src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Fri, 14 Oct 2011 11:12:24 -0400

author
tonyp
date
Fri, 14 Oct 2011 11:12:24 -0400
changeset 3209
074f0252cc13
parent 3176
8229bd737950
child 3219
c6a6e936dc68
permissions
-rw-r--r--

7088680: G1: Cleanup in the G1CollectorPolicy class
Summary: Removed unused fields and methods, removed the G1CollectoryPolicy_BestRegionsFirst class and folded its functionality into the G1CollectorPolicy class.
Reviewed-by: ysr, brutisso, jcoomes

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
    28 #include "gc_implementation/g1/collectionSetChooser.hpp"
    29 #include "gc_implementation/g1/g1MMUTracker.hpp"
    30 #include "memory/collectorPolicy.hpp"
    32 // A G1CollectorPolicy makes policy decisions that determine the
    33 // characteristics of the collector.  Examples include:
    34 //   * choice of collection set.
    35 //   * when to collect.
    37 class HeapRegion;
    38 class CollectionSetChooser;
    40 // Yes, this is a bit unpleasant... but it saves replicating the same thing
    41 // over and over again and introducing subtle problems through small typos and
    42 // cutting and pasting mistakes. The macros below introduces a number
    43 // sequnce into the following two classes and the methods that access it.
    45 #define define_num_seq(name)                                                  \
    46 private:                                                                      \
    47   NumberSeq _all_##name##_times_ms;                                           \
    48 public:                                                                       \
    49   void record_##name##_time_ms(double ms) {                                   \
    50     _all_##name##_times_ms.add(ms);                                           \
    51   }                                                                           \
    52   NumberSeq* get_##name##_seq() {                                             \
    53     return &_all_##name##_times_ms;                                           \
    54   }
    56 class MainBodySummary;
    58 class PauseSummary: public CHeapObj {
    59   define_num_seq(total)
    60     define_num_seq(other)
    62 public:
    63   virtual MainBodySummary*    main_body_summary()    { return NULL; }
    64 };
    66 class MainBodySummary: public CHeapObj {
    67   define_num_seq(satb_drain) // optional
    68   define_num_seq(parallel) // parallel only
    69     define_num_seq(ext_root_scan)
    70     define_num_seq(mark_stack_scan)
    71     define_num_seq(update_rs)
    72     define_num_seq(scan_rs)
    73     define_num_seq(obj_copy)
    74     define_num_seq(termination) // parallel only
    75     define_num_seq(parallel_other) // parallel only
    76   define_num_seq(mark_closure)
    77   define_num_seq(clear_ct)  // parallel only
    78 };
    80 class Summary: public PauseSummary,
    81                public MainBodySummary {
    82 public:
    83   virtual MainBodySummary*    main_body_summary()    { return this; }
    84 };
    86 class G1CollectorPolicy: public CollectorPolicy {
    87 private:
    88   // The number of pauses during the execution.
    89   long _n_pauses;
    91   // either equal to the number of parallel threads, if ParallelGCThreads
    92   // has been set, or 1 otherwise
    93   int _parallel_gc_threads;
    95   enum SomePrivateConstants {
    96     NumPrevPausesForHeuristics = 10
    97   };
    99   G1MMUTracker* _mmu_tracker;
   101   void initialize_flags();
   103   void initialize_all() {
   104     initialize_flags();
   105     initialize_size_info();
   106     initialize_perm_generation(PermGen::MarkSweepCompact);
   107   }
   109   CollectionSetChooser* _collectionSetChooser;
   111   double _cur_collection_start_sec;
   112   size_t _cur_collection_pause_used_at_start_bytes;
   113   size_t _cur_collection_pause_used_regions_at_start;
   114   size_t _prev_collection_pause_used_at_end_bytes;
   115   double _cur_collection_par_time_ms;
   116   double _cur_satb_drain_time_ms;
   117   double _cur_clear_ct_time_ms;
   118   bool   _satb_drain_time_set;
   119   double _cur_ref_proc_time_ms;
   120   double _cur_ref_enq_time_ms;
   122 #ifndef PRODUCT
   123   // Card Table Count Cache stats
   124   double _min_clear_cc_time_ms;         // min
   125   double _max_clear_cc_time_ms;         // max
   126   double _cur_clear_cc_time_ms;         // clearing time during current pause
   127   double _cum_clear_cc_time_ms;         // cummulative clearing time
   128   jlong  _num_cc_clears;                // number of times the card count cache has been cleared
   129 #endif
   131   // Statistics for recent GC pauses.  See below for how indexed.
   132   TruncatedSeq* _recent_rs_scan_times_ms;
   134   // These exclude marking times.
