src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Thu, 22 Sep 2011 10:57:37 -0700

author
johnc
date
Thu, 22 Sep 2011 10:57:37 -0700
changeset 3175
4dfb2df418f2
parent 3120
af2ab04e0038
child 3176
8229bd737950
permissions
-rw-r--r--

6484982: G1: process references during evacuation pauses
Summary: G1 now uses two reference processors - one is used by concurrent marking and the other is used by STW GCs (both full and incremental evacuation pauses). In an evacuation pause, the reference processor is embedded into the closures used to scan objects. Doing so causes causes reference objects to be 'discovered' by the reference processor. At the end of the evacuation pause, these discovered reference objects are processed - preserving (and copying) referent objects (and their reachable graphs) as appropriate.
Reviewed-by: ysr, jwilhelm, brutisso, stefank, tonyp

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
    28 #include "gc_implementation/g1/collectionSetChooser.hpp"
    29 #include "gc_implementation/g1/g1MMUTracker.hpp"
    30 #include "memory/collectorPolicy.hpp"
    32 // A G1CollectorPolicy makes policy decisions that determine the
    33 // characteristics of the collector.  Examples include:
    34 //   * choice of collection set.
    35 //   * when to collect.
    37 class HeapRegion;
    38 class CollectionSetChooser;
    40 // Yes, this is a bit unpleasant... but it saves replicating the same thing
    41 // over and over again and introducing subtle problems through small typos and
    42 // cutting and pasting mistakes. The macros below introduces a number
    43 // sequnce into the following two classes and the methods that access it.
    45 #define define_num_seq(name)                                                  \
    46 private:                                                                      \
    47   NumberSeq _all_##name##_times_ms;                                           \
    48 public:                                                                       \
    49   void record_##name##_time_ms(double ms) {                                   \
    50     _all_##name##_times_ms.add(ms);                                           \
    51   }                                                                           \
    52   NumberSeq* get_##name##_seq() {                                             \
    53     return &_all_##name##_times_ms;                                           \
    54   }
    56 class MainBodySummary;
    58 class PauseSummary: public CHeapObj {
    59   define_num_seq(total)
    60     define_num_seq(other)
    62 public:
    63   virtual MainBodySummary*    main_body_summary()    { return NULL; }
    64 };
    66 class MainBodySummary: public CHeapObj {
    67   define_num_seq(satb_drain) // optional
    68   define_num_seq(parallel) // parallel only
    69     define_num_seq(ext_root_scan)
    70     define_num_seq(mark_stack_scan)
    71     define_num_seq(update_rs)
    72     define_num_seq(scan_rs)
    73     define_num_seq(obj_copy)
    74     define_num_seq(termination) // parallel only
    75     define_num_seq(parallel_other) // parallel only
    76   define_num_seq(mark_closure)
    77   define_num_seq(clear_ct)  // parallel only
    78 };
    80 class Summary: public PauseSummary,
    81                public MainBodySummary {
    82 public:
    83   virtual MainBodySummary*    main_body_summary()    { return this; }
    84 };
    86 class G1CollectorPolicy: public CollectorPolicy {
    87 protected:
    88   // The number of pauses during the execution.
    89   long _n_pauses;
    91   // either equal to the number of parallel threads, if ParallelGCThreads
    92   // has been set, or 1 otherwise
    93   int _parallel_gc_threads;
    95   enum SomePrivateConstants {
    96     NumPrevPausesForHeuristics = 10
    97   };
    99   G1MMUTracker* _mmu_tracker;
   101   void initialize_flags();
   103   void initialize_all() {
   104     initialize_flags();
   105     initialize_size_info();
   106     initialize_perm_generation(PermGen::MarkSweepCompact);
   107   }
   109   virtual size_t default_init_heap_size() {
   110     // Pick some reasonable default.
   111     return 8*M;
   112   }
   114   double _cur_collection_start_sec;
   115   size_t _cur_collection_pause_used_at_start_bytes;
   116   size_t _cur_collection_pause_used_regions_at_start;
   117   size_t _prev_collection_pause_used_at_end_bytes;
   118   double _cur_collection_par_time_ms;
   119   double _cur_satb_drain_time_ms;
   120   double _cur_clear_ct_time_ms;
   121   bool   _satb_drain_time_set;
   122   double _cur_ref_proc_time_ms;
   123   double _cur_ref_enq_time_ms;
   125 #ifndef PRODUCT
   126   // Card Table Count Cache stats
   127   double _min_clear_cc_time_ms;         // min
   128   double _max_clear_cc_time_ms;         // max
   129   double _cur_clear_cc_time_ms;         // clearing time during current pause
   130   double _cum_clear_cc_time_ms;         // cummulative clearing time
   131   jlong  _num_cc_clears;                // number of times the card count cache has been cleared
   132 #endif
   134   // Statistics for recent GC pauses.  See below for how indexed.
   135   TruncatedSeq* _recent_rs_scan_times_ms;
   137   // These exclude marking times.
