src/cpu/x86/vm/assembler_x86.cpp

Sat, 01 Sep 2012 13:25:18 -0400

author
coleenp
date
Sat, 01 Sep 2012 13:25:18 -0400
changeset 4037
da91efe96a93
parent 4001
006050192a5a
child 4103
137868b7aa6f
permissions
-rw-r--r--

6964458: Reimplement class meta-data storage to use native memory
Summary: Remove PermGen, allocate meta-data in metaspace linked to class loaders, rewrite GC walking, rewrite and rename metadata to be C++ classes
Reviewed-by: jmasa, stefank, never, coleenp, kvn, brutisso, mgerdin, dholmes, jrose, twisti, roland
Contributed-by: jmasa <jon.masamitsu@oracle.com>, stefank <stefan.karlsson@oracle.com>, mgerdin <mikael.gerdin@oracle.com>, never <tom.rodriguez@oracle.com>

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "assembler_x86.inline.hpp"
    27 #include "gc_interface/collectedHeap.inline.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "memory/cardTableModRefBS.hpp"
    30 #include "memory/resourceArea.hpp"
    31 #include "prims/methodHandles.hpp"
    32 #include "runtime/biasedLocking.hpp"
    33 #include "runtime/interfaceSupport.hpp"
    34 #include "runtime/objectMonitor.hpp"
    35 #include "runtime/os.hpp"
    36 #include "runtime/sharedRuntime.hpp"
    37 #include "runtime/stubRoutines.hpp"
    38 #ifndef SERIALGC
    39 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    40 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    41 #include "gc_implementation/g1/heapRegion.hpp"
    42 #endif
    44 #ifdef PRODUCT
    45 #define BLOCK_COMMENT(str) /* nothing */
    46 #define STOP(error) stop(error)
    47 #else
    48 #define BLOCK_COMMENT(str) block_comment(str)
    49 #define STOP(error) block_comment(error); stop(error)
    50 #endif
    52 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    53 // Implementation of AddressLiteral
    55 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
    56   _is_lval = false;
    57   _target = target;
    58   switch (rtype) {
    59   case relocInfo::oop_type:
    60   case relocInfo::metadata_type:
    61     // Oops are a special case. Normally they would be their own section
    62     // but in cases like icBuffer they are literals in the code stream that
    63     // we don't have a section for. We use none so that we get a literal address
    64     // which is always patchable.
    65     break;
    66   case relocInfo::external_word_type:
    67     _rspec = external_word_Relocation::spec(target);
    68     break;
    69   case relocInfo::internal_word_type:
    70     _rspec = internal_word_Relocation::spec(target);
    71     break;
    72   case relocInfo::opt_virtual_call_type:
    73     _rspec = opt_virtual_call_Relocation::spec();
    74     break;
    75   case relocInfo::static_call_type:
    76     _rspec = static_call_Relocation::spec();
    77     break;
    78   case relocInfo::runtime_call_type:
    79     _rspec = runtime_call_Relocation::spec();
    80     break;
    81   case relocInfo::poll_type:
    82   case relocInfo::poll_return_type:
    83     _rspec = Relocation::spec_simple(rtype);
    84     break;
    85   case relocInfo::none:
    86     break;
    87   default:
    88     ShouldNotReachHere();
    89     break;
    90   }
    91 }
    93 // Implementation of Address
    95 #ifdef _LP64
    97 Address Address::make_array(ArrayAddress adr) {
    98   // Not implementable on 64bit machines
    99   // Should have been handled higher up the call chain.
   100   ShouldNotReachHere();
   101   return Address();
   102 }
   104 // exceedingly dangerous constructor
   105 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
   106   _base  = noreg;
   107   _index = noreg;
   108   _scale = no_scale;
   109   _disp  = disp;
   110   switch (rtype) {
   111     case relocInfo::external_word_type:
   112       _rspec = external_word_Relocation::spec(loc);
   113       break;
   114     case relocInfo::internal_word_type:
   115       _rspec = internal_word_Relocation::spec(loc);
   116       break;
   117     case relocInfo::runtime_call_type:
   118       // HMM
   119       _rspec = runtime_call_Relocation::spec();
   120       break;
   121     case relocInfo::poll_type:
   122     case relocInfo::poll_return_type:
   123       _rspec = Relocation::spec_simple(rtype);
   124       break;
   125     case relocInfo::none:
   126       break;
   127     default:
   128       ShouldNotReachHere();
   129   }
   130 }
   131 #else // LP64
   133 Address Address::make_array(ArrayAddress adr) {
   134   AddressLiteral base = adr.base();
   135   Address index = adr.index();
   136   assert(index._disp == 0, "must not have disp"); // maybe it can?
   137   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
   138   array._rspec = base._rspec;
   139   return array;
   140 }
   142 // exceedingly dangerous constructor
   143 Address::Address(address loc, RelocationHolder spec) {
   144   _base  = noreg;
   145   _index = noreg;
   146   _scale = no_scale;
   147   _disp  = (intptr_t) loc;
   148   _rspec = spec;
   149 }
   151 #endif // _LP64
   155 // Convert the raw encoding form into the form expected by the constructor for
   156 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   157 // that to noreg for the Address constructor.
   158 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
   159   RelocationHolder rspec;
   160   if (disp_reloc != relocInfo::none) {
   161     rspec = Relocation::spec_simple(disp_reloc);
   162   }
   163   bool valid_index = index != rsp->encoding();
   164   if (valid_index) {
   165     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
   166     madr._rspec = rspec;
   167     return madr;
   168   } else {
   169     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
   170     madr._rspec = rspec;
   171     return madr;
   172   }
   173 }
   175 // Implementation of Assembler
   177 int AbstractAssembler::code_fill_byte() {
   178   return (u_char)'\xF4'; // hlt
   179 }
   181 // make this go away someday
   182 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
   183   if (rtype == relocInfo::none)
   184         emit_long(data);
   185   else  emit_data(data, Relocation::spec_simple(rtype), format);
   186 }
   188 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
   189   assert(imm_operand == 0, "default format must be immediate in this file");
   190   assert(inst_mark() != NULL, "must be inside InstructionMark");
   191   if (rspec.type() !=  relocInfo::none) {
   192     #ifdef ASSERT
   193       check_relocation(rspec, format);
   194     #endif
   195     // Do not use AbstractAssembler::relocate, which is not intended for
   196     // embedded words.  Instead, relocate to the enclosing instruction.