   135   TruncatedSeq* _recent_pause_times_ms;
   136   TruncatedSeq* _recent_gc_times_ms;
   138   TruncatedSeq* _recent_CS_bytes_used_before;
   139   TruncatedSeq* _recent_CS_bytes_surviving;
   141   TruncatedSeq* _recent_rs_sizes;
   143   TruncatedSeq* _concurrent_mark_remark_times_ms;
   144   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
   146   Summary*           _summary;
   148   NumberSeq* _all_pause_times_ms;
   149   NumberSeq* _all_full_gc_times_ms;
   150   double _stop_world_start;
   151   NumberSeq* _all_stop_world_times_ms;
   152   NumberSeq* _all_yield_times_ms;
   154   size_t     _region_num_young;
   155   size_t     _region_num_tenured;
   156   size_t     _prev_region_num_young;
   157   size_t     _prev_region_num_tenured;
   159   NumberSeq* _all_mod_union_times_ms;
   161   int        _aux_num;
   162   NumberSeq* _all_aux_times_ms;
   163   double*    _cur_aux_start_times_ms;
   164   double*    _cur_aux_times_ms;
   165   bool*      _cur_aux_times_set;
   167   double* _par_last_gc_worker_start_times_ms;
   168   double* _par_last_ext_root_scan_times_ms;
   169   double* _par_last_mark_stack_scan_times_ms;
   170   double* _par_last_update_rs_times_ms;
   171   double* _par_last_update_rs_processed_buffers;
   172   double* _par_last_scan_rs_times_ms;
   173   double* _par_last_obj_copy_times_ms;
   174   double* _par_last_termination_times_ms;
   175   double* _par_last_termination_attempts;
   176   double* _par_last_gc_worker_end_times_ms;
   177   double* _par_last_gc_worker_times_ms;
   179   // indicates whether we are in full young or partially young GC mode
   180   bool _full_young_gcs;
   182   // if true, then it tries to dynamically adjust the length of the
   183   // young list
   184   bool _adaptive_young_list_length;
   185   size_t _young_list_target_length;
   186   size_t _young_list_fixed_length;
   187   size_t _prev_eden_capacity; // used for logging
   189   // The max number of regions we can extend the eden by while the GC
   190   // locker is active. This should be >= _young_list_target_length;
   191   size_t _young_list_max_length;
   193   size_t _young_cset_length;
   194   bool   _last_young_gc_full;
   196   unsigned              _full_young_pause_num;
   197   unsigned              _partial_young_pause_num;
   199   bool                  _during_marking;
   200   bool                  _in_marking_window;
   201   bool                  _in_marking_window_im;
   203   SurvRateGroup*        _short_lived_surv_rate_group;
   204   SurvRateGroup*        _survivor_surv_rate_group;
   205   // add here any more surv rate groups
   207   double                _gc_overhead_perc;
   209   double _reserve_factor;
   210   size_t _reserve_regions;
   212   bool during_marking() {
   213     return _during_marking;
   214   }
   216   // <NEW PREDICTION>
   218 private:
   219   enum PredictionConstants {
   220     TruncatedSeqLength = 10
   221   };
   223   TruncatedSeq* _alloc_rate_ms_seq;
   224   double        _prev_collection_pause_end_ms;
   226   TruncatedSeq* _pending_card_diff_seq;
   227   TruncatedSeq* _rs_length_diff_seq;
   228   TruncatedSeq* _cost_per_card_ms_seq;
   229   TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
   230   TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
   231   TruncatedSeq* _cost_per_entry_ms_seq;
   232   TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
   233   TruncatedSeq* _cost_per_byte_ms_seq;
   234   TruncatedSeq* _constant_other_time_ms_seq;
   235   TruncatedSeq* _young_other_cost_per_region_ms_seq;
   236   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
   238   TruncatedSeq* _pending_cards_seq;
   239   TruncatedSeq* _scanned_cards_seq;
   240   TruncatedSeq* _rs_lengths_seq;
   242   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
   244   TruncatedSeq* _young_gc_eff_seq;
   246   TruncatedSeq* _max_conc_overhead_seq;
   248   bool   _using_new_ratio_calculations;
   249   size_t _min_desired_young_length; // as set on the command line or default calculations
   250   size_t _max_desired_young_length; // as set on the command line or default calculations
   252   size_t _recorded_young_regions;
   253   size_t _recorded_non_young_regions;
   254   size_t _recorded_region_num;
   256   size_t _free_regions_at_end_of_collection;
   258   size_t _recorded_rs_lengths;
   259   size_t _max_rs_lengths;
   261   size_t _recorded_marked_bytes;
   262   size_t _recorded_young_bytes;
   264   size_t _predicted_pending_cards;
   265   size_t _predicted_cards_scanned;
   266   size_t _predicted_rs_lengths;
   267   size_t _predicted_bytes_to_copy;
   269   double _predicted_survival_ratio;
   270   double _predicted_rs_update_time_ms;
   271   double _predicted_rs_scan_time_ms;
   272   double _predicted_object_copy_time_ms;
   273   double _predicted_constant_other_time_ms;
   274   double _predicted_young_other_time_ms;
   275   double _predicted_non_young_other_time_ms;
   276   double _predicted_pause_time_ms;
   278   double _vtime_diff_ms;
   280   double _recorded_young_free_cset_time_ms;
   281   double _recorded_non_young_free_cset_time_ms;
   283   double _sigma;
   284   double _expensive_region_limit_ms;
   286   size_t _rs_lengths_prediction;
   288   size_t _known_garbage_bytes;
   289   double _known_garbage_ratio;
   291   double sigma() {
   292     return _sigma;
   293   }
   295   // A function that prevents us putting too much stock in small sample
   296   // sets.  Returns a number between 2.0 and 1.0, depending on the number
   297   // of samples.  5 or more samples yields one; fewer scales linearly from
   298   // 2.0 at 1 sample to 1.0 at 5.
