src/share/vm/opto/type.cpp

Mon, 12 Aug 2013 17:37:02 +0200

author
ehelin
date
Mon, 12 Aug 2013 17:37:02 +0200
changeset 5694
7944aba7ba41
parent 5110
6f3fd5150b67
child 5710
884ed7a10f09
permissions
-rw-r--r--

8015107: NPG: Use consistent naming for metaspace concepts
Reviewed-by: coleenp, mgerdin, hseigel

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciMethodData.hpp"
    27 #include "ci/ciTypeFlow.hpp"
    28 #include "classfile/symbolTable.hpp"
    29 #include "classfile/systemDictionary.hpp"
    30 #include "compiler/compileLog.hpp"
    31 #include "libadt/dict.hpp"
    32 #include "memory/gcLocker.hpp"
    33 #include "memory/oopFactory.hpp"
    34 #include "memory/resourceArea.hpp"
    35 #include "oops/instanceKlass.hpp"
    36 #include "oops/instanceMirrorKlass.hpp"
    37 #include "oops/objArrayKlass.hpp"
    38 #include "oops/typeArrayKlass.hpp"
    39 #include "opto/matcher.hpp"
    40 #include "opto/node.hpp"
    41 #include "opto/opcodes.hpp"
    42 #include "opto/type.hpp"
    44 // Portions of code courtesy of Clifford Click
    46 // Optimization - Graph Style
    48 // Dictionary of types shared among compilations.
    49 Dict* Type::_shared_type_dict = NULL;
    51 // Array which maps compiler types to Basic Types
    52 Type::TypeInfo Type::_type_info[Type::lastype] = {
    53   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
    54   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
    55   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
    56   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
    57   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
    58   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
    59   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
    60   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
    61   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
    62   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
    64 #ifndef SPARC
    65   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
    66   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
    67   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
    68   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
    69 #else
    70   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
    71   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
    72   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
    73   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
    74 #endif // IA32 || AMD64
    75   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
    76   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
    77   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
    78   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
    79   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
    80   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
    81   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
    82   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
    83   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
    84   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
    85   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
    86   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
    87   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
    88   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
    89   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
    90   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
    91   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
    92   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
    93 };
    95 // Map ideal registers (machine types) to ideal types
    96 const Type *Type::mreg2type[_last_machine_leaf];
    98 // Map basic types to canonical Type* pointers.
    99 const Type* Type::     _const_basic_type[T_CONFLICT+1];
   101 // Map basic types to constant-zero Types.
   102 const Type* Type::            _zero_type[T_CONFLICT+1];
   104 // Map basic types to array-body alias types.
   105 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
   107 //=============================================================================
   108 // Convenience common pre-built types.
   109 const Type *Type::ABIO;         // State-of-machine only
   110 const Type *Type::BOTTOM;       // All values
   111 const Type *Type::CONTROL;      // Control only
   112 const Type *Type::DOUBLE;       // All doubles
   113 const Type *Type::FLOAT;        // All floats
   114 const Type *Type::HALF;         // Placeholder half of doublewide type
   115 const Type *Type::MEMORY;       // Abstract store only
   116 const Type *Type::RETURN_ADDRESS;
   117 const Type *Type::TOP;          // No values in set
   119 //------------------------------get_const_type---------------------------
   120 const Type* Type::get_const_type(ciType* type) {
   121   if (type == NULL) {
   122     return NULL;
   123   } else if (type->is_primitive_type()) {
   124     return get_const_basic_type(type->basic_type());
   125   } else {
   126     return TypeOopPtr::make_from_klass(type->as_klass());
   127   }
   128 }
   130 //---------------------------array_element_basic_type---------------------------------
   131 // Mapping to the array element's basic type.
   132 BasicType Type::array_element_basic_type() const {
   133   BasicType bt = basic_type();
   134   if (bt == T_INT) {
   135     if (this == TypeInt::INT)   return T_INT;
   136     if (this == TypeInt::CHAR)  return T_CHAR;
   137     if (this == TypeInt::BYTE)  return T_BYTE;
   138     if (this == TypeInt::BOOL)  return T_BOOLEAN;
   139     if (this == TypeInt::SHORT) return T_SHORT;
   140     return T_VOID;
   141   }
   142   return bt;
   143 }
   145 //---------------------------get_typeflow_type---------------------------------
   146 // Import a type produced by ciTypeFlow.
   147 const Type* Type::get_typeflow_type(ciType* type) {
   148   switch (type->basic_type()) {
   150   case ciTypeFlow::StateVector::T_BOTTOM:
   151     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
   152     return Type::BOTTOM;
   154   case ciTypeFlow::StateVector::T_TOP:
   155     assert(type == ciTypeFlow::StateVector::top_type(), "");
   156     return Type::TOP;
   158   case ciTypeFlow::StateVector::T_NULL:
   159     assert(type == ciTypeFlow::StateVector::null_type(), "");
   160     return TypePtr::NULL_PTR;
   162   case ciTypeFlow::StateVector::T_LONG2:
   163     // The ciTypeFlow pass pushes a long, then the half.
   164     // We do the same.
   165     assert(type == ciTypeFlow::StateVector::long2_type(), "");
   166     return TypeInt::TOP;
   168   case ciTypeFlow::StateVector::T_DOUBLE2:
   169     // The ciTypeFlow pass pushes double, then the half.
   170     // Our convention is the same.
   171     assert(type == ciTypeFlow::StateVector::double2_type(), "");
   172     return Type::TOP;
   174   case T_ADDRESS:
   175     assert(type->is_return_address(), "");
   176     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
   178   default:
   179     // make sure we did not mix up the cases:
   180     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
   181     assert(type != ciTypeFlow::StateVector::top_type(), "");
   182     assert(type != ciTypeFlow::StateVector::null_type(), "");
   183     assert(type != ciTypeFlow::StateVector::long2_type(), "");
   184     assert(type != ciTypeFlow::StateVector::double2_type(), "");
   185     assert(!type->is_return_address(), "");
   187     return Type::get_const_type(type);
   188   }
   189 }
   192 //------------------------------make-------------------------------------------
   193 // Create a simple Type, with default empty symbol sets.  Then hashcons it
   194 // and look for an existing copy in the type dictionary.
   195 const Type *Type::make( enum TYPES t ) {
   196   return (new Type(t))->hashcons();
   197 }
   199 //------------------------------cmp--------------------------------------------
   200 int Type::cmp( const Type *const t1, const Type *const t2 ) {
   201   if( t1->_base != t2->_base )
   202     return 1;                   // Missed badly
   203   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
   204   return !t1->eq(t2);           // Return ZERO if equal
   205 }
   207 //------------------------------hash-------------------------------------------
   208 int Type::uhash( const Type *const t ) {
   209   return t->hash();
   210 }
   212 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
   214 //--------------------------Initialize_shared----------------------------------
   215 void Type::Initialize_shared(Compile* current) {
   216   // This method does not need to be locked because the first system
   217   // compilations (stub compilations) occur serially.  If they are
   218   // changed to proceed in parallel, then this section will need
   219   // locking.
   221   Arena* save = current->type_arena();
   222   Arena* shared_type_arena = new (mtCompiler)Arena();
   224   current->set_type_arena(shared_type_arena);
   225   _shared_type_dict =
   226     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
   227                                   shared_type_arena, 128 );
   228   current->set_type_dict(_shared_type_dict);
   230   // Make shared pre-built types.
   231   CONTROL = make(Control);      // Control only
   232   TOP     = make(Top);          // No values in set
   233   MEMORY  = make(Memory);       // Abstract store only
   234   ABIO    = make(Abio);         // State-of-machine only
   235   RETURN_ADDRESS=make(Return_Address);
   236   FLOAT   = make(FloatBot);     // All floats
   237   DOUBLE  = make(DoubleBot);    // All doubles
   238   BOTTOM  = make(Bottom);       // Everything
   239   HALF    = make(Half);         // Placeholder half of doublewide type
   241   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
   242   TypeF::ONE  = TypeF::make(1.0); // Float 1
   244   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
   245   TypeD::ONE  = TypeD::make(1.0); // Double 1
   247   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
   248   TypeInt::ZERO    = TypeInt::make( 0);  //  0
   249   TypeInt::ONE     = TypeInt::make( 1);  //  1
   250   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
   251   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
   252   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
   253   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
   254   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
   255   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
   256   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
   257   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
   258   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
   259   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
   260   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
   261   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
   262   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
   263   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
   264   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
   265   // CmpL is overloaded both as the bytecode computation returning
   266   // a trinary (-1,0,+1) integer result AND as an efficient long
   267   // compare returning optimizer ideal-type flags.
   268   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
   269   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
   270   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
   271   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
   272   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
   274   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
   275   TypeLong::ZERO    = TypeLong::make( 0);        //  0
   276   TypeLong::ONE     = TypeLong::make( 1);        //  1
   277   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
   278   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
   279   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
   280   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
   282   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   283   fboth[0] = Type::CONTROL;
   284   fboth[1] = Type::CONTROL;
   285   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
   287   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   288   ffalse[0] = Type::CONTROL;
   289   ffalse[1] = Type::TOP;
   290   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
   292   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   293   fneither[0] = Type::TOP;
   294   fneither[1] = Type::TOP;
   295   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
   297   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   298   ftrue[0] = Type::TOP;
   299   ftrue[1] = Type::CONTROL;
   300   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
   302   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   303   floop[0] = Type::CONTROL;
   304   floop[1] = TypeInt::INT;
   305   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
   307   TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
   308   TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
   309   TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
   311   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
   312   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
   314   const Type **fmembar = TypeTuple::fields(0);
   315   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
   317   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   318   fsc[0] = TypeInt::CC;
   319   fsc[1] = Type::MEMORY;
   320   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
   322   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
   323   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
   324   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
   325   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   326                                            false, 0, oopDesc::mark_offset_in_bytes());
   327   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   328                                            false, 0, oopDesc::klass_offset_in_bytes());
   329   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
   331   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
   333   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
   334   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
   336   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
   338   mreg2type[Op_Node] = Type::BOTTOM;
   339   mreg2type[Op_Set ] = 0;
   340   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
   341   mreg2type[Op_RegI] = TypeInt::INT;
   342   mreg2type[Op_RegP] = TypePtr::BOTTOM;
   343   mreg2type[Op_RegF] = Type::FLOAT;
   344   mreg2type[Op_RegD] = Type::DOUBLE;
   345   mreg2type[Op_RegL] = TypeLong::LONG;
   346   mreg2type[Op_RegFlags] = TypeInt::CC;
   348   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
   350   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
   352 #ifdef _LP64
   353   if (UseCompressedOops) {
   354     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
   355     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
   356   } else
   357 #endif
   358   {
   359     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
   360     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
   361   }
   362   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
   363   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
   364   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
   365   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
   366   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
   367   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
   368   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
   370   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
   371   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
   372   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
   373   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
   374   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
   375   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
   376   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
   377   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
   378   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
   379   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
   380   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
   381   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
   383   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
   384   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
   386   const Type **fi2c = TypeTuple::fields(2);
   387   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
   388   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
   389   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
   391   const Type **intpair = TypeTuple::fields(2);
   392   intpair[0] = TypeInt::INT;
   393   intpair[1] = TypeInt::INT;
   394   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
   396   const Type **longpair = TypeTuple::fields(2);
   397   longpair[0] = TypeLong::LONG;
   398   longpair[1] = TypeLong::LONG;
   399   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
   401   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
   402   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
   403   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
   404   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
   405   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
   406   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
   407   _const_basic_type[T_INT]         = TypeInt::INT;
   408   _const_basic_type[T_LONG]        = TypeLong::LONG;
   409   _const_basic_type[T_FLOAT]       = Type::FLOAT;
   410   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
   411   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
   412   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
   413   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
   414   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
   415   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
   417   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
   418   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
   419   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
   420   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
   421   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
   422   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
   423   _zero_type[T_INT]         = TypeInt::ZERO;
   424   _zero_type[T_LONG]        = TypeLong::ZERO;
   425   _zero_type[T_FLOAT]       = TypeF::ZERO;
   426   _zero_type[T_DOUBLE]      = TypeD::ZERO;
   427   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
   428   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
   429   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
   430   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
   432   // get_zero_type() should not happen for T_CONFLICT
   433   _zero_type[T_CONFLICT]= NULL;
   435   // Vector predefined types, it needs initialized _const_basic_type[].
   436   if (Matcher::vector_size_supported(T_BYTE,4)) {
   437     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
   438   }
   439   if (Matcher::vector_size_supported(T_FLOAT,2)) {
   440     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
   441   }
   442   if (Matcher::vector_size_supported(T_FLOAT,4)) {
   443     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
   444   }
   445   if (Matcher::vector_size_supported(T_FLOAT,8)) {
   446     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
   447   }
   448   mreg2type[Op_VecS] = TypeVect::VECTS;
   449   mreg2type[Op_VecD] = TypeVect::VECTD;
   450   mreg2type[Op_VecX] = TypeVect::VECTX;
   451   mreg2type[Op_VecY] = TypeVect::VECTY;
   453   // Restore working type arena.
   454   current->set_type_arena(save);
   455   current->set_type_dict(NULL);
   456 }
   458 //------------------------------Initialize-------------------------------------
   459 void Type::Initialize(Compile* current) {
   460   assert(current->type_arena() != NULL, "must have created type arena");
   462   if (_shared_type_dict == NULL) {
   463     Initialize_shared(current);
   464   }
   466   Arena* type_arena = current->type_arena();
   468   // Create the hash-cons'ing dictionary with top-level storage allocation
   469   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
   470   current->set_type_dict(tdic);
   472   // Transfer the shared types.
   473   DictI i(_shared_type_dict);
   474   for( ; i.test(); ++i ) {
   475     Type* t = (Type*)i._value;
   476     tdic->Insert(t,t);  // New Type, insert into Type table
   477   }
   478 }
   480 //------------------------------hashcons---------------------------------------
   481 // Do the hash-cons trick.  If the Type already exists in the type table,
   482 // delete the current Type and return the existing Type.  Otherwise stick the
   483 // current Type in the Type table.
   484 const Type *Type::hashcons(void) {
   485   debug_only(base());           // Check the assertion in Type::base().
   486   // Look up the Type in the Type dictionary
   487   Dict *tdic = type_dict();
   488   Type* old = (Type*)(tdic->Insert(this, this, false));
   489   if( old ) {                   // Pre-existing Type?
   490     if( old != this )           // Yes, this guy is not the pre-existing?
   491       delete this;              // Yes, Nuke this guy
   492     assert( old->_dual, "" );
   493     return old;                 // Return pre-existing
   494   }
   496   // Every type has a dual (to make my lattice symmetric).
   497   // Since we just discovered a new Type, compute its dual right now.
   498   assert( !_dual, "" );         // No dual yet
   499   _dual = xdual();              // Compute the dual
   500   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
   501     _dual = this;
   502     return this;
   503   }
   504   assert( !_dual->_dual, "" );  // No reverse dual yet
   505   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
   506   // New Type, insert into Type table
   507   tdic->Insert((void*)_dual,(void*)_dual);
   508   ((Type*)_dual)->_dual = this; // Finish up being symmetric
   509 #ifdef ASSERT
   510   Type *dual_dual = (Type*)_dual->xdual();
   511   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
   512   delete dual_dual;
   513 #endif
   514   return this;                  // Return new Type
   515 }
   517 //------------------------------eq---------------------------------------------
   518 // Structural equality check for Type representations
   519 bool Type::eq( const Type * ) const {
   520   return true;                  // Nothing else can go wrong
   521 }
   523 //------------------------------hash-------------------------------------------
   524 // Type-specific hashing function.
   525 int Type::hash(void) const {
   526   return _base;
   527 }
   529 //------------------------------is_finite--------------------------------------
   530 // Has a finite value
   531 bool Type::is_finite() const {
   532   return false;
   533 }
   535 //------------------------------is_nan-----------------------------------------
   536 // Is not a number (NaN)
   537 bool Type::is_nan()    const {
   538   return false;
   539 }
   541 //----------------------interface_vs_oop---------------------------------------
   542 #ifdef ASSERT
   543 bool Type::interface_vs_oop(const Type *t) const {
   544   bool result = false;
   546   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
   547   const TypePtr*    t_ptr =    t->make_ptr();
   548   if( this_ptr == NULL || t_ptr == NULL )
   549     return result;
   551   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
   552   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
   553   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
   554     bool this_interface = this_inst->klass()->is_interface();
   555     bool    t_interface =    t_inst->klass()->is_interface();
   556     result = this_interface ^ t_interface;
   557   }
   559   return result;
   560 }
   561 #endif
   563 //------------------------------meet-------------------------------------------
   564 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
   565 // commutative and the lattice is symmetric.
   566 const Type *Type::meet( const Type *t ) const {
   567   if (isa_narrowoop() && t->isa_narrowoop()) {
   568     const Type* result = make_ptr()->meet(t->make_ptr());
   569     return result->make_narrowoop();
   570   }
   571   if (isa_narrowklass() && t->isa_narrowklass()) {
   572     const Type* result = make_ptr()->meet(t->make_ptr());
   573     return result->make_narrowklass();
   574   }
   576   const Type *mt = xmeet(t);
   577   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
   578   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
   579 #ifdef ASSERT
   580   assert( mt == t->xmeet(this), "meet not commutative" );
   581   const Type* dual_join = mt->_dual;
   582   const Type *t2t    = dual_join->xmeet(t->_dual);
   583   const Type *t2this = dual_join->xmeet(   _dual);
   585   // Interface meet Oop is Not Symmetric:
   586   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
   587   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
   589   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != _dual) ) {
   590     tty->print_cr("=== Meet Not Symmetric ===");
   591     tty->print("t   =                   ");         t->dump(); tty->cr();
   592     tty->print("this=                   ");            dump(); tty->cr();
   593     tty->print("mt=(t meet this)=       ");        mt->dump(); tty->cr();
   595     tty->print("t_dual=                 ");  t->_dual->dump(); tty->cr();
   596     tty->print("this_dual=              ");     _dual->dump(); tty->cr();
   597     tty->print("mt_dual=                "); mt->_dual->dump(); tty->cr();
   599     tty->print("mt_dual meet t_dual=    "); t2t      ->dump(); tty->cr();
   600     tty->print("mt_dual meet this_dual= "); t2this   ->dump(); tty->cr();
   602     fatal("meet not symmetric" );
   603   }
   604 #endif
   605   return mt;
   606 }
   608 //------------------------------xmeet------------------------------------------
   609 // Compute the MEET of two types.  It returns a new Type object.
   610 const Type *Type::xmeet( const Type *t ) const {
   611   // Perform a fast test for common case; meeting the same types together.
   612   if( this == t ) return this;  // Meeting same type-rep?
   614   // Meeting TOP with anything?
   615   if( _base == Top ) return t;
   617   // Meeting BOTTOM with anything?
   618   if( _base == Bottom ) return BOTTOM;
   620   // Current "this->_base" is one of: Bad, Multi, Control, Top,
   621   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
   622   switch (t->base()) {  // Switch on original type
   624   // Cut in half the number of cases I must handle.  Only need cases for when
   625   // the given enum "t->type" is less than or equal to the local enum "type".
