src/cpu/x86/vm/assembler_x86.cpp

Mon, 20 Aug 2012 09:07:21 -0700

author
kvn
date
Mon, 20 Aug 2012 09:07:21 -0700
changeset 4001
006050192a5a
parent 3969
1d7922586cf6
child 4037
da91efe96a93
permissions
-rw-r--r--

6340864: Implement vectorization optimizations in hotspot-server
Summary: Added asm encoding and mach nodes for vector arithmetic instructions on x86.
Reviewed-by: roland

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "assembler_x86.inline.hpp"
    27 #include "gc_interface/collectedHeap.inline.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "memory/cardTableModRefBS.hpp"
    30 #include "memory/resourceArea.hpp"
    31 #include "prims/methodHandles.hpp"
    32 #include "runtime/biasedLocking.hpp"
    33 #include "runtime/interfaceSupport.hpp"
    34 #include "runtime/objectMonitor.hpp"
    35 #include "runtime/os.hpp"
    36 #include "runtime/sharedRuntime.hpp"
    37 #include "runtime/stubRoutines.hpp"
    38 #ifndef SERIALGC
    39 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    40 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    41 #include "gc_implementation/g1/heapRegion.hpp"
    42 #endif
    44 #ifdef PRODUCT
    45 #define BLOCK_COMMENT(str) /* nothing */
    46 #define STOP(error) stop(error)
    47 #else
    48 #define BLOCK_COMMENT(str) block_comment(str)
    49 #define STOP(error) block_comment(error); stop(error)
    50 #endif
    52 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    53 // Implementation of AddressLiteral
    55 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
    56   _is_lval = false;
    57   _target = target;
    58   switch (rtype) {
    59   case relocInfo::oop_type:
    60     // Oops are a special case. Normally they would be their own section
    61     // but in cases like icBuffer they are literals in the code stream that
    62     // we don't have a section for. We use none so that we get a literal address
    63     // which is always patchable.
    64     break;
    65   case relocInfo::external_word_type:
    66     _rspec = external_word_Relocation::spec(target);
    67     break;
    68   case relocInfo::internal_word_type:
    69     _rspec = internal_word_Relocation::spec(target);
    70     break;
    71   case relocInfo::opt_virtual_call_type:
    72     _rspec = opt_virtual_call_Relocation::spec();
    73     break;
    74   case relocInfo::static_call_type:
    75     _rspec = static_call_Relocation::spec();
    76     break;
    77   case relocInfo::runtime_call_type:
    78     _rspec = runtime_call_Relocation::spec();
    79     break;
    80   case relocInfo::poll_type:
    81   case relocInfo::poll_return_type:
    82     _rspec = Relocation::spec_simple(rtype);
    83     break;
    84   case relocInfo::none:
    85     break;
    86   default:
    87     ShouldNotReachHere();
    88     break;
    89   }
    90 }
    92 // Implementation of Address
    94 #ifdef _LP64
    96 Address Address::make_array(ArrayAddress adr) {
    97   // Not implementable on 64bit machines
    98   // Should have been handled higher up the call chain.
    99   ShouldNotReachHere();
   100   return Address();
   101 }
   103 // exceedingly dangerous constructor
   104 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
   105   _base  = noreg;
   106   _index = noreg;
   107   _scale = no_scale;
   108   _disp  = disp;
   109   switch (rtype) {
   110     case relocInfo::external_word_type:
   111       _rspec = external_word_Relocation::spec(loc);
   112       break;
   113     case relocInfo::internal_word_type:
   114       _rspec = internal_word_Relocation::spec(loc);
   115       break;
   116     case relocInfo::runtime_call_type:
   117       // HMM
   118       _rspec = runtime_call_Relocation::spec();
   119       break;
   120     case relocInfo::poll_type:
   121     case relocInfo::poll_return_type:
   122       _rspec = Relocation::spec_simple(rtype);
   123       break;
   124     case relocInfo::none:
   125       break;
   126     default:
   127       ShouldNotReachHere();
   128   }
   129 }
   130 #else // LP64
   132 Address Address::make_array(ArrayAddress adr) {
   133   AddressLiteral base = adr.base();
   134   Address index = adr.index();
   135   assert(index._disp == 0, "must not have disp"); // maybe it can?
   136   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
   137   array._rspec = base._rspec;
   138   return array;
   139 }
   141 // exceedingly dangerous constructor
   142 Address::Address(address loc, RelocationHolder spec) {
   143   _base  = noreg;
   144   _index = noreg;
   145   _scale = no_scale;
   146   _disp  = (intptr_t) loc;
   147   _rspec = spec;
   148 }
   150 #endif // _LP64
   154 // Convert the raw encoding form into the form expected by the constructor for
   155 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   156 // that to noreg for the Address constructor.
   157 Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
   158   RelocationHolder rspec;
   159   if (disp_is_oop) {
   160     rspec = Relocation::spec_simple(relocInfo::oop_type);
   161   }
   162   bool valid_index = index != rsp->encoding();
   163   if (valid_index) {
   164     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
   165     madr._rspec = rspec;
   166     return madr;
   167   } else {
   168     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
   169     madr._rspec = rspec;
   170     return madr;
   171   }
   172 }
   174 // Implementation of Assembler
   176 int AbstractAssembler::code_fill_byte() {
   177   return (u_char)'\xF4'; // hlt
   178 }
   180 // make this go away someday
   181 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
   182   if (rtype == relocInfo::none)
   183         emit_long(data);
   184   else  emit_data(data, Relocation::spec_simple(rtype), format);
   185 }
   187 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
   188   assert(imm_operand == 0, "default format must be immediate in this file");
   189   assert(inst_mark() != NULL, "must be inside InstructionMark");
   190   if (rspec.type() !=  relocInfo::none) {
   191     #ifdef ASSERT
   192       check_relocation(rspec, format);
   193     #endif
   194     // Do not use AbstractAssembler::relocate, which is not intended for
   195     // embedded words.  Instead, relocate to the enclosing instruction.
   197     // hack. call32 is too wide for mask so use disp32
   198     if (format == call32_operand)
   199       code_section()->relocate(inst_mark(), rspec, disp32_operand);
   200     else
   201       code_section()->relocate(inst_mark(), rspec, format);
   202   }
   203   emit_long(data);
   204 }
   206 static int encode(Register r) {
   207   int enc = r->encoding();
   208   if (enc >= 8) {
   209     enc -= 8;
   210   }
   211   return enc;
   212 }
   214 static int encode(XMMRegister r) {
   215   int enc = r->encoding();
   216   if (enc >= 8) {
   217     enc -= 8;
   218   }
   219   return enc;
   220 }
   222 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
   223   assert(dst->has_byte_register(), "must have byte register");
   224   assert(isByte(op1) && isByte(op2), "wrong opcode");
   225   assert(isByte(imm8), "not a byte");
   226   assert((op1 & 0x01) == 0, "should be 8bit operation");
   227   emit_byte(op1);
   228   emit_byte(op2 | encode(dst));
   229   emit_byte(imm8);
   230 }
   233 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
   234   assert(isByte(op1) && isByte(op2), "wrong opcode");
   235   assert((op1 & 0x01) == 1, "should be 32bit operation");
   236   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   237   if (is8bit(imm32)) {
   238     emit_byte(op1 | 0x02); // set sign bit
   239     emit_byte(op2 | encode(dst));
   240     emit_byte(imm32 & 0xFF);
   241   } else {
   242     emit_byte(op1);
   243     emit_byte(op2 | encode(dst));
   244     emit_long(imm32);
   245   }
   246 }
   248 // Force generation of a 4 byte immediate value even if it fits into 8bit
   249 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
   250   assert(isByte(op1) && isByte(op2), "wrong opcode");
   251   assert((op1 & 0x01) == 1, "should be 32bit operation");
   252   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   253   emit_byte(op1);
   254   emit_byte(op2 | encode(dst));
   255   emit_long(imm32);
   256 }
   258 // immediate-to-memory forms
   259 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
   260   assert((op1 & 0x01) == 1, "should be 32bit operation");
   261   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   262   if (is8bit(imm32)) {
   263     emit_byte(op1 | 0x02); // set sign bit
   264     emit_operand(rm, adr, 1);
   265     emit_byte(imm32 & 0xFF);
   266   } else {
   267     emit_byte(op1);
   268     emit_operand(rm, adr, 4);
   269     emit_long(imm32);
   270   }
   271 }
   273 void Assembler::emit_arith(int op1, int op2, Register dst, jobject obj) {
   274   LP64_ONLY(ShouldNotReachHere());
   275   assert(isByte(op1) && isByte(op2), "wrong opcode");
   276   assert((op1 & 0x01) == 1, "should be 32bit operation");
   277   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   278   InstructionMark im(this);
   279   emit_byte(op1);
   280   emit_byte(op2 | encode(dst));
   281   emit_data((intptr_t)obj, relocInfo::oop_type, 0);
   282 }
   285 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
   286   assert(isByte(op1) && isByte(op2), "wrong opcode");
   287   emit_byte(op1);
   288   emit_byte(op2 | encode(dst) << 3 | encode(src));
   289 }
   292 void Assembler::emit_operand(Register reg, Register base, Register index,
   293                              Address::ScaleFactor scale, int disp,
   294                              RelocationHolder const& rspec,
   295                              int rip_relative_correction) {
   296   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
   298   // Encode the registers as needed in the fields they are used in
   300   int regenc = encode(reg) << 3;
   301   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
   302   int baseenc = base->is_valid() ? encode(base) : 0;
   304   if (base->is_valid()) {
   305     if (index->is_valid()) {
   306       assert(scale != Address::no_scale, "inconsistent address");
   307       // [base + index*scale + disp]
   308       if (disp == 0 && rtype == relocInfo::none  &&
   309           base != rbp LP64_ONLY(&& base != r13)) {
   310         // [base + index*scale]
   311         // [00 reg 100][ss index base]
   312         assert(index != rsp, "illegal addressing mode");
   313         emit_byte(0x04 | regenc);
   314         emit_byte(scale << 6 | indexenc | baseenc);
   315       } else if (is8bit(disp) && rtype == relocInfo::none) {
   316         // [base + index*scale + imm8]
   317         // [01 reg 100][ss index base] imm8
   318         assert(index != rsp, "illegal addressing mode");
   319         emit_byte(0x44 | regenc);
   320         emit_byte(scale << 6 | indexenc | baseenc);
   321         emit_byte(disp & 0xFF);
   322       } else {
   323         // [base + index*scale + disp32]
   324         // [10 reg 100][ss index base] disp32
   325         assert(index != rsp, "illegal addressing mode");
   326         emit_byte(0x84 | regenc);
   327         emit_byte(scale << 6 | indexenc | baseenc);
   328         emit_data(disp, rspec, disp32_operand);
   329       }
   330     } else if (base == rsp LP64_ONLY(|| base == r12)) {
   331       // [rsp + disp]
   332       if (disp == 0 && rtype == relocInfo::none) {
   333         // [rsp]
   334         // [00 reg 100][00 100 100]
   335         emit_byte(0x04 | regenc);
   336         emit_byte(0x24);
   337       } else if (is8bit(disp) && rtype == relocInfo::none) {
   338         // [rsp + imm8]
   339         // [01 reg 100][00 100 100] disp8
   340         emit_byte(0x44 | regenc);
   341         emit_byte(0x24);
   342         emit_byte(disp & 0xFF);
   343       } else {
   344         // [rsp + imm32]
   345         // [10 reg 100][00 100 100] disp32
   346         emit_byte(0x84 | regenc);
   347         emit_byte(0x24);
   348         emit_data(disp, rspec, disp32_operand);
   349       }
   350     } else {
   351       // [base + disp]
   352       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
   353       if (disp == 0 && rtype == relocInfo::none &&
   354           base != rbp LP64_ONLY(&& base != r13)) {
   355         // [base]
   356         // [00 reg base]
   357         emit_byte(0x00 | regenc | baseenc);
   358       } else if (is8bit(disp) && rtype == relocInfo::none) {
   359         // [base + disp8]
   360         // [01 reg base] disp8
   361         emit_byte(0x40 | regenc | baseenc);
   362         emit_byte(disp & 0xFF);
   363       } else {
   364         // [base + disp32]
   365         // [10 reg base] disp32
   366         emit_byte(0x80 | regenc | baseenc);
   367         emit_data(disp, rspec, disp32_operand);
   368       }
   369     }
   370   } else {
   371     if (index->is_valid()) {
   372       assert(scale != Address::no_scale, "inconsistent address");
   373       // [index*scale + disp]
   374       // [00 reg 100][ss index 101] disp32
   375       assert(index != rsp, "illegal addressing mode");
   376       emit_byte(0x04 | regenc);
   377       emit_byte(scale << 6 | indexenc | 0x05);
   378       emit_data(disp, rspec, disp32_operand);
   379     } else if (rtype != relocInfo::none ) {
   380       // [disp] (64bit) RIP-RELATIVE (32bit) abs
   381       // [00 000 101] disp32
   383       emit_byte(0x05 | regenc);
   384       // Note that the RIP-rel. correction applies to the generated
   385       // disp field, but _not_ to the target address in the rspec.
   387       // disp was created by converting the target address minus the pc
   388       // at the start of the instruction. That needs more correction here.
   389       // intptr_t disp = target - next_ip;
   390       assert(inst_mark() != NULL, "must be inside InstructionMark");
   391       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
   392       int64_t adjusted = disp;
   393       // Do rip-rel adjustment for 64bit
   394       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
   395       assert(is_simm32(adjusted),
   396              "must be 32bit offset (RIP relative address)");
   397       emit_data((int32_t) adjusted, rspec, disp32_operand);
   399     } else {
   400       // 32bit never did this, did everything as the rip-rel/disp code above
   401       // [disp] ABSOLUTE
   402       // [00 reg 100][00 100 101] disp32
   403       emit_byte(0x04 | regenc);
   404       emit_byte(0x25);
   405       emit_data(disp, rspec, disp32_operand);
   406     }
   407   }
   408 }
   410 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
   411                              Address::ScaleFactor scale, int disp,
   412                              RelocationHolder const& rspec) {
   413   emit_operand((Register)reg, base, index, scale, disp, rspec);
   414 }
   416 // Secret local extension to Assembler::WhichOperand:
   417 #define end_pc_operand (_WhichOperand_limit)
   419 address Assembler::locate_operand(address inst, WhichOperand which) {
   420   // Decode the given instruction, and return the address of
   421   // an embedded 32-bit operand word.
   423   // If "which" is disp32_operand, selects the displacement portion
   424   // of an effective address specifier.
   425   // If "which" is imm64_operand, selects the trailing immediate constant.
   426   // If "which" is call32_operand, selects the displacement of a call or jump.
   427   // Caller is responsible for ensuring that there is such an operand,
   428   // and that it is 32/64 bits wide.
   430   // If "which" is end_pc_operand, find the end of the instruction.
   432   address ip = inst;
   433   bool is_64bit = false;
   435   debug_only(bool has_disp32 = false);
   436   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
   438   again_after_prefix:
   439   switch (0xFF & *ip++) {
   441   // These convenience macros generate groups of "case" labels for the switch.
   442 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
   443 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
   444              case (x)+4: case (x)+5: case (x)+6: case (x)+7
   445 #define REP16(x) REP8((x)+0): \
   446               case REP8((x)+8)
   448   case CS_segment:
   449   case SS_segment:
   450   case DS_segment:
   451   case ES_segment:
   452   case FS_segment:
   453   case GS_segment:
   454     // Seems dubious
   455     LP64_ONLY(assert(false, "shouldn't have that prefix"));
   456     assert(ip == inst+1, "only one prefix allowed");
   457     goto again_after_prefix;
   459   case 0x67:
   460   case REX:
   461   case REX_B:
   462   case REX_X:
   463   case REX_XB:
   464   case REX_R:
   465   case REX_RB:
   466   case REX_RX:
   467   case REX_RXB:
   468     NOT_LP64(assert(false, "64bit prefixes"));
   469     goto again_after_prefix;
   471   case REX_W:
   472   case REX_WB:
   473   case REX_WX:
   474   case REX_WXB:
   475   case REX_WR:
   476   case REX_WRB:
   477   case REX_WRX:
   478   case REX_WRXB:
   479     NOT_LP64(assert(false, "64bit prefixes"));
   480     is_64bit = true;
   481     goto again_after_prefix;
   483   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
   484   case 0x88: // movb a, r
   485   case 0x89: // movl a, r
   486   case 0x8A: // movb r, a
   487   case 0x8B: // movl r, a
   488   case 0x8F: // popl a
   489     debug_only(has_disp32 = true);
   490     break;
   492   case 0x68: // pushq #32
   493     if (which == end_pc_operand) {
   494       return ip + 4;
   495     }
   496     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
   497     return ip;                  // not produced by emit_operand
   499   case 0x66: // movw ... (size prefix)
   500     again_after_size_prefix2:
   501     switch (0xFF & *ip++) {
   502     case REX:
   503     case REX_B:
   504     case REX_X:
   505     case REX_XB:
   506     case REX_R:
   507     case REX_RB:
   508     case REX_RX:
   509     case REX_RXB:
   510     case REX_W:
   511     case REX_WB:
   512     case REX_WX:
   513     case REX_WXB:
   514     case REX_WR:
   515     case REX_WRB:
   516     case REX_WRX:
   517     case REX_WRXB:
   518       NOT_LP64(assert(false, "64bit prefix found"));
   519       goto again_after_size_prefix2;
   520     case 0x8B: // movw r, a
   521     case 0x89: // movw a, r
   522       debug_only(has_disp32 = true);
   523       break;
   524     case 0xC7: // movw a, #16
   525       debug_only(has_disp32 = true);
   526       tail_size = 2;  // the imm16
   527       break;
   528     case 0x0F: // several SSE/SSE2 variants
   529       ip--;    // reparse the 0x0F
   530       goto again_after_prefix;
   531     default:
   532       ShouldNotReachHere();
   533     }
   534     break;
   536   case REP8(0xB8): // movl/q r, #32/#64(oop?)
   537     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
   538     // these asserts are somewhat nonsensical
   539 #ifndef _LP64
   540     assert(which == imm_operand || which == disp32_operand,
   541            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
   542 #else
   543     assert((which == call32_operand || which == imm_operand) && is_64bit ||
   544            which == narrow_oop_operand && !is_64bit,
   545            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
   546 #endif // _LP64
   547     return ip;
   549   case 0x69: // imul r, a, #32
   550   case 0xC7: // movl a, #32(oop?)
   551     tail_size = 4;
   552     debug_only(has_disp32 = true); // has both kinds of operands!
   553     break;
   555   case 0x0F: // movx..., etc.
   556     switch (0xFF & *ip++) {
   557     case 0x3A: // pcmpestri
   558       tail_size = 1;
   559     case 0x38: // ptest, pmovzxbw
   560       ip++; // skip opcode
   561       debug_only(has_disp32 = true); // has both kinds of operands!
   562       break;
   564     case 0x70: // pshufd r, r/a, #8
   565       debug_only(has_disp32 = true); // has both kinds of operands!
   566     case 0x73: // psrldq r, #8
   567       tail_size = 1;
   568       break;
   570     case 0x12: // movlps
   571     case 0x28: // movaps
   572     case 0x2E: // ucomiss
   573     case 0x2F: // comiss
   574     case 0x54: // andps
   575     case 0x55: // andnps
   576     case 0x56: // orps
   577     case 0x57: // xorps
   578     case 0x6E: // movd
   579     case 0x7E: // movd
   580     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
   581       debug_only(has_disp32 = true);
   582       break;
   584     case 0xAD: // shrd r, a, %cl
   585     case 0xAF: // imul r, a
   586     case 0xBE: // movsbl r, a (movsxb)
   587     case 0xBF: // movswl r, a (movsxw)
   588     case 0xB6: // movzbl r, a (movzxb)
   589     case 0xB7: // movzwl r, a (movzxw)
   590     case REP16(0x40): // cmovl cc, r, a
   591     case 0xB0: // cmpxchgb
   592     case 0xB1: // cmpxchg
   593     case 0xC1: // xaddl
   594     case 0xC7: // cmpxchg8
   595     case REP16(0x90): // setcc a
   596       debug_only(has_disp32 = true);
   597       // fall out of the switch to decode the address
   598       break;
   600     case 0xC4: // pinsrw r, a, #8
   601       debug_only(has_disp32 = true);
   602     case 0xC5: // pextrw r, r, #8
   603       tail_size = 1;  // the imm8
   604       break;
   606     case 0xAC: // shrd r, a, #8
   607       debug_only(has_disp32 = true);
   608       tail_size = 1;  // the imm8
   609       break;
   611     case REP16(0x80): // jcc rdisp32
   612       if (which == end_pc_operand)  return ip + 4;
   613       assert(which == call32_operand, "jcc has no disp32 or imm");
   614       return ip;
   615     default:
   616       ShouldNotReachHere();
   617     }
   618     break;
   620   case 0x81: // addl a, #32; addl r, #32
   621     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   622     // on 32bit in the case of cmpl, the imm might be an oop
   623     tail_size = 4;
   624     debug_only(has_disp32 = true); // has both kinds of operands!
   625     break;
   627   case 0x83: // addl a, #8; addl r, #8
   628     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   629     debug_only(has_disp32 = true); // has both kinds of operands!
   630     tail_size = 1;
   631     break;
   633   case 0x9B:
   634     switch (0xFF & *ip++) {
   635     case 0xD9: // fnstcw a
   636       debug_only(has_disp32 = true);
   637       break;
   638     default:
   639       ShouldNotReachHere();
   640     }
   641     break;
   643   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
   644   case REP4(0x10): // adc...
   645   case REP4(0x20): // and...
   646   case REP4(0x30): // xor...
   647   case REP4(0x08): // or...
   648   case REP4(0x18): // sbb...
   649   case REP4(0x28): // sub...
   650   case 0xF7: // mull a
   651   case 0x8D: // lea r, a
   652   case 0x87: // xchg r, a
   653   case REP4(0x38): // cmp...
   654   case 0x85: // test r, a
   655     debug_only(has_disp32 = true); // has both kinds of operands!
   656     break;
   658   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
   659   case 0xC6: // movb a, #8
   660   case 0x80: // cmpb a, #8
   661   case 0x6B: // imul r, a, #8
   662     debug_only(has_disp32 = true); // has both kinds of operands!
   663     tail_size = 1; // the imm8
   664     break;
   666   case 0xC4: // VEX_3bytes
   667   case 0xC5: // VEX_2bytes
   668     assert((UseAVX > 0), "shouldn't have VEX prefix");
   669     assert(ip == inst+1, "no prefixes allowed");
   670     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
   671     // but they have prefix 0x0F and processed when 0x0F processed above.
   672     //
   673     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
   674     // instructions (these instructions are not supported in 64-bit mode).
   675     // To distinguish them bits [7:6] are set in the VEX second byte since
   676     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
   677     // those VEX bits REX and vvvv bits are inverted.
   678     //
   679     // Fortunately C2 doesn't generate these instructions so we don't need
   680     // to check for them in product version.
   682     // Check second byte
   683     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
   685     // First byte
   686     if ((0xFF & *inst) == VEX_3bytes) {
   687       ip++; // third byte
   688       is_64bit = ((VEX_W & *ip) == VEX_W);
   689     }
   690     ip++; // opcode
   691     // To find the end of instruction (which == end_pc_operand).
   692     switch (0xFF & *ip) {
   693     case 0x61: // pcmpestri r, r/a, #8
   694     case 0x70: // pshufd r, r/a, #8
   695     case 0x73: // psrldq r, #8
   696       tail_size = 1;  // the imm8
   697       break;
   698     default:
   699       break;
   700     }
   701     ip++; // skip opcode
   702     debug_only(has_disp32 = true); // has both kinds of operands!
   703     break;
   705   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
   706   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
   707   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
   708   case 0xDD: // fld_d a; fst_d a; fstp_d a
   709   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
   710   case 0xDF: // fild_d a; fistp_d a
   711   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
   712   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
   713   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
   714     debug_only(has_disp32 = true);
   715     break;
   717   case 0xE8: // call rdisp32
   718   case 0xE9: // jmp  rdisp32
   719     if (which == end_pc_operand)  return ip + 4;
   720     assert(which == call32_operand, "call has no disp32 or imm");
   721     return ip;
   723   case 0xF0:                    // Lock
   724     assert(os::is_MP(), "only on MP");
   725     goto again_after_prefix;
   727   case 0xF3:                    // For SSE
   728   case 0xF2:                    // For SSE2
   729     switch (0xFF & *ip++) {
   730     case REX:
   731     case REX_B:
   732     case REX_X:
   733     case REX_XB:
   734     case REX_R:
   735     case REX_RB:
   736     case REX_RX:
   737     case REX_RXB:
   738     case REX_W:
   739     case REX_WB:
   740     case REX_WX:
   741     case REX_WXB:
   742     case REX_WR:
   743     case REX_WRB:
   744     case REX_WRX:
   745     case REX_WRXB:
   746       NOT_LP64(assert(false, "found 64bit prefix"));
   747       ip++;
   748     default:
   749       ip++;
   750     }
   751     debug_only(has_disp32 = true); // has both kinds of operands!
   752     break;
   754   default:
   755     ShouldNotReachHere();
   757 #undef REP8
   758 #undef REP16
   759   }
   761   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
   762 #ifdef _LP64
   763   assert(which != imm_operand, "instruction is not a movq reg, imm64");
   764 #else
   765   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
   766   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
   767 #endif // LP64
   768   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
   770   // parse the output of emit_operand
   771   int op2 = 0xFF & *ip++;
   772   int base = op2 & 0x07;
   773   int op3 = -1;
   774   const int b100 = 4;
   775   const int b101 = 5;
   776   if (base == b100 && (op2 >> 6) != 3) {
   777     op3 = 0xFF & *ip++;
   778     base = op3 & 0x07;   // refetch the base
   779   }
   780   // now ip points at the disp (if any)
   782   switch (op2 >> 6) {
   783   case 0:
   784     // [00 reg  100][ss index base]
   785     // [00 reg  100][00   100  esp]
   786     // [00 reg base]
   787     // [00 reg  100][ss index  101][disp32]
   788     // [00 reg  101]               [disp32]
   790     if (base == b101) {
   791       if (which == disp32_operand)
   792         return ip;              // caller wants the disp32
   793       ip += 4;                  // skip the disp32
   794     }
   795     break;
   797   case 1:
   798     // [01 reg  100][ss index base][disp8]
   799     // [01 reg  100][00   100  esp][disp8]
   800     // [01 reg base]               [disp8]
   801     ip += 1;                    // skip the disp8
   802     break;
   804   case 2:
   805     // [10 reg  100][ss index base][disp32]
   806     // [10 reg  100][00   100  esp][disp32]
   807     // [10 reg base]               [disp32]
   808     if (which == disp32_operand)
   809       return ip;                // caller wants the disp32
   810     ip += 4;                    // skip the disp32
   811     break;
   813   case 3:
   814     // [11 reg base]  (not a memory addressing mode)
   815     break;
   816   }
   818   if (which == end_pc_operand) {
   819     return ip + tail_size;
   820   }
   822 #ifdef _LP64
   823   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
   824 #else
   825   assert(which == imm_operand, "instruction has only an imm field");
   826 #endif // LP64
   827   return ip;
   828 }
   830 address Assembler::locate_next_instruction(address inst) {
   831   // Secretly share code with locate_operand:
   832   return locate_operand(inst, end_pc_operand);
   833 }
   836 #ifdef ASSERT
   837 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
   838   address inst = inst_mark();
   839   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
   840   address opnd;
   842   Relocation* r = rspec.reloc();
   843   if (r->type() == relocInfo::none) {
   844     return;
   845   } else if (r->is_call() || format == call32_operand) {
   846     // assert(format == imm32_operand, "cannot specify a nonzero format");
   847     opnd = locate_operand(inst, call32_operand);
   848   } else if (r->is_data()) {
   849     assert(format == imm_operand || format == disp32_operand
   850            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
   851     opnd = locate_operand(inst, (WhichOperand)format);
   852   } else {
   853     assert(format == imm_operand, "cannot specify a format");
   854     return;
   855   }
   856   assert(opnd == pc(), "must put operand where relocs can find it");
   857 }
   858 #endif // ASSERT
   860 void Assembler::emit_operand32(Register reg, Address adr) {
   861   assert(reg->encoding() < 8, "no extended registers");
   862   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   863   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   864                adr._rspec);
   865 }
   867 void Assembler::emit_operand(Register reg, Address adr,
   868                              int rip_relative_correction) {
   869   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   870                adr._rspec,
   871                rip_relative_correction);
   872 }
   874 void Assembler::emit_operand(XMMRegister reg, Address adr) {
   875   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   876                adr._rspec);
   877 }
   879 // MMX operations
   880 void Assembler::emit_operand(MMXRegister reg, Address adr) {
   881   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   882   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   883 }
   885 // work around gcc (3.2.1-7a) bug
   886 void Assembler::emit_operand(Address adr, MMXRegister reg) {
   887   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   888   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   889 }
   892 void Assembler::emit_farith(int b1, int b2, int i) {
   893   assert(isByte(b1) && isByte(b2), "wrong opcode");
   894   assert(0 <= i &&  i < 8, "illegal stack offset");
   895   emit_byte(b1);
   896   emit_byte(b2 + i);
   897 }
   900 // Now the Assembler instructions (identical for 32/64 bits)
   902 void Assembler::adcl(Address dst, int32_t imm32) {
   903   InstructionMark im(this);
   904   prefix(dst);
   905   emit_arith_operand(0x81, rdx, dst, imm32);
   906 }
   908 void Assembler::adcl(Address dst, Register src) {
   909   InstructionMark im(this);
   910   prefix(dst, src);
   911   emit_byte(0x11);
   912   emit_operand(src, dst);
   913 }
   915 void Assembler::adcl(Register dst, int32_t imm32) {
   916   prefix(dst);
   917   emit_arith(0x81, 0xD0, dst, imm32);
   918 }
   920 void Assembler::adcl(Register dst, Address src) {
   921   InstructionMark im(this);
   922   prefix(src, dst);
   923   emit_byte(0x13);
   924   emit_operand(dst, src);
   925 }
   927 void Assembler::adcl(Register dst, Register src) {
   928   (void) prefix_and_encode(dst->encoding(), src->encoding());
   929   emit_arith(0x13, 0xC0, dst, src);
   930 }
   932 void Assembler::addl(Address dst, int32_t imm32) {
   933   InstructionMark im(this);
   934   prefix(dst);
   935   emit_arith_operand(0x81, rax, dst, imm32);
   936 }
   938 void Assembler::addl(Address dst, Register src) {
   939   InstructionMark im(this);
   940   prefix(dst, src);
   941   emit_byte(0x01);
   942   emit_operand(src, dst);
   943 }
   945 void Assembler::addl(Register dst, int32_t imm32) {
   946   prefix(dst);
   947   emit_arith(0x81, 0xC0, dst, imm32);
   948 }
   950 void Assembler::addl(Register dst, Address src) {
   951   InstructionMark im(this);
   952   prefix(src, dst);
   953   emit_byte(0x03);
   954   emit_operand(dst, src);
   955 }
   957 void Assembler::addl(Register dst, Register src) {
   958   (void) prefix_and_encode(dst->encoding(), src->encoding());
   959   emit_arith(0x03, 0xC0, dst, src);
   960 }
   962 void Assembler::addr_nop_4() {
   963   assert(UseAddressNop, "no CPU support");
   964   // 4 bytes: NOP DWORD PTR [EAX+0]
   965   emit_byte(0x0F);
   966   emit_byte(0x1F);
   967   emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
   968   emit_byte(0);    // 8-bits offset (1 byte)
   969 }
   971 void Assembler::addr_nop_5() {
   972   assert(UseAddressNop, "no CPU support");
   973   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
   974   emit_byte(0x0F);
   975   emit_byte(0x1F);
   976   emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
   977   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   978   emit_byte(0);    // 8-bits offset (1 byte)
   979 }
   981 void Assembler::addr_nop_7() {
   982   assert(UseAddressNop, "no CPU support");
   983   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
   984   emit_byte(0x0F);
   985   emit_byte(0x1F);
   986   emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
   987   emit_long(0);    // 32-bits offset (4 bytes)
   988 }
   990 void Assembler::addr_nop_8() {
   991   assert(UseAddressNop, "no CPU support");
   992   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
   993   emit_byte(0x0F);
   994   emit_byte(0x1F);
   995   emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
   996   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   997   emit_long(0);    // 32-bits offset (4 bytes)
   998 }
  1000 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
  1001   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1002   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
  1005 void Assembler::addsd(XMMRegister dst, Address src) {
  1006   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1007   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
  1010 void Assembler::addss(XMMRegister dst, XMMRegister src) {
  1011   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1012   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
  1015 void Assembler::addss(XMMRegister dst, Address src) {
  1016   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1017   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
  1020 void Assembler::andl(Address dst, int32_t imm32) {
  1021   InstructionMark im(this);
  1022   prefix(dst);
  1023   emit_byte(0x81);
  1024   emit_operand(rsp, dst, 4);
  1025   emit_long(imm32);
  1028 void Assembler::andl(Register dst, int32_t imm32) {
  1029   prefix(dst);
  1030   emit_arith(0x81, 0xE0, dst, imm32);
  1033 void Assembler::andl(Register dst, Address src) {
  1034   InstructionMark im(this);
  1035   prefix(src, dst);
  1036   emit_byte(0x23);
  1037   emit_operand(dst, src);
  1040 void Assembler::andl(Register dst, Register src) {
  1041   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1042   emit_arith(0x23, 0xC0, dst, src);
  1045 void Assembler::bsfl(Register dst, Register src) {
  1046   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1047   emit_byte(0x0F);
  1048   emit_byte(0xBC);
  1049   emit_byte(0xC0 | encode);
  1052 void Assembler::bsrl(Register dst, Register src) {
  1053   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  1054   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1055   emit_byte(0x0F);
  1056   emit_byte(0xBD);
  1057   emit_byte(0xC0 | encode);
  1060 void Assembler::bswapl(Register reg) { // bswap
  1061   int encode = prefix_and_encode(reg->encoding());
  1062   emit_byte(0x0F);
  1063   emit_byte(0xC8 | encode);
  1066 void Assembler::call(Label& L, relocInfo::relocType rtype) {
  1067   // suspect disp32 is always good
  1068   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
  1070   if (L.is_bound()) {
  1071     const int long_size = 5;
  1072     int offs = (int)( target(L) - pc() );
  1073     assert(offs <= 0, "assembler error");
  1074     InstructionMark im(this);
  1075     // 1110 1000 #32-bit disp
  1076     emit_byte(0xE8);
  1077     emit_data(offs - long_size, rtype, operand);
  1078   } else {
  1079     InstructionMark im(this);
  1080     // 1110 1000 #32-bit disp
  1081     L.add_patch_at(code(), locator());
  1083     emit_byte(0xE8);
  1084     emit_data(int(0), rtype, operand);
  1088 void Assembler::call(Register dst) {
  1089   int encode = prefix_and_encode(dst->encoding());
  1090   emit_byte(0xFF);
  1091   emit_byte(0xD0 | encode);
  1095 void Assembler::call(Address adr) {
  1096   InstructionMark im(this);
  1097   prefix(adr);
  1098   emit_byte(0xFF);
  1099   emit_operand(rdx, adr);
  1102 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
  1103   assert(entry != NULL, "call most probably wrong");
  1104   InstructionMark im(this);
  1105   emit_byte(0xE8);
  1106   intptr_t disp = entry - (_code_pos + sizeof(int32_t));
  1107   assert(is_simm32(disp), "must be 32bit offset (call2)");
  1108   // Technically, should use call32_operand, but this format is
  1109   // implied by the fact that we're emitting a call instruction.
  1111   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
  1112   emit_data((int) disp, rspec, operand);
  1115 void Assembler::cdql() {
  1116   emit_byte(0x99);
  1119 void Assembler::cmovl(Condition cc, Register dst, Register src) {
  1120   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1121   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1122   emit_byte(0x0F);
  1123   emit_byte(0x40 | cc);
  1124   emit_byte(0xC0 | encode);
  1128 void Assembler::cmovl(Condition cc, Register dst, Address src) {
  1129   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1130   prefix(src, dst);
  1131   emit_byte(0x0F);
  1132   emit_byte(0x40 | cc);
  1133   emit_operand(dst, src);
  1136 void Assembler::cmpb(Address dst, int imm8) {
  1137   InstructionMark im(this);
  1138   prefix(dst);
  1139   emit_byte(0x80);
  1140   emit_operand(rdi, dst, 1);
  1141   emit_byte(imm8);
  1144 void Assembler::cmpl(Address dst, int32_t imm32) {
  1145   InstructionMark im(this);
  1146   prefix(dst);
  1147   emit_byte(0x81);
  1148   emit_operand(rdi, dst, 4);
  1149   emit_long(imm32);
  1152 void Assembler::cmpl(Register dst, int32_t imm32) {
  1153   prefix(dst);
  1154   emit_arith(0x81, 0xF8, dst, imm32);
  1157 void Assembler::cmpl(Register dst, Register src) {
  1158   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1159   emit_arith(0x3B, 0xC0, dst, src);
  1163 void Assembler::cmpl(Register dst, Address  src) {
  1164   InstructionMark im(this);
  1165   prefix(src, dst);
  1166   emit_byte(0x3B);
  1167   emit_operand(dst, src);
  1170 void Assembler::cmpw(Address dst, int imm16) {
  1171   InstructionMark im(this);
  1172   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
  1173   emit_byte(0x66);
  1174   emit_byte(0x81);
  1175   emit_operand(rdi, dst, 2);
  1176   emit_word(imm16);
  1179 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
  1180 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
  1181 // The ZF is set if the compared values were equal, and cleared otherwise.
  1182 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
  1183   if (Atomics & 2) {
  1184      // caveat: no instructionmark, so this isn't relocatable.
  1185      // Emit a synthetic, non-atomic, CAS equivalent.
  1186      // Beware.  The synthetic form sets all ICCs, not just ZF.
  1187      // cmpxchg r,[m] is equivalent to rax, = CAS (m, rax, r)
  1188      cmpl(rax, adr);
  1189      movl(rax, adr);
  1190      if (reg != rax) {
  1191         Label L ;
  1192         jcc(Assembler::notEqual, L);
  1193         movl(adr, reg);
  1194         bind(L);
  1196   } else {
  1197      InstructionMark im(this);
  1198      prefix(adr, reg);
  1199      emit_byte(0x0F);
  1200      emit_byte(0xB1);
  1201      emit_operand(reg, adr);
  1205 void Assembler::comisd(XMMRegister dst, Address src) {
  1206   // NOTE: dbx seems to decode this as comiss even though the
  1207   // 0x66 is there. Strangly ucomisd comes out correct
  1208   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1209   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
  1212 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
  1213   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1214   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
  1217 void Assembler::comiss(XMMRegister dst, Address src) {
  1218   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1219   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
  1222 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
  1223   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1224   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
  1227 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
  1228   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1229   emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3);
  1232 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
  1233   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1234   emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE);
  1237 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
  1238   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1239   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
  1242 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
  1243   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1244   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
  1247 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
  1248   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1249   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1250   emit_byte(0x2A);
  1251   emit_byte(0xC0 | encode);
  1254 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
  1255   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1256   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2);
  1259 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
  1260   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1261   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1262   emit_byte(0x2A);
  1263   emit_byte(0xC0 | encode);
  1266 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
  1267   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1268   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3);
  1271 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
  1272   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1273   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
  1276 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
  1277   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1278   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
  1282 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
  1283   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1284   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
  1285   emit_byte(0x2C);
  1286   emit_byte(0xC0 | encode);
  1289 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
  1290   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1291   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
  1292   emit_byte(0x2C);
  1293   emit_byte(0xC0 | encode);
  1296 void Assembler::decl(Address dst) {
  1297   // Don't use it directly. Use MacroAssembler::decrement() instead.
  1298   InstructionMark im(this);
  1299   prefix(dst);
  1300   emit_byte(0xFF);
  1301   emit_operand(rcx, dst);
  1304 void Assembler::divsd(XMMRegister dst, Address src) {
  1305   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1306   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
  1309 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
  1310   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1311   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
  1314 void Assembler::divss(XMMRegister dst, Address src) {
  1315   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1316   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
  1319 void Assembler::divss(XMMRegister dst, XMMRegister src) {
  1320   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1321   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
  1324 void Assembler::emms() {
  1325   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
  1326   emit_byte(0x0F);
  1327   emit_byte(0x77);
  1330 void Assembler::hlt() {
  1331   emit_byte(0xF4);
  1334 void Assembler::idivl(Register src) {
  1335   int encode = prefix_and_encode(src->encoding());
  1336   emit_byte(0xF7);
  1337   emit_byte(0xF8 | encode);
  1340 void Assembler::divl(Register src) { // Unsigned
  1341   int encode = prefix_and_encode(src->encoding());
  1342   emit_byte(0xF7);
  1343   emit_byte(0xF0 | encode);
  1346 void Assembler::imull(Register dst, Register src) {
  1347   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1348   emit_byte(0x0F);
  1349   emit_byte(0xAF);
  1350   emit_byte(0xC0 | encode);
  1354 void Assembler::imull(Register dst, Register src, int value) {
  1355   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1356   if (is8bit(value)) {
  1357     emit_byte(0x6B);
  1358     emit_byte(0xC0 | encode);
  1359     emit_byte(value & 0xFF);
  1360   } else {
  1361     emit_byte(0x69);
  1362     emit_byte(0xC0 | encode);
  1363     emit_long(value);
  1367 void Assembler::incl(Address dst) {
  1368   // Don't use it directly. Use MacroAssembler::increment() instead.