   198     // hack. call32 is too wide for mask so use disp32
   199     if (format == call32_operand)
   200       code_section()->relocate(inst_mark(), rspec, disp32_operand);
   201     else
   202       code_section()->relocate(inst_mark(), rspec, format);
   203   }
   204   emit_long(data);
   205 }
   207 static int encode(Register r) {
   208   int enc = r->encoding();
   209   if (enc >= 8) {
   210     enc -= 8;
   211   }
   212   return enc;
   213 }
   215 static int encode(XMMRegister r) {
   216   int enc = r->encoding();
   217   if (enc >= 8) {
   218     enc -= 8;
   219   }
   220   return enc;
   221 }
   223 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
   224   assert(dst->has_byte_register(), "must have byte register");
   225   assert(isByte(op1) && isByte(op2), "wrong opcode");
   226   assert(isByte(imm8), "not a byte");
   227   assert((op1 & 0x01) == 0, "should be 8bit operation");
   228   emit_byte(op1);
   229   emit_byte(op2 | encode(dst));
   230   emit_byte(imm8);
   231 }
   234 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
   235   assert(isByte(op1) && isByte(op2), "wrong opcode");
   236   assert((op1 & 0x01) == 1, "should be 32bit operation");
   237   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   238   if (is8bit(imm32)) {
   239     emit_byte(op1 | 0x02); // set sign bit
   240     emit_byte(op2 | encode(dst));
   241     emit_byte(imm32 & 0xFF);
   242   } else {
   243     emit_byte(op1);
   244     emit_byte(op2 | encode(dst));
   245     emit_long(imm32);
   246   }
   247 }
   249 // Force generation of a 4 byte immediate value even if it fits into 8bit
   250 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
   251   assert(isByte(op1) && isByte(op2), "wrong opcode");
   252   assert((op1 & 0x01) == 1, "should be 32bit operation");
   253   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   254   emit_byte(op1);
   255   emit_byte(op2 | encode(dst));
   256   emit_long(imm32);
   257 }
   259 // immediate-to-memory forms
   260 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
   261   assert((op1 & 0x01) == 1, "should be 32bit operation");
   262   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   263   if (is8bit(imm32)) {
   264     emit_byte(op1 | 0x02); // set sign bit
   265     emit_operand(rm, adr, 1);
   266     emit_byte(imm32 & 0xFF);
   267   } else {
   268     emit_byte(op1);
   269     emit_operand(rm, adr, 4);
   270     emit_long(imm32);
   271   }
   272 }
   275 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
   276   assert(isByte(op1) && isByte(op2), "wrong opcode");
   277   emit_byte(op1);
   278   emit_byte(op2 | encode(dst) << 3 | encode(src));
   279 }
   282 void Assembler::emit_operand(Register reg, Register base, Register index,
   283                              Address::ScaleFactor scale, int disp,
   284                              RelocationHolder const& rspec,
   285                              int rip_relative_correction) {
   286   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
   288   // Encode the registers as needed in the fields they are used in
   290   int regenc = encode(reg) << 3;
   291   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
   292   int baseenc = base->is_valid() ? encode(base) : 0;
   294   if (base->is_valid()) {
   295     if (index->is_valid()) {
   296       assert(scale != Address::no_scale, "inconsistent address");
   297       // [base + index*scale + disp]
   298       if (disp == 0 && rtype == relocInfo::none  &&
   299           base != rbp LP64_ONLY(&& base != r13)) {
   300         // [base + index*scale]
   301         // [00 reg 100][ss index base]
   302         assert(index != rsp, "illegal addressing mode");
   303         emit_byte(0x04 | regenc);
   304         emit_byte(scale << 6 | indexenc | baseenc);
   305       } else if (is8bit(disp) && rtype == relocInfo::none) {
   306         // [base + index*scale + imm8]
   307         // [01 reg 100][ss index base] imm8
   308         assert(index != rsp, "illegal addressing mode");
   309         emit_byte(0x44 | regenc);
   310         emit_byte(scale << 6 | indexenc | baseenc);
   311         emit_byte(disp & 0xFF);
   312       } else {
   313         // [base + index*scale + disp32]
   314         // [10 reg 100][ss index base] disp32
   315         assert(index != rsp, "illegal addressing mode");
   316         emit_byte(0x84 | regenc);
   317         emit_byte(scale << 6 | indexenc | baseenc);
   318         emit_data(disp, rspec, disp32_operand);
   319       }
   320     } else if (base == rsp LP64_ONLY(|| base == r12)) {
   321       // [rsp + disp]
   322       if (disp == 0 && rtype == relocInfo::none) {
   323         // [rsp]
   324         // [00 reg 100][00 100 100]
   325         emit_byte(0x04 | regenc);
   326         emit_byte(0x24);
   327       } else if (is8bit(disp) && rtype == relocInfo::none) {
   328         // [rsp + imm8]
   329         // [01 reg 100][00 100 100] disp8
   330         emit_byte(0x44 | regenc);
   331         emit_byte(0x24);
   332         emit_byte(disp & 0xFF);
   333       } else {
   334         // [rsp + imm32]
   335         // [10 reg 100][00 100 100] disp32
   336         emit_byte(0x84 | regenc);
   337         emit_byte(0x24);
   338         emit_data(disp, rspec, disp32_operand);
   339       }
   340     } else {
   341       // [base + disp]
   342       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
   343       if (disp == 0 && rtype == relocInfo::none &&
   344           base != rbp LP64_ONLY(&& base != r13)) {
   345         // [base]
   346         // [00 reg base]
   347         emit_byte(0x00 | regenc | baseenc);
   348       } else if (is8bit(disp) && rtype == relocInfo::none) {
   349         // [base + disp8]
   350         // [01 reg base] disp8
   351         emit_byte(0x40 | regenc | baseenc);
   352         emit_byte(disp & 0xFF);
   353       } else {
   354         // [base + disp32]
   355         // [10 reg base] disp32
   356         emit_byte(0x80 | regenc | baseenc);
   357         emit_data(disp, rspec, disp32_operand);
   358       }
   359     }
   360   } else {
   361     if (index->is_valid()) {
   362       assert(scale != Address::no_scale, "inconsistent address");
   363       // [index*scale + disp]
   364       // [00 reg 100][ss index 101] disp32
   365       assert(index != rsp, "illegal addressing mode");
   366       emit_byte(0x04 | regenc);
   367       emit_byte(scale << 6 | indexenc | 0x05);
   368       emit_data(disp, rspec, disp32_operand);
   369     } else if (rtype != relocInfo::none ) {
   370       // [disp] (64bit) RIP-RELATIVE (32bit) abs
   371       // [00 000 101] disp32
   373       emit_byte(0x05 | regenc);
   374       // Note that the RIP-rel. correction applies to the generated
   375       // disp field, but _not_ to the target address in the rspec.