   138   TruncatedSeq* _recent_pause_times_ms;
   139   TruncatedSeq* _recent_gc_times_ms;
   141   TruncatedSeq* _recent_CS_bytes_used_before;
   142   TruncatedSeq* _recent_CS_bytes_surviving;
   144   TruncatedSeq* _recent_rs_sizes;
   146   TruncatedSeq* _concurrent_mark_remark_times_ms;
   147   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
   149   Summary*           _summary;
   151   NumberSeq* _all_pause_times_ms;
   152   NumberSeq* _all_full_gc_times_ms;
   153   double _stop_world_start;
   154   NumberSeq* _all_stop_world_times_ms;
   155   NumberSeq* _all_yield_times_ms;
   157   size_t     _region_num_young;
   158   size_t     _region_num_tenured;
   159   size_t     _prev_region_num_young;
   160   size_t     _prev_region_num_tenured;
   162   NumberSeq* _all_mod_union_times_ms;
   164   int        _aux_num;
   165   NumberSeq* _all_aux_times_ms;
   166   double*    _cur_aux_start_times_ms;
   167   double*    _cur_aux_times_ms;
   168   bool*      _cur_aux_times_set;
   170   double* _par_last_gc_worker_start_times_ms;
   171   double* _par_last_ext_root_scan_times_ms;
   172   double* _par_last_mark_stack_scan_times_ms;
   173   double* _par_last_update_rs_times_ms;
   174   double* _par_last_update_rs_processed_buffers;
   175   double* _par_last_scan_rs_times_ms;
   176   double* _par_last_obj_copy_times_ms;
   177   double* _par_last_termination_times_ms;
   178   double* _par_last_termination_attempts;
   179   double* _par_last_gc_worker_end_times_ms;
   180   double* _par_last_gc_worker_times_ms;
   182   // indicates whether we are in full young or partially young GC mode
   183   bool _full_young_gcs;
   185   // if true, then it tries to dynamically adjust the length of the
   186   // young list
   187   bool _adaptive_young_list_length;
   188   size_t _young_list_target_length;
   189   size_t _young_list_fixed_length;
   190   size_t _prev_eden_capacity; // used for logging
   192   // The max number of regions we can extend the eden by while the GC
   193   // locker is active. This should be >= _young_list_target_length;
   194   size_t _young_list_max_length;
   196   size_t _young_cset_length;
   197   bool   _last_young_gc_full;
   199   unsigned              _full_young_pause_num;
   200   unsigned              _partial_young_pause_num;
   202   bool                  _during_marking;
   203   bool                  _in_marking_window;
   204   bool                  _in_marking_window_im;
   206   SurvRateGroup*        _short_lived_surv_rate_group;
   207   SurvRateGroup*        _survivor_surv_rate_group;
   208   // add here any more surv rate groups
   210   double                _gc_overhead_perc;
   212   double _reserve_factor;
   213   size_t _reserve_regions;
   215   bool during_marking() {
   216     return _during_marking;
   217   }
   219   // <NEW PREDICTION>
   221 private:
   222   enum PredictionConstants {
   223     TruncatedSeqLength = 10
   224   };
   226   TruncatedSeq* _alloc_rate_ms_seq;
   227   double        _prev_collection_pause_end_ms;
   229   TruncatedSeq* _pending_card_diff_seq;
   230   TruncatedSeq* _rs_length_diff_seq;
   231   TruncatedSeq* _cost_per_card_ms_seq;
   232   TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
   233   TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
   234   TruncatedSeq* _cost_per_entry_ms_seq;
   235   TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
   236   TruncatedSeq* _cost_per_byte_ms_seq;
   237   TruncatedSeq* _constant_other_time_ms_seq;
   238   TruncatedSeq* _young_other_cost_per_region_ms_seq;
   239   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
   241   TruncatedSeq* _pending_cards_seq;
   242   TruncatedSeq* _scanned_cards_seq;
   243   TruncatedSeq* _rs_lengths_seq;
   245   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
   247   TruncatedSeq* _young_gc_eff_seq;
   249   TruncatedSeq* _max_conc_overhead_seq;
   251   bool   _using_new_ratio_calculations;
   252   size_t _min_desired_young_length; // as set on the command line or default calculations
   253   size_t _max_desired_young_length; // as set on the command line or default calculations
   255   size_t _recorded_young_regions;
   256   size_t _recorded_non_young_regions;
   257   size_t _recorded_region_num;
   259   size_t _free_regions_at_end_of_collection;
   261   size_t _recorded_rs_lengths;
   262   size_t _max_rs_lengths;
   264   size_t _recorded_marked_bytes;
   265   size_t _recorded_young_bytes;
   267   size_t _predicted_pending_cards;
   268   size_t _predicted_cards_scanned;
   269   size_t _predicted_rs_lengths;
   270   size_t _predicted_bytes_to_copy;
   272   double _predicted_survival_ratio;
   273   double _predicted_rs_update_time_ms;
   274   double _predicted_rs_scan_time_ms;
   275   double _predicted_object_copy_time_ms;
   276   double _predicted_constant_other_time_ms;
   277   double _predicted_young_other_time_ms;
   278   double _predicted_non_young_other_time_ms;
   279   double _predicted_pause_time_ms;
   281   double _vtime_diff_ms;
   283   double _recorded_young_free_cset_time_ms;
   284   double _recorded_non_young_free_cset_time_ms;
   286   double _sigma;
   287   double _expensive_region_limit_ms;
   289   size_t _rs_lengths_prediction;
   291   size_t _known_garbage_bytes;
   292   double _known_garbage_ratio;
   294   double sigma() {
   295     return _sigma;
   296   }
   298   // A function that prevents us putting too much stock in small sample
   299   // sets.  Returns a number between 2.0 and 1.0, depending on the number
   300   // of samples.  5 or more samples yields one; fewer scales linearly from
   301   // 2.0 at 1 sample to 1.0 at 5.