   626   case FloatCon:
   627   case DoubleCon:
   628   case Int:
   629   case Long:
   630     return t->xmeet(this);
   632   case OopPtr:
   633     return t->xmeet(this);
   635   case InstPtr:
   636     return t->xmeet(this);
   638   case MetadataPtr:
   639   case KlassPtr:
   640     return t->xmeet(this);
   642   case AryPtr:
   643     return t->xmeet(this);
   645   case NarrowOop:
   646     return t->xmeet(this);
   648   case NarrowKlass:
   649     return t->xmeet(this);
   651   case Bad:                     // Type check
   652   default:                      // Bogus type not in lattice
   653     typerr(t);
   654     return Type::BOTTOM;
   656   case Bottom:                  // Ye Olde Default
   657     return t;
   659   case FloatTop:
   660     if( _base == FloatTop ) return this;
   661   case FloatBot:                // Float
   662     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
   663     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
   664     typerr(t);
   665     return Type::BOTTOM;
   667   case DoubleTop:
   668     if( _base == DoubleTop ) return this;
   669   case DoubleBot:               // Double
   670     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
   671     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
   672     typerr(t);
   673     return Type::BOTTOM;
   675   // These next few cases must match exactly or it is a compile-time error.
   676   case Control:                 // Control of code
   677   case Abio:                    // State of world outside of program
   678   case Memory:
   679     if( _base == t->_base )  return this;
   680     typerr(t);
   681     return Type::BOTTOM;
   683   case Top:                     // Top of the lattice
   684     return this;
   685   }
   687   // The type is unchanged
   688   return this;
   689 }
   691 //-----------------------------filter------------------------------------------
   692 const Type *Type::filter( const Type *kills ) const {
   693   const Type* ft = join(kills);
   694   if (ft->empty())
   695     return Type::TOP;           // Canonical empty value
   696   return ft;
   697 }
   699 //------------------------------xdual------------------------------------------
   700 // Compute dual right now.
   701 const Type::TYPES Type::dual_type[Type::lastype] = {
   702   Bad,          // Bad
   703   Control,      // Control
   704   Bottom,       // Top
   705   Bad,          // Int - handled in v-call
   706   Bad,          // Long - handled in v-call
   707   Half,         // Half
   708   Bad,          // NarrowOop - handled in v-call
   709   Bad,          // NarrowKlass - handled in v-call
   711   Bad,          // Tuple - handled in v-call
   712   Bad,          // Array - handled in v-call
   713   Bad,          // VectorS - handled in v-call
   714   Bad,          // VectorD - handled in v-call
   715   Bad,          // VectorX - handled in v-call
   716   Bad,          // VectorY - handled in v-call
   718   Bad,          // AnyPtr - handled in v-call
   719   Bad,          // RawPtr - handled in v-call
   720   Bad,          // OopPtr - handled in v-call
   721   Bad,          // InstPtr - handled in v-call
   722   Bad,          // AryPtr - handled in v-call
   724   Bad,          //  MetadataPtr - handled in v-call
   725   Bad,          // KlassPtr - handled in v-call
   727   Bad,          // Function - handled in v-call
   728   Abio,         // Abio
   729   Return_Address,// Return_Address
   730   Memory,       // Memory
   731   FloatBot,     // FloatTop
   732   FloatCon,     // FloatCon
   733   FloatTop,     // FloatBot
   734   DoubleBot,    // DoubleTop
   735   DoubleCon,    // DoubleCon
   736   DoubleTop,    // DoubleBot
   737   Top           // Bottom
   738 };
   740 const Type *Type::xdual() const {
   741   // Note: the base() accessor asserts the sanity of _base.
   742   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
   743   return new Type(_type_info[_base].dual_type);
   744 }
   746 //------------------------------has_memory-------------------------------------
   747 bool Type::has_memory() const {
   748   Type::TYPES tx = base();
   749   if (tx == Memory) return true;
   750   if (tx == Tuple) {
   751     const TypeTuple *t = is_tuple();
   752     for (uint i=0; i < t->cnt(); i++) {
   753       tx = t->field_at(i)->base();
   754       if (tx == Memory)  return true;
   755     }
   756   }
   757   return false;
   758 }
   760 #ifndef PRODUCT
   761 //------------------------------dump2------------------------------------------
   762 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
   763   st->print(_type_info[_base].msg);
   764 }
   766 //------------------------------dump-------------------------------------------
   767 void Type::dump_on(outputStream *st) const {
   768   ResourceMark rm;
   769   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
   770   dump2(d,1, st);
   771   if (is_ptr_to_narrowoop()) {
   772     st->print(" [narrow]");
   773   } else if (is_ptr_to_narrowklass()) {
   774     st->print(" [narrowklass]");
   775   }
   776 }
   777 #endif
   779 //------------------------------singleton--------------------------------------
   780 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
   781 // constants (Ldi nodes).  Singletons are integer, float or double constants.
   782 bool Type::singleton(void) const {
   783   return _base == Top || _base == Half;
   784 }
   786 //------------------------------empty------------------------------------------
   787 // TRUE if Type is a type with no values, FALSE otherwise.
   788 bool Type::empty(void) const {
   789   switch (_base) {
   790   case DoubleTop:
   791   case FloatTop:
   792   case Top:
   793     return true;
   795   case Half:
   796   case Abio:
   797   case Return_Address:
   798   case Memory:
   799   case Bottom:
   800   case FloatBot:
   801   case DoubleBot:
   802     return false;  // never a singleton, therefore never empty
   803   }
   805   ShouldNotReachHere();
   806   return false;
   807 }
   809 //------------------------------dump_stats-------------------------------------
   810 // Dump collected statistics to stderr
   811 #ifndef PRODUCT
   812 void Type::dump_stats() {
   813   tty->print("Types made: %d\n", type_dict()->Size());
   814 }
   815 #endif
   817 //------------------------------typerr-----------------------------------------
   818 void Type::typerr( const Type *t ) const {
   819 #ifndef PRODUCT
   820   tty->print("\nError mixing types: ");
   821   dump();
   822   tty->print(" and ");
   823   t->dump();
   824   tty->print("\n");
   825 #endif
   826   ShouldNotReachHere();
   827 }
   830 //=============================================================================
   831 // Convenience common pre-built types.
   832 const TypeF *TypeF::ZERO;       // Floating point zero
   833 const TypeF *TypeF::ONE;        // Floating point one
   835 //------------------------------make-------------------------------------------
   836 // Create a float constant
   837 const TypeF *TypeF::make(float f) {
   838   return (TypeF*)(new TypeF(f))->hashcons();
   839 }
   841 //------------------------------meet-------------------------------------------
   842 // Compute the MEET of two types.  It returns a new Type object.
   843 const Type *TypeF::xmeet( const Type *t ) const {
   844   // Perform a fast test for common case; meeting the same types together.
   845   if( this == t ) return this;  // Meeting same type-rep?
   847   // Current "this->_base" is FloatCon
   848   switch (t->base()) {          // Switch on original type
   849   case AnyPtr:                  // Mixing with oops happens when javac
   850   case RawPtr:                  // reuses local variables
   851   case OopPtr:
   852   case InstPtr:
   853   case AryPtr:
   854   case MetadataPtr:
   855   case KlassPtr:
   856   case NarrowOop:
   857   case NarrowKlass:
   858   case Int:
   859   case Long:
   860   case DoubleTop:
   861   case DoubleCon:
   862   case DoubleBot:
   863   case Bottom:                  // Ye Olde Default
   864     return Type::BOTTOM;
   866   case FloatBot:
   867     return t;
   869   default:                      // All else is a mistake
   870     typerr(t);
   872   case FloatCon:                // Float-constant vs Float-constant?
   873     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
   874                                 // must compare bitwise as positive zero, negative zero and NaN have
   875                                 // all the same representation in C++
   876       return FLOAT;             // Return generic float
   877                                 // Equal constants
   878   case Top:
   879   case FloatTop:
   880     break;                      // Return the float constant
   881   }
   882   return this;                  // Return the float constant
   883 }
   885 //------------------------------xdual------------------------------------------
   886 // Dual: symmetric
   887 const Type *TypeF::xdual() const {
   888   return this;
   889 }
   891 //------------------------------eq---------------------------------------------
   892 // Structural equality check for Type representations
   893 bool TypeF::eq( const Type *t ) const {
   894   if( g_isnan(_f) ||
   895       g_isnan(t->getf()) ) {
   896     // One or both are NANs.  If both are NANs return true, else false.
   897     return (g_isnan(_f) && g_isnan(t->getf()));
   898   }
   899   if (_f == t->getf()) {
   900     // (NaN is impossible at this point, since it is not equal even to itself)
   901     if (_f == 0.0) {
   902       // difference between positive and negative zero
   903       if (jint_cast(_f) != jint_cast(t->getf()))  return false;
   904     }
   905     return true;
   906   }
   907   return false;
   908 }
   910 //------------------------------hash-------------------------------------------
   911 // Type-specific hashing function.
   912 int TypeF::hash(void) const {
   913   return *(int*)(&_f);
   914 }
   916 //------------------------------is_finite--------------------------------------
   917 // Has a finite value
   918 bool TypeF::is_finite() const {
   919   return g_isfinite(getf()) != 0;
   920 }
   922 //------------------------------is_nan-----------------------------------------
   923 // Is not a number (NaN)
   924 bool TypeF::is_nan()    const {
   925   return g_isnan(getf()) != 0;
   926 }
   928 //------------------------------dump2------------------------------------------
   929 // Dump float constant Type
   930 #ifndef PRODUCT
   931 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
   932   Type::dump2(d,depth, st);
   933   st->print("%f", _f);
   934 }
   935 #endif
   937 //------------------------------singleton--------------------------------------
   938 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
   939 // constants (Ldi nodes).  Singletons are integer, float or double constants
   940 // or a single symbol.
   941 bool TypeF::singleton(void) const {
   942   return true;                  // Always a singleton
   943 }
   945 bool TypeF::empty(void) const {
   946   return false;                 // always exactly a singleton
   947 }
   949 //=============================================================================
   950 // Convenience common pre-built types.
   951 const TypeD *TypeD::ZERO;       // Floating point zero
   952 const TypeD *TypeD::ONE;        // Floating point one
   954 //------------------------------make-------------------------------------------
   955 const TypeD *TypeD::make(double d) {
   956   return (TypeD*)(new TypeD(d))->hashcons();
   957 }
   959 //------------------------------meet-------------------------------------------
   960 // Compute the MEET of two types.  It returns a new Type object.
   961 const Type *TypeD::xmeet( const Type *t ) const {
   962   // Perform a fast test for common case; meeting the same types together.
   963   if( this == t ) return this;  // Meeting same type-rep?
   965   // Current "this->_base" is DoubleCon
   966   switch (t->base()) {          // Switch on original type
   967   case AnyPtr:                  // Mixing with oops happens when javac
   968   case RawPtr:                  // reuses local variables
   969   case OopPtr:
   970   case InstPtr:
   971   case AryPtr:
   972   case MetadataPtr:
   973   case KlassPtr:
   974   case NarrowOop:
   975   case NarrowKlass:
   976   case Int:
   977   case Long:
   978   case FloatTop:
   979   case FloatCon:
   980   case FloatBot:
   981   case Bottom:                  // Ye Olde Default
   982     return Type::BOTTOM;
   984   case DoubleBot:
   985     return t;
   987   default:                      // All else is a mistake
   988     typerr(t);
   990   case DoubleCon:               // Double-constant vs Double-constant?
   991     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
   992       return DOUBLE;            // Return generic double
   993   case Top:
   994   case DoubleTop:
   995     break;
   996   }
   997   return this;                  // Return the double constant
   998 }
  1000 //------------------------------xdual------------------------------------------
  1001 // Dual: symmetric
  1002 const Type *TypeD::xdual() const {
  1003   return this;
  1006 //------------------------------eq---------------------------------------------
  1007 // Structural equality check for Type representations
  1008 bool TypeD::eq( const Type *t ) const {
  1009   if( g_isnan(_d) ||
  1010       g_isnan(t->getd()) ) {
  1011     // One or both are NANs.  If both are NANs return true, else false.
  1012     return (g_isnan(_d) && g_isnan(t->getd()));
  1014   if (_d == t->getd()) {
  1015     // (NaN is impossible at this point, since it is not equal even to itself)
  1016     if (_d == 0.0) {
  1017       // difference between positive and negative zero
  1018       if (jlong_cast(_d) != jlong_cast(t->getd()))  return false;
  1020     return true;
  1022   return false;
  1025 //------------------------------hash-------------------------------------------
  1026 // Type-specific hashing function.
  1027 int TypeD::hash(void) const {
  1028   return *(int*)(&_d);
  1031 //------------------------------is_finite--------------------------------------
  1032 // Has a finite value
  1033 bool TypeD::is_finite() const {
  1034   return g_isfinite(getd()) != 0;
  1037 //------------------------------is_nan-----------------------------------------
  1038 // Is not a number (NaN)
  1039 bool TypeD::is_nan()    const {
  1040   return g_isnan(getd()) != 0;
  1043 //------------------------------dump2------------------------------------------
  1044 // Dump double constant Type
  1045 #ifndef PRODUCT
  1046 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
  1047   Type::dump2(d,depth,st);
  1048   st->print("%f", _d);
  1050 #endif
  1052 //------------------------------singleton--------------------------------------
  1053 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1054 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1055 // or a single symbol.
  1056 bool TypeD::singleton(void) const {
  1057   return true;                  // Always a singleton
  1060 bool TypeD::empty(void) const {
  1061   return false;                 // always exactly a singleton
  1064 //=============================================================================
  1065 // Convience common pre-built types.
  1066 const TypeInt *TypeInt::MINUS_1;// -1
  1067 const TypeInt *TypeInt::ZERO;   // 0
  1068 const TypeInt *TypeInt::ONE;    // 1
  1069 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
  1070 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
  1071 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
  1072 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
  1073 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
  1074 const TypeInt *TypeInt::CC_LE;  // [-1,0]
  1075 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
  1076 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
  1077 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
  1078 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
  1079 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
  1080 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
  1081 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
  1082 const TypeInt *TypeInt::INT;    // 32-bit integers
  1083 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
  1085 //------------------------------TypeInt----------------------------------------
  1086 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
  1089 //------------------------------make-------------------------------------------
  1090 const TypeInt *TypeInt::make( jint lo ) {
  1091   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
  1094 static int normalize_int_widen( jint lo, jint hi, int w ) {
  1095   // Certain normalizations keep us sane when comparing types.
  1096   // The 'SMALLINT' covers constants and also CC and its relatives.
  1097   if (lo <= hi) {
  1098     if ((juint)(hi - lo) <= SMALLINT)  w = Type::WidenMin;
  1099     if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
  1100   } else {
  1101     if ((juint)(lo - hi) <= SMALLINT)  w = Type::WidenMin;
  1102     if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
  1104   return w;
  1107 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
  1108   w = normalize_int_widen(lo, hi, w);
  1109   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
  1112 //------------------------------meet-------------------------------------------
  1113 // Compute the MEET of two types.  It returns a new Type representation object
  1114 // with reference count equal to the number of Types pointing at it.
  1115 // Caller should wrap a Types around it.
  1116 const Type *TypeInt::xmeet( const Type *t ) const {
  1117   // Perform a fast test for common case; meeting the same types together.
  1118   if( this == t ) return this;  // Meeting same type?
  1120   // Currently "this->_base" is a TypeInt
  1121   switch (t->base()) {          // Switch on original type
  1122   case AnyPtr:                  // Mixing with oops happens when javac
  1123   case RawPtr:                  // reuses local variables
  1124   case OopPtr:
  1125   case InstPtr:
  1126   case AryPtr:
  1127   case MetadataPtr:
  1128   case KlassPtr:
  1129   case NarrowOop:
  1130   case NarrowKlass:
  1131   case Long:
  1132   case FloatTop:
  1133   case FloatCon:
  1134   case FloatBot:
  1135   case DoubleTop:
  1136   case DoubleCon:
  1137   case DoubleBot:
  1138   case Bottom:                  // Ye Olde Default
  1139     return Type::BOTTOM;
  1140   default:                      // All else is a mistake
  1141     typerr(t);
  1142   case Top:                     // No change
  1143     return this;
  1144   case Int:                     // Int vs Int?
  1145     break;
  1148   // Expand covered set
  1149   const TypeInt *r = t->is_int();
  1150   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
  1153 //------------------------------xdual------------------------------------------
  1154 // Dual: reverse hi & lo; flip widen
  1155 const Type *TypeInt::xdual() const {
  1156   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
  1157   return new TypeInt(_hi,_lo,w);
  1160 //------------------------------widen------------------------------------------
  1161 // Only happens for optimistic top-down optimizations.
  1162 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
  1163   // Coming from TOP or such; no widening
  1164   if( old->base() != Int ) return this;
  1165   const TypeInt *ot = old->is_int();
  1167   // If new guy is equal to old guy, no widening
  1168   if( _lo == ot->_lo && _hi == ot->_hi )
  1169     return old;
  1171   // If new guy contains old, then we widened
  1172   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1173     // New contains old
  1174     // If new guy is already wider than old, no widening
  1175     if( _widen > ot->_widen ) return this;
  1176     // If old guy was a constant, do not bother
  1177     if (ot->_lo == ot->_hi)  return this;
  1178     // Now widen new guy.
  1179     // Check for widening too far
  1180     if (_widen == WidenMax) {
  1181       int max = max_jint;
  1182       int min = min_jint;
  1183       if (limit->isa_int()) {
  1184         max = limit->is_int()->_hi;
  1185         min = limit->is_int()->_lo;
  1187       if (min < _lo && _hi < max) {
  1188         // If neither endpoint is extremal yet, push out the endpoint
  1189         // which is closer to its respective limit.
  1190         if (_lo >= 0 ||                 // easy common case
  1191             (juint)(_lo - min) >= (juint)(max - _hi)) {
  1192           // Try to widen to an unsigned range type of 31 bits:
  1193           return make(_lo, max, WidenMax);
  1194         } else {
  1195           return make(min, _hi, WidenMax);
  1198       return TypeInt::INT;
  1200     // Returned widened new guy
  1201     return make(_lo,_hi,_widen+1);
  1204   // If old guy contains new, then we probably widened too far & dropped to
  1205   // bottom.  Return the wider fellow.
  1206   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1207     return old;
  1209   //fatal("Integer value range is not subset");
  1210   //return this;
  1211   return TypeInt::INT;
  1214 //------------------------------narrow---------------------------------------
  1215 // Only happens for pessimistic optimizations.
  1216 const Type *TypeInt::narrow( const Type *old ) const {
  1217   if (_lo >= _hi)  return this;   // already narrow enough
  1218   if (old == NULL)  return this;
  1219   const TypeInt* ot = old->isa_int();
  1220   if (ot == NULL)  return this;
  1221   jint olo = ot->_lo;
  1222   jint ohi = ot->_hi;
  1224   // If new guy is equal to old guy, no narrowing
  1225   if (_lo == olo && _hi == ohi)  return old;
  1227   // If old guy was maximum range, allow the narrowing
  1228   if (olo == min_jint && ohi == max_jint)  return this;
  1230   if (_lo < olo || _hi > ohi)
  1231     return this;                // doesn't narrow; pretty wierd
  1233   // The new type narrows the old type, so look for a "death march".