   299   double confidence_factor(int samples) {
   300     if (samples > 4) return 1.0;
   301     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
   302   }
   304   double get_new_neg_prediction(TruncatedSeq* seq) {
   305     return seq->davg() - sigma() * seq->dsd();
   306   }
   308 #ifndef PRODUCT
   309   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
   310 #endif // PRODUCT
   312   void adjust_concurrent_refinement(double update_rs_time,
   313                                     double update_rs_processed_buffers,
   314                                     double goal_ms);
   316   double _pause_time_target_ms;
   317   double _recorded_young_cset_choice_time_ms;
   318   double _recorded_non_young_cset_choice_time_ms;
   319   bool   _within_target;
   320   size_t _pending_cards;
   321   size_t _max_pending_cards;
   323 public:
   325   void set_region_short_lived(HeapRegion* hr) {
   326     hr->install_surv_rate_group(_short_lived_surv_rate_group);
   327   }
   329   void set_region_survivors(HeapRegion* hr) {
   330     hr->install_surv_rate_group(_survivor_surv_rate_group);
   331   }
   333 #ifndef PRODUCT
   334   bool verify_young_ages();
   335 #endif // PRODUCT
   337   double get_new_prediction(TruncatedSeq* seq) {
   338     return MAX2(seq->davg() + sigma() * seq->dsd(),
   339                 seq->davg() * confidence_factor(seq->num()));
   340   }
   342   size_t young_cset_length() {
   343     return _young_cset_length;
   344   }
   346   void record_max_rs_lengths(size_t rs_lengths) {
   347     _max_rs_lengths = rs_lengths;
   348   }
   350   size_t predict_pending_card_diff() {
   351     double prediction = get_new_neg_prediction(_pending_card_diff_seq);
   352     if (prediction < 0.00001)
   353       return 0;
   354     else
   355       return (size_t) prediction;
   356   }
   358   size_t predict_pending_cards() {
   359     size_t max_pending_card_num = _g1->max_pending_card_num();
   360     size_t diff = predict_pending_card_diff();
   361     size_t prediction;
   362     if (diff > max_pending_card_num)
   363       prediction = max_pending_card_num;
   364     else
   365       prediction = max_pending_card_num - diff;
   367     return prediction;
   368   }
   370   size_t predict_rs_length_diff() {
   371     return (size_t) get_new_prediction(_rs_length_diff_seq);
   372   }
   374   double predict_alloc_rate_ms() {
   375     return get_new_prediction(_alloc_rate_ms_seq);
   376   }
   378   double predict_cost_per_card_ms() {
   379     return get_new_prediction(_cost_per_card_ms_seq);
   380   }
   382   double predict_rs_update_time_ms(size_t pending_cards) {
   383     return (double) pending_cards * predict_cost_per_card_ms();
   384   }
   386   double predict_fully_young_cards_per_entry_ratio() {
   387     return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
   388   }
   390   double predict_partially_young_cards_per_entry_ratio() {
   391     if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
   392       return predict_fully_young_cards_per_entry_ratio();
   393     else
   394       return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
   395   }
   397   size_t predict_young_card_num(size_t rs_length) {
   398     return (size_t) ((double) rs_length *
   399                      predict_fully_young_cards_per_entry_ratio());
   400   }
   402   size_t predict_non_young_card_num(size_t rs_length) {
   403     return (size_t) ((double) rs_length *
   404                      predict_partially_young_cards_per_entry_ratio());
   405   }
   407   double predict_rs_scan_time_ms(size_t card_num) {
   408     if (full_young_gcs())
   409       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   410     else
   411       return predict_partially_young_rs_scan_time_ms(card_num);
   412   }
   414   double predict_partially_young_rs_scan_time_ms(size_t card_num) {
   415     if (_partially_young_cost_per_entry_ms_seq->num() < 3)
   416       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   417     else
   418       return (double) card_num *
   419         get_new_prediction(_partially_young_cost_per_entry_ms_seq);
   420   }
   422   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
   423     if (_cost_per_byte_ms_during_cm_seq->num() < 3)
   424       return 1.1 * (double) bytes_to_copy *
   425         get_new_prediction(_cost_per_byte_ms_seq);
   426     else
   427       return (double) bytes_to_copy *
   428         get_new_prediction(_cost_per_byte_ms_during_cm_seq);
   429   }
   431   double predict_object_copy_time_ms(size_t bytes_to_copy) {
   432     if (_in_marking_window && !_in_marking_window_im)
   433       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
   434     else
   435       return (double) bytes_to_copy *
   436         get_new_prediction(_cost_per_byte_ms_seq);
   437   }
   439   double predict_constant_other_time_ms() {
   440     return get_new_prediction(_constant_other_time_ms_seq);
   441   }
   443   double predict_young_other_time_ms(size_t young_num) {
   444     return
   445       (double) young_num *
   446       get_new_prediction(_young_other_cost_per_region_ms_seq);
   447   }
   449   double predict_non_young_other_time_ms(size_t non_young_num) {
   450     return
   451       (double) non_young_num *
   452       get_new_prediction(_non_young_other_cost_per_region_ms_seq);
   453   }
   455   void check_if_region_is_too_expensive(double predicted_time_ms);
   457   double predict_young_collection_elapsed_time_ms(size_t adjustment);
   458   double predict_base_elapsed_time_ms(size_t pending_cards);
   459   double predict_base_elapsed_time_ms(size_t pending_cards,
   460                                       size_t scanned_cards);
   461   size_t predict_bytes_to_copy(HeapRegion* hr);
   462   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
   464   void start_recording_regions();
   465   void record_cset_region_info(HeapRegion* hr, bool young);
   466   void record_non_young_cset_region(HeapRegion* hr);
   468   void set_recorded_young_regions(size_t n_regions);
   469   void set_recorded_young_bytes(size_t bytes);