  1369   InstructionMark im(this);
  1370   prefix(dst);
  1371   emit_byte(0xFF);
  1372   emit_operand(rax, dst);
  1375 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
  1376   InstructionMark im(this);
  1377   assert((0 <= cc) && (cc < 16), "illegal cc");
  1378   if (L.is_bound()) {
  1379     address dst = target(L);
  1380     assert(dst != NULL, "jcc most probably wrong");
  1382     const int short_size = 2;
  1383     const int long_size = 6;
  1384     intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos;
  1385     if (maybe_short && is8bit(offs - short_size)) {
  1386       // 0111 tttn #8-bit disp
  1387       emit_byte(0x70 | cc);
  1388       emit_byte((offs - short_size) & 0xFF);
  1389     } else {
  1390       // 0000 1111 1000 tttn #32-bit disp
  1391       assert(is_simm32(offs - long_size),
  1392              "must be 32bit offset (call4)");
  1393       emit_byte(0x0F);
  1394       emit_byte(0x80 | cc);
  1395       emit_long(offs - long_size);
  1397   } else {
  1398     // Note: could eliminate cond. jumps to this jump if condition
  1399     //       is the same however, seems to be rather unlikely case.
  1400     // Note: use jccb() if label to be bound is very close to get
  1401     //       an 8-bit displacement
  1402     L.add_patch_at(code(), locator());
  1403     emit_byte(0x0F);
  1404     emit_byte(0x80 | cc);
  1405     emit_long(0);
  1409 void Assembler::jccb(Condition cc, Label& L) {
  1410   if (L.is_bound()) {
  1411     const int short_size = 2;
  1412     address entry = target(L);
  1413 #ifdef ASSERT
  1414     intptr_t dist = (intptr_t)entry - ((intptr_t)_code_pos + short_size);
  1415     intptr_t delta = short_branch_delta();
  1416     if (delta != 0) {
  1417       dist += (dist < 0 ? (-delta) :delta);
  1419     assert(is8bit(dist), "Dispacement too large for a short jmp");
  1420 #endif
  1421     intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
  1422     // 0111 tttn #8-bit disp
  1423     emit_byte(0x70 | cc);
  1424     emit_byte((offs - short_size) & 0xFF);
  1425   } else {
  1426     InstructionMark im(this);
  1427     L.add_patch_at(code(), locator());
  1428     emit_byte(0x70 | cc);
  1429     emit_byte(0);
  1433 void Assembler::jmp(Address adr) {
  1434   InstructionMark im(this);
  1435   prefix(adr);
  1436   emit_byte(0xFF);
  1437   emit_operand(rsp, adr);
  1440 void Assembler::jmp(Label& L, bool maybe_short) {
  1441   if (L.is_bound()) {
  1442     address entry = target(L);
  1443     assert(entry != NULL, "jmp most probably wrong");
  1444     InstructionMark im(this);
  1445     const int short_size = 2;
  1446     const int long_size = 5;
  1447     intptr_t offs = entry - _code_pos;
  1448     if (maybe_short && is8bit(offs - short_size)) {
  1449       emit_byte(0xEB);
  1450       emit_byte((offs - short_size) & 0xFF);
  1451     } else {
  1452       emit_byte(0xE9);
  1453       emit_long(offs - long_size);
  1455   } else {
  1456     // By default, forward jumps are always 32-bit displacements, since
  1457     // we can't yet know where the label will be bound.  If you're sure that
  1458     // the forward jump will not run beyond 256 bytes, use jmpb to
  1459     // force an 8-bit displacement.
  1460     InstructionMark im(this);
  1461     L.add_patch_at(code(), locator());
  1462     emit_byte(0xE9);
  1463     emit_long(0);
  1467 void Assembler::jmp(Register entry) {
  1468   int encode = prefix_and_encode(entry->encoding());
  1469   emit_byte(0xFF);
  1470   emit_byte(0xE0 | encode);
  1473 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
  1474   InstructionMark im(this);
  1475   emit_byte(0xE9);
  1476   assert(dest != NULL, "must have a target");
  1477   intptr_t disp = dest - (_code_pos + sizeof(int32_t));
  1478   assert(is_simm32(disp), "must be 32bit offset (jmp)");
  1479   emit_data(disp, rspec.reloc(), call32_operand);
  1482 void Assembler::jmpb(Label& L) {
  1483   if (L.is_bound()) {
  1484     const int short_size = 2;
  1485     address entry = target(L);
  1486     assert(entry != NULL, "jmp most probably wrong");
  1487 #ifdef ASSERT
  1488     intptr_t dist = (intptr_t)entry - ((intptr_t)_code_pos + short_size);
  1489     intptr_t delta = short_branch_delta();
  1490     if (delta != 0) {
  1491       dist += (dist < 0 ? (-delta) :delta);
  1493     assert(is8bit(dist), "Dispacement too large for a short jmp");
  1494 #endif
  1495     intptr_t offs = entry - _code_pos;
  1496     emit_byte(0xEB);
  1497     emit_byte((offs - short_size) & 0xFF);
  1498   } else {
  1499     InstructionMark im(this);
  1500     L.add_patch_at(code(), locator());
  1501     emit_byte(0xEB);
  1502     emit_byte(0);
  1506 void Assembler::ldmxcsr( Address src) {
  1507   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1508   InstructionMark im(this);
  1509   prefix(src);
  1510   emit_byte(0x0F);
  1511   emit_byte(0xAE);
  1512   emit_operand(as_Register(2), src);
  1515 void Assembler::leal(Register dst, Address src) {
  1516   InstructionMark im(this);
  1517 #ifdef _LP64
  1518   emit_byte(0x67); // addr32
  1519   prefix(src, dst);
  1520 #endif // LP64
  1521   emit_byte(0x8D);
  1522   emit_operand(dst, src);
  1525 void Assembler::lock() {
  1526   if (Atomics & 1) {
  1527      // Emit either nothing, a NOP, or a NOP: prefix
  1528      emit_byte(0x90) ;
  1529   } else {
  1530      emit_byte(0xF0);
  1534 void Assembler::lzcntl(Register dst, Register src) {
  1535   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  1536   emit_byte(0xF3);
  1537   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1538   emit_byte(0x0F);
  1539   emit_byte(0xBD);
  1540   emit_byte(0xC0 | encode);
  1543 // Emit mfence instruction
  1544 void Assembler::mfence() {
  1545   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
  1546   emit_byte( 0x0F );
  1547   emit_byte( 0xAE );
  1548   emit_byte( 0xF0 );
  1551 void Assembler::mov(Register dst, Register src) {
  1552   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  1555 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
  1556   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1557   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_66);
  1560 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
  1561   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1562   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE);
  1565 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
  1566   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1567   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE);
  1568   emit_byte(0x16);
  1569   emit_byte(0xC0 | encode);
  1572 void Assembler::movb(Register dst, Address src) {
  1573   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  1574   InstructionMark im(this);
  1575   prefix(src, dst, true);
  1576   emit_byte(0x8A);
  1577   emit_operand(dst, src);
  1581 void Assembler::movb(Address dst, int imm8) {
  1582   InstructionMark im(this);
  1583    prefix(dst);
  1584   emit_byte(0xC6);
  1585   emit_operand(rax, dst, 1);
  1586   emit_byte(imm8);
  1590 void Assembler::movb(Address dst, Register src) {
  1591   assert(src->has_byte_register(), "must have byte register");
  1592   InstructionMark im(this);
  1593   prefix(dst, src, true);
  1594   emit_byte(0x88);
  1595   emit_operand(src, dst);
  1598 void Assembler::movdl(XMMRegister dst, Register src) {
  1599   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1600   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  1601   emit_byte(0x6E);
  1602   emit_byte(0xC0 | encode);
  1605 void Assembler::movdl(Register dst, XMMRegister src) {
  1606   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1607   // swap src/dst to get correct prefix
  1608   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66);
  1609   emit_byte(0x7E);
  1610   emit_byte(0xC0 | encode);
  1613 void Assembler::movdl(XMMRegister dst, Address src) {
  1614   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1615   InstructionMark im(this);
  1616   simd_prefix(dst, src, VEX_SIMD_66);
  1617   emit_byte(0x6E);
  1618   emit_operand(dst, src);
  1621 void Assembler::movdl(Address dst, XMMRegister src) {
  1622   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1623   InstructionMark im(this);
  1624   simd_prefix(dst, src, VEX_SIMD_66);
  1625   emit_byte(0x7E);
  1626   emit_operand(src, dst);
  1629 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
  1630   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1631   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
  1634 void Assembler::movdqu(XMMRegister dst, Address src) {
  1635   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1636   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
  1639 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
  1640   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1641   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
  1644 void Assembler::movdqu(Address dst, XMMRegister src) {
  1645   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1646   InstructionMark im(this);
  1647   simd_prefix(dst, src, VEX_SIMD_F3);
  1648   emit_byte(0x7F);
  1649   emit_operand(src, dst);
  1652 // Move Unaligned 256bit Vector
  1653 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
  1654   assert(UseAVX, "");
  1655   bool vector256 = true;
  1656   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector256);
  1657   emit_byte(0x6F);
  1658   emit_byte(0xC0 | encode);
  1661 void Assembler::vmovdqu(XMMRegister dst, Address src) {
  1662   assert(UseAVX, "");
  1663   InstructionMark im(this);
  1664   bool vector256 = true;
  1665   vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector256);
  1666   emit_byte(0x6F);
  1667   emit_operand(dst, src);
  1670 void Assembler::vmovdqu(Address dst, XMMRegister src) {
  1671   assert(UseAVX, "");
  1672   InstructionMark im(this);
  1673   bool vector256 = true;
  1674   // swap src<->dst for encoding
  1675   assert(src != xnoreg, "sanity");
  1676   vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector256);
  1677   emit_byte(0x7F);
  1678   emit_operand(src, dst);
  1681 // Uses zero extension on 64bit
  1683 void Assembler::movl(Register dst, int32_t imm32) {
  1684   int encode = prefix_and_encode(dst->encoding());
  1685   emit_byte(0xB8 | encode);
  1686   emit_long(imm32);
  1689 void Assembler::movl(Register dst, Register src) {
  1690   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1691   emit_byte(0x8B);
  1692   emit_byte(0xC0 | encode);
  1695 void Assembler::movl(Register dst, Address src) {
  1696   InstructionMark im(this);
  1697   prefix(src, dst);
  1698   emit_byte(0x8B);
  1699   emit_operand(dst, src);
  1702 void Assembler::movl(Address dst, int32_t imm32) {
  1703   InstructionMark im(this);
  1704   prefix(dst);
  1705   emit_byte(0xC7);
  1706   emit_operand(rax, dst, 4);
  1707   emit_long(imm32);
  1710 void Assembler::movl(Address dst, Register src) {
  1711   InstructionMark im(this);
  1712   prefix(dst, src);
  1713   emit_byte(0x89);
  1714   emit_operand(src, dst);
  1717 // New cpus require to use movsd and movss to avoid partial register stall
  1718 // when loading from memory. But for old Opteron use movlpd instead of movsd.
  1719 // The selection is done in MacroAssembler::movdbl() and movflt().
  1720 void Assembler::movlpd(XMMRegister dst, Address src) {
  1721   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1722   emit_simd_arith(0x12, dst, src, VEX_SIMD_66);
  1725 void Assembler::movq( MMXRegister dst, Address src ) {
  1726   assert( VM_Version::supports_mmx(), "" );
  1727   emit_byte(0x0F);
  1728   emit_byte(0x6F);
  1729   emit_operand(dst, src);
  1732 void Assembler::movq( Address dst, MMXRegister src ) {
  1733   assert( VM_Version::supports_mmx(), "" );
  1734   emit_byte(0x0F);
  1735   emit_byte(0x7F);
  1736   // workaround gcc (3.2.1-7a) bug
  1737   // In that version of gcc with only an emit_operand(MMX, Address)
  1738   // gcc will tail jump and try and reverse the parameters completely
  1739   // obliterating dst in the process. By having a version available
  1740   // that doesn't need to swap the args at the tail jump the bug is
  1741   // avoided.
  1742   emit_operand(dst, src);
  1745 void Assembler::movq(XMMRegister dst, Address src) {
  1746   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1747   InstructionMark im(this);
  1748   simd_prefix(dst, src, VEX_SIMD_F3);
  1749   emit_byte(0x7E);
  1750   emit_operand(dst, src);
  1753 void Assembler::movq(Address dst, XMMRegister src) {
  1754   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1755   InstructionMark im(this);
  1756   simd_prefix(dst, src, VEX_SIMD_66);
  1757   emit_byte(0xD6);
  1758   emit_operand(src, dst);
  1761 void Assembler::movsbl(Register dst, Address src) { // movsxb
  1762   InstructionMark im(this);
  1763   prefix(src, dst);
  1764   emit_byte(0x0F);
  1765   emit_byte(0xBE);
  1766   emit_operand(dst, src);
  1769 void Assembler::movsbl(Register dst, Register src) { // movsxb
  1770   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1771   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1772   emit_byte(0x0F);
  1773   emit_byte(0xBE);
  1774   emit_byte(0xC0 | encode);
  1777 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
  1778   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1779   emit_simd_arith(0x10, dst, src, VEX_SIMD_F2);
  1782 void Assembler::movsd(XMMRegister dst, Address src) {
  1783   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1784   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F2);
  1787 void Assembler::movsd(Address dst, XMMRegister src) {
  1788   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1789   InstructionMark im(this);
  1790   simd_prefix(dst, src, VEX_SIMD_F2);
  1791   emit_byte(0x11);
  1792   emit_operand(src, dst);
  1795 void Assembler::movss(XMMRegister dst, XMMRegister src) {
  1796   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1797   emit_simd_arith(0x10, dst, src, VEX_SIMD_F3);
  1800 void Assembler::movss(XMMRegister dst, Address src) {
  1801   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1802   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3);
  1805 void Assembler::movss(Address dst, XMMRegister src) {
  1806   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1807   InstructionMark im(this);
  1808   simd_prefix(dst, src, VEX_SIMD_F3);
  1809   emit_byte(0x11);
  1810   emit_operand(src, dst);
  1813 void Assembler::movswl(Register dst, Address src) { // movsxw
  1814   InstructionMark im(this);
  1815   prefix(src, dst);
  1816   emit_byte(0x0F);
  1817   emit_byte(0xBF);
  1818   emit_operand(dst, src);
  1821 void Assembler::movswl(Register dst, Register src) { // movsxw
  1822   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1823   emit_byte(0x0F);
  1824   emit_byte(0xBF);
  1825   emit_byte(0xC0 | encode);
  1828 void Assembler::movw(Address dst, int imm16) {
  1829   InstructionMark im(this);
  1831   emit_byte(0x66); // switch to 16-bit mode
  1832   prefix(dst);
  1833   emit_byte(0xC7);
  1834   emit_operand(rax, dst, 2);
  1835   emit_word(imm16);
  1838 void Assembler::movw(Register dst, Address src) {
  1839   InstructionMark im(this);
  1840   emit_byte(0x66);
  1841   prefix(src, dst);
  1842   emit_byte(0x8B);
  1843   emit_operand(dst, src);
  1846 void Assembler::movw(Address dst, Register src) {
  1847   InstructionMark im(this);
  1848   emit_byte(0x66);
  1849   prefix(dst, src);
  1850   emit_byte(0x89);
  1851   emit_operand(src, dst);
  1854 void Assembler::movzbl(Register dst, Address src) { // movzxb
  1855   InstructionMark im(this);
  1856   prefix(src, dst);
  1857   emit_byte(0x0F);
  1858   emit_byte(0xB6);
  1859   emit_operand(dst, src);
  1862 void Assembler::movzbl(Register dst, Register src) { // movzxb
  1863   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1864   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1865   emit_byte(0x0F);
  1866   emit_byte(0xB6);
  1867   emit_byte(0xC0 | encode);
  1870 void Assembler::movzwl(Register dst, Address src) { // movzxw
  1871   InstructionMark im(this);
  1872   prefix(src, dst);
  1873   emit_byte(0x0F);
  1874   emit_byte(0xB7);
  1875   emit_operand(dst, src);
  1878 void Assembler::movzwl(Register dst, Register src) { // movzxw
  1879   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1880   emit_byte(0x0F);
  1881   emit_byte(0xB7);
  1882   emit_byte(0xC0 | encode);
  1885 void Assembler::mull(Address src) {
  1886   InstructionMark im(this);
  1887   prefix(src);
  1888   emit_byte(0xF7);
  1889   emit_operand(rsp, src);
  1892 void Assembler::mull(Register src) {
  1893   int encode = prefix_and_encode(src->encoding());
  1894   emit_byte(0xF7);
  1895   emit_byte(0xE0 | encode);
  1898 void Assembler::mulsd(XMMRegister dst, Address src) {
  1899   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1900   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
  1903 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
  1904   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1905   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
  1908 void Assembler::mulss(XMMRegister dst, Address src) {
  1909   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1910   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
  1913 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
  1914   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1915   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
  1918 void Assembler::negl(Register dst) {
  1919   int encode = prefix_and_encode(dst->encoding());
  1920   emit_byte(0xF7);
  1921   emit_byte(0xD8 | encode);
  1924 void Assembler::nop(int i) {
  1925 #ifdef ASSERT
  1926   assert(i > 0, " ");
  1927   // The fancy nops aren't currently recognized by debuggers making it a
  1928   // pain to disassemble code while debugging. If asserts are on clearly
  1929   // speed is not an issue so simply use the single byte traditional nop
  1930   // to do alignment.
  1932   for (; i > 0 ; i--) emit_byte(0x90);
  1933   return;
  1935 #endif // ASSERT
  1937   if (UseAddressNop && VM_Version::is_intel()) {
  1938     //
  1939     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
  1940     //  1: 0x90
  1941     //  2: 0x66 0x90
  1942     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  1943     //  4: 0x0F 0x1F 0x40 0x00
  1944     //  5: 0x0F 0x1F 0x44 0x00 0x00
  1945     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  1946     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  1947     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1948     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1949     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1950     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1952     // The rest coding is Intel specific - don't use consecutive address nops
  1954     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1955     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1956     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1957     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1959     while(i >= 15) {
  1960       // For Intel don't generate consecutive addess nops (mix with regular nops)
  1961       i -= 15;
  1962       emit_byte(0x66);   // size prefix
  1963       emit_byte(0x66);   // size prefix
  1964       emit_byte(0x66);   // size prefix
  1965       addr_nop_8();
  1966       emit_byte(0x66);   // size prefix
  1967       emit_byte(0x66);   // size prefix
  1968       emit_byte(0x66);   // size prefix
  1969       emit_byte(0x90);   // nop
  1971     switch (i) {
  1972       case 14:
  1973         emit_byte(0x66); // size prefix
  1974       case 13:
  1975         emit_byte(0x66); // size prefix
  1976       case 12:
  1977         addr_nop_8();
  1978         emit_byte(0x66); // size prefix
  1979         emit_byte(0x66); // size prefix
  1980         emit_byte(0x66); // size prefix
  1981         emit_byte(0x90); // nop
  1982         break;
  1983       case 11:
  1984         emit_byte(0x66); // size prefix
  1985       case 10:
  1986         emit_byte(0x66); // size prefix
  1987       case 9:
  1988         emit_byte(0x66); // size prefix
  1989       case 8:
  1990         addr_nop_8();
  1991         break;
  1992       case 7:
  1993         addr_nop_7();
  1994         break;
  1995       case 6:
  1996         emit_byte(0x66); // size prefix
  1997       case 5:
  1998         addr_nop_5();
  1999         break;
  2000       case 4:
  2001         addr_nop_4();
  2002         break;
  2003       case 3:
  2004         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2005         emit_byte(0x66); // size prefix
  2006       case 2:
  2007         emit_byte(0x66); // size prefix
  2008       case 1:
  2009         emit_byte(0x90); // nop
  2010         break;
  2011       default:
  2012         assert(i == 0, " ");
  2014     return;
  2016   if (UseAddressNop && VM_Version::is_amd()) {
  2017     //
  2018     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
  2019     //  1: 0x90
  2020     //  2: 0x66 0x90
  2021     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2022     //  4: 0x0F 0x1F 0x40 0x00
  2023     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2024     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2025     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2026     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2027     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2028     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2029     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2031     // The rest coding is AMD specific - use consecutive address nops
  2033     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2034     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2035     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2036     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2037     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2038     //     Size prefixes (0x66) are added for larger sizes
  2040     while(i >= 22) {
  2041       i -= 11;
  2042       emit_byte(0x66); // size prefix
  2043       emit_byte(0x66); // size prefix
  2044       emit_byte(0x66); // size prefix
  2045       addr_nop_8();
  2047     // Generate first nop for size between 21-12
  2048     switch (i) {
  2049       case 21:
  2050         i -= 1;
  2051         emit_byte(0x66); // size prefix
  2052       case 20:
  2053       case 19:
  2054         i -= 1;
  2055         emit_byte(0x66); // size prefix
  2056       case 18:
  2057       case 17:
  2058         i -= 1;
  2059         emit_byte(0x66); // size prefix
  2060       case 16:
  2061       case 15:
  2062         i -= 8;
  2063         addr_nop_8();
  2064         break;
  2065       case 14:
  2066       case 13:
  2067         i -= 7;
  2068         addr_nop_7();
  2069         break;
  2070       case 12:
  2071         i -= 6;
  2072         emit_byte(0x66); // size prefix
  2073         addr_nop_5();
  2074         break;
  2075       default:
  2076         assert(i < 12, " ");
  2079     // Generate second nop for size between 11-1
  2080     switch (i) {
  2081       case 11:
  2082         emit_byte(0x66); // size prefix
  2083       case 10:
  2084         emit_byte(0x66); // size prefix
  2085       case 9:
  2086         emit_byte(0x66); // size prefix
  2087       case 8:
  2088         addr_nop_8();
  2089         break;
  2090       case 7:
  2091         addr_nop_7();
  2092         break;
  2093       case 6:
  2094         emit_byte(0x66); // size prefix
  2095       case 5:
  2096         addr_nop_5();
  2097         break;
  2098       case 4:
  2099         addr_nop_4();
  2100         break;
  2101       case 3:
  2102         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2103         emit_byte(0x66); // size prefix
  2104       case 2:
  2105         emit_byte(0x66); // size prefix
  2106       case 1:
  2107         emit_byte(0x90); // nop
  2108         break;
  2109       default:
  2110         assert(i == 0, " ");
  2112     return;
  2115   // Using nops with size prefixes "0x66 0x90".
  2116   // From AMD Optimization Guide:
  2117   //  1: 0x90
  2118   //  2: 0x66 0x90
  2119   //  3: 0x66 0x66 0x90
  2120   //  4: 0x66 0x66 0x66 0x90
  2121   //  5: 0x66 0x66 0x90 0x66 0x90
  2122   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
  2123   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
  2124   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
  2125   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2126   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2127   //
  2128   while(i > 12) {
  2129     i -= 4;
  2130     emit_byte(0x66); // size prefix
  2131     emit_byte(0x66);
  2132     emit_byte(0x66);
  2133     emit_byte(0x90); // nop
  2135   // 1 - 12 nops
  2136   if(i > 8) {
  2137     if(i > 9) {
  2138       i -= 1;
  2139       emit_byte(0x66);
  2141     i -= 3;
  2142     emit_byte(0x66);
  2143     emit_byte(0x66);
  2144     emit_byte(0x90);
  2146   // 1 - 8 nops
  2147   if(i > 4) {
  2148     if(i > 6) {
  2149       i -= 1;
  2150       emit_byte(0x66);
  2152     i -= 3;
  2153     emit_byte(0x66);
  2154     emit_byte(0x66);
  2155     emit_byte(0x90);
  2157   switch (i) {
  2158     case 4:
  2159       emit_byte(0x66);
  2160     case 3:
  2161       emit_byte(0x66);
  2162     case 2:
  2163       emit_byte(0x66);
  2164     case 1:
  2165       emit_byte(0x90);
  2166       break;
  2167     default:
  2168       assert(i == 0, " ");
  2172 void Assembler::notl(Register dst) {
  2173   int encode = prefix_and_encode(dst->encoding());
  2174   emit_byte(0xF7);
  2175   emit_byte(0xD0 | encode );
  2178 void Assembler::orl(Address dst, int32_t imm32) {
  2179   InstructionMark im(this);
  2180   prefix(dst);
  2181   emit_arith_operand(0x81, rcx, dst, imm32);
  2184 void Assembler::orl(Register dst, int32_t imm32) {
  2185   prefix(dst);
  2186   emit_arith(0x81, 0xC8, dst, imm32);
  2189 void Assembler::orl(Register dst, Address src) {
  2190   InstructionMark im(this);
  2191   prefix(src, dst);
  2192   emit_byte(0x0B);
  2193   emit_operand(dst, src);
  2196 void Assembler::orl(Register dst, Register src) {
  2197   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2198   emit_arith(0x0B, 0xC0, dst, src);
  2201 void Assembler::packuswb(XMMRegister dst, Address src) {
  2202   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2203   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2204   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
  2207 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
  2208   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2209   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
  2212 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
  2213   assert(VM_Version::supports_sse4_2(), "");
  2214   InstructionMark im(this);
  2215   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
  2216   emit_byte(0x61);
  2217   emit_operand(dst, src);
  2218   emit_byte(imm8);
  2221 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
  2222   assert(VM_Version::supports_sse4_2(), "");
  2223   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
  2224   emit_byte(0x61);
  2225   emit_byte(0xC0 | encode);
  2226   emit_byte(imm8);
  2229 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
  2230   assert(VM_Version::supports_sse4_1(), "");
  2231   InstructionMark im(this);
  2232   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2233   emit_byte(0x30);
  2234   emit_operand(dst, src);
  2237 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
  2238   assert(VM_Version::supports_sse4_1(), "");
  2239   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2240   emit_byte(0x30);
  2241   emit_byte(0xC0 | encode);
  2244 // generic
  2245 void Assembler::pop(Register dst) {
  2246   int encode = prefix_and_encode(dst->encoding());
  2247   emit_byte(0x58 | encode);
  2250 void Assembler::popcntl(Register dst, Address src) {
  2251   assert(VM_Version::supports_popcnt(), "must support");
  2252   InstructionMark im(this);
  2253   emit_byte(0xF3);
  2254   prefix(src, dst);
  2255   emit_byte(0x0F);
  2256   emit_byte(0xB8);
  2257   emit_operand(dst, src);
  2260 void Assembler::popcntl(Register dst, Register src) {
  2261   assert(VM_Version::supports_popcnt(), "must support");
  2262   emit_byte(0xF3);
  2263   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2264   emit_byte(0x0F);
  2265   emit_byte(0xB8);
  2266   emit_byte(0xC0 | encode);
  2269 void Assembler::popf() {
  2270   emit_byte(0x9D);
  2273 #ifndef _LP64 // no 32bit push/pop on amd64
  2274 void Assembler::popl(Address dst) {
  2275   // NOTE: this will adjust stack by 8byte on 64bits
  2276   InstructionMark im(this);
  2277   prefix(dst);
  2278   emit_byte(0x8F);
  2279   emit_operand(rax, dst);
  2281 #endif
  2283 void Assembler::prefetch_prefix(Address src) {
  2284   prefix(src);
  2285   emit_byte(0x0F);
  2288 void Assembler::prefetchnta(Address src) {
  2289   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2290   InstructionMark im(this);
  2291   prefetch_prefix(src);
  2292   emit_byte(0x18);
  2293   emit_operand(rax, src); // 0, src
  2296 void Assembler::prefetchr(Address src) {
  2297   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2298   InstructionMark im(this);
  2299   prefetch_prefix(src);
  2300   emit_byte(0x0D);
  2301   emit_operand(rax, src); // 0, src
  2304 void Assembler::prefetcht0(Address src) {
  2305   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2306   InstructionMark im(this);
  2307   prefetch_prefix(src);
  2308   emit_byte(0x18);
  2309   emit_operand(rcx, src); // 1, src
  2312 void Assembler::prefetcht1(Address src) {
  2313   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2314   InstructionMark im(this);
  2315   prefetch_prefix(src);
  2316   emit_byte(0x18);
  2317   emit_operand(rdx, src); // 2, src
  2320 void Assembler::prefetcht2(Address src) {
  2321   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2322   InstructionMark im(this);
  2323   prefetch_prefix(src);
  2324   emit_byte(0x18);
  2325   emit_operand(rbx, src); // 3, src
  2328 void Assembler::prefetchw(Address src) {
  2329   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2330   InstructionMark im(this);
  2331   prefetch_prefix(src);
  2332   emit_byte(0x0D);
  2333   emit_operand(rcx, src); // 1, src
  2336 void Assembler::prefix(Prefix p) {
  2337   a_byte(p);
  2340 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
  2341   assert(isByte(mode), "invalid value");
  2342   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2343   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66);
  2344   emit_byte(mode & 0xFF);
  2348 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
  2349   assert(isByte(mode), "invalid value");
  2350   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2351   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2352   InstructionMark im(this);
  2353   simd_prefix(dst, src, VEX_SIMD_66);
  2354   emit_byte(0x70);
  2355   emit_operand(dst, src);
  2356   emit_byte(mode & 0xFF);
  2359 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
  2360   assert(isByte(mode), "invalid value");
  2361   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2362   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2);
  2363   emit_byte(mode & 0xFF);
  2366 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
  2367   assert(isByte(mode), "invalid value");
  2368   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2369   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2370   InstructionMark im(this);
  2371   simd_prefix(dst, src, VEX_SIMD_F2);
  2372   emit_byte(0x70);
  2373   emit_operand(dst, src);
  2374   emit_byte(mode & 0xFF);
  2377 void Assembler::psrldq(XMMRegister dst, int shift) {
  2378   // Shift 128 bit value in xmm register by number of bytes.
  2379   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2380   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66);
  2381   emit_byte(0x73);
  2382   emit_byte(0xC0 | encode);
  2383   emit_byte(shift);
  2386 void Assembler::ptest(XMMRegister dst, Address src) {
  2387   assert(VM_Version::supports_sse4_1(), "");
  2388   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2389   InstructionMark im(this);
  2390   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2391   emit_byte(0x17);
  2392   emit_operand(dst, src);
  2395 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
  2396   assert(VM_Version::supports_sse4_1(), "");
  2397   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2398   emit_byte(0x17);
  2399   emit_byte(0xC0 | encode);
  2402 void Assembler::punpcklbw(XMMRegister dst, Address src) {
  2403   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2404   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2405   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
  2408 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
  2409   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2410   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
  2413 void Assembler::punpckldq(XMMRegister dst, Address src) {
  2414   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2415   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2416   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
  2419 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
  2420   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2421   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
  2424 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
  2425   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2426   emit_simd_arith(0x6C, dst, src, VEX_SIMD_66);
  2429 void Assembler::push(int32_t imm32) {
  2430   // in 64bits we push 64bits onto the stack but only
  2431   // take a 32bit immediate
  2432   emit_byte(0x68);
  2433   emit_long(imm32);
  2436 void Assembler::push(Register src) {
  2437   int encode = prefix_and_encode(src->encoding());
  2439   emit_byte(0x50 | encode);
  2442 void Assembler::pushf() {
  2443   emit_byte(0x9C);
  2446 #ifndef _LP64 // no 32bit push/pop on amd64
  2447 void Assembler::pushl(Address src) {
  2448   // Note this will push 64bit on 64bit
  2449   InstructionMark im(this);
  2450   prefix(src);
  2451   emit_byte(0xFF);
  2452   emit_operand(rsi, src);
  2454 #endif
  2456 void Assembler::rcll(Register dst, int imm8) {
  2457   assert(isShiftCount(imm8), "illegal shift count");
  2458   int encode = prefix_and_encode(dst->encoding());
  2459   if (imm8 == 1) {
  2460     emit_byte(0xD1);
  2461     emit_byte(0xD0 | encode);
  2462   } else {
  2463     emit_byte(0xC1);
  2464     emit_byte(0xD0 | encode);
  2465     emit_byte(imm8);
  2469 // copies data from [esi] to [edi] using rcx pointer sized words
  2470 // generic
  2471 void Assembler::rep_mov() {
  2472   emit_byte(0xF3);
  2473   // MOVSQ
  2474   LP64_ONLY(prefix(REX_W));
  2475   emit_byte(0xA5);
  2478 // sets rcx pointer sized words with rax, value at [edi]
  2479 // generic
  2480 void Assembler::rep_set() { // rep_set
  2481   emit_byte(0xF3);
  2482   // STOSQ
  2483   LP64_ONLY(prefix(REX_W));
  2484   emit_byte(0xAB);
  2487 // scans rcx pointer sized words at [edi] for occurance of rax,
  2488 // generic
  2489 void Assembler::repne_scan() { // repne_scan
  2490   emit_byte(0xF2);
  2491   // SCASQ
  2492   LP64_ONLY(prefix(REX_W));
  2493   emit_byte(0xAF);
  2496 #ifdef _LP64
  2497 // scans rcx 4 byte words at [edi] for occurance of rax,
  2498 // generic
  2499 void Assembler::repne_scanl() { // repne_scan
  2500   emit_byte(0xF2);
  2501   // SCASL
  2502   emit_byte(0xAF);
  2504 #endif
  2506 void Assembler::ret(int imm16) {
  2507   if (imm16 == 0) {
  2508     emit_byte(0xC3);
  2509   } else {
  2510     emit_byte(0xC2);
  2511     emit_word(imm16);
  2515 void Assembler::sahf() {
  2516 #ifdef _LP64
  2517   // Not supported in 64bit mode
  2518   ShouldNotReachHere();
  2519 #endif
  2520   emit_byte(0x9E);
  2523 void Assembler::sarl(Register dst, int imm8) {
  2524   int encode = prefix_and_encode(dst->encoding());
  2525   assert(isShiftCount(imm8), "illegal shift count");
  2526   if (imm8 == 1) {
  2527     emit_byte(0xD1);
  2528     emit_byte(0xF8 | encode);
  2529   } else {
  2530     emit_byte(0xC1);
  2531     emit_byte(0xF8 | encode);
  2532     emit_byte(imm8);
  2536 void Assembler::sarl(Register dst) {
  2537   int encode = prefix_and_encode(dst->encoding());
  2538   emit_byte(0xD3);
  2539   emit_byte(0xF8 | encode);
  2542 void Assembler::sbbl(Address dst, int32_t imm32) {
  2543   InstructionMark im(this);
  2544   prefix(dst);
  2545   emit_arith_operand(0x81, rbx, dst, imm32);
  2548 void Assembler::sbbl(Register dst, int32_t imm32) {
  2549   prefix(dst);
  2550   emit_arith(0x81, 0xD8, dst, imm32);
  2554 void Assembler::sbbl(Register dst, Address src) {
  2555   InstructionMark im(this);
  2556   prefix(src, dst);
  2557   emit_byte(0x1B);
  2558   emit_operand(dst, src);
  2561 void Assembler::sbbl(Register dst, Register src) {
  2562   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2563   emit_arith(0x1B, 0xC0, dst, src);
  2566 void Assembler::setb(Condition cc, Register dst) {
  2567   assert(0 <= cc && cc < 16, "illegal cc");
  2568   int encode = prefix_and_encode(dst->encoding(), true);
  2569   emit_byte(0x0F);
  2570   emit_byte(0x90 | cc);
  2571   emit_byte(0xC0 | encode);
  2574 void Assembler::shll(Register dst, int imm8) {
  2575   assert(isShiftCount(imm8), "illegal shift count");
  2576   int encode = prefix_and_encode(dst->encoding());
  2577   if (imm8 == 1 ) {
  2578     emit_byte(0xD1);
  2579     emit_byte(0xE0 | encode);
  2580   } else {
  2581     emit_byte(0xC1);
  2582     emit_byte(0xE0 | encode);
  2583     emit_byte(imm8);
  2587 void Assembler::shll(Register dst) {
  2588   int encode = prefix_and_encode(dst->encoding());
  2589   emit_byte(0xD3);
  2590   emit_byte(0xE0 | encode);
  2593 void Assembler::shrl(Register dst, int imm8) {
  2594   assert(isShiftCount(imm8), "illegal shift count");
  2595   int encode = prefix_and_encode(dst->encoding());
  2596   emit_byte(0xC1);
  2597   emit_byte(0xE8 | encode);
  2598   emit_byte(imm8);
  2601 void Assembler::shrl(Register dst) {
  2602   int encode = prefix_and_encode(dst->encoding());
  2603   emit_byte(0xD3);
  2604   emit_byte(0xE8 | encode);
  2607 // copies a single word from [esi] to [edi]
  2608 void Assembler::smovl() {
  2609   emit_byte(0xA5);
  2612 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
  2613   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2614   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
  2617 void Assembler::sqrtsd(XMMRegister dst, Address src) {
  2618   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2619   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
  2622 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
  2623   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2624   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
  2627 void Assembler::sqrtss(XMMRegister dst, Address src) {
  2628   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2629   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
  2632 void Assembler::stmxcsr( Address dst) {
  2633   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2634   InstructionMark im(this);
  2635   prefix(dst);
  2636   emit_byte(0x0F);
  2637   emit_byte(0xAE);
  2638   emit_operand(as_Register(3), dst);
  2641 void Assembler::subl(Address dst, int32_t imm32) {
  2642   InstructionMark im(this);
  2643   prefix(dst);
  2644   emit_arith_operand(0x81, rbp, dst, imm32);
  2647 void Assembler::subl(Address dst, Register src) {
  2648   InstructionMark im(this);
  2649   prefix(dst, src);
  2650   emit_byte(0x29);
  2651   emit_operand(src, dst);
  2654 void Assembler::subl(Register dst, int32_t imm32) {
  2655   prefix(dst);
  2656   emit_arith(0x81, 0xE8, dst, imm32);
  2659 // Force generation of a 4 byte immediate value even if it fits into 8bit
  2660 void Assembler::subl_imm32(Register dst, int32_t imm32) {
  2661   prefix(dst);
  2662   emit_arith_imm32(0x81, 0xE8, dst, imm32);
  2665 void Assembler::subl(Register dst, Address src) {
  2666   InstructionMark im(this);
  2667   prefix(src, dst);
  2668   emit_byte(0x2B);
  2669   emit_operand(dst, src);
  2672 void Assembler::subl(Register dst, Register src) {
  2673   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2674   emit_arith(0x2B, 0xC0, dst, src);
  2677 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
  2678   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2679   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
  2682 void Assembler::subsd(XMMRegister dst, Address src) {
  2683   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2684   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
  2687 void Assembler::subss(XMMRegister dst, XMMRegister src) {
  2688   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2689   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
  2692 void Assembler::subss(XMMRegister dst, Address src) {
  2693   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2694   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
  2697 void Assembler::testb(Register dst, int imm8) {
  2698   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  2699   (void) prefix_and_encode(dst->encoding(), true);
  2700   emit_arith_b(0xF6, 0xC0, dst, imm8);
  2703 void Assembler::testl(Register dst, int32_t imm32) {
  2704   // not using emit_arith because test
  2705   // doesn't support sign-extension of
  2706   // 8bit operands
  2707   int encode = dst->encoding();
  2708   if (encode == 0) {
  2709     emit_byte(0xA9);
  2710   } else {
  2711     encode = prefix_and_encode(encode);
  2712     emit_byte(0xF7);
  2713     emit_byte(0xC0 | encode);
  2715   emit_long(imm32);
  2718 void Assembler::testl(Register dst, Register src) {
  2719   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2720   emit_arith(0x85, 0xC0, dst, src);
  2723 void Assembler::testl(Register dst, Address  src) {
  2724   InstructionMark im(this);
  2725   prefix(src, dst);
  2726   emit_byte(0x85);
  2727   emit_operand(dst, src);
  2730 void Assembler::ucomisd(XMMRegister dst, Address src) {
  2731   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2732   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
  2735 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
  2736   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2737   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
  2740 void Assembler::ucomiss(XMMRegister dst, Address src) {
  2741   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2742   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
  2745 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
  2746   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2747   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
  2751 void Assembler::xaddl(Address dst, Register src) {
  2752   InstructionMark im(this);
  2753   prefix(dst, src);
  2754   emit_byte(0x0F);
  2755   emit_byte(0xC1);
  2756   emit_operand(src, dst);
  2759 void Assembler::xchgl(Register dst, Address src) { // xchg
  2760   InstructionMark im(this);
  2761   prefix(src, dst);
  2762   emit_byte(0x87);
  2763   emit_operand(dst, src);
  2766 void Assembler::xchgl(Register dst, Register src) {
  2767   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2768   emit_byte(0x87);
  2769   emit_byte(0xc0 | encode);
  2772 void Assembler::xorl(Register dst, int32_t imm32) {
  2773   prefix(dst);
  2774   emit_arith(0x81, 0xF0, dst, imm32);
  2777 void Assembler::xorl(Register dst, Address src) {
  2778   InstructionMark im(this);
  2779   prefix(src, dst);
  2780   emit_byte(0x33);
  2781   emit_operand(dst, src);
  2784 void Assembler::xorl(Register dst, Register src) {
  2785   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2786   emit_arith(0x33, 0xC0, dst, src);
  2790 // AVX 3-operands scalar float-point arithmetic instructions
  2792 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
  2793   assert(VM_Version::supports_avx(), "");
  2794   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2797 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2798   assert(VM_Version::supports_avx(), "");
  2799   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2802 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
  2803   assert(VM_Version::supports_avx(), "");
  2804   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2807 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2808   assert(VM_Version::supports_avx(), "");
  2809   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2812 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
  2813   assert(VM_Version::supports_avx(), "");
  2814   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2817 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2818   assert(VM_Version::supports_avx(), "");
  2819   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2822 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
  2823   assert(VM_Version::supports_avx(), "");
  2824   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2827 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2828   assert(VM_Version::supports_avx(), "");
  2829   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2832 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
  2833   assert(VM_Version::supports_avx(), "");
  2834   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2837 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2838   assert(VM_Version::supports_avx(), "");
  2839   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2842 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
  2843   assert(VM_Version::supports_avx(), "");
  2844   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2847 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2848   assert(VM_Version::supports_avx(), "");
  2849   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2852 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
  2853   assert(VM_Version::supports_avx(), "");
  2854   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2857 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2858   assert(VM_Version::supports_avx(), "");
  2859   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2862 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
  2863   assert(VM_Version::supports_avx(), "");
  2864   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2867 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2868   assert(VM_Version::supports_avx(), "");
  2869   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2872 //====================VECTOR ARITHMETIC=====================================
  2874 // Float-point vector arithmetic
  2876 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
  2877   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2878   emit_simd_arith(0x58, dst, src, VEX_SIMD_66);
  2881 void Assembler::addps(XMMRegister dst, XMMRegister src) {
  2882   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2883   emit_simd_arith(0x58, dst, src, VEX_SIMD_NONE);
  2886 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2887   assert(VM_Version::supports_avx(), "");
  2888   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
  2891 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2892   assert(VM_Version::supports_avx(), "");
  2893   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
  2896 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  2897   assert(VM_Version::supports_avx(), "");
  2898   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
  2901 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  2902   assert(VM_Version::supports_avx(), "");
  2903   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
  2906 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
  2907   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2908   emit_simd_arith(0x5C, dst, src, VEX_SIMD_66);
  2911 void Assembler::subps(XMMRegister dst, XMMRegister src) {
  2912   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2913   emit_simd_arith(0x5C, dst, src, VEX_SIMD_NONE);
  2916 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2917   assert(VM_Version::supports_avx(), "");
  2918   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
  2921 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2922   assert(VM_Version::supports_avx(), "");
  2923   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
  2926 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  2927   assert(VM_Version::supports_avx(), "");
  2928   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
  2931 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  2932   assert(VM_Version::supports_avx(), "");
  2933   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
  2936 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
  2937   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2938   emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
  2941 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
  2942   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2943   emit_simd_arith(0x59, dst, src, VEX_SIMD_NONE);
  2946 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2947   assert(VM_Version::supports_avx(), "");
  2948   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
  2951 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2952   assert(VM_Version::supports_avx(), "");
  2953   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
  2956 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  2957   assert(VM_Version::supports_avx(), "");
  2958   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
  2961 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  2962   assert(VM_Version::supports_avx(), "");
  2963   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
  2966 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
  2967   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2968   emit_simd_arith(0x5E, dst, src, VEX_SIMD_66);
  2971 void Assembler::divps(XMMRegister dst, XMMRegister src) {
  2972   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2973   emit_simd_arith(0x5E, dst, src, VEX_SIMD_NONE);
  2976 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2977   assert(VM_Version::supports_avx(), "");
  2978   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
  2981 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2982   assert(VM_Version::supports_avx(), "");
  2983   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
  2986 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  2987   assert(VM_Version::supports_avx(), "");
  2988   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
  2991 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  2992   assert(VM_Version::supports_avx(), "");
  2993   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
  2996 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
  2997   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2998   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
  3001 void Assembler::andps(XMMRegister dst, XMMRegister src) {
  3002   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3003   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
  3006 void Assembler::andps(XMMRegister dst, Address src) {
  3007   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3008   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
  3011 void Assembler::andpd(XMMRegister dst, Address src) {
  3012   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3013   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
  3016 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3017   assert(VM_Version::supports_avx(), "");
  3018   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
  3021 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3022   assert(VM_Version::supports_avx(), "");
  3023   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
  3026 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3027   assert(VM_Version::supports_avx(), "");
  3028   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
  3031 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3032   assert(VM_Version::supports_avx(), "");
  3033   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
  3036 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
  3037   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3038   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
  3041 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
  3042   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3043   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
  3046 void Assembler::xorpd(XMMRegister dst, Address src) {
  3047   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3048   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
  3051 void Assembler::xorps(XMMRegister dst, Address src) {
  3052   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3053   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
  3056 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3057   assert(VM_Version::supports_avx(), "");
  3058   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
  3061 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3062   assert(VM_Version::supports_avx(), "");
  3063   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
  3066 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3067   assert(VM_Version::supports_avx(), "");
  3068   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
  3071 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3072   assert(VM_Version::supports_avx(), "");
  3073   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
  3077 // Integer vector arithmetic
  3078 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
  3079   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3080   emit_simd_arith(0xFC, dst, src, VEX_SIMD_66);
  3083 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
  3084   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3085   emit_simd_arith(0xFD, dst, src, VEX_SIMD_66);
  3088 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
  3089   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3090   emit_simd_arith(0xFE, dst, src, VEX_SIMD_66);
  3093 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
  3094   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3095   emit_simd_arith(0xD4, dst, src, VEX_SIMD_66);
  3098 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3099   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3100   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
  3103 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3104   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3105   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
  3108 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3109   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3110   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
  3113 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3114   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3115   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
  3118 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3119   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3120   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
  3123 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3124   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3125   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
  3128 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3129   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3130   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
  3133 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3134   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3135   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
  3138 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
  3139   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3140   emit_simd_arith(0xF8, dst, src, VEX_SIMD_66);
  3143 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
  3144   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3145   emit_simd_arith(0xF9, dst, src, VEX_SIMD_66);
  3148 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
  3149   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3150   emit_simd_arith(0xFA, dst, src, VEX_SIMD_66);
  3153 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
  3154   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3155   emit_simd_arith(0xFB, dst, src, VEX_SIMD_66);
  3158 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3159   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3160   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
  3163 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3164   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3165   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
  3168 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3169   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3170   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
  3173 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3174   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3175   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
  3178 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3179   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3180   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
  3183 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3184   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3185   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
  3188 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3189   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3190   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
  3193 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3194   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3195   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
  3198 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
  3199   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3200   emit_simd_arith(0xD5, dst, src, VEX_SIMD_66);
  3203 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
  3204   assert(VM_Version::supports_sse4_1(), "");
  3205   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  3206   emit_byte(0x40);
  3207   emit_byte(0xC0 | encode);
  3210 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3211   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3212   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
  3215 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3216   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3217   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
  3218   emit_byte(0x40);
  3219   emit_byte(0xC0 | encode);
  3222 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3223   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3224   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
  3227 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3228   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3229   InstructionMark im(this);
  3230   int dst_enc = dst->encoding();
  3231   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
  3232   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
  3233   emit_byte(0x40);
  3234   emit_operand(dst, src);
  3237 // Shift packed integers left by specified number of bits.