  1234   // See comments on PhaseTransform::saturate.
  1235   juint nrange = _hi - _lo;
  1236   juint orange = ohi - olo;
  1237   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1238     // Use the new type only if the range shrinks a lot.
  1239     // We do not want the optimizer computing 2^31 point by point.
  1240     return old;
  1243   return this;
  1246 //-----------------------------filter------------------------------------------
  1247 const Type *TypeInt::filter( const Type *kills ) const {
  1248   const TypeInt* ft = join(kills)->isa_int();
  1249   if (ft == NULL || ft->empty())
  1250     return Type::TOP;           // Canonical empty value
  1251   if (ft->_widen < this->_widen) {
  1252     // Do not allow the value of kill->_widen to affect the outcome.
  1253     // The widen bits must be allowed to run freely through the graph.
  1254     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
  1256   return ft;
  1259 //------------------------------eq---------------------------------------------
  1260 // Structural equality check for Type representations
  1261 bool TypeInt::eq( const Type *t ) const {
  1262   const TypeInt *r = t->is_int(); // Handy access
  1263   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
  1266 //------------------------------hash-------------------------------------------
  1267 // Type-specific hashing function.
  1268 int TypeInt::hash(void) const {
  1269   return _lo+_hi+_widen+(int)Type::Int;
  1272 //------------------------------is_finite--------------------------------------
  1273 // Has a finite value
  1274 bool TypeInt::is_finite() const {
  1275   return true;
  1278 //------------------------------dump2------------------------------------------
  1279 // Dump TypeInt
  1280 #ifndef PRODUCT
  1281 static const char* intname(char* buf, jint n) {
  1282   if (n == min_jint)
  1283     return "min";
  1284   else if (n < min_jint + 10000)
  1285     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
  1286   else if (n == max_jint)
  1287     return "max";
  1288   else if (n > max_jint - 10000)
  1289     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
  1290   else
  1291     sprintf(buf, INT32_FORMAT, n);
  1292   return buf;
  1295 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
  1296   char buf[40], buf2[40];
  1297   if (_lo == min_jint && _hi == max_jint)
  1298     st->print("int");
  1299   else if (is_con())
  1300     st->print("int:%s", intname(buf, get_con()));
  1301   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
  1302     st->print("bool");
  1303   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
  1304     st->print("byte");
  1305   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
  1306     st->print("char");
  1307   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
  1308     st->print("short");
  1309   else if (_hi == max_jint)
  1310     st->print("int:>=%s", intname(buf, _lo));
  1311   else if (_lo == min_jint)
  1312     st->print("int:<=%s", intname(buf, _hi));
  1313   else
  1314     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
  1316   if (_widen != 0 && this != TypeInt::INT)
  1317     st->print(":%.*s", _widen, "wwww");
  1319 #endif
  1321 //------------------------------singleton--------------------------------------
  1322 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1323 // constants.
  1324 bool TypeInt::singleton(void) const {
  1325   return _lo >= _hi;
  1328 bool TypeInt::empty(void) const {
  1329   return _lo > _hi;
  1332 //=============================================================================
  1333 // Convenience common pre-built types.
  1334 const TypeLong *TypeLong::MINUS_1;// -1
  1335 const TypeLong *TypeLong::ZERO; // 0
  1336 const TypeLong *TypeLong::ONE;  // 1
  1337 const TypeLong *TypeLong::POS;  // >=0
  1338 const TypeLong *TypeLong::LONG; // 64-bit integers
  1339 const TypeLong *TypeLong::INT;  // 32-bit subrange
  1340 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
  1342 //------------------------------TypeLong---------------------------------------
  1343 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
  1346 //------------------------------make-------------------------------------------
  1347 const TypeLong *TypeLong::make( jlong lo ) {
  1348   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
  1351 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
  1352   // Certain normalizations keep us sane when comparing types.
  1353   // The 'SMALLINT' covers constants.
  1354   if (lo <= hi) {
  1355     if ((julong)(hi - lo) <= SMALLINT)   w = Type::WidenMin;
  1356     if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
  1357   } else {
  1358     if ((julong)(lo - hi) <= SMALLINT)   w = Type::WidenMin;
  1359     if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
  1361   return w;
  1364 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
  1365   w = normalize_long_widen(lo, hi, w);
  1366   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
  1370 //------------------------------meet-------------------------------------------
  1371 // Compute the MEET of two types.  It returns a new Type representation object
  1372 // with reference count equal to the number of Types pointing at it.
  1373 // Caller should wrap a Types around it.
  1374 const Type *TypeLong::xmeet( const Type *t ) const {
  1375   // Perform a fast test for common case; meeting the same types together.
  1376   if( this == t ) return this;  // Meeting same type?
  1378   // Currently "this->_base" is a TypeLong
  1379   switch (t->base()) {          // Switch on original type
  1380   case AnyPtr:                  // Mixing with oops happens when javac
  1381   case RawPtr:                  // reuses local variables
  1382   case OopPtr:
  1383   case InstPtr:
  1384   case AryPtr:
  1385   case MetadataPtr:
  1386   case KlassPtr:
  1387   case NarrowOop:
  1388   case NarrowKlass:
  1389   case Int:
  1390   case FloatTop:
  1391   case FloatCon:
  1392   case FloatBot:
  1393   case DoubleTop:
  1394   case DoubleCon:
  1395   case DoubleBot:
  1396   case Bottom:                  // Ye Olde Default
  1397     return Type::BOTTOM;
  1398   default:                      // All else is a mistake
  1399     typerr(t);
  1400   case Top:                     // No change
  1401     return this;
  1402   case Long:                    // Long vs Long?
  1403     break;
  1406   // Expand covered set
  1407   const TypeLong *r = t->is_long(); // Turn into a TypeLong
  1408   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
  1411 //------------------------------xdual------------------------------------------
  1412 // Dual: reverse hi & lo; flip widen
  1413 const Type *TypeLong::xdual() const {
  1414   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
  1415   return new TypeLong(_hi,_lo,w);
  1418 //------------------------------widen------------------------------------------
  1419 // Only happens for optimistic top-down optimizations.
  1420 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
  1421   // Coming from TOP or such; no widening
  1422   if( old->base() != Long ) return this;
  1423   const TypeLong *ot = old->is_long();
  1425   // If new guy is equal to old guy, no widening
  1426   if( _lo == ot->_lo && _hi == ot->_hi )
  1427     return old;
  1429   // If new guy contains old, then we widened
  1430   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1431     // New contains old
  1432     // If new guy is already wider than old, no widening
  1433     if( _widen > ot->_widen ) return this;
  1434     // If old guy was a constant, do not bother
  1435     if (ot->_lo == ot->_hi)  return this;
  1436     // Now widen new guy.
  1437     // Check for widening too far
  1438     if (_widen == WidenMax) {
  1439       jlong max = max_jlong;
  1440       jlong min = min_jlong;
  1441       if (limit->isa_long()) {
  1442         max = limit->is_long()->_hi;
  1443         min = limit->is_long()->_lo;
  1445       if (min < _lo && _hi < max) {
  1446         // If neither endpoint is extremal yet, push out the endpoint
  1447         // which is closer to its respective limit.
  1448         if (_lo >= 0 ||                 // easy common case
  1449             (julong)(_lo - min) >= (julong)(max - _hi)) {
  1450           // Try to widen to an unsigned range type of 32/63 bits:
  1451           if (max >= max_juint && _hi < max_juint)
  1452             return make(_lo, max_juint, WidenMax);
  1453           else
  1454             return make(_lo, max, WidenMax);
  1455         } else {
  1456           return make(min, _hi, WidenMax);
  1459       return TypeLong::LONG;
  1461     // Returned widened new guy
  1462     return make(_lo,_hi,_widen+1);
  1465   // If old guy contains new, then we probably widened too far & dropped to
  1466   // bottom.  Return the wider fellow.
  1467   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1468     return old;
  1470   //  fatal("Long value range is not subset");
  1471   // return this;
  1472   return TypeLong::LONG;
  1475 //------------------------------narrow----------------------------------------
  1476 // Only happens for pessimistic optimizations.
  1477 const Type *TypeLong::narrow( const Type *old ) const {
  1478   if (_lo >= _hi)  return this;   // already narrow enough
  1479   if (old == NULL)  return this;
  1480   const TypeLong* ot = old->isa_long();
  1481   if (ot == NULL)  return this;
  1482   jlong olo = ot->_lo;
  1483   jlong ohi = ot->_hi;
  1485   // If new guy is equal to old guy, no narrowing
  1486   if (_lo == olo && _hi == ohi)  return old;
  1488   // If old guy was maximum range, allow the narrowing
  1489   if (olo == min_jlong && ohi == max_jlong)  return this;
  1491   if (_lo < olo || _hi > ohi)
  1492     return this;                // doesn't narrow; pretty wierd
  1494   // The new type narrows the old type, so look for a "death march".
  1495   // See comments on PhaseTransform::saturate.
  1496   julong nrange = _hi - _lo;
  1497   julong orange = ohi - olo;
  1498   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1499     // Use the new type only if the range shrinks a lot.
  1500     // We do not want the optimizer computing 2^31 point by point.
  1501     return old;
  1504   return this;
  1507 //-----------------------------filter------------------------------------------
  1508 const Type *TypeLong::filter( const Type *kills ) const {
  1509   const TypeLong* ft = join(kills)->isa_long();
  1510   if (ft == NULL || ft->empty())
  1511     return Type::TOP;           // Canonical empty value
  1512   if (ft->_widen < this->_widen) {
  1513     // Do not allow the value of kill->_widen to affect the outcome.
  1514     // The widen bits must be allowed to run freely through the graph.
  1515     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
  1517   return ft;
  1520 //------------------------------eq---------------------------------------------
  1521 // Structural equality check for Type representations
  1522 bool TypeLong::eq( const Type *t ) const {
  1523   const TypeLong *r = t->is_long(); // Handy access
  1524   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
  1527 //------------------------------hash-------------------------------------------
  1528 // Type-specific hashing function.
  1529 int TypeLong::hash(void) const {
  1530   return (int)(_lo+_hi+_widen+(int)Type::Long);
  1533 //------------------------------is_finite--------------------------------------
  1534 // Has a finite value
  1535 bool TypeLong::is_finite() const {
  1536   return true;
  1539 //------------------------------dump2------------------------------------------
  1540 // Dump TypeLong
  1541 #ifndef PRODUCT
  1542 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
  1543   if (n > x) {
  1544     if (n >= x + 10000)  return NULL;
  1545     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
  1546   } else if (n < x) {
  1547     if (n <= x - 10000)  return NULL;
  1548     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
  1549   } else {
  1550     return xname;
  1552   return buf;
  1555 static const char* longname(char* buf, jlong n) {
  1556   const char* str;
  1557   if (n == min_jlong)
  1558     return "min";
  1559   else if (n < min_jlong + 10000)
  1560     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
  1561   else if (n == max_jlong)
  1562     return "max";
  1563   else if (n > max_jlong - 10000)
  1564     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
  1565   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
  1566     return str;
  1567   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
  1568     return str;
  1569   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
  1570     return str;
  1571   else
  1572     sprintf(buf, JLONG_FORMAT, n);
  1573   return buf;
  1576 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
  1577   char buf[80], buf2[80];
  1578   if (_lo == min_jlong && _hi == max_jlong)
  1579     st->print("long");
  1580   else if (is_con())
  1581     st->print("long:%s", longname(buf, get_con()));
  1582   else if (_hi == max_jlong)
  1583     st->print("long:>=%s", longname(buf, _lo));
  1584   else if (_lo == min_jlong)
  1585     st->print("long:<=%s", longname(buf, _hi));
  1586   else
  1587     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
  1589   if (_widen != 0 && this != TypeLong::LONG)
  1590     st->print(":%.*s", _widen, "wwww");
  1592 #endif
  1594 //------------------------------singleton--------------------------------------
  1595 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1596 // constants
  1597 bool TypeLong::singleton(void) const {
  1598   return _lo >= _hi;
  1601 bool TypeLong::empty(void) const {
  1602   return _lo > _hi;
  1605 //=============================================================================
  1606 // Convenience common pre-built types.
  1607 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
  1608 const TypeTuple *TypeTuple::IFFALSE;
  1609 const TypeTuple *TypeTuple::IFTRUE;
  1610 const TypeTuple *TypeTuple::IFNEITHER;
  1611 const TypeTuple *TypeTuple::LOOPBODY;
  1612 const TypeTuple *TypeTuple::MEMBAR;
  1613 const TypeTuple *TypeTuple::STORECONDITIONAL;
  1614 const TypeTuple *TypeTuple::START_I2C;
  1615 const TypeTuple *TypeTuple::INT_PAIR;
  1616 const TypeTuple *TypeTuple::LONG_PAIR;
  1619 //------------------------------make-------------------------------------------
  1620 // Make a TypeTuple from the range of a method signature
  1621 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
  1622   ciType* return_type = sig->return_type();
  1623   uint total_fields = TypeFunc::Parms + return_type->size();
  1624   const Type **field_array = fields(total_fields);
  1625   switch (return_type->basic_type()) {
  1626   case T_LONG:
  1627     field_array[TypeFunc::Parms]   = TypeLong::LONG;
  1628     field_array[TypeFunc::Parms+1] = Type::HALF;
  1629     break;
  1630   case T_DOUBLE:
  1631     field_array[TypeFunc::Parms]   = Type::DOUBLE;
  1632     field_array[TypeFunc::Parms+1] = Type::HALF;
  1633     break;
  1634   case T_OBJECT:
  1635   case T_ARRAY:
  1636   case T_BOOLEAN:
  1637   case T_CHAR:
  1638   case T_FLOAT:
  1639   case T_BYTE:
  1640   case T_SHORT:
  1641   case T_INT:
  1642     field_array[TypeFunc::Parms] = get_const_type(return_type);
  1643     break;
  1644   case T_VOID:
  1645     break;
  1646   default:
  1647     ShouldNotReachHere();
  1649   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1652 // Make a TypeTuple from the domain of a method signature
  1653 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
  1654   uint total_fields = TypeFunc::Parms + sig->size();
  1656   uint pos = TypeFunc::Parms;
  1657   const Type **field_array;
  1658   if (recv != NULL) {
  1659     total_fields++;
  1660     field_array = fields(total_fields);
  1661     // Use get_const_type here because it respects UseUniqueSubclasses:
  1662     field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
  1663   } else {
  1664     field_array = fields(total_fields);
  1667   int i = 0;
  1668   while (pos < total_fields) {
  1669     ciType* type = sig->type_at(i);
  1671     switch (type->basic_type()) {
  1672     case T_LONG:
  1673       field_array[pos++] = TypeLong::LONG;
  1674       field_array[pos++] = Type::HALF;
  1675       break;
  1676     case T_DOUBLE:
  1677       field_array[pos++] = Type::DOUBLE;
  1678       field_array[pos++] = Type::HALF;
  1679       break;
  1680     case T_OBJECT:
  1681     case T_ARRAY:
  1682     case T_BOOLEAN:
  1683     case T_CHAR:
  1684     case T_FLOAT:
  1685     case T_BYTE:
  1686     case T_SHORT:
  1687     case T_INT:
  1688       field_array[pos++] = get_const_type(type);
  1689       break;
  1690     default:
  1691       ShouldNotReachHere();
  1693     i++;
  1695   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1698 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
  1699   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
  1702 //------------------------------fields-----------------------------------------
  1703 // Subroutine call type with space allocated for argument types
  1704 const Type **TypeTuple::fields( uint arg_cnt ) {
  1705   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
  1706   flds[TypeFunc::Control  ] = Type::CONTROL;
  1707   flds[TypeFunc::I_O      ] = Type::ABIO;
  1708   flds[TypeFunc::Memory   ] = Type::MEMORY;
  1709   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
  1710   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
  1712   return flds;
  1715 //------------------------------meet-------------------------------------------
  1716 // Compute the MEET of two types.  It returns a new Type object.
  1717 const Type *TypeTuple::xmeet( const Type *t ) const {
  1718   // Perform a fast test for common case; meeting the same types together.
  1719   if( this == t ) return this;  // Meeting same type-rep?
  1721   // Current "this->_base" is Tuple
  1722   switch (t->base()) {          // switch on original type
  1724   case Bottom:                  // Ye Olde Default
  1725     return t;
  1727   default:                      // All else is a mistake
  1728     typerr(t);
  1730   case Tuple: {                 // Meeting 2 signatures?
  1731     const TypeTuple *x = t->is_tuple();
  1732     assert( _cnt == x->_cnt, "" );
  1733     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1734     for( uint i=0; i<_cnt; i++ )
  1735       fields[i] = field_at(i)->xmeet( x->field_at(i) );
  1736     return TypeTuple::make(_cnt,fields);
  1738   case Top:
  1739     break;
  1741   return this;                  // Return the double constant
  1744 //------------------------------xdual------------------------------------------
  1745 // Dual: compute field-by-field dual
  1746 const Type *TypeTuple::xdual() const {
  1747   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1748   for( uint i=0; i<_cnt; i++ )
  1749     fields[i] = _fields[i]->dual();
  1750   return new TypeTuple(_cnt,fields);
  1753 //------------------------------eq---------------------------------------------
  1754 // Structural equality check for Type representations
  1755 bool TypeTuple::eq( const Type *t ) const {
  1756   const TypeTuple *s = (const TypeTuple *)t;
  1757   if (_cnt != s->_cnt)  return false;  // Unequal field counts
  1758   for (uint i = 0; i < _cnt; i++)
  1759     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
  1760       return false;             // Missed
  1761   return true;
  1764 //------------------------------hash-------------------------------------------
  1765 // Type-specific hashing function.
  1766 int TypeTuple::hash(void) const {
  1767   intptr_t sum = _cnt;
  1768   for( uint i=0; i<_cnt; i++ )
  1769     sum += (intptr_t)_fields[i];     // Hash on pointers directly
  1770   return sum;
  1773 //------------------------------dump2------------------------------------------
  1774 // Dump signature Type
  1775 #ifndef PRODUCT
  1776 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
  1777   st->print("{");
  1778   if( !depth || d[this] ) {     // Check for recursive print
  1779     st->print("...}");
  1780     return;
  1782   d.Insert((void*)this, (void*)this);   // Stop recursion
  1783   if( _cnt ) {
  1784     uint i;
  1785     for( i=0; i<_cnt-1; i++ ) {
  1786       st->print("%d:", i);
  1787       _fields[i]->dump2(d, depth-1, st);
  1788       st->print(", ");
  1790     st->print("%d:", i);
  1791     _fields[i]->dump2(d, depth-1, st);
  1793   st->print("}");
  1795 #endif
  1797 //------------------------------singleton--------------------------------------
  1798 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1799 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1800 // or a single symbol.
  1801 bool TypeTuple::singleton(void) const {
  1802   return false;                 // Never a singleton
  1805 bool TypeTuple::empty(void) const {
  1806   for( uint i=0; i<_cnt; i++ ) {
  1807     if (_fields[i]->empty())  return true;
  1809   return false;
  1812 //=============================================================================
  1813 // Convenience common pre-built types.