   470   void set_recorded_rs_lengths(size_t rs_lengths);
   471   void set_predicted_bytes_to_copy(size_t bytes);
   473   void end_recording_regions();
   475   void record_vtime_diff_ms(double vtime_diff_ms) {
   476     _vtime_diff_ms = vtime_diff_ms;
   477   }
   479   void record_young_free_cset_time_ms(double time_ms) {
   480     _recorded_young_free_cset_time_ms = time_ms;
   481   }
   483   void record_non_young_free_cset_time_ms(double time_ms) {
   484     _recorded_non_young_free_cset_time_ms = time_ms;
   485   }
   487   double predict_young_gc_eff() {
   488     return get_new_neg_prediction(_young_gc_eff_seq);
   489   }
   491   double predict_survivor_regions_evac_time();
   493   // </NEW PREDICTION>
   495   void cset_regions_freed() {
   496     bool propagate = _last_young_gc_full && !_in_marking_window;
   497     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
   498     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
   499     // also call it on any more surv rate groups
   500   }
   502   void set_known_garbage_bytes(size_t known_garbage_bytes) {
   503     _known_garbage_bytes = known_garbage_bytes;
   504     size_t heap_bytes = _g1->capacity();
   505     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   506   }
   508   void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
   509     guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
   511     _known_garbage_bytes -= known_garbage_bytes;
   512     size_t heap_bytes = _g1->capacity();
   513     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   514   }
   516   G1MMUTracker* mmu_tracker() {
   517     return _mmu_tracker;
   518   }
   520   double max_pause_time_ms() {
   521     return _mmu_tracker->max_gc_time() * 1000.0;
   522   }
   524   double predict_remark_time_ms() {
   525     return get_new_prediction(_concurrent_mark_remark_times_ms);
   526   }
   528   double predict_cleanup_time_ms() {
   529     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
   530   }
   532   // Returns an estimate of the survival rate of the region at yg-age
   533   // "yg_age".
   534   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
   535     TruncatedSeq* seq = surv_rate_group->get_seq(age);
   536     if (seq->num() == 0)
   537       gclog_or_tty->print("BARF! age is %d", age);
   538     guarantee( seq->num() > 0, "invariant" );
   539     double pred = get_new_prediction(seq);
   540     if (pred > 1.0)
   541       pred = 1.0;
   542     return pred;
   543   }
   545   double predict_yg_surv_rate(int age) {
   546     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
   547   }
   549   double accum_yg_surv_rate_pred(int age) {
   550     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
   551   }
   553 private:
   554   void print_stats(int level, const char* str, double value);
   555   void print_stats(int level, const char* str, int value);
   557   void print_par_stats(int level, const char* str, double* data);
   558   void print_par_sizes(int level, const char* str, double* data);
   560   void check_other_times(int level,
   561                          NumberSeq* other_times_ms,
   562                          NumberSeq* calc_other_times_ms) const;
   564   void print_summary (PauseSummary* stats) const;
   566   void print_summary (int level, const char* str, NumberSeq* seq) const;
   567   void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
   569   double avg_value (double* data);
   570   double max_value (double* data);
   571   double sum_of_values (double* data);
   572   double max_sum (double* data1, double* data2);
   574   int _last_satb_drain_processed_buffers;
   575   int _last_update_rs_processed_buffers;
   576   double _last_pause_time_ms;
   578   size_t _bytes_in_collection_set_before_gc;
   579   size_t _bytes_copied_during_gc;
   581   // Used to count used bytes in CS.
   582   friend class CountCSClosure;
   584   // Statistics kept per GC stoppage, pause or full.
   585   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
   587   // Add a new GC of the given duration and end time to the record.
   588   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
   590   // The head of the list (via "next_in_collection_set()") representing the
   591   // current collection set. Set from the incrementally built collection
   592   // set at the start of the pause.
   593   HeapRegion* _collection_set;
   595   // The number of regions in the collection set. Set from the incrementally
   596   // built collection set at the start of an evacuation pause.
   597   size_t _collection_set_size;
   599   // The number of bytes in the collection set before the pause. Set from
   600   // the incrementally built collection set at the start of an evacuation
   601   // pause.
   602   size_t _collection_set_bytes_used_before;
   604   // The associated information that is maintained while the incremental
   605   // collection set is being built with young regions. Used to populate
   606   // the recorded info for the evacuation pause.
   608   enum CSetBuildType {
   609     Active,             // We are actively building the collection set
   610     Inactive            // We are not actively building the collection set
   611   };
   613   CSetBuildType _inc_cset_build_state;
   615   // The head of the incrementally built collection set.
   616   HeapRegion* _inc_cset_head;
   618   // The tail of the incrementally built collection set.
   619   HeapRegion* _inc_cset_tail;
   621   // The number of regions in the incrementally built collection set.
   622   // Used to set _collection_set_size at the start of an evacuation
   623   // pause.
   624   size_t _inc_cset_size;
   626   // Used as the index in the surving young words structure
   627   // which tracks the amount of space, for each young region,
   628   // that survives the pause.
   629   size_t _inc_cset_young_index;
   631   // The number of bytes in the incrementally built collection set.
   632   // Used to set _collection_set_bytes_used_before at the start of
   633   // an evacuation pause.