  3238 void Assembler::psllw(XMMRegister dst, int shift) {
  3239   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3240   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
  3241   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
  3242   emit_byte(0x71);
  3243   emit_byte(0xC0 | encode);
  3244   emit_byte(shift & 0xFF);
  3247 void Assembler::pslld(XMMRegister dst, int shift) {
  3248   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3249   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
  3250   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
  3251   emit_byte(0x72);
  3252   emit_byte(0xC0 | encode);
  3253   emit_byte(shift & 0xFF);
  3256 void Assembler::psllq(XMMRegister dst, int shift) {
  3257   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3258   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
  3259   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
  3260   emit_byte(0x73);
  3261   emit_byte(0xC0 | encode);
  3262   emit_byte(shift & 0xFF);
  3265 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
  3266   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3267   emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66);
  3270 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
  3271   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3272   emit_simd_arith(0xF2, dst, shift, VEX_SIMD_66);
  3275 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
  3276   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3277   emit_simd_arith(0xF3, dst, shift, VEX_SIMD_66);
  3280 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3281   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3282   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
  3283   emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector256);
  3284   emit_byte(shift & 0xFF);
  3287 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3288   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3289   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
  3290   emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector256);
  3291   emit_byte(shift & 0xFF);
  3294 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3295   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3296   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
  3297   emit_vex_arith(0x73, xmm6, dst, src, VEX_SIMD_66, vector256);
  3298   emit_byte(shift & 0xFF);
  3301 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3302   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3303   emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector256);
  3306 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3307   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3308   emit_vex_arith(0xF2, dst, src, shift, VEX_SIMD_66, vector256);
  3311 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3312   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3313   emit_vex_arith(0xF3, dst, src, shift, VEX_SIMD_66, vector256);
  3316 // Shift packed integers logically right by specified number of bits.
  3317 void Assembler::psrlw(XMMRegister dst, int shift) {
  3318   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3319   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
  3320   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  3321   emit_byte(0x71);
  3322   emit_byte(0xC0 | encode);
  3323   emit_byte(shift & 0xFF);
  3326 void Assembler::psrld(XMMRegister dst, int shift) {
  3327   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3328   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
  3329   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  3330   emit_byte(0x72);
  3331   emit_byte(0xC0 | encode);
  3332   emit_byte(shift & 0xFF);
  3335 void Assembler::psrlq(XMMRegister dst, int shift) {
  3336   // Do not confuse it with psrldq SSE2 instruction which
  3337   // shifts 128 bit value in xmm register by number of bytes.
  3338   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3339   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3340   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  3341   emit_byte(0x73);
  3342   emit_byte(0xC0 | encode);
  3343   emit_byte(shift & 0xFF);
  3346 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
  3347   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3348   emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66);
  3351 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
  3352   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3353   emit_simd_arith(0xD2, dst, shift, VEX_SIMD_66);
  3356 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
  3357   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3358   emit_simd_arith(0xD3, dst, shift, VEX_SIMD_66);
  3361 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3362   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3363   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3364   emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector256);
  3365   emit_byte(shift & 0xFF);
  3368 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3369   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3370   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3371   emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector256);
  3372   emit_byte(shift & 0xFF);
  3375 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3376   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3377   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3378   emit_vex_arith(0x73, xmm2, dst, src, VEX_SIMD_66, vector256);
  3379   emit_byte(shift & 0xFF);
  3382 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3383   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3384   emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector256);
  3387 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3388   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3389   emit_vex_arith(0xD2, dst, src, shift, VEX_SIMD_66, vector256);
  3392 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3393   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3394   emit_vex_arith(0xD3, dst, src, shift, VEX_SIMD_66, vector256);
  3397 // Shift packed integers arithmetically right by specified number of bits.
  3398 void Assembler::psraw(XMMRegister dst, int shift) {
  3399   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3400   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  3401   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
  3402   emit_byte(0x71);
  3403   emit_byte(0xC0 | encode);
  3404   emit_byte(shift & 0xFF);
  3407 void Assembler::psrad(XMMRegister dst, int shift) {
  3408   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3409   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
  3410   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
  3411   emit_byte(0x72);
  3412   emit_byte(0xC0 | encode);
  3413   emit_byte(shift & 0xFF);
  3416 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
  3417   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3418   emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66);
  3421 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
  3422   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3423   emit_simd_arith(0xE2, dst, shift, VEX_SIMD_66);
  3426 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3427   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3428   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  3429   emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector256);
  3430   emit_byte(shift & 0xFF);
  3433 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3434   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3435   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  3436   emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector256);
  3437   emit_byte(shift & 0xFF);
  3440 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3441   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3442   emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector256);
  3445 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3446   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3447   emit_vex_arith(0xE2, dst, src, shift, VEX_SIMD_66, vector256);
  3451 // AND packed integers
  3452 void Assembler::pand(XMMRegister dst, XMMRegister src) {
  3453   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3454   emit_simd_arith(0xDB, dst, src, VEX_SIMD_66);
  3457 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3458   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3459   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
  3462 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3463   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3464   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
  3467 void Assembler::por(XMMRegister dst, XMMRegister src) {
  3468   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3469   emit_simd_arith(0xEB, dst, src, VEX_SIMD_66);
  3472 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3473   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3474   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
  3477 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3478   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3479   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
  3482 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
  3483   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3484   emit_simd_arith(0xEF, dst, src, VEX_SIMD_66);
  3487 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3488   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3489   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
  3492 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3493   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3494   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
  3498 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3499   assert(VM_Version::supports_avx(), "");
  3500   bool vector256 = true;
  3501   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
  3502   emit_byte(0x18);
  3503   emit_byte(0xC0 | encode);
  3504   // 0x00 - insert into lower 128 bits
  3505   // 0x01 - insert into upper 128 bits
  3506   emit_byte(0x01);
  3509 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3510   assert(VM_Version::supports_avx2(), "");
  3511   bool vector256 = true;
  3512   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
  3513   emit_byte(0x38);
  3514   emit_byte(0xC0 | encode);
  3515   // 0x00 - insert into lower 128 bits
  3516   // 0x01 - insert into upper 128 bits
  3517   emit_byte(0x01);
  3520 void Assembler::vzeroupper() {
  3521   assert(VM_Version::supports_avx(), "");
  3522   (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE);
  3523   emit_byte(0x77);
  3527 #ifndef _LP64
  3528 // 32bit only pieces of the assembler
  3530 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  3531   // NO PREFIX AS NEVER 64BIT
  3532   InstructionMark im(this);
  3533   emit_byte(0x81);
  3534   emit_byte(0xF8 | src1->encoding());
  3535   emit_data(imm32, rspec, 0);
  3538 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  3539   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
  3540   InstructionMark im(this);
  3541   emit_byte(0x81);
  3542   emit_operand(rdi, src1);
  3543   emit_data(imm32, rspec, 0);
  3546 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
  3547 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
  3548 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
  3549 void Assembler::cmpxchg8(Address adr) {
  3550   InstructionMark im(this);
  3551   emit_byte(0x0F);
  3552   emit_byte(0xc7);
  3553   emit_operand(rcx, adr);
  3556 void Assembler::decl(Register dst) {
  3557   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  3558  emit_byte(0x48 | dst->encoding());
  3561 #endif // _LP64
  3563 // 64bit typically doesn't use the x87 but needs to for the trig funcs
  3565 void Assembler::fabs() {
  3566   emit_byte(0xD9);
  3567   emit_byte(0xE1);
  3570 void Assembler::fadd(int i) {
  3571   emit_farith(0xD8, 0xC0, i);
  3574 void Assembler::fadd_d(Address src) {
  3575   InstructionMark im(this);
  3576   emit_byte(0xDC);
  3577   emit_operand32(rax, src);
  3580 void Assembler::fadd_s(Address src) {
  3581   InstructionMark im(this);
  3582   emit_byte(0xD8);
  3583   emit_operand32(rax, src);
  3586 void Assembler::fadda(int i) {
  3587   emit_farith(0xDC, 0xC0, i);
  3590 void Assembler::faddp(int i) {
  3591   emit_farith(0xDE, 0xC0, i);
  3594 void Assembler::fchs() {
  3595   emit_byte(0xD9);
  3596   emit_byte(0xE0);
  3599 void Assembler::fcom(int i) {
  3600   emit_farith(0xD8, 0xD0, i);
  3603 void Assembler::fcomp(int i) {
  3604   emit_farith(0xD8, 0xD8, i);
  3607 void Assembler::fcomp_d(Address src) {
  3608   InstructionMark im(this);
  3609   emit_byte(0xDC);
  3610   emit_operand32(rbx, src);
  3613 void Assembler::fcomp_s(Address src) {
  3614   InstructionMark im(this);
  3615   emit_byte(0xD8);
  3616   emit_operand32(rbx, src);
  3619 void Assembler::fcompp() {
  3620   emit_byte(0xDE);
  3621   emit_byte(0xD9);
  3624 void Assembler::fcos() {
  3625   emit_byte(0xD9);
  3626   emit_byte(0xFF);
  3629 void Assembler::fdecstp() {
  3630   emit_byte(0xD9);
  3631   emit_byte(0xF6);
  3634 void Assembler::fdiv(int i) {
  3635   emit_farith(0xD8, 0xF0, i);
  3638 void Assembler::fdiv_d(Address src) {
  3639   InstructionMark im(this);
  3640   emit_byte(0xDC);
  3641   emit_operand32(rsi, src);
  3644 void Assembler::fdiv_s(Address src) {
  3645   InstructionMark im(this);
  3646   emit_byte(0xD8);
  3647   emit_operand32(rsi, src);
  3650 void Assembler::fdiva(int i) {
  3651   emit_farith(0xDC, 0xF8, i);
  3654 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
  3655 //       is erroneous for some of the floating-point instructions below.
  3657 void Assembler::fdivp(int i) {
  3658   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
  3661 void Assembler::fdivr(int i) {
  3662   emit_farith(0xD8, 0xF8, i);
  3665 void Assembler::fdivr_d(Address src) {
  3666   InstructionMark im(this);
  3667   emit_byte(0xDC);
  3668   emit_operand32(rdi, src);
  3671 void Assembler::fdivr_s(Address src) {
  3672   InstructionMark im(this);
  3673   emit_byte(0xD8);
  3674   emit_operand32(rdi, src);
  3677 void Assembler::fdivra(int i) {
  3678   emit_farith(0xDC, 0xF0, i);
  3681 void Assembler::fdivrp(int i) {
  3682   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
  3685 void Assembler::ffree(int i) {
  3686   emit_farith(0xDD, 0xC0, i);
  3689 void Assembler::fild_d(Address adr) {
  3690   InstructionMark im(this);
  3691   emit_byte(0xDF);
  3692   emit_operand32(rbp, adr);
  3695 void Assembler::fild_s(Address adr) {
  3696   InstructionMark im(this);
  3697   emit_byte(0xDB);
  3698   emit_operand32(rax, adr);
  3701 void Assembler::fincstp() {
  3702   emit_byte(0xD9);
  3703   emit_byte(0xF7);
  3706 void Assembler::finit() {
  3707   emit_byte(0x9B);
  3708   emit_byte(0xDB);
  3709   emit_byte(0xE3);
  3712 void Assembler::fist_s(Address adr) {
  3713   InstructionMark im(this);
  3714   emit_byte(0xDB);
  3715   emit_operand32(rdx, adr);
  3718 void Assembler::fistp_d(Address adr) {
  3719   InstructionMark im(this);
  3720   emit_byte(0xDF);
  3721   emit_operand32(rdi, adr);
  3724 void Assembler::fistp_s(Address adr) {
  3725   InstructionMark im(this);
  3726   emit_byte(0xDB);
  3727   emit_operand32(rbx, adr);
  3730 void Assembler::fld1() {
  3731   emit_byte(0xD9);
  3732   emit_byte(0xE8);
  3735 void Assembler::fld_d(Address adr) {
  3736   InstructionMark im(this);
  3737   emit_byte(0xDD);
  3738   emit_operand32(rax, adr);
  3741 void Assembler::fld_s(Address adr) {
  3742   InstructionMark im(this);
  3743   emit_byte(0xD9);
  3744   emit_operand32(rax, adr);
  3748 void Assembler::fld_s(int index) {
  3749   emit_farith(0xD9, 0xC0, index);
  3752 void Assembler::fld_x(Address adr) {
  3753   InstructionMark im(this);
  3754   emit_byte(0xDB);
  3755   emit_operand32(rbp, adr);
  3758 void Assembler::fldcw(Address src) {
  3759   InstructionMark im(this);
  3760   emit_byte(0xd9);
  3761   emit_operand32(rbp, src);
  3764 void Assembler::fldenv(Address src) {
  3765   InstructionMark im(this);
  3766   emit_byte(0xD9);
  3767   emit_operand32(rsp, src);
  3770 void Assembler::fldlg2() {
  3771   emit_byte(0xD9);
  3772   emit_byte(0xEC);
  3775 void Assembler::fldln2() {
  3776   emit_byte(0xD9);
  3777   emit_byte(0xED);
  3780 void Assembler::fldz() {
  3781   emit_byte(0xD9);
  3782   emit_byte(0xEE);
  3785 void Assembler::flog() {
  3786   fldln2();
  3787   fxch();
  3788   fyl2x();
  3791 void Assembler::flog10() {
  3792   fldlg2();
  3793   fxch();
  3794   fyl2x();
  3797 void Assembler::fmul(int i) {
  3798   emit_farith(0xD8, 0xC8, i);
  3801 void Assembler::fmul_d(Address src) {
  3802   InstructionMark im(this);
  3803   emit_byte(0xDC);
  3804   emit_operand32(rcx, src);
  3807 void Assembler::fmul_s(Address src) {
  3808   InstructionMark im(this);
  3809   emit_byte(0xD8);
  3810   emit_operand32(rcx, src);
  3813 void Assembler::fmula(int i) {
  3814   emit_farith(0xDC, 0xC8, i);
  3817 void Assembler::fmulp(int i) {
  3818   emit_farith(0xDE, 0xC8, i);
  3821 void Assembler::fnsave(Address dst) {
  3822   InstructionMark im(this);
  3823   emit_byte(0xDD);
  3824   emit_operand32(rsi, dst);
  3827 void Assembler::fnstcw(Address src) {
  3828   InstructionMark im(this);
  3829   emit_byte(0x9B);
  3830   emit_byte(0xD9);
  3831   emit_operand32(rdi, src);
  3834 void Assembler::fnstsw_ax() {
  3835   emit_byte(0xdF);
  3836   emit_byte(0xE0);
  3839 void Assembler::fprem() {
  3840   emit_byte(0xD9);
  3841   emit_byte(0xF8);
  3844 void Assembler::fprem1() {
  3845   emit_byte(0xD9);
  3846   emit_byte(0xF5);
  3849 void Assembler::frstor(Address src) {
  3850   InstructionMark im(this);
  3851   emit_byte(0xDD);
  3852   emit_operand32(rsp, src);
  3855 void Assembler::fsin() {
  3856   emit_byte(0xD9);
  3857   emit_byte(0xFE);
  3860 void Assembler::fsqrt() {
  3861   emit_byte(0xD9);
  3862   emit_byte(0xFA);
  3865 void Assembler::fst_d(Address adr) {
  3866   InstructionMark im(this);
  3867   emit_byte(0xDD);
  3868   emit_operand32(rdx, adr);
  3871 void Assembler::fst_s(Address adr) {
  3872   InstructionMark im(this);
  3873   emit_byte(0xD9);
  3874   emit_operand32(rdx, adr);
  3877 void Assembler::fstp_d(Address adr) {
  3878   InstructionMark im(this);
  3879   emit_byte(0xDD);
  3880   emit_operand32(rbx, adr);
  3883 void Assembler::fstp_d(int index) {
  3884   emit_farith(0xDD, 0xD8, index);
  3887 void Assembler::fstp_s(Address adr) {
  3888   InstructionMark im(this);
  3889   emit_byte(0xD9);
  3890   emit_operand32(rbx, adr);
  3893 void Assembler::fstp_x(Address adr) {
  3894   InstructionMark im(this);
  3895   emit_byte(0xDB);
  3896   emit_operand32(rdi, adr);
  3899 void Assembler::fsub(int i) {
  3900   emit_farith(0xD8, 0xE0, i);
  3903 void Assembler::fsub_d(Address src) {
  3904   InstructionMark im(this);
  3905   emit_byte(0xDC);
  3906   emit_operand32(rsp, src);
  3909 void Assembler::fsub_s(Address src) {
  3910   InstructionMark im(this);
  3911   emit_byte(0xD8);
  3912   emit_operand32(rsp, src);
  3915 void Assembler::fsuba(int i) {
  3916   emit_farith(0xDC, 0xE8, i);
  3919 void Assembler::fsubp(int i) {
  3920   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
  3923 void Assembler::fsubr(int i) {
  3924   emit_farith(0xD8, 0xE8, i);
  3927 void Assembler::fsubr_d(Address src) {
  3928   InstructionMark im(this);
  3929   emit_byte(0xDC);
  3930   emit_operand32(rbp, src);
  3933 void Assembler::fsubr_s(Address src) {
  3934   InstructionMark im(this);
  3935   emit_byte(0xD8);
  3936   emit_operand32(rbp, src);
  3939 void Assembler::fsubra(int i) {
  3940   emit_farith(0xDC, 0xE0, i);
  3943 void Assembler::fsubrp(int i) {
  3944   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
  3947 void Assembler::ftan() {
  3948   emit_byte(0xD9);
  3949   emit_byte(0xF2);
  3950   emit_byte(0xDD);
  3951   emit_byte(0xD8);
  3954 void Assembler::ftst() {
  3955   emit_byte(0xD9);
  3956   emit_byte(0xE4);
  3959 void Assembler::fucomi(int i) {
  3960   // make sure the instruction is supported (introduced for P6, together with cmov)
  3961   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  3962   emit_farith(0xDB, 0xE8, i);
  3965 void Assembler::fucomip(int i) {
  3966   // make sure the instruction is supported (introduced for P6, together with cmov)
  3967   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  3968   emit_farith(0xDF, 0xE8, i);
  3971 void Assembler::fwait() {
  3972   emit_byte(0x9B);
  3975 void Assembler::fxch(int i) {
  3976   emit_farith(0xD9, 0xC8, i);
  3979 void Assembler::fyl2x() {
  3980   emit_byte(0xD9);
  3981   emit_byte(0xF1);
  3984 void Assembler::frndint() {
  3985   emit_byte(0xD9);
  3986   emit_byte(0xFC);
  3989 void Assembler::f2xm1() {
  3990   emit_byte(0xD9);
  3991   emit_byte(0xF0);
  3994 void Assembler::fldl2e() {
  3995   emit_byte(0xD9);
  3996   emit_byte(0xEA);
  3999 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
  4000 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
  4001 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
  4002 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
  4004 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
  4005 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  4006   if (pre > 0) {
  4007     emit_byte(simd_pre[pre]);
  4009   if (rex_w) {
  4010     prefixq(adr, xreg);
  4011   } else {
  4012     prefix(adr, xreg);
  4014   if (opc > 0) {
  4015     emit_byte(0x0F);
  4016     int opc2 = simd_opc[opc];
  4017     if (opc2 > 0) {
  4018       emit_byte(opc2);
  4023 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  4024   if (pre > 0) {
  4025     emit_byte(simd_pre[pre]);
  4027   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
  4028                           prefix_and_encode(dst_enc, src_enc);
  4029   if (opc > 0) {
  4030     emit_byte(0x0F);
  4031     int opc2 = simd_opc[opc];
  4032     if (opc2 > 0) {
  4033       emit_byte(opc2);
  4036   return encode;
  4040 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, bool vector256) {
  4041   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
  4042     prefix(VEX_3bytes);
  4044     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
  4045     byte1 = (~byte1) & 0xE0;
  4046     byte1 |= opc;
  4047     a_byte(byte1);
  4049     int byte2 = ((~nds_enc) & 0xf) << 3;
  4050     byte2 |= (vex_w ? VEX_W : 0) | (vector256 ? 4 : 0) | pre;
  4051     emit_byte(byte2);
  4052   } else {
  4053     prefix(VEX_2bytes);
  4055     int byte1 = vex_r ? VEX_R : 0;
  4056     byte1 = (~byte1) & 0x80;
  4057     byte1 |= ((~nds_enc) & 0xf) << 3;
  4058     byte1 |= (vector256 ? 4 : 0) | pre;
  4059     emit_byte(byte1);
  4063 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256){
  4064   bool vex_r = (xreg_enc >= 8);
  4065   bool vex_b = adr.base_needs_rex();
  4066   bool vex_x = adr.index_needs_rex();
  4067   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  4070 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256) {
  4071   bool vex_r = (dst_enc >= 8);
  4072   bool vex_b = (src_enc >= 8);
  4073   bool vex_x = false;
  4074   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  4075   return (((dst_enc & 7) << 3) | (src_enc & 7));
  4079 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  4080   if (UseAVX > 0) {
  4081     int xreg_enc = xreg->encoding();
  4082     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
  4083     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector256);
  4084   } else {
  4085     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
  4086     rex_prefix(adr, xreg, pre, opc, rex_w);
  4090 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  4091   int dst_enc = dst->encoding();
  4092   int src_enc = src->encoding();
  4093   if (UseAVX > 0) {
  4094     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
  4095     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector256);
  4096   } else {
  4097     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
  4098     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
  4102 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
  4103   InstructionMark im(this);
  4104   simd_prefix(dst, dst, src, pre);
  4105   emit_byte(opcode);
  4106   emit_operand(dst, src);
  4109 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
  4110   int encode = simd_prefix_and_encode(dst, dst, src, pre);
  4111   emit_byte(opcode);
  4112   emit_byte(0xC0 | encode);
  4115 // Versions with no second source register (non-destructive source).
  4116 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
  4117   InstructionMark im(this);
  4118   simd_prefix(dst, xnoreg, src, pre);
  4119   emit_byte(opcode);
  4120   emit_operand(dst, src);
  4123 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
  4124   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre);
  4125   emit_byte(opcode);
  4126   emit_byte(0xC0 | encode);
  4129 // 3-operands AVX instructions
  4130 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
  4131                                Address src, VexSimdPrefix pre, bool vector256) {
  4132   InstructionMark im(this);
  4133   vex_prefix(dst, nds, src, pre, vector256);
  4134   emit_byte(opcode);
  4135   emit_operand(dst, src);
  4138 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
  4139                                XMMRegister src, VexSimdPrefix pre, bool vector256) {
  4140   int encode = vex_prefix_and_encode(dst, nds, src, pre, vector256);
  4141   emit_byte(opcode);
  4142   emit_byte(0xC0 | encode);
  4145 #ifndef _LP64
  4147 void Assembler::incl(Register dst) {
  4148   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  4149   emit_byte(0x40 | dst->encoding());
  4152 void Assembler::lea(Register dst, Address src) {
  4153   leal(dst, src);
  4156 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  4157   InstructionMark im(this);
  4158   emit_byte(0xC7);
  4159   emit_operand(rax, dst);
  4160   emit_data((int)imm32, rspec, 0);
  4163 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  4164   InstructionMark im(this);
  4165   int encode = prefix_and_encode(dst->encoding());
  4166   emit_byte(0xB8 | encode);
  4167   emit_data((int)imm32, rspec, 0);
  4170 void Assembler::popa() { // 32bit
  4171   emit_byte(0x61);
  4174 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
  4175   InstructionMark im(this);
  4176   emit_byte(0x68);
  4177   emit_data(imm32, rspec, 0);
  4180 void Assembler::pusha() { // 32bit
  4181   emit_byte(0x60);
  4184 void Assembler::set_byte_if_not_zero(Register dst) {
  4185   emit_byte(0x0F);
  4186   emit_byte(0x95);
  4187   emit_byte(0xE0 | dst->encoding());
  4190 void Assembler::shldl(Register dst, Register src) {
  4191   emit_byte(0x0F);
  4192   emit_byte(0xA5);
  4193   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  4196 void Assembler::shrdl(Register dst, Register src) {
  4197   emit_byte(0x0F);
  4198   emit_byte(0xAD);
  4199   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  4202 #else // LP64
  4204 void Assembler::set_byte_if_not_zero(Register dst) {
  4205   int enc = prefix_and_encode(dst->encoding(), true);
  4206   emit_byte(0x0F);
  4207   emit_byte(0x95);
  4208   emit_byte(0xE0 | enc);
  4211 // 64bit only pieces of the assembler
  4212 // This should only be used by 64bit instructions that can use rip-relative
  4213 // it cannot be used by instructions that want an immediate value.
  4215 bool Assembler::reachable(AddressLiteral adr) {
  4216   int64_t disp;
  4217   // None will force a 64bit literal to the code stream. Likely a placeholder
  4218   // for something that will be patched later and we need to certain it will
  4219   // always be reachable.
  4220   if (adr.reloc() == relocInfo::none) {
  4221     return false;
  4223   if (adr.reloc() == relocInfo::internal_word_type) {
  4224     // This should be rip relative and easily reachable.
  4225     return true;
  4227   if (adr.reloc() == relocInfo::virtual_call_type ||
  4228       adr.reloc() == relocInfo::opt_virtual_call_type ||
  4229       adr.reloc() == relocInfo::static_call_type ||
  4230       adr.reloc() == relocInfo::static_stub_type ) {
  4231     // This should be rip relative within the code cache and easily
  4232     // reachable until we get huge code caches. (At which point
  4233     // ic code is going to have issues).
  4234     return true;
  4236   if (adr.reloc() != relocInfo::external_word_type &&
  4237       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
  4238       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
  4239       adr.reloc() != relocInfo::runtime_call_type ) {
  4240     return false;
  4243   // Stress the correction code
  4244   if (ForceUnreachable) {
  4245     // Must be runtimecall reloc, see if it is in the codecache
  4246     // Flipping stuff in the codecache to be unreachable causes issues
  4247     // with things like inline caches where the additional instructions
  4248     // are not handled.
  4249     if (CodeCache::find_blob(adr._target) == NULL) {
  4250       return false;
  4253   // For external_word_type/runtime_call_type if it is reachable from where we
  4254   // are now (possibly a temp buffer) and where we might end up
  4255   // anywhere in the codeCache then we are always reachable.
  4256   // This would have to change if we ever save/restore shared code
  4257   // to be more pessimistic.
  4258   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
  4259   if (!is_simm32(disp)) return false;
  4260   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
  4261   if (!is_simm32(disp)) return false;
  4263   disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int));
  4265   // Because rip relative is a disp + address_of_next_instruction and we
  4266   // don't know the value of address_of_next_instruction we apply a fudge factor
  4267   // to make sure we will be ok no matter the size of the instruction we get placed into.
  4268   // We don't have to fudge the checks above here because they are already worst case.
  4270   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
  4271   // + 4 because better safe than sorry.
  4272   const int fudge = 12 + 4;
  4273   if (disp < 0) {
  4274     disp -= fudge;
  4275   } else {
  4276     disp += fudge;
  4278   return is_simm32(disp);
  4281 // Check if the polling page is not reachable from the code cache using rip-relative
  4282 // addressing.
  4283 bool Assembler::is_polling_page_far() {
  4284   intptr_t addr = (intptr_t)os::get_polling_page();
  4285   return ForceUnreachable ||
  4286          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
  4287          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
  4290 void Assembler::emit_data64(jlong data,
  4291                             relocInfo::relocType rtype,
  4292                             int format) {
  4293   if (rtype == relocInfo::none) {
  4294     emit_long64(data);
  4295   } else {
  4296     emit_data64(data, Relocation::spec_simple(rtype), format);
  4300 void Assembler::emit_data64(jlong data,
  4301                             RelocationHolder const& rspec,
  4302                             int format) {
  4303   assert(imm_operand == 0, "default format must be immediate in this file");
  4304   assert(imm_operand == format, "must be immediate");
  4305   assert(inst_mark() != NULL, "must be inside InstructionMark");
  4306   // Do not use AbstractAssembler::relocate, which is not intended for
  4307   // embedded words.  Instead, relocate to the enclosing instruction.