   302   double confidence_factor(int samples) {
   303     if (samples > 4) return 1.0;
   304     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
   305   }
   307   double get_new_neg_prediction(TruncatedSeq* seq) {
   308     return seq->davg() - sigma() * seq->dsd();
   309   }
   311 #ifndef PRODUCT
   312   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
   313 #endif // PRODUCT
   315   void adjust_concurrent_refinement(double update_rs_time,
   316                                     double update_rs_processed_buffers,
   317                                     double goal_ms);
   319 protected:
   320   double _pause_time_target_ms;
   321   double _recorded_young_cset_choice_time_ms;
   322   double _recorded_non_young_cset_choice_time_ms;
   323   bool   _within_target;
   324   size_t _pending_cards;
   325   size_t _max_pending_cards;
   327 public:
   329   void set_region_short_lived(HeapRegion* hr) {
   330     hr->install_surv_rate_group(_short_lived_surv_rate_group);
   331   }
   333   void set_region_survivors(HeapRegion* hr) {
   334     hr->install_surv_rate_group(_survivor_surv_rate_group);
   335   }
   337 #ifndef PRODUCT
   338   bool verify_young_ages();
   339 #endif // PRODUCT
   341   double get_new_prediction(TruncatedSeq* seq) {
   342     return MAX2(seq->davg() + sigma() * seq->dsd(),
   343                 seq->davg() * confidence_factor(seq->num()));
   344   }
   346   size_t young_cset_length() {
   347     return _young_cset_length;
   348   }
   350   void record_max_rs_lengths(size_t rs_lengths) {
   351     _max_rs_lengths = rs_lengths;
   352   }
   354   size_t predict_pending_card_diff() {
   355     double prediction = get_new_neg_prediction(_pending_card_diff_seq);
   356     if (prediction < 0.00001)
   357       return 0;
   358     else
   359       return (size_t) prediction;
   360   }
   362   size_t predict_pending_cards() {
   363     size_t max_pending_card_num = _g1->max_pending_card_num();
   364     size_t diff = predict_pending_card_diff();
   365     size_t prediction;
   366     if (diff > max_pending_card_num)
   367       prediction = max_pending_card_num;
   368     else
   369       prediction = max_pending_card_num - diff;
   371     return prediction;
   372   }
   374   size_t predict_rs_length_diff() {
   375     return (size_t) get_new_prediction(_rs_length_diff_seq);
   376   }
   378   double predict_alloc_rate_ms() {
   379     return get_new_prediction(_alloc_rate_ms_seq);
   380   }
   382   double predict_cost_per_card_ms() {
   383     return get_new_prediction(_cost_per_card_ms_seq);
   384   }
   386   double predict_rs_update_time_ms(size_t pending_cards) {
   387     return (double) pending_cards * predict_cost_per_card_ms();
   388   }
   390   double predict_fully_young_cards_per_entry_ratio() {
   391     return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
   392   }
   394   double predict_partially_young_cards_per_entry_ratio() {
   395     if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
   396       return predict_fully_young_cards_per_entry_ratio();
   397     else
   398       return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
   399   }
   401   size_t predict_young_card_num(size_t rs_length) {
   402     return (size_t) ((double) rs_length *
   403                      predict_fully_young_cards_per_entry_ratio());
   404   }
   406   size_t predict_non_young_card_num(size_t rs_length) {
   407     return (size_t) ((double) rs_length *
   408                      predict_partially_young_cards_per_entry_ratio());
   409   }
   411   double predict_rs_scan_time_ms(size_t card_num) {
   412     if (full_young_gcs())
   413       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   414     else
   415       return predict_partially_young_rs_scan_time_ms(card_num);
   416   }
   418   double predict_partially_young_rs_scan_time_ms(size_t card_num) {
   419     if (_partially_young_cost_per_entry_ms_seq->num() < 3)
   420       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   421     else
   422       return (double) card_num *
   423         get_new_prediction(_partially_young_cost_per_entry_ms_seq);
   424   }
   426   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
   427     if (_cost_per_byte_ms_during_cm_seq->num() < 3)
   428       return 1.1 * (double) bytes_to_copy *
   429         get_new_prediction(_cost_per_byte_ms_seq);
   430     else
   431       return (double) bytes_to_copy *
   432         get_new_prediction(_cost_per_byte_ms_during_cm_seq);
   433   }
   435   double predict_object_copy_time_ms(size_t bytes_to_copy) {
   436     if (_in_marking_window && !_in_marking_window_im)
   437       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
   438     else
   439       return (double) bytes_to_copy *
   440         get_new_prediction(_cost_per_byte_ms_seq);
   441   }
   443   double predict_constant_other_time_ms() {
   444     return get_new_prediction(_constant_other_time_ms_seq);
   445   }
   447   double predict_young_other_time_ms(size_t young_num) {
   448     return
   449       (double) young_num *
   450       get_new_prediction(_young_other_cost_per_region_ms_seq);
   451   }
   453   double predict_non_young_other_time_ms(size_t non_young_num) {
   454     return
   455       (double) non_young_num *
   456       get_new_prediction(_non_young_other_cost_per_region_ms_seq);
   457   }
   459   void check_if_region_is_too_expensive(double predicted_time_ms);
   461   double predict_young_collection_elapsed_time_ms(size_t adjustment);
   462   double predict_base_elapsed_time_ms(size_t pending_cards);
   463   double predict_base_elapsed_time_ms(size_t pending_cards,
   464                                       size_t scanned_cards);
   465   size_t predict_bytes_to_copy(HeapRegion* hr);
   466   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
   468   void start_recording_regions();
   469   void record_cset_region_info(HeapRegion* hr, bool young);
   470   void record_non_young_cset_region(HeapRegion* hr);
   472   void set_recorded_young_regions(size_t n_regions);
   473   void set_recorded_young_bytes(size_t bytes);
   474   void set_recorded_rs_lengths(size_t rs_lengths);
   475   void set_predicted_bytes_to_copy(size_t bytes);
   477   void end_recording_regions();
   479   void record_vtime_diff_ms(double vtime_diff_ms) {
   480     _vtime_diff_ms = vtime_diff_ms;
   481   }
   483   void record_young_free_cset_time_ms(double time_ms) {
   484     _recorded_young_free_cset_time_ms = time_ms;
   485   }
   487   void record_non_young_free_cset_time_ms(double time_ms) {
   488     _recorded_non_young_free_cset_time_ms = time_ms;
   489   }
   491   double predict_young_gc_eff() {
   492     return get_new_neg_prediction(_young_gc_eff_seq);
   493   }
   495   double predict_survivor_regions_evac_time();
   497   // </NEW PREDICTION>
   499   void cset_regions_freed() {
   500     bool propagate = _last_young_gc_full && !_in_marking_window;
   501     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
   502     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
   503     // also call it on any more surv rate groups
   504   }
   506   void set_known_garbage_bytes(size_t known_garbage_bytes) {
   507     _known_garbage_bytes = known_garbage_bytes;
   508     size_t heap_bytes = _g1->capacity();
   509     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   510   }
   512   void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
   513     guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
   515     _known_garbage_bytes -= known_garbage_bytes;
   516     size_t heap_bytes = _g1->capacity();
   517     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   518   }
   520   G1MMUTracker* mmu_tracker() {
   521     return _mmu_tracker;
   522   }
   524   double max_pause_time_ms() {
   525     return _mmu_tracker->max_gc_time() * 1000.0;
   526   }
   528   double predict_remark_time_ms() {
   529     return get_new_prediction(_concurrent_mark_remark_times_ms);
   530   }
   532   double predict_cleanup_time_ms() {
   533     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
   534   }
   536   // Returns an estimate of the survival rate of the region at yg-age
   537   // "yg_age".