   377       // disp was created by converting the target address minus the pc
   378       // at the start of the instruction. That needs more correction here.
   379       // intptr_t disp = target - next_ip;
   380       assert(inst_mark() != NULL, "must be inside InstructionMark");
   381       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
   382       int64_t adjusted = disp;
   383       // Do rip-rel adjustment for 64bit
   384       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
   385       assert(is_simm32(adjusted),
   386              "must be 32bit offset (RIP relative address)");
   387       emit_data((int32_t) adjusted, rspec, disp32_operand);
   389     } else {
   390       // 32bit never did this, did everything as the rip-rel/disp code above
   391       // [disp] ABSOLUTE
   392       // [00 reg 100][00 100 101] disp32
   393       emit_byte(0x04 | regenc);
   394       emit_byte(0x25);
   395       emit_data(disp, rspec, disp32_operand);
   396     }
   397   }
   398 }
   400 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
   401                              Address::ScaleFactor scale, int disp,
   402                              RelocationHolder const& rspec) {
   403   emit_operand((Register)reg, base, index, scale, disp, rspec);
   404 }
   406 // Secret local extension to Assembler::WhichOperand:
   407 #define end_pc_operand (_WhichOperand_limit)
   409 address Assembler::locate_operand(address inst, WhichOperand which) {
   410   // Decode the given instruction, and return the address of
   411   // an embedded 32-bit operand word.
   413   // If "which" is disp32_operand, selects the displacement portion
   414   // of an effective address specifier.
   415   // If "which" is imm64_operand, selects the trailing immediate constant.
   416   // If "which" is call32_operand, selects the displacement of a call or jump.
   417   // Caller is responsible for ensuring that there is such an operand,
   418   // and that it is 32/64 bits wide.
   420   // If "which" is end_pc_operand, find the end of the instruction.
   422   address ip = inst;
   423   bool is_64bit = false;
   425   debug_only(bool has_disp32 = false);
   426   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
   428   again_after_prefix:
   429   switch (0xFF & *ip++) {
   431   // These convenience macros generate groups of "case" labels for the switch.
   432 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
   433 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
   434              case (x)+4: case (x)+5: case (x)+6: case (x)+7
   435 #define REP16(x) REP8((x)+0): \
   436               case REP8((x)+8)
   438   case CS_segment:
   439   case SS_segment:
   440   case DS_segment:
   441   case ES_segment:
   442   case FS_segment:
   443   case GS_segment:
   444     // Seems dubious
   445     LP64_ONLY(assert(false, "shouldn't have that prefix"));
   446     assert(ip == inst+1, "only one prefix allowed");
   447     goto again_after_prefix;
   449   case 0x67:
   450   case REX:
   451   case REX_B:
   452   case REX_X:
   453   case REX_XB:
   454   case REX_R:
   455   case REX_RB:
   456   case REX_RX:
   457   case REX_RXB:
   458     NOT_LP64(assert(false, "64bit prefixes"));
   459     goto again_after_prefix;
   461   case REX_W:
   462   case REX_WB:
   463   case REX_WX:
   464   case REX_WXB:
   465   case REX_WR:
   466   case REX_WRB:
   467   case REX_WRX:
   468   case REX_WRXB:
   469     NOT_LP64(assert(false, "64bit prefixes"));
   470     is_64bit = true;
   471     goto again_after_prefix;
   473   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
   474   case 0x88: // movb a, r
   475   case 0x89: // movl a, r
   476   case 0x8A: // movb r, a
   477   case 0x8B: // movl r, a
   478   case 0x8F: // popl a
   479     debug_only(has_disp32 = true);
   480     break;
   482   case 0x68: // pushq #32
   483     if (which == end_pc_operand) {
   484       return ip + 4;
   485     }
   486     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
   487     return ip;                  // not produced by emit_operand
   489   case 0x66: // movw ... (size prefix)
   490     again_after_size_prefix2:
   491     switch (0xFF & *ip++) {
   492     case REX:
   493     case REX_B:
   494     case REX_X:
   495     case REX_XB:
   496     case REX_R:
   497     case REX_RB:
   498     case REX_RX:
   499     case REX_RXB:
   500     case REX_W:
   501     case REX_WB:
   502     case REX_WX:
   503     case REX_WXB:
   504     case REX_WR:
   505     case REX_WRB:
   506     case REX_WRX:
   507     case REX_WRXB:
   508       NOT_LP64(assert(false, "64bit prefix found"));
   509       goto again_after_size_prefix2;
   510     case 0x8B: // movw r, a
   511     case 0x89: // movw a, r
   512       debug_only(has_disp32 = true);
   513       break;
   514     case 0xC7: // movw a, #16
   515       debug_only(has_disp32 = true);
   516       tail_size = 2;  // the imm16
   517       break;
   518     case 0x0F: // several SSE/SSE2 variants
   519       ip--;    // reparse the 0x0F
   520       goto again_after_prefix;
   521     default:
   522       ShouldNotReachHere();
   523     }
   524     break;
   526   case REP8(0xB8): // movl/q r, #32/#64(oop?)
   527     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
   528     // these asserts are somewhat nonsensical
   529 #ifndef _LP64
   530     assert(which == imm_operand || which == disp32_operand,
   531            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
   532 #else
   533     assert((which == call32_operand || which == imm_operand) && is_64bit ||
   534            which == narrow_oop_operand && !is_64bit,
   535            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
   536 #endif // _LP64
   537     return ip;
   539   case 0x69: // imul r, a, #32
   540   case 0xC7: // movl a, #32(oop?)