  4308   code_section()->relocate(inst_mark(), rspec, format);
  4309 #ifdef ASSERT
  4310   check_relocation(rspec, format);
  4311 #endif
  4312   emit_long64(data);
  4315 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
  4316   if (reg_enc >= 8) {
  4317     prefix(REX_B);
  4318     reg_enc -= 8;
  4319   } else if (byteinst && reg_enc >= 4) {
  4320     prefix(REX);
  4322   return reg_enc;
  4325 int Assembler::prefixq_and_encode(int reg_enc) {
  4326   if (reg_enc < 8) {
  4327     prefix(REX_W);
  4328   } else {
  4329     prefix(REX_WB);
  4330     reg_enc -= 8;
  4332   return reg_enc;
  4335 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
  4336   if (dst_enc < 8) {
  4337     if (src_enc >= 8) {
  4338       prefix(REX_B);
  4339       src_enc -= 8;
  4340     } else if (byteinst && src_enc >= 4) {
  4341       prefix(REX);
  4343   } else {
  4344     if (src_enc < 8) {
  4345       prefix(REX_R);
  4346     } else {
  4347       prefix(REX_RB);
  4348       src_enc -= 8;
  4350     dst_enc -= 8;
  4352   return dst_enc << 3 | src_enc;
  4355 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
  4356   if (dst_enc < 8) {
  4357     if (src_enc < 8) {
  4358       prefix(REX_W);
  4359     } else {
  4360       prefix(REX_WB);
  4361       src_enc -= 8;
  4363   } else {
  4364     if (src_enc < 8) {
  4365       prefix(REX_WR);
  4366     } else {
  4367       prefix(REX_WRB);
  4368       src_enc -= 8;
  4370     dst_enc -= 8;
  4372   return dst_enc << 3 | src_enc;
  4375 void Assembler::prefix(Register reg) {
  4376   if (reg->encoding() >= 8) {
  4377     prefix(REX_B);
  4381 void Assembler::prefix(Address adr) {
  4382   if (adr.base_needs_rex()) {
  4383     if (adr.index_needs_rex()) {
  4384       prefix(REX_XB);
  4385     } else {
  4386       prefix(REX_B);
  4388   } else {
  4389     if (adr.index_needs_rex()) {
  4390       prefix(REX_X);
  4395 void Assembler::prefixq(Address adr) {
  4396   if (adr.base_needs_rex()) {
  4397     if (adr.index_needs_rex()) {
  4398       prefix(REX_WXB);
  4399     } else {
  4400       prefix(REX_WB);
  4402   } else {
  4403     if (adr.index_needs_rex()) {
  4404       prefix(REX_WX);
  4405     } else {
  4406       prefix(REX_W);
  4412 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
  4413   if (reg->encoding() < 8) {
  4414     if (adr.base_needs_rex()) {
  4415       if (adr.index_needs_rex()) {
  4416         prefix(REX_XB);
  4417       } else {
  4418         prefix(REX_B);
  4420     } else {
  4421       if (adr.index_needs_rex()) {
  4422         prefix(REX_X);
  4423       } else if (byteinst && reg->encoding() >= 4 ) {
  4424         prefix(REX);
  4427   } else {
  4428     if (adr.base_needs_rex()) {
  4429       if (adr.index_needs_rex()) {
  4430         prefix(REX_RXB);
  4431       } else {
  4432         prefix(REX_RB);
  4434     } else {
  4435       if (adr.index_needs_rex()) {
  4436         prefix(REX_RX);
  4437       } else {
  4438         prefix(REX_R);
  4444 void Assembler::prefixq(Address adr, Register src) {
  4445   if (src->encoding() < 8) {
  4446     if (adr.base_needs_rex()) {
  4447       if (adr.index_needs_rex()) {
  4448         prefix(REX_WXB);
  4449       } else {
  4450         prefix(REX_WB);
  4452     } else {
  4453       if (adr.index_needs_rex()) {
  4454         prefix(REX_WX);
  4455       } else {
  4456         prefix(REX_W);
  4459   } else {
  4460     if (adr.base_needs_rex()) {
  4461       if (adr.index_needs_rex()) {
  4462         prefix(REX_WRXB);
  4463       } else {
  4464         prefix(REX_WRB);
  4466     } else {
  4467       if (adr.index_needs_rex()) {
  4468         prefix(REX_WRX);
  4469       } else {
  4470         prefix(REX_WR);
  4476 void Assembler::prefix(Address adr, XMMRegister reg) {
  4477   if (reg->encoding() < 8) {
  4478     if (adr.base_needs_rex()) {
  4479       if (adr.index_needs_rex()) {
  4480         prefix(REX_XB);
  4481       } else {
  4482         prefix(REX_B);
  4484     } else {
  4485       if (adr.index_needs_rex()) {
  4486         prefix(REX_X);
  4489   } else {
  4490     if (adr.base_needs_rex()) {
  4491       if (adr.index_needs_rex()) {
  4492         prefix(REX_RXB);
  4493       } else {
  4494         prefix(REX_RB);
  4496     } else {
  4497       if (adr.index_needs_rex()) {
  4498         prefix(REX_RX);
  4499       } else {
  4500         prefix(REX_R);
  4506 void Assembler::prefixq(Address adr, XMMRegister src) {
  4507   if (src->encoding() < 8) {
  4508     if (adr.base_needs_rex()) {
  4509       if (adr.index_needs_rex()) {
  4510         prefix(REX_WXB);
  4511       } else {
  4512         prefix(REX_WB);
  4514     } else {
  4515       if (adr.index_needs_rex()) {
  4516         prefix(REX_WX);
  4517       } else {
  4518         prefix(REX_W);
  4521   } else {
  4522     if (adr.base_needs_rex()) {
  4523       if (adr.index_needs_rex()) {
  4524         prefix(REX_WRXB);
  4525       } else {
  4526         prefix(REX_WRB);
  4528     } else {
  4529       if (adr.index_needs_rex()) {
  4530         prefix(REX_WRX);
  4531       } else {
  4532         prefix(REX_WR);
  4538 void Assembler::adcq(Register dst, int32_t imm32) {
  4539   (void) prefixq_and_encode(dst->encoding());
  4540   emit_arith(0x81, 0xD0, dst, imm32);
  4543 void Assembler::adcq(Register dst, Address src) {
  4544   InstructionMark im(this);
  4545   prefixq(src, dst);
  4546   emit_byte(0x13);
  4547   emit_operand(dst, src);
  4550 void Assembler::adcq(Register dst, Register src) {
  4551   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  4552   emit_arith(0x13, 0xC0, dst, src);
  4555 void Assembler::addq(Address dst, int32_t imm32) {
  4556   InstructionMark im(this);
  4557   prefixq(dst);
  4558   emit_arith_operand(0x81, rax, dst,imm32);
  4561 void Assembler::addq(Address dst, Register src) {
  4562   InstructionMark im(this);
  4563   prefixq(dst, src);
  4564   emit_byte(0x01);
  4565   emit_operand(src, dst);
  4568 void Assembler::addq(Register dst, int32_t imm32) {
  4569   (void) prefixq_and_encode(dst->encoding());
  4570   emit_arith(0x81, 0xC0, dst, imm32);
  4573 void Assembler::addq(Register dst, Address src) {
  4574   InstructionMark im(this);
  4575   prefixq(src, dst);
  4576   emit_byte(0x03);
  4577   emit_operand(dst, src);
  4580 void Assembler::addq(Register dst, Register src) {
  4581   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4582   emit_arith(0x03, 0xC0, dst, src);
  4585 void Assembler::andq(Address dst, int32_t imm32) {
  4586   InstructionMark im(this);
  4587   prefixq(dst);
  4588   emit_byte(0x81);
  4589   emit_operand(rsp, dst, 4);
  4590   emit_long(imm32);
  4593 void Assembler::andq(Register dst, int32_t imm32) {
  4594   (void) prefixq_and_encode(dst->encoding());
  4595   emit_arith(0x81, 0xE0, dst, imm32);
  4598 void Assembler::andq(Register dst, Address src) {
  4599   InstructionMark im(this);
  4600   prefixq(src, dst);
  4601   emit_byte(0x23);
  4602   emit_operand(dst, src);
  4605 void Assembler::andq(Register dst, Register src) {
  4606   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  4607   emit_arith(0x23, 0xC0, dst, src);
  4610 void Assembler::bsfq(Register dst, Register src) {
  4611   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4612   emit_byte(0x0F);
  4613   emit_byte(0xBC);
  4614   emit_byte(0xC0 | encode);
  4617 void Assembler::bsrq(Register dst, Register src) {
  4618   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  4619   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4620   emit_byte(0x0F);
  4621   emit_byte(0xBD);
  4622   emit_byte(0xC0 | encode);
  4625 void Assembler::bswapq(Register reg) {
  4626   int encode = prefixq_and_encode(reg->encoding());
  4627   emit_byte(0x0F);
  4628   emit_byte(0xC8 | encode);
  4631 void Assembler::cdqq() {
  4632   prefix(REX_W);
  4633   emit_byte(0x99);
  4636 void Assembler::clflush(Address adr) {
  4637   prefix(adr);
  4638   emit_byte(0x0F);
  4639   emit_byte(0xAE);
  4640   emit_operand(rdi, adr);
  4643 void Assembler::cmovq(Condition cc, Register dst, Register src) {
  4644   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4645   emit_byte(0x0F);
  4646   emit_byte(0x40 | cc);
  4647   emit_byte(0xC0 | encode);
  4650 void Assembler::cmovq(Condition cc, Register dst, Address src) {
  4651   InstructionMark im(this);
  4652   prefixq(src, dst);
  4653   emit_byte(0x0F);
  4654   emit_byte(0x40 | cc);
  4655   emit_operand(dst, src);
  4658 void Assembler::cmpq(Address dst, int32_t imm32) {
  4659   InstructionMark im(this);
  4660   prefixq(dst);
  4661   emit_byte(0x81);
  4662   emit_operand(rdi, dst, 4);
  4663   emit_long(imm32);
  4666 void Assembler::cmpq(Register dst, int32_t imm32) {
  4667   (void) prefixq_and_encode(dst->encoding());
  4668   emit_arith(0x81, 0xF8, dst, imm32);
  4671 void Assembler::cmpq(Address dst, Register src) {
  4672   InstructionMark im(this);
  4673   prefixq(dst, src);
  4674   emit_byte(0x3B);
  4675   emit_operand(src, dst);
  4678 void Assembler::cmpq(Register dst, Register src) {
  4679   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4680   emit_arith(0x3B, 0xC0, dst, src);
  4683 void Assembler::cmpq(Register dst, Address  src) {
  4684   InstructionMark im(this);
  4685   prefixq(src, dst);
  4686   emit_byte(0x3B);
  4687   emit_operand(dst, src);
  4690 void Assembler::cmpxchgq(Register reg, Address adr) {
  4691   InstructionMark im(this);
  4692   prefixq(adr, reg);
  4693   emit_byte(0x0F);
  4694   emit_byte(0xB1);
  4695   emit_operand(reg, adr);
  4698 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
  4699   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4700   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2);
  4701   emit_byte(0x2A);
  4702   emit_byte(0xC0 | encode);
  4705 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
  4706   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4707   InstructionMark im(this);
  4708   simd_prefix_q(dst, dst, src, VEX_SIMD_F2);
  4709   emit_byte(0x2A);
  4710   emit_operand(dst, src);
  4713 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
  4714   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4715   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3);
  4716   emit_byte(0x2A);
  4717   emit_byte(0xC0 | encode);
  4720 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
  4721   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4722   InstructionMark im(this);
  4723   simd_prefix_q(dst, dst, src, VEX_SIMD_F3);
  4724   emit_byte(0x2A);
  4725   emit_operand(dst, src);
  4728 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
  4729   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4730   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2);
  4731   emit_byte(0x2C);
  4732   emit_byte(0xC0 | encode);
  4735 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
  4736   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4737   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3);
  4738   emit_byte(0x2C);
  4739   emit_byte(0xC0 | encode);
  4742 void Assembler::decl(Register dst) {
  4743   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  4744   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
  4745   int encode = prefix_and_encode(dst->encoding());
  4746   emit_byte(0xFF);
  4747   emit_byte(0xC8 | encode);
  4750 void Assembler::decq(Register dst) {
  4751   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  4752   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4753   int encode = prefixq_and_encode(dst->encoding());
  4754   emit_byte(0xFF);
  4755   emit_byte(0xC8 | encode);
  4758 void Assembler::decq(Address dst) {
  4759   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  4760   InstructionMark im(this);
  4761   prefixq(dst);
  4762   emit_byte(0xFF);
  4763   emit_operand(rcx, dst);
  4766 void Assembler::fxrstor(Address src) {
  4767   prefixq(src);
  4768   emit_byte(0x0F);
  4769   emit_byte(0xAE);
  4770   emit_operand(as_Register(1), src);
  4773 void Assembler::fxsave(Address dst) {
  4774   prefixq(dst);
  4775   emit_byte(0x0F);
  4776   emit_byte(0xAE);
  4777   emit_operand(as_Register(0), dst);
  4780 void Assembler::idivq(Register src) {
  4781   int encode = prefixq_and_encode(src->encoding());
  4782   emit_byte(0xF7);
  4783   emit_byte(0xF8 | encode);
  4786 void Assembler::imulq(Register dst, Register src) {
  4787   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4788   emit_byte(0x0F);
  4789   emit_byte(0xAF);
  4790   emit_byte(0xC0 | encode);
  4793 void Assembler::imulq(Register dst, Register src, int value) {
  4794   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4795   if (is8bit(value)) {
  4796     emit_byte(0x6B);
  4797     emit_byte(0xC0 | encode);
  4798     emit_byte(value & 0xFF);
  4799   } else {
  4800     emit_byte(0x69);
  4801     emit_byte(0xC0 | encode);
  4802     emit_long(value);
  4806 void Assembler::incl(Register dst) {
  4807   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  4808   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4809   int encode = prefix_and_encode(dst->encoding());
  4810   emit_byte(0xFF);
  4811   emit_byte(0xC0 | encode);
  4814 void Assembler::incq(Register dst) {
  4815   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  4816   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4817   int encode = prefixq_and_encode(dst->encoding());
  4818   emit_byte(0xFF);
  4819   emit_byte(0xC0 | encode);
  4822 void Assembler::incq(Address dst) {
  4823   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  4824   InstructionMark im(this);
  4825   prefixq(dst);
  4826   emit_byte(0xFF);
  4827   emit_operand(rax, dst);
  4830 void Assembler::lea(Register dst, Address src) {
  4831   leaq(dst, src);
  4834 void Assembler::leaq(Register dst, Address src) {
  4835   InstructionMark im(this);
  4836   prefixq(src, dst);
  4837   emit_byte(0x8D);
  4838   emit_operand(dst, src);
  4841 void Assembler::mov64(Register dst, int64_t imm64) {
  4842   InstructionMark im(this);
  4843   int encode = prefixq_and_encode(dst->encoding());
  4844   emit_byte(0xB8 | encode);
  4845   emit_long64(imm64);
  4848 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
  4849   InstructionMark im(this);
  4850   int encode = prefixq_and_encode(dst->encoding());
  4851   emit_byte(0xB8 | encode);
  4852   emit_data64(imm64, rspec);
  4855 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  4856   InstructionMark im(this);
  4857   int encode = prefix_and_encode(dst->encoding());
  4858   emit_byte(0xB8 | encode);
  4859   emit_data((int)imm32, rspec, narrow_oop_operand);
  4862 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  4863   InstructionMark im(this);
  4864   prefix(dst);
  4865   emit_byte(0xC7);
  4866   emit_operand(rax, dst, 4);
  4867   emit_data((int)imm32, rspec, narrow_oop_operand);
  4870 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  4871   InstructionMark im(this);
  4872   int encode = prefix_and_encode(src1->encoding());
  4873   emit_byte(0x81);
  4874   emit_byte(0xF8 | encode);
  4875   emit_data((int)imm32, rspec, narrow_oop_operand);
  4878 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  4879   InstructionMark im(this);
  4880   prefix(src1);
  4881   emit_byte(0x81);
  4882   emit_operand(rax, src1, 4);
  4883   emit_data((int)imm32, rspec, narrow_oop_operand);
  4886 void Assembler::lzcntq(Register dst, Register src) {
  4887   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  4888   emit_byte(0xF3);
  4889   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4890   emit_byte(0x0F);
  4891   emit_byte(0xBD);
  4892   emit_byte(0xC0 | encode);
  4895 void Assembler::movdq(XMMRegister dst, Register src) {
  4896   // table D-1 says MMX/SSE2
  4897   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4898   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66);
  4899   emit_byte(0x6E);
  4900   emit_byte(0xC0 | encode);
  4903 void Assembler::movdq(Register dst, XMMRegister src) {
  4904   // table D-1 says MMX/SSE2
  4905   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4906   // swap src/dst to get correct prefix
  4907   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66);
  4908   emit_byte(0x7E);
  4909   emit_byte(0xC0 | encode);
  4912 void Assembler::movq(Register dst, Register src) {
  4913   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4914   emit_byte(0x8B);
  4915   emit_byte(0xC0 | encode);
  4918 void Assembler::movq(Register dst, Address src) {
  4919   InstructionMark im(this);
  4920   prefixq(src, dst);
  4921   emit_byte(0x8B);
  4922   emit_operand(dst, src);
  4925 void Assembler::movq(Address dst, Register src) {
  4926   InstructionMark im(this);
  4927   prefixq(dst, src);
  4928   emit_byte(0x89);
  4929   emit_operand(src, dst);
  4932 void Assembler::movsbq(Register dst, Address src) {
  4933   InstructionMark im(this);
  4934   prefixq(src, dst);
  4935   emit_byte(0x0F);
  4936   emit_byte(0xBE);
  4937   emit_operand(dst, src);
  4940 void Assembler::movsbq(Register dst, Register src) {
  4941   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4942   emit_byte(0x0F);
  4943   emit_byte(0xBE);
  4944   emit_byte(0xC0 | encode);
  4947 void Assembler::movslq(Register dst, int32_t imm32) {
  4948   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
  4949   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
  4950   // as a result we shouldn't use until tested at runtime...
  4951   ShouldNotReachHere();
  4952   InstructionMark im(this);
  4953   int encode = prefixq_and_encode(dst->encoding());
  4954   emit_byte(0xC7 | encode);
  4955   emit_long(imm32);
  4958 void Assembler::movslq(Address dst, int32_t imm32) {
  4959   assert(is_simm32(imm32), "lost bits");
  4960   InstructionMark im(this);
  4961   prefixq(dst);
  4962   emit_byte(0xC7);
  4963   emit_operand(rax, dst, 4);
  4964   emit_long(imm32);
  4967 void Assembler::movslq(Register dst, Address src) {
  4968   InstructionMark im(this);
  4969   prefixq(src, dst);
  4970   emit_byte(0x63);
  4971   emit_operand(dst, src);
  4974 void Assembler::movslq(Register dst, Register src) {
  4975   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4976   emit_byte(0x63);
  4977   emit_byte(0xC0 | encode);
  4980 void Assembler::movswq(Register dst, Address src) {
  4981   InstructionMark im(this);
  4982   prefixq(src, dst);
  4983   emit_byte(0x0F);
  4984   emit_byte(0xBF);
  4985   emit_operand(dst, src);
  4988 void Assembler::movswq(Register dst, Register src) {
  4989   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4990   emit_byte(0x0F);
  4991   emit_byte(0xBF);
  4992   emit_byte(0xC0 | encode);
  4995 void Assembler::movzbq(Register dst, Address src) {
  4996   InstructionMark im(this);
  4997   prefixq(src, dst);
  4998   emit_byte(0x0F);
  4999   emit_byte(0xB6);
  5000   emit_operand(dst, src);
  5003 void Assembler::movzbq(Register dst, Register src) {
  5004   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5005   emit_byte(0x0F);
  5006   emit_byte(0xB6);
  5007   emit_byte(0xC0 | encode);
  5010 void Assembler::movzwq(Register dst, Address src) {
  5011   InstructionMark im(this);
  5012   prefixq(src, dst);
  5013   emit_byte(0x0F);
  5014   emit_byte(0xB7);
  5015   emit_operand(dst, src);
  5018 void Assembler::movzwq(Register dst, Register src) {
  5019   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5020   emit_byte(0x0F);
  5021   emit_byte(0xB7);
  5022   emit_byte(0xC0 | encode);
  5025 void Assembler::negq(Register dst) {
  5026   int encode = prefixq_and_encode(dst->encoding());
  5027   emit_byte(0xF7);
  5028   emit_byte(0xD8 | encode);
  5031 void Assembler::notq(Register dst) {
  5032   int encode = prefixq_and_encode(dst->encoding());
  5033   emit_byte(0xF7);
  5034   emit_byte(0xD0 | encode);
  5037 void Assembler::orq(Address dst, int32_t imm32) {
  5038   InstructionMark im(this);
  5039   prefixq(dst);
  5040   emit_byte(0x81);
  5041   emit_operand(rcx, dst, 4);
  5042   emit_long(imm32);
  5045 void Assembler::orq(Register dst, int32_t imm32) {
  5046   (void) prefixq_and_encode(dst->encoding());
  5047   emit_arith(0x81, 0xC8, dst, imm32);
  5050 void Assembler::orq(Register dst, Address src) {
  5051   InstructionMark im(this);
  5052   prefixq(src, dst);
  5053   emit_byte(0x0B);
  5054   emit_operand(dst, src);
  5057 void Assembler::orq(Register dst, Register src) {
  5058   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5059   emit_arith(0x0B, 0xC0, dst, src);
  5062 void Assembler::popa() { // 64bit
  5063   movq(r15, Address(rsp, 0));
  5064   movq(r14, Address(rsp, wordSize));
  5065   movq(r13, Address(rsp, 2 * wordSize));
  5066   movq(r12, Address(rsp, 3 * wordSize));
  5067   movq(r11, Address(rsp, 4 * wordSize));
  5068   movq(r10, Address(rsp, 5 * wordSize));
  5069   movq(r9,  Address(rsp, 6 * wordSize));
  5070   movq(r8,  Address(rsp, 7 * wordSize));
  5071   movq(rdi, Address(rsp, 8 * wordSize));
  5072   movq(rsi, Address(rsp, 9 * wordSize));
  5073   movq(rbp, Address(rsp, 10 * wordSize));
  5074   // skip rsp
  5075   movq(rbx, Address(rsp, 12 * wordSize));
  5076   movq(rdx, Address(rsp, 13 * wordSize));
  5077   movq(rcx, Address(rsp, 14 * wordSize));
  5078   movq(rax, Address(rsp, 15 * wordSize));
  5080   addq(rsp, 16 * wordSize);
  5083 void Assembler::popcntq(Register dst, Address src) {
  5084   assert(VM_Version::supports_popcnt(), "must support");
  5085   InstructionMark im(this);
  5086   emit_byte(0xF3);
  5087   prefixq(src, dst);
  5088   emit_byte(0x0F);
  5089   emit_byte(0xB8);
  5090   emit_operand(dst, src);
  5093 void Assembler::popcntq(Register dst, Register src) {
  5094   assert(VM_Version::supports_popcnt(), "must support");
  5095   emit_byte(0xF3);
  5096   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5097   emit_byte(0x0F);
  5098   emit_byte(0xB8);
  5099   emit_byte(0xC0 | encode);
  5102 void Assembler::popq(Address dst) {
  5103   InstructionMark im(this);
  5104   prefixq(dst);
  5105   emit_byte(0x8F);
  5106   emit_operand(rax, dst);
  5109 void Assembler::pusha() { // 64bit
  5110   // we have to store original rsp.  ABI says that 128 bytes
  5111   // below rsp are local scratch.
  5112   movq(Address(rsp, -5 * wordSize), rsp);
  5114   subq(rsp, 16 * wordSize);
  5116   movq(Address(rsp, 15 * wordSize), rax);
  5117   movq(Address(rsp, 14 * wordSize), rcx);
  5118   movq(Address(rsp, 13 * wordSize), rdx);
  5119   movq(Address(rsp, 12 * wordSize), rbx);
  5120   // skip rsp
  5121   movq(Address(rsp, 10 * wordSize), rbp);
  5122   movq(Address(rsp, 9 * wordSize), rsi);
  5123   movq(Address(rsp, 8 * wordSize), rdi);
  5124   movq(Address(rsp, 7 * wordSize), r8);
  5125   movq(Address(rsp, 6 * wordSize), r9);
  5126   movq(Address(rsp, 5 * wordSize), r10);
  5127   movq(Address(rsp, 4 * wordSize), r11);
  5128   movq(Address(rsp, 3 * wordSize), r12);
  5129   movq(Address(rsp, 2 * wordSize), r13);
  5130   movq(Address(rsp, wordSize), r14);
  5131   movq(Address(rsp, 0), r15);
  5134 void Assembler::pushq(Address src) {
  5135   InstructionMark im(this);
  5136   prefixq(src);
  5137   emit_byte(0xFF);
  5138   emit_operand(rsi, src);
  5141 void Assembler::rclq(Register dst, int imm8) {
  5142   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5143   int encode = prefixq_and_encode(dst->encoding());
  5144   if (imm8 == 1) {
  5145     emit_byte(0xD1);
  5146     emit_byte(0xD0 | encode);
  5147   } else {
  5148     emit_byte(0xC1);
  5149     emit_byte(0xD0 | encode);
  5150     emit_byte(imm8);
  5153 void Assembler::sarq(Register dst, int imm8) {
  5154   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5155   int encode = prefixq_and_encode(dst->encoding());
  5156   if (imm8 == 1) {
  5157     emit_byte(0xD1);
  5158     emit_byte(0xF8 | encode);
  5159   } else {
  5160     emit_byte(0xC1);
  5161     emit_byte(0xF8 | encode);
  5162     emit_byte(imm8);
  5166 void Assembler::sarq(Register dst) {
  5167   int encode = prefixq_and_encode(dst->encoding());
  5168   emit_byte(0xD3);
  5169   emit_byte(0xF8 | encode);
  5172 void Assembler::sbbq(Address dst, int32_t imm32) {
  5173   InstructionMark im(this);
  5174   prefixq(dst);
  5175   emit_arith_operand(0x81, rbx, dst, imm32);
  5178 void Assembler::sbbq(Register dst, int32_t imm32) {
  5179   (void) prefixq_and_encode(dst->encoding());
  5180   emit_arith(0x81, 0xD8, dst, imm32);
  5183 void Assembler::sbbq(Register dst, Address src) {
  5184   InstructionMark im(this);
  5185   prefixq(src, dst);
  5186   emit_byte(0x1B);
  5187   emit_operand(dst, src);
  5190 void Assembler::sbbq(Register dst, Register src) {
  5191   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5192   emit_arith(0x1B, 0xC0, dst, src);
  5195 void Assembler::shlq(Register dst, int imm8) {
  5196   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5197   int encode = prefixq_and_encode(dst->encoding());
  5198   if (imm8 == 1) {
  5199     emit_byte(0xD1);
  5200     emit_byte(0xE0 | encode);
  5201   } else {
  5202     emit_byte(0xC1);
  5203     emit_byte(0xE0 | encode);
  5204     emit_byte(imm8);
  5208 void Assembler::shlq(Register dst) {
  5209   int encode = prefixq_and_encode(dst->encoding());
  5210   emit_byte(0xD3);
  5211   emit_byte(0xE0 | encode);
  5214 void Assembler::shrq(Register dst, int imm8) {
  5215   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5216   int encode = prefixq_and_encode(dst->encoding());
  5217   emit_byte(0xC1);
  5218   emit_byte(0xE8 | encode);
  5219   emit_byte(imm8);
  5222 void Assembler::shrq(Register dst) {
  5223   int encode = prefixq_and_encode(dst->encoding());
  5224   emit_byte(0xD3);
  5225   emit_byte(0xE8 | encode);
  5228 void Assembler::subq(Address dst, int32_t imm32) {
  5229   InstructionMark im(this);
  5230   prefixq(dst);
  5231   emit_arith_operand(0x81, rbp, dst, imm32);
  5234 void Assembler::subq(Address dst, Register src) {
  5235   InstructionMark im(this);
  5236   prefixq(dst, src);
  5237   emit_byte(0x29);
  5238   emit_operand(src, dst);
  5241 void Assembler::subq(Register dst, int32_t imm32) {
  5242   (void) prefixq_and_encode(dst->encoding());
  5243   emit_arith(0x81, 0xE8, dst, imm32);
  5246 // Force generation of a 4 byte immediate value even if it fits into 8bit
  5247 void Assembler::subq_imm32(Register dst, int32_t imm32) {
  5248   (void) prefixq_and_encode(dst->encoding());
  5249   emit_arith_imm32(0x81, 0xE8, dst, imm32);
  5252 void Assembler::subq(Register dst, Address src) {
  5253   InstructionMark im(this);
  5254   prefixq(src, dst);
  5255   emit_byte(0x2B);
  5256   emit_operand(dst, src);
  5259 void Assembler::subq(Register dst, Register src) {
  5260   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5261   emit_arith(0x2B, 0xC0, dst, src);
  5264 void Assembler::testq(Register dst, int32_t imm32) {
  5265   // not using emit_arith because test
  5266   // doesn't support sign-extension of
  5267   // 8bit operands
  5268   int encode = dst->encoding();
  5269   if (encode == 0) {
  5270     prefix(REX_W);
  5271     emit_byte(0xA9);
  5272   } else {
  5273     encode = prefixq_and_encode(encode);
  5274     emit_byte(0xF7);
  5275     emit_byte(0xC0 | encode);
  5277   emit_long(imm32);
  5280 void Assembler::testq(Register dst, Register src) {
  5281   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5282   emit_arith(0x85, 0xC0, dst, src);
  5285 void Assembler::xaddq(Address dst, Register src) {
  5286   InstructionMark im(this);
  5287   prefixq(dst, src);
  5288   emit_byte(0x0F);
  5289   emit_byte(0xC1);
  5290   emit_operand(src, dst);
  5293 void Assembler::xchgq(Register dst, Address src) {
  5294   InstructionMark im(this);
  5295   prefixq(src, dst);
  5296   emit_byte(0x87);
  5297   emit_operand(dst, src);
  5300 void Assembler::xchgq(Register dst, Register src) {
  5301   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5302   emit_byte(0x87);
  5303   emit_byte(0xc0 | encode);
  5306 void Assembler::xorq(Register dst, Register src) {
  5307   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5308   emit_arith(0x33, 0xC0, dst, src);
  5311 void Assembler::xorq(Register dst, Address src) {
  5312   InstructionMark im(this);
  5313   prefixq(src, dst);
  5314   emit_byte(0x33);
  5315   emit_operand(dst, src);
  5318 #endif // !LP64
  5320 static Assembler::Condition reverse[] = {
  5321     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  5322     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  5323     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  5324     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  5325     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  5326     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  5327     Assembler::above          /* belowEqual    = 0x6 */ ,
  5328     Assembler::belowEqual     /* above         = 0x7 */ ,
  5329     Assembler::positive       /* negative      = 0x8 */ ,
  5330     Assembler::negative       /* positive      = 0x9 */ ,
  5331     Assembler::noParity       /* parity        = 0xa */ ,
  5332     Assembler::parity         /* noParity      = 0xb */ ,
  5333     Assembler::greaterEqual   /* less          = 0xc */ ,
  5334     Assembler::less           /* greaterEqual  = 0xd */ ,
  5335     Assembler::greater        /* lessEqual     = 0xe */ ,
  5336     Assembler::lessEqual      /* greater       = 0xf, */
  5338 };
  5341 // Implementation of MacroAssembler
  5343 // First all the versions that have distinct versions depending on 32/64 bit
  5344 // Unless the difference is trivial (1 line or so).
  5346 #ifndef _LP64
  5348 // 32bit versions
  5350 Address MacroAssembler::as_Address(AddressLiteral adr) {
  5351   return Address(adr.target(), adr.rspec());
  5354 Address MacroAssembler::as_Address(ArrayAddress adr) {
  5355   return Address::make_array(adr);
  5358 int MacroAssembler::biased_locking_enter(Register lock_reg,
  5359                                          Register obj_reg,
  5360                                          Register swap_reg,
  5361                                          Register tmp_reg,
  5362                                          bool swap_reg_contains_mark,
  5363                                          Label& done,
  5364                                          Label* slow_case,
  5365                                          BiasedLockingCounters* counters) {
  5366   assert(UseBiasedLocking, "why call this otherwise?");
  5367   assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
  5368   assert_different_registers(lock_reg, obj_reg, swap_reg);
  5370   if (PrintBiasedLockingStatistics && counters == NULL)
  5371     counters = BiasedLocking::counters();
  5373   bool need_tmp_reg = false;
  5374   if (tmp_reg == noreg) {
  5375     need_tmp_reg = true;
  5376     tmp_reg = lock_reg;
  5377   } else {
  5378     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  5380   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  5381   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  5382   Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
  5383   Address saved_mark_addr(lock_reg, 0);
  5385   // Biased locking
  5386   // See whether the lock is currently biased toward our thread and
  5387   // whether the epoch is still valid
  5388   // Note that the runtime guarantees sufficient alignment of JavaThread
  5389   // pointers to allow age to be placed into low bits
  5390   // First check to see whether biasing is even enabled for this object
  5391   Label cas_label;
  5392   int null_check_offset = -1;
  5393   if (!swap_reg_contains_mark) {
  5394     null_check_offset = offset();
  5395     movl(swap_reg, mark_addr);
  5397   if (need_tmp_reg) {
  5398     push(tmp_reg);
  5400   movl(tmp_reg, swap_reg);
  5401   andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5402   cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
  5403   if (need_tmp_reg) {
  5404     pop(tmp_reg);
  5406   jcc(Assembler::notEqual, cas_label);
  5407   // The bias pattern is present in the object's header. Need to check
  5408   // whether the bias owner and the epoch are both still current.
  5409   // Note that because there is no current thread register on x86 we
  5410   // need to store off the mark word we read out of the object to
  5411   // avoid reloading it and needing to recheck invariants below. This
  5412   // store is unfortunate but it makes the overall code shorter and
  5413   // simpler.
  5414   movl(saved_mark_addr, swap_reg);
  5415   if (need_tmp_reg) {
  5416     push(tmp_reg);
  5418   get_thread(tmp_reg);
  5419   xorl(swap_reg, tmp_reg);
  5420   if (swap_reg_contains_mark) {
  5421     null_check_offset = offset();
  5423   movl(tmp_reg, klass_addr);
  5424   xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset()));
  5425   andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
  5426   if (need_tmp_reg) {
  5427     pop(tmp_reg);
  5429   if (counters != NULL) {
  5430     cond_inc32(Assembler::zero,
  5431                ExternalAddress((address)counters->biased_lock_entry_count_addr()));
  5433   jcc(Assembler::equal, done);
  5435   Label try_revoke_bias;
  5436   Label try_rebias;
  5438   // At this point we know that the header has the bias pattern and
  5439   // that we are not the bias owner in the current epoch. We need to
  5440   // figure out more details about the state of the header in order to
  5441   // know what operations can be legally performed on the object's
  5442   // header.
  5444   // If the low three bits in the xor result aren't clear, that means
  5445   // the prototype header is no longer biased and we have to revoke
  5446   // the bias on this object.
  5447   testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
  5448   jcc(Assembler::notZero, try_revoke_bias);
  5450   // Biasing is still enabled for this data type. See whether the
  5451   // epoch of the current bias is still valid, meaning that the epoch
  5452   // bits of the mark word are equal to the epoch bits of the
  5453   // prototype header. (Note that the prototype header's epoch bits
  5454   // only change at a safepoint.) If not, attempt to rebias the object
  5455   // toward the current thread. Note that we must be absolutely sure
  5456   // that the current epoch is invalid in order to do this because
  5457   // otherwise the manipulations it performs on the mark word are
  5458   // illegal.
  5459   testl(swap_reg, markOopDesc::epoch_mask_in_place);
  5460   jcc(Assembler::notZero, try_rebias);
  5462   // The epoch of the current bias is still valid but we know nothing
  5463   // about the owner; it might be set or it might be clear. Try to
  5464   // acquire the bias of the object using an atomic operation. If this
  5465   // fails we will go in to the runtime to revoke the object's bias.
  5466   // Note that we first construct the presumed unbiased header so we
  5467   // don't accidentally blow away another thread's valid bias.
  5468   movl(swap_reg, saved_mark_addr);
  5469   andl(swap_reg,
  5470        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  5471   if (need_tmp_reg) {
  5472     push(tmp_reg);
  5474   get_thread(tmp_reg);
  5475   orl(tmp_reg, swap_reg);
  5476   if (os::is_MP()) {
  5477     lock();
  5479   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  5480   if (need_tmp_reg) {
  5481     pop(tmp_reg);
  5483   // If the biasing toward our thread failed, this means that
  5484   // another thread succeeded in biasing it toward itself and we
  5485   // need to revoke that bias. The revocation will occur in the
  5486   // interpreter runtime in the slow case.
  5487   if (counters != NULL) {
  5488     cond_inc32(Assembler::zero,
  5489                ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
  5491   if (slow_case != NULL) {
  5492     jcc(Assembler::notZero, *slow_case);
  5494   jmp(done);
  5496   bind(try_rebias);
  5497   // At this point we know the epoch has expired, meaning that the
  5498   // current "bias owner", if any, is actually invalid. Under these
  5499   // circumstances _only_, we are allowed to use the current header's
  5500   // value as the comparison value when doing the cas to acquire the
  5501   // bias in the current epoch. In other words, we allow transfer of
  5502   // the bias from one thread to another directly in this situation.
  5503   //
  5504   // FIXME: due to a lack of registers we currently blow away the age
  5505   // bits in this situation. Should attempt to preserve them.
  5506   if (need_tmp_reg) {
  5507     push(tmp_reg);
  5509   get_thread(tmp_reg);
  5510   movl(swap_reg, klass_addr);
  5511   orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset()));
  5512   movl(swap_reg, saved_mark_addr);
  5513   if (os::is_MP()) {
  5514     lock();
  5516   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  5517   if (need_tmp_reg) {
  5518     pop(tmp_reg);
  5520   // If the biasing toward our thread failed, then another thread
  5521   // succeeded in biasing it toward itself and we need to revoke that
  5522   // bias. The revocation will occur in the runtime in the slow case.
  5523   if (counters != NULL) {
  5524     cond_inc32(Assembler::zero,
  5525                ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
  5527   if (slow_case != NULL) {
  5528     jcc(Assembler::notZero, *slow_case);
  5530   jmp(done);
  5532   bind(try_revoke_bias);
  5533   // The prototype mark in the klass doesn't have the bias bit set any
  5534   // more, indicating that objects of this data type are not supposed
  5535   // to be biased any more. We are going to try to reset the mark of
  5536   // this object to the prototype value and fall through to the
  5537   // CAS-based locking scheme. Note that if our CAS fails, it means
  5538   // that another thread raced us for the privilege of revoking the
  5539   // bias of this particular object, so it's okay to continue in the
  5540   // normal locking code.
  5541   //
  5542   // FIXME: due to a lack of registers we currently blow away the age
  5543   // bits in this situation. Should attempt to preserve them.
  5544   movl(swap_reg, saved_mark_addr);
  5545   if (need_tmp_reg) {
  5546     push(tmp_reg);
  5548   movl(tmp_reg, klass_addr);
  5549   movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset()));
  5550   if (os::is_MP()) {
  5551     lock();
  5553   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  5554   if (need_tmp_reg) {
  5555     pop(tmp_reg);
  5557   // Fall through to the normal CAS-based lock, because no matter what
  5558   // the result of the above CAS, some thread must have succeeded in
  5559   // removing the bias bit from the object's header.
  5560   if (counters != NULL) {
  5561     cond_inc32(Assembler::zero,
  5562                ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
  5565   bind(cas_label);
  5567   return null_check_offset;
  5569 void MacroAssembler::call_VM_leaf_base(address entry_point,
  5570                                        int number_of_arguments) {
  5571   call(RuntimeAddress(entry_point));
  5572   increment(rsp, number_of_arguments * wordSize);
  5575 void MacroAssembler::cmpoop(Address src1, jobject obj) {
  5576   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5579 void MacroAssembler::cmpoop(Register src1, jobject obj) {
  5580   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5583 void MacroAssembler::extend_sign(Register hi, Register lo) {
  5584   // According to Intel Doc. AP-526, "Integer Divide", p.18.
  5585   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
  5586     cdql();
  5587   } else {
  5588     movl(hi, lo);
  5589     sarl(hi, 31);
  5593 void MacroAssembler::jC2(Register tmp, Label& L) {
  5594   // set parity bit if FPU flag C2 is set (via rax)
  5595   save_rax(tmp);
  5596   fwait(); fnstsw_ax();
  5597   sahf();
  5598   restore_rax(tmp);
  5599   // branch
  5600   jcc(Assembler::parity, L);
  5603 void MacroAssembler::jnC2(Register tmp, Label& L) {
  5604   // set parity bit if FPU flag C2 is set (via rax)
  5605   save_rax(tmp);
  5606   fwait(); fnstsw_ax();
  5607   sahf();
  5608   restore_rax(tmp);
  5609   // branch
  5610   jcc(Assembler::noParity, L);
  5613 // 32bit can do a case table jump in one instruction but we no longer allow the base
  5614 // to be installed in the Address class
  5615 void MacroAssembler::jump(ArrayAddress entry) {
  5616   jmp(as_Address(entry));
  5619 // Note: y_lo will be destroyed
  5620 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  5621   // Long compare for Java (semantics as described in JVM spec.)
  5622   Label high, low, done;
  5624   cmpl(x_hi, y_hi);
  5625   jcc(Assembler::less, low);
  5626   jcc(Assembler::greater, high);
  5627   // x_hi is the return register
  5628   xorl(x_hi, x_hi);
  5629   cmpl(x_lo, y_lo);
  5630   jcc(Assembler::below, low);
  5631   jcc(Assembler::equal, done);
  5633   bind(high);
  5634   xorl(x_hi, x_hi);
  5635   increment(x_hi);
  5636   jmp(done);
  5638   bind(low);
  5639   xorl(x_hi, x_hi);
  5640   decrementl(x_hi);
  5642   bind(done);
  5645 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  5646     mov_literal32(dst, (int32_t)src.target(), src.rspec());
  5649 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  5650   // leal(dst, as_Address(adr));
  5651   // see note in movl as to why we must use a move
  5652   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
  5655 void MacroAssembler::leave() {
  5656   mov(rsp, rbp);
  5657   pop(rbp);
  5660 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
  5661   // Multiplication of two Java long values stored on the stack
  5662   // as illustrated below. Result is in rdx:rax.
  5663   //
  5664   // rsp ---> [  ??  ] \               \
  5665   //            ....    | y_rsp_offset  |
  5666   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
  5667   //          [ y_hi ]                  | (in bytes)
  5668   //            ....                    |
  5669   //          [ x_lo ]                 /
  5670   //          [ x_hi ]
  5671   //            ....
  5672   //
  5673   // Basic idea: lo(result) = lo(x_lo * y_lo)
  5674   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  5675   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
  5676   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
  5677   Label quick;
  5678   // load x_hi, y_hi and check if quick
  5679   // multiplication is possible
  5680   movl(rbx, x_hi);
  5681   movl(rcx, y_hi);
  5682   movl(rax, rbx);
  5683   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
  5684   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
  5685   // do full multiplication
  5686   // 1st step
  5687   mull(y_lo);                                    // x_hi * y_lo
  5688   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
  5689   // 2nd step
  5690   movl(rax, x_lo);
  5691   mull(rcx);                                     // x_lo * y_hi
  5692   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
  5693   // 3rd step
  5694   bind(quick);                                   // note: rbx, = 0 if quick multiply!
  5695   movl(rax, x_lo);
  5696   mull(y_lo);                                    // x_lo * y_lo
  5697   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
  5700 void MacroAssembler::lneg(Register hi, Register lo) {
  5701   negl(lo);
  5702   adcl(hi, 0);
  5703   negl(hi);
  5706 void MacroAssembler::lshl(Register hi, Register lo) {
  5707   // Java shift left long support (semantics as described in JVM spec., p.305)
  5708   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
  5709   // shift value is in rcx !
  5710   assert(hi != rcx, "must not use rcx");
  5711   assert(lo != rcx, "must not use rcx");
  5712   const Register s = rcx;                        // shift count
  5713   const int      n = BitsPerWord;
  5714   Label L;
  5715   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  5716   cmpl(s, n);                                    // if (s < n)
  5717   jcc(Assembler::less, L);                       // else (s >= n)
  5718   movl(hi, lo);                                  // x := x << n
  5719   xorl(lo, lo);
  5720   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  5721   bind(L);                                       // s (mod n) < n
  5722   shldl(hi, lo);                                 // x := x << s
  5723   shll(lo);
  5727 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
  5728   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
  5729   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
  5730   assert(hi != rcx, "must not use rcx");
  5731   assert(lo != rcx, "must not use rcx");
  5732   const Register s = rcx;                        // shift count
  5733   const int      n = BitsPerWord;
  5734   Label L;
  5735   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  5736   cmpl(s, n);                                    // if (s < n)
  5737   jcc(Assembler::less, L);                       // else (s >= n)
  5738   movl(lo, hi);                                  // x := x >> n
  5739   if (sign_extension) sarl(hi, 31);
  5740   else                xorl(hi, hi);
  5741   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  5742   bind(L);                                       // s (mod n) < n
  5743   shrdl(lo, hi);                                 // x := x >> s
  5744   if (sign_extension) sarl(hi);
  5745   else                shrl(hi);
  5748 void MacroAssembler::movoop(Register dst, jobject obj) {
  5749   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5752 void MacroAssembler::movoop(Address dst, jobject obj) {
  5753   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5756 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  5757   if (src.is_lval()) {
  5758     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
  5759   } else {
  5760     movl(dst, as_Address(src));
  5764 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  5765   movl(as_Address(dst), src);
  5768 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  5769   movl(dst, as_Address(src));
  5772 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  5773 void MacroAssembler::movptr(Address dst, intptr_t src) {
  5774   movl(dst, src);
  5778 void MacroAssembler::pop_callee_saved_registers() {
  5779   pop(rcx);
  5780   pop(rdx);
  5781   pop(rdi);
  5782   pop(rsi);
  5785 void MacroAssembler::pop_fTOS() {
  5786   fld_d(Address(rsp, 0));
  5787   addl(rsp, 2 * wordSize);
  5790 void MacroAssembler::push_callee_saved_registers() {
  5791   push(rsi);
  5792   push(rdi);
  5793   push(rdx);
  5794   push(rcx);
  5797 void MacroAssembler::push_fTOS() {
  5798   subl(rsp, 2 * wordSize);
  5799   fstp_d(Address(rsp, 0));
  5803 void MacroAssembler::pushoop(jobject obj) {
  5804   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
  5808 void MacroAssembler::pushptr(AddressLiteral src) {
  5809   if (src.is_lval()) {
  5810     push_literal32((int32_t)src.target(), src.rspec());
  5811   } else {
  5812     pushl(as_Address(src));
  5816 void MacroAssembler::set_word_if_not_zero(Register dst) {
  5817   xorl(dst, dst);
  5818   set_byte_if_not_zero(dst);
  5821 static void pass_arg0(MacroAssembler* masm, Register arg) {
  5822   masm->push(arg);
  5825 static void pass_arg1(MacroAssembler* masm, Register arg) {
  5826   masm->push(arg);
  5829 static void pass_arg2(MacroAssembler* masm, Register arg) {
  5830   masm->push(arg);
  5833 static void pass_arg3(MacroAssembler* masm, Register arg) {
  5834   masm->push(arg);
  5837 #ifndef PRODUCT
  5838 extern "C" void findpc(intptr_t x);
  5839 #endif
  5841 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
  5842   // In order to get locks to work, we need to fake a in_VM state
  5843   JavaThread* thread = JavaThread::current();
  5844   JavaThreadState saved_state = thread->thread_state();
  5845   thread->set_thread_state(_thread_in_vm);
  5846   if (ShowMessageBoxOnError) {
  5847     JavaThread* thread = JavaThread::current();
  5848     JavaThreadState saved_state = thread->thread_state();
  5849     thread->set_thread_state(_thread_in_vm);
  5850     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  5851       ttyLocker ttyl;
  5852       BytecodeCounter::print();
  5854     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  5855     // This is the value of eip which points to where verify_oop will return.
  5856     if (os::message_box(msg, "Execution stopped, print registers?")) {
  5857       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
  5858       BREAKPOINT;
  5859       assert(false, "start up GDB");
  5861   } else {
  5862     ttyLocker ttyl;
  5863     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
  5864     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
  5866   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  5869 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
  5870   ttyLocker ttyl;
  5871   FlagSetting fs(Debugging, true);
  5872   tty->print_cr("eip = 0x%08x", eip);
  5873 #ifndef PRODUCT
  5874   if ((WizardMode || Verbose) && PrintMiscellaneous) {
  5875     tty->cr();
  5876     findpc(eip);
  5877     tty->cr();
  5879 #endif
  5880 #define PRINT_REG(rax) \
  5881   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
  5882   PRINT_REG(rax);
  5883   PRINT_REG(rbx);
  5884   PRINT_REG(rcx);
  5885   PRINT_REG(rdx);
  5886   PRINT_REG(rdi);
  5887   PRINT_REG(rsi);
  5888   PRINT_REG(rbp);
  5889   PRINT_REG(rsp);
  5890 #undef PRINT_REG
  5891   // Print some words near top of staack.
  5892   int* dump_sp = (int*) rsp;
  5893   for (int col1 = 0; col1 < 8; col1++) {
  5894     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  5895     os::print_location(tty, *dump_sp++);
  5897   for (int row = 0; row < 16; row++) {
  5898     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  5899     for (int col = 0; col < 8; col++) {
  5900       tty->print(" 0x%08x", *dump_sp++);
  5902     tty->cr();
  5904   // Print some instructions around pc:
  5905   Disassembler::decode((address)eip-64, (address)eip);
  5906   tty->print_cr("--------");
  5907   Disassembler::decode((address)eip, (address)eip+32);
  5910 void MacroAssembler::stop(const char* msg) {
  5911   ExternalAddress message((address)msg);
  5912   // push address of message
  5913   pushptr(message.addr());
  5914   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  5915   pusha();                                            // push registers
  5916   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
  5917   hlt();
  5920 void MacroAssembler::warn(const char* msg) {
  5921   push_CPU_state();
  5923   ExternalAddress message((address) msg);
  5924   // push address of message
  5925   pushptr(message.addr());
  5927   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
  5928   addl(rsp, wordSize);       // discard argument
  5929   pop_CPU_state();
  5932 void MacroAssembler::print_state() {
  5933   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  5934   pusha();                                            // push registers
  5936   push_CPU_state();
  5937   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
  5938   pop_CPU_state();
  5940   popa();
  5941   addl(rsp, wordSize);
  5944 #else // _LP64
  5946 // 64 bit versions
  5948 Address MacroAssembler::as_Address(AddressLiteral adr) {
  5949   // amd64 always does this as a pc-rel
  5950   // we can be absolute or disp based on the instruction type
  5951   // jmp/call are displacements others are absolute
  5952   assert(!adr.is_lval(), "must be rval");
  5953   assert(reachable(adr), "must be");
  5954   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
  5958 Address MacroAssembler::as_Address(ArrayAddress adr) {
  5959   AddressLiteral base = adr.base();
  5960   lea(rscratch1, base);
  5961   Address index = adr.index();
  5962   assert(index._disp == 0, "must not have disp"); // maybe it can?