   538   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
   539     TruncatedSeq* seq = surv_rate_group->get_seq(age);
   540     if (seq->num() == 0)
   541       gclog_or_tty->print("BARF! age is %d", age);
   542     guarantee( seq->num() > 0, "invariant" );
   543     double pred = get_new_prediction(seq);
   544     if (pred > 1.0)
   545       pred = 1.0;
   546     return pred;
   547   }
   549   double predict_yg_surv_rate(int age) {
   550     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
   551   }
   553   double accum_yg_surv_rate_pred(int age) {
   554     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
   555   }
   557 protected:
   558   void print_stats(int level, const char* str, double value);
   559   void print_stats(int level, const char* str, int value);
   561   void print_par_stats(int level, const char* str, double* data);
   562   void print_par_sizes(int level, const char* str, double* data);
   564   void check_other_times(int level,
   565                          NumberSeq* other_times_ms,
   566                          NumberSeq* calc_other_times_ms) const;
   568   void print_summary (PauseSummary* stats) const;
   570   void print_summary (int level, const char* str, NumberSeq* seq) const;
   571   void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
   573   double avg_value (double* data);
   574   double max_value (double* data);
   575   double sum_of_values (double* data);
   576   double max_sum (double* data1, double* data2);
   578   int _last_satb_drain_processed_buffers;
   579   int _last_update_rs_processed_buffers;
   580   double _last_pause_time_ms;
   582   size_t _bytes_in_collection_set_before_gc;
   583   size_t _bytes_copied_during_gc;
   585   // Used to count used bytes in CS.
   586   friend class CountCSClosure;
   588   // Statistics kept per GC stoppage, pause or full.
   589   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
   591   // We track markings.
   592   int _num_markings;
   593   double _mark_thread_startup_sec;       // Time at startup of marking thread
   595   // Add a new GC of the given duration and end time to the record.
   596   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
   598   // The head of the list (via "next_in_collection_set()") representing the
   599   // current collection set. Set from the incrementally built collection
   600   // set at the start of the pause.
   601   HeapRegion* _collection_set;
   603   // The number of regions in the collection set. Set from the incrementally
   604   // built collection set at the start of an evacuation pause.
   605   size_t _collection_set_size;
   607   // The number of bytes in the collection set before the pause. Set from
   608   // the incrementally built collection set at the start of an evacuation
   609   // pause.
   610   size_t _collection_set_bytes_used_before;
   612   // The associated information that is maintained while the incremental
   613   // collection set is being built with young regions. Used to populate
   614   // the recorded info for the evacuation pause.
   616   enum CSetBuildType {
   617     Active,             // We are actively building the collection set
   618     Inactive            // We are not actively building the collection set
   619   };
   621   CSetBuildType _inc_cset_build_state;
   623   // The head of the incrementally built collection set.
   624   HeapRegion* _inc_cset_head;
   626   // The tail of the incrementally built collection set.
   627   HeapRegion* _inc_cset_tail;
   629   // The number of regions in the incrementally built collection set.
   630   // Used to set _collection_set_size at the start of an evacuation
   631   // pause.
   632   size_t _inc_cset_size;
   634   // Used as the index in the surving young words structure
   635   // which tracks the amount of space, for each young region,
   636   // that survives the pause.
   637   size_t _inc_cset_young_index;
   639   // The number of bytes in the incrementally built collection set.
   640   // Used to set _collection_set_bytes_used_before at the start of
   641   // an evacuation pause.
   642   size_t _inc_cset_bytes_used_before;
   644   // Used to record the highest end of heap region in collection set
   645   HeapWord* _inc_cset_max_finger;
   647   // The number of recorded used bytes in the young regions
   648   // of the collection set. This is the sum of the used() bytes
   649   // of retired young regions in the collection set.
   650   size_t _inc_cset_recorded_young_bytes;
   652   // The RSet lengths recorded for regions in the collection set
   653   // (updated by the periodic sampling of the regions in the
   654   // young list/collection set).
   655   size_t _inc_cset_recorded_rs_lengths;
   657   // The predicted elapsed time it will take to collect the regions
   658   // in the collection set (updated by the periodic sampling of the
   659   // regions in the young list/collection set).
   660   double _inc_cset_predicted_elapsed_time_ms;
   662   // The predicted bytes to copy for the regions in the collection
   663   // set (updated by the periodic sampling of the regions in the
   664   // young list/collection set).
   665   size_t _inc_cset_predicted_bytes_to_copy;
   667   // Info about marking.
   668   int _n_marks; // Sticky at 2, so we know when we've done at least 2.
   670   // The number of collection pauses at the end of the last mark.