  1815 inline const TypeInt* normalize_array_size(const TypeInt* size) {
  1816   // Certain normalizations keep us sane when comparing types.
  1817   // We do not want arrayOop variables to differ only by the wideness
  1818   // of their index types.  Pick minimum wideness, since that is the
  1819   // forced wideness of small ranges anyway.
  1820   if (size->_widen != Type::WidenMin)
  1821     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
  1822   else
  1823     return size;
  1826 //------------------------------make-------------------------------------------
  1827 const TypeAry *TypeAry::make( const Type *elem, const TypeInt *size) {
  1828   if (UseCompressedOops && elem->isa_oopptr()) {
  1829     elem = elem->make_narrowoop();
  1831   size = normalize_array_size(size);
  1832   return (TypeAry*)(new TypeAry(elem,size))->hashcons();
  1835 //------------------------------meet-------------------------------------------
  1836 // Compute the MEET of two types.  It returns a new Type object.
  1837 const Type *TypeAry::xmeet( const Type *t ) const {
  1838   // Perform a fast test for common case; meeting the same types together.
  1839   if( this == t ) return this;  // Meeting same type-rep?
  1841   // Current "this->_base" is Ary
  1842   switch (t->base()) {          // switch on original type
  1844   case Bottom:                  // Ye Olde Default
  1845     return t;
  1847   default:                      // All else is a mistake
  1848     typerr(t);
  1850   case Array: {                 // Meeting 2 arrays?
  1851     const TypeAry *a = t->is_ary();
  1852     return TypeAry::make(_elem->meet(a->_elem),
  1853                          _size->xmeet(a->_size)->is_int());
  1855   case Top:
  1856     break;
  1858   return this;                  // Return the double constant
  1861 //------------------------------xdual------------------------------------------
  1862 // Dual: compute field-by-field dual
  1863 const Type *TypeAry::xdual() const {
  1864   const TypeInt* size_dual = _size->dual()->is_int();
  1865   size_dual = normalize_array_size(size_dual);
  1866   return new TypeAry( _elem->dual(), size_dual);
  1869 //------------------------------eq---------------------------------------------
  1870 // Structural equality check for Type representations
  1871 bool TypeAry::eq( const Type *t ) const {
  1872   const TypeAry *a = (const TypeAry*)t;
  1873   return _elem == a->_elem &&
  1874     _size == a->_size;
  1877 //------------------------------hash-------------------------------------------
  1878 // Type-specific hashing function.
  1879 int TypeAry::hash(void) const {
  1880   return (intptr_t)_elem + (intptr_t)_size;
  1883 //----------------------interface_vs_oop---------------------------------------
  1884 #ifdef ASSERT
  1885 bool TypeAry::interface_vs_oop(const Type *t) const {
  1886   const TypeAry* t_ary = t->is_ary();
  1887   if (t_ary) {
  1888     return _elem->interface_vs_oop(t_ary->_elem);
  1890   return false;
  1892 #endif
  1894 //------------------------------dump2------------------------------------------
  1895 #ifndef PRODUCT
  1896 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
  1897   _elem->dump2(d, depth, st);
  1898   st->print("[");
  1899   _size->dump2(d, depth, st);
  1900   st->print("]");
  1902 #endif
  1904 //------------------------------singleton--------------------------------------
  1905 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1906 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1907 // or a single symbol.
  1908 bool TypeAry::singleton(void) const {
  1909   return false;                 // Never a singleton
  1912 bool TypeAry::empty(void) const {
  1913   return _elem->empty() || _size->empty();
  1916 //--------------------------ary_must_be_exact----------------------------------
  1917 bool TypeAry::ary_must_be_exact() const {
  1918   if (!UseExactTypes)       return false;
  1919   // This logic looks at the element type of an array, and returns true
  1920   // if the element type is either a primitive or a final instance class.
  1921   // In such cases, an array built on this ary must have no subclasses.
  1922   if (_elem == BOTTOM)      return false;  // general array not exact
  1923   if (_elem == TOP   )      return false;  // inverted general array not exact
  1924   const TypeOopPtr*  toop = NULL;
  1925   if (UseCompressedOops && _elem->isa_narrowoop()) {
  1926     toop = _elem->make_ptr()->isa_oopptr();
  1927   } else {
  1928     toop = _elem->isa_oopptr();
  1930   if (!toop)                return true;   // a primitive type, like int
  1931   ciKlass* tklass = toop->klass();
  1932   if (tklass == NULL)       return false;  // unloaded class
  1933   if (!tklass->is_loaded()) return false;  // unloaded class
  1934   const TypeInstPtr* tinst;
  1935   if (_elem->isa_narrowoop())
  1936     tinst = _elem->make_ptr()->isa_instptr();
  1937   else
  1938     tinst = _elem->isa_instptr();
  1939   if (tinst)
  1940     return tklass->as_instance_klass()->is_final();
  1941   const TypeAryPtr*  tap;
  1942   if (_elem->isa_narrowoop())
  1943     tap = _elem->make_ptr()->isa_aryptr();
  1944   else
  1945     tap = _elem->isa_aryptr();
  1946   if (tap)
  1947     return tap->ary()->ary_must_be_exact();
  1948   return false;
  1951 //==============================TypeVect=======================================
  1952 // Convenience common pre-built types.
  1953 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
  1954 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
  1955 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
  1956 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
  1958 //------------------------------make-------------------------------------------
  1959 const TypeVect* TypeVect::make(const Type *elem, uint length) {
  1960   BasicType elem_bt = elem->array_element_basic_type();
  1961   assert(is_java_primitive(elem_bt), "only primitive types in vector");
  1962   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
  1963   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
  1964   int size = length * type2aelembytes(elem_bt);
  1965   switch (Matcher::vector_ideal_reg(size)) {
  1966   case Op_VecS:
  1967     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
  1968   case Op_VecD:
  1969   case Op_RegD:
  1970     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
  1971   case Op_VecX:
  1972     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
  1973   case Op_VecY:
  1974     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
  1976  ShouldNotReachHere();
  1977   return NULL;
  1980 //------------------------------meet-------------------------------------------
  1981 // Compute the MEET of two types.  It returns a new Type object.
  1982 const Type *TypeVect::xmeet( const Type *t ) const {
  1983   // Perform a fast test for common case; meeting the same types together.
  1984   if( this == t ) return this;  // Meeting same type-rep?
  1986   // Current "this->_base" is Vector
  1987   switch (t->base()) {          // switch on original type
  1989   case Bottom:                  // Ye Olde Default
  1990     return t;
  1992   default:                      // All else is a mistake
  1993     typerr(t);
  1995   case VectorS:
  1996   case VectorD:
  1997   case VectorX:
  1998   case VectorY: {                // Meeting 2 vectors?
  1999     const TypeVect* v = t->is_vect();
  2000     assert(  base() == v->base(), "");
  2001     assert(length() == v->length(), "");
  2002     assert(element_basic_type() == v->element_basic_type(), "");
  2003     return TypeVect::make(_elem->xmeet(v->_elem), _length);
  2005   case Top:
  2006     break;
  2008   return this;
  2011 //------------------------------xdual------------------------------------------
  2012 // Dual: compute field-by-field dual
  2013 const Type *TypeVect::xdual() const {
  2014   return new TypeVect(base(), _elem->dual(), _length);
  2017 //------------------------------eq---------------------------------------------
  2018 // Structural equality check for Type representations
  2019 bool TypeVect::eq(const Type *t) const {
  2020   const TypeVect *v = t->is_vect();
  2021   return (_elem == v->_elem) && (_length == v->_length);
  2024 //------------------------------hash-------------------------------------------
  2025 // Type-specific hashing function.
  2026 int TypeVect::hash(void) const {
  2027   return (intptr_t)_elem + (intptr_t)_length;
  2030 //------------------------------singleton--------------------------------------
  2031 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2032 // constants (Ldi nodes).  Vector is singleton if all elements are the same
  2033 // constant value (when vector is created with Replicate code).
  2034 bool TypeVect::singleton(void) const {
  2035 // There is no Con node for vectors yet.
  2036 //  return _elem->singleton();
  2037   return false;
  2040 bool TypeVect::empty(void) const {
  2041   return _elem->empty();
  2044 //------------------------------dump2------------------------------------------
  2045 #ifndef PRODUCT
  2046 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
  2047   switch (base()) {
  2048   case VectorS:
  2049     st->print("vectors["); break;
  2050   case VectorD:
  2051     st->print("vectord["); break;
  2052   case VectorX:
  2053     st->print("vectorx["); break;
  2054   case VectorY:
  2055     st->print("vectory["); break;
  2056   default:
  2057     ShouldNotReachHere();
  2059   st->print("%d]:{", _length);
  2060   _elem->dump2(d, depth, st);
  2061   st->print("}");
  2063 #endif
  2066 //=============================================================================
  2067 // Convenience common pre-built types.
  2068 const TypePtr *TypePtr::NULL_PTR;
  2069 const TypePtr *TypePtr::NOTNULL;
  2070 const TypePtr *TypePtr::BOTTOM;
  2072 //------------------------------meet-------------------------------------------
  2073 // Meet over the PTR enum
  2074 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
  2075   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
  2076   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
  2077   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
  2078   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
  2079   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
  2080   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
  2081   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
  2082 };
  2084 //------------------------------make-------------------------------------------
  2085 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
  2086   return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
  2089 //------------------------------cast_to_ptr_type-------------------------------
  2090 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
  2091   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
  2092   if( ptr == _ptr ) return this;
  2093   return make(_base, ptr, _offset);
  2096 //------------------------------get_con----------------------------------------
  2097 intptr_t TypePtr::get_con() const {
  2098   assert( _ptr == Null, "" );
  2099   return _offset;
  2102 //------------------------------meet-------------------------------------------
  2103 // Compute the MEET of two types.  It returns a new Type object.
  2104 const Type *TypePtr::xmeet( const Type *t ) const {
  2105   // Perform a fast test for common case; meeting the same types together.
  2106   if( this == t ) return this;  // Meeting same type-rep?
  2108   // Current "this->_base" is AnyPtr
  2109   switch (t->base()) {          // switch on original type
  2110   case Int:                     // Mixing ints & oops happens when javac
  2111   case Long:                    // reuses local variables
  2112   case FloatTop:
  2113   case FloatCon:
  2114   case FloatBot:
  2115   case DoubleTop:
  2116   case DoubleCon:
  2117   case DoubleBot:
  2118   case NarrowOop:
  2119   case NarrowKlass:
  2120   case Bottom:                  // Ye Olde Default
  2121     return Type::BOTTOM;
  2122   case Top:
  2123     return this;
  2125   case AnyPtr: {                // Meeting to AnyPtrs
  2126     const TypePtr *tp = t->is_ptr();
  2127     return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
  2129   case RawPtr:                  // For these, flip the call around to cut down
  2130   case OopPtr:
  2131   case InstPtr:                 // on the cases I have to handle.
  2132   case AryPtr:
  2133   case MetadataPtr:
  2134   case KlassPtr:
  2135     return t->xmeet(this);      // Call in reverse direction
  2136   default:                      // All else is a mistake
  2137     typerr(t);
  2140   return this;
  2143 //------------------------------meet_offset------------------------------------
  2144 int TypePtr::meet_offset( int offset ) const {
  2145   // Either is 'TOP' offset?  Return the other offset!
  2146   if( _offset == OffsetTop ) return offset;
  2147   if( offset == OffsetTop ) return _offset;
  2148   // If either is different, return 'BOTTOM' offset
  2149   if( _offset != offset ) return OffsetBot;
  2150   return _offset;
  2153 //------------------------------dual_offset------------------------------------
  2154 int TypePtr::dual_offset( ) const {
  2155   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
  2156   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
  2157   return _offset;               // Map everything else into self
  2160 //------------------------------xdual------------------------------------------
  2161 // Dual: compute field-by-field dual
  2162 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
  2163   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
  2164 };
  2165 const Type *TypePtr::xdual() const {
  2166   return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
  2169 //------------------------------xadd_offset------------------------------------
  2170 int TypePtr::xadd_offset( intptr_t offset ) const {
  2171   // Adding to 'TOP' offset?  Return 'TOP'!
  2172   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
  2173   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  2174   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
  2175   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  2176   offset += (intptr_t)_offset;
  2177   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
  2179   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  2180   // It is possible to construct a negative offset during PhaseCCP
  2182   return (int)offset;        // Sum valid offsets
  2185 //------------------------------add_offset-------------------------------------
  2186 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
  2187   return make( AnyPtr, _ptr, xadd_offset(offset) );
  2190 //------------------------------eq---------------------------------------------
  2191 // Structural equality check for Type representations
  2192 bool TypePtr::eq( const Type *t ) const {
  2193   const TypePtr *a = (const TypePtr*)t;
  2194   return _ptr == a->ptr() && _offset == a->offset();
  2197 //------------------------------hash-------------------------------------------
  2198 // Type-specific hashing function.
  2199 int TypePtr::hash(void) const {
  2200   return _ptr + _offset;
  2203 //------------------------------dump2------------------------------------------
  2204 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
  2205   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
  2206 };
  2208 #ifndef PRODUCT
  2209 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2210   if( _ptr == Null ) st->print("NULL");
  2211   else st->print("%s *", ptr_msg[_ptr]);
  2212   if( _offset == OffsetTop ) st->print("+top");
  2213   else if( _offset == OffsetBot ) st->print("+bot");
  2214   else if( _offset ) st->print("+%d", _offset);
  2216 #endif
  2218 //------------------------------singleton--------------------------------------
  2219 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2220 // constants
  2221 bool TypePtr::singleton(void) const {
  2222   // TopPTR, Null, AnyNull, Constant are all singletons
  2223   return (_offset != OffsetBot) && !below_centerline(_ptr);
  2226 bool TypePtr::empty(void) const {
  2227   return (_offset == OffsetTop) || above_centerline(_ptr);
  2230 //=============================================================================
  2231 // Convenience common pre-built types.
  2232 const TypeRawPtr *TypeRawPtr::BOTTOM;
  2233 const TypeRawPtr *TypeRawPtr::NOTNULL;
  2235 //------------------------------make-------------------------------------------
  2236 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
  2237   assert( ptr != Constant, "what is the constant?" );
  2238   assert( ptr != Null, "Use TypePtr for NULL" );
  2239   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
  2242 const TypeRawPtr *TypeRawPtr::make( address bits ) {
  2243   assert( bits, "Use TypePtr for NULL" );
  2244   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
  2247 //------------------------------cast_to_ptr_type-------------------------------
  2248 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
  2249   assert( ptr != Constant, "what is the constant?" );
  2250   assert( ptr != Null, "Use TypePtr for NULL" );
  2251   assert( _bits==0, "Why cast a constant address?");
  2252   if( ptr == _ptr ) return this;
  2253   return make(ptr);
  2256 //------------------------------get_con----------------------------------------
  2257 intptr_t TypeRawPtr::get_con() const {
  2258   assert( _ptr == Null || _ptr == Constant, "" );
  2259   return (intptr_t)_bits;
  2262 //------------------------------meet-------------------------------------------
  2263 // Compute the MEET of two types.  It returns a new Type object.
  2264 const Type *TypeRawPtr::xmeet( const Type *t ) const {
  2265   // Perform a fast test for common case; meeting the same types together.
  2266   if( this == t ) return this;  // Meeting same type-rep?
  2268   // Current "this->_base" is RawPtr
  2269   switch( t->base() ) {         // switch on original type
  2270   case Bottom:                  // Ye Olde Default
  2271     return t;
  2272   case Top:
  2273     return this;
  2274   case AnyPtr:                  // Meeting to AnyPtrs
  2275     break;
  2276   case RawPtr: {                // might be top, bot, any/not or constant
  2277     enum PTR tptr = t->is_ptr()->ptr();
  2278     enum PTR ptr = meet_ptr( tptr );
  2279     if( ptr == Constant ) {     // Cannot be equal constants, so...
  2280       if( tptr == Constant && _ptr != Constant)  return t;
  2281       if( _ptr == Constant && tptr != Constant)  return this;
  2282       ptr = NotNull;            // Fall down in lattice
  2284     return make( ptr );
  2287   case OopPtr:
  2288   case InstPtr:
  2289   case AryPtr:
  2290   case MetadataPtr:
  2291   case KlassPtr:
  2292     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2293   default:                      // All else is a mistake
  2294     typerr(t);
  2297   // Found an AnyPtr type vs self-RawPtr type
  2298   const TypePtr *tp = t->is_ptr();
  2299   switch (tp->ptr()) {
  2300   case TypePtr::TopPTR:  return this;
  2301   case TypePtr::BotPTR:  return t;
  2302   case TypePtr::Null:
  2303     if( _ptr == TypePtr::TopPTR ) return t;
  2304     return TypeRawPtr::BOTTOM;
  2305   case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
  2306   case TypePtr::AnyNull:
  2307     if( _ptr == TypePtr::Constant) return this;
  2308     return make( meet_ptr(TypePtr::AnyNull) );
  2309   default: ShouldNotReachHere();
  2311   return this;
  2314 //------------------------------xdual------------------------------------------
  2315 // Dual: compute field-by-field dual
  2316 const Type *TypeRawPtr::xdual() const {
  2317   return new TypeRawPtr( dual_ptr(), _bits );
  2320 //------------------------------add_offset-------------------------------------
  2321 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
  2322   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
  2323   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
  2324   if( offset == 0 ) return this; // No change
  2325   switch (_ptr) {
  2326   case TypePtr::TopPTR:
  2327   case TypePtr::BotPTR:
  2328   case TypePtr::NotNull:
  2329     return this;
  2330   case TypePtr::Null:
  2331   case TypePtr::Constant: {
  2332     address bits = _bits+offset;
  2333     if ( bits == 0 ) return TypePtr::NULL_PTR;
  2334     return make( bits );
  2336   default:  ShouldNotReachHere();
  2338   return NULL;                  // Lint noise
  2341 //------------------------------eq---------------------------------------------
  2342 // Structural equality check for Type representations
  2343 bool TypeRawPtr::eq( const Type *t ) const {
  2344   const TypeRawPtr *a = (const TypeRawPtr*)t;
  2345   return _bits == a->_bits && TypePtr::eq(t);
  2348 //------------------------------hash-------------------------------------------
  2349 // Type-specific hashing function.
  2350 int TypeRawPtr::hash(void) const {
  2351   return (intptr_t)_bits + TypePtr::hash();
  2354 //------------------------------dump2------------------------------------------
  2355 #ifndef PRODUCT
  2356 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2357   if( _ptr == Constant )
  2358     st->print(INTPTR_FORMAT, _bits);
  2359   else
  2360     st->print("rawptr:%s", ptr_msg[_ptr]);
  2362 #endif
  2364 //=============================================================================
  2365 // Convenience common pre-built type.