   541     tail_size = 4;
   542     debug_only(has_disp32 = true); // has both kinds of operands!
   543     break;
   545   case 0x0F: // movx..., etc.
   546     switch (0xFF & *ip++) {
   547     case 0x3A: // pcmpestri
   548       tail_size = 1;
   549     case 0x38: // ptest, pmovzxbw
   550       ip++; // skip opcode
   551       debug_only(has_disp32 = true); // has both kinds of operands!
   552       break;
   554     case 0x70: // pshufd r, r/a, #8
   555       debug_only(has_disp32 = true); // has both kinds of operands!
   556     case 0x73: // psrldq r, #8
   557       tail_size = 1;
   558       break;
   560     case 0x12: // movlps
   561     case 0x28: // movaps
   562     case 0x2E: // ucomiss
   563     case 0x2F: // comiss
   564     case 0x54: // andps
   565     case 0x55: // andnps
   566     case 0x56: // orps
   567     case 0x57: // xorps
   568     case 0x6E: // movd
   569     case 0x7E: // movd
   570     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
   571       debug_only(has_disp32 = true);
   572       break;
   574     case 0xAD: // shrd r, a, %cl
   575     case 0xAF: // imul r, a
   576     case 0xBE: // movsbl r, a (movsxb)
   577     case 0xBF: // movswl r, a (movsxw)
   578     case 0xB6: // movzbl r, a (movzxb)
   579     case 0xB7: // movzwl r, a (movzxw)
   580     case REP16(0x40): // cmovl cc, r, a
   581     case 0xB0: // cmpxchgb
   582     case 0xB1: // cmpxchg
   583     case 0xC1: // xaddl
   584     case 0xC7: // cmpxchg8
   585     case REP16(0x90): // setcc a
   586       debug_only(has_disp32 = true);
   587       // fall out of the switch to decode the address
   588       break;
   590     case 0xC4: // pinsrw r, a, #8
   591       debug_only(has_disp32 = true);
   592     case 0xC5: // pextrw r, r, #8
   593       tail_size = 1;  // the imm8
   594       break;
   596     case 0xAC: // shrd r, a, #8
   597       debug_only(has_disp32 = true);
   598       tail_size = 1;  // the imm8
   599       break;
   601     case REP16(0x80): // jcc rdisp32
   602       if (which == end_pc_operand)  return ip + 4;
   603       assert(which == call32_operand, "jcc has no disp32 or imm");
   604       return ip;
   605     default:
   606       ShouldNotReachHere();
   607     }
   608     break;
   610   case 0x81: // addl a, #32; addl r, #32
   611     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   612     // on 32bit in the case of cmpl, the imm might be an oop
   613     tail_size = 4;
   614     debug_only(has_disp32 = true); // has both kinds of operands!
   615     break;
   617   case 0x83: // addl a, #8; addl r, #8
   618     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   619     debug_only(has_disp32 = true); // has both kinds of operands!
   620     tail_size = 1;
   621     break;
   623   case 0x9B:
   624     switch (0xFF & *ip++) {
   625     case 0xD9: // fnstcw a
   626       debug_only(has_disp32 = true);
   627       break;
   628     default:
   629       ShouldNotReachHere();
   630     }
   631     break;
   633   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
   634   case REP4(0x10): // adc...
   635   case REP4(0x20): // and...
   636   case REP4(0x30): // xor...
   637   case REP4(0x08): // or...
   638   case REP4(0x18): // sbb...
   639   case REP4(0x28): // sub...
   640   case 0xF7: // mull a
   641   case 0x8D: // lea r, a
   642   case 0x87: // xchg r, a
   643   case REP4(0x38): // cmp...
   644   case 0x85: // test r, a
   645     debug_only(has_disp32 = true); // has both kinds of operands!
   646     break;
   648   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
   649   case 0xC6: // movb a, #8
   650   case 0x80: // cmpb a, #8
   651   case 0x6B: // imul r, a, #8
   652     debug_only(has_disp32 = true); // has both kinds of operands!
   653     tail_size = 1; // the imm8
   654     break;
   656   case 0xC4: // VEX_3bytes
   657   case 0xC5: // VEX_2bytes
   658     assert((UseAVX > 0), "shouldn't have VEX prefix");
   659     assert(ip == inst+1, "no prefixes allowed");
   660     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
   661     // but they have prefix 0x0F and processed when 0x0F processed above.
   662     //
   663     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
   664     // instructions (these instructions are not supported in 64-bit mode).
   665     // To distinguish them bits [7:6] are set in the VEX second byte since
   666     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
   667     // those VEX bits REX and vvvv bits are inverted.
   668     //
   669     // Fortunately C2 doesn't generate these instructions so we don't need
   670     // to check for them in product version.
   672     // Check second byte
   673     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
   675     // First byte
   676     if ((0xFF & *inst) == VEX_3bytes) {
   677       ip++; // third byte
   678       is_64bit = ((VEX_W & *ip) == VEX_W);
   679     }
   680     ip++; // opcode
   681     // To find the end of instruction (which == end_pc_operand).
   682     switch (0xFF & *ip) {
   683     case 0x61: // pcmpestri r, r/a, #8
   684     case 0x70: // pshufd r, r/a, #8
   685     case 0x73: // psrldq r, #8
   686       tail_size = 1;  // the imm8
   687       break;
   688     default:
   689       break;
   690     }
   691     ip++; // skip opcode
   692     debug_only(has_disp32 = true); // has both kinds of operands!
   693     break;
   695   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
   696   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
   697   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
   698   case 0xDD: // fld_d a; fst_d a; fstp_d a
   699   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
   700   case 0xDF: // fild_d a; fistp_d a
   701   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
   702   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
   703   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
   704     debug_only(has_disp32 = true);
   705     break;
   707   case 0xE8: // call rdisp32
   708   case 0xE9: // jmp  rdisp32
   709     if (which == end_pc_operand)  return ip + 4;
   710     assert(which == call32_operand, "call has no disp32 or imm");
   711     return ip;
   713   case 0xF0:                    // Lock
   714     assert(os::is_MP(), "only on MP");
   715     goto again_after_prefix;
   717   case 0xF3:                    // For SSE
   718   case 0xF2:                    // For SSE2
   719     switch (0xFF & *ip++) {
   720     case REX:
   721     case REX_B:
   722     case REX_X:
   723     case REX_XB:
   724     case REX_R:
   725     case REX_RB:
   726     case REX_RX:
   727     case REX_RXB:
   728     case REX_W:
   729     case REX_WB:
   730     case REX_WX:
   731     case REX_WXB:
   732     case REX_WR:
   733     case REX_WRB:
   734     case REX_WRX:
   735     case REX_WRXB:
   736       NOT_LP64(assert(false, "found 64bit prefix"));
   737       ip++;
   738     default:
   739       ip++;
   740     }
   741     debug_only(has_disp32 = true); // has both kinds of operands!