   634   size_t _inc_cset_bytes_used_before;
   636   // Used to record the highest end of heap region in collection set
   637   HeapWord* _inc_cset_max_finger;
   639   // The number of recorded used bytes in the young regions
   640   // of the collection set. This is the sum of the used() bytes
   641   // of retired young regions in the collection set.
   642   size_t _inc_cset_recorded_young_bytes;
   644   // The RSet lengths recorded for regions in the collection set
   645   // (updated by the periodic sampling of the regions in the
   646   // young list/collection set).
   647   size_t _inc_cset_recorded_rs_lengths;
   649   // The predicted elapsed time it will take to collect the regions
   650   // in the collection set (updated by the periodic sampling of the
   651   // regions in the young list/collection set).
   652   double _inc_cset_predicted_elapsed_time_ms;
   654   // The predicted bytes to copy for the regions in the collection
   655   // set (updated by the periodic sampling of the regions in the
   656   // young list/collection set).
   657   size_t _inc_cset_predicted_bytes_to_copy;
   659   // Stash a pointer to the g1 heap.
   660   G1CollectedHeap* _g1;
   662   // The average time in ms per collection pause, averaged over recent pauses.
   663   double recent_avg_time_for_pauses_ms();
   665   // The average time in ms for RS scanning, per pause, averaged
   666   // over recent pauses. (Note the RS scanning time for a pause
   667   // is itself an average of the RS scanning time for each worker
   668   // thread.)
   669   double recent_avg_time_for_rs_scan_ms();
   671   // The number of "recent" GCs recorded in the number sequences
   672   int number_of_recent_gcs();
   674   // The average survival ratio, computed by the total number of bytes
   675   // suriviving / total number of bytes before collection over the last
   676   // several recent pauses.
   677   double recent_avg_survival_fraction();
   678   // The survival fraction of the most recent pause; if there have been no
   679   // pauses, returns 1.0.
   680   double last_survival_fraction();
   682   // Returns a "conservative" estimate of the recent survival rate, i.e.,
   683   // one that may be higher than "recent_avg_survival_fraction".
   684   // This is conservative in several ways:
   685   //   If there have been few pauses, it will assume a potential high
   686   //     variance, and err on the side of caution.
   687   //   It puts a lower bound (currently 0.1) on the value it will return.
   688   //   To try to detect phase changes, if the most recent pause ("latest") has a
   689   //     higher-than average ("avg") survival rate, it returns that rate.
   690   // "work" version is a utility function; young is restricted to young regions.
   691   double conservative_avg_survival_fraction_work(double avg,
   692                                                  double latest);
   694   // The arguments are the two sequences that keep track of the number of bytes
   695   //   surviving and the total number of bytes before collection, resp.,
   696   //   over the last evereal recent pauses
   697   // Returns the survival rate for the category in the most recent pause.
   698   // If there have been no pauses, returns 1.0.
   699   double last_survival_fraction_work(TruncatedSeq* surviving,
   700                                      TruncatedSeq* before);
   702   // The arguments are the two sequences that keep track of the number of bytes
   703   //   surviving and the total number of bytes before collection, resp.,
   704   //   over the last several recent pauses
   705   // Returns the average survival ration over the last several recent pauses
   706   // If there have been no pauses, return 1.0
   707   double recent_avg_survival_fraction_work(TruncatedSeq* surviving,
   708                                            TruncatedSeq* before);
   710   double conservative_avg_survival_fraction() {
   711     double avg = recent_avg_survival_fraction();
   712     double latest = last_survival_fraction();
   713     return conservative_avg_survival_fraction_work(avg, latest);
   714   }
   716   // The ratio of gc time to elapsed time, computed over recent pauses.
   717   double _recent_avg_pause_time_ratio;
   719   double recent_avg_pause_time_ratio() {
   720     return _recent_avg_pause_time_ratio;
   721   }
   723   // Number of pauses between concurrent marking.
   724   size_t _pauses_btwn_concurrent_mark;
   726   // At the end of a pause we check the heap occupancy and we decide
   727   // whether we will start a marking cycle during the next pause. If
   728   // we decide that we want to do that, we will set this parameter to
   729   // true. So, this parameter will stay true between the end of a
   730   // pause and the beginning of a subsequent pause (not necessarily
   731   // the next one, see the comments on the next field) when we decide
   732   // that we will indeed start a marking cycle and do the initial-mark
   733   // work.
   734   volatile bool _initiate_conc_mark_if_possible;
   736   // If initiate_conc_mark_if_possible() is set at the beginning of a
   737   // pause, it is a suggestion that the pause should start a marking
   738   // cycle by doing the initial-mark work. However, it is possible
   739   // that the concurrent marking thread is still finishing up the
   740   // previous marking cycle (e.g., clearing the next marking
   741   // bitmap). If that is the case we cannot start a new cycle and
   742   // we'll have to wait for the concurrent marking thread to finish
   743   // what it is doing. In this case we will postpone the marking cycle
   744   // initiation decision for the next pause. When we eventually decide
   745   // to start a cycle, we will set _during_initial_mark_pause which
   746   // will stay true until the end of the initial-mark pause and it's
   747   // the condition that indicates that a pause is doing the
   748   // initial-mark work.
   749   volatile bool _during_initial_mark_pause;
   751   bool _should_revert_to_full_young_gcs;
   752   bool _last_full_young_gc;
   754   // This set of variables tracks the collector efficiency, in order to
   755   // determine whether we should initiate a new marking.