  5963   Address array(rscratch1, index._index, index._scale, index._disp);
  5964   return array;
  5967 int MacroAssembler::biased_locking_enter(Register lock_reg,
  5968                                          Register obj_reg,
  5969                                          Register swap_reg,
  5970                                          Register tmp_reg,
  5971                                          bool swap_reg_contains_mark,
  5972                                          Label& done,
  5973                                          Label* slow_case,
  5974                                          BiasedLockingCounters* counters) {
  5975   assert(UseBiasedLocking, "why call this otherwise?");
  5976   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
  5977   assert(tmp_reg != noreg, "tmp_reg must be supplied");
  5978   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  5979   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  5980   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  5981   Address saved_mark_addr(lock_reg, 0);
  5983   if (PrintBiasedLockingStatistics && counters == NULL)
  5984     counters = BiasedLocking::counters();
  5986   // Biased locking
  5987   // See whether the lock is currently biased toward our thread and
  5988   // whether the epoch is still valid
  5989   // Note that the runtime guarantees sufficient alignment of JavaThread
  5990   // pointers to allow age to be placed into low bits
  5991   // First check to see whether biasing is even enabled for this object
  5992   Label cas_label;
  5993   int null_check_offset = -1;
  5994   if (!swap_reg_contains_mark) {
  5995     null_check_offset = offset();
  5996     movq(swap_reg, mark_addr);
  5998   movq(tmp_reg, swap_reg);
  5999   andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  6000   cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
  6001   jcc(Assembler::notEqual, cas_label);
  6002   // The bias pattern is present in the object's header. Need to check
  6003   // whether the bias owner and the epoch are both still current.
  6004   load_prototype_header(tmp_reg, obj_reg);
  6005   orq(tmp_reg, r15_thread);
  6006   xorq(tmp_reg, swap_reg);
  6007   andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
  6008   if (counters != NULL) {
  6009     cond_inc32(Assembler::zero,
  6010                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  6012   jcc(Assembler::equal, done);
  6014   Label try_revoke_bias;
  6015   Label try_rebias;
  6017   // At this point we know that the header has the bias pattern and
  6018   // that we are not the bias owner in the current epoch. We need to
  6019   // figure out more details about the state of the header in order to
  6020   // know what operations can be legally performed on the object's
  6021   // header.
  6023   // If the low three bits in the xor result aren't clear, that means
  6024   // the prototype header is no longer biased and we have to revoke
  6025   // the bias on this object.
  6026   testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  6027   jcc(Assembler::notZero, try_revoke_bias);
  6029   // Biasing is still enabled for this data type. See whether the
  6030   // epoch of the current bias is still valid, meaning that the epoch
  6031   // bits of the mark word are equal to the epoch bits of the
  6032   // prototype header. (Note that the prototype header's epoch bits
  6033   // only change at a safepoint.) If not, attempt to rebias the object
  6034   // toward the current thread. Note that we must be absolutely sure
  6035   // that the current epoch is invalid in order to do this because
  6036   // otherwise the manipulations it performs on the mark word are
  6037   // illegal.
  6038   testq(tmp_reg, markOopDesc::epoch_mask_in_place);
  6039   jcc(Assembler::notZero, try_rebias);
  6041   // The epoch of the current bias is still valid but we know nothing
  6042   // about the owner; it might be set or it might be clear. Try to
  6043   // acquire the bias of the object using an atomic operation. If this
  6044   // fails we will go in to the runtime to revoke the object's bias.
  6045   // Note that we first construct the presumed unbiased header so we
  6046   // don't accidentally blow away another thread's valid bias.
  6047   andq(swap_reg,
  6048        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  6049   movq(tmp_reg, swap_reg);
  6050   orq(tmp_reg, r15_thread);
  6051   if (os::is_MP()) {
  6052     lock();
  6054   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  6055   // If the biasing toward our thread failed, this means that
  6056   // another thread succeeded in biasing it toward itself and we
  6057   // need to revoke that bias. The revocation will occur in the
  6058   // interpreter runtime in the slow case.
  6059   if (counters != NULL) {
  6060     cond_inc32(Assembler::zero,
  6061                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  6063   if (slow_case != NULL) {
  6064     jcc(Assembler::notZero, *slow_case);
  6066   jmp(done);
  6068   bind(try_rebias);
  6069   // At this point we know the epoch has expired, meaning that the
  6070   // current "bias owner", if any, is actually invalid. Under these
  6071   // circumstances _only_, we are allowed to use the current header's
  6072   // value as the comparison value when doing the cas to acquire the
  6073   // bias in the current epoch. In other words, we allow transfer of
  6074   // the bias from one thread to another directly in this situation.
  6075   //
  6076   // FIXME: due to a lack of registers we currently blow away the age
  6077   // bits in this situation. Should attempt to preserve them.
  6078   load_prototype_header(tmp_reg, obj_reg);
  6079   orq(tmp_reg, r15_thread);
  6080   if (os::is_MP()) {
  6081     lock();
  6083   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  6084   // If the biasing toward our thread failed, then another thread
  6085   // succeeded in biasing it toward itself and we need to revoke that
  6086   // bias. The revocation will occur in the runtime in the slow case.
  6087   if (counters != NULL) {
  6088     cond_inc32(Assembler::zero,
  6089                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
  6091   if (slow_case != NULL) {
  6092     jcc(Assembler::notZero, *slow_case);
  6094   jmp(done);
  6096   bind(try_revoke_bias);
  6097   // The prototype mark in the klass doesn't have the bias bit set any
  6098   // more, indicating that objects of this data type are not supposed
  6099   // to be biased any more. We are going to try to reset the mark of
  6100   // this object to the prototype value and fall through to the
  6101   // CAS-based locking scheme. Note that if our CAS fails, it means
  6102   // that another thread raced us for the privilege of revoking the
  6103   // bias of this particular object, so it's okay to continue in the
  6104   // normal locking code.
  6105   //
  6106   // FIXME: due to a lack of registers we currently blow away the age
  6107   // bits in this situation. Should attempt to preserve them.
  6108   load_prototype_header(tmp_reg, obj_reg);
  6109   if (os::is_MP()) {
  6110     lock();
  6112   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  6113   // Fall through to the normal CAS-based lock, because no matter what
  6114   // the result of the above CAS, some thread must have succeeded in
  6115   // removing the bias bit from the object's header.
  6116   if (counters != NULL) {
  6117     cond_inc32(Assembler::zero,
  6118                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
  6121   bind(cas_label);
  6123   return null_check_offset;
  6126 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
  6127   Label L, E;
  6129 #ifdef _WIN64
  6130   // Windows always allocates space for it's register args
  6131   assert(num_args <= 4, "only register arguments supported");
  6132   subq(rsp,  frame::arg_reg_save_area_bytes);
  6133 #endif
  6135   // Align stack if necessary
  6136   testl(rsp, 15);
  6137   jcc(Assembler::zero, L);
  6139   subq(rsp, 8);
  6141     call(RuntimeAddress(entry_point));
  6143   addq(rsp, 8);
  6144   jmp(E);
  6146   bind(L);
  6148     call(RuntimeAddress(entry_point));
  6151   bind(E);
  6153 #ifdef _WIN64
  6154   // restore stack pointer
  6155   addq(rsp, frame::arg_reg_save_area_bytes);
  6156 #endif
  6160 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
  6161   assert(!src2.is_lval(), "should use cmpptr");
  6163   if (reachable(src2)) {
  6164     cmpq(src1, as_Address(src2));
  6165   } else {
  6166     lea(rscratch1, src2);
  6167     Assembler::cmpq(src1, Address(rscratch1, 0));
  6171 int MacroAssembler::corrected_idivq(Register reg) {
  6172   // Full implementation of Java ldiv and lrem; checks for special
  6173   // case as described in JVM spec., p.243 & p.271.  The function
  6174   // returns the (pc) offset of the idivl instruction - may be needed
  6175   // for implicit exceptions.
  6176   //
  6177   //         normal case                           special case
  6178   //
  6179   // input : rax: dividend                         min_long
  6180   //         reg: divisor   (may not be eax/edx)   -1
  6181   //
  6182   // output: rax: quotient  (= rax idiv reg)       min_long
  6183   //         rdx: remainder (= rax irem reg)       0
  6184   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
  6185   static const int64_t min_long = 0x8000000000000000;
  6186   Label normal_case, special_case;
  6188   // check for special case
  6189   cmp64(rax, ExternalAddress((address) &min_long));
  6190   jcc(Assembler::notEqual, normal_case);
  6191   xorl(rdx, rdx); // prepare rdx for possible special case (where
  6192                   // remainder = 0)
  6193   cmpq(reg, -1);
  6194   jcc(Assembler::equal, special_case);
  6196   // handle normal case
  6197   bind(normal_case);
  6198   cdqq();
  6199   int idivq_offset = offset();
  6200   idivq(reg);
  6202   // normal and special case exit
  6203   bind(special_case);
  6205   return idivq_offset;
  6208 void MacroAssembler::decrementq(Register reg, int value) {
  6209   if (value == min_jint) { subq(reg, value); return; }
  6210   if (value <  0) { incrementq(reg, -value); return; }
  6211   if (value == 0) {                        ; return; }
  6212   if (value == 1 && UseIncDec) { decq(reg) ; return; }
  6213   /* else */      { subq(reg, value)       ; return; }
  6216 void MacroAssembler::decrementq(Address dst, int value) {
  6217   if (value == min_jint) { subq(dst, value); return; }
  6218   if (value <  0) { incrementq(dst, -value); return; }
  6219   if (value == 0) {                        ; return; }
  6220   if (value == 1 && UseIncDec) { decq(dst) ; return; }
  6221   /* else */      { subq(dst, value)       ; return; }
  6224 void MacroAssembler::incrementq(Register reg, int value) {
  6225   if (value == min_jint) { addq(reg, value); return; }
  6226   if (value <  0) { decrementq(reg, -value); return; }
  6227   if (value == 0) {                        ; return; }
  6228   if (value == 1 && UseIncDec) { incq(reg) ; return; }
  6229   /* else */      { addq(reg, value)       ; return; }
  6232 void MacroAssembler::incrementq(Address dst, int value) {
  6233   if (value == min_jint) { addq(dst, value); return; }
  6234   if (value <  0) { decrementq(dst, -value); return; }
  6235   if (value == 0) {                        ; return; }
  6236   if (value == 1 && UseIncDec) { incq(dst) ; return; }
  6237   /* else */      { addq(dst, value)       ; return; }
  6240 // 32bit can do a case table jump in one instruction but we no longer allow the base
  6241 // to be installed in the Address class
  6242 void MacroAssembler::jump(ArrayAddress entry) {
  6243   lea(rscratch1, entry.base());
  6244   Address dispatch = entry.index();
  6245   assert(dispatch._base == noreg, "must be");
  6246   dispatch._base = rscratch1;
  6247   jmp(dispatch);
  6250 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  6251   ShouldNotReachHere(); // 64bit doesn't use two regs
  6252   cmpq(x_lo, y_lo);
  6255 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  6256     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  6259 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  6260   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
  6261   movptr(dst, rscratch1);
  6264 void MacroAssembler::leave() {
  6265   // %%% is this really better? Why not on 32bit too?
  6266   emit_byte(0xC9); // LEAVE
  6269 void MacroAssembler::lneg(Register hi, Register lo) {
  6270   ShouldNotReachHere(); // 64bit doesn't use two regs
  6271   negq(lo);
  6274 void MacroAssembler::movoop(Register dst, jobject obj) {
  6275   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  6278 void MacroAssembler::movoop(Address dst, jobject obj) {
  6279   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  6280   movq(dst, rscratch1);
  6283 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  6284   if (src.is_lval()) {
  6285     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  6286   } else {
  6287     if (reachable(src)) {
  6288       movq(dst, as_Address(src));
  6289     } else {
  6290       lea(rscratch1, src);
  6291       movq(dst, Address(rscratch1,0));
  6296 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  6297   movq(as_Address(dst), src);
  6300 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  6301   movq(dst, as_Address(src));
  6304 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  6305 void MacroAssembler::movptr(Address dst, intptr_t src) {
  6306   mov64(rscratch1, src);
  6307   movq(dst, rscratch1);
  6310 // These are mostly for initializing NULL
  6311 void MacroAssembler::movptr(Address dst, int32_t src) {
  6312   movslq(dst, src);
  6315 void MacroAssembler::movptr(Register dst, int32_t src) {
  6316   mov64(dst, (intptr_t)src);
  6319 void MacroAssembler::pushoop(jobject obj) {
  6320   movoop(rscratch1, obj);
  6321   push(rscratch1);
  6324 void MacroAssembler::pushptr(AddressLiteral src) {
  6325   lea(rscratch1, src);
  6326   if (src.is_lval()) {
  6327     push(rscratch1);
  6328   } else {
  6329     pushq(Address(rscratch1, 0));
  6333 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
  6334                                            bool clear_pc) {
  6335   // we must set sp to zero to clear frame
  6336   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  6337   // must clear fp, so that compiled frames are not confused; it is
  6338   // possible that we need it only for debugging
  6339   if (clear_fp) {
  6340     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  6343   if (clear_pc) {
  6344     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  6348 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
  6349                                          Register last_java_fp,
  6350                                          address  last_java_pc) {
  6351   // determine last_java_sp register
  6352   if (!last_java_sp->is_valid()) {
  6353     last_java_sp = rsp;
  6356   // last_java_fp is optional
  6357   if (last_java_fp->is_valid()) {
  6358     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
  6359            last_java_fp);
  6362   // last_java_pc is optional
  6363   if (last_java_pc != NULL) {
  6364     Address java_pc(r15_thread,
  6365                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  6366     lea(rscratch1, InternalAddress(last_java_pc));
  6367     movptr(java_pc, rscratch1);
  6370   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  6373 static void pass_arg0(MacroAssembler* masm, Register arg) {
  6374   if (c_rarg0 != arg ) {
  6375     masm->mov(c_rarg0, arg);
  6379 static void pass_arg1(MacroAssembler* masm, Register arg) {
  6380   if (c_rarg1 != arg ) {
  6381     masm->mov(c_rarg1, arg);
  6385 static void pass_arg2(MacroAssembler* masm, Register arg) {
  6386   if (c_rarg2 != arg ) {
  6387     masm->mov(c_rarg2, arg);
  6391 static void pass_arg3(MacroAssembler* masm, Register arg) {
  6392   if (c_rarg3 != arg ) {
  6393     masm->mov(c_rarg3, arg);
  6397 void MacroAssembler::stop(const char* msg) {
  6398   address rip = pc();
  6399   pusha(); // get regs on stack
  6400   lea(c_rarg0, ExternalAddress((address) msg));
  6401   lea(c_rarg1, InternalAddress(rip));
  6402   movq(c_rarg2, rsp); // pass pointer to regs array
  6403   andq(rsp, -16); // align stack as required by ABI
  6404   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  6405   hlt();
  6408 void MacroAssembler::warn(const char* msg) {
  6409   push(rbp);
  6410   movq(rbp, rsp);
  6411   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  6412   push_CPU_state();   // keeps alignment at 16 bytes
  6413   lea(c_rarg0, ExternalAddress((address) msg));
  6414   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
  6415   pop_CPU_state();
  6416   mov(rsp, rbp);
  6417   pop(rbp);
  6420 void MacroAssembler::print_state() {
  6421   address rip = pc();
  6422   pusha();            // get regs on stack
  6423   push(rbp);
  6424   movq(rbp, rsp);
  6425   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  6426   push_CPU_state();   // keeps alignment at 16 bytes
  6428   lea(c_rarg0, InternalAddress(rip));
  6429   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
  6430   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
  6432   pop_CPU_state();
  6433   mov(rsp, rbp);
  6434   pop(rbp);
  6435   popa();
  6438 #ifndef PRODUCT
  6439 extern "C" void findpc(intptr_t x);
  6440 #endif
  6442 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
  6443   // In order to get locks to work, we need to fake a in_VM state
  6444   if (ShowMessageBoxOnError) {
  6445     JavaThread* thread = JavaThread::current();
  6446     JavaThreadState saved_state = thread->thread_state();
  6447     thread->set_thread_state(_thread_in_vm);
  6448 #ifndef PRODUCT
  6449     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  6450       ttyLocker ttyl;
  6451       BytecodeCounter::print();
  6453 #endif
  6454     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  6455     // XXX correct this offset for amd64
  6456     // This is the value of eip which points to where verify_oop will return.
  6457     if (os::message_box(msg, "Execution stopped, print registers?")) {
  6458       print_state64(pc, regs);
  6459       BREAKPOINT;
  6460       assert(false, "start up GDB");
  6462     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  6463   } else {
  6464     ttyLocker ttyl;
  6465     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
  6466                     msg);
  6467     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
  6471 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
  6472   ttyLocker ttyl;
  6473   FlagSetting fs(Debugging, true);
  6474   tty->print_cr("rip = 0x%016lx", pc);
  6475 #ifndef PRODUCT
  6476   tty->cr();
  6477   findpc(pc);
  6478   tty->cr();
  6479 #endif
  6480 #define PRINT_REG(rax, value) \
  6481   { tty->print("%s = ", #rax); os::print_location(tty, value); }
  6482   PRINT_REG(rax, regs[15]);
  6483   PRINT_REG(rbx, regs[12]);
  6484   PRINT_REG(rcx, regs[14]);
  6485   PRINT_REG(rdx, regs[13]);
  6486   PRINT_REG(rdi, regs[8]);
  6487   PRINT_REG(rsi, regs[9]);
  6488   PRINT_REG(rbp, regs[10]);
  6489   PRINT_REG(rsp, regs[11]);
  6490   PRINT_REG(r8 , regs[7]);
  6491   PRINT_REG(r9 , regs[6]);
  6492   PRINT_REG(r10, regs[5]);
  6493   PRINT_REG(r11, regs[4]);
  6494   PRINT_REG(r12, regs[3]);
  6495   PRINT_REG(r13, regs[2]);
  6496   PRINT_REG(r14, regs[1]);
  6497   PRINT_REG(r15, regs[0]);
  6498 #undef PRINT_REG
  6499   // Print some words near top of staack.
  6500   int64_t* rsp = (int64_t*) regs[11];
  6501   int64_t* dump_sp = rsp;
  6502   for (int col1 = 0; col1 < 8; col1++) {
  6503     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
  6504     os::print_location(tty, *dump_sp++);
  6506   for (int row = 0; row < 25; row++) {
  6507     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
  6508     for (int col = 0; col < 4; col++) {
  6509       tty->print(" 0x%016lx", *dump_sp++);
  6511     tty->cr();
  6513   // Print some instructions around pc:
  6514   Disassembler::decode((address)pc-64, (address)pc);
  6515   tty->print_cr("--------");
  6516   Disassembler::decode((address)pc, (address)pc+32);
  6519 #endif // _LP64
  6521 // Now versions that are common to 32/64 bit
  6523 void MacroAssembler::addptr(Register dst, int32_t imm32) {
  6524   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
  6527 void MacroAssembler::addptr(Register dst, Register src) {
  6528   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  6531 void MacroAssembler::addptr(Address dst, Register src) {
  6532   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  6535 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
  6536   if (reachable(src)) {
  6537     Assembler::addsd(dst, as_Address(src));
  6538   } else {
  6539     lea(rscratch1, src);
  6540     Assembler::addsd(dst, Address(rscratch1, 0));
  6544 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
  6545   if (reachable(src)) {
  6546     addss(dst, as_Address(src));
  6547   } else {
  6548     lea(rscratch1, src);
  6549     addss(dst, Address(rscratch1, 0));
  6553 void MacroAssembler::align(int modulus) {
  6554   if (offset() % modulus != 0) {
  6555     nop(modulus - (offset() % modulus));
  6559 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
  6560   // Used in sign-masking with aligned address.
  6561   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  6562   if (reachable(src)) {
  6563     Assembler::andpd(dst, as_Address(src));
  6564   } else {
  6565     lea(rscratch1, src);
  6566     Assembler::andpd(dst, Address(rscratch1, 0));
  6570 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
  6571   // Used in sign-masking with aligned address.
  6572   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  6573   if (reachable(src)) {
  6574     Assembler::andps(dst, as_Address(src));
  6575   } else {
  6576     lea(rscratch1, src);
  6577     Assembler::andps(dst, Address(rscratch1, 0));
  6581 void MacroAssembler::andptr(Register dst, int32_t imm32) {
  6582   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
  6585 void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
  6586   pushf();
  6587   if (os::is_MP())
  6588     lock();
  6589   incrementl(counter_addr);
  6590   popf();
  6593 // Writes to stack successive pages until offset reached to check for
  6594 // stack overflow + shadow pages.  This clobbers tmp.
  6595 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
  6596   movptr(tmp, rsp);
  6597   // Bang stack for total size given plus shadow page size.
  6598   // Bang one page at a time because large size can bang beyond yellow and
  6599   // red zones.
  6600   Label loop;
  6601   bind(loop);
  6602   movl(Address(tmp, (-os::vm_page_size())), size );
  6603   subptr(tmp, os::vm_page_size());
  6604   subl(size, os::vm_page_size());
  6605   jcc(Assembler::greater, loop);
  6607   // Bang down shadow pages too.
  6608   // The -1 because we already subtracted 1 page.
  6609   for (int i = 0; i< StackShadowPages-1; i++) {
  6610     // this could be any sized move but this is can be a debugging crumb
  6611     // so the bigger the better.
  6612     movptr(Address(tmp, (-i*os::vm_page_size())), size );
  6616 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
  6617   assert(UseBiasedLocking, "why call this otherwise?");
  6619   // Check for biased locking unlock case, which is a no-op
  6620   // Note: we do not have to check the thread ID for two reasons.
  6621   // First, the interpreter checks for IllegalMonitorStateException at
  6622   // a higher level. Second, if the bias was revoked while we held the
  6623   // lock, the object could not be rebiased toward another thread, so
  6624   // the bias bit would be clear.
  6625   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
  6626   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
  6627   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
  6628   jcc(Assembler::equal, done);
  6631 void MacroAssembler::c2bool(Register x) {
  6632   // implements x == 0 ? 0 : 1
  6633   // note: must only look at least-significant byte of x
  6634   //       since C-style booleans are stored in one byte
  6635   //       only! (was bug)
  6636   andl(x, 0xFF);
  6637   setb(Assembler::notZero, x);
  6640 // Wouldn't need if AddressLiteral version had new name
  6641 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
  6642   Assembler::call(L, rtype);
  6645 void MacroAssembler::call(Register entry) {
  6646   Assembler::call(entry);
  6649 void MacroAssembler::call(AddressLiteral entry) {
  6650   if (reachable(entry)) {
  6651     Assembler::call_literal(entry.target(), entry.rspec());
  6652   } else {
  6653     lea(rscratch1, entry);
  6654     Assembler::call(rscratch1);
  6658 // Implementation of call_VM versions
  6660 void MacroAssembler::call_VM(Register oop_result,
  6661                              address entry_point,
  6662                              bool check_exceptions) {
  6663   Label C, E;
  6664   call(C, relocInfo::none);
  6665   jmp(E);
  6667   bind(C);
  6668   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
  6669   ret(0);
  6671   bind(E);
  6674 void MacroAssembler::call_VM(Register oop_result,
  6675                              address entry_point,
  6676                              Register arg_1,
  6677                              bool check_exceptions) {
  6678   Label C, E;
  6679   call(C, relocInfo::none);
  6680   jmp(E);
  6682   bind(C);
  6683   pass_arg1(this, arg_1);
  6684   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
  6685   ret(0);
  6687   bind(E);
  6690 void MacroAssembler::call_VM(Register oop_result,
  6691                              address entry_point,
  6692                              Register arg_1,
  6693                              Register arg_2,
  6694                              bool check_exceptions) {
  6695   Label C, E;
  6696   call(C, relocInfo::none);
  6697   jmp(E);
  6699   bind(C);
  6701   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6703   pass_arg2(this, arg_2);
  6704   pass_arg1(this, arg_1);
  6705   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
  6706   ret(0);
  6708   bind(E);
  6711 void MacroAssembler::call_VM(Register oop_result,
  6712                              address entry_point,
  6713                              Register arg_1,
  6714                              Register arg_2,
  6715                              Register arg_3,
  6716                              bool check_exceptions) {
  6717   Label C, E;
  6718   call(C, relocInfo::none);
  6719   jmp(E);
  6721   bind(C);
  6723   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  6724   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  6725   pass_arg3(this, arg_3);
  6727   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6728   pass_arg2(this, arg_2);
  6730   pass_arg1(this, arg_1);
  6731   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
  6732   ret(0);
  6734   bind(E);
  6737 void MacroAssembler::call_VM(Register oop_result,
  6738                              Register last_java_sp,
  6739                              address entry_point,
  6740                              int number_of_arguments,
  6741                              bool check_exceptions) {
  6742   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  6743   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  6746 void MacroAssembler::call_VM(Register oop_result,
  6747                              Register last_java_sp,
  6748                              address entry_point,
  6749                              Register arg_1,
  6750                              bool check_exceptions) {
  6751   pass_arg1(this, arg_1);
  6752   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  6755 void MacroAssembler::call_VM(Register oop_result,
  6756                              Register last_java_sp,
  6757                              address entry_point,
  6758                              Register arg_1,
  6759                              Register arg_2,
  6760                              bool check_exceptions) {
  6762   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6763   pass_arg2(this, arg_2);
  6764   pass_arg1(this, arg_1);
  6765   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  6768 void MacroAssembler::call_VM(Register oop_result,
  6769                              Register last_java_sp,
  6770                              address entry_point,
  6771                              Register arg_1,
  6772                              Register arg_2,
  6773                              Register arg_3,
  6774                              bool check_exceptions) {
  6775   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  6776   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  6777   pass_arg3(this, arg_3);
  6778   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6779   pass_arg2(this, arg_2);
  6780   pass_arg1(this, arg_1);
  6781   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  6784 void MacroAssembler::super_call_VM(Register oop_result,
  6785                                    Register last_java_sp,
  6786                                    address entry_point,
  6787                                    int number_of_arguments,
  6788                                    bool check_exceptions) {
  6789   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  6790   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  6793 void MacroAssembler::super_call_VM(Register oop_result,
  6794                                    Register last_java_sp,
  6795                                    address entry_point,
  6796                                    Register arg_1,
  6797                                    bool check_exceptions) {
  6798   pass_arg1(this, arg_1);
  6799   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  6802 void MacroAssembler::super_call_VM(Register oop_result,
  6803                                    Register last_java_sp,
  6804                                    address entry_point,
  6805                                    Register arg_1,
  6806                                    Register arg_2,
  6807                                    bool check_exceptions) {
  6809   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6810   pass_arg2(this, arg_2);
  6811   pass_arg1(this, arg_1);
  6812   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  6815 void MacroAssembler::super_call_VM(Register oop_result,
  6816                                    Register last_java_sp,
  6817                                    address entry_point,
  6818                                    Register arg_1,
  6819                                    Register arg_2,
  6820                                    Register arg_3,
  6821                                    bool check_exceptions) {
  6822   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  6823   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  6824   pass_arg3(this, arg_3);
  6825   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6826   pass_arg2(this, arg_2);
  6827   pass_arg1(this, arg_1);
  6828   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  6831 void MacroAssembler::call_VM_base(Register oop_result,
  6832                                   Register java_thread,
  6833                                   Register last_java_sp,
  6834                                   address  entry_point,
  6835                                   int      number_of_arguments,
  6836                                   bool     check_exceptions) {
  6837   // determine java_thread register
  6838   if (!java_thread->is_valid()) {
  6839 #ifdef _LP64
  6840     java_thread = r15_thread;
  6841 #else
  6842     java_thread = rdi;
  6843     get_thread(java_thread);
  6844 #endif // LP64
  6846   // determine last_java_sp register
  6847   if (!last_java_sp->is_valid()) {
  6848     last_java_sp = rsp;
  6850   // debugging support
  6851   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  6852   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
  6853 #ifdef ASSERT
  6854   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
  6855   // r12 is the heapbase.
  6856   LP64_ONLY(if (UseCompressedOops && !TraceBytecodes) verify_heapbase("call_VM_base");)
  6857 #endif // ASSERT
  6859   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
  6860   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
  6862   // push java thread (becomes first argument of C function)
  6864   NOT_LP64(push(java_thread); number_of_arguments++);
  6865   LP64_ONLY(mov(c_rarg0, r15_thread));
  6867   // set last Java frame before call
  6868   assert(last_java_sp != rbp, "can't use ebp/rbp");
  6870   // Only interpreter should have to set fp
  6871   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
  6873   // do the call, remove parameters
  6874   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
  6876   // restore the thread (cannot use the pushed argument since arguments
  6877   // may be overwritten by C code generated by an optimizing compiler);
  6878   // however can use the register value directly if it is callee saved.
  6879   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
  6880     // rdi & rsi (also r15) are callee saved -> nothing to do
  6881 #ifdef ASSERT
  6882     guarantee(java_thread != rax, "change this code");
  6883     push(rax);
  6884     { Label L;
  6885       get_thread(rax);
  6886       cmpptr(java_thread, rax);
  6887       jcc(Assembler::equal, L);
  6888       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
  6889       bind(L);
  6891     pop(rax);
  6892 #endif
  6893   } else {
  6894     get_thread(java_thread);
  6896   // reset last Java frame
  6897   // Only interpreter should have to clear fp
  6898   reset_last_Java_frame(java_thread, true, false);
  6900 #ifndef CC_INTERP
  6901    // C++ interp handles this in the interpreter
  6902   check_and_handle_popframe(java_thread);
  6903   check_and_handle_earlyret(java_thread);
  6904 #endif /* CC_INTERP */
  6906   if (check_exceptions) {
  6907     // check for pending exceptions (java_thread is set upon return)
  6908     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
  6909 #ifndef _LP64
  6910     jump_cc(Assembler::notEqual,
  6911             RuntimeAddress(StubRoutines::forward_exception_entry()));
  6912 #else
  6913     // This used to conditionally jump to forward_exception however it is
  6914     // possible if we relocate that the branch will not reach. So we must jump
  6915     // around so we can always reach
  6917     Label ok;
  6918     jcc(Assembler::equal, ok);
  6919     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  6920     bind(ok);
  6921 #endif // LP64
  6924   // get oop result if there is one and reset the value in the thread
  6925   if (oop_result->is_valid()) {
  6926     movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
  6927     movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
  6928     verify_oop(oop_result, "broken oop in call_VM_base");
  6932 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  6934   // Calculate the value for last_Java_sp
  6935   // somewhat subtle. call_VM does an intermediate call
  6936   // which places a return address on the stack just under the
  6937   // stack pointer as the user finsihed with it. This allows
  6938   // use to retrieve last_Java_pc from last_Java_sp[-1].
  6939   // On 32bit we then have to push additional args on the stack to accomplish
  6940   // the actual requested call. On 64bit call_VM only can use register args
  6941   // so the only extra space is the return address that call_VM created.
  6942   // This hopefully explains the calculations here.
  6944 #ifdef _LP64
  6945   // We've pushed one address, correct last_Java_sp
  6946   lea(rax, Address(rsp, wordSize));
  6947 #else
  6948   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
  6949 #endif // LP64
  6951   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
  6955 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
  6956   call_VM_leaf_base(entry_point, number_of_arguments);
  6959 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
  6960   pass_arg0(this, arg_0);
  6961   call_VM_leaf(entry_point, 1);
  6964 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  6966   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6967   pass_arg1(this, arg_1);
  6968   pass_arg0(this, arg_0);
  6969   call_VM_leaf(entry_point, 2);
  6972 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  6973   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  6974   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6975   pass_arg2(this, arg_2);
  6976   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6977   pass_arg1(this, arg_1);
  6978   pass_arg0(this, arg_0);
  6979   call_VM_leaf(entry_point, 3);
  6982 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
  6983   pass_arg0(this, arg_0);
  6984   MacroAssembler::call_VM_leaf_base(entry_point, 1);
  6987 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  6989   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6990   pass_arg1(this, arg_1);
  6991   pass_arg0(this, arg_0);
  6992   MacroAssembler::call_VM_leaf_base(entry_point, 2);
  6995 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  6996   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  6997   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6998   pass_arg2(this, arg_2);
  6999   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  7000   pass_arg1(this, arg_1);
  7001   pass_arg0(this, arg_0);
  7002   MacroAssembler::call_VM_leaf_base(entry_point, 3);
  7005 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
  7006   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
  7007   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  7008   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  7009   pass_arg3(this, arg_3);
  7010   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  7011   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  7012   pass_arg2(this, arg_2);
  7013   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  7014   pass_arg1(this, arg_1);
  7015   pass_arg0(this, arg_0);
  7016   MacroAssembler::call_VM_leaf_base(entry_point, 4);
  7019 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
  7022 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
  7025 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
  7026   if (reachable(src1)) {
  7027     cmpl(as_Address(src1), imm);
  7028   } else {
  7029     lea(rscratch1, src1);
  7030     cmpl(Address(rscratch1, 0), imm);
  7034 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
  7035   assert(!src2.is_lval(), "use cmpptr");
  7036   if (reachable(src2)) {
  7037     cmpl(src1, as_Address(src2));
  7038   } else {
  7039     lea(rscratch1, src2);
  7040     cmpl(src1, Address(rscratch1, 0));
  7044 void MacroAssembler::cmp32(Register src1, int32_t imm) {
  7045   Assembler::cmpl(src1, imm);
  7048 void MacroAssembler::cmp32(Register src1, Address src2) {
  7049   Assembler::cmpl(src1, src2);
  7052 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  7053   ucomisd(opr1, opr2);
  7055   Label L;
  7056   if (unordered_is_less) {
  7057     movl(dst, -1);
  7058     jcc(Assembler::parity, L);
  7059     jcc(Assembler::below , L);
  7060     movl(dst, 0);
  7061     jcc(Assembler::equal , L);
  7062     increment(dst);
  7063   } else { // unordered is greater
  7064     movl(dst, 1);
  7065     jcc(Assembler::parity, L);
  7066     jcc(Assembler::above , L);
  7067     movl(dst, 0);
  7068     jcc(Assembler::equal , L);
  7069     decrementl(dst);
  7071   bind(L);
  7074 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  7075   ucomiss(opr1, opr2);
  7077   Label L;
  7078   if (unordered_is_less) {
  7079     movl(dst, -1);
  7080     jcc(Assembler::parity, L);
  7081     jcc(Assembler::below , L);
  7082     movl(dst, 0);
  7083     jcc(Assembler::equal , L);
  7084     increment(dst);
  7085   } else { // unordered is greater
  7086     movl(dst, 1);
  7087     jcc(Assembler::parity, L);
  7088     jcc(Assembler::above , L);
  7089     movl(dst, 0);
  7090     jcc(Assembler::equal , L);
  7091     decrementl(dst);
  7093   bind(L);
  7097 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
  7098   if (reachable(src1)) {
  7099     cmpb(as_Address(src1), imm);
  7100   } else {
  7101     lea(rscratch1, src1);
  7102     cmpb(Address(rscratch1, 0), imm);
  7106 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
  7107 #ifdef _LP64
  7108   if (src2.is_lval()) {
  7109     movptr(rscratch1, src2);
  7110     Assembler::cmpq(src1, rscratch1);
  7111   } else if (reachable(src2)) {
  7112     cmpq(src1, as_Address(src2));
  7113   } else {
  7114     lea(rscratch1, src2);
  7115     Assembler::cmpq(src1, Address(rscratch1, 0));
  7117 #else
  7118   if (src2.is_lval()) {
  7119     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  7120   } else {
  7121     cmpl(src1, as_Address(src2));
  7123 #endif // _LP64
  7126 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
  7127   assert(src2.is_lval(), "not a mem-mem compare");
  7128 #ifdef _LP64
  7129   // moves src2's literal address
  7130   movptr(rscratch1, src2);
  7131   Assembler::cmpq(src1, rscratch1);
  7132 #else
  7133   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  7134 #endif // _LP64
  7137 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
  7138   if (reachable(adr)) {
  7139     if (os::is_MP())
  7140       lock();
  7141     cmpxchgptr(reg, as_Address(adr));
  7142   } else {
  7143     lea(rscratch1, adr);
  7144     if (os::is_MP())
  7145       lock();
  7146     cmpxchgptr(reg, Address(rscratch1, 0));
  7150 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
  7151   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
  7154 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
  7155   if (reachable(src)) {
  7156     Assembler::comisd(dst, as_Address(src));
  7157   } else {
  7158     lea(rscratch1, src);
  7159     Assembler::comisd(dst, Address(rscratch1, 0));
  7163 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
  7164   if (reachable(src)) {
  7165     Assembler::comiss(dst, as_Address(src));
  7166   } else {
  7167     lea(rscratch1, src);
  7168     Assembler::comiss(dst, Address(rscratch1, 0));
  7173 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
  7174   Condition negated_cond = negate_condition(cond);
  7175   Label L;
  7176   jcc(negated_cond, L);
  7177   atomic_incl(counter_addr);
  7178   bind(L);
  7181 int MacroAssembler::corrected_idivl(Register reg) {
  7182   // Full implementation of Java idiv and irem; checks for
  7183   // special case as described in JVM spec., p.243 & p.271.
  7184   // The function returns the (pc) offset of the idivl
  7185   // instruction - may be needed for implicit exceptions.
  7186   //
  7187   //         normal case                           special case
  7188   //
  7189   // input : rax,: dividend                         min_int
  7190   //         reg: divisor   (may not be rax,/rdx)   -1
  7191   //
  7192   // output: rax,: quotient  (= rax, idiv reg)       min_int
  7193   //         rdx: remainder (= rax, irem reg)       0
  7194   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
  7195   const int min_int = 0x80000000;
  7196   Label normal_case, special_case;
  7198   // check for special case
  7199   cmpl(rax, min_int);
  7200   jcc(Assembler::notEqual, normal_case);
  7201   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
  7202   cmpl(reg, -1);
  7203   jcc(Assembler::equal, special_case);
  7205   // handle normal case
  7206   bind(normal_case);
  7207   cdql();
  7208   int idivl_offset = offset();
  7209   idivl(reg);
  7211   // normal and special case exit
  7212   bind(special_case);
  7214   return idivl_offset;
  7219 void MacroAssembler::decrementl(Register reg, int value) {
  7220   if (value == min_jint) {subl(reg, value) ; return; }
  7221   if (value <  0) { incrementl(reg, -value); return; }
  7222   if (value == 0) {                        ; return; }
  7223   if (value == 1 && UseIncDec) { decl(reg) ; return; }
  7224   /* else */      { subl(reg, value)       ; return; }
  7227 void MacroAssembler::decrementl(Address dst, int value) {
  7228   if (value == min_jint) {subl(dst, value) ; return; }
  7229   if (value <  0) { incrementl(dst, -value); return; }
  7230   if (value == 0) {                        ; return; }
  7231   if (value == 1 && UseIncDec) { decl(dst) ; return; }
  7232   /* else */      { subl(dst, value)       ; return; }
  7235 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
  7236   assert (shift_value > 0, "illegal shift value");
  7237   Label _is_positive;
  7238   testl (reg, reg);
  7239   jcc (Assembler::positive, _is_positive);
  7240   int offset = (1 << shift_value) - 1 ;
  7242   if (offset == 1) {
  7243     incrementl(reg);
  7244   } else {
  7245     addl(reg, offset);
  7248   bind (_is_positive);
  7249   sarl(reg, shift_value);
  7252 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
  7253   if (reachable(src)) {
  7254     Assembler::divsd(dst, as_Address(src));
  7255   } else {
  7256     lea(rscratch1, src);
  7257     Assembler::divsd(dst, Address(rscratch1, 0));
  7261 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
  7262   if (reachable(src)) {
  7263     Assembler::divss(dst, as_Address(src));
  7264   } else {
  7265     lea(rscratch1, src);
  7266     Assembler::divss(dst, Address(rscratch1, 0));
  7270 // !defined(COMPILER2) is because of stupid core builds
  7271 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
  7272 void MacroAssembler::empty_FPU_stack() {
  7273   if (VM_Version::supports_mmx()) {
  7274     emms();
  7275   } else {
  7276     for (int i = 8; i-- > 0; ) ffree(i);
  7279 #endif // !LP64 || C1 || !C2
  7282 // Defines obj, preserves var_size_in_bytes
  7283 void MacroAssembler::eden_allocate(Register obj,
  7284                                    Register var_size_in_bytes,
  7285                                    int con_size_in_bytes,
  7286                                    Register t1,
  7287                                    Label& slow_case) {
  7288   assert(obj == rax, "obj must be in rax, for cmpxchg");
  7289   assert_different_registers(obj, var_size_in_bytes, t1);
  7290   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  7291     jmp(slow_case);
  7292   } else {
  7293     Register end = t1;
  7294     Label retry;
  7295     bind(retry);
  7296     ExternalAddress heap_top((address) Universe::heap()->top_addr());
  7297     movptr(obj, heap_top);
  7298     if (var_size_in_bytes == noreg) {
  7299       lea(end, Address(obj, con_size_in_bytes));
  7300     } else {
  7301       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  7303     // if end < obj then we wrapped around => object too long => slow case
  7304     cmpptr(end, obj);
  7305     jcc(Assembler::below, slow_case);
  7306     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
  7307     jcc(Assembler::above, slow_case);
  7308     // Compare obj with the top addr, and if still equal, store the new top addr in
  7309     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
  7310     // it otherwise. Use lock prefix for atomicity on MPs.