   742     break;
   744   default:
   745     ShouldNotReachHere();
   747 #undef REP8
   748 #undef REP16
   749   }
   751   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
   752 #ifdef _LP64
   753   assert(which != imm_operand, "instruction is not a movq reg, imm64");
   754 #else
   755   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
   756   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
   757 #endif // LP64
   758   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
   760   // parse the output of emit_operand
   761   int op2 = 0xFF & *ip++;
   762   int base = op2 & 0x07;
   763   int op3 = -1;
   764   const int b100 = 4;
   765   const int b101 = 5;
   766   if (base == b100 && (op2 >> 6) != 3) {
   767     op3 = 0xFF & *ip++;
   768     base = op3 & 0x07;   // refetch the base
   769   }
   770   // now ip points at the disp (if any)
   772   switch (op2 >> 6) {
   773   case 0:
   774     // [00 reg  100][ss index base]
   775     // [00 reg  100][00   100  esp]
   776     // [00 reg base]
   777     // [00 reg  100][ss index  101][disp32]
   778     // [00 reg  101]               [disp32]
   780     if (base == b101) {
   781       if (which == disp32_operand)
   782         return ip;              // caller wants the disp32
   783       ip += 4;                  // skip the disp32
   784     }
   785     break;
   787   case 1:
   788     // [01 reg  100][ss index base][disp8]
   789     // [01 reg  100][00   100  esp][disp8]
   790     // [01 reg base]               [disp8]
   791     ip += 1;                    // skip the disp8
   792     break;
   794   case 2:
   795     // [10 reg  100][ss index base][disp32]
   796     // [10 reg  100][00   100  esp][disp32]
   797     // [10 reg base]               [disp32]
   798     if (which == disp32_operand)
   799       return ip;                // caller wants the disp32
   800     ip += 4;                    // skip the disp32
   801     break;
   803   case 3:
   804     // [11 reg base]  (not a memory addressing mode)
   805     break;
   806   }
   808   if (which == end_pc_operand) {
   809     return ip + tail_size;
   810   }
   812 #ifdef _LP64
   813   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
   814 #else
   815   assert(which == imm_operand, "instruction has only an imm field");
   816 #endif // LP64
   817   return ip;
   818 }
   820 address Assembler::locate_next_instruction(address inst) {
   821   // Secretly share code with locate_operand:
   822   return locate_operand(inst, end_pc_operand);
   823 }
   826 #ifdef ASSERT
   827 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
   828   address inst = inst_mark();
   829   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
   830   address opnd;
   832   Relocation* r = rspec.reloc();
   833   if (r->type() == relocInfo::none) {
   834     return;
   835   } else if (r->is_call() || format == call32_operand) {
   836     // assert(format == imm32_operand, "cannot specify a nonzero format");
   837     opnd = locate_operand(inst, call32_operand);
   838   } else if (r->is_data()) {
   839     assert(format == imm_operand || format == disp32_operand
   840            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
   841     opnd = locate_operand(inst, (WhichOperand)format);
   842   } else {
   843     assert(format == imm_operand, "cannot specify a format");
   844     return;
   845   }
   846   assert(opnd == pc(), "must put operand where relocs can find it");
   847 }
   848 #endif // ASSERT
   850 void Assembler::emit_operand32(Register reg, Address adr) {
   851   assert(reg->encoding() < 8, "no extended registers");
   852   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   853   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   854                adr._rspec);
   855 }
   857 void Assembler::emit_operand(Register reg, Address adr,
   858                              int rip_relative_correction) {
   859   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   860                adr._rspec,
   861                rip_relative_correction);
   862 }
   864 void Assembler::emit_operand(XMMRegister reg, Address adr) {
   865   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   866                adr._rspec);
   867 }
   869 // MMX operations
   870 void Assembler::emit_operand(MMXRegister reg, Address adr) {
   871   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   872   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   873 }
   875 // work around gcc (3.2.1-7a) bug
   876 void Assembler::emit_operand(Address adr, MMXRegister reg) {
   877   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   878   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   879 }
   882 void Assembler::emit_farith(int b1, int b2, int i) {
   883   assert(isByte(b1) && isByte(b2), "wrong opcode");
   884   assert(0 <= i &&  i < 8, "illegal stack offset");
   885   emit_byte(b1);
   886   emit_byte(b2 + i);
   887 }
   890 // Now the Assembler instructions (identical for 32/64 bits)
   892 void Assembler::adcl(Address dst, int32_t imm32) {
   893   InstructionMark im(this);
   894   prefix(dst);
   895   emit_arith_operand(0x81, rdx, dst, imm32);
   896 }
   898 void Assembler::adcl(Address dst, Register src) {
   899   InstructionMark im(this);
   900   prefix(dst, src);
   901   emit_byte(0x11);
   902   emit_operand(src, dst);
   903 }
   905 void Assembler::adcl(Register dst, int32_t imm32) {
   906   prefix(dst);
   907   emit_arith(0x81, 0xD0, dst, imm32);
   908 }
   910 void Assembler::adcl(Register dst, Address src) {
   911   InstructionMark im(this);
   912   prefix(src, dst);
   913   emit_byte(0x13);
   914   emit_operand(dst, src);
   915 }
   917 void Assembler::adcl(Register dst, Register src) {
   918   (void) prefix_and_encode(dst->encoding(), src->encoding());