   671   size_t _n_pauses_at_mark_end;
   673   // Stash a pointer to the g1 heap.
   674   G1CollectedHeap* _g1;
   676   // The average time in ms per collection pause, averaged over recent pauses.
   677   double recent_avg_time_for_pauses_ms();
   679   // The average time in ms for RS scanning, per pause, averaged
   680   // over recent pauses. (Note the RS scanning time for a pause
   681   // is itself an average of the RS scanning time for each worker
   682   // thread.)
   683   double recent_avg_time_for_rs_scan_ms();
   685   // The number of "recent" GCs recorded in the number sequences
   686   int number_of_recent_gcs();
   688   // The average survival ratio, computed by the total number of bytes
   689   // suriviving / total number of bytes before collection over the last
   690   // several recent pauses.
   691   double recent_avg_survival_fraction();
   692   // The survival fraction of the most recent pause; if there have been no
   693   // pauses, returns 1.0.
   694   double last_survival_fraction();
   696   // Returns a "conservative" estimate of the recent survival rate, i.e.,
   697   // one that may be higher than "recent_avg_survival_fraction".
   698   // This is conservative in several ways:
   699   //   If there have been few pauses, it will assume a potential high
   700   //     variance, and err on the side of caution.
   701   //   It puts a lower bound (currently 0.1) on the value it will return.
   702   //   To try to detect phase changes, if the most recent pause ("latest") has a
   703   //     higher-than average ("avg") survival rate, it returns that rate.
   704   // "work" version is a utility function; young is restricted to young regions.
   705   double conservative_avg_survival_fraction_work(double avg,
   706                                                  double latest);
   708   // The arguments are the two sequences that keep track of the number of bytes
   709   //   surviving and the total number of bytes before collection, resp.,
   710   //   over the last evereal recent pauses
   711   // Returns the survival rate for the category in the most recent pause.
   712   // If there have been no pauses, returns 1.0.
   713   double last_survival_fraction_work(TruncatedSeq* surviving,
   714                                      TruncatedSeq* before);
   716   // The arguments are the two sequences that keep track of the number of bytes
   717   //   surviving and the total number of bytes before collection, resp.,
   718   //   over the last several recent pauses
   719   // Returns the average survival ration over the last several recent pauses
   720   // If there have been no pauses, return 1.0
   721   double recent_avg_survival_fraction_work(TruncatedSeq* surviving,
   722                                            TruncatedSeq* before);
   724   double conservative_avg_survival_fraction() {
   725     double avg = recent_avg_survival_fraction();
   726     double latest = last_survival_fraction();
   727     return conservative_avg_survival_fraction_work(avg, latest);
   728   }
   730   // The ratio of gc time to elapsed time, computed over recent pauses.
   731   double _recent_avg_pause_time_ratio;
   733   double recent_avg_pause_time_ratio() {
   734     return _recent_avg_pause_time_ratio;
   735   }
   737   // Number of pauses between concurrent marking.
   738   size_t _pauses_btwn_concurrent_mark;
   740   size_t _n_marks_since_last_pause;
   742   // At the end of a pause we check the heap occupancy and we decide
   743   // whether we will start a marking cycle during the next pause. If
   744   // we decide that we want to do that, we will set this parameter to
   745   // true. So, this parameter will stay true between the end of a
   746   // pause and the beginning of a subsequent pause (not necessarily
   747   // the next one, see the comments on the next field) when we decide
   748   // that we will indeed start a marking cycle and do the initial-mark
   749   // work.
   750   volatile bool _initiate_conc_mark_if_possible;
   752   // If initiate_conc_mark_if_possible() is set at the beginning of a
   753   // pause, it is a suggestion that the pause should start a marking
   754   // cycle by doing the initial-mark work. However, it is possible
   755   // that the concurrent marking thread is still finishing up the
   756   // previous marking cycle (e.g., clearing the next marking
   757   // bitmap). If that is the case we cannot start a new cycle and
   758   // we'll have to wait for the concurrent marking thread to finish
   759   // what it is doing. In this case we will postpone the marking cycle
   760   // initiation decision for the next pause. When we eventually decide
   761   // to start a cycle, we will set _during_initial_mark_pause which
   762   // will stay true until the end of the initial-mark pause and it's
   763   // the condition that indicates that a pause is doing the
   764   // initial-mark work.
   765   volatile bool _during_initial_mark_pause;
   767   bool _should_revert_to_full_young_gcs;
   768   bool _last_full_young_gc;
   770   // This set of variables tracks the collector efficiency, in order to
   771   // determine whether we should initiate a new marking.
   772   double _cur_mark_stop_world_time_ms;
   773   double _mark_remark_start_sec;
   774   double _mark_cleanup_start_sec;
   775   double _mark_closure_time_ms;
   777   // Update the young list target length either by setting it to the
   778   // desired fixed value or by calculating it using G1's pause
   779   // prediction model. If no rs_lengths parameter is passed, predict
   780   // the RS lengths using the prediction model, otherwise use the
   781   // given rs_lengths as the prediction.
   782   void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
   784   // Calculate and return the minimum desired young list target
   785   // length. This is the minimum desired young list length according
   786   // to the user's inputs.
   787   size_t calculate_young_list_desired_min_length(size_t base_min_length);
   789   // Calculate and return the maximum desired young list target
   790   // length. This is the maximum desired young list length according
   791   // to the user's inputs.
   792   size_t calculate_young_list_desired_max_length();
   794   // Calculate and return the maximum young list target length that
   795   // can fit into the pause time goal. The parameters are: rs_lengths
   796   // represent the prediction of how large the young RSet lengths will
   797   // be, base_min_length is the alreay existing number of regions in
   798   // the young list, min_length and max_length are the desired min and
   799   // max young list length according to the user's inputs.