  7311     locked_cmpxchgptr(end, heap_top);
  7312     jcc(Assembler::notEqual, retry);
  7316 void MacroAssembler::enter() {
  7317   push(rbp);
  7318   mov(rbp, rsp);
  7321 // A 5 byte nop that is safe for patching (see patch_verified_entry)
  7322 void MacroAssembler::fat_nop() {
  7323   if (UseAddressNop) {
  7324     addr_nop_5();
  7325   } else {
  7326     emit_byte(0x26); // es:
  7327     emit_byte(0x2e); // cs:
  7328     emit_byte(0x64); // fs:
  7329     emit_byte(0x65); // gs:
  7330     emit_byte(0x90);
  7334 void MacroAssembler::fcmp(Register tmp) {
  7335   fcmp(tmp, 1, true, true);
  7338 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
  7339   assert(!pop_right || pop_left, "usage error");
  7340   if (VM_Version::supports_cmov()) {
  7341     assert(tmp == noreg, "unneeded temp");
  7342     if (pop_left) {
  7343       fucomip(index);
  7344     } else {
  7345       fucomi(index);
  7347     if (pop_right) {
  7348       fpop();
  7350   } else {
  7351     assert(tmp != noreg, "need temp");
  7352     if (pop_left) {
  7353       if (pop_right) {
  7354         fcompp();
  7355       } else {
  7356         fcomp(index);
  7358     } else {
  7359       fcom(index);
  7361     // convert FPU condition into eflags condition via rax,
  7362     save_rax(tmp);
  7363     fwait(); fnstsw_ax();
  7364     sahf();
  7365     restore_rax(tmp);
  7367   // condition codes set as follows:
  7368   //
  7369   // CF (corresponds to C0) if x < y
  7370   // PF (corresponds to C2) if unordered
  7371   // ZF (corresponds to C3) if x = y
  7374 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
  7375   fcmp2int(dst, unordered_is_less, 1, true, true);
  7378 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
  7379   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
  7380   Label L;
  7381   if (unordered_is_less) {
  7382     movl(dst, -1);
  7383     jcc(Assembler::parity, L);
  7384     jcc(Assembler::below , L);
  7385     movl(dst, 0);
  7386     jcc(Assembler::equal , L);
  7387     increment(dst);
  7388   } else { // unordered is greater
  7389     movl(dst, 1);
  7390     jcc(Assembler::parity, L);
  7391     jcc(Assembler::above , L);
  7392     movl(dst, 0);
  7393     jcc(Assembler::equal , L);
  7394     decrementl(dst);
  7396   bind(L);
  7399 void MacroAssembler::fld_d(AddressLiteral src) {
  7400   fld_d(as_Address(src));
  7403 void MacroAssembler::fld_s(AddressLiteral src) {
  7404   fld_s(as_Address(src));
  7407 void MacroAssembler::fld_x(AddressLiteral src) {
  7408   Assembler::fld_x(as_Address(src));
  7411 void MacroAssembler::fldcw(AddressLiteral src) {
  7412   Assembler::fldcw(as_Address(src));
  7415 void MacroAssembler::pow_exp_core_encoding() {
  7416   // kills rax, rcx, rdx
  7417   subptr(rsp,sizeof(jdouble));
  7418   // computes 2^X. Stack: X ...
  7419   // f2xm1 computes 2^X-1 but only operates on -1<=X<=1. Get int(X) and
  7420   // keep it on the thread's stack to compute 2^int(X) later
  7421   // then compute 2^(X-int(X)) as (2^(X-int(X)-1+1)
  7422   // final result is obtained with: 2^X = 2^int(X) * 2^(X-int(X))
  7423   fld_s(0);                 // Stack: X X ...
  7424   frndint();                // Stack: int(X) X ...
  7425   fsuba(1);                 // Stack: int(X) X-int(X) ...
  7426   fistp_s(Address(rsp,0));  // move int(X) as integer to thread's stack. Stack: X-int(X) ...
  7427   f2xm1();                  // Stack: 2^(X-int(X))-1 ...
  7428   fld1();                   // Stack: 1 2^(X-int(X))-1 ...
  7429   faddp(1);                 // Stack: 2^(X-int(X))
  7430   // computes 2^(int(X)): add exponent bias (1023) to int(X), then
  7431   // shift int(X)+1023 to exponent position.
  7432   // Exponent is limited to 11 bits if int(X)+1023 does not fit in 11
  7433   // bits, set result to NaN. 0x000 and 0x7FF are reserved exponent
  7434   // values so detect them and set result to NaN.
  7435   movl(rax,Address(rsp,0));
  7436   movl(rcx, -2048); // 11 bit mask and valid NaN binary encoding
  7437   addl(rax, 1023);
  7438   movl(rdx,rax);
  7439   shll(rax,20);
  7440   // Check that 0 < int(X)+1023 < 2047. Otherwise set rax to NaN.
  7441   addl(rdx,1);
  7442   // Check that 1 < int(X)+1023+1 < 2048
  7443   // in 3 steps:
  7444   // 1- (int(X)+1023+1)&-2048 == 0 => 0 <= int(X)+1023+1 < 2048
  7445   // 2- (int(X)+1023+1)&-2048 != 0
  7446   // 3- (int(X)+1023+1)&-2048 != 1
  7447   // Do 2- first because addl just updated the flags.
  7448   cmov32(Assembler::equal,rax,rcx);
  7449   cmpl(rdx,1);
  7450   cmov32(Assembler::equal,rax,rcx);
  7451   testl(rdx,rcx);
  7452   cmov32(Assembler::notEqual,rax,rcx);
  7453   movl(Address(rsp,4),rax);
  7454   movl(Address(rsp,0),0);
  7455   fmul_d(Address(rsp,0));   // Stack: 2^X ...
  7456   addptr(rsp,sizeof(jdouble));
  7459 void MacroAssembler::increase_precision() {
  7460   subptr(rsp, BytesPerWord);
  7461   fnstcw(Address(rsp, 0));
  7462   movl(rax, Address(rsp, 0));
  7463   orl(rax, 0x300);
  7464   push(rax);
  7465   fldcw(Address(rsp, 0));
  7466   pop(rax);
  7469 void MacroAssembler::restore_precision() {
  7470   fldcw(Address(rsp, 0));
  7471   addptr(rsp, BytesPerWord);
  7474 void MacroAssembler::fast_pow() {
  7475   // computes X^Y = 2^(Y * log2(X))
  7476   // if fast computation is not possible, result is NaN. Requires
  7477   // fallback from user of this macro.
  7478   // increase precision for intermediate steps of the computation
  7479   increase_precision();
  7480   fyl2x();                 // Stack: (Y*log2(X)) ...
  7481   pow_exp_core_encoding(); // Stack: exp(X) ...
  7482   restore_precision();
  7485 void MacroAssembler::fast_exp() {
  7486   // computes exp(X) = 2^(X * log2(e))
  7487   // if fast computation is not possible, result is NaN. Requires
  7488   // fallback from user of this macro.
  7489   // increase precision for intermediate steps of the computation
  7490   increase_precision();
  7491   fldl2e();                // Stack: log2(e) X ...
  7492   fmulp(1);                // Stack: (X*log2(e)) ...
  7493   pow_exp_core_encoding(); // Stack: exp(X) ...
  7494   restore_precision();
  7497 void MacroAssembler::pow_or_exp(bool is_exp, int num_fpu_regs_in_use) {
  7498   // kills rax, rcx, rdx
  7499   // pow and exp needs 2 extra registers on the fpu stack.
  7500   Label slow_case, done;
  7501   Register tmp = noreg;
  7502   if (!VM_Version::supports_cmov()) {
  7503     // fcmp needs a temporary so preserve rdx,
  7504     tmp = rdx;
  7506   Register tmp2 = rax;
  7507   Register tmp3 = rcx;
  7509   if (is_exp) {
  7510     // Stack: X
  7511     fld_s(0);                   // duplicate argument for runtime call. Stack: X X
  7512     fast_exp();                 // Stack: exp(X) X
  7513     fcmp(tmp, 0, false, false); // Stack: exp(X) X
  7514     // exp(X) not equal to itself: exp(X) is NaN go to slow case.
  7515     jcc(Assembler::parity, slow_case);
  7516     // get rid of duplicate argument. Stack: exp(X)
  7517     if (num_fpu_regs_in_use > 0) {
  7518       fxch();
  7519       fpop();
  7520     } else {
  7521       ffree(1);
  7523     jmp(done);
  7524   } else {
  7525     // Stack: X Y
  7526     Label x_negative, y_odd;
  7528     fldz();                     // Stack: 0 X Y
  7529     fcmp(tmp, 1, true, false);  // Stack: X Y
  7530     jcc(Assembler::above, x_negative);
  7532     // X >= 0
  7534     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
  7535     fld_s(1);                   // Stack: X Y X Y
  7536     fast_pow();                 // Stack: X^Y X Y
  7537     fcmp(tmp, 0, false, false); // Stack: X^Y X Y
  7538     // X^Y not equal to itself: X^Y is NaN go to slow case.
  7539     jcc(Assembler::parity, slow_case);
  7540     // get rid of duplicate arguments. Stack: X^Y
  7541     if (num_fpu_regs_in_use > 0) {
  7542       fxch(); fpop();
  7543       fxch(); fpop();
  7544     } else {
  7545       ffree(2);
  7546       ffree(1);
  7548     jmp(done);
  7550     // X <= 0
  7551     bind(x_negative);
  7553     fld_s(1);                   // Stack: Y X Y
  7554     frndint();                  // Stack: int(Y) X Y
  7555     fcmp(tmp, 2, false, false); // Stack: int(Y) X Y
  7556     jcc(Assembler::notEqual, slow_case);
  7558     subptr(rsp, 8);
  7560     // For X^Y, when X < 0, Y has to be an integer and the final
  7561     // result depends on whether it's odd or even. We just checked
  7562     // that int(Y) == Y.  We move int(Y) to gp registers as a 64 bit
  7563     // integer to test its parity. If int(Y) is huge and doesn't fit
  7564     // in the 64 bit integer range, the integer indefinite value will
  7565     // end up in the gp registers. Huge numbers are all even, the
  7566     // integer indefinite number is even so it's fine.
  7568 #ifdef ASSERT
  7569     // Let's check we don't end up with an integer indefinite number
  7570     // when not expected. First test for huge numbers: check whether
  7571     // int(Y)+1 == int(Y) which is true for very large numbers and
  7572     // those are all even. A 64 bit integer is guaranteed to not
  7573     // overflow for numbers where y+1 != y (when precision is set to
  7574     // double precision).
  7575     Label y_not_huge;
  7577     fld1();                     // Stack: 1 int(Y) X Y
  7578     fadd(1);                    // Stack: 1+int(Y) int(Y) X Y
  7580 #ifdef _LP64
  7581     // trip to memory to force the precision down from double extended
  7582     // precision
  7583     fstp_d(Address(rsp, 0));
  7584     fld_d(Address(rsp, 0));
  7585 #endif
  7587     fcmp(tmp, 1, true, false);  // Stack: int(Y) X Y
  7588 #endif
  7590     // move int(Y) as 64 bit integer to thread's stack
  7591     fistp_d(Address(rsp,0));    // Stack: X Y
  7593 #ifdef ASSERT
  7594     jcc(Assembler::notEqual, y_not_huge);
  7596     // Y is huge so we know it's even. It may not fit in a 64 bit
  7597     // integer and we don't want the debug code below to see the
  7598     // integer indefinite value so overwrite int(Y) on the thread's
  7599     // stack with 0.
  7600     movl(Address(rsp, 0), 0);
  7601     movl(Address(rsp, 4), 0);
  7603     bind(y_not_huge);
  7604 #endif
  7606     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
  7607     fld_s(1);                   // Stack: X Y X Y
  7608     fabs();                     // Stack: abs(X) Y X Y
  7609     fast_pow();                 // Stack: abs(X)^Y X Y
  7610     fcmp(tmp, 0, false, false); // Stack: abs(X)^Y X Y
  7611     // abs(X)^Y not equal to itself: abs(X)^Y is NaN go to slow case.
  7613     pop(tmp2);
  7614     NOT_LP64(pop(tmp3));
  7615     jcc(Assembler::parity, slow_case);
  7617 #ifdef ASSERT
  7618     // Check that int(Y) is not integer indefinite value (int
  7619     // overflow). Shouldn't happen because for values that would
  7620     // overflow, 1+int(Y)==Y which was tested earlier.
  7621 #ifndef _LP64
  7623       Label integer;
  7624       testl(tmp2, tmp2);
  7625       jcc(Assembler::notZero, integer);
  7626       cmpl(tmp3, 0x80000000);
  7627       jcc(Assembler::notZero, integer);
  7628       STOP("integer indefinite value shouldn't be seen here");
  7629       bind(integer);
  7631 #else
  7633       Label integer;
  7634       mov(tmp3, tmp2); // preserve tmp2 for parity check below
  7635       shlq(tmp3, 1);
  7636       jcc(Assembler::carryClear, integer);
  7637       jcc(Assembler::notZero, integer);
  7638       STOP("integer indefinite value shouldn't be seen here");
  7639       bind(integer);
  7641 #endif
  7642 #endif
  7644     // get rid of duplicate arguments. Stack: X^Y
  7645     if (num_fpu_regs_in_use > 0) {
  7646       fxch(); fpop();
  7647       fxch(); fpop();
  7648     } else {
  7649       ffree(2);
  7650       ffree(1);
  7653     testl(tmp2, 1);
  7654     jcc(Assembler::zero, done); // X <= 0, Y even: X^Y = abs(X)^Y
  7655     // X <= 0, Y even: X^Y = -abs(X)^Y
  7657     fchs();                     // Stack: -abs(X)^Y Y
  7658     jmp(done);
  7661   // slow case: runtime call
  7662   bind(slow_case);
  7664   fpop();                       // pop incorrect result or int(Y)
  7666   fp_runtime_fallback(is_exp ? CAST_FROM_FN_PTR(address, SharedRuntime::dexp) : CAST_FROM_FN_PTR(address, SharedRuntime::dpow),
  7667                       is_exp ? 1 : 2, num_fpu_regs_in_use);
  7669   // Come here with result in F-TOS
  7670   bind(done);
  7673 void MacroAssembler::fpop() {
  7674   ffree();
  7675   fincstp();
  7678 void MacroAssembler::fremr(Register tmp) {
  7679   save_rax(tmp);
  7680   { Label L;
  7681     bind(L);
  7682     fprem();
  7683     fwait(); fnstsw_ax();
  7684 #ifdef _LP64
  7685     testl(rax, 0x400);
  7686     jcc(Assembler::notEqual, L);
  7687 #else
  7688     sahf();
  7689     jcc(Assembler::parity, L);
  7690 #endif // _LP64
  7692   restore_rax(tmp);
  7693   // Result is in ST0.
  7694   // Note: fxch & fpop to get rid of ST1
  7695   // (otherwise FPU stack could overflow eventually)
  7696   fxch(1);
  7697   fpop();
  7701 void MacroAssembler::incrementl(AddressLiteral dst) {
  7702   if (reachable(dst)) {
  7703     incrementl(as_Address(dst));
  7704   } else {
  7705     lea(rscratch1, dst);
  7706     incrementl(Address(rscratch1, 0));
  7710 void MacroAssembler::incrementl(ArrayAddress dst) {
  7711   incrementl(as_Address(dst));
  7714 void MacroAssembler::incrementl(Register reg, int value) {
  7715   if (value == min_jint) {addl(reg, value) ; return; }
  7716   if (value <  0) { decrementl(reg, -value); return; }
  7717   if (value == 0) {                        ; return; }
  7718   if (value == 1 && UseIncDec) { incl(reg) ; return; }
  7719   /* else */      { addl(reg, value)       ; return; }
  7722 void MacroAssembler::incrementl(Address dst, int value) {
  7723   if (value == min_jint) {addl(dst, value) ; return; }
  7724   if (value <  0) { decrementl(dst, -value); return; }
  7725   if (value == 0) {                        ; return; }
  7726   if (value == 1 && UseIncDec) { incl(dst) ; return; }
  7727   /* else */      { addl(dst, value)       ; return; }
  7730 void MacroAssembler::jump(AddressLiteral dst) {
  7731   if (reachable(dst)) {
  7732     jmp_literal(dst.target(), dst.rspec());
  7733   } else {
  7734     lea(rscratch1, dst);
  7735     jmp(rscratch1);
  7739 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
  7740   if (reachable(dst)) {
  7741     InstructionMark im(this);
  7742     relocate(dst.reloc());
  7743     const int short_size = 2;
  7744     const int long_size = 6;
  7745     int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos);
  7746     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
  7747       // 0111 tttn #8-bit disp
  7748       emit_byte(0x70 | cc);
  7749       emit_byte((offs - short_size) & 0xFF);
  7750     } else {
  7751       // 0000 1111 1000 tttn #32-bit disp
  7752       emit_byte(0x0F);
  7753       emit_byte(0x80 | cc);
  7754       emit_long(offs - long_size);
  7756   } else {
  7757 #ifdef ASSERT
  7758     warning("reversing conditional branch");
  7759 #endif /* ASSERT */
  7760     Label skip;
  7761     jccb(reverse[cc], skip);
  7762     lea(rscratch1, dst);
  7763     Assembler::jmp(rscratch1);
  7764     bind(skip);
  7768 void MacroAssembler::ldmxcsr(AddressLiteral src) {
  7769   if (reachable(src)) {
  7770     Assembler::ldmxcsr(as_Address(src));
  7771   } else {
  7772     lea(rscratch1, src);
  7773     Assembler::ldmxcsr(Address(rscratch1, 0));
  7777 int MacroAssembler::load_signed_byte(Register dst, Address src) {
  7778   int off;
  7779   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  7780     off = offset();
  7781     movsbl(dst, src); // movsxb
  7782   } else {
  7783     off = load_unsigned_byte(dst, src);
  7784     shll(dst, 24);
  7785     sarl(dst, 24);
  7787   return off;
  7790 // Note: load_signed_short used to be called load_signed_word.
  7791 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
  7792 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
  7793 // The term "word" in HotSpot means a 32- or 64-bit machine word.
  7794 int MacroAssembler::load_signed_short(Register dst, Address src) {
  7795   int off;
  7796   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  7797     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
  7798     // version but this is what 64bit has always done. This seems to imply
  7799     // that users are only using 32bits worth.
  7800     off = offset();
  7801     movswl(dst, src); // movsxw
  7802   } else {
  7803     off = load_unsigned_short(dst, src);
  7804     shll(dst, 16);
  7805     sarl(dst, 16);
  7807   return off;
  7810 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
  7811   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  7812   // and "3.9 Partial Register Penalties", p. 22).
  7813   int off;
  7814   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
  7815     off = offset();
  7816     movzbl(dst, src); // movzxb
  7817   } else {
  7818     xorl(dst, dst);
  7819     off = offset();
  7820     movb(dst, src);
  7822   return off;
  7825 // Note: load_unsigned_short used to be called load_unsigned_word.
  7826 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
  7827   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  7828   // and "3.9 Partial Register Penalties", p. 22).
  7829   int off;
  7830   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
  7831     off = offset();
  7832     movzwl(dst, src); // movzxw
  7833   } else {
  7834     xorl(dst, dst);
  7835     off = offset();
  7836     movw(dst, src);
  7838   return off;
  7841 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
  7842   switch (size_in_bytes) {
  7843 #ifndef _LP64
  7844   case  8:
  7845     assert(dst2 != noreg, "second dest register required");
  7846     movl(dst,  src);
  7847     movl(dst2, src.plus_disp(BytesPerInt));
  7848     break;
  7849 #else
  7850   case  8:  movq(dst, src); break;
  7851 #endif
  7852   case  4:  movl(dst, src); break;
  7853   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
  7854   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
  7855   default:  ShouldNotReachHere();
  7859 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
  7860   switch (size_in_bytes) {
  7861 #ifndef _LP64
  7862   case  8:
  7863     assert(src2 != noreg, "second source register required");
  7864     movl(dst,                        src);
  7865     movl(dst.plus_disp(BytesPerInt), src2);
  7866     break;
  7867 #else
  7868   case  8:  movq(dst, src); break;
  7869 #endif
  7870   case  4:  movl(dst, src); break;
  7871   case  2:  movw(dst, src); break;
  7872   case  1:  movb(dst, src); break;
  7873   default:  ShouldNotReachHere();
  7877 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
  7878   if (reachable(dst)) {
  7879     movl(as_Address(dst), src);
  7880   } else {
  7881     lea(rscratch1, dst);
  7882     movl(Address(rscratch1, 0), src);
  7886 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
  7887   if (reachable(src)) {
  7888     movl(dst, as_Address(src));
  7889   } else {
  7890     lea(rscratch1, src);
  7891     movl(dst, Address(rscratch1, 0));
  7895 // C++ bool manipulation
  7897 void MacroAssembler::movbool(Register dst, Address src) {
  7898   if(sizeof(bool) == 1)
  7899     movb(dst, src);
  7900   else if(sizeof(bool) == 2)
  7901     movw(dst, src);
  7902   else if(sizeof(bool) == 4)
  7903     movl(dst, src);
  7904   else
  7905     // unsupported
  7906     ShouldNotReachHere();
  7909 void MacroAssembler::movbool(Address dst, bool boolconst) {
  7910   if(sizeof(bool) == 1)
  7911     movb(dst, (int) boolconst);
  7912   else if(sizeof(bool) == 2)
  7913     movw(dst, (int) boolconst);
  7914   else if(sizeof(bool) == 4)
  7915     movl(dst, (int) boolconst);
  7916   else
  7917     // unsupported
  7918     ShouldNotReachHere();
  7921 void MacroAssembler::movbool(Address dst, Register src) {
  7922   if(sizeof(bool) == 1)
  7923     movb(dst, src);
  7924   else if(sizeof(bool) == 2)
  7925     movw(dst, src);
  7926   else if(sizeof(bool) == 4)
  7927     movl(dst, src);
  7928   else
  7929     // unsupported
  7930     ShouldNotReachHere();
  7933 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
  7934   movb(as_Address(dst), src);
  7937 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
  7938   if (reachable(src)) {
  7939     movdl(dst, as_Address(src));
  7940   } else {
  7941     lea(rscratch1, src);
  7942     movdl(dst, Address(rscratch1, 0));
  7946 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
  7947   if (reachable(src)) {
  7948     movq(dst, as_Address(src));
  7949   } else {
  7950     lea(rscratch1, src);
  7951     movq(dst, Address(rscratch1, 0));
  7955 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
  7956   if (reachable(src)) {
  7957     if (UseXmmLoadAndClearUpper) {
  7958       movsd (dst, as_Address(src));
  7959     } else {
  7960       movlpd(dst, as_Address(src));
  7962   } else {
  7963     lea(rscratch1, src);
  7964     if (UseXmmLoadAndClearUpper) {
  7965       movsd (dst, Address(rscratch1, 0));
  7966     } else {
  7967       movlpd(dst, Address(rscratch1, 0));
  7972 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
  7973   if (reachable(src)) {
  7974     movss(dst, as_Address(src));
  7975   } else {
  7976     lea(rscratch1, src);
  7977     movss(dst, Address(rscratch1, 0));
  7981 void MacroAssembler::movptr(Register dst, Register src) {
  7982   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  7985 void MacroAssembler::movptr(Register dst, Address src) {
  7986   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  7989 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  7990 void MacroAssembler::movptr(Register dst, intptr_t src) {
  7991   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
  7994 void MacroAssembler::movptr(Address dst, Register src) {
  7995   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  7998 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
  7999   if (reachable(src)) {
  8000     Assembler::movsd(dst, as_Address(src));
  8001   } else {
  8002     lea(rscratch1, src);
  8003     Assembler::movsd(dst, Address(rscratch1, 0));
  8007 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
  8008   if (reachable(src)) {
  8009     Assembler::movss(dst, as_Address(src));
  8010   } else {
  8011     lea(rscratch1, src);
  8012     Assembler::movss(dst, Address(rscratch1, 0));
  8016 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
  8017   if (reachable(src)) {
  8018     Assembler::mulsd(dst, as_Address(src));
  8019   } else {
  8020     lea(rscratch1, src);
  8021     Assembler::mulsd(dst, Address(rscratch1, 0));
  8025 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
  8026   if (reachable(src)) {
  8027     Assembler::mulss(dst, as_Address(src));
  8028   } else {
  8029     lea(rscratch1, src);
  8030     Assembler::mulss(dst, Address(rscratch1, 0));
  8034 void MacroAssembler::null_check(Register reg, int offset) {
  8035   if (needs_explicit_null_check(offset)) {
  8036     // provoke OS NULL exception if reg = NULL by
  8037     // accessing M[reg] w/o changing any (non-CC) registers
  8038     // NOTE: cmpl is plenty here to provoke a segv
  8039     cmpptr(rax, Address(reg, 0));
  8040     // Note: should probably use testl(rax, Address(reg, 0));
  8041     //       may be shorter code (however, this version of
  8042     //       testl needs to be implemented first)
  8043   } else {
  8044     // nothing to do, (later) access of M[reg + offset]
  8045     // will provoke OS NULL exception if reg = NULL
  8049 void MacroAssembler::os_breakpoint() {
  8050   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
  8051   // (e.g., MSVC can't call ps() otherwise)
  8052   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
  8055 void MacroAssembler::pop_CPU_state() {
  8056   pop_FPU_state();
  8057   pop_IU_state();
  8060 void MacroAssembler::pop_FPU_state() {
  8061   NOT_LP64(frstor(Address(rsp, 0));)
  8062   LP64_ONLY(fxrstor(Address(rsp, 0));)
  8063   addptr(rsp, FPUStateSizeInWords * wordSize);
  8066 void MacroAssembler::pop_IU_state() {
  8067   popa();
  8068   LP64_ONLY(addq(rsp, 8));
  8069   popf();
  8072 // Save Integer and Float state
  8073 // Warning: Stack must be 16 byte aligned (64bit)
  8074 void MacroAssembler::push_CPU_state() {
  8075   push_IU_state();
  8076   push_FPU_state();
  8079 void MacroAssembler::push_FPU_state() {
  8080   subptr(rsp, FPUStateSizeInWords * wordSize);
  8081 #ifndef _LP64
  8082   fnsave(Address(rsp, 0));
  8083   fwait();
  8084 #else
  8085   fxsave(Address(rsp, 0));
  8086 #endif // LP64
  8089 void MacroAssembler::push_IU_state() {
  8090   // Push flags first because pusha kills them
  8091   pushf();
  8092   // Make sure rsp stays 16-byte aligned
  8093   LP64_ONLY(subq(rsp, 8));
  8094   pusha();
  8097 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
  8098   // determine java_thread register
  8099   if (!java_thread->is_valid()) {
  8100     java_thread = rdi;
  8101     get_thread(java_thread);
  8103   // we must set sp to zero to clear frame
  8104   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  8105   if (clear_fp) {
  8106     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  8109   if (clear_pc)
  8110     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  8114 void MacroAssembler::restore_rax(Register tmp) {
  8115   if (tmp == noreg) pop(rax);
  8116   else if (tmp != rax) mov(rax, tmp);
  8119 void MacroAssembler::round_to(Register reg, int modulus) {
  8120   addptr(reg, modulus - 1);
  8121   andptr(reg, -modulus);
  8124 void MacroAssembler::save_rax(Register tmp) {
  8125   if (tmp == noreg) push(rax);
  8126   else if (tmp != rax) mov(tmp, rax);
  8129 // Write serialization page so VM thread can do a pseudo remote membar.
  8130 // We use the current thread pointer to calculate a thread specific
  8131 // offset to write to within the page. This minimizes bus traffic
  8132 // due to cache line collision.
  8133 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
  8134   movl(tmp, thread);
  8135   shrl(tmp, os::get_serialize_page_shift_count());
  8136   andl(tmp, (os::vm_page_size() - sizeof(int)));
  8138   Address index(noreg, tmp, Address::times_1);
  8139   ExternalAddress page(os::get_memory_serialize_page());
  8141   // Size of store must match masking code above
  8142   movl(as_Address(ArrayAddress(page, index)), tmp);
  8145 // Calls to C land
  8146 //
  8147 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
  8148 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
  8149 // has to be reset to 0. This is required to allow proper stack traversal.
  8150 void MacroAssembler::set_last_Java_frame(Register java_thread,
  8151                                          Register last_java_sp,
  8152                                          Register last_java_fp,
  8153                                          address  last_java_pc) {
  8154   // determine java_thread register
  8155   if (!java_thread->is_valid()) {
  8156     java_thread = rdi;
  8157     get_thread(java_thread);
  8159   // determine last_java_sp register
  8160   if (!last_java_sp->is_valid()) {
  8161     last_java_sp = rsp;
  8164   // last_java_fp is optional
  8166   if (last_java_fp->is_valid()) {
  8167     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
  8170   // last_java_pc is optional
  8172   if (last_java_pc != NULL) {
  8173     lea(Address(java_thread,
  8174                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
  8175         InternalAddress(last_java_pc));
  8178   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  8181 void MacroAssembler::shlptr(Register dst, int imm8) {
  8182   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
  8185 void MacroAssembler::shrptr(Register dst, int imm8) {
  8186   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
  8189 void MacroAssembler::sign_extend_byte(Register reg) {
  8190   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
  8191     movsbl(reg, reg); // movsxb
  8192   } else {
  8193     shll(reg, 24);
  8194     sarl(reg, 24);
  8198 void MacroAssembler::sign_extend_short(Register reg) {
  8199   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  8200     movswl(reg, reg); // movsxw
  8201   } else {
  8202     shll(reg, 16);
  8203     sarl(reg, 16);
  8207 void MacroAssembler::testl(Register dst, AddressLiteral src) {
  8208   assert(reachable(src), "Address should be reachable");
  8209   testl(dst, as_Address(src));
  8212 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
  8213   if (reachable(src)) {
  8214     Assembler::sqrtsd(dst, as_Address(src));
  8215   } else {
  8216     lea(rscratch1, src);
  8217     Assembler::sqrtsd(dst, Address(rscratch1, 0));
  8221 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
  8222   if (reachable(src)) {
  8223     Assembler::sqrtss(dst, as_Address(src));
  8224   } else {
  8225     lea(rscratch1, src);
  8226     Assembler::sqrtss(dst, Address(rscratch1, 0));
  8230 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
  8231   if (reachable(src)) {
  8232     Assembler::subsd(dst, as_Address(src));
  8233   } else {
  8234     lea(rscratch1, src);
  8235     Assembler::subsd(dst, Address(rscratch1, 0));
  8239 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
  8240   if (reachable(src)) {
  8241     Assembler::subss(dst, as_Address(src));
  8242   } else {
  8243     lea(rscratch1, src);
  8244     Assembler::subss(dst, Address(rscratch1, 0));
  8248 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
  8249   if (reachable(src)) {
  8250     Assembler::ucomisd(dst, as_Address(src));
  8251   } else {
  8252     lea(rscratch1, src);
  8253     Assembler::ucomisd(dst, Address(rscratch1, 0));
  8257 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
  8258   if (reachable(src)) {
  8259     Assembler::ucomiss(dst, as_Address(src));
  8260   } else {
  8261     lea(rscratch1, src);
  8262     Assembler::ucomiss(dst, Address(rscratch1, 0));
  8266 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
  8267   // Used in sign-bit flipping with aligned address.
  8268   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  8269   if (reachable(src)) {
  8270     Assembler::xorpd(dst, as_Address(src));
  8271   } else {
  8272     lea(rscratch1, src);
  8273     Assembler::xorpd(dst, Address(rscratch1, 0));
  8277 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
  8278   // Used in sign-bit flipping with aligned address.
  8279   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  8280   if (reachable(src)) {
  8281     Assembler::xorps(dst, as_Address(src));
  8282   } else {
  8283     lea(rscratch1, src);
  8284     Assembler::xorps(dst, Address(rscratch1, 0));
  8288 // AVX 3-operands instructions
  8290 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8291   if (reachable(src)) {
  8292     vaddsd(dst, nds, as_Address(src));
  8293   } else {
  8294     lea(rscratch1, src);
  8295     vaddsd(dst, nds, Address(rscratch1, 0));
  8299 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8300   if (reachable(src)) {
  8301     vaddss(dst, nds, as_Address(src));
  8302   } else {
  8303     lea(rscratch1, src);
  8304     vaddss(dst, nds, Address(rscratch1, 0));
  8308 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  8309   if (reachable(src)) {
  8310     vandpd(dst, nds, as_Address(src), vector256);
  8311   } else {
  8312     lea(rscratch1, src);
  8313     vandpd(dst, nds, Address(rscratch1, 0), vector256);
  8317 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  8318   if (reachable(src)) {
  8319     vandps(dst, nds, as_Address(src), vector256);
  8320   } else {
  8321     lea(rscratch1, src);
  8322     vandps(dst, nds, Address(rscratch1, 0), vector256);
  8326 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8327   if (reachable(src)) {
  8328     vdivsd(dst, nds, as_Address(src));
  8329   } else {
  8330     lea(rscratch1, src);
  8331     vdivsd(dst, nds, Address(rscratch1, 0));
  8335 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8336   if (reachable(src)) {
  8337     vdivss(dst, nds, as_Address(src));
  8338   } else {
  8339     lea(rscratch1, src);
  8340     vdivss(dst, nds, Address(rscratch1, 0));
  8344 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8345   if (reachable(src)) {
  8346     vmulsd(dst, nds, as_Address(src));
  8347   } else {
  8348     lea(rscratch1, src);
  8349     vmulsd(dst, nds, Address(rscratch1, 0));
  8353 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8354   if (reachable(src)) {
  8355     vmulss(dst, nds, as_Address(src));
  8356   } else {
  8357     lea(rscratch1, src);
  8358     vmulss(dst, nds, Address(rscratch1, 0));
  8362 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8363   if (reachable(src)) {
  8364     vsubsd(dst, nds, as_Address(src));
  8365   } else {
  8366     lea(rscratch1, src);
  8367     vsubsd(dst, nds, Address(rscratch1, 0));
  8371 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8372   if (reachable(src)) {
  8373     vsubss(dst, nds, as_Address(src));
  8374   } else {
  8375     lea(rscratch1, src);
  8376     vsubss(dst, nds, Address(rscratch1, 0));
  8380 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  8381   if (reachable(src)) {
  8382     vxorpd(dst, nds, as_Address(src), vector256);
  8383   } else {
  8384     lea(rscratch1, src);
  8385     vxorpd(dst, nds, Address(rscratch1, 0), vector256);
  8389 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  8390   if (reachable(src)) {
  8391     vxorps(dst, nds, as_Address(src), vector256);
  8392   } else {
  8393     lea(rscratch1, src);
  8394     vxorps(dst, nds, Address(rscratch1, 0), vector256);
  8399 //////////////////////////////////////////////////////////////////////////////////
  8400 #ifndef SERIALGC
  8402 void MacroAssembler::g1_write_barrier_pre(Register obj,
  8403                                           Register pre_val,
  8404                                           Register thread,
  8405                                           Register tmp,
  8406                                           bool tosca_live,
  8407                                           bool expand_call) {
  8409   // If expand_call is true then we expand the call_VM_leaf macro
  8410   // directly to skip generating the check by
  8411   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
  8413 #ifdef _LP64
  8414   assert(thread == r15_thread, "must be");
  8415 #endif // _LP64
  8417   Label done;
  8418   Label runtime;
  8420   assert(pre_val != noreg, "check this code");
  8422   if (obj != noreg) {
  8423     assert_different_registers(obj, pre_val, tmp);
  8424     assert(pre_val != rax, "check this code");
  8427   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  8428                                        PtrQueue::byte_offset_of_active()));
  8429   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  8430                                        PtrQueue::byte_offset_of_index()));
  8431   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  8432                                        PtrQueue::byte_offset_of_buf()));
  8435   // Is marking active?
  8436   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  8437     cmpl(in_progress, 0);
  8438   } else {
  8439     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
  8440     cmpb(in_progress, 0);
  8442   jcc(Assembler::equal, done);
  8444   // Do we need to load the previous value?
  8445   if (obj != noreg) {
  8446     load_heap_oop(pre_val, Address(obj, 0));
  8449   // Is the previous value null?
  8450   cmpptr(pre_val, (int32_t) NULL_WORD);
  8451   jcc(Assembler::equal, done);
  8453   // Can we store original value in the thread's buffer?
  8454   // Is index == 0?
  8455   // (The index field is typed as size_t.)
  8457   movptr(tmp, index);                   // tmp := *index_adr
  8458   cmpptr(tmp, 0);                       // tmp == 0?
  8459   jcc(Assembler::equal, runtime);       // If yes, goto runtime
  8461   subptr(tmp, wordSize);                // tmp := tmp - wordSize
  8462   movptr(index, tmp);                   // *index_adr := tmp
  8463   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
  8465   // Record the previous value
  8466   movptr(Address(tmp, 0), pre_val);
  8467   jmp(done);
  8469   bind(runtime);
  8470   // save the live input values
  8471   if(tosca_live) push(rax);
  8473   if (obj != noreg && obj != rax)
  8474     push(obj);
  8476   if (pre_val != rax)
  8477     push(pre_val);
  8479   // Calling the runtime using the regular call_VM_leaf mechanism generates
  8480   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
  8481   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
  8482   //
  8483   // If we care generating the pre-barrier without a frame (e.g. in the
  8484   // intrinsified Reference.get() routine) then ebp might be pointing to
  8485   // the caller frame and so this check will most likely fail at runtime.
  8486   //
  8487   // Expanding the call directly bypasses the generation of the check.
  8488   // So when we do not have have a full interpreter frame on the stack
  8489   // expand_call should be passed true.
  8491   NOT_LP64( push(thread); )
  8493   if (expand_call) {
  8494     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
  8495     pass_arg1(this, thread);
  8496     pass_arg0(this, pre_val);
  8497     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
  8498   } else {
  8499     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
  8502   NOT_LP64( pop(thread); )
  8504   // save the live input values
  8505   if (pre_val != rax)
  8506     pop(pre_val);
  8508   if (obj != noreg && obj != rax)
  8509     pop(obj);
  8511   if(tosca_live) pop(rax);
  8513   bind(done);
  8516 void MacroAssembler::g1_write_barrier_post(Register store_addr,
  8517                                            Register new_val,
  8518                                            Register thread,
  8519                                            Register tmp,
  8520                                            Register tmp2) {
  8521 #ifdef _LP64
  8522   assert(thread == r15_thread, "must be");
  8523 #endif // _LP64
  8525   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  8526                                        PtrQueue::byte_offset_of_index()));
  8527   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  8528                                        PtrQueue::byte_offset_of_buf()));
  8530   BarrierSet* bs = Universe::heap()->barrier_set();
  8531   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  8532   Label done;
  8533   Label runtime;
  8535   // Does store cross heap regions?
  8537   movptr(tmp, store_addr);
  8538   xorptr(tmp, new_val);
  8539   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
  8540   jcc(Assembler::equal, done);
  8542   // crosses regions, storing NULL?
  8544   cmpptr(new_val, (int32_t) NULL_WORD);
  8545   jcc(Assembler::equal, done);
  8547   // storing region crossing non-NULL, is card already dirty?
  8549   ExternalAddress cardtable((address) ct->byte_map_base);
  8550   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  8551 #ifdef _LP64
  8552   const Register card_addr = tmp;
  8554   movq(card_addr, store_addr);
  8555   shrq(card_addr, CardTableModRefBS::card_shift);
  8557   lea(tmp2, cardtable);
  8559   // get the address of the card
  8560   addq(card_addr, tmp2);
  8561 #else
  8562   const Register card_index = tmp;
  8564   movl(card_index, store_addr);
  8565   shrl(card_index, CardTableModRefBS::card_shift);
  8567   Address index(noreg, card_index, Address::times_1);
  8568   const Register card_addr = tmp;
  8569   lea(card_addr, as_Address(ArrayAddress(cardtable, index)));
  8570 #endif
  8571   cmpb(Address(card_addr, 0), 0);
  8572   jcc(Assembler::equal, done);
  8574   // storing a region crossing, non-NULL oop, card is clean.
  8575   // dirty card and log.
  8577   movb(Address(card_addr, 0), 0);
  8579   cmpl(queue_index, 0);
  8580   jcc(Assembler::equal, runtime);
  8581   subl(queue_index, wordSize);
  8582   movptr(tmp2, buffer);
  8583 #ifdef _LP64
  8584   movslq(rscratch1, queue_index);
  8585   addq(tmp2, rscratch1);
  8586   movq(Address(tmp2, 0), card_addr);
  8587 #else
  8588   addl(tmp2, queue_index);
  8589   movl(Address(tmp2, 0), card_index);
  8590 #endif
  8591   jmp(done);
  8593   bind(runtime);
  8594   // save the live input values
  8595   push(store_addr);
  8596   push(new_val);
  8597 #ifdef _LP64
  8598   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
  8599 #else
  8600   push(thread);
  8601   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  8602   pop(thread);
  8603 #endif
  8604   pop(new_val);
  8605   pop(store_addr);
  8607   bind(done);
  8610 #endif // SERIALGC
  8611 //////////////////////////////////////////////////////////////////////////////////
  8614 void MacroAssembler::store_check(Register obj) {
  8615   // Does a store check for the oop in register obj. The content of
  8616   // register obj is destroyed afterwards.
  8617   store_check_part_1(obj);
  8618   store_check_part_2(obj);
  8621 void MacroAssembler::store_check(Register obj, Address dst) {
  8622   store_check(obj);
  8626 // split the store check operation so that other instructions can be scheduled inbetween
  8627 void MacroAssembler::store_check_part_1(Register obj) {
  8628   BarrierSet* bs = Universe::heap()->barrier_set();
  8629   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  8630   shrptr(obj, CardTableModRefBS::card_shift);
  8633 void MacroAssembler::store_check_part_2(Register obj) {
  8634   BarrierSet* bs = Universe::heap()->barrier_set();
  8635   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  8636   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  8637   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  8639   // The calculation for byte_map_base is as follows:
  8640   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
  8641   // So this essentially converts an address to a displacement and
  8642   // it will never need to be relocated. On 64bit however the value may be too
  8643   // large for a 32bit displacement
  8645   intptr_t disp = (intptr_t) ct->byte_map_base;
  8646   if (is_simm32(disp)) {
  8647     Address cardtable(noreg, obj, Address::times_1, disp);
  8648     movb(cardtable, 0);
  8649   } else {
  8650     // By doing it as an ExternalAddress disp could be converted to a rip-relative
  8651     // displacement and done in a single instruction given favorable mapping and
  8652     // a smarter version of as_Address. Worst case it is two instructions which
  8653     // is no worse off then loading disp into a register and doing as a simple
  8654     // Address() as above.