   919   emit_arith(0x13, 0xC0, dst, src);
   920 }
   922 void Assembler::addl(Address dst, int32_t imm32) {
   923   InstructionMark im(this);
   924   prefix(dst);
   925   emit_arith_operand(0x81, rax, dst, imm32);
   926 }
   928 void Assembler::addl(Address dst, Register src) {
   929   InstructionMark im(this);
   930   prefix(dst, src);
   931   emit_byte(0x01);
   932   emit_operand(src, dst);
   933 }
   935 void Assembler::addl(Register dst, int32_t imm32) {
   936   prefix(dst);
   937   emit_arith(0x81, 0xC0, dst, imm32);
   938 }
   940 void Assembler::addl(Register dst, Address src) {
   941   InstructionMark im(this);
   942   prefix(src, dst);
   943   emit_byte(0x03);
   944   emit_operand(dst, src);
   945 }
   947 void Assembler::addl(Register dst, Register src) {
   948   (void) prefix_and_encode(dst->encoding(), src->encoding());
   949   emit_arith(0x03, 0xC0, dst, src);
   950 }
   952 void Assembler::addr_nop_4() {
   953   assert(UseAddressNop, "no CPU support");
   954   // 4 bytes: NOP DWORD PTR [EAX+0]
   955   emit_byte(0x0F);
   956   emit_byte(0x1F);
   957   emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
   958   emit_byte(0);    // 8-bits offset (1 byte)
   959 }
   961 void Assembler::addr_nop_5() {
   962   assert(UseAddressNop, "no CPU support");
   963   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
   964   emit_byte(0x0F);
   965   emit_byte(0x1F);
   966   emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
   967   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   968   emit_byte(0);    // 8-bits offset (1 byte)
   969 }
   971 void Assembler::addr_nop_7() {
   972   assert(UseAddressNop, "no CPU support");
   973   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
   974   emit_byte(0x0F);
   975   emit_byte(0x1F);
   976   emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
   977   emit_long(0);    // 32-bits offset (4 bytes)
   978 }
   980 void Assembler::addr_nop_8() {
   981   assert(UseAddressNop, "no CPU support");
   982   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
   983   emit_byte(0x0F);
   984   emit_byte(0x1F);
   985   emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
   986   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   987   emit_long(0);    // 32-bits offset (4 bytes)
   988 }
   990 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
   991   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   992   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
   993 }
   995 void Assembler::addsd(XMMRegister dst, Address src) {
   996   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   997   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
   998 }
  1000 void Assembler::addss(XMMRegister dst, XMMRegister src) {
  1001   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1002   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
  1005 void Assembler::addss(XMMRegister dst, Address src) {
  1006   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1007   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
  1010 void Assembler::andl(Address dst, int32_t imm32) {
  1011   InstructionMark im(this);
  1012   prefix(dst);
  1013   emit_byte(0x81);
  1014   emit_operand(rsp, dst, 4);
  1015   emit_long(imm32);
  1018 void Assembler::andl(Register dst, int32_t imm32) {
  1019   prefix(dst);
  1020   emit_arith(0x81, 0xE0, dst, imm32);
  1023 void Assembler::andl(Register dst, Address src) {
  1024   InstructionMark im(this);
  1025   prefix(src, dst);
  1026   emit_byte(0x23);
  1027   emit_operand(dst, src);
  1030 void Assembler::andl(Register dst, Register src) {
  1031   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1032   emit_arith(0x23, 0xC0, dst, src);
  1035 void Assembler::bsfl(Register dst, Register src) {
  1036   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1037   emit_byte(0x0F);
  1038   emit_byte(0xBC);
  1039   emit_byte(0xC0 | encode);
  1042 void Assembler::bsrl(Register dst, Register src) {
  1043   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  1044   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1045   emit_byte(0x0F);
  1046   emit_byte(0xBD);
  1047   emit_byte(0xC0 | encode);
  1050 void Assembler::bswapl(Register reg) { // bswap
  1051   int encode = prefix_and_encode(reg->encoding());
  1052   emit_byte(0x0F);
  1053   emit_byte(0xC8 | encode);
  1056 void Assembler::call(Label& L, relocInfo::relocType rtype) {
  1057   // suspect disp32 is always good
  1058   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
  1060   if (L.is_bound()) {
  1061     const int long_size = 5;
  1062     int offs = (int)( target(L) - pc() );
  1063     assert(offs <= 0, "assembler error");
  1064     InstructionMark im(this);
  1065     // 1110 1000 #32-bit disp
  1066     emit_byte(0xE8);
  1067     emit_data(offs - long_size, rtype, operand);
  1068   } else {
  1069     InstructionMark im(this);
  1070     // 1110 1000 #32-bit disp
  1071     L.add_patch_at(code(), locator());
  1073     emit_byte(0xE8);
  1074     emit_data(int(0), rtype, operand);
  1078 void Assembler::call(Register dst) {
  1079   int encode = prefix_and_encode(dst->encoding());
  1080   emit_byte(0xFF);
  1081   emit_byte(0xD0 | encode);
  1085 void Assembler::call(Address adr) {
  1086   InstructionMark im(this);
  1087   prefix(adr);
  1088   emit_byte(0xFF);
  1089   emit_operand(rdx, adr);
  1092 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
  1093   assert(entry != NULL, "call most probably wrong");
  1094   InstructionMark im(this);
  1095   emit_byte(0xE8);
  1096   intptr_t disp = entry - (_code_pos + sizeof(int32_t));
  1097   assert(is_simm32(disp), "must be 32bit offset (call2)");
  1098   // Technically, should use call32_operand, but this format is
  1099   // implied by the fact that we're emitting a call instruction.
