4318 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
  4319   // Perform a fast test for common case; meeting the same types together.
  4320   if( this == t ) return this;  // Meeting same type-rep?
  4322   // Current "this->_base" is Pointer
  4323   switch (t->base()) {          // switch on original type
  4325   case Int:                     // Mixing ints & oops happens when javac
  4326   case Long:                    // reuses local variables
  4327   case FloatTop:
  4328   case FloatCon:
  4329   case FloatBot:
  4330   case DoubleTop:
  4331   case DoubleCon:
  4332   case DoubleBot:
  4333   case NarrowOop:
  4334   case NarrowKlass:
  4335   case Bottom:                  // Ye Olde Default
  4336     return Type::BOTTOM;
  4337   case Top:
  4338     return this;
  4340   default:                      // All else is a mistake
  4341     typerr(t);
  4343   case AnyPtr: {                // Meeting to AnyPtrs
  4344     // Found an AnyPtr type vs self-KlassPtr type
  4345     const TypePtr *tp = t->is_ptr();
  4346     int offset = meet_offset(tp->offset());
  4347     PTR ptr = meet_ptr(tp->ptr());
  4348     switch (tp->ptr()) {
  4349     case TopPTR:
  4350       return this;
  4351     case Null:
  4352       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
  4353     case AnyNull:
  4354       return make( ptr, klass(), offset );
  4355     case BotPTR:
  4356     case NotNull:
  4357       return TypePtr::make(AnyPtr, ptr, offset);
  4358     default: typerr(t);
  4362   case RawPtr:
  4363   case MetadataPtr:
  4364   case OopPtr:
  4365   case AryPtr:                  // Meet with AryPtr
  4366   case InstPtr:                 // Meet with InstPtr
  4367     return TypePtr::BOTTOM;
  4369   //
  4370   //             A-top         }
  4371   //           /   |   \       }  Tops
  4372   //       B-top A-any C-top   }
  4373   //          | /  |  \ |      }  Any-nulls
  4374   //       B-any   |   C-any   }
  4375   //          |    |    |
  4376   //       B-con A-con C-con   } constants; not comparable across classes
  4377   //          |    |    |
  4378   //       B-not   |   C-not   }
  4379   //          | \  |  / |      }  not-nulls
  4380   //       B-bot A-not C-bot   }
  4381   //           \   |   /       }  Bottoms
  4382   //             A-bot         }
  4383   //
  4385   case KlassPtr: {  // Meet two KlassPtr types
  4386     const TypeKlassPtr *tkls = t->is_klassptr();
  4387     int  off     = meet_offset(tkls->offset());
  4388     PTR  ptr     = meet_ptr(tkls->ptr());
  4390     // Check for easy case; klasses are equal (and perhaps not loaded!)
  4391     // If we have constants, then we created oops so classes are loaded
  4392     // and we can handle the constants further down.  This case handles
  4393     // not-loaded classes
  4394     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
  4395       return make( ptr, klass(), off );
  4398     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  4399     ciKlass* tkls_klass = tkls->klass();
  4400     ciKlass* this_klass = this->klass();
  4401     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
  4402     assert( this_klass->is_loaded(), "This class should have been loaded.");
  4404     // If 'this' type is above the centerline and is a superclass of the
  4405     // other, we can treat 'this' as having the same type as the other.
  4406     if ((above_centerline(this->ptr())) &&
  4407         tkls_klass->is_subtype_of(this_klass)) {
  4408       this_klass = tkls_klass;
  4410     // If 'tinst' type is above the centerline and is a superclass of the
  4411     // other, we can treat 'tinst' as having the same type as the other.
  4412     if ((above_centerline(tkls->ptr())) &&
  4413         this_klass->is_subtype_of(tkls_klass)) {
  4414       tkls_klass = this_klass;
  4417     // Check for classes now being equal
  4418     if (tkls_klass->equals(this_klass)) {
  4419       // If the klasses are equal, the constants may still differ.  Fall to
  4420       // NotNull if they do (neither constant is NULL; that is a special case
  4421       // handled elsewhere).
  4422       if( ptr == Constant ) {
  4423         if (this->_ptr == Constant && tkls->_ptr == Constant &&
  4424             this->klass()->equals(tkls->klass()));
  4425         else if (above_centerline(this->ptr()));
  4426         else if (above_centerline(tkls->ptr()));
  4427         else
  4428           ptr = NotNull;
  4430       return make( ptr, this_klass, off );
  4431     } // Else classes are not equal
  4433     // Since klasses are different, we require the LCA in the Java
  4434     // class hierarchy - which means we have to fall to at least NotNull.
  4435     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  4436       ptr = NotNull;
  4437     // Now we find the LCA of Java classes
  4438     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
  4439     return   make( ptr, k, off );
  4440   } // End of case KlassPtr
  4442   } // End of switch
  4443   return this;                  // Return the double constant
  4446 //------------------------------xdual------------------------------------------
  4447 // Dual: compute field-by-field dual
  4448 const Type    *TypeKlassPtr::xdual() const {
  4449   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
  4452 //------------------------------get_con----------------------------------------
  4453 intptr_t TypeKlassPtr::get_con() const {
  4454   assert( _ptr == Null || _ptr == Constant, "" );
  4455   assert( _offset >= 0, "" );
  4457   if (_offset != 0) {
  4458     // After being ported to the compiler interface, the compiler no longer
  4459     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  4460     // to a handle at compile time.  This handle is embedded in the generated
  4461     // code and dereferenced at the time the nmethod is made.  Until that time,
  4462     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  4463     // have access to the addresses!).  This does not seem to currently happen,
  4464     // but this assertion here is to help prevent its occurence.