   756   double _cur_mark_stop_world_time_ms;
   757   double _mark_remark_start_sec;
   758   double _mark_cleanup_start_sec;
   759   double _mark_closure_time_ms;
   761   // Update the young list target length either by setting it to the
   762   // desired fixed value or by calculating it using G1's pause
   763   // prediction model. If no rs_lengths parameter is passed, predict
   764   // the RS lengths using the prediction model, otherwise use the
   765   // given rs_lengths as the prediction.
   766   void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
   768   // Calculate and return the minimum desired young list target
   769   // length. This is the minimum desired young list length according
   770   // to the user's inputs.
   771   size_t calculate_young_list_desired_min_length(size_t base_min_length);
   773   // Calculate and return the maximum desired young list target
   774   // length. This is the maximum desired young list length according
   775   // to the user's inputs.
   776   size_t calculate_young_list_desired_max_length();
   778   // Calculate and return the maximum young list target length that
   779   // can fit into the pause time goal. The parameters are: rs_lengths
   780   // represent the prediction of how large the young RSet lengths will
   781   // be, base_min_length is the alreay existing number of regions in
   782   // the young list, min_length and max_length are the desired min and
   783   // max young list length according to the user's inputs.
   784   size_t calculate_young_list_target_length(size_t rs_lengths,
   785                                             size_t base_min_length,
   786                                             size_t desired_min_length,
   787                                             size_t desired_max_length);
   789   // Check whether a given young length (young_length) fits into the
   790   // given target pause time and whether the prediction for the amount
   791   // of objects to be copied for the given length will fit into the
   792   // given free space (expressed by base_free_regions).  It is used by
   793   // calculate_young_list_target_length().
   794   bool predict_will_fit(size_t young_length, double base_time_ms,
   795                         size_t base_free_regions, double target_pause_time_ms);
   797   // Count the number of bytes used in the CS.
   798   void count_CS_bytes_used();
   800   void update_young_list_size_using_newratio(size_t number_of_heap_regions);
   802 public:
   804   G1CollectorPolicy();
   806   virtual G1CollectorPolicy* as_g1_policy() { return this; }
   808   virtual CollectorPolicy::Name kind() {
   809     return CollectorPolicy::G1CollectorPolicyKind;
   810   }
   812   // Check the current value of the young list RSet lengths and
   813   // compare it against the last prediction. If the current value is
   814   // higher, recalculate the young list target length prediction.
   815   void revise_young_list_target_length_if_necessary();
   817   size_t bytes_in_collection_set() {
   818     return _bytes_in_collection_set_before_gc;
   819   }
   821   unsigned calc_gc_alloc_time_stamp() {
   822     return _all_pause_times_ms->num() + 1;
   823   }
   825   // This should be called after the heap is resized.
   826   void record_new_heap_size(size_t new_number_of_regions);
   828 public:
   830   void init();
   832   // Create jstat counters for the policy.
   833   virtual void initialize_gc_policy_counters();
   835   virtual HeapWord* mem_allocate_work(size_t size,
   836                                       bool is_tlab,
   837                                       bool* gc_overhead_limit_was_exceeded);
   839   // This method controls how a collector handles one or more
   840   // of its generations being fully allocated.
   841   virtual HeapWord* satisfy_failed_allocation(size_t size,
   842                                               bool is_tlab);
   844   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
   846   GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }
   848   // The number of collection pauses so far.
   849   long n_pauses() const { return _n_pauses; }
   851   // Update the heuristic info to record a collection pause of the given
   852   // start time, where the given number of bytes were used at the start.
   853   // This may involve changing the desired size of a collection set.
   855   void record_stop_world_start();
   857   void record_collection_pause_start(double start_time_sec, size_t start_used);
   859   // Must currently be called while the world is stopped.
   860   void record_concurrent_mark_init_end(double
   861                                            mark_init_elapsed_time_ms);
   863   void record_mark_closure_time(double mark_closure_time_ms);
   865   void record_concurrent_mark_remark_start();
   866   void record_concurrent_mark_remark_end();
   868   void record_concurrent_mark_cleanup_start();
   869   void record_concurrent_mark_cleanup_end();
   870   void record_concurrent_mark_cleanup_completed();
   872   void record_concurrent_pause();
   873   void record_concurrent_pause_end();
   875   void record_collection_pause_end();
   876   void print_heap_transition();
   878   // Record the fact that a full collection occurred.