  8655     // We can't do as ExternalAddress as the only style since if disp == 0 we'll
  8656     // assert since NULL isn't acceptable in a reloci (see 6644928). In any case
  8657     // in some cases we'll get a single instruction version.
  8659     ExternalAddress cardtable((address)disp);
  8660     Address index(noreg, obj, Address::times_1);
  8661     movb(as_Address(ArrayAddress(cardtable, index)), 0);
  8665 void MacroAssembler::subptr(Register dst, int32_t imm32) {
  8666   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
  8669 // Force generation of a 4 byte immediate value even if it fits into 8bit
  8670 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
  8671   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
  8674 void MacroAssembler::subptr(Register dst, Register src) {
  8675   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
  8678 // C++ bool manipulation
  8679 void MacroAssembler::testbool(Register dst) {
  8680   if(sizeof(bool) == 1)
  8681     testb(dst, 0xff);
  8682   else if(sizeof(bool) == 2) {
  8683     // testw implementation needed for two byte bools
  8684     ShouldNotReachHere();
  8685   } else if(sizeof(bool) == 4)
  8686     testl(dst, dst);
  8687   else
  8688     // unsupported
  8689     ShouldNotReachHere();
  8692 void MacroAssembler::testptr(Register dst, Register src) {
  8693   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
  8696 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
  8697 void MacroAssembler::tlab_allocate(Register obj,
  8698                                    Register var_size_in_bytes,
  8699                                    int con_size_in_bytes,
  8700                                    Register t1,
  8701                                    Register t2,
  8702                                    Label& slow_case) {
  8703   assert_different_registers(obj, t1, t2);
  8704   assert_different_registers(obj, var_size_in_bytes, t1);
  8705   Register end = t2;
  8706   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
  8708   verify_tlab();
  8710   NOT_LP64(get_thread(thread));
  8712   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
  8713   if (var_size_in_bytes == noreg) {
  8714     lea(end, Address(obj, con_size_in_bytes));
  8715   } else {
  8716     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  8718   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
  8719   jcc(Assembler::above, slow_case);
  8721   // update the tlab top pointer
  8722   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
  8724   // recover var_size_in_bytes if necessary
  8725   if (var_size_in_bytes == end) {
  8726     subptr(var_size_in_bytes, obj);
  8728   verify_tlab();
  8731 // Preserves rbx, and rdx.
  8732 Register MacroAssembler::tlab_refill(Label& retry,
  8733                                      Label& try_eden,
  8734                                      Label& slow_case) {
  8735   Register top = rax;
  8736   Register t1  = rcx;
  8737   Register t2  = rsi;
  8738   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
  8739   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
  8740   Label do_refill, discard_tlab;
  8742   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  8743     // No allocation in the shared eden.
  8744     jmp(slow_case);
  8747   NOT_LP64(get_thread(thread_reg));
  8749   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  8750   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  8752   // calculate amount of free space
  8753   subptr(t1, top);
  8754   shrptr(t1, LogHeapWordSize);
  8756   // Retain tlab and allocate object in shared space if
  8757   // the amount free in the tlab is too large to discard.
  8758   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
  8759   jcc(Assembler::lessEqual, discard_tlab);
  8761   // Retain
  8762   // %%% yuck as movptr...
  8763   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
  8764   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
  8765   if (TLABStats) {
  8766     // increment number of slow_allocations
  8767     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
  8769   jmp(try_eden);
  8771   bind(discard_tlab);
  8772   if (TLABStats) {
  8773     // increment number of refills
  8774     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
  8775     // accumulate wastage -- t1 is amount free in tlab
  8776     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
  8779   // if tlab is currently allocated (top or end != null) then
  8780   // fill [top, end + alignment_reserve) with array object
  8781   testptr(top, top);
  8782   jcc(Assembler::zero, do_refill);
  8784   // set up the mark word
  8785   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
  8786   // set the length to the remaining space
  8787   subptr(t1, typeArrayOopDesc::header_size(T_INT));
  8788   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
  8789   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
  8790   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
  8791   // set klass to intArrayKlass
  8792   // dubious reloc why not an oop reloc?
  8793   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
  8794   // store klass last.  concurrent gcs assumes klass length is valid if
  8795   // klass field is not null.
  8796   store_klass(top, t1);
  8798   movptr(t1, top);
  8799   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  8800   incr_allocated_bytes(thread_reg, t1, 0);
  8802   // refill the tlab with an eden allocation
  8803   bind(do_refill);
  8804   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  8805   shlptr(t1, LogHeapWordSize);
  8806   // allocate new tlab, address returned in top
  8807   eden_allocate(top, t1, 0, t2, slow_case);
  8809   // Check that t1 was preserved in eden_allocate.
  8810 #ifdef ASSERT
  8811   if (UseTLAB) {
  8812     Label ok;
  8813     Register tsize = rsi;
  8814     assert_different_registers(tsize, thread_reg, t1);
  8815     push(tsize);
  8816     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  8817     shlptr(tsize, LogHeapWordSize);
  8818     cmpptr(t1, tsize);
  8819     jcc(Assembler::equal, ok);
  8820     STOP("assert(t1 != tlab size)");
  8821     should_not_reach_here();
  8823     bind(ok);
  8824     pop(tsize);
  8826 #endif
  8827   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
  8828   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
  8829   addptr(top, t1);
  8830   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
  8831   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
  8832   verify_tlab();
  8833   jmp(retry);
  8835   return thread_reg; // for use by caller
  8838 void MacroAssembler::incr_allocated_bytes(Register thread,
  8839                                           Register var_size_in_bytes,
  8840                                           int con_size_in_bytes,
  8841                                           Register t1) {
  8842   if (!thread->is_valid()) {
  8843 #ifdef _LP64
  8844     thread = r15_thread;
  8845 #else
  8846     assert(t1->is_valid(), "need temp reg");
  8847     thread = t1;
  8848     get_thread(thread);
  8849 #endif
  8852 #ifdef _LP64
  8853   if (var_size_in_bytes->is_valid()) {
  8854     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  8855   } else {
  8856     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  8858 #else
  8859   if (var_size_in_bytes->is_valid()) {
  8860     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  8861   } else {
  8862     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  8864   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
  8865 #endif
  8868 void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
  8869   pusha();
  8871   // if we are coming from c1, xmm registers may be live
  8872   if (UseSSE >= 1) {
  8873     subptr(rsp, sizeof(jdouble)* LP64_ONLY(16) NOT_LP64(8));
  8875   int off = 0;
  8876   if (UseSSE == 1)  {
  8877     movflt(Address(rsp,off++*sizeof(jdouble)),xmm0);
  8878     movflt(Address(rsp,off++*sizeof(jdouble)),xmm1);
  8879     movflt(Address(rsp,off++*sizeof(jdouble)),xmm2);
  8880     movflt(Address(rsp,off++*sizeof(jdouble)),xmm3);
  8881     movflt(Address(rsp,off++*sizeof(jdouble)),xmm4);
  8882     movflt(Address(rsp,off++*sizeof(jdouble)),xmm5);
  8883     movflt(Address(rsp,off++*sizeof(jdouble)),xmm6);
  8884     movflt(Address(rsp,off++*sizeof(jdouble)),xmm7);
  8885   } else if (UseSSE >= 2)  {
  8886     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm0);
  8887     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm1);
  8888     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm2);
  8889     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm3);
  8890     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm4);
  8891     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm5);
  8892     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm6);
  8893     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm7);
  8894 #ifdef _LP64
  8895     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm8);
  8896     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm9);
  8897     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm10);
  8898     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm11);
  8899     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm12);
  8900     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm13);
  8901     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm14);
  8902     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm15);
  8903 #endif
  8906   // Preserve registers across runtime call
  8907   int incoming_argument_and_return_value_offset = -1;
  8908   if (num_fpu_regs_in_use > 1) {
  8909     // Must preserve all other FPU regs (could alternatively convert
  8910     // SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
  8911     // FPU state, but can not trust C compiler)
  8912     NEEDS_CLEANUP;
  8913     // NOTE that in this case we also push the incoming argument(s) to
  8914     // the stack and restore it later; we also use this stack slot to
  8915     // hold the return value from dsin, dcos etc.
  8916     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  8917       subptr(rsp, sizeof(jdouble));
  8918       fstp_d(Address(rsp, 0));
  8920     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
  8921     for (int i = nb_args-1; i >= 0; i--) {
  8922       fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
  8926   subptr(rsp, nb_args*sizeof(jdouble));
  8927   for (int i = 0; i < nb_args; i++) {
  8928     fstp_d(Address(rsp, i*sizeof(jdouble)));
  8931 #ifdef _LP64
  8932   if (nb_args > 0) {
  8933     movdbl(xmm0, Address(rsp, 0));
  8935   if (nb_args > 1) {
  8936     movdbl(xmm1, Address(rsp, sizeof(jdouble)));
  8938   assert(nb_args <= 2, "unsupported number of args");
  8939 #endif // _LP64
  8941   // NOTE: we must not use call_VM_leaf here because that requires a
  8942   // complete interpreter frame in debug mode -- same bug as 4387334
  8943   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
  8944   // do proper 64bit abi
  8946   NEEDS_CLEANUP;
  8947   // Need to add stack banging before this runtime call if it needs to
  8948   // be taken; however, there is no generic stack banging routine at
  8949   // the MacroAssembler level
  8951   MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
  8953 #ifdef _LP64
  8954   movsd(Address(rsp, 0), xmm0);
  8955   fld_d(Address(rsp, 0));
  8956 #endif // _LP64
  8957   addptr(rsp, sizeof(jdouble) * nb_args);
  8958   if (num_fpu_regs_in_use > 1) {
  8959     // Must save return value to stack and then restore entire FPU
  8960     // stack except incoming arguments
  8961     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
  8962     for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
  8963       fld_d(Address(rsp, 0));
  8964       addptr(rsp, sizeof(jdouble));
  8966     fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
  8967     addptr(rsp, sizeof(jdouble) * nb_args);
  8970   off = 0;
  8971   if (UseSSE == 1)  {
  8972     movflt(xmm0, Address(rsp,off++*sizeof(jdouble)));
  8973     movflt(xmm1, Address(rsp,off++*sizeof(jdouble)));
  8974     movflt(xmm2, Address(rsp,off++*sizeof(jdouble)));
  8975     movflt(xmm3, Address(rsp,off++*sizeof(jdouble)));
  8976     movflt(xmm4, Address(rsp,off++*sizeof(jdouble)));
  8977     movflt(xmm5, Address(rsp,off++*sizeof(jdouble)));
  8978     movflt(xmm6, Address(rsp,off++*sizeof(jdouble)));
  8979     movflt(xmm7, Address(rsp,off++*sizeof(jdouble)));
  8980   } else if (UseSSE >= 2)  {
  8981     movdbl(xmm0, Address(rsp,off++*sizeof(jdouble)));
  8982     movdbl(xmm1, Address(rsp,off++*sizeof(jdouble)));
  8983     movdbl(xmm2, Address(rsp,off++*sizeof(jdouble)));
  8984     movdbl(xmm3, Address(rsp,off++*sizeof(jdouble)));
  8985     movdbl(xmm4, Address(rsp,off++*sizeof(jdouble)));
  8986     movdbl(xmm5, Address(rsp,off++*sizeof(jdouble)));
  8987     movdbl(xmm6, Address(rsp,off++*sizeof(jdouble)));
  8988     movdbl(xmm7, Address(rsp,off++*sizeof(jdouble)));
  8989 #ifdef _LP64
  8990     movdbl(xmm8, Address(rsp,off++*sizeof(jdouble)));
  8991     movdbl(xmm9, Address(rsp,off++*sizeof(jdouble)));
  8992     movdbl(xmm10, Address(rsp,off++*sizeof(jdouble)));
  8993     movdbl(xmm11, Address(rsp,off++*sizeof(jdouble)));
  8994     movdbl(xmm12, Address(rsp,off++*sizeof(jdouble)));
  8995     movdbl(xmm13, Address(rsp,off++*sizeof(jdouble)));
  8996     movdbl(xmm14, Address(rsp,off++*sizeof(jdouble)));
  8997     movdbl(xmm15, Address(rsp,off++*sizeof(jdouble)));
  8998 #endif
  9000   if (UseSSE >= 1) {
  9001     addptr(rsp, sizeof(jdouble)* LP64_ONLY(16) NOT_LP64(8));
  9003   popa();
  9006 static const double     pi_4 =  0.7853981633974483;
  9008 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
  9009   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
  9010   // was attempted in this code; unfortunately it appears that the
  9011   // switch to 80-bit precision and back causes this to be
  9012   // unprofitable compared with simply performing a runtime call if
  9013   // the argument is out of the (-pi/4, pi/4) range.
  9015   Register tmp = noreg;
  9016   if (!VM_Version::supports_cmov()) {
  9017     // fcmp needs a temporary so preserve rbx,
  9018     tmp = rbx;
  9019     push(tmp);
  9022   Label slow_case, done;
  9024   ExternalAddress pi4_adr = (address)&pi_4;
  9025   if (reachable(pi4_adr)) {
  9026     // x ?<= pi/4
  9027     fld_d(pi4_adr);
  9028     fld_s(1);                // Stack:  X  PI/4  X
  9029     fabs();                  // Stack: |X| PI/4  X
  9030     fcmp(tmp);
  9031     jcc(Assembler::above, slow_case);
  9033     // fastest case: -pi/4 <= x <= pi/4
  9034     switch(trig) {
  9035     case 's':
  9036       fsin();
  9037       break;
  9038     case 'c':
  9039       fcos();
  9040       break;
  9041     case 't':
  9042       ftan();
  9043       break;
  9044     default:
  9045       assert(false, "bad intrinsic");
  9046       break;
  9048     jmp(done);
  9051   // slow case: runtime call
  9052   bind(slow_case);
  9054   switch(trig) {
  9055   case 's':
  9057       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
  9059     break;
  9060   case 'c':
  9062       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
  9064     break;
  9065   case 't':
  9067       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
  9069     break;
  9070   default:
  9071     assert(false, "bad intrinsic");
  9072     break;
  9075   // Come here with result in F-TOS
  9076   bind(done);
  9078   if (tmp != noreg) {
  9079     pop(tmp);
  9084 // Look up the method for a megamorphic invokeinterface call.
  9085 // The target method is determined by <intf_klass, itable_index>.
  9086 // The receiver klass is in recv_klass.
  9087 // On success, the result will be in method_result, and execution falls through.
  9088 // On failure, execution transfers to the given label.
  9089 void MacroAssembler::lookup_interface_method(Register recv_klass,
  9090                                              Register intf_klass,
  9091                                              RegisterOrConstant itable_index,
  9092                                              Register method_result,
  9093                                              Register scan_temp,
  9094                                              Label& L_no_such_interface) {
  9095   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  9096   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  9097          "caller must use same register for non-constant itable index as for method");
  9099   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  9100   int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
  9101   int itentry_off = itableMethodEntry::method_offset_in_bytes();
  9102   int scan_step   = itableOffsetEntry::size() * wordSize;
  9103   int vte_size    = vtableEntry::size() * wordSize;
  9104   Address::ScaleFactor times_vte_scale = Address::times_ptr;
  9105   assert(vte_size == wordSize, "else adjust times_vte_scale");
  9107   movl(scan_temp, Address(recv_klass, instanceKlass::vtable_length_offset() * wordSize));
  9109   // %%% Could store the aligned, prescaled offset in the klassoop.
  9110   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
  9111   if (HeapWordsPerLong > 1) {
  9112     // Round up to align_object_offset boundary
  9113     // see code for instanceKlass::start_of_itable!
  9114     round_to(scan_temp, BytesPerLong);
  9117   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  9118   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  9119   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
  9121   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  9122   //   if (scan->interface() == intf) {
  9123   //     result = (klass + scan->offset() + itable_index);
  9124   //   }
  9125   // }
  9126   Label search, found_method;
  9128   for (int peel = 1; peel >= 0; peel--) {
  9129     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
  9130     cmpptr(intf_klass, method_result);
  9132     if (peel) {
  9133       jccb(Assembler::equal, found_method);
  9134     } else {
  9135       jccb(Assembler::notEqual, search);
  9136       // (invert the test to fall through to found_method...)
  9139     if (!peel)  break;
  9141     bind(search);
  9143     // Check that the previous entry is non-null.  A null entry means that
  9144     // the receiver class doesn't implement the interface, and wasn't the
  9145     // same as when the caller was compiled.
  9146     testptr(method_result, method_result);
  9147     jcc(Assembler::zero, L_no_such_interface);
  9148     addptr(scan_temp, scan_step);
  9151   bind(found_method);
  9153   // Got a hit.
  9154   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
  9155   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
  9159 // virtual method calling
  9160 void MacroAssembler::lookup_virtual_method(Register recv_klass,
  9161                                            RegisterOrConstant vtable_index,
  9162                                            Register method_result) {
  9163   const int base = instanceKlass::vtable_start_offset() * wordSize;
  9164   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
  9165   Address vtable_entry_addr(recv_klass,
  9166                             vtable_index, Address::times_ptr,
  9167                             base + vtableEntry::method_offset_in_bytes());
  9168   movptr(method_result, vtable_entry_addr);
  9172 void MacroAssembler::check_klass_subtype(Register sub_klass,
  9173                            Register super_klass,
  9174                            Register temp_reg,
  9175                            Label& L_success) {
  9176   Label L_failure;
  9177   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
  9178   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
  9179   bind(L_failure);
  9183 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  9184                                                    Register super_klass,
  9185                                                    Register temp_reg,
  9186                                                    Label* L_success,
  9187                                                    Label* L_failure,
  9188                                                    Label* L_slow_path,
  9189                                         RegisterOrConstant super_check_offset) {
  9190   assert_different_registers(sub_klass, super_klass, temp_reg);
  9191   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
  9192   if (super_check_offset.is_register()) {
  9193     assert_different_registers(sub_klass, super_klass,
  9194                                super_check_offset.as_register());
  9195   } else if (must_load_sco) {
  9196     assert(temp_reg != noreg, "supply either a temp or a register offset");
  9199   Label L_fallthrough;
  9200   int label_nulls = 0;
  9201   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  9202   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  9203   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  9204   assert(label_nulls <= 1, "at most one NULL in the batch");
  9206   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  9207   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  9208   Address super_check_offset_addr(super_klass, sco_offset);
  9210   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
  9211   // range of a jccb.  If this routine grows larger, reconsider at
  9212   // least some of these.
  9213 #define local_jcc(assembler_cond, label)                                \
  9214   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
  9215   else                             jcc( assembler_cond, label) /*omit semi*/
  9217   // Hacked jmp, which may only be used just before L_fallthrough.
  9218 #define final_jmp(label)                                                \
  9219   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
  9220   else                            jmp(label)                /*omit semi*/
  9222   // If the pointers are equal, we are done (e.g., String[] elements).
  9223   // This self-check enables sharing of secondary supertype arrays among
  9224   // non-primary types such as array-of-interface.  Otherwise, each such
  9225   // type would need its own customized SSA.
  9226   // We move this check to the front of the fast path because many
  9227   // type checks are in fact trivially successful in this manner,
  9228   // so we get a nicely predicted branch right at the start of the check.
  9229   cmpptr(sub_klass, super_klass);
  9230   local_jcc(Assembler::equal, *L_success);
  9232   // Check the supertype display:
  9233   if (must_load_sco) {
  9234     // Positive movl does right thing on LP64.
  9235     movl(temp_reg, super_check_offset_addr);
  9236     super_check_offset = RegisterOrConstant(temp_reg);
  9238   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
  9239   cmpptr(super_klass, super_check_addr); // load displayed supertype
  9241   // This check has worked decisively for primary supers.
  9242   // Secondary supers are sought in the super_cache ('super_cache_addr').
  9243   // (Secondary supers are interfaces and very deeply nested subtypes.)
  9244   // This works in the same check above because of a tricky aliasing
  9245   // between the super_cache and the primary super display elements.
  9246   // (The 'super_check_addr' can address either, as the case requires.)
  9247   // Note that the cache is updated below if it does not help us find
  9248   // what we need immediately.
  9249   // So if it was a primary super, we can just fail immediately.
  9250   // Otherwise, it's the slow path for us (no success at this point).
  9252   if (super_check_offset.is_register()) {
  9253     local_jcc(Assembler::equal, *L_success);
  9254     cmpl(super_check_offset.as_register(), sc_offset);
  9255     if (L_failure == &L_fallthrough) {
  9256       local_jcc(Assembler::equal, *L_slow_path);
  9257     } else {
  9258       local_jcc(Assembler::notEqual, *L_failure);
  9259       final_jmp(*L_slow_path);
  9261   } else if (super_check_offset.as_constant() == sc_offset) {
  9262     // Need a slow path; fast failure is impossible.
  9263     if (L_slow_path == &L_fallthrough) {
  9264       local_jcc(Assembler::equal, *L_success);
  9265     } else {
  9266       local_jcc(Assembler::notEqual, *L_slow_path);
  9267       final_jmp(*L_success);
  9269   } else {
  9270     // No slow path; it's a fast decision.
  9271     if (L_failure == &L_fallthrough) {
  9272       local_jcc(Assembler::equal, *L_success);
  9273     } else {
  9274       local_jcc(Assembler::notEqual, *L_failure);
  9275       final_jmp(*L_success);
  9279   bind(L_fallthrough);
  9281 #undef local_jcc
  9282 #undef final_jmp
  9286 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  9287                                                    Register super_klass,
  9288                                                    Register temp_reg,
  9289                                                    Register temp2_reg,
  9290                                                    Label* L_success,
  9291                                                    Label* L_failure,
  9292                                                    bool set_cond_codes) {
  9293   assert_different_registers(sub_klass, super_klass, temp_reg);
  9294   if (temp2_reg != noreg)
  9295     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
  9296 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
  9298   Label L_fallthrough;
  9299   int label_nulls = 0;
  9300   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  9301   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  9302   assert(label_nulls <= 1, "at most one NULL in the batch");
  9304   // a couple of useful fields in sub_klass:
  9305   int ss_offset = in_bytes(Klass::secondary_supers_offset());
  9306   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  9307   Address secondary_supers_addr(sub_klass, ss_offset);
  9308   Address super_cache_addr(     sub_klass, sc_offset);
  9310   // Do a linear scan of the secondary super-klass chain.
  9311   // This code is rarely used, so simplicity is a virtue here.
  9312   // The repne_scan instruction uses fixed registers, which we must spill.
  9313   // Don't worry too much about pre-existing connections with the input regs.
  9315   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
  9316   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
  9318   // Get super_klass value into rax (even if it was in rdi or rcx).
  9319   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
  9320   if (super_klass != rax || UseCompressedOops) {
  9321     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
  9322     mov(rax, super_klass);
  9324   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
  9325   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
  9327 #ifndef PRODUCT
  9328   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  9329   ExternalAddress pst_counter_addr((address) pst_counter);
  9330   NOT_LP64(  incrementl(pst_counter_addr) );
  9331   LP64_ONLY( lea(rcx, pst_counter_addr) );
  9332   LP64_ONLY( incrementl(Address(rcx, 0)) );
  9333 #endif //PRODUCT
  9335   // We will consult the secondary-super array.
  9336   movptr(rdi, secondary_supers_addr);
  9337   // Load the array length.  (Positive movl does right thing on LP64.)
  9338   movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
  9339   // Skip to start of data.
  9340   addptr(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
  9342   // Scan RCX words at [RDI] for an occurrence of RAX.
  9343   // Set NZ/Z based on last compare.
  9344   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
  9345   // not change flags (only scas instruction which is repeated sets flags).
  9346   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
  9347 #ifdef _LP64
  9348   // This part is tricky, as values in supers array could be 32 or 64 bit wide
  9349   // and we store values in objArrays always encoded, thus we need to encode
  9350   // the value of rax before repne.  Note that rax is dead after the repne.
  9351   if (UseCompressedOops) {
  9352     encode_heap_oop_not_null(rax); // Changes flags.
  9353     // The superclass is never null; it would be a basic system error if a null
  9354     // pointer were to sneak in here.  Note that we have already loaded the
  9355     // Klass::super_check_offset from the super_klass in the fast path,
  9356     // so if there is a null in that register, we are already in the afterlife.
  9357     testl(rax,rax); // Set Z = 0
  9358     repne_scanl();
  9359   } else
  9360 #endif // _LP64
  9362     testptr(rax,rax); // Set Z = 0
  9363     repne_scan();
  9365   // Unspill the temp. registers:
  9366   if (pushed_rdi)  pop(rdi);
  9367   if (pushed_rcx)  pop(rcx);
  9368   if (pushed_rax)  pop(rax);
  9370   if (set_cond_codes) {
  9371     // Special hack for the AD files:  rdi is guaranteed non-zero.
  9372     assert(!pushed_rdi, "rdi must be left non-NULL");
  9373     // Also, the condition codes are properly set Z/NZ on succeed/failure.
  9376   if (L_failure == &L_fallthrough)
  9377         jccb(Assembler::notEqual, *L_failure);
  9378   else  jcc(Assembler::notEqual, *L_failure);
  9380   // Success.  Cache the super we found and proceed in triumph.
  9381   movptr(super_cache_addr, super_klass);
  9383   if (L_success != &L_fallthrough) {
  9384     jmp(*L_success);
  9387 #undef IS_A_TEMP
  9389   bind(L_fallthrough);
  9393 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
  9394   if (VM_Version::supports_cmov()) {
  9395     cmovl(cc, dst, src);
  9396   } else {
  9397     Label L;
  9398     jccb(negate_condition(cc), L);
  9399     movl(dst, src);
  9400     bind(L);
  9404 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
  9405   if (VM_Version::supports_cmov()) {
  9406     cmovl(cc, dst, src);
  9407   } else {
  9408     Label L;
  9409     jccb(negate_condition(cc), L);
  9410     movl(dst, src);
  9411     bind(L);
  9415 void MacroAssembler::verify_oop(Register reg, const char* s) {
  9416   if (!VerifyOops) return;
  9418   // Pass register number to verify_oop_subroutine
  9419   char* b = new char[strlen(s) + 50];
  9420   sprintf(b, "verify_oop: %s: %s", reg->name(), s);
  9421   BLOCK_COMMENT("verify_oop {");
  9422 #ifdef _LP64
  9423   push(rscratch1);                    // save r10, trashed by movptr()
  9424 #endif
  9425   push(rax);                          // save rax,
  9426   push(reg);                          // pass register argument
  9427   ExternalAddress buffer((address) b);
  9428   // avoid using pushptr, as it modifies scratch registers
  9429   // and our contract is not to modify anything
  9430   movptr(rax, buffer.addr());
  9431   push(rax);
  9432   // call indirectly to solve generation ordering problem
  9433   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  9434   call(rax);
  9435   // Caller pops the arguments (oop, message) and restores rax, r10
  9436   BLOCK_COMMENT("} verify_oop");
  9440 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  9441                                                       Register tmp,
  9442                                                       int offset) {
  9443   intptr_t value = *delayed_value_addr;
  9444   if (value != 0)
  9445     return RegisterOrConstant(value + offset);
  9447   // load indirectly to solve generation ordering problem
  9448   movptr(tmp, ExternalAddress((address) delayed_value_addr));
  9450 #ifdef ASSERT
  9451   { Label L;
  9452     testptr(tmp, tmp);
  9453     if (WizardMode) {
  9454       jcc(Assembler::notZero, L);
  9455       char* buf = new char[40];
  9456       sprintf(buf, "DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
  9457       STOP(buf);
  9458     } else {
  9459       jccb(Assembler::notZero, L);
  9460       hlt();
  9462     bind(L);
  9464 #endif
  9466   if (offset != 0)
  9467     addptr(tmp, offset);
  9469   return RegisterOrConstant(tmp);
  9473 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  9474                                          int extra_slot_offset) {
  9475   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  9476   int stackElementSize = Interpreter::stackElementSize;
  9477   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
  9478 #ifdef ASSERT
  9479   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
  9480   assert(offset1 - offset == stackElementSize, "correct arithmetic");
  9481 #endif
  9482   Register             scale_reg    = noreg;
  9483   Address::ScaleFactor scale_factor = Address::no_scale;
  9484   if (arg_slot.is_constant()) {
  9485     offset += arg_slot.as_constant() * stackElementSize;
  9486   } else {
  9487     scale_reg    = arg_slot.as_register();
  9488     scale_factor = Address::times(stackElementSize);
  9490   offset += wordSize;           // return PC is on stack
  9491   return Address(rsp, scale_reg, scale_factor, offset);
  9495 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
  9496   if (!VerifyOops) return;
  9498   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
  9499   // Pass register number to verify_oop_subroutine
  9500   char* b = new char[strlen(s) + 50];
  9501   sprintf(b, "verify_oop_addr: %s", s);
  9503 #ifdef _LP64
  9504   push(rscratch1);                    // save r10, trashed by movptr()
  9505 #endif
  9506   push(rax);                          // save rax,
  9507   // addr may contain rsp so we will have to adjust it based on the push
  9508   // we just did (and on 64 bit we do two pushes)
  9509   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
  9510   // stores rax into addr which is backwards of what was intended.
  9511   if (addr.uses(rsp)) {
  9512     lea(rax, addr);
  9513     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
  9514   } else {
  9515     pushptr(addr);
  9518   ExternalAddress buffer((address) b);
  9519   // pass msg argument
  9520   // avoid using pushptr, as it modifies scratch registers
  9521   // and our contract is not to modify anything
  9522   movptr(rax, buffer.addr());
  9523   push(rax);
  9525   // call indirectly to solve generation ordering problem
  9526   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  9527   call(rax);
  9528   // Caller pops the arguments (addr, message) and restores rax, r10.
  9531 void MacroAssembler::verify_tlab() {
  9532 #ifdef ASSERT
  9533   if (UseTLAB && VerifyOops) {
  9534     Label next, ok;
  9535     Register t1 = rsi;
  9536     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
  9538     push(t1);
  9539     NOT_LP64(push(thread_reg));
  9540     NOT_LP64(get_thread(thread_reg));
  9542     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  9543     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  9544     jcc(Assembler::aboveEqual, next);
  9545     STOP("assert(top >= start)");
  9546     should_not_reach_here();
  9548     bind(next);
  9549     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  9550     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  9551     jcc(Assembler::aboveEqual, ok);
  9552     STOP("assert(top <= end)");
  9553     should_not_reach_here();
  9555     bind(ok);
  9556     NOT_LP64(pop(thread_reg));
  9557     pop(t1);
  9559 #endif
  9562 class ControlWord {
  9563  public:
  9564   int32_t _value;
  9566   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
  9567   int  precision_control() const       { return  (_value >>  8) & 3      ; }
  9568   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  9569   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  9570   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  9571   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  9572   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  9573   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  9575   void print() const {
  9576     // rounding control
  9577     const char* rc;
  9578     switch (rounding_control()) {
  9579       case 0: rc = "round near"; break;
  9580       case 1: rc = "round down"; break;
  9581       case 2: rc = "round up  "; break;
  9582       case 3: rc = "chop      "; break;
  9583     };
  9584     // precision control
  9585     const char* pc;
  9586     switch (precision_control()) {
  9587       case 0: pc = "24 bits "; break;
  9588       case 1: pc = "reserved"; break;
  9589       case 2: pc = "53 bits "; break;
  9590       case 3: pc = "64 bits "; break;
  9591     };
  9592     // flags
  9593     char f[9];
  9594     f[0] = ' ';
  9595     f[1] = ' ';
  9596     f[2] = (precision   ()) ? 'P' : 'p';
  9597     f[3] = (underflow   ()) ? 'U' : 'u';
  9598     f[4] = (overflow    ()) ? 'O' : 'o';
  9599     f[5] = (zero_divide ()) ? 'Z' : 'z';
  9600     f[6] = (denormalized()) ? 'D' : 'd';
  9601     f[7] = (invalid     ()) ? 'I' : 'i';
  9602     f[8] = '\x0';
  9603     // output
  9604     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
  9607 };
  9609 class StatusWord {
  9610  public:
  9611   int32_t _value;
  9613   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
  9614   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
  9615   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
  9616   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
  9617   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
  9618   int  top() const                     { return  (_value >> 11) & 7      ; }
  9619   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
  9620   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
  9621   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  9622   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  9623   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  9624   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  9625   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  9626   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  9628   void print() const {
  9629     // condition codes
  9630     char c[5];
  9631     c[0] = (C3()) ? '3' : '-';
  9632     c[1] = (C2()) ? '2' : '-';
  9633     c[2] = (C1()) ? '1' : '-';
  9634     c[3] = (C0()) ? '0' : '-';
  9635     c[4] = '\x0';
  9636     // flags
  9637     char f[9];
  9638     f[0] = (error_status()) ? 'E' : '-';
  9639     f[1] = (stack_fault ()) ? 'S' : '-';
  9640     f[2] = (precision   ()) ? 'P' : '-';
  9641     f[3] = (underflow   ()) ? 'U' : '-';
  9642     f[4] = (overflow    ()) ? 'O' : '-';
  9643     f[5] = (zero_divide ()) ? 'Z' : '-';
  9644     f[6] = (denormalized()) ? 'D' : '-';
  9645     f[7] = (invalid     ()) ? 'I' : '-';
  9646     f[8] = '\x0';
  9647     // output
  9648     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
  9651 };
  9653 class TagWord {
  9654  public:
  9655   int32_t _value;
  9657   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
  9659   void print() const {
  9660     printf("%04x", _value & 0xFFFF);
  9663 };
  9665 class FPU_Register {
  9666  public:
  9667   int32_t _m0;
  9668   int32_t _m1;
  9669   int16_t _ex;
  9671   bool is_indefinite() const           {
  9672     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
  9675   void print() const {
  9676     char  sign = (_ex < 0) ? '-' : '+';
  9677     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
  9678     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
  9679   };
  9681 };
  9683 class FPU_State {
  9684  public:
  9685   enum {
  9686     register_size       = 10,
  9687     number_of_registers =  8,
  9688     register_mask       =  7
  9689   };
  9691   ControlWord  _control_word;
  9692   StatusWord   _status_word;
  9693   TagWord      _tag_word;
  9694   int32_t      _error_offset;
  9695   int32_t      _error_selector;
  9696   int32_t      _data_offset;
  9697   int32_t      _data_selector;
  9698   int8_t       _register[register_size * number_of_registers];
  9700   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
  9701   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
  9703   const char* tag_as_string(int tag) const {
  9704     switch (tag) {
  9705       case 0: return "valid";
  9706       case 1: return "zero";
  9707       case 2: return "special";
  9708       case 3: return "empty";
  9710     ShouldNotReachHere();
  9711     return NULL;
  9714   void print() const {
  9715     // print computation registers
  9716     { int t = _status_word.top();
  9717       for (int i = 0; i < number_of_registers; i++) {
  9718         int j = (i - t) & register_mask;
  9719         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
  9720         st(j)->print();
  9721         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
  9724     printf("\n");
  9725     // print control registers
  9726     printf("ctrl = "); _control_word.print(); printf("\n");
  9727     printf("stat = "); _status_word .print(); printf("\n");
  9728     printf("tags = "); _tag_word    .print(); printf("\n");
  9731 };
  9733 class Flag_Register {
  9734  public:
  9735   int32_t _value;
  9737   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
  9738   bool direction() const               { return ((_value >> 10) & 1) != 0; }
  9739   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
  9740   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
  9741   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
  9742   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
  9743   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
  9745   void print() const {
  9746     // flags
  9747     char f[8];
  9748     f[0] = (overflow       ()) ? 'O' : '-';
  9749     f[1] = (direction      ()) ? 'D' : '-';
  9750     f[2] = (sign           ()) ? 'S' : '-';
  9751     f[3] = (zero           ()) ? 'Z' : '-';
  9752     f[4] = (auxiliary_carry()) ? 'A' : '-';
  9753     f[5] = (parity         ()) ? 'P' : '-';
  9754     f[6] = (carry          ()) ? 'C' : '-';
  9755     f[7] = '\x0';
  9756     // output
  9757     printf("%08x  flags = %s", _value, f);
  9760 };
  9762 class IU_Register {
  9763  public:
  9764   int32_t _value;
  9766   void print() const {
  9767     printf("%08x  %11d", _value, _value);
  9770 };
  9772 class IU_State {
  9773  public:
  9774   Flag_Register _eflags;
  9775   IU_Register   _rdi;
  9776   IU_Register   _rsi;
  9777   IU_Register   _rbp;
  9778   IU_Register   _rsp;
  9779   IU_Register   _rbx;
  9780   IU_Register   _rdx;
  9781   IU_Register   _rcx;
  9782   IU_Register   _rax;
  9784   void print() const {
  9785     // computation registers
  9786     printf("rax,  = "); _rax.print(); printf("\n");
  9787     printf("rbx,  = "); _rbx.print(); printf("\n");
  9788     printf("rcx  = "); _rcx.print(); printf("\n");
  9789     printf("rdx  = "); _rdx.print(); printf("\n");
  9790     printf("rdi  = "); _rdi.print(); printf("\n");
  9791     printf("rsi  = "); _rsi.print(); printf("\n");
  9792     printf("rbp,  = "); _rbp.print(); printf("\n");
  9793     printf("rsp  = "); _rsp.print(); printf("\n");
  9794     printf("\n");
  9795     // control registers
  9796     printf("flgs = "); _eflags.print(); printf("\n");
  9798 };
  9801 class CPU_State {
  9802  public:
  9803   FPU_State _fpu_state;
  9804   IU_State  _iu_state;
  9806   void print() const {
  9807     printf("--------------------------------------------------\n");
  9808     _iu_state .print();
  9809     printf("\n");
  9810     _fpu_state.print();
  9811     printf("--------------------------------------------------\n");
  9814 };
  9817 static void _print_CPU_state(CPU_State* state) {
  9818   state->print();
  9819 };
  9822 void MacroAssembler::print_CPU_state() {
  9823   push_CPU_state();
  9824   push(rsp);                // pass CPU state
  9825   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
  9826   addptr(rsp, wordSize);       // discard argument
  9827   pop_CPU_state();
  9831 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
  9832   static int counter = 0;
  9833   FPU_State* fs = &state->_fpu_state;
  9834   counter++;
  9835   // For leaf calls, only verify that the top few elements remain empty.
  9836   // We only need 1 empty at the top for C2 code.
  9837   if( stack_depth < 0 ) {
  9838     if( fs->tag_for_st(7) != 3 ) {
  9839       printf("FPR7 not empty\n");
  9840       state->print();
  9841       assert(false, "error");
  9842       return false;
  9844     return true;                // All other stack states do not matter
  9847   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
  9848          "bad FPU control word");
  9850   // compute stack depth
  9851   int i = 0;
  9852   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
  9853   int d = i;
  9854   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
  9855   // verify findings
  9856   if (i != FPU_State::number_of_registers) {
  9857     // stack not contiguous
  9858     printf("%s: stack not contiguous at ST%d\n", s, i);
  9859     state->print();
  9860     assert(false, "error");
  9861     return false;
  9863   // check if computed stack depth corresponds to expected stack depth
  9864   if (stack_depth < 0) {
  9865     // expected stack depth is -stack_depth or less
  9866     if (d > -stack_depth) {
  9867       // too many elements on the stack
  9868       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
  9869       state->print();
  9870       assert(false, "error");
  9871       return false;
  9873   } else {
  9874     // expected stack depth is stack_depth
  9875     if (d != stack_depth) {
  9876       // wrong stack depth
  9877       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
  9878       state->print();
  9879       assert(false, "error");
  9880       return false;
  9883   // everything is cool
  9884   return true;
  9888 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  9889   if (!VerifyFPU) return;
  9890   push_CPU_state();
  9891   push(rsp);                // pass CPU state
  9892   ExternalAddress msg((address) s);
  9893   // pass message string s
  9894   pushptr(msg.addr());
  9895   push(stack_depth);        // pass stack depth
  9896   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
  9897   addptr(rsp, 3 * wordSize);   // discard arguments
  9898   // check for error
  9899   { Label L;
  9900     testl(rax, rax);
  9901     jcc(Assembler::notZero, L);
  9902     int3();                  // break if error condition
  9903     bind(L);
  9905   pop_CPU_state();
  9908 void MacroAssembler::load_klass(Register dst, Register src) {
  9909 #ifdef _LP64
  9910   if (UseCompressedOops) {
  9911     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  9912     decode_heap_oop_not_null(dst);
  9913   } else
  9914 #endif
  9915     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  9918 void MacroAssembler::load_prototype_header(Register dst, Register src) {
  9919 #ifdef _LP64
  9920   if (UseCompressedOops) {
  9921     assert (Universe::heap() != NULL, "java heap should be initialized");
  9922     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  9923     if (Universe::narrow_oop_shift() != 0) {
  9924       assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9925       if (LogMinObjAlignmentInBytes == Address::times_8) {
  9926         movq(dst, Address(r12_heapbase, dst, Address::times_8, Klass::prototype_header_offset()));
  9927       } else {
  9928         // OK to use shift since we don't need to preserve flags.