  2366 const TypeOopPtr *TypeOopPtr::BOTTOM;
  2368 //------------------------------TypeOopPtr-------------------------------------
  2369 TypeOopPtr::TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id )
  2370   : TypePtr(t, ptr, offset),
  2371     _const_oop(o), _klass(k),
  2372     _klass_is_exact(xk),
  2373     _is_ptr_to_narrowoop(false),
  2374     _is_ptr_to_narrowklass(false),
  2375     _is_ptr_to_boxed_value(false),
  2376     _instance_id(instance_id) {
  2377   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
  2378       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
  2379     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
  2381 #ifdef _LP64
  2382   if (_offset != 0) {
  2383     if (_offset == oopDesc::klass_offset_in_bytes()) {
  2384       _is_ptr_to_narrowklass = UseCompressedClassPointers;
  2385     } else if (klass() == NULL) {
  2386       // Array with unknown body type
  2387       assert(this->isa_aryptr(), "only arrays without klass");
  2388       _is_ptr_to_narrowoop = UseCompressedOops;
  2389     } else if (this->isa_aryptr()) {
  2390       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
  2391                              _offset != arrayOopDesc::length_offset_in_bytes());
  2392     } else if (klass()->is_instance_klass()) {
  2393       ciInstanceKlass* ik = klass()->as_instance_klass();
  2394       ciField* field = NULL;
  2395       if (this->isa_klassptr()) {
  2396         // Perm objects don't use compressed references
  2397       } else if (_offset == OffsetBot || _offset == OffsetTop) {
  2398         // unsafe access
  2399         _is_ptr_to_narrowoop = UseCompressedOops;
  2400       } else { // exclude unsafe ops
  2401         assert(this->isa_instptr(), "must be an instance ptr.");
  2403         if (klass() == ciEnv::current()->Class_klass() &&
  2404             (_offset == java_lang_Class::klass_offset_in_bytes() ||
  2405              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
  2406           // Special hidden fields from the Class.
  2407           assert(this->isa_instptr(), "must be an instance ptr.");
  2408           _is_ptr_to_narrowoop = false;
  2409         } else if (klass() == ciEnv::current()->Class_klass() &&
  2410                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
  2411           // Static fields
  2412           assert(o != NULL, "must be constant");
  2413           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
  2414           ciField* field = k->get_field_by_offset(_offset, true);
  2415           assert(field != NULL, "missing field");
  2416           BasicType basic_elem_type = field->layout_type();
  2417           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
  2418                                                        basic_elem_type == T_ARRAY);
  2419         } else {
  2420           // Instance fields which contains a compressed oop references.
  2421           field = ik->get_field_by_offset(_offset, false);
  2422           if (field != NULL) {
  2423             BasicType basic_elem_type = field->layout_type();
  2424             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
  2425                                                          basic_elem_type == T_ARRAY);
  2426           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
  2427             // Compile::find_alias_type() cast exactness on all types to verify
  2428             // that it does not affect alias type.
  2429             _is_ptr_to_narrowoop = UseCompressedOops;
  2430           } else {
  2431             // Type for the copy start in LibraryCallKit::inline_native_clone().
  2432             _is_ptr_to_narrowoop = UseCompressedOops;
  2438 #endif
  2441 //------------------------------make-------------------------------------------
  2442 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
  2443                                    int offset, int instance_id) {
  2444   assert(ptr != Constant, "no constant generic pointers");
  2445   ciKlass*  k = Compile::current()->env()->Object_klass();
  2446   bool      xk = false;
  2447   ciObject* o = NULL;
  2448   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id))->hashcons();
  2452 //------------------------------cast_to_ptr_type-------------------------------
  2453 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
  2454   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
  2455   if( ptr == _ptr ) return this;
  2456   return make(ptr, _offset, _instance_id);
  2459 //-----------------------------cast_to_instance_id----------------------------
  2460 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
  2461   // There are no instances of a general oop.
  2462   // Return self unchanged.
  2463   return this;
  2466 //-----------------------------cast_to_exactness-------------------------------
  2467 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
  2468   // There is no such thing as an exact general oop.
  2469   // Return self unchanged.
  2470   return this;
  2474 //------------------------------as_klass_type----------------------------------
  2475 // Return the klass type corresponding to this instance or array type.
  2476 // It is the type that is loaded from an object of this type.
  2477 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
  2478   ciKlass* k = klass();
  2479   bool    xk = klass_is_exact();
  2480   if (k == NULL)
  2481     return TypeKlassPtr::OBJECT;
  2482   else
  2483     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
  2487 //------------------------------meet-------------------------------------------
  2488 // Compute the MEET of two types.  It returns a new Type object.
  2489 const Type *TypeOopPtr::xmeet( const Type *t ) const {
  2490   // Perform a fast test for common case; meeting the same types together.
  2491   if( this == t ) return this;  // Meeting same type-rep?
  2493   // Current "this->_base" is OopPtr
  2494   switch (t->base()) {          // switch on original type
  2496   case Int:                     // Mixing ints & oops happens when javac
  2497   case Long:                    // reuses local variables
  2498   case FloatTop:
  2499   case FloatCon:
  2500   case FloatBot:
  2501   case DoubleTop:
  2502   case DoubleCon:
  2503   case DoubleBot:
  2504   case NarrowOop:
  2505   case NarrowKlass:
  2506   case Bottom:                  // Ye Olde Default
  2507     return Type::BOTTOM;
  2508   case Top:
  2509     return this;
  2511   default:                      // All else is a mistake
  2512     typerr(t);
  2514   case RawPtr:
  2515   case MetadataPtr:
  2516   case KlassPtr:
  2517     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2519   case AnyPtr: {
  2520     // Found an AnyPtr type vs self-OopPtr type
  2521     const TypePtr *tp = t->is_ptr();
  2522     int offset = meet_offset(tp->offset());
  2523     PTR ptr = meet_ptr(tp->ptr());
  2524     switch (tp->ptr()) {
  2525     case Null:
  2526       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
  2527       // else fall through:
  2528     case TopPTR:
  2529     case AnyNull: {
  2530       int instance_id = meet_instance_id(InstanceTop);
  2531       return make(ptr, offset, instance_id);
  2533     case BotPTR:
  2534     case NotNull:
  2535       return TypePtr::make(AnyPtr, ptr, offset);
  2536     default: typerr(t);
  2540   case OopPtr: {                 // Meeting to other OopPtrs
  2541     const TypeOopPtr *tp = t->is_oopptr();
  2542     int instance_id = meet_instance_id(tp->instance_id());
  2543     return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id );
  2546   case InstPtr:                  // For these, flip the call around to cut down
  2547   case AryPtr:
  2548     return t->xmeet(this);      // Call in reverse direction
  2550   } // End of switch
  2551   return this;                  // Return the double constant
  2555 //------------------------------xdual------------------------------------------
  2556 // Dual of a pure heap pointer.  No relevant klass or oop information.
  2557 const Type *TypeOopPtr::xdual() const {
  2558   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
  2559   assert(const_oop() == NULL,             "no constants here");
  2560   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
  2563 //--------------------------make_from_klass_common-----------------------------
  2564 // Computes the element-type given a klass.
  2565 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
  2566   if (klass->is_instance_klass()) {
  2567     Compile* C = Compile::current();
  2568     Dependencies* deps = C->dependencies();
  2569     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
  2570     // Element is an instance
  2571     bool klass_is_exact = false;
  2572     if (klass->is_loaded()) {
  2573       // Try to set klass_is_exact.
  2574       ciInstanceKlass* ik = klass->as_instance_klass();
  2575       klass_is_exact = ik->is_final();
  2576       if (!klass_is_exact && klass_change
  2577           && deps != NULL && UseUniqueSubclasses) {
  2578         ciInstanceKlass* sub = ik->unique_concrete_subklass();
  2579         if (sub != NULL) {
  2580           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
  2581           klass = ik = sub;
  2582           klass_is_exact = sub->is_final();
  2585       if (!klass_is_exact && try_for_exact
  2586           && deps != NULL && UseExactTypes) {
  2587         if (!ik->is_interface() && !ik->has_subklass()) {
  2588           // Add a dependence; if concrete subclass added we need to recompile
  2589           deps->assert_leaf_type(ik);
  2590           klass_is_exact = true;
  2594     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
  2595   } else if (klass->is_obj_array_klass()) {
  2596     // Element is an object array. Recursively call ourself.
  2597     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
  2598     bool xk = etype->klass_is_exact();
  2599     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2600     // We used to pass NotNull in here, asserting that the sub-arrays
  2601     // are all not-null.  This is not true in generally, as code can
  2602     // slam NULLs down in the subarrays.
  2603     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
  2604     return arr;
  2605   } else if (klass->is_type_array_klass()) {
  2606     // Element is an typeArray
  2607     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
  2608     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2609     // We used to pass NotNull in here, asserting that the array pointer
  2610     // is not-null. That was not true in general.
  2611     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
  2612     return arr;
  2613   } else {
  2614     ShouldNotReachHere();
  2615     return NULL;
  2619 //------------------------------make_from_constant-----------------------------
  2620 // Make a java pointer from an oop constant
  2621 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
  2622                                                  bool require_constant,
  2623                                                  bool is_autobox_cache) {
  2624   assert(!o->is_null_object(), "null object not yet handled here.");
  2625   ciKlass* klass = o->klass();
  2626   if (klass->is_instance_klass()) {
  2627     // Element is an instance
  2628     if (require_constant) {
  2629       if (!o->can_be_constant())  return NULL;
  2630     } else if (!o->should_be_constant()) {
  2631       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
  2633     return TypeInstPtr::make(o);
  2634   } else if (klass->is_obj_array_klass()) {
  2635     // Element is an object array. Recursively call ourself.
  2636     const TypeOopPtr *etype =
  2637       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
  2638     if (is_autobox_cache) {
  2639       // The pointers in the autobox arrays are always non-null.
  2640       etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
  2642     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2643     // We used to pass NotNull in here, asserting that the sub-arrays
  2644     // are all not-null.  This is not true in generally, as code can
  2645     // slam NULLs down in the subarrays.
  2646     if (require_constant) {
  2647       if (!o->can_be_constant())  return NULL;
  2648     } else if (!o->should_be_constant()) {
  2649       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2651     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, is_autobox_cache);
  2652     return arr;
  2653   } else if (klass->is_type_array_klass()) {
  2654     // Element is an typeArray
  2655     const Type* etype =
  2656       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
  2657     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2658     // We used to pass NotNull in here, asserting that the array pointer
  2659     // is not-null. That was not true in general.
  2660     if (require_constant) {
  2661       if (!o->can_be_constant())  return NULL;
  2662     } else if (!o->should_be_constant()) {
  2663       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2665     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
  2666     return arr;
  2669   fatal("unhandled object type");
  2670   return NULL;
  2673 //------------------------------get_con----------------------------------------
  2674 intptr_t TypeOopPtr::get_con() const {
  2675   assert( _ptr == Null || _ptr == Constant, "" );
  2676   assert( _offset >= 0, "" );
  2678   if (_offset != 0) {
  2679     // After being ported to the compiler interface, the compiler no longer
  2680     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  2681     // to a handle at compile time.  This handle is embedded in the generated
  2682     // code and dereferenced at the time the nmethod is made.  Until that time,
  2683     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  2684     // have access to the addresses!).  This does not seem to currently happen,
  2685     // but this assertion here is to help prevent its occurence.
  2686     tty->print_cr("Found oop constant with non-zero offset");
  2687     ShouldNotReachHere();
  2690   return (intptr_t)const_oop()->constant_encoding();
  2694 //-----------------------------filter------------------------------------------
  2695 // Do not allow interface-vs.-noninterface joins to collapse to top.
  2696 const Type *TypeOopPtr::filter( const Type *kills ) const {
  2698   const Type* ft = join(kills);
  2699   const TypeInstPtr* ftip = ft->isa_instptr();
  2700   const TypeInstPtr* ktip = kills->isa_instptr();
  2701   const TypeKlassPtr* ftkp = ft->isa_klassptr();
  2702   const TypeKlassPtr* ktkp = kills->isa_klassptr();
  2704   if (ft->empty()) {
  2705     // Check for evil case of 'this' being a class and 'kills' expecting an
  2706     // interface.  This can happen because the bytecodes do not contain
  2707     // enough type info to distinguish a Java-level interface variable
  2708     // from a Java-level object variable.  If we meet 2 classes which
  2709     // both implement interface I, but their meet is at 'j/l/O' which
  2710     // doesn't implement I, we have no way to tell if the result should
  2711     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
  2712     // into a Phi which "knows" it's an Interface type we'll have to
  2713     // uplift the type.
  2714     if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
  2715       return kills;             // Uplift to interface
  2716     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
  2717       return kills;             // Uplift to interface
  2719     return Type::TOP;           // Canonical empty value
  2722   // If we have an interface-typed Phi or cast and we narrow to a class type,
  2723   // the join should report back the class.  However, if we have a J/L/Object
  2724   // class-typed Phi and an interface flows in, it's possible that the meet &
  2725   // join report an interface back out.  This isn't possible but happens
  2726   // because the type system doesn't interact well with interfaces.
  2727   if (ftip != NULL && ktip != NULL &&
  2728       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
  2729       ktip->is_loaded() && !ktip->klass()->is_interface()) {
  2730     // Happens in a CTW of rt.jar, 320-341, no extra flags
  2731     assert(!ftip->klass_is_exact(), "interface could not be exact");
  2732     return ktip->cast_to_ptr_type(ftip->ptr());
  2734   // Interface klass type could be exact in opposite to interface type,
  2735   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
  2736   if (ftkp != NULL && ktkp != NULL &&
  2737       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
  2738       !ftkp->klass_is_exact() && // Keep exact interface klass
  2739       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
  2740     return ktkp->cast_to_ptr_type(ftkp->ptr());
  2743   return ft;
  2746 //------------------------------eq---------------------------------------------
  2747 // Structural equality check for Type representations
  2748 bool TypeOopPtr::eq( const Type *t ) const {
  2749   const TypeOopPtr *a = (const TypeOopPtr*)t;
  2750   if (_klass_is_exact != a->_klass_is_exact ||
  2751       _instance_id != a->_instance_id)  return false;
  2752   ciObject* one = const_oop();
  2753   ciObject* two = a->const_oop();
  2754   if (one == NULL || two == NULL) {
  2755     return (one == two) && TypePtr::eq(t);
  2756   } else {
  2757     return one->equals(two) && TypePtr::eq(t);
  2761 //------------------------------hash-------------------------------------------
  2762 // Type-specific hashing function.
  2763 int TypeOopPtr::hash(void) const {
  2764   return
  2765     (const_oop() ? const_oop()->hash() : 0) +
  2766     _klass_is_exact +
  2767     _instance_id +
  2768     TypePtr::hash();
  2771 //------------------------------dump2------------------------------------------
  2772 #ifndef PRODUCT
  2773 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2774   st->print("oopptr:%s", ptr_msg[_ptr]);
  2775   if( _klass_is_exact ) st->print(":exact");
  2776   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
  2777   switch( _offset ) {
  2778   case OffsetTop: st->print("+top"); break;
  2779   case OffsetBot: st->print("+any"); break;
  2780   case         0: break;
  2781   default:        st->print("+%d",_offset); break;
  2783   if (_instance_id == InstanceTop)
  2784     st->print(",iid=top");
  2785   else if (_instance_id != InstanceBot)
  2786     st->print(",iid=%d",_instance_id);
  2788 #endif
  2790 //------------------------------singleton--------------------------------------
  2791 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2792 // constants
  2793 bool TypeOopPtr::singleton(void) const {
  2794   // detune optimizer to not generate constant oop + constant offset as a constant!
  2795   // TopPTR, Null, AnyNull, Constant are all singletons
  2796   return (_offset == 0) && !below_centerline(_ptr);
  2799 //------------------------------add_offset-------------------------------------
  2800 const TypePtr *TypeOopPtr::add_offset( intptr_t offset ) const {
  2801   return make( _ptr, xadd_offset(offset), _instance_id);
  2804 //------------------------------meet_instance_id--------------------------------
  2805 int TypeOopPtr::meet_instance_id( int instance_id ) const {
  2806   // Either is 'TOP' instance?  Return the other instance!
  2807   if( _instance_id == InstanceTop ) return  instance_id;
  2808   if(  instance_id == InstanceTop ) return _instance_id;
  2809   // If either is different, return 'BOTTOM' instance
  2810   if( _instance_id != instance_id ) return InstanceBot;
  2811   return _instance_id;
  2814 //------------------------------dual_instance_id--------------------------------
  2815 int TypeOopPtr::dual_instance_id( ) const {
  2816   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
  2817   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
  2818   return _instance_id;              // Map everything else into self
  2822 //=============================================================================
  2823 // Convenience common pre-built types.
  2824 const TypeInstPtr *TypeInstPtr::NOTNULL;
  2825 const TypeInstPtr *TypeInstPtr::BOTTOM;
  2826 const TypeInstPtr *TypeInstPtr::MIRROR;
  2827 const TypeInstPtr *TypeInstPtr::MARK;
  2828 const TypeInstPtr *TypeInstPtr::KLASS;
  2830 //------------------------------TypeInstPtr-------------------------------------
  2831 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
  2832  : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
  2833    assert(k != NULL &&
  2834           (k->is_loaded() || o == NULL),
  2835           "cannot have constants with non-loaded klass");
  2836 };
  2838 //------------------------------make-------------------------------------------
  2839 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
  2840                                      ciKlass* k,
  2841                                      bool xk,
  2842                                      ciObject* o,
  2843                                      int offset,
  2844                                      int instance_id) {
  2845   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
  2846   // Either const_oop() is NULL or else ptr is Constant
  2847   assert( (!o && ptr != Constant) || (o && ptr == Constant),
  2848           "constant pointers must have a value supplied" );
  2849   // Ptr is never Null
  2850   assert( ptr != Null, "NULL pointers are not typed" );
  2852   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  2853   if (!UseExactTypes)  xk = false;
  2854   if (ptr == Constant) {
  2855     // Note:  This case includes meta-object constants, such as methods.
  2856     xk = true;
  2857   } else if (k->is_loaded()) {
  2858     ciInstanceKlass* ik = k->as_instance_klass();
  2859     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
  2860     if (xk && ik->is_interface())  xk = false;  // no exact interface
  2863   // Now hash this baby
  2864   TypeInstPtr *result =
  2865     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
  2867   return result;
  2870 /**
  2871  *  Create constant type for a constant boxed value
  2872  */
  2873 const Type* TypeInstPtr::get_const_boxed_value() const {
  2874   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
  2875   assert((const_oop() != NULL), "should be called only for constant object");
  2876   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
  2877   BasicType bt = constant.basic_type();
  2878   switch (bt) {
  2879     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
  2880     case T_INT:      return TypeInt::make(constant.as_int());
  2881     case T_CHAR:     return TypeInt::make(constant.as_char());
  2882     case T_BYTE:     return TypeInt::make(constant.as_byte());
  2883     case T_SHORT:    return TypeInt::make(constant.as_short());
  2884     case T_FLOAT:    return TypeF::make(constant.as_float());
  2885     case T_DOUBLE:   return TypeD::make(constant.as_double());
  2886     case T_LONG:     return TypeLong::make(constant.as_long());
  2887     default:         break;
  2889   fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
  2890   return NULL;
  2893 //------------------------------cast_to_ptr_type-------------------------------
  2894 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
  2895   if( ptr == _ptr ) return this;
  2896   // Reconstruct _sig info here since not a problem with later lazy
  2897   // construction, _sig will show up on demand.