   879   void record_full_collection_start();
   880   void record_full_collection_end();
   882   void record_gc_worker_start_time(int worker_i, double ms) {
   883     _par_last_gc_worker_start_times_ms[worker_i] = ms;
   884   }
   886   void record_ext_root_scan_time(int worker_i, double ms) {
   887     _par_last_ext_root_scan_times_ms[worker_i] = ms;
   888   }
   890   void record_mark_stack_scan_time(int worker_i, double ms) {
   891     _par_last_mark_stack_scan_times_ms[worker_i] = ms;
   892   }
   894   void record_satb_drain_time(double ms) {
   895     _cur_satb_drain_time_ms = ms;
   896     _satb_drain_time_set    = true;
   897   }
   899   void record_satb_drain_processed_buffers (int processed_buffers) {
   900     _last_satb_drain_processed_buffers = processed_buffers;
   901   }
   903   void record_mod_union_time(double ms) {
   904     _all_mod_union_times_ms->add(ms);
   905   }
   907   void record_update_rs_time(int thread, double ms) {
   908     _par_last_update_rs_times_ms[thread] = ms;
   909   }
   911   void record_update_rs_processed_buffers (int thread,
   912                                            double processed_buffers) {
   913     _par_last_update_rs_processed_buffers[thread] = processed_buffers;
   914   }
   916   void record_scan_rs_time(int thread, double ms) {
   917     _par_last_scan_rs_times_ms[thread] = ms;
   918   }
   920   void reset_obj_copy_time(int thread) {
   921     _par_last_obj_copy_times_ms[thread] = 0.0;
   922   }
   924   void reset_obj_copy_time() {
   925     reset_obj_copy_time(0);
   926   }
   928   void record_obj_copy_time(int thread, double ms) {
   929     _par_last_obj_copy_times_ms[thread] += ms;
   930   }
   932   void record_termination(int thread, double ms, size_t attempts) {
   933     _par_last_termination_times_ms[thread] = ms;
   934     _par_last_termination_attempts[thread] = (double) attempts;
   935   }
   937   void record_gc_worker_end_time(int worker_i, double ms) {
   938     _par_last_gc_worker_end_times_ms[worker_i] = ms;
   939   }
   941   void record_pause_time_ms(double ms) {
   942     _last_pause_time_ms = ms;
   943   }
   945   void record_clear_ct_time(double ms) {
   946     _cur_clear_ct_time_ms = ms;
   947   }
   949   void record_par_time(double ms) {
   950     _cur_collection_par_time_ms = ms;
   951   }
   953   void record_aux_start_time(int i) {
   954     guarantee(i < _aux_num, "should be within range");
   955     _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
   956   }
   958   void record_aux_end_time(int i) {
   959     guarantee(i < _aux_num, "should be within range");
   960     double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
   961     _cur_aux_times_set[i] = true;
   962     _cur_aux_times_ms[i] += ms;
   963   }
   965   void record_ref_proc_time(double ms) {
   966     _cur_ref_proc_time_ms = ms;
   967   }
   969   void record_ref_enq_time(double ms) {
   970     _cur_ref_enq_time_ms = ms;
   971   }
   973 #ifndef PRODUCT
   974   void record_cc_clear_time(double ms) {
   975     if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
   976       _min_clear_cc_time_ms = ms;
   977     if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
   978       _max_clear_cc_time_ms = ms;
   979     _cur_clear_cc_time_ms = ms;
   980     _cum_clear_cc_time_ms += ms;
   981     _num_cc_clears++;
   982   }
   983 #endif
   985   // Record how much space we copied during a GC. This is typically
   986   // called when a GC alloc region is being retired.
   987   void record_bytes_copied_during_gc(size_t bytes) {
   988     _bytes_copied_during_gc += bytes;
   989   }
   991   // The amount of space we copied during a GC.
   992   size_t bytes_copied_during_gc() {
   993     return _bytes_copied_during_gc;
   994   }
   996   // Choose a new collection set.  Marks the chosen regions as being
   997   // "in_collection_set", and links them together.  The head and number of
   998   // the collection set are available via access methods.
   999   void choose_collection_set(double target_pause_time_ms);
  1001   // The head of the list (via "next_in_collection_set()") representing the
  1002   // current collection set.
  1003   HeapRegion* collection_set() { return _collection_set; }
  1005   void clear_collection_set() { _collection_set = NULL; }
  1007   // The number of elements in the current collection set.
  1008   size_t collection_set_size() { return _collection_set_size; }
  1010   // Add "hr" to the CS.
  1011   void add_to_collection_set(HeapRegion* hr);
  1013   // Incremental CSet Support
  1015   // The head of the incrementally built collection set.
  1016   HeapRegion* inc_cset_head() { return _inc_cset_head; }
  1018   // The tail of the incrementally built collection set.
  1019   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
  1021   // The number of elements in the incrementally built collection set.
  1022   size_t inc_cset_size() { return _inc_cset_size; }
  1024   // Initialize incremental collection set info.
  1025   void start_incremental_cset_building();
  1027   void clear_incremental_cset() {
  1028     _inc_cset_head = NULL;
  1029     _inc_cset_tail = NULL;
  1032   // Stop adding regions to the incremental collection set
  1033   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
  1035   // Add/remove information about hr to the aggregated information
  1036   // for the incrementally built collection set.
  1037   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
  1038   void remove_from_incremental_cset_info(HeapRegion* hr);
  1040   // Update information about hr in the aggregated information for
  1041   // the incrementally built collection set.
  1042   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
  1044 private:
  1045   // Update the incremental cset information when adding a region
  1046   // (should not be called directly).
  1047   void add_region_to_incremental_cset_common(HeapRegion* hr);
  1049 public:
  1050   // Add hr to the LHS of the incremental collection set.
  1051   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
  1053   // Add hr to the RHS of the incremental collection set.
  1054   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
  1056 #ifndef PRODUCT
  1057   void print_collection_set(HeapRegion* list_head, outputStream* st);
  1058 #endif // !PRODUCT
  1060   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
  1061   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
  1062   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
  1064   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
  1065   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
  1066   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
  1068   // This sets the initiate_conc_mark_if_possible() flag to start a
  1069   // new cycle, as long as we are not already in one. It's best if it
  1070   // is called during a safepoint when the test whether a cycle is in
  1071   // progress or not is stable.