  1101   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
  1102   emit_data((int) disp, rspec, operand);
  1105 void Assembler::cdql() {
  1106   emit_byte(0x99);
  1109 void Assembler::cmovl(Condition cc, Register dst, Register src) {
  1110   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1111   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1112   emit_byte(0x0F);
  1113   emit_byte(0x40 | cc);
  1114   emit_byte(0xC0 | encode);
  1118 void Assembler::cmovl(Condition cc, Register dst, Address src) {
  1119   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1120   prefix(src, dst);
  1121   emit_byte(0x0F);
  1122   emit_byte(0x40 | cc);
  1123   emit_operand(dst, src);
  1126 void Assembler::cmpb(Address dst, int imm8) {
  1127   InstructionMark im(this);
  1128   prefix(dst);
  1129   emit_byte(0x80);
  1130   emit_operand(rdi, dst, 1);
  1131   emit_byte(imm8);
  1134 void Assembler::cmpl(Address dst, int32_t imm32) {
  1135   InstructionMark im(this);
  1136   prefix(dst);
  1137   emit_byte(0x81);
  1138   emit_operand(rdi, dst, 4);
  1139   emit_long(imm32);
  1142 void Assembler::cmpl(Register dst, int32_t imm32) {
  1143   prefix(dst);
  1144   emit_arith(0x81, 0xF8, dst, imm32);
  1147 void Assembler::cmpl(Register dst, Register src) {
  1148   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1149   emit_arith(0x3B, 0xC0, dst, src);
  1153 void Assembler::cmpl(Register dst, Address  src) {
  1154   InstructionMark im(this);
  1155   prefix(src, dst);
  1156   emit_byte(0x3B);
  1157   emit_operand(dst, src);
  1160 void Assembler::cmpw(Address dst, int imm16) {
  1161   InstructionMark im(this);
  1162   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
  1163   emit_byte(0x66);
  1164   emit_byte(0x81);
  1165   emit_operand(rdi, dst, 2);
  1166   emit_word(imm16);
  1169 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
  1170 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
  1171 // The ZF is set if the compared values were equal, and cleared otherwise.
  1172 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
  1173   if (Atomics & 2) {
  1174      // caveat: no instructionmark, so this isn't relocatable.
  1175      // Emit a synthetic, non-atomic, CAS equivalent.
  1176      // Beware.  The synthetic form sets all ICCs, not just ZF.
  1177      // cmpxchg r,[m] is equivalent to rax, = CAS (m, rax, r)
  1178      cmpl(rax, adr);
  1179      movl(rax, adr);
  1180      if (reg != rax) {
  1181         Label L ;
  1182         jcc(Assembler::notEqual, L);
  1183         movl(adr, reg);
  1184         bind(L);
  1186   } else {
  1187      InstructionMark im(this);
  1188      prefix(adr, reg);
  1189      emit_byte(0x0F);
  1190      emit_byte(0xB1);
  1191      emit_operand(reg, adr);
  1195 void Assembler::comisd(XMMRegister dst, Address src) {
  1196   // NOTE: dbx seems to decode this as comiss even though the
  1197   // 0x66 is there. Strangly ucomisd comes out correct
  1198   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1199   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
  1202 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
  1203   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1204   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
  1207 void Assembler::comiss(XMMRegister dst, Address src) {
  1208   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1209   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
  1212 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
  1213   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1214   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
  1217 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
  1218   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1219   emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3);
  1222 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
  1223   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1224   emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE);
  1227 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
  1228   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1229   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
  1232 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
  1233   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1234   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
  1237 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
  1238   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1239   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1240   emit_byte(0x2A);
  1241   emit_byte(0xC0 | encode);
  1244 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
  1245   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1246   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2);
  1249 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
  1250   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1251   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1252   emit_byte(0x2A);
  1253   emit_byte(0xC0 | encode);
  1256 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
  1257   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1258   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3);
  1261 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
  1262   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1263   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
  1266 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
  1267   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1268   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
  1272 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
  1273   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1274   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
  1275   emit_byte(0x2C);
  1276   emit_byte(0xC0 | encode);
  1279 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
  1280   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1281   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
  1282   emit_byte(0x2C);
  1283   emit_byte(0xC0 | encode);
  1286 void Assembler::decl(Address dst) {
  1287   // Don't use it directly. Use MacroAssembler::decrement() instead.
  1288   InstructionMark im(this);
  1289   prefix(dst);
  1290   emit_byte(0xFF);
  1291   emit_operand(rcx, dst);
  1294 void Assembler::divsd(XMMRegister dst, Address src) {
  1295   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1296   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
  1299 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
  1300   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1301   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
  1304 void Assembler::divss(XMMRegister dst, Address src) {
  1305   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1306   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
  1309 void Assembler::divss(XMMRegister dst, XMMRegister src) {
  1310   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1311   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
  1314 void Assembler::emms() {
  1315   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
  1316   emit_byte(0x0F);
  1317   emit_byte(0x77);
  1320 void Assembler::hlt() {
  1321   emit_byte(0xF4);
  1324 void Assembler::idivl(Register src) {
  1325   int encode = prefix_and_encode(src->encoding());
  1326   emit_byte(0xF7);
  1327   emit_byte(0xF8 | encode);
  1330 void Assembler::divl(Register src) { // Unsigned
  1331   int encode = prefix_and_encode(src->encoding());
  1332   emit_byte(0xF7);
  1333   emit_byte(0xF0 | encode);
  1336 void Assembler::imull(Register dst, Register src) {
  1337   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1338   emit_byte(0x0F);
  1339   emit_byte(0xAF);
  1340   emit_byte(0xC0 | encode);
  1344 void Assembler::imull(Register dst, Register src, int value) {
  1345   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1346   if (is8bit(value)) {
  1347     emit_byte(0x6B);
  1348     emit_byte(0xC0 | encode);
  1349     emit_byte(value & 0xFF);
  1350   } else {
  1351     emit_byte(0x69);
  1352     emit_byte(0xC0 | encode);
  1353     emit_long(value);
  1357 void Assembler::incl(Address dst) {
  1358   // Don't use it directly. Use MacroAssembler::increment() instead.
  1359   InstructionMark im(this);
  1360   prefix(dst);
  1361   emit_byte(0xFF);
  1362   emit_operand(rax, dst);
  1365 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
  1366   InstructionMark im(this);
  1367   assert((0 <= cc) && (cc < 16), "illegal cc");
  1368   if (L.is_bound()) {
  1369     address dst = target(L);
  1370     assert(dst != NULL, "jcc most probably wrong");
  1372     const int short_size = 2;
  1373     const int long_size = 6;
  1374     intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos;
  1375     if (maybe_short && is8bit(offs - short_size)) {
  1376       // 0111 tttn #8-bit disp
  1377       emit_byte(0x70 | cc);
  1378       emit_byte((offs - short_size) & 0xFF);
  1379     } else {
  1380       // 0000 1111 1000 tttn #32-bit disp
  1381       assert(is_simm32(offs - long_size),
  1382              "must be 32bit offset (call4)");
  1383       emit_byte(0x0F);
  1384       emit_byte(0x80 | cc);
  1385       emit_long(offs - long_size);
  1387   } else {
  1388     // Note: could eliminate cond. jumps to this jump if condition
  1389     //       is the same however, seems to be rather unlikely case.