  9929         shlq(dst, LogMinObjAlignmentInBytes);
  9930         movq(dst, Address(r12_heapbase, dst, Address::times_1, Klass::prototype_header_offset()));
  9932     } else {
  9933       movq(dst, Address(dst, Klass::prototype_header_offset()));
  9935   } else
  9936 #endif
  9938     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  9939     movptr(dst, Address(dst, Klass::prototype_header_offset()));
  9943 void MacroAssembler::store_klass(Register dst, Register src) {
  9944 #ifdef _LP64
  9945   if (UseCompressedOops) {
  9946     encode_heap_oop_not_null(src);
  9947     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  9948   } else
  9949 #endif
  9950     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  9953 void MacroAssembler::load_heap_oop(Register dst, Address src) {
  9954 #ifdef _LP64
  9955   if (UseCompressedOops) {
  9956     movl(dst, src);
  9957     decode_heap_oop(dst);
  9958   } else
  9959 #endif
  9960     movptr(dst, src);
  9963 // Doesn't do verfication, generates fixed size code
  9964 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
  9965 #ifdef _LP64
  9966   if (UseCompressedOops) {
  9967     movl(dst, src);
  9968     decode_heap_oop_not_null(dst);
  9969   } else
  9970 #endif
  9971     movptr(dst, src);
  9974 void MacroAssembler::store_heap_oop(Address dst, Register src) {
  9975 #ifdef _LP64
  9976   if (UseCompressedOops) {
  9977     assert(!dst.uses(src), "not enough registers");
  9978     encode_heap_oop(src);
  9979     movl(dst, src);
  9980   } else
  9981 #endif
  9982     movptr(dst, src);
  9985 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
  9986   assert_different_registers(src1, tmp);
  9987 #ifdef _LP64
  9988   if (UseCompressedOops) {
  9989     bool did_push = false;
  9990     if (tmp == noreg) {
  9991       tmp = rax;
  9992       push(tmp);
  9993       did_push = true;
  9994       assert(!src2.uses(rsp), "can't push");
  9996     load_heap_oop(tmp, src2);
  9997     cmpptr(src1, tmp);
  9998     if (did_push)  pop(tmp);
  9999   } else
 10000 #endif
 10001     cmpptr(src1, src2);
 10004 // Used for storing NULLs.
 10005 void MacroAssembler::store_heap_oop_null(Address dst) {
 10006 #ifdef _LP64
 10007   if (UseCompressedOops) {
 10008     movl(dst, (int32_t)NULL_WORD);
 10009   } else {
 10010     movslq(dst, (int32_t)NULL_WORD);
 10012 #else
 10013   movl(dst, (int32_t)NULL_WORD);
 10014 #endif
 10017 #ifdef _LP64
 10018 void MacroAssembler::store_klass_gap(Register dst, Register src) {
 10019   if (UseCompressedOops) {
 10020     // Store to klass gap in destination
 10021     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
 10025 #ifdef ASSERT
 10026 void MacroAssembler::verify_heapbase(const char* msg) {
 10027   assert (UseCompressedOops, "should be compressed");
 10028   assert (Universe::heap() != NULL, "java heap should be initialized");
 10029   if (CheckCompressedOops) {
 10030     Label ok;
 10031     push(rscratch1); // cmpptr trashes rscratch1
 10032     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
 10033     jcc(Assembler::equal, ok);
 10034     STOP(msg);
 10035     bind(ok);
 10036     pop(rscratch1);
 10039 #endif
 10041 // Algorithm must match oop.inline.hpp encode_heap_oop.
 10042 void MacroAssembler::encode_heap_oop(Register r) {
 10043 #ifdef ASSERT
 10044   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
 10045 #endif
 10046   verify_oop(r, "broken oop in encode_heap_oop");
 10047   if (Universe::narrow_oop_base() == NULL) {
 10048     if (Universe::narrow_oop_shift() != 0) {
 10049       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
 10050       shrq(r, LogMinObjAlignmentInBytes);
 10052     return;
 10054   testq(r, r);
 10055   cmovq(Assembler::equal, r, r12_heapbase);
 10056   subq(r, r12_heapbase);
 10057   shrq(r, LogMinObjAlignmentInBytes);
 10060 void MacroAssembler::encode_heap_oop_not_null(Register r) {
 10061 #ifdef ASSERT
 10062   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
 10063   if (CheckCompressedOops) {
 10064     Label ok;
 10065     testq(r, r);
 10066     jcc(Assembler::notEqual, ok);
 10067     STOP("null oop passed to encode_heap_oop_not_null");
 10068     bind(ok);
 10070 #endif
 10071   verify_oop(r, "broken oop in encode_heap_oop_not_null");
 10072   if (Universe::narrow_oop_base() != NULL) {
 10073     subq(r, r12_heapbase);
 10075   if (Universe::narrow_oop_shift() != 0) {
 10076     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
 10077     shrq(r, LogMinObjAlignmentInBytes);
 10081 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
 10082 #ifdef ASSERT
 10083   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
 10084   if (CheckCompressedOops) {
 10085     Label ok;
 10086     testq(src, src);
 10087     jcc(Assembler::notEqual, ok);
 10088     STOP("null oop passed to encode_heap_oop_not_null2");
 10089     bind(ok);
 10091 #endif
 10092   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
 10093   if (dst != src) {
 10094     movq(dst, src);
 10096   if (Universe::narrow_oop_base() != NULL) {
 10097     subq(dst, r12_heapbase);
 10099   if (Universe::narrow_oop_shift() != 0) {
 10100     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
 10101     shrq(dst, LogMinObjAlignmentInBytes);
 10105 void  MacroAssembler::decode_heap_oop(Register r) {
 10106 #ifdef ASSERT
 10107   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
 10108 #endif
 10109   if (Universe::narrow_oop_base() == NULL) {
 10110     if (Universe::narrow_oop_shift() != 0) {
 10111       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
 10112       shlq(r, LogMinObjAlignmentInBytes);
 10114   } else {
 10115     Label done;
 10116     shlq(r, LogMinObjAlignmentInBytes);
 10117     jccb(Assembler::equal, done);
 10118     addq(r, r12_heapbase);
 10119     bind(done);
 10121   verify_oop(r, "broken oop in decode_heap_oop");
 10124 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
 10125   // Note: it will change flags
 10126   assert (UseCompressedOops, "should only be used for compressed headers");
 10127   assert (Universe::heap() != NULL, "java heap should be initialized");
 10128   // Cannot assert, unverified entry point counts instructions (see .ad file)
 10129   // vtableStubs also counts instructions in pd_code_size_limit.
 10130   // Also do not verify_oop as this is called by verify_oop.
 10131   if (Universe::narrow_oop_shift() != 0) {
 10132     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
 10133     shlq(r, LogMinObjAlignmentInBytes);
 10134     if (Universe::narrow_oop_base() != NULL) {
 10135       addq(r, r12_heapbase);
 10137   } else {
 10138     assert (Universe::narrow_oop_base() == NULL, "sanity");
 10142 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
 10143   // Note: it will change flags
 10144   assert (UseCompressedOops, "should only be used for compressed headers");
 10145   assert (Universe::heap() != NULL, "java heap should be initialized");
 10146   // Cannot assert, unverified entry point counts instructions (see .ad file)
 10147   // vtableStubs also counts instructions in pd_code_size_limit.
 10148   // Also do not verify_oop as this is called by verify_oop.
 10149   if (Universe::narrow_oop_shift() != 0) {
 10150     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
 10151     if (LogMinObjAlignmentInBytes == Address::times_8) {
 10152       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
 10153     } else {
 10154       if (dst != src) {
 10155         movq(dst, src);
 10157       shlq(dst, LogMinObjAlignmentInBytes);
 10158       if (Universe::narrow_oop_base() != NULL) {
 10159         addq(dst, r12_heapbase);
 10162   } else {
 10163     assert (Universe::narrow_oop_base() == NULL, "sanity");
 10164     if (dst != src) {
 10165       movq(dst, src);
 10170 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
 10171   assert (UseCompressedOops, "should only be used for compressed headers");
 10172   assert (Universe::heap() != NULL, "java heap should be initialized");
 10173   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
 10174   int oop_index = oop_recorder()->find_index(obj);
 10175   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 10176   mov_narrow_oop(dst, oop_index, rspec);
 10179 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
 10180   assert (UseCompressedOops, "should only be used for compressed headers");
 10181   assert (Universe::heap() != NULL, "java heap should be initialized");
 10182   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
 10183   int oop_index = oop_recorder()->find_index(obj);
 10184   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 10185   mov_narrow_oop(dst, oop_index, rspec);
 10188 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
 10189   assert (UseCompressedOops, "should only be used for compressed headers");
 10190   assert (Universe::heap() != NULL, "java heap should be initialized");
 10191   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
 10192   int oop_index = oop_recorder()->find_index(obj);
 10193   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 10194   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
 10197 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
 10198   assert (UseCompressedOops, "should only be used for compressed headers");
 10199   assert (Universe::heap() != NULL, "java heap should be initialized");
 10200   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
 10201   int oop_index = oop_recorder()->find_index(obj);
 10202   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 10203   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
 10206 void MacroAssembler::reinit_heapbase() {
 10207   if (UseCompressedOops) {
 10208     movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
 10211 #endif // _LP64
 10214 // C2 compiled method's prolog code.
 10215 void MacroAssembler::verified_entry(int framesize, bool stack_bang, bool fp_mode_24b) {
 10217   // WARNING: Initial instruction MUST be 5 bytes or longer so that
 10218   // NativeJump::patch_verified_entry will be able to patch out the entry
 10219   // code safely. The push to verify stack depth is ok at 5 bytes,
 10220   // the frame allocation can be either 3 or 6 bytes. So if we don't do
 10221   // stack bang then we must use the 6 byte frame allocation even if
 10222   // we have no frame. :-(
 10224   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 10225   // Remove word for return addr
 10226   framesize -= wordSize;
 10228   // Calls to C2R adapters often do not accept exceptional returns.
 10229   // We require that their callers must bang for them.  But be careful, because
 10230   // some VM calls (such as call site linkage) can use several kilobytes of
 10231   // stack.  But the stack safety zone should account for that.
 10232   // See bugs 4446381, 4468289, 4497237.
 10233   if (stack_bang) {
 10234     generate_stack_overflow_check(framesize);
 10236     // We always push rbp, so that on return to interpreter rbp, will be
 10237     // restored correctly and we can correct the stack.
 10238     push(rbp);
 10239     // Remove word for ebp
 10240     framesize -= wordSize;
 10242     // Create frame
 10243     if (framesize) {
 10244       subptr(rsp, framesize);
 10246   } else {
 10247     // Create frame (force generation of a 4 byte immediate value)
 10248     subptr_imm32(rsp, framesize);
 10250     // Save RBP register now.
 10251     framesize -= wordSize;
 10252     movptr(Address(rsp, framesize), rbp);
 10255   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
 10256     framesize -= wordSize;
 10257     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
 10260 #ifndef _LP64
 10261   // If method sets FPU control word do it now
 10262   if (fp_mode_24b) {
 10263     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 10265   if (UseSSE >= 2 && VerifyFPU) {
 10266     verify_FPU(0, "FPU stack must be clean on entry");
 10268 #endif
 10270 #ifdef ASSERT
 10271   if (VerifyStackAtCalls) {
 10272     Label L;
 10273     push(rax);
 10274     mov(rax, rsp);
 10275     andptr(rax, StackAlignmentInBytes-1);
 10276     cmpptr(rax, StackAlignmentInBytes-wordSize);
 10277     pop(rax);
 10278     jcc(Assembler::equal, L);
 10279     STOP("Stack is not properly aligned!");
 10280     bind(L);
 10282 #endif
 10287 // IndexOf for constant substrings with size >= 8 chars
 10288 // which don't need to be loaded through stack.
 10289 void MacroAssembler::string_indexofC8(Register str1, Register str2,
 10290                                       Register cnt1, Register cnt2,
 10291                                       int int_cnt2,  Register result,
 10292                                       XMMRegister vec, Register tmp) {
 10293   ShortBranchVerifier sbv(this);
 10294   assert(UseSSE42Intrinsics, "SSE4.2 is required");
 10296   // This method uses pcmpestri inxtruction with bound registers
 10297   //   inputs:
 10298   //     xmm - substring
 10299   //     rax - substring length (elements count)
 10300   //     mem - scanned string
 10301   //     rdx - string length (elements count)
 10302   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
 10303   //   outputs:
 10304   //     rcx - matched index in string
 10305   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
 10307   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
 10308         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
 10309         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
 10311   // Note, inline_string_indexOf() generates checks:
 10312   // if (substr.count > string.count) return -1;
 10313   // if (substr.count == 0) return 0;
 10314   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
 10316   // Load substring.
 10317   movdqu(vec, Address(str2, 0));
 10318   movl(cnt2, int_cnt2);
 10319   movptr(result, str1); // string addr
 10321   if (int_cnt2 > 8) {
 10322     jmpb(SCAN_TO_SUBSTR);
 10324     // Reload substr for rescan, this code
 10325     // is executed only for large substrings (> 8 chars)
 10326     bind(RELOAD_SUBSTR);
 10327     movdqu(vec, Address(str2, 0));
 10328     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
 10330     bind(RELOAD_STR);
 10331     // We came here after the beginning of the substring was
 10332     // matched but the rest of it was not so we need to search
 10333     // again. Start from the next element after the previous match.
 10335     // cnt2 is number of substring reminding elements and
 10336     // cnt1 is number of string reminding elements when cmp failed.
 10337     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
 10338     subl(cnt1, cnt2);
 10339     addl(cnt1, int_cnt2);
 10340     movl(cnt2, int_cnt2); // Now restore cnt2
 10342     decrementl(cnt1);     // Shift to next element
 10343     cmpl(cnt1, cnt2);
 10344     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
 10346     addptr(result, 2);
 10348   } // (int_cnt2 > 8)
 10350   // Scan string for start of substr in 16-byte vectors
 10351   bind(SCAN_TO_SUBSTR);
 10352   pcmpestri(vec, Address(result, 0), 0x0d);
 10353   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
 10354   subl(cnt1, 8);
 10355   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
 10356   cmpl(cnt1, cnt2);
 10357   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
 10358   addptr(result, 16);
 10359   jmpb(SCAN_TO_SUBSTR);
 10361   // Found a potential substr
 10362   bind(FOUND_CANDIDATE);
 10363   // Matched whole vector if first element matched (tmp(rcx) == 0).
 10364   if (int_cnt2 == 8) {
 10365     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
 10366   } else { // int_cnt2 > 8
 10367     jccb(Assembler::overflow, FOUND_SUBSTR);
 10369   // After pcmpestri tmp(rcx) contains matched element index
 10370   // Compute start addr of substr
 10371   lea(result, Address(result, tmp, Address::times_2));
 10373   // Make sure string is still long enough
 10374   subl(cnt1, tmp);
 10375   cmpl(cnt1, cnt2);
 10376   if (int_cnt2 == 8) {
 10377     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
 10378   } else { // int_cnt2 > 8
 10379     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
 10381   // Left less then substring.
 10383   bind(RET_NOT_FOUND);
 10384   movl(result, -1);
 10385   jmpb(EXIT);
 10387   if (int_cnt2 > 8) {
 10388     // This code is optimized for the case when whole substring
 10389     // is matched if its head is matched.
 10390     bind(MATCH_SUBSTR_HEAD);
 10391     pcmpestri(vec, Address(result, 0), 0x0d);
 10392     // Reload only string if does not match
 10393     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
 10395     Label CONT_SCAN_SUBSTR;
 10396     // Compare the rest of substring (> 8 chars).
 10397     bind(FOUND_SUBSTR);
 10398     // First 8 chars are already matched.
 10399     negptr(cnt2);
 10400     addptr(cnt2, 8);
 10402     bind(SCAN_SUBSTR);
 10403     subl(cnt1, 8);
 10404     cmpl(cnt2, -8); // Do not read beyond substring
 10405     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
 10406     // Back-up strings to avoid reading beyond substring:
 10407     // cnt1 = cnt1 - cnt2 + 8
 10408     addl(cnt1, cnt2); // cnt2 is negative
 10409     addl(cnt1, 8);
 10410     movl(cnt2, 8); negptr(cnt2);
 10411     bind(CONT_SCAN_SUBSTR);
 10412     if (int_cnt2 < (int)G) {
 10413       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
 10414       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
 10415     } else {
 10416       // calculate index in register to avoid integer overflow (int_cnt2*2)
 10417       movl(tmp, int_cnt2);
 10418       addptr(tmp, cnt2);
 10419       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
 10420       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
 10422     // Need to reload strings pointers if not matched whole vector
 10423     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
 10424     addptr(cnt2, 8);
 10425     jcc(Assembler::negative, SCAN_SUBSTR);
 10426     // Fall through if found full substring
 10428   } // (int_cnt2 > 8)
 10430   bind(RET_FOUND);
 10431   // Found result if we matched full small substring.
 10432   // Compute substr offset
 10433   subptr(result, str1);
 10434   shrl(result, 1); // index
 10435   bind(EXIT);
 10437 } // string_indexofC8
 10439 // Small strings are loaded through stack if they cross page boundary.
 10440 void MacroAssembler::string_indexof(Register str1, Register str2,
 10441                                     Register cnt1, Register cnt2,
 10442                                     int int_cnt2,  Register result,
 10443                                     XMMRegister vec, Register tmp) {
 10444   ShortBranchVerifier sbv(this);
 10445   assert(UseSSE42Intrinsics, "SSE4.2 is required");
 10446   //
 10447   // int_cnt2 is length of small (< 8 chars) constant substring
 10448   // or (-1) for non constant substring in which case its length
 10449   // is in cnt2 register.
 10450   //
 10451   // Note, inline_string_indexOf() generates checks:
 10452   // if (substr.count > string.count) return -1;
 10453   // if (substr.count == 0) return 0;
 10454   //
 10455   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
 10457   // This method uses pcmpestri inxtruction with bound registers
 10458   //   inputs:
 10459   //     xmm - substring
 10460   //     rax - substring length (elements count)
 10461   //     mem - scanned string
 10462   //     rdx - string length (elements count)
 10463   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
 10464   //   outputs:
 10465   //     rcx - matched index in string
 10466   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
 10468   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
 10469         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
 10470         FOUND_CANDIDATE;
 10472   { //========================================================
 10473     // We don't know where these strings are located
 10474     // and we can't read beyond them. Load them through stack.
 10475     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
 10477     movptr(tmp, rsp); // save old SP
 10479     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
 10480       if (int_cnt2 == 1) {  // One char
 10481         load_unsigned_short(result, Address(str2, 0));
 10482         movdl(vec, result); // move 32 bits
 10483       } else if (int_cnt2 == 2) { // Two chars
 10484         movdl(vec, Address(str2, 0)); // move 32 bits
 10485       } else if (int_cnt2 == 4) { // Four chars
 10486         movq(vec, Address(str2, 0));  // move 64 bits
 10487       } else { // cnt2 = { 3, 5, 6, 7 }
 10488         // Array header size is 12 bytes in 32-bit VM
 10489         // + 6 bytes for 3 chars == 18 bytes,
 10490         // enough space to load vec and shift.
 10491         assert(HeapWordSize*typeArrayKlass::header_size() >= 12,"sanity");
 10492         movdqu(vec, Address(str2, (int_cnt2*2)-16));
 10493         psrldq(vec, 16-(int_cnt2*2));
 10495     } else { // not constant substring
 10496       cmpl(cnt2, 8);
 10497       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
 10499       // We can read beyond string if srt+16 does not cross page boundary
 10500       // since heaps are aligned and mapped by pages.
 10501       assert(os::vm_page_size() < (int)G, "default page should be small");
 10502       movl(result, str2); // We need only low 32 bits
 10503       andl(result, (os::vm_page_size()-1));
 10504       cmpl(result, (os::vm_page_size()-16));
 10505       jccb(Assembler::belowEqual, CHECK_STR);
 10507       // Move small strings to stack to allow load 16 bytes into vec.
 10508       subptr(rsp, 16);
 10509       int stk_offset = wordSize-2;
 10510       push(cnt2);
 10512       bind(COPY_SUBSTR);
 10513       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
 10514       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
 10515       decrement(cnt2);
 10516       jccb(Assembler::notZero, COPY_SUBSTR);
 10518       pop(cnt2);
 10519       movptr(str2, rsp);  // New substring address
 10520     } // non constant
 10522     bind(CHECK_STR);
 10523     cmpl(cnt1, 8);
 10524     jccb(Assembler::aboveEqual, BIG_STRINGS);
 10526     // Check cross page boundary.
 10527     movl(result, str1); // We need only low 32 bits
 10528     andl(result, (os::vm_page_size()-1));
 10529     cmpl(result, (os::vm_page_size()-16));
 10530     jccb(Assembler::belowEqual, BIG_STRINGS);
 10532     subptr(rsp, 16);
 10533     int stk_offset = -2;
 10534     if (int_cnt2 < 0) { // not constant
 10535       push(cnt2);
 10536       stk_offset += wordSize;
 10538     movl(cnt2, cnt1);
 10540     bind(COPY_STR);
 10541     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
 10542     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
 10543     decrement(cnt2);
 10544     jccb(Assembler::notZero, COPY_STR);
 10546     if (int_cnt2 < 0) { // not constant
 10547       pop(cnt2);
 10549     movptr(str1, rsp);  // New string address
 10551     bind(BIG_STRINGS);
 10552     // Load substring.
 10553     if (int_cnt2 < 0) { // -1
 10554       movdqu(vec, Address(str2, 0));
 10555       push(cnt2);       // substr count
 10556       push(str2);       // substr addr
 10557       push(str1);       // string addr
 10558     } else {
 10559       // Small (< 8 chars) constant substrings are loaded already.
 10560       movl(cnt2, int_cnt2);
 10562     push(tmp);  // original SP
 10564   } // Finished loading
 10566   //========================================================
 10567   // Start search
 10568   //
 10570   movptr(result, str1); // string addr
 10572   if (int_cnt2  < 0) {  // Only for non constant substring
 10573     jmpb(SCAN_TO_SUBSTR);
 10575     // SP saved at sp+0
 10576     // String saved at sp+1*wordSize
 10577     // Substr saved at sp+2*wordSize
 10578     // Substr count saved at sp+3*wordSize
 10580     // Reload substr for rescan, this code
 10581     // is executed only for large substrings (> 8 chars)
 10582     bind(RELOAD_SUBSTR);
 10583     movptr(str2, Address(rsp, 2*wordSize));
 10584     movl(cnt2, Address(rsp, 3*wordSize));
 10585     movdqu(vec, Address(str2, 0));
 10586     // We came here after the beginning of the substring was
 10587     // matched but the rest of it was not so we need to search
 10588     // again. Start from the next element after the previous match.
 10589     subptr(str1, result); // Restore counter
 10590     shrl(str1, 1);
 10591     addl(cnt1, str1);
 10592     decrementl(cnt1);   // Shift to next element
 10593     cmpl(cnt1, cnt2);
 10594     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
 10596     addptr(result, 2);
 10597   } // non constant
 10599   // Scan string for start of substr in 16-byte vectors
 10600   bind(SCAN_TO_SUBSTR);
 10601   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
 10602   pcmpestri(vec, Address(result, 0), 0x0d);
 10603   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
 10604   subl(cnt1, 8);
 10605   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
 10606   cmpl(cnt1, cnt2);
 10607   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
 10608   addptr(result, 16);
 10610   bind(ADJUST_STR);
 10611   cmpl(cnt1, 8); // Do not read beyond string
 10612   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
 10613   // Back-up string to avoid reading beyond string.
 10614   lea(result, Address(result, cnt1, Address::times_2, -16));
 10615   movl(cnt1, 8);
 10616   jmpb(SCAN_TO_SUBSTR);
 10618   // Found a potential substr
 10619   bind(FOUND_CANDIDATE);
 10620   // After pcmpestri tmp(rcx) contains matched element index
 10622   // Make sure string is still long enough
 10623   subl(cnt1, tmp);
 10624   cmpl(cnt1, cnt2);
 10625   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
 10626   // Left less then substring.
 10628   bind(RET_NOT_FOUND);
 10629   movl(result, -1);
 10630   jmpb(CLEANUP);
 10632   bind(FOUND_SUBSTR);
 10633   // Compute start addr of substr
 10634   lea(result, Address(result, tmp, Address::times_2));
 10636   if (int_cnt2 > 0) { // Constant substring
 10637     // Repeat search for small substring (< 8 chars)
 10638     // from new point without reloading substring.
 10639     // Have to check that we don't read beyond string.
 10640     cmpl(tmp, 8-int_cnt2);
 10641     jccb(Assembler::greater, ADJUST_STR);
 10642     // Fall through if matched whole substring.
 10643   } else { // non constant
 10644     assert(int_cnt2 == -1, "should be != 0");
 10646     addl(tmp, cnt2);
 10647     // Found result if we matched whole substring.
 10648     cmpl(tmp, 8);
 10649     jccb(Assembler::lessEqual, RET_FOUND);
 10651     // Repeat search for small substring (<= 8 chars)
 10652     // from new point 'str1' without reloading substring.
 10653     cmpl(cnt2, 8);
 10654     // Have to check that we don't read beyond string.
 10655     jccb(Assembler::lessEqual, ADJUST_STR);
 10657     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
 10658     // Compare the rest of substring (> 8 chars).
 10659     movptr(str1, result);
 10661     cmpl(tmp, cnt2);
 10662     // First 8 chars are already matched.
 10663     jccb(Assembler::equal, CHECK_NEXT);
 10665     bind(SCAN_SUBSTR);
 10666     pcmpestri(vec, Address(str1, 0), 0x0d);
 10667     // Need to reload strings pointers if not matched whole vector
 10668     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
 10670     bind(CHECK_NEXT);
 10671     subl(cnt2, 8);
 10672     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
 10673     addptr(str1, 16);
 10674     addptr(str2, 16);
 10675     subl(cnt1, 8);
 10676     cmpl(cnt2, 8); // Do not read beyond substring
 10677     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
 10678     // Back-up strings to avoid reading beyond substring.
 10679     lea(str2, Address(str2, cnt2, Address::times_2, -16));
 10680     lea(str1, Address(str1, cnt2, Address::times_2, -16));
 10681     subl(cnt1, cnt2);
 10682     movl(cnt2, 8);
 10683     addl(cnt1, 8);
 10684     bind(CONT_SCAN_SUBSTR);
 10685     movdqu(vec, Address(str2, 0));
 10686     jmpb(SCAN_SUBSTR);
 10688     bind(RET_FOUND_LONG);
 10689     movptr(str1, Address(rsp, wordSize));
 10690   } // non constant
 10692   bind(RET_FOUND);
 10693   // Compute substr offset
 10694   subptr(result, str1);
 10695   shrl(result, 1); // index
 10697   bind(CLEANUP);
 10698   pop(rsp); // restore SP
 10700 } // string_indexof
 10702 // Compare strings.
 10703 void MacroAssembler::string_compare(Register str1, Register str2,
 10704                                     Register cnt1, Register cnt2, Register result,
 10705                                     XMMRegister vec1) {
 10706   ShortBranchVerifier sbv(this);
 10707   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
 10709   // Compute the minimum of the string lengths and the
 10710   // difference of the string lengths (stack).
 10711   // Do the conditional move stuff
 10712   movl(result, cnt1);
 10713   subl(cnt1, cnt2);
 10714   push(cnt1);
 10715   cmov32(Assembler::lessEqual, cnt2, result);
 10717   // Is the minimum length zero?
 10718   testl(cnt2, cnt2);
 10719   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
 10721   // Load first characters
 10722   load_unsigned_short(result, Address(str1, 0));
 10723   load_unsigned_short(cnt1, Address(str2, 0));
 10725   // Compare first characters
 10726   subl(result, cnt1);
 10727   jcc(Assembler::notZero,  POP_LABEL);
 10728   decrementl(cnt2);
 10729   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
 10732     // Check after comparing first character to see if strings are equivalent
 10733     Label LSkip2;
 10734     // Check if the strings start at same location
 10735     cmpptr(str1, str2);
 10736     jccb(Assembler::notEqual, LSkip2);
 10738     // Check if the length difference is zero (from stack)
 10739     cmpl(Address(rsp, 0), 0x0);
 10740     jcc(Assembler::equal,  LENGTH_DIFF_LABEL);
 10742     // Strings might not be equivalent
 10743     bind(LSkip2);
 10746   Address::ScaleFactor scale = Address::times_2;
 10747   int stride = 8;
 10749   // Advance to next element
 10750   addptr(str1, 16/stride);
 10751   addptr(str2, 16/stride);
 10753   if (UseSSE42Intrinsics) {
 10754     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
 10755     int pcmpmask = 0x19;
 10756     // Setup to compare 16-byte vectors
 10757     movl(result, cnt2);
 10758     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
 10759     jccb(Assembler::zero, COMPARE_TAIL);
 10761     lea(str1, Address(str1, result, scale));
 10762     lea(str2, Address(str2, result, scale));
 10763     negptr(result);
 10765     // pcmpestri
 10766     //   inputs:
 10767     //     vec1- substring
 10768     //     rax - negative string length (elements count)
 10769     //     mem - scaned string
 10770     //     rdx - string length (elements count)
 10771     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
 10772     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
 10773     //   outputs:
 10774     //     rcx - first mismatched element index
 10775     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
 10777     bind(COMPARE_WIDE_VECTORS);
 10778     movdqu(vec1, Address(str1, result, scale));
 10779     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
 10780     // After pcmpestri cnt1(rcx) contains mismatched element index
 10782     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
 10783     addptr(result, stride);
 10784     subptr(cnt2, stride);
 10785     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
 10787     // compare wide vectors tail
 10788     testl(result, result);
 10789     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
 10791     movl(cnt2, stride);
 10792     movl(result, stride);
 10793     negptr(result);
 10794     movdqu(vec1, Address(str1, result, scale));
 10795     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
 10796     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
 10798     // Mismatched characters in the vectors
 10799     bind(VECTOR_NOT_EQUAL);
 10800     addptr(result, cnt1);
 10801     movptr(cnt2, result);
 10802     load_unsigned_short(result, Address(str1, cnt2, scale));
 10803     load_unsigned_short(cnt1, Address(str2, cnt2, scale));
 10804     subl(result, cnt1);
 10805     jmpb(POP_LABEL);
 10807     bind(COMPARE_TAIL); // limit is zero
 10808     movl(cnt2, result);
 10809     // Fallthru to tail compare
 10812   // Shift str2 and str1 to the end of the arrays, negate min
 10813   lea(str1, Address(str1, cnt2, scale, 0));
 10814   lea(str2, Address(str2, cnt2, scale, 0));
 10815   negptr(cnt2);
 10817   // Compare the rest of the elements
 10818   bind(WHILE_HEAD_LABEL);
 10819   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
 10820   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
 10821   subl(result, cnt1);
 10822   jccb(Assembler::notZero, POP_LABEL);
 10823   increment(cnt2);
 10824   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
 10826   // Strings are equal up to min length.  Return the length difference.
 10827   bind(LENGTH_DIFF_LABEL);
 10828   pop(result);
 10829   jmpb(DONE_LABEL);
 10831   // Discard the stored length difference
 10832   bind(POP_LABEL);
 10833   pop(cnt1);
 10835   // That's it
 10836   bind(DONE_LABEL);
 10839 // Compare char[] arrays aligned to 4 bytes or substrings.
 10840 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
 10841                                         Register limit, Register result, Register chr,
 10842                                         XMMRegister vec1, XMMRegister vec2) {
 10843   ShortBranchVerifier sbv(this);
 10844   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
 10846   int length_offset  = arrayOopDesc::length_offset_in_bytes();
 10847   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
 10849   // Check the input args
 10850   cmpptr(ary1, ary2);
 10851   jcc(Assembler::equal, TRUE_LABEL);
 10853   if (is_array_equ) {
 10854     // Need additional checks for arrays_equals.
 10855     testptr(ary1, ary1);
 10856     jcc(Assembler::zero, FALSE_LABEL);
 10857     testptr(ary2, ary2);
 10858     jcc(Assembler::zero, FALSE_LABEL);
 10860     // Check the lengths
 10861     movl(limit, Address(ary1, length_offset));
 10862     cmpl(limit, Address(ary2, length_offset));
 10863     jcc(Assembler::notEqual, FALSE_LABEL);
 10866   // count == 0
 10867   testl(limit, limit);
 10868   jcc(Assembler::zero, TRUE_LABEL);
 10870   if (is_array_equ) {
 10871     // Load array address
 10872     lea(ary1, Address(ary1, base_offset));
 10873     lea(ary2, Address(ary2, base_offset));
 10876   shll(limit, 1);      // byte count != 0
 10877   movl(result, limit); // copy
 10879   if (UseSSE42Intrinsics) {
 10880     // With SSE4.2, use double quad vector compare
 10881     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
 10883     // Compare 16-byte vectors
 10884     andl(result, 0x0000000e);  //   tail count (in bytes)
 10885     andl(limit, 0xfffffff0);   // vector count (in bytes)
 10886     jccb(Assembler::zero, COMPARE_TAIL);
 10888     lea(ary1, Address(ary1, limit, Address::times_1));
 10889     lea(ary2, Address(ary2, limit, Address::times_1));
 10890     negptr(limit);
 10892     bind(COMPARE_WIDE_VECTORS);
 10893     movdqu(vec1, Address(ary1, limit, Address::times_1));
 10894     movdqu(vec2, Address(ary2, limit, Address::times_1));
 10895     pxor(vec1, vec2);
 10897     ptest(vec1, vec1);
 10898     jccb(Assembler::notZero, FALSE_LABEL);
 10899     addptr(limit, 16);
 10900     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
 10902     testl(result, result);
 10903     jccb(Assembler::zero, TRUE_LABEL);
 10905     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
 10906     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
 10907     pxor(vec1, vec2);
 10909     ptest(vec1, vec1);
 10910     jccb(Assembler::notZero, FALSE_LABEL);
 10911     jmpb(TRUE_LABEL);
 10913     bind(COMPARE_TAIL); // limit is zero
 10914     movl(limit, result);
 10915     // Fallthru to tail compare
 10918   // Compare 4-byte vectors
 10919   andl(limit, 0xfffffffc); // vector count (in bytes)
 10920   jccb(Assembler::zero, COMPARE_CHAR);
 10922   lea(ary1, Address(ary1, limit, Address::times_1));
 10923   lea(ary2, Address(ary2, limit, Address::times_1));
 10924   negptr(limit);
 10926   bind(COMPARE_VECTORS);
 10927   movl(chr, Address(ary1, limit, Address::times_1));
 10928   cmpl(chr, Address(ary2, limit, Address::times_1));
 10929   jccb(Assembler::notEqual, FALSE_LABEL);
 10930   addptr(limit, 4);
 10931   jcc(Assembler::notZero, COMPARE_VECTORS);
 10933   // Compare trailing char (final 2 bytes), if any
 10934   bind(COMPARE_CHAR);
 10935   testl(result, 0x2);   // tail  char
 10936   jccb(Assembler::zero, TRUE_LABEL);
 10937   load_unsigned_short(chr, Address(ary1, 0));
 10938   load_unsigned_short(limit, Address(ary2, 0));
 10939   cmpl(chr, limit);
 10940   jccb(Assembler::notEqual, FALSE_LABEL);
 10942   bind(TRUE_LABEL);
 10943   movl(result, 1);   // return true
 10944   jmpb(DONE);
 10946   bind(FALSE_LABEL);
 10947   xorl(result, result); // return false
 10949   // That's it
 10950   bind(DONE);
 10953 void MacroAssembler::generate_fill(BasicType t, bool aligned,
 10954                                    Register to, Register value, Register count,
 10955                                    Register rtmp, XMMRegister xtmp) {
 10956   ShortBranchVerifier sbv(this);
 10957   assert_different_registers(to, value, count, rtmp);
 10958   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
 10959   Label L_fill_2_bytes, L_fill_4_bytes;
 10961   int shift = -1;
 10962   switch (t) {
 10963     case T_BYTE:
 10964       shift = 2;
 10965       break;
 10966     case T_SHORT:
 10967       shift = 1;
 10968       break;
 10969     case T_INT:
 10970       shift = 0;
 10971       break;
 10972     default: ShouldNotReachHere();
 10975   if (t == T_BYTE) {
 10976     andl(value, 0xff);
 10977     movl(rtmp, value);
 10978     shll(rtmp, 8);
 10979     orl(value, rtmp);
 10981   if (t == T_SHORT) {
 10982     andl(value, 0xffff);
 10984   if (t == T_BYTE || t == T_SHORT) {
 10985     movl(rtmp, value);
 10986     shll(rtmp, 16);
 10987     orl(value, rtmp);
 10990   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
 10991   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
 10992   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
 10993     // align source address at 4 bytes address boundary
 10994     if (t == T_BYTE) {
 10995       // One byte misalignment happens only for byte arrays
 10996       testptr(to, 1);
 10997       jccb(Assembler::zero, L_skip_align1);
 10998       movb(Address(to, 0), value);
 10999       increment(to);
 11000       decrement(count);
 11001       BIND(L_skip_align1);
 11003     // Two bytes misalignment happens only for byte and short (char) arrays
 11004     testptr(to, 2);
 11005     jccb(Assembler::zero, L_skip_align2);
 11006     movw(Address(to, 0), value);
 11007     addptr(to, 2);
 11008     subl(count, 1<<(shift-1));
 11009     BIND(L_skip_align2);
 11011   if (UseSSE < 2) {
 11012     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
 11013     // Fill 32-byte chunks
 11014     subl(count, 8 << shift);
 11015     jcc(Assembler::less, L_check_fill_8_bytes);
 11016     align(16);
 11018     BIND(L_fill_32_bytes_loop);
 11020     for (int i = 0; i < 32; i += 4) {
 11021       movl(Address(to, i), value);
 11024     addptr(to, 32);
 11025     subl(count, 8 << shift);
 11026     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
 11027     BIND(L_check_fill_8_bytes);
 11028     addl(count, 8 << shift);
 11029     jccb(Assembler::zero, L_exit);
 11030     jmpb(L_fill_8_bytes);
 11032     //
 11033     // length is too short, just fill qwords
 11034     //
 11035     BIND(L_fill_8_bytes_loop);
 11036     movl(Address(to, 0), value);
 11037     movl(Address(to, 4), value);
 11038     addptr(to, 8);
 11039     BIND(L_fill_8_bytes);
 11040     subl(count, 1 << (shift + 1));
 11041     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
 11042     // fall through to fill 4 bytes
 11043   } else {
 11044     Label L_fill_32_bytes;
 11045     if (!UseUnalignedLoadStores) {
 11046       // align to 8 bytes, we know we are 4 byte aligned to start
 11047       testptr(to, 4);
 11048       jccb(Assembler::zero, L_fill_32_bytes);
 11049       movl(Address(to, 0), value);
 11050       addptr(to, 4);
 11051       subl(count, 1<<shift);
 11053     BIND(L_fill_32_bytes);
 11055       assert( UseSSE >= 2, "supported cpu only" );
 11056       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
 11057       // Fill 32-byte chunks
 11058       movdl(xtmp, value);
 11059       pshufd(xtmp, xtmp, 0);
 11061       subl(count, 8 << shift);
 11062       jcc(Assembler::less, L_check_fill_8_bytes);
 11063       align(16);
 11065       BIND(L_fill_32_bytes_loop);
 11067       if (UseUnalignedLoadStores) {
 11068         movdqu(Address(to, 0), xtmp);
 11069         movdqu(Address(to, 16), xtmp);
 11070       } else {
 11071         movq(Address(to, 0), xtmp);
 11072         movq(Address(to, 8), xtmp);
 11073         movq(Address(to, 16), xtmp);
 11074         movq(Address(to, 24), xtmp);
 11077       addptr(to, 32);
 11078       subl(count, 8 << shift);
 11079       jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
 11080       BIND(L_check_fill_8_bytes);
 11081       addl(count, 8 << shift);
 11082       jccb(Assembler::zero, L_exit);
 11083       jmpb(L_fill_8_bytes);
 11085       //
 11086       // length is too short, just fill qwords
 11087       //
 11088       BIND(L_fill_8_bytes_loop);
 11089       movq(Address(to, 0), xtmp);
 11090       addptr(to, 8);
 11091       BIND(L_fill_8_bytes);
 11092       subl(count, 1 << (shift + 1));
 11093       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
 11096   // fill trailing 4 bytes
 11097   BIND(L_fill_4_bytes);
 11098   testl(count, 1<<shift);
 11099   jccb(Assembler::zero, L_fill_2_bytes);
 11100   movl(Address(to, 0), value);
 11101   if (t == T_BYTE || t == T_SHORT) {
 11102     addptr(to, 4);
 11103     BIND(L_fill_2_bytes);
 11104     // fill trailing 2 bytes
 11105     testl(count, 1<<(shift-1));
 11106     jccb(Assembler::zero, L_fill_byte);
 11107     movw(Address(to, 0), value);
 11108     if (t == T_BYTE) {
 11109       addptr(to, 2);
 11110       BIND(L_fill_byte);
 11111       // fill trailing byte
 11112       testl(count, 1);
 11113       jccb(Assembler::zero, L_exit);
 11114       movb(Address(to, 0), value);
 11115     } else {
 11116       BIND(L_fill_byte);
 11118   } else {
 11119     BIND(L_fill_2_bytes);
 11121   BIND(L_exit);
 11123 #undef BIND
 11124 #undef BLOCK_COMMENT
 11127 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
 11128   switch (cond) {
 11129     // Note some conditions are synonyms for others
 11130     case Assembler::zero:         return Assembler::notZero;
 11131     case Assembler::notZero:      return Assembler::zero;
 11132     case Assembler::less:         return Assembler::greaterEqual;
 11133     case Assembler::lessEqual:    return Assembler::greater;
 11134     case Assembler::greater:      return Assembler::lessEqual;
 11135     case Assembler::greaterEqual: return Assembler::less;
 11136     case Assembler::below:        return Assembler::aboveEqual;
 11137     case Assembler::belowEqual:   return Assembler::above;
 11138     case Assembler::above:        return Assembler::belowEqual;
 11139     case Assembler::aboveEqual:   return Assembler::below;
 11140     case Assembler::overflow:     return Assembler::noOverflow;
 11141     case Assembler::noOverflow:   return Assembler::overflow;
 11142     case Assembler::negative:     return Assembler::positive;
 11143     case Assembler::positive:     return Assembler::negative;
 11144     case Assembler::parity:       return Assembler::noParity;
 11145     case Assembler::noParity:     return Assembler::parity;
 11147   ShouldNotReachHere(); return Assembler::overflow;
 11150 SkipIfEqual::SkipIfEqual(
 11151     MacroAssembler* masm, const bool* flag_addr, bool value) {
 11152   _masm = masm;
 11153   _masm->cmp8(ExternalAddress((address)flag_addr), value);
 11154   _masm->jcc(Assembler::equal, _label);
 11157 SkipIfEqual::~SkipIfEqual() {
 11158   _masm->bind(_label);

mercurial