  2898   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id);
  2902 //-----------------------------cast_to_exactness-------------------------------
  2903 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
  2904   if( klass_is_exact == _klass_is_exact ) return this;
  2905   if (!UseExactTypes)  return this;
  2906   if (!_klass->is_loaded())  return this;
  2907   ciInstanceKlass* ik = _klass->as_instance_klass();
  2908   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
  2909   if( ik->is_interface() )              return this;  // cannot set xk
  2910   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
  2913 //-----------------------------cast_to_instance_id----------------------------
  2914 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
  2915   if( instance_id == _instance_id ) return this;
  2916   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id);
  2919 //------------------------------xmeet_unloaded---------------------------------
  2920 // Compute the MEET of two InstPtrs when at least one is unloaded.
  2921 // Assume classes are different since called after check for same name/class-loader
  2922 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
  2923     int off = meet_offset(tinst->offset());
  2924     PTR ptr = meet_ptr(tinst->ptr());
  2925     int instance_id = meet_instance_id(tinst->instance_id());
  2927     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
  2928     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
  2929     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
  2930       //
  2931       // Meet unloaded class with java/lang/Object
  2932       //
  2933       // Meet
  2934       //          |                     Unloaded Class
  2935       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
  2936       //  ===================================================================
  2937       //   TOP    | ..........................Unloaded......................|
  2938       //  AnyNull |  U-AN    |................Unloaded......................|
  2939       // Constant | ... O-NN .................................. |   O-BOT   |
  2940       //  NotNull | ... O-NN .................................. |   O-BOT   |
  2941       //  BOTTOM  | ........................Object-BOTTOM ..................|
  2942       //
  2943       assert(loaded->ptr() != TypePtr::Null, "insanity check");
  2944       //
  2945       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
  2946       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass(), false, NULL, off, instance_id ); }
  2947       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
  2948       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
  2949         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
  2950         else                                      { return TypeInstPtr::NOTNULL; }
  2952       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
  2954       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
  2957     // Both are unloaded, not the same class, not Object
  2958     // Or meet unloaded with a different loaded class, not java/lang/Object
  2959     if( ptr != TypePtr::BotPTR ) {
  2960       return TypeInstPtr::NOTNULL;
  2962     return TypeInstPtr::BOTTOM;
  2966 //------------------------------meet-------------------------------------------
  2967 // Compute the MEET of two types.  It returns a new Type object.
  2968 const Type *TypeInstPtr::xmeet( const Type *t ) const {
  2969   // Perform a fast test for common case; meeting the same types together.
  2970   if( this == t ) return this;  // Meeting same type-rep?
  2972   // Current "this->_base" is Pointer
  2973   switch (t->base()) {          // switch on original type
  2975   case Int:                     // Mixing ints & oops happens when javac
  2976   case Long:                    // reuses local variables
  2977   case FloatTop:
  2978   case FloatCon:
  2979   case FloatBot:
  2980   case DoubleTop:
  2981   case DoubleCon:
  2982   case DoubleBot:
  2983   case NarrowOop:
  2984   case NarrowKlass:
  2985   case Bottom:                  // Ye Olde Default
  2986     return Type::BOTTOM;
  2987   case Top:
  2988     return this;
  2990   default:                      // All else is a mistake
  2991     typerr(t);
  2993   case MetadataPtr:
  2994   case KlassPtr:
  2995   case RawPtr: return TypePtr::BOTTOM;
  2997   case AryPtr: {                // All arrays inherit from Object class
  2998     const TypeAryPtr *tp = t->is_aryptr();
  2999     int offset = meet_offset(tp->offset());
  3000     PTR ptr = meet_ptr(tp->ptr());
  3001     int instance_id = meet_instance_id(tp->instance_id());
  3002     switch (ptr) {
  3003     case TopPTR:
  3004     case AnyNull:                // Fall 'down' to dual of object klass
  3005       if (klass()->equals(ciEnv::current()->Object_klass())) {
  3006         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
  3007       } else {
  3008         // cannot subclass, so the meet has to fall badly below the centerline
  3009         ptr = NotNull;
  3010         instance_id = InstanceBot;
  3011         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id);
  3013     case Constant:
  3014     case NotNull:
  3015     case BotPTR:                // Fall down to object klass
  3016       // LCA is object_klass, but if we subclass from the top we can do better
  3017       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
  3018         // If 'this' (InstPtr) is above the centerline and it is Object class
  3019         // then we can subclass in the Java class hierarchy.
  3020         if (klass()->equals(ciEnv::current()->Object_klass())) {
  3021           // that is, tp's array type is a subtype of my klass
  3022           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
  3023                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
  3026       // The other case cannot happen, since I cannot be a subtype of an array.
  3027       // The meet falls down to Object class below centerline.
  3028       if( ptr == Constant )
  3029          ptr = NotNull;
  3030       instance_id = InstanceBot;
  3031       return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id );
  3032     default: typerr(t);
  3036   case OopPtr: {                // Meeting to OopPtrs
  3037     // Found a OopPtr type vs self-InstPtr type
  3038     const TypeOopPtr *tp = t->is_oopptr();
  3039     int offset = meet_offset(tp->offset());
  3040     PTR ptr = meet_ptr(tp->ptr());
  3041     switch (tp->ptr()) {
  3042     case TopPTR:
  3043     case AnyNull: {
  3044       int instance_id = meet_instance_id(InstanceTop);
  3045       return make(ptr, klass(), klass_is_exact(),
  3046                   (ptr == Constant ? const_oop() : NULL), offset, instance_id);
  3048     case NotNull:
  3049     case BotPTR: {
  3050       int instance_id = meet_instance_id(tp->instance_id());
  3051       return TypeOopPtr::make(ptr, offset, instance_id);
  3053     default: typerr(t);
  3057   case AnyPtr: {                // Meeting to AnyPtrs
  3058     // Found an AnyPtr type vs self-InstPtr type
  3059     const TypePtr *tp = t->is_ptr();
  3060     int offset = meet_offset(tp->offset());
  3061     PTR ptr = meet_ptr(tp->ptr());
  3062     switch (tp->ptr()) {
  3063     case Null:
  3064       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
  3065       // else fall through to AnyNull
  3066     case TopPTR:
  3067     case AnyNull: {
  3068       int instance_id = meet_instance_id(InstanceTop);
  3069       return make( ptr, klass(), klass_is_exact(),
  3070                    (ptr == Constant ? const_oop() : NULL), offset, instance_id);
  3072     case NotNull:
  3073     case BotPTR:
  3074       return TypePtr::make( AnyPtr, ptr, offset );
  3075     default: typerr(t);
  3079   /*
  3080                  A-top         }
  3081                /   |   \       }  Tops
  3082            B-top A-any C-top   }
  3083               | /  |  \ |      }  Any-nulls
  3084            B-any   |   C-any   }
  3085               |    |    |
  3086            B-con A-con C-con   } constants; not comparable across classes
  3087               |    |    |
  3088            B-not   |   C-not   }
  3089               | \  |  / |      }  not-nulls
  3090            B-bot A-not C-bot   }
  3091                \   |   /       }  Bottoms
  3092                  A-bot         }
  3093   */
  3095   case InstPtr: {                // Meeting 2 Oops?
  3096     // Found an InstPtr sub-type vs self-InstPtr type
  3097     const TypeInstPtr *tinst = t->is_instptr();
  3098     int off = meet_offset( tinst->offset() );
  3099     PTR ptr = meet_ptr( tinst->ptr() );
  3100     int instance_id = meet_instance_id(tinst->instance_id());
  3102     // Check for easy case; klasses are equal (and perhaps not loaded!)
  3103     // If we have constants, then we created oops so classes are loaded
  3104     // and we can handle the constants further down.  This case handles
  3105     // both-not-loaded or both-loaded classes
  3106     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
  3107       return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
  3110     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  3111     ciKlass* tinst_klass = tinst->klass();
  3112     ciKlass* this_klass  = this->klass();
  3113     bool tinst_xk = tinst->klass_is_exact();
  3114     bool this_xk  = this->klass_is_exact();
  3115     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
  3116       // One of these classes has not been loaded
  3117       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
  3118 #ifndef PRODUCT
  3119       if( PrintOpto && Verbose ) {
  3120         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
  3121         tty->print("  this == "); this->dump(); tty->cr();
  3122         tty->print(" tinst == "); tinst->dump(); tty->cr();
  3124 #endif
  3125       return unloaded_meet;
  3128     // Handle mixing oops and interfaces first.
  3129     if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
  3130       ciKlass *tmp = tinst_klass; // Swap interface around
  3131       tinst_klass = this_klass;
  3132       this_klass = tmp;
  3133       bool tmp2 = tinst_xk;
  3134       tinst_xk = this_xk;
  3135       this_xk = tmp2;
  3137     if (tinst_klass->is_interface() &&
  3138         !(this_klass->is_interface() ||
  3139           // Treat java/lang/Object as an honorary interface,
  3140           // because we need a bottom for the interface hierarchy.
  3141           this_klass == ciEnv::current()->Object_klass())) {
  3142       // Oop meets interface!
  3144       // See if the oop subtypes (implements) interface.
  3145       ciKlass *k;
  3146       bool xk;
  3147       if( this_klass->is_subtype_of( tinst_klass ) ) {
  3148         // Oop indeed subtypes.  Now keep oop or interface depending
  3149         // on whether we are both above the centerline or either is
  3150         // below the centerline.  If we are on the centerline
  3151         // (e.g., Constant vs. AnyNull interface), use the constant.
  3152         k  = below_centerline(ptr) ? tinst_klass : this_klass;
  3153         // If we are keeping this_klass, keep its exactness too.
  3154         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
  3155       } else {                  // Does not implement, fall to Object
  3156         // Oop does not implement interface, so mixing falls to Object
  3157         // just like the verifier does (if both are above the
  3158         // centerline fall to interface)
  3159         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
  3160         xk = above_centerline(ptr) ? tinst_xk : false;
  3161         // Watch out for Constant vs. AnyNull interface.
  3162         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
  3163         instance_id = InstanceBot;
  3165       ciObject* o = NULL;  // the Constant value, if any
  3166       if (ptr == Constant) {
  3167         // Find out which constant.
  3168         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
  3170       return make( ptr, k, xk, o, off, instance_id );
  3173     // Either oop vs oop or interface vs interface or interface vs Object
  3175     // !!! Here's how the symmetry requirement breaks down into invariants:
  3176     // If we split one up & one down AND they subtype, take the down man.
  3177     // If we split one up & one down AND they do NOT subtype, "fall hard".
  3178     // If both are up and they subtype, take the subtype class.
  3179     // If both are up and they do NOT subtype, "fall hard".
  3180     // If both are down and they subtype, take the supertype class.
  3181     // If both are down and they do NOT subtype, "fall hard".
  3182     // Constants treated as down.
  3184     // Now, reorder the above list; observe that both-down+subtype is also
  3185     // "fall hard"; "fall hard" becomes the default case:
  3186     // If we split one up & one down AND they subtype, take the down man.
  3187     // If both are up and they subtype, take the subtype class.
  3189     // If both are down and they subtype, "fall hard".
  3190     // If both are down and they do NOT subtype, "fall hard".
  3191     // If both are up and they do NOT subtype, "fall hard".
  3192     // If we split one up & one down AND they do NOT subtype, "fall hard".
  3194     // If a proper subtype is exact, and we return it, we return it exactly.
  3195     // If a proper supertype is exact, there can be no subtyping relationship!
  3196     // If both types are equal to the subtype, exactness is and-ed below the
  3197     // centerline and or-ed above it.  (N.B. Constants are always exact.)
  3199     // Check for subtyping:
  3200     ciKlass *subtype = NULL;
  3201     bool subtype_exact = false;
  3202     if( tinst_klass->equals(this_klass) ) {
  3203       subtype = this_klass;
  3204       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
  3205     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
  3206       subtype = this_klass;     // Pick subtyping class
  3207       subtype_exact = this_xk;
  3208     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
  3209       subtype = tinst_klass;    // Pick subtyping class
  3210       subtype_exact = tinst_xk;
  3213     if( subtype ) {
  3214       if( above_centerline(ptr) ) { // both are up?
  3215         this_klass = tinst_klass = subtype;
  3216         this_xk = tinst_xk = subtype_exact;
  3217       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
  3218         this_klass = tinst_klass; // tinst is down; keep down man
  3219         this_xk = tinst_xk;
  3220       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
  3221         tinst_klass = this_klass; // this is down; keep down man
  3222         tinst_xk = this_xk;
  3223       } else {
  3224         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
  3228     // Check for classes now being equal
  3229     if (tinst_klass->equals(this_klass)) {
  3230       // If the klasses are equal, the constants may still differ.  Fall to
  3231       // NotNull if they do (neither constant is NULL; that is a special case
  3232       // handled elsewhere).
  3233       ciObject* o = NULL;             // Assume not constant when done
  3234       ciObject* this_oop  = const_oop();
  3235       ciObject* tinst_oop = tinst->const_oop();
  3236       if( ptr == Constant ) {
  3237         if (this_oop != NULL && tinst_oop != NULL &&
  3238             this_oop->equals(tinst_oop) )
  3239           o = this_oop;
  3240         else if (above_centerline(this ->_ptr))
  3241           o = tinst_oop;
  3242         else if (above_centerline(tinst ->_ptr))
  3243           o = this_oop;
  3244         else
  3245           ptr = NotNull;
  3247       return make( ptr, this_klass, this_xk, o, off, instance_id );
  3248     } // Else classes are not equal
  3250     // Since klasses are different, we require a LCA in the Java
  3251     // class hierarchy - which means we have to fall to at least NotNull.
  3252     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  3253       ptr = NotNull;
  3254     instance_id = InstanceBot;
  3256     // Now we find the LCA of Java classes
  3257     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
  3258     return make( ptr, k, false, NULL, off, instance_id );
  3259   } // End of case InstPtr
  3261   } // End of switch
  3262   return this;                  // Return the double constant
  3266 //------------------------java_mirror_type--------------------------------------
  3267 ciType* TypeInstPtr::java_mirror_type() const {
  3268   // must be a singleton type
  3269   if( const_oop() == NULL )  return NULL;
  3271   // must be of type java.lang.Class
  3272   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
  3274   return const_oop()->as_instance()->java_mirror_type();
  3278 //------------------------------xdual------------------------------------------
  3279 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
  3280 // inheritance mechanism.
  3281 const Type *TypeInstPtr::xdual() const {
  3282   return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
  3285 //------------------------------eq---------------------------------------------
  3286 // Structural equality check for Type representations
  3287 bool TypeInstPtr::eq( const Type *t ) const {
  3288   const TypeInstPtr *p = t->is_instptr();
  3289   return
  3290     klass()->equals(p->klass()) &&
  3291     TypeOopPtr::eq(p);          // Check sub-type stuff
  3294 //------------------------------hash-------------------------------------------
  3295 // Type-specific hashing function.
  3296 int TypeInstPtr::hash(void) const {
  3297   int hash = klass()->hash() + TypeOopPtr::hash();
  3298   return hash;
  3301 //------------------------------dump2------------------------------------------
  3302 // Dump oop Type
  3303 #ifndef PRODUCT
  3304 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  3305   // Print the name of the klass.
  3306   klass()->print_name_on(st);
  3308   switch( _ptr ) {
  3309   case Constant:
  3310     // TO DO: Make CI print the hex address of the underlying oop.
  3311     if (WizardMode || Verbose) {
  3312       const_oop()->print_oop(st);
  3314   case BotPTR:
  3315     if (!WizardMode && !Verbose) {
  3316       if( _klass_is_exact ) st->print(":exact");
  3317       break;
  3319   case TopPTR:
  3320   case AnyNull:
  3321   case NotNull:
  3322     st->print(":%s", ptr_msg[_ptr]);
  3323     if( _klass_is_exact ) st->print(":exact");
  3324     break;
  3327   if( _offset ) {               // Dump offset, if any
  3328     if( _offset == OffsetBot )      st->print("+any");
  3329     else if( _offset == OffsetTop ) st->print("+unknown");
  3330     else st->print("+%d", _offset);
  3333   st->print(" *");
  3334   if (_instance_id == InstanceTop)
  3335     st->print(",iid=top");
  3336   else if (_instance_id != InstanceBot)
  3337     st->print(",iid=%d",_instance_id);
  3339 #endif
  3341 //------------------------------add_offset-------------------------------------
  3342 const TypePtr *TypeInstPtr::add_offset( intptr_t offset ) const {
  3343   return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
  3346 //=============================================================================
  3347 // Convenience common pre-built types.
  3348 const TypeAryPtr *TypeAryPtr::RANGE;
  3349 const TypeAryPtr *TypeAryPtr::OOPS;
  3350 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
  3351 const TypeAryPtr *TypeAryPtr::BYTES;
  3352 const TypeAryPtr *TypeAryPtr::SHORTS;
  3353 const TypeAryPtr *TypeAryPtr::CHARS;
  3354 const TypeAryPtr *TypeAryPtr::INTS;
  3355 const TypeAryPtr *TypeAryPtr::LONGS;
  3356 const TypeAryPtr *TypeAryPtr::FLOATS;
  3357 const TypeAryPtr *TypeAryPtr::DOUBLES;
  3359 //------------------------------make-------------------------------------------
  3360 const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
  3361   assert(!(k == NULL && ary->_elem->isa_int()),
  3362          "integral arrays must be pre-equipped with a class");
  3363   if (!xk)  xk = ary->ary_must_be_exact();
  3364   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3365   if (!UseExactTypes)  xk = (ptr == Constant);
  3366   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false))->hashcons();
  3369 //------------------------------make-------------------------------------------
  3370 const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, bool is_autobox_cache) {
  3371   assert(!(k == NULL && ary->_elem->isa_int()),
  3372          "integral arrays must be pre-equipped with a class");
  3373   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
  3374   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
  3375   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3376   if (!UseExactTypes)  xk = (ptr == Constant);
  3377   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache))->hashcons();
  3380 //------------------------------cast_to_ptr_type-------------------------------
  3381 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
  3382   if( ptr == _ptr ) return this;
  3383   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id);
  3387 //-----------------------------cast_to_exactness-------------------------------
  3388 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
  3389   if( klass_is_exact == _klass_is_exact ) return this;
  3390   if (!UseExactTypes)  return this;
  3391   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
  3392   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
  3395 //-----------------------------cast_to_instance_id----------------------------
  3396 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
  3397   if( instance_id == _instance_id ) return this;
  3398   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id);
  3401 //-----------------------------narrow_size_type-------------------------------
  3402 // Local cache for arrayOopDesc::max_array_length(etype),
  3403 // which is kind of slow (and cached elsewhere by other users).
  3404 static jint max_array_length_cache[T_CONFLICT+1];
  3405 static jint max_array_length(BasicType etype) {
  3406   jint& cache = max_array_length_cache[etype];
  3407   jint res = cache;
  3408   if (res == 0) {
  3409     switch (etype) {
  3410     case T_NARROWOOP:
  3411       etype = T_OBJECT;
  3412       break;
  3413     case T_NARROWKLASS:
  3414     case T_CONFLICT:
  3415     case T_ILLEGAL:
  3416     case T_VOID:
  3417       etype = T_BYTE;           // will produce conservatively high value
  3419     cache = res = arrayOopDesc::max_array_length(etype);
  3421   return res;
  3424 // Narrow the given size type to the index range for the given array base type.