  4465     tty->print_cr("Found oop constant with non-zero offset");
  4466     ShouldNotReachHere();
  4469   return (intptr_t)klass()->constant_encoding();
  4471 //------------------------------dump2------------------------------------------
  4472 // Dump Klass Type
  4473 #ifndef PRODUCT
  4474 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
  4475   switch( _ptr ) {
  4476   case Constant:
  4477     st->print("precise ");
  4478   case NotNull:
  4480       const char *name = klass()->name()->as_utf8();
  4481       if( name ) {
  4482         st->print("klass %s: " INTPTR_FORMAT, name, klass());
  4483       } else {
  4484         ShouldNotReachHere();
  4487   case BotPTR:
  4488     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
  4489   case TopPTR:
  4490   case AnyNull:
  4491     st->print(":%s", ptr_msg[_ptr]);
  4492     if( _klass_is_exact ) st->print(":exact");
  4493     break;
  4496   if( _offset ) {               // Dump offset, if any
  4497     if( _offset == OffsetBot )      { st->print("+any"); }
  4498     else if( _offset == OffsetTop ) { st->print("+unknown"); }
  4499     else                            { st->print("+%d", _offset); }
  4502   st->print(" *");
  4504 #endif
  4508 //=============================================================================
  4509 // Convenience common pre-built types.
  4511 //------------------------------make-------------------------------------------
  4512 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
  4513   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
  4516 //------------------------------make-------------------------------------------
  4517 const TypeFunc *TypeFunc::make(ciMethod* method) {
  4518   Compile* C = Compile::current();
  4519   const TypeFunc* tf = C->last_tf(method); // check cache
  4520   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
  4521   const TypeTuple *domain;
  4522   if (method->is_static()) {
  4523     domain = TypeTuple::make_domain(NULL, method->signature());
  4524   } else {
  4525     domain = TypeTuple::make_domain(method->holder(), method->signature());
  4527   const TypeTuple *range  = TypeTuple::make_range(method->signature());
  4528   tf = TypeFunc::make(domain, range);
  4529   C->set_last_tf(method, tf);  // fill cache
  4530   return tf;
  4533 //------------------------------meet-------------------------------------------
  4534 // Compute the MEET of two types.  It returns a new Type object.
  4535 const Type *TypeFunc::xmeet( const Type *t ) const {
  4536   // Perform a fast test for common case; meeting the same types together.
  4537   if( this == t ) return this;  // Meeting same type-rep?
  4539   // Current "this->_base" is Func
  4540   switch (t->base()) {          // switch on original type
  4542   case Bottom:                  // Ye Olde Default
  4543     return t;
  4545   default:                      // All else is a mistake
  4546     typerr(t);
  4548   case Top:
  4549     break;
  4551   return this;                  // Return the double constant
  4554 //------------------------------xdual------------------------------------------
  4555 // Dual: compute field-by-field dual
  4556 const Type *TypeFunc::xdual() const {
  4557   return this;
  4560 //------------------------------eq---------------------------------------------
  4561 // Structural equality check for Type representations
  4562 bool TypeFunc::eq( const Type *t ) const {
  4563   const TypeFunc *a = (const TypeFunc*)t;
  4564   return _domain == a->_domain &&
  4565     _range == a->_range;
  4568 //------------------------------hash-------------------------------------------
  4569 // Type-specific hashing function.
  4570 int TypeFunc::hash(void) const {
  4571   return (intptr_t)_domain + (intptr_t)_range;
  4574 //------------------------------dump2------------------------------------------
  4575 // Dump Function Type
  4576 #ifndef PRODUCT
  4577 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
  4578   if( _range->_cnt <= Parms )
  4579     st->print("void");
  4580   else {
  4581     uint i;
  4582     for (i = Parms; i < _range->_cnt-1; i++) {
  4583       _range->field_at(i)->dump2(d,depth,st);
  4584       st->print("/");
  4586     _range->field_at(i)->dump2(d,depth,st);
  4588   st->print(" ");
  4589   st->print("( ");
  4590   if( !depth || d[this] ) {     // Check for recursive dump
  4591     st->print("...)");
  4592     return;
  4594   d.Insert((void*)this,(void*)this);    // Stop recursion
  4595   if (Parms < _domain->_cnt)
  4596     _domain->field_at(Parms)->dump2(d,depth-1,st);
  4597   for (uint i = Parms+1; i < _domain->_cnt; i++) {
  4598     st->print(", ");
  4599     _domain->field_at(i)->dump2(d,depth-1,st);
  4601   st->print(" )");
  4603 #endif
  4605 //------------------------------singleton--------------------------------------
  4606 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  4607 // constants (Ldi nodes).  Singletons are integer, float or double constants
  4608 // or a single symbol.
  4609 bool TypeFunc::singleton(void) const {
  4610   return false;                 // Never a singleton
  4613 bool TypeFunc::empty(void) const {
  4614   return false;                 // Never empty
  4618 BasicType TypeFunc::return_type() const{
  4619   if (range()->cnt() == TypeFunc::Parms) {
  4620     return T_VOID;
  4622   return range()->field_at(TypeFunc::Parms)->basic_type();

mercurial