   800   size_t calculate_young_list_target_length(size_t rs_lengths,
   801                                             size_t base_min_length,
   802                                             size_t desired_min_length,
   803                                             size_t desired_max_length);
   805   // Check whether a given young length (young_length) fits into the
   806   // given target pause time and whether the prediction for the amount
   807   // of objects to be copied for the given length will fit into the
   808   // given free space (expressed by base_free_regions).  It is used by
   809   // calculate_young_list_target_length().
   810   bool predict_will_fit(size_t young_length, double base_time_ms,
   811                         size_t base_free_regions, double target_pause_time_ms);
   813 public:
   815   G1CollectorPolicy();
   817   virtual G1CollectorPolicy* as_g1_policy() { return this; }
   819   virtual CollectorPolicy::Name kind() {
   820     return CollectorPolicy::G1CollectorPolicyKind;
   821   }
   823   // Check the current value of the young list RSet lengths and
   824   // compare it against the last prediction. If the current value is
   825   // higher, recalculate the young list target length prediction.
   826   void revise_young_list_target_length_if_necessary();
   828   size_t bytes_in_collection_set() {
   829     return _bytes_in_collection_set_before_gc;
   830   }
   832   unsigned calc_gc_alloc_time_stamp() {
   833     return _all_pause_times_ms->num() + 1;
   834   }
   836   // This should be called after the heap is resized.
   837   void record_new_heap_size(size_t new_number_of_regions);
   839 protected:
   841   // Count the number of bytes used in the CS.
   842   void count_CS_bytes_used();
   844   // Together these do the base cleanup-recording work.  Subclasses might
   845   // want to put something between them.
   846   void record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
   847                                                 size_t max_live_bytes);
   848   void record_concurrent_mark_cleanup_end_work2();
   850   void update_young_list_size_using_newratio(size_t number_of_heap_regions);
   852 public:
   854   virtual void init();
   856   // Create jstat counters for the policy.
   857   virtual void initialize_gc_policy_counters();
   859   virtual HeapWord* mem_allocate_work(size_t size,
   860                                       bool is_tlab,
   861                                       bool* gc_overhead_limit_was_exceeded);
   863   // This method controls how a collector handles one or more
   864   // of its generations being fully allocated.
   865   virtual HeapWord* satisfy_failed_allocation(size_t size,
   866                                               bool is_tlab);
   868   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
   870   GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }
   872   // The number of collection pauses so far.
   873   long n_pauses() const { return _n_pauses; }
   875   // Update the heuristic info to record a collection pause of the given
   876   // start time, where the given number of bytes were used at the start.
   877   // This may involve changing the desired size of a collection set.
   879   virtual void record_stop_world_start();
   881   virtual void record_collection_pause_start(double start_time_sec,
   882                                              size_t start_used);
   884   // Must currently be called while the world is stopped.
   885   void record_concurrent_mark_init_end(double
   886                                            mark_init_elapsed_time_ms);
   888   void record_mark_closure_time(double mark_closure_time_ms);
   890   virtual void record_concurrent_mark_remark_start();
   891   virtual void record_concurrent_mark_remark_end();
   893   virtual void record_concurrent_mark_cleanup_start();
   894   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
   895                                                   size_t max_live_bytes);
   896   virtual void record_concurrent_mark_cleanup_completed();
   898   virtual void record_concurrent_pause();
   899   virtual void record_concurrent_pause_end();
   901   virtual void record_collection_pause_end();
   902   void print_heap_transition();
   904   // Record the fact that a full collection occurred.
   905   virtual void record_full_collection_start();
   906   virtual void record_full_collection_end();
   908   void record_gc_worker_start_time(int worker_i, double ms) {
   909     _par_last_gc_worker_start_times_ms[worker_i] = ms;
   910   }
   912   void record_ext_root_scan_time(int worker_i, double ms) {
   913     _par_last_ext_root_scan_times_ms[worker_i] = ms;
   914   }
   916   void record_mark_stack_scan_time(int worker_i, double ms) {
   917     _par_last_mark_stack_scan_times_ms[worker_i] = ms;
   918   }
   920   void record_satb_drain_time(double ms) {
   921     _cur_satb_drain_time_ms = ms;
   922     _satb_drain_time_set    = true;
   923   }
   925   void record_satb_drain_processed_buffers (int processed_buffers) {
   926     _last_satb_drain_processed_buffers = processed_buffers;
   927   }
   929   void record_mod_union_time(double ms) {
   930     _all_mod_union_times_ms->add(ms);
   931   }
   933   void record_update_rs_time(int thread, double ms) {
   934     _par_last_update_rs_times_ms[thread] = ms;
   935   }
   937   void record_update_rs_processed_buffers (int thread,
   938                                            double processed_buffers) {
   939     _par_last_update_rs_processed_buffers[thread] = processed_buffers;
   940   }
   942   void record_scan_rs_time(int thread, double ms) {
   943     _par_last_scan_rs_times_ms[thread] = ms;
   944   }
   946   void reset_obj_copy_time(int thread) {
   947     _par_last_obj_copy_times_ms[thread] = 0.0;
   948   }
   950   void reset_obj_copy_time() {
   951     reset_obj_copy_time(0);
   952   }
   954   void record_obj_copy_time(int thread, double ms) {
   955     _par_last_obj_copy_times_ms[thread] += ms;
   956   }
   958   void record_termination(int thread, double ms, size_t attempts) {
   959     _par_last_termination_times_ms[thread] = ms;
   960     _par_last_termination_attempts[thread] = (double) attempts;
   961   }
   963   void record_gc_worker_end_time(int worker_i, double ms) {
   964     _par_last_gc_worker_end_times_ms[worker_i] = ms;
   965   }
   967   void record_pause_time_ms(double ms) {
   968     _last_pause_time_ms = ms;
   969   }
   971   void record_clear_ct_time(double ms) {
   972     _cur_clear_ct_time_ms = ms;
   973   }
   975   void record_par_time(double ms) {
   976     _cur_collection_par_time_ms = ms;
   977   }
   979   void record_aux_start_time(int i) {
   980     guarantee(i < _aux_num, "should be within range");
   981     _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
   982   }
   984   void record_aux_end_time(int i) {
   985     guarantee(i < _aux_num, "should be within range");
   986     double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
   987     _cur_aux_times_set[i] = true;
   988     _cur_aux_times_ms[i] += ms;
   989   }
   991   void record_ref_proc_time(double ms) {
   992     _cur_ref_proc_time_ms = ms;
   993   }
   995   void record_ref_enq_time(double ms) {
   996     _cur_ref_enq_time_ms = ms;
   997   }
   999 #ifndef PRODUCT
  1000   void record_cc_clear_time(double ms) {
  1001     if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
  1002       _min_clear_cc_time_ms = ms;
  1003     if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
  1004       _max_clear_cc_time_ms = ms;
  1005     _cur_clear_cc_time_ms = ms;
  1006     _cum_clear_cc_time_ms += ms;
  1007     _num_cc_clears++;
  1009 #endif
  1011   // Record how much space we copied during a GC. This is typically
  1012   // called when a GC alloc region is being retired.