  3425 // Return NULL if the resulting int type becomes empty.
  3426 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
  3427   jint hi = size->_hi;
  3428   jint lo = size->_lo;
  3429   jint min_lo = 0;
  3430   jint max_hi = max_array_length(elem()->basic_type());
  3431   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
  3432   bool chg = false;
  3433   if (lo < min_lo) {
  3434     lo = min_lo;
  3435     if (size->is_con()) {
  3436       hi = lo;
  3438     chg = true;
  3440   if (hi > max_hi) {
  3441     hi = max_hi;
  3442     if (size->is_con()) {
  3443       lo = hi;
  3445     chg = true;
  3447   // Negative length arrays will produce weird intermediate dead fast-path code
  3448   if (lo > hi)
  3449     return TypeInt::ZERO;
  3450   if (!chg)
  3451     return size;
  3452   return TypeInt::make(lo, hi, Type::WidenMin);
  3455 //-------------------------------cast_to_size----------------------------------
  3456 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
  3457   assert(new_size != NULL, "");
  3458   new_size = narrow_size_type(new_size);
  3459   if (new_size == size())  return this;
  3460   const TypeAry* new_ary = TypeAry::make(elem(), new_size);
  3461   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
  3465 //------------------------------eq---------------------------------------------
  3466 // Structural equality check for Type representations
  3467 bool TypeAryPtr::eq( const Type *t ) const {
  3468   const TypeAryPtr *p = t->is_aryptr();
  3469   return
  3470     _ary == p->_ary &&  // Check array
  3471     TypeOopPtr::eq(p);  // Check sub-parts
  3474 //------------------------------hash-------------------------------------------
  3475 // Type-specific hashing function.
  3476 int TypeAryPtr::hash(void) const {
  3477   return (intptr_t)_ary + TypeOopPtr::hash();
  3480 //------------------------------meet-------------------------------------------
  3481 // Compute the MEET of two types.  It returns a new Type object.
  3482 const Type *TypeAryPtr::xmeet( const Type *t ) const {
  3483   // Perform a fast test for common case; meeting the same types together.
  3484   if( this == t ) return this;  // Meeting same type-rep?
  3485   // Current "this->_base" is Pointer
  3486   switch (t->base()) {          // switch on original type
  3488   // Mixing ints & oops happens when javac reuses local variables
  3489   case Int:
  3490   case Long:
  3491   case FloatTop:
  3492   case FloatCon:
  3493   case FloatBot:
  3494   case DoubleTop:
  3495   case DoubleCon:
  3496   case DoubleBot:
  3497   case NarrowOop:
  3498   case NarrowKlass:
  3499   case Bottom:                  // Ye Olde Default
  3500     return Type::BOTTOM;
  3501   case Top:
  3502     return this;
  3504   default:                      // All else is a mistake
  3505     typerr(t);
  3507   case OopPtr: {                // Meeting to OopPtrs
  3508     // Found a OopPtr type vs self-AryPtr type
  3509     const TypeOopPtr *tp = t->is_oopptr();
  3510     int offset = meet_offset(tp->offset());
  3511     PTR ptr = meet_ptr(tp->ptr());
  3512     switch (tp->ptr()) {
  3513     case TopPTR:
  3514     case AnyNull: {
  3515       int instance_id = meet_instance_id(InstanceTop);
  3516       return make(ptr, (ptr == Constant ? const_oop() : NULL),
  3517                   _ary, _klass, _klass_is_exact, offset, instance_id);
  3519     case BotPTR:
  3520     case NotNull: {
  3521       int instance_id = meet_instance_id(tp->instance_id());
  3522       return TypeOopPtr::make(ptr, offset, instance_id);
  3524     default: ShouldNotReachHere();
  3528   case AnyPtr: {                // Meeting two AnyPtrs
  3529     // Found an AnyPtr type vs self-AryPtr type
  3530     const TypePtr *tp = t->is_ptr();
  3531     int offset = meet_offset(tp->offset());
  3532     PTR ptr = meet_ptr(tp->ptr());
  3533     switch (tp->ptr()) {
  3534     case TopPTR:
  3535       return this;
  3536     case BotPTR:
  3537     case NotNull:
  3538       return TypePtr::make(AnyPtr, ptr, offset);
  3539     case Null:
  3540       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
  3541       // else fall through to AnyNull
  3542     case AnyNull: {
  3543       int instance_id = meet_instance_id(InstanceTop);
  3544       return make( ptr, (ptr == Constant ? const_oop() : NULL),
  3545                   _ary, _klass, _klass_is_exact, offset, instance_id);
  3547     default: ShouldNotReachHere();
  3551   case MetadataPtr:
  3552   case KlassPtr:
  3553   case RawPtr: return TypePtr::BOTTOM;
  3555   case AryPtr: {                // Meeting 2 references?
  3556     const TypeAryPtr *tap = t->is_aryptr();
  3557     int off = meet_offset(tap->offset());
  3558     const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
  3559     PTR ptr = meet_ptr(tap->ptr());
  3560     int instance_id = meet_instance_id(tap->instance_id());
  3561     ciKlass* lazy_klass = NULL;
  3562     if (tary->_elem->isa_int()) {
  3563       // Integral array element types have irrelevant lattice relations.
  3564       // It is the klass that determines array layout, not the element type.
  3565       if (_klass == NULL)
  3566         lazy_klass = tap->_klass;
  3567       else if (tap->_klass == NULL || tap->_klass == _klass) {
  3568         lazy_klass = _klass;
  3569       } else {
  3570         // Something like byte[int+] meets char[int+].
  3571         // This must fall to bottom, not (int[-128..65535])[int+].
  3572         instance_id = InstanceBot;
  3573         tary = TypeAry::make(Type::BOTTOM, tary->_size);
  3575     } else // Non integral arrays.
  3576     // Must fall to bottom if exact klasses in upper lattice
  3577     // are not equal or super klass is exact.
  3578     if ( above_centerline(ptr) && klass() != tap->klass() &&
  3579          // meet with top[] and bottom[] are processed further down:
  3580          tap ->_klass != NULL  && this->_klass != NULL   &&
  3581          // both are exact and not equal:
  3582         ((tap ->_klass_is_exact && this->_klass_is_exact) ||
  3583          // 'tap'  is exact and super or unrelated:
  3584          (tap ->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
  3585          // 'this' is exact and super or unrelated:
  3586          (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
  3587       tary = TypeAry::make(Type::BOTTOM, tary->_size);
  3588       return make( NotNull, NULL, tary, lazy_klass, false, off, InstanceBot );
  3591     bool xk = false;
  3592     switch (tap->ptr()) {
  3593     case AnyNull:
  3594     case TopPTR:
  3595       // Compute new klass on demand, do not use tap->_klass
  3596       xk = (tap->_klass_is_exact | this->_klass_is_exact);
  3597       return make( ptr, const_oop(), tary, lazy_klass, xk, off, instance_id );
  3598     case Constant: {
  3599       ciObject* o = const_oop();
  3600       if( _ptr == Constant ) {
  3601         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
  3602           xk = (klass() == tap->klass());
  3603           ptr = NotNull;
  3604           o = NULL;
  3605           instance_id = InstanceBot;
  3606         } else {
  3607           xk = true;
  3609       } else if( above_centerline(_ptr) ) {
  3610         o = tap->const_oop();
  3611         xk = true;
  3612       } else {
  3613         // Only precise for identical arrays
  3614         xk = this->_klass_is_exact && (klass() == tap->klass());
  3616       return TypeAryPtr::make( ptr, o, tary, lazy_klass, xk, off, instance_id );
  3618     case NotNull:
  3619     case BotPTR:
  3620       // Compute new klass on demand, do not use tap->_klass
  3621       if (above_centerline(this->_ptr))
  3622             xk = tap->_klass_is_exact;
  3623       else if (above_centerline(tap->_ptr))
  3624             xk = this->_klass_is_exact;
  3625       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
  3626               (klass() == tap->klass()); // Only precise for identical arrays
  3627       return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, instance_id );
  3628     default: ShouldNotReachHere();
  3632   // All arrays inherit from Object class
  3633   case InstPtr: {
  3634     const TypeInstPtr *tp = t->is_instptr();
  3635     int offset = meet_offset(tp->offset());
  3636     PTR ptr = meet_ptr(tp->ptr());
  3637     int instance_id = meet_instance_id(tp->instance_id());
  3638     switch (ptr) {
  3639     case TopPTR:
  3640     case AnyNull:                // Fall 'down' to dual of object klass
  3641       if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
  3642         return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
  3643       } else {
  3644         // cannot subclass, so the meet has to fall badly below the centerline
  3645         ptr = NotNull;
  3646         instance_id = InstanceBot;
  3647         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
  3649     case Constant:
  3650     case NotNull:
  3651     case BotPTR:                // Fall down to object klass
  3652       // LCA is object_klass, but if we subclass from the top we can do better
  3653       if (above_centerline(tp->ptr())) {
  3654         // If 'tp'  is above the centerline and it is Object class
  3655         // then we can subclass in the Java class hierarchy.
  3656         if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
  3657           // that is, my array type is a subtype of 'tp' klass
  3658           return make( ptr, (ptr == Constant ? const_oop() : NULL),
  3659                        _ary, _klass, _klass_is_exact, offset, instance_id );
  3662       // The other case cannot happen, since t cannot be a subtype of an array.
  3663       // The meet falls down to Object class below centerline.
  3664       if( ptr == Constant )
  3665          ptr = NotNull;
  3666       instance_id = InstanceBot;
  3667       return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
  3668     default: typerr(t);
  3672   return this;                  // Lint noise
  3675 //------------------------------xdual------------------------------------------
  3676 // Dual: compute field-by-field dual
  3677 const Type *TypeAryPtr::xdual() const {
  3678   return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache() );
  3681 //----------------------interface_vs_oop---------------------------------------
  3682 #ifdef ASSERT
  3683 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
  3684   const TypeAryPtr* t_aryptr = t->isa_aryptr();
  3685   if (t_aryptr) {
  3686     return _ary->interface_vs_oop(t_aryptr->_ary);
  3688   return false;
  3690 #endif
  3692 //------------------------------dump2------------------------------------------
  3693 #ifndef PRODUCT
  3694 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  3695   _ary->dump2(d,depth,st);
  3696   switch( _ptr ) {
  3697   case Constant:
  3698     const_oop()->print(st);
  3699     break;
  3700   case BotPTR:
  3701     if (!WizardMode && !Verbose) {
  3702       if( _klass_is_exact ) st->print(":exact");
  3703       break;
  3705   case TopPTR:
  3706   case AnyNull:
  3707   case NotNull:
  3708     st->print(":%s", ptr_msg[_ptr]);
  3709     if( _klass_is_exact ) st->print(":exact");
  3710     break;
  3713   if( _offset != 0 ) {
  3714     int header_size = objArrayOopDesc::header_size() * wordSize;
  3715     if( _offset == OffsetTop )       st->print("+undefined");
  3716     else if( _offset == OffsetBot )  st->print("+any");
  3717     else if( _offset < header_size ) st->print("+%d", _offset);
  3718     else {
  3719       BasicType basic_elem_type = elem()->basic_type();
  3720       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  3721       int elem_size = type2aelembytes(basic_elem_type);
  3722       st->print("[%d]", (_offset - array_base)/elem_size);
  3725   st->print(" *");
  3726   if (_instance_id == InstanceTop)
  3727     st->print(",iid=top");
  3728   else if (_instance_id != InstanceBot)
  3729     st->print(",iid=%d",_instance_id);
  3731 #endif
  3733 bool TypeAryPtr::empty(void) const {
  3734   if (_ary->empty())       return true;
  3735   return TypeOopPtr::empty();
  3738 //------------------------------add_offset-------------------------------------
  3739 const TypePtr *TypeAryPtr::add_offset( intptr_t offset ) const {
  3740   return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
  3744 //=============================================================================
  3746 //------------------------------hash-------------------------------------------
  3747 // Type-specific hashing function.
  3748 int TypeNarrowPtr::hash(void) const {
  3749   return _ptrtype->hash() + 7;
  3752 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
  3753   return _ptrtype->singleton();
  3756 bool TypeNarrowPtr::empty(void) const {
  3757   return _ptrtype->empty();
  3760 intptr_t TypeNarrowPtr::get_con() const {
  3761   return _ptrtype->get_con();
  3764 bool TypeNarrowPtr::eq( const Type *t ) const {
  3765   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
  3766   if (tc != NULL) {
  3767     if (_ptrtype->base() != tc->_ptrtype->base()) {
  3768       return false;
  3770     return tc->_ptrtype->eq(_ptrtype);
  3772   return false;
  3775 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
  3776   const TypePtr* odual = _ptrtype->dual()->is_ptr();
  3777   return make_same_narrowptr(odual);
  3781 const Type *TypeNarrowPtr::filter( const Type *kills ) const {
  3782   if (isa_same_narrowptr(kills)) {
  3783     const Type* ft =_ptrtype->filter(is_same_narrowptr(kills)->_ptrtype);
  3784     if (ft->empty())
  3785       return Type::TOP;           // Canonical empty value
  3786     if (ft->isa_ptr()) {
  3787       return make_hash_same_narrowptr(ft->isa_ptr());
  3789     return ft;
  3790   } else if (kills->isa_ptr()) {
  3791     const Type* ft = _ptrtype->join(kills);
  3792     if (ft->empty())
  3793       return Type::TOP;           // Canonical empty value
  3794     return ft;
  3795   } else {
  3796     return Type::TOP;
  3800 //------------------------------xmeet------------------------------------------
  3801 // Compute the MEET of two types.  It returns a new Type object.
  3802 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
  3803   // Perform a fast test for common case; meeting the same types together.
  3804   if( this == t ) return this;  // Meeting same type-rep?
  3806   if (t->base() == base()) {
  3807     const Type* result = _ptrtype->xmeet(t->make_ptr());
  3808     if (result->isa_ptr()) {
  3809       return make_hash_same_narrowptr(result->is_ptr());
  3811     return result;
  3814   // Current "this->_base" is NarrowKlass or NarrowOop
  3815   switch (t->base()) {          // switch on original type
  3817   case Int:                     // Mixing ints & oops happens when javac
  3818   case Long:                    // reuses local variables
  3819   case FloatTop:
  3820   case FloatCon:
  3821   case FloatBot:
  3822   case DoubleTop:
  3823   case DoubleCon:
  3824   case DoubleBot:
  3825   case AnyPtr:
  3826   case RawPtr:
  3827   case OopPtr:
  3828   case InstPtr:
  3829   case AryPtr:
  3830   case MetadataPtr:
  3831   case KlassPtr:
  3832   case NarrowOop:
  3833   case NarrowKlass:
  3835   case Bottom:                  // Ye Olde Default
  3836     return Type::BOTTOM;
  3837   case Top:
  3838     return this;
  3840   default:                      // All else is a mistake
  3841     typerr(t);
  3843   } // End of switch
  3845   return this;
  3848 #ifndef PRODUCT
  3849 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
  3850   _ptrtype->dump2(d, depth, st);
  3852 #endif
  3854 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
  3855 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
  3858 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
  3859   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
  3863 #ifndef PRODUCT
  3864 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
  3865   st->print("narrowoop: ");
  3866   TypeNarrowPtr::dump2(d, depth, st);
  3868 #endif
  3870 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
  3872 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
  3873   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
  3876 #ifndef PRODUCT
  3877 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
  3878   st->print("narrowklass: ");
  3879   TypeNarrowPtr::dump2(d, depth, st);
  3881 #endif
  3884 //------------------------------eq---------------------------------------------
  3885 // Structural equality check for Type representations
  3886 bool TypeMetadataPtr::eq( const Type *t ) const {
  3887   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
  3888   ciMetadata* one = metadata();
  3889   ciMetadata* two = a->metadata();
  3890   if (one == NULL || two == NULL) {
  3891     return (one == two) && TypePtr::eq(t);
  3892   } else {
  3893     return one->equals(two) && TypePtr::eq(t);
  3897 //------------------------------hash-------------------------------------------
  3898 // Type-specific hashing function.
  3899 int TypeMetadataPtr::hash(void) const {
  3900   return
  3901     (metadata() ? metadata()->hash() : 0) +
  3902     TypePtr::hash();
  3905 //------------------------------singleton--------------------------------------
  3906 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  3907 // constants
  3908 bool TypeMetadataPtr::singleton(void) const {
  3909   // detune optimizer to not generate constant metadta + constant offset as a constant!
  3910   // TopPTR, Null, AnyNull, Constant are all singletons
  3911   return (_offset == 0) && !below_centerline(_ptr);
  3914 //------------------------------add_offset-------------------------------------
  3915 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
  3916   return make( _ptr, _metadata, xadd_offset(offset));
  3919 //-----------------------------filter------------------------------------------
  3920 // Do not allow interface-vs.-noninterface joins to collapse to top.
  3921 const Type *TypeMetadataPtr::filter( const Type *kills ) const {
  3922   const TypeMetadataPtr* ft = join(kills)->isa_metadataptr();
  3923   if (ft == NULL || ft->empty())
  3924     return Type::TOP;           // Canonical empty value
  3925   return ft;
  3928  //------------------------------get_con----------------------------------------
  3929 intptr_t TypeMetadataPtr::get_con() const {
  3930   assert( _ptr == Null || _ptr == Constant, "" );
  3931   assert( _offset >= 0, "" );
  3933   if (_offset != 0) {
  3934     // After being ported to the compiler interface, the compiler no longer
  3935     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  3936     // to a handle at compile time.  This handle is embedded in the generated
  3937     // code and dereferenced at the time the nmethod is made.  Until that time,
  3938     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  3939     // have access to the addresses!).  This does not seem to currently happen,
  3940     // but this assertion here is to help prevent its occurence.
  3941     tty->print_cr("Found oop constant with non-zero offset");
  3942     ShouldNotReachHere();
  3945   return (intptr_t)metadata()->constant_encoding();
  3948 //------------------------------cast_to_ptr_type-------------------------------
  3949 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
  3950   if( ptr == _ptr ) return this;
  3951   return make(ptr, metadata(), _offset);
  3954 //------------------------------meet-------------------------------------------
  3955 // Compute the MEET of two types.  It returns a new Type object.
  3956 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
  3957   // Perform a fast test for common case; meeting the same types together.
  3958   if( this == t ) return this;  // Meeting same type-rep?