  1072   bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
  1074   // This is called at the very beginning of an evacuation pause (it
  1075   // has to be the first thing that the pause does). If
  1076   // initiate_conc_mark_if_possible() is true, and the concurrent
  1077   // marking thread has completed its work during the previous cycle,
  1078   // it will set during_initial_mark_pause() to so that the pause does
  1079   // the initial-mark work and start a marking cycle.
  1080   void decide_on_conc_mark_initiation();
  1082   // If an expansion would be appropriate, because recent GC overhead had
  1083   // exceeded the desired limit, return an amount to expand by.
  1084   size_t expansion_amount();
  1086 #ifndef PRODUCT
  1087   // Check any appropriate marked bytes info, asserting false if
  1088   // something's wrong, else returning "true".
  1089   bool assertMarkedBytesDataOK();
  1090 #endif
  1092   // Print tracing information.
  1093   void print_tracing_info() const;
  1095   // Print stats on young survival ratio
  1096   void print_yg_surv_rate_info() const;
  1098   void finished_recalculating_age_indexes(bool is_survivors) {
  1099     if (is_survivors) {
  1100       _survivor_surv_rate_group->finished_recalculating_age_indexes();
  1101     } else {
  1102       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
  1104     // do that for any other surv rate groups
  1107   bool is_young_list_full() {
  1108     size_t young_list_length = _g1->young_list()->length();
  1109     size_t young_list_target_length = _young_list_target_length;
  1110     return young_list_length >= young_list_target_length;
  1113   bool can_expand_young_list() {
  1114     size_t young_list_length = _g1->young_list()->length();
  1115     size_t young_list_max_length = _young_list_max_length;
  1116     return young_list_length < young_list_max_length;
  1119   size_t young_list_max_length() {
  1120     return _young_list_max_length;
  1123   void update_region_num(bool young);
  1125   bool full_young_gcs() {
  1126     return _full_young_gcs;
  1128   void set_full_young_gcs(bool full_young_gcs) {
  1129     _full_young_gcs = full_young_gcs;
  1132   bool adaptive_young_list_length() {
  1133     return _adaptive_young_list_length;
  1135   void set_adaptive_young_list_length(bool adaptive_young_list_length) {
  1136     _adaptive_young_list_length = adaptive_young_list_length;
  1139   inline double get_gc_eff_factor() {
  1140     double ratio = _known_garbage_ratio;
  1142     double square = ratio * ratio;
  1143     // square = square * square;
  1144     double ret = square * 9.0 + 1.0;
  1145 #if 0
  1146     gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
  1147 #endif // 0
  1148     guarantee(0.0 <= ret && ret < 10.0, "invariant!");
  1149     return ret;
  1152 private:
  1153   //
  1154   // Survivor regions policy.
  1155   //
  1157   // Current tenuring threshold, set to 0 if the collector reaches the
  1158   // maximum amount of suvivors regions.
  1159   int _tenuring_threshold;
  1161   // The limit on the number of regions allocated for survivors.
  1162   size_t _max_survivor_regions;
  1164   // For reporting purposes.
  1165   size_t _eden_bytes_before_gc;
  1166   size_t _survivor_bytes_before_gc;
  1167   size_t _capacity_before_gc;
  1169   // The amount of survor regions after a collection.
  1170   size_t _recorded_survivor_regions;
  1171   // List of survivor regions.
  1172   HeapRegion* _recorded_survivor_head;
  1173   HeapRegion* _recorded_survivor_tail;
  1175   ageTable _survivors_age_table;
  1177 public:
  1179   inline GCAllocPurpose
  1180     evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
  1181       if (age < _tenuring_threshold && src_region->is_young()) {
  1182         return GCAllocForSurvived;
  1183       } else {
  1184         return GCAllocForTenured;
  1188   inline bool track_object_age(GCAllocPurpose purpose) {
  1189     return purpose == GCAllocForSurvived;
  1192   static const size_t REGIONS_UNLIMITED = ~(size_t)0;
  1194   size_t max_regions(int purpose);
  1196   // The limit on regions for a particular purpose is reached.
  1197   void note_alloc_region_limit_reached(int purpose) {
  1198     if (purpose == GCAllocForSurvived) {
  1199       _tenuring_threshold = 0;
  1203   void note_start_adding_survivor_regions() {
  1204     _survivor_surv_rate_group->start_adding_regions();
  1207   void note_stop_adding_survivor_regions() {
  1208     _survivor_surv_rate_group->stop_adding_regions();
  1211   void record_survivor_regions(size_t      regions,
  1212                                HeapRegion* head,
  1213                                HeapRegion* tail) {
  1214     _recorded_survivor_regions = regions;
  1215     _recorded_survivor_head    = head;
  1216     _recorded_survivor_tail    = tail;
  1219   size_t recorded_survivor_regions() {
  1220     return _recorded_survivor_regions;
  1223   void record_thread_age_table(ageTable* age_table)
  1225     _survivors_age_table.merge_par(age_table);
  1228   void update_max_gc_locker_expansion();
  1230   // Calculates survivor space parameters.
  1231   void update_survivors_policy();
  1233 };
  1235 // This should move to some place more general...
  1237 // If we have "n" measurements, and we've kept track of their "sum" and the
  1238 // "sum_of_squares" of the measurements, this returns the variance of the
  1239 // sequence.
  1240 inline double variance(int n, double sum_of_squares, double sum) {
  1241   double n_d = (double)n;
  1242   double avg = sum/n_d;
  1243   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
  1246 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP

mercurial