  1013   void record_bytes_copied_during_gc(size_t bytes) {
  1014     _bytes_copied_during_gc += bytes;
  1017   // The amount of space we copied during a GC.
  1018   size_t bytes_copied_during_gc() {
  1019     return _bytes_copied_during_gc;
  1022   // Choose a new collection set.  Marks the chosen regions as being
  1023   // "in_collection_set", and links them together.  The head and number of
  1024   // the collection set are available via access methods.
  1025   virtual void choose_collection_set(double target_pause_time_ms) = 0;
  1027   // The head of the list (via "next_in_collection_set()") representing the
  1028   // current collection set.
  1029   HeapRegion* collection_set() { return _collection_set; }
  1031   void clear_collection_set() { _collection_set = NULL; }
  1033   // The number of elements in the current collection set.
  1034   size_t collection_set_size() { return _collection_set_size; }
  1036   // Add "hr" to the CS.
  1037   void add_to_collection_set(HeapRegion* hr);
  1039   // Incremental CSet Support
  1041   // The head of the incrementally built collection set.
  1042   HeapRegion* inc_cset_head() { return _inc_cset_head; }
  1044   // The tail of the incrementally built collection set.
  1045   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
  1047   // The number of elements in the incrementally built collection set.
  1048   size_t inc_cset_size() { return _inc_cset_size; }
  1050   // Initialize incremental collection set info.
  1051   void start_incremental_cset_building();
  1053   void clear_incremental_cset() {
  1054     _inc_cset_head = NULL;
  1055     _inc_cset_tail = NULL;
  1058   // Stop adding regions to the incremental collection set
  1059   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
  1061   // Add/remove information about hr to the aggregated information
  1062   // for the incrementally built collection set.
  1063   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
  1064   void remove_from_incremental_cset_info(HeapRegion* hr);
  1066   // Update information about hr in the aggregated information for
  1067   // the incrementally built collection set.
  1068   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
  1070 private:
  1071   // Update the incremental cset information when adding a region
  1072   // (should not be called directly).
  1073   void add_region_to_incremental_cset_common(HeapRegion* hr);
  1075 public:
  1076   // Add hr to the LHS of the incremental collection set.
  1077   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
  1079   // Add hr to the RHS of the incremental collection set.
  1080   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
  1082 #ifndef PRODUCT
  1083   void print_collection_set(HeapRegion* list_head, outputStream* st);
  1084 #endif // !PRODUCT
  1086   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
  1087   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
  1088   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
  1090   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
  1091   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
  1092   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
  1094   // This sets the initiate_conc_mark_if_possible() flag to start a
  1095   // new cycle, as long as we are not already in one. It's best if it
  1096   // is called during a safepoint when the test whether a cycle is in
  1097   // progress or not is stable.
  1098   bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
  1100   // This is called at the very beginning of an evacuation pause (it
  1101   // has to be the first thing that the pause does). If
  1102   // initiate_conc_mark_if_possible() is true, and the concurrent
  1103   // marking thread has completed its work during the previous cycle,
  1104   // it will set during_initial_mark_pause() to so that the pause does
  1105   // the initial-mark work and start a marking cycle.
  1106   void decide_on_conc_mark_initiation();
  1108   // If an expansion would be appropriate, because recent GC overhead had
  1109   // exceeded the desired limit, return an amount to expand by.
  1110   virtual size_t expansion_amount();
  1112   // note start of mark thread
  1113   void note_start_of_mark_thread();
  1115   // The marked bytes of the "r" has changed; reclassify it's desirability
  1116   // for marking.  Also asserts that "r" is eligible for a CS.
  1117   virtual void note_change_in_marked_bytes(HeapRegion* r) = 0;
  1119 #ifndef PRODUCT
  1120   // Check any appropriate marked bytes info, asserting false if
  1121   // something's wrong, else returning "true".
  1122   virtual bool assertMarkedBytesDataOK() = 0;
  1123 #endif
  1125   // Print tracing information.