  3960   // Current "this->_base" is OopPtr
  3961   switch (t->base()) {          // switch on original type
  3963   case Int:                     // Mixing ints & oops happens when javac
  3964   case Long:                    // reuses local variables
  3965   case FloatTop:
  3966   case FloatCon:
  3967   case FloatBot:
  3968   case DoubleTop:
  3969   case DoubleCon:
  3970   case DoubleBot:
  3971   case NarrowOop:
  3972   case NarrowKlass:
  3973   case Bottom:                  // Ye Olde Default
  3974     return Type::BOTTOM;
  3975   case Top:
  3976     return this;
  3978   default:                      // All else is a mistake
  3979     typerr(t);
  3981   case AnyPtr: {
  3982     // Found an AnyPtr type vs self-OopPtr type
  3983     const TypePtr *tp = t->is_ptr();
  3984     int offset = meet_offset(tp->offset());
  3985     PTR ptr = meet_ptr(tp->ptr());
  3986     switch (tp->ptr()) {
  3987     case Null:
  3988       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
  3989       // else fall through:
  3990     case TopPTR:
  3991     case AnyNull: {
  3992       return make(ptr, NULL, offset);
  3994     case BotPTR:
  3995     case NotNull:
  3996       return TypePtr::make(AnyPtr, ptr, offset);
  3997     default: typerr(t);
  4001   case RawPtr:
  4002   case KlassPtr:
  4003   case OopPtr:
  4004   case InstPtr:
  4005   case AryPtr:
  4006     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  4008   case MetadataPtr: {
  4009     const TypeMetadataPtr *tp = t->is_metadataptr();
  4010     int offset = meet_offset(tp->offset());
  4011     PTR tptr = tp->ptr();
  4012     PTR ptr = meet_ptr(tptr);
  4013     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
  4014     if (tptr == TopPTR || _ptr == TopPTR ||
  4015         metadata()->equals(tp->metadata())) {
  4016       return make(ptr, md, offset);
  4018     // metadata is different
  4019     if( ptr == Constant ) {  // Cannot be equal constants, so...
  4020       if( tptr == Constant && _ptr != Constant)  return t;
  4021       if( _ptr == Constant && tptr != Constant)  return this;
  4022       ptr = NotNull;            // Fall down in lattice
  4024     return make(ptr, NULL, offset);
  4025     break;
  4027   } // End of switch
  4028   return this;                  // Return the double constant
  4032 //------------------------------xdual------------------------------------------
  4033 // Dual of a pure metadata pointer.
  4034 const Type *TypeMetadataPtr::xdual() const {
  4035   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
  4038 //------------------------------dump2------------------------------------------
  4039 #ifndef PRODUCT
  4040 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  4041   st->print("metadataptr:%s", ptr_msg[_ptr]);
  4042   if( metadata() ) st->print(INTPTR_FORMAT, metadata());
  4043   switch( _offset ) {
  4044   case OffsetTop: st->print("+top"); break;
  4045   case OffsetBot: st->print("+any"); break;
  4046   case         0: break;
  4047   default:        st->print("+%d",_offset); break;
  4050 #endif
  4053 //=============================================================================
  4054 // Convenience common pre-built type.
  4055 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
  4057 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
  4058   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
  4061 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
  4062   return make(Constant, m, 0);
  4064 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
  4065   return make(Constant, m, 0);
  4068 //------------------------------make-------------------------------------------
  4069 // Create a meta data constant
  4070 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
  4071   assert(m == NULL || !m->is_klass(), "wrong type");
  4072   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
  4076 //=============================================================================
  4077 // Convenience common pre-built types.
  4079 // Not-null object klass or below
  4080 const TypeKlassPtr *TypeKlassPtr::OBJECT;
  4081 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
  4083 //------------------------------TypeKlassPtr-----------------------------------
  4084 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
  4085   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
  4088 //------------------------------make-------------------------------------------
  4089 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
  4090 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
  4091   assert( k != NULL, "Expect a non-NULL klass");
  4092   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
  4093   TypeKlassPtr *r =
  4094     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
  4096   return r;
  4099 //------------------------------eq---------------------------------------------
  4100 // Structural equality check for Type representations
  4101 bool TypeKlassPtr::eq( const Type *t ) const {
  4102   const TypeKlassPtr *p = t->is_klassptr();
  4103   return
  4104     klass()->equals(p->klass()) &&
  4105     TypePtr::eq(p);
  4108 //------------------------------hash-------------------------------------------
  4109 // Type-specific hashing function.
  4110 int TypeKlassPtr::hash(void) const {
  4111   return klass()->hash() + TypePtr::hash();
  4114 //------------------------------singleton--------------------------------------
  4115 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  4116 // constants
  4117 bool TypeKlassPtr::singleton(void) const {
  4118   // detune optimizer to not generate constant klass + constant offset as a constant!
  4119   // TopPTR, Null, AnyNull, Constant are all singletons
  4120   return (_offset == 0) && !below_centerline(_ptr);
  4123 //----------------------compute_klass------------------------------------------
  4124 // Compute the defining klass for this class
  4125 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
  4126   // Compute _klass based on element type.
  4127   ciKlass* k_ary = NULL;
  4128   const TypeInstPtr *tinst;
  4129   const TypeAryPtr *tary;
  4130   const Type* el = elem();
  4131   if (el->isa_narrowoop()) {
  4132     el = el->make_ptr();
  4135   // Get element klass
  4136   if ((tinst = el->isa_instptr()) != NULL) {
  4137     // Compute array klass from element klass
  4138     k_ary = ciObjArrayKlass::make(tinst->klass());
  4139   } else if ((tary = el->isa_aryptr()) != NULL) {
  4140     // Compute array klass from element klass
  4141     ciKlass* k_elem = tary->klass();
  4142     // If element type is something like bottom[], k_elem will be null.
  4143     if (k_elem != NULL)
  4144       k_ary = ciObjArrayKlass::make(k_elem);
  4145   } else if ((el->base() == Type::Top) ||
  4146              (el->base() == Type::Bottom)) {
  4147     // element type of Bottom occurs from meet of basic type
  4148     // and object; Top occurs when doing join on Bottom.
  4149     // Leave k_ary at NULL.
  4150   } else {
  4151     // Cannot compute array klass directly from basic type,
  4152     // since subtypes of TypeInt all have basic type T_INT.
  4153 #ifdef ASSERT
  4154     if (verify && el->isa_int()) {
  4155       // Check simple cases when verifying klass.
  4156       BasicType bt = T_ILLEGAL;
  4157       if (el == TypeInt::BYTE) {
  4158         bt = T_BYTE;
  4159       } else if (el == TypeInt::SHORT) {
  4160         bt = T_SHORT;
  4161       } else if (el == TypeInt::CHAR) {
  4162         bt = T_CHAR;
  4163       } else if (el == TypeInt::INT) {
  4164         bt = T_INT;
  4165       } else {
  4166         return _klass; // just return specified klass
  4168       return ciTypeArrayKlass::make(bt);
  4170 #endif
  4171     assert(!el->isa_int(),
  4172            "integral arrays must be pre-equipped with a class");
  4173     // Compute array klass directly from basic type
  4174     k_ary = ciTypeArrayKlass::make(el->basic_type());
  4176   return k_ary;
  4179 //------------------------------klass------------------------------------------
  4180 // Return the defining klass for this class
  4181 ciKlass* TypeAryPtr::klass() const {
  4182   if( _klass ) return _klass;   // Return cached value, if possible
  4184   // Oops, need to compute _klass and cache it
  4185   ciKlass* k_ary = compute_klass();
  4187   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
  4188     // The _klass field acts as a cache of the underlying
  4189     // ciKlass for this array type.  In order to set the field,
  4190     // we need to cast away const-ness.
  4191     //
  4192     // IMPORTANT NOTE: we *never* set the _klass field for the
  4193     // type TypeAryPtr::OOPS.  This Type is shared between all
  4194     // active compilations.  However, the ciKlass which represents
  4195     // this Type is *not* shared between compilations, so caching
  4196     // this value would result in fetching a dangling pointer.
  4197     //
  4198     // Recomputing the underlying ciKlass for each request is
  4199     // a bit less efficient than caching, but calls to
  4200     // TypeAryPtr::OOPS->klass() are not common enough to matter.
  4201     ((TypeAryPtr*)this)->_klass = k_ary;
  4202     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
  4203         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
  4204       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
  4207   return k_ary;
  4211 //------------------------------add_offset-------------------------------------
  4212 // Access internals of klass object
  4213 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
  4214   return make( _ptr, klass(), xadd_offset(offset) );
  4217 //------------------------------cast_to_ptr_type-------------------------------
  4218 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
  4219   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
  4220   if( ptr == _ptr ) return this;
  4221   return make(ptr, _klass, _offset);
  4225 //-----------------------------cast_to_exactness-------------------------------
  4226 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
  4227   if( klass_is_exact == _klass_is_exact ) return this;
  4228   if (!UseExactTypes)  return this;
  4229   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
  4233 //-----------------------------as_instance_type--------------------------------
  4234 // Corresponding type for an instance of the given class.
  4235 // It will be NotNull, and exact if and only if the klass type is exact.
  4236 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
  4237   ciKlass* k = klass();
  4238   bool    xk = klass_is_exact();
  4239   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
  4240   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
  4241   guarantee(toop != NULL, "need type for given klass");
  4242   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
  4243   return toop->cast_to_exactness(xk)->is_oopptr();
  4247 //------------------------------xmeet------------------------------------------
  4248 // Compute the MEET of two types, return a new Type object.
  4249 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
  4250   // Perform a fast test for common case; meeting the same types together.
  4251   if( this == t ) return this;  // Meeting same type-rep?
  4253   // Current "this->_base" is Pointer
  4254   switch (t->base()) {          // switch on original type
  4256   case Int:                     // Mixing ints & oops happens when javac
  4257   case Long:                    // reuses local variables
  4258   case FloatTop:
  4259   case FloatCon:
  4260   case FloatBot:
  4261   case DoubleTop:
  4262   case DoubleCon:
  4263   case DoubleBot:
  4264   case NarrowOop:
  4265   case NarrowKlass:
  4266   case Bottom:                  // Ye Olde Default
  4267     return Type::BOTTOM;
  4268   case Top:
  4269     return this;
  4271   default:                      // All else is a mistake
  4272     typerr(t);
  4274   case AnyPtr: {                // Meeting to AnyPtrs
  4275     // Found an AnyPtr type vs self-KlassPtr type
  4276     const TypePtr *tp = t->is_ptr();
  4277     int offset = meet_offset(tp->offset());
  4278     PTR ptr = meet_ptr(tp->ptr());
  4279     switch (tp->ptr()) {
  4280     case TopPTR:
  4281       return this;
  4282     case Null:
  4283       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
  4284     case AnyNull:
  4285       return make( ptr, klass(), offset );
  4286     case BotPTR:
  4287     case NotNull:
  4288       return TypePtr::make(AnyPtr, ptr, offset);
  4289     default: typerr(t);
  4293   case RawPtr:
  4294   case MetadataPtr:
  4295   case OopPtr:
  4296   case AryPtr:                  // Meet with AryPtr
  4297   case InstPtr:                 // Meet with InstPtr
  4298     return TypePtr::BOTTOM;
  4300   //
  4301   //             A-top         }
  4302   //           /   |   \       }  Tops
  4303   //       B-top A-any C-top   }
  4304   //          | /  |  \ |      }  Any-nulls
  4305   //       B-any   |   C-any   }
  4306   //          |    |    |
  4307   //       B-con A-con C-con   } constants; not comparable across classes
  4308   //          |    |    |
  4309   //       B-not   |   C-not   }
  4310   //          | \  |  / |      }  not-nulls
  4311   //       B-bot A-not C-bot   }
  4312   //           \   |   /       }  Bottoms
  4313   //             A-bot         }
  4314   //
  4316   case KlassPtr: {  // Meet two KlassPtr types
  4317     const TypeKlassPtr *tkls = t->is_klassptr();
  4318     int  off     = meet_offset(tkls->offset());
  4319     PTR  ptr     = meet_ptr(tkls->ptr());
  4321     // Check for easy case; klasses are equal (and perhaps not loaded!)
  4322     // If we have constants, then we created oops so classes are loaded
  4323     // and we can handle the constants further down.  This case handles
  4324     // not-loaded classes
  4325     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
  4326       return make( ptr, klass(), off );
  4329     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  4330     ciKlass* tkls_klass = tkls->klass();
  4331     ciKlass* this_klass = this->klass();
  4332     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
  4333     assert( this_klass->is_loaded(), "This class should have been loaded.");
  4335     // If 'this' type is above the centerline and is a superclass of the
  4336     // other, we can treat 'this' as having the same type as the other.
  4337     if ((above_centerline(this->ptr())) &&
  4338         tkls_klass->is_subtype_of(this_klass)) {
  4339       this_klass = tkls_klass;
  4341     // If 'tinst' type is above the centerline and is a superclass of the
  4342     // other, we can treat 'tinst' as having the same type as the other.
  4343     if ((above_centerline(tkls->ptr())) &&
  4344         this_klass->is_subtype_of(tkls_klass)) {
  4345       tkls_klass = this_klass;
  4348     // Check for classes now being equal
  4349     if (tkls_klass->equals(this_klass)) {
  4350       // If the klasses are equal, the constants may still differ.  Fall to
  4351       // NotNull if they do (neither constant is NULL; that is a special case
  4352       // handled elsewhere).
  4353       if( ptr == Constant ) {
  4354         if (this->_ptr == Constant && tkls->_ptr == Constant &&
  4355             this->klass()->equals(tkls->klass()));
  4356         else if (above_centerline(this->ptr()));
  4357         else if (above_centerline(tkls->ptr()));
  4358         else
  4359           ptr = NotNull;
  4361       return make( ptr, this_klass, off );
  4362     } // Else classes are not equal
  4364     // Since klasses are different, we require the LCA in the Java
  4365     // class hierarchy - which means we have to fall to at least NotNull.
  4366     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  4367       ptr = NotNull;
  4368     // Now we find the LCA of Java classes
  4369     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
  4370     return   make( ptr, k, off );
  4371   } // End of case KlassPtr
  4373   } // End of switch
  4374   return this;                  // Return the double constant
  4377 //------------------------------xdual------------------------------------------
  4378 // Dual: compute field-by-field dual
  4379 const Type    *TypeKlassPtr::xdual() const {
  4380   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
  4383 //------------------------------get_con----------------------------------------
  4384 intptr_t TypeKlassPtr::get_con() const {
  4385   assert( _ptr == Null || _ptr == Constant, "" );
  4386   assert( _offset >= 0, "" );
  4388   if (_offset != 0) {
  4389     // After being ported to the compiler interface, the compiler no longer
  4390     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  4391     // to a handle at compile time.  This handle is embedded in the generated
  4392     // code and dereferenced at the time the nmethod is made.  Until that time,
  4393     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  4394     // have access to the addresses!).  This does not seem to currently happen,
  4395     // but this assertion here is to help prevent its occurence.
  4396     tty->print_cr("Found oop constant with non-zero offset");
  4397     ShouldNotReachHere();
  4400   return (intptr_t)klass()->constant_encoding();
  4402 //------------------------------dump2------------------------------------------
  4403 // Dump Klass Type
  4404 #ifndef PRODUCT
  4405 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
  4406   switch( _ptr ) {
  4407   case Constant:
  4408     st->print("precise ");
  4409   case NotNull:
  4411       const char *name = klass()->name()->as_utf8();
  4412       if( name ) {
  4413         st->print("klass %s: " INTPTR_FORMAT, name, klass());
  4414       } else {
  4415         ShouldNotReachHere();
  4418   case BotPTR:
  4419     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
  4420   case TopPTR:
  4421   case AnyNull:
  4422     st->print(":%s", ptr_msg[_ptr]);
  4423     if( _klass_is_exact ) st->print(":exact");
  4424     break;
  4427   if( _offset ) {               // Dump offset, if any
  4428     if( _offset == OffsetBot )      { st->print("+any"); }
  4429     else if( _offset == OffsetTop ) { st->print("+unknown"); }
  4430     else                            { st->print("+%d", _offset); }
  4433   st->print(" *");
  4435 #endif
  4439 //=============================================================================
  4440 // Convenience common pre-built types.
  4442 //------------------------------make-------------------------------------------
  4443 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
  4444   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
  4447 //------------------------------make-------------------------------------------
  4448 const TypeFunc *TypeFunc::make(ciMethod* method) {
  4449   Compile* C = Compile::current();
  4450   const TypeFunc* tf = C->last_tf(method); // check cache
  4451   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
  4452   const TypeTuple *domain;
  4453   if (method->is_static()) {
  4454     domain = TypeTuple::make_domain(NULL, method->signature());
  4455   } else {
  4456     domain = TypeTuple::make_domain(method->holder(), method->signature());
  4458   const TypeTuple *range  = TypeTuple::make_range(method->signature());
  4459   tf = TypeFunc::make(domain, range);
  4460   C->set_last_tf(method, tf);  // fill cache
  4461   return tf;
  4464 //------------------------------meet-------------------------------------------
  4465 // Compute the MEET of two types.  It returns a new Type object.
  4466 const Type *TypeFunc::xmeet( const Type *t ) const {
  4467   // Perform a fast test for common case; meeting the same types together.
  4468   if( this == t ) return this;  // Meeting same type-rep?
  4470   // Current "this->_base" is Func
  4471   switch (t->base()) {          // switch on original type
  4473   case Bottom:                  // Ye Olde Default
  4474     return t;
  4476   default:                      // All else is a mistake
  4477     typerr(t);
  4479   case Top:
  4480     break;
  4482   return this;                  // Return the double constant
  4485 //------------------------------xdual------------------------------------------
  4486 // Dual: compute field-by-field dual
  4487 const Type *TypeFunc::xdual() const {
  4488   return this;
  4491 //------------------------------eq---------------------------------------------
  4492 // Structural equality check for Type representations
  4493 bool TypeFunc::eq( const Type *t ) const {
  4494   const TypeFunc *a = (const TypeFunc*)t;
  4495   return _domain == a->_domain &&
  4496     _range == a->_range;
  4499 //------------------------------hash-------------------------------------------
  4500 // Type-specific hashing function.
  4501 int TypeFunc::hash(void) const {
  4502   return (intptr_t)_domain + (intptr_t)_range;
  4505 //------------------------------dump2------------------------------------------
  4506 // Dump Function Type
  4507 #ifndef PRODUCT
  4508 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
  4509   if( _range->_cnt <= Parms )
  4510     st->print("void");
  4511   else {
  4512     uint i;
  4513     for (i = Parms; i < _range->_cnt-1; i++) {
  4514       _range->field_at(i)->dump2(d,depth,st);
  4515       st->print("/");
  4517     _range->field_at(i)->dump2(d,depth,st);
  4519   st->print(" ");
  4520   st->print("( ");
  4521   if( !depth || d[this] ) {     // Check for recursive dump
  4522     st->print("...)");
  4523     return;
  4525   d.Insert((void*)this,(void*)this);    // Stop recursion
  4526   if (Parms < _domain->_cnt)
  4527     _domain->field_at(Parms)->dump2(d,depth-1,st);
  4528   for (uint i = Parms+1; i < _domain->_cnt; i++) {
  4529     st->print(", ");
  4530     _domain->field_at(i)->dump2(d,depth-1,st);
  4532   st->print(" )");
  4534 #endif
  4536 //------------------------------singleton--------------------------------------
  4537 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  4538 // constants (Ldi nodes).  Singletons are integer, float or double constants
  4539 // or a single symbol.
  4540 bool TypeFunc::singleton(void) const {
  4541   return false;                 // Never a singleton
  4544 bool TypeFunc::empty(void) const {
  4545   return false;                 // Never empty
  4549 BasicType TypeFunc::return_type() const{
  4550   if (range()->cnt() == TypeFunc::Parms) {
  4551     return T_VOID;
  4553   return range()->field_at(TypeFunc::Parms)->basic_type();

mercurial