  1126   void print_tracing_info() const;
  1128   // Print stats on young survival ratio
  1129   void print_yg_surv_rate_info() const;
  1131   void finished_recalculating_age_indexes(bool is_survivors) {
  1132     if (is_survivors) {
  1133       _survivor_surv_rate_group->finished_recalculating_age_indexes();
  1134     } else {
  1135       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
  1137     // do that for any other surv rate groups
  1140   bool is_young_list_full() {
  1141     size_t young_list_length = _g1->young_list()->length();
  1142     size_t young_list_target_length = _young_list_target_length;
  1143     return young_list_length >= young_list_target_length;
  1146   bool can_expand_young_list() {
  1147     size_t young_list_length = _g1->young_list()->length();
  1148     size_t young_list_max_length = _young_list_max_length;
  1149     return young_list_length < young_list_max_length;
  1152   void update_region_num(bool young);
  1154   bool full_young_gcs() {
  1155     return _full_young_gcs;
  1157   void set_full_young_gcs(bool full_young_gcs) {
  1158     _full_young_gcs = full_young_gcs;
  1161   bool adaptive_young_list_length() {
  1162     return _adaptive_young_list_length;
  1164   void set_adaptive_young_list_length(bool adaptive_young_list_length) {
  1165     _adaptive_young_list_length = adaptive_young_list_length;
  1168   inline double get_gc_eff_factor() {
  1169     double ratio = _known_garbage_ratio;
  1171     double square = ratio * ratio;
  1172     // square = square * square;
  1173     double ret = square * 9.0 + 1.0;
  1174 #if 0
  1175     gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
  1176 #endif // 0
  1177     guarantee(0.0 <= ret && ret < 10.0, "invariant!");
  1178     return ret;
  1181   //
  1182   // Survivor regions policy.
  1183   //
  1184 protected:
  1186   // Current tenuring threshold, set to 0 if the collector reaches the
  1187   // maximum amount of suvivors regions.
  1188   int _tenuring_threshold;
  1190   // The limit on the number of regions allocated for survivors.
  1191   size_t _max_survivor_regions;
  1193   // For reporting purposes.
  1194   size_t _eden_bytes_before_gc;
  1195   size_t _survivor_bytes_before_gc;
  1196   size_t _capacity_before_gc;
  1198   // The amount of survor regions after a collection.
  1199   size_t _recorded_survivor_regions;
  1200   // List of survivor regions.
  1201   HeapRegion* _recorded_survivor_head;
  1202   HeapRegion* _recorded_survivor_tail;
  1204   ageTable _survivors_age_table;
  1206 public:
  1208   inline GCAllocPurpose
  1209     evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
  1210       if (age < _tenuring_threshold && src_region->is_young()) {
  1211         return GCAllocForSurvived;
  1212       } else {
  1213         return GCAllocForTenured;
  1217   inline bool track_object_age(GCAllocPurpose purpose) {
  1218     return purpose == GCAllocForSurvived;
  1221   static const size_t REGIONS_UNLIMITED = ~(size_t)0;
  1223   size_t max_regions(int purpose);
  1225   // The limit on regions for a particular purpose is reached.
  1226   void note_alloc_region_limit_reached(int purpose) {
  1227     if (purpose == GCAllocForSurvived) {
  1228       _tenuring_threshold = 0;
  1232   void note_start_adding_survivor_regions() {
  1233     _survivor_surv_rate_group->start_adding_regions();
  1236   void note_stop_adding_survivor_regions() {
  1237     _survivor_surv_rate_group->stop_adding_regions();
  1240   void record_survivor_regions(size_t      regions,
  1241                                HeapRegion* head,
  1242                                HeapRegion* tail) {
  1243     _recorded_survivor_regions = regions;
  1244     _recorded_survivor_head    = head;
  1245     _recorded_survivor_tail    = tail;
  1248   size_t recorded_survivor_regions() {
  1249     return _recorded_survivor_regions;
  1252   void record_thread_age_table(ageTable* age_table)
  1254     _survivors_age_table.merge_par(age_table);
  1257   void update_max_gc_locker_expansion();
  1259   // Calculates survivor space parameters.
  1260   void update_survivors_policy();
  1262 };
  1264 // This encapsulates a particular strategy for a g1 Collector.
  1265 //
  1266 //      Start a concurrent mark when our heap size is n bytes
  1267 //            greater then our heap size was at the last concurrent
  1268 //            mark.  Where n is a function of the CMSTriggerRatio
  1269 //            and the MinHeapFreeRatio.
  1270 //
  1271 //      Start a g1 collection pause when we have allocated the
  1272 //            average number of bytes currently being freed in
  1273 //            a collection, but only if it is at least one region
  1274 //            full
  1275 //
  1276 //      Resize Heap based on desired
  1277 //      allocation space, where desired allocation space is
  1278 //      a function of survival rate and desired future to size.
  1279 //
  1280 //      Choose collection set by first picking all older regions
  1281 //      which have a survival rate which beats our projected young
  1282 //      survival rate.  Then fill out the number of needed regions
  1283 //      with young regions.
  1285 class G1CollectorPolicy_BestRegionsFirst: public G1CollectorPolicy {
  1286   CollectionSetChooser* _collectionSetChooser;
  1288   virtual void choose_collection_set(double target_pause_time_ms);
  1289   virtual void record_collection_pause_start(double start_time_sec,
  1290                                              size_t start_used);
  1291   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
  1292                                                   size_t max_live_bytes);
  1293   virtual void record_full_collection_end();
  1295 public:
  1296   G1CollectorPolicy_BestRegionsFirst() {
  1297     _collectionSetChooser = new CollectionSetChooser();
  1299   void record_collection_pause_end();
  1300   // This is not needed any more, after the CSet choosing code was
  1301   // changed to use the pause prediction work. But let's leave the
  1302   // hook in just in case.
  1303   void note_change_in_marked_bytes(HeapRegion* r) { }
  1304 #ifndef PRODUCT
  1305   bool assertMarkedBytesDataOK();
  1306 #endif
  1307 };
  1309 // This should move to some place more general...
  1311 // If we have "n" measurements, and we've kept track of their "sum" and the
  1312 // "sum_of_squares" of the measurements, this returns the variance of the
  1313 // sequence.
  1314 inline double variance(int n, double sum_of_squares, double sum) {
  1315   double n_d = (double)n;
  1316   double avg = sum/n_d;
  1317   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
  1320 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP

mercurial