  1390     // Note: use jccb() if label to be bound is very close to get
  1391     //       an 8-bit displacement
  1392     L.add_patch_at(code(), locator());
  1393     emit_byte(0x0F);
  1394     emit_byte(0x80 | cc);
  1395     emit_long(0);
  1399 void Assembler::jccb(Condition cc, Label& L) {
  1400   if (L.is_bound()) {
  1401     const int short_size = 2;
  1402     address entry = target(L);
  1403 #ifdef ASSERT
  1404     intptr_t dist = (intptr_t)entry - ((intptr_t)_code_pos + short_size);
  1405     intptr_t delta = short_branch_delta();
  1406     if (delta != 0) {
  1407       dist += (dist < 0 ? (-delta) :delta);
  1409     assert(is8bit(dist), "Dispacement too large for a short jmp");
  1410 #endif
  1411     intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
  1412     // 0111 tttn #8-bit disp
  1413     emit_byte(0x70 | cc);
  1414     emit_byte((offs - short_size) & 0xFF);
  1415   } else {
  1416     InstructionMark im(this);
  1417     L.add_patch_at(code(), locator());
  1418     emit_byte(0x70 | cc);
  1419     emit_byte(0);
  1423 void Assembler::jmp(Address adr) {
  1424   InstructionMark im(this);
  1425   prefix(adr);
  1426   emit_byte(0xFF);
  1427   emit_operand(rsp, adr);
  1430 void Assembler::jmp(Label& L, bool maybe_short) {
  1431   if (L.is_bound()) {
  1432     address entry = target(L);
  1433     assert(entry != NULL, "jmp most probably wrong");
  1434     InstructionMark im(this);
  1435     const int short_size = 2;
  1436     const int long_size = 5;
  1437     intptr_t offs = entry - _code_pos;
  1438     if (maybe_short && is8bit(offs - short_size)) {
  1439       emit_byte(0xEB);
  1440       emit_byte((offs - short_size) & 0xFF);
  1441     } else {
  1442       emit_byte(0xE9);
  1443       emit_long(offs - long_size);
  1445   } else {
  1446     // By default, forward jumps are always 32-bit displacements, since
  1447     // we can't yet know where the label will be bound.  If you're sure that
  1448     // the forward jump will not run beyond 256 bytes, use jmpb to
  1449     // force an 8-bit displacement.
  1450     InstructionMark im(this);
  1451     L.add_patch_at(code(), locator());
  1452     emit_byte(0xE9);
  1453     emit_long(0);
  1457 void Assembler::jmp(Register entry) {
  1458   int encode = prefix_and_encode(entry->encoding());
  1459   emit_byte(0xFF);
  1460   emit_byte(0xE0 | encode);
  1463 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
  1464   InstructionMark im(this);
  1465   emit_byte(0xE9);
  1466   assert(dest != NULL, "must have a target");
  1467   intptr_t disp = dest - (_code_pos + sizeof(int32_t));
  1468   assert(is_simm32(disp), "must be 32bit offset (jmp)");
  1469   emit_data(disp, rspec.reloc(), call32_operand);
  1472 void Assembler::jmpb(Label& L) {
  1473   if (L.is_bound()) {
  1474     const int short_size = 2;
  1475     address entry = target(L);
  1476     assert(entry != NULL, "jmp most probably wrong");
  1477 #ifdef ASSERT
  1478     intptr_t dist = (intptr_t)entry - ((intptr_t)_code_pos + short_size);
  1479     intptr_t delta = short_branch_delta();
  1480     if (delta != 0) {
  1481       dist += (dist < 0 ? (-delta) :delta);
  1483     assert(is8bit(dist), "Dispacement too large for a short jmp");
  1484 #endif
  1485     intptr_t offs = entry - _code_pos;
  1486     emit_byte(0xEB);
  1487     emit_byte((offs - short_size) & 0xFF);
  1488   } else {
  1489     InstructionMark im(this);
  1490     L.add_patch_at(code(), locator());
  1491     emit_byte(0xEB);
  1492     emit_byte(0);
  1496 void Assembler::ldmxcsr( Address src) {
  1497   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1498   InstructionMark im(this);
  1499   prefix(src);
  1500   emit_byte(0x0F);
  1501   emit_byte(0xAE);
  1502   emit_operand(as_Register(2), src);
  1505 void Assembler::leal(Register dst, Address src) {
  1506   InstructionMark im(this);
  1507 #ifdef _LP64
  1508   emit_byte(0x67); // addr32
  1509   prefix(src, dst);
  1510 #endif // LP64
  1511   emit_byte(0x8D);
  1512   emit_operand(dst, src);
  1515 void Assembler::lock() {
  1516   if (Atomics & 1) {
  1517      // Emit either nothing, a NOP, or a NOP: prefix
  1518      emit_byte(0x90) ;
  1519   } else {
  1520      emit_byte(0xF0);
  1524 void Assembler::lzcntl(Register dst, Register src) {
  1525   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  1526   emit_byte(0xF3);
  1527   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1528   emit_byte(0x0F);
  1529   emit_byte(0xBD);
  1530   emit_byte(0xC0 | encode);
  1533 // Emit mfence instruction
  1534 void Assembler::mfence() {
  1535   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
  1536   emit_byte( 0x0F );
  1537   emit_byte( 0xAE );
  1538   emit_byte( 0xF0 );
  1541 void Assembler::mov(Register dst, Register src) {
  1542   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  1545 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
  1546   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1547   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_66);
  1550 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
  1551   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1552   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE);
  1555 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
  1556   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1557   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE);
  1558   emit_byte(0x16);
  1559   emit_byte(0xC0 | encode);
  1562 void Assembler::movb(Register dst, Address src) {
  1563   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  1564   InstructionMark im(this);
  1565   prefix(src, dst, true);
  1566   emit_byte(0x8A);
  1567   emit_operand(dst, src);
  1571 void Assembler::movb(Address dst, int imm8) {
  1572   InstructionMark im(this);
  1573    prefix(dst);
  1574   emit_byte(0xC6);
  1575   emit_operand(rax, dst, 1);
  1576   emit_byte(imm8);
  1580 void Assembler::movb(Address dst, Register src) {
  1581   assert(src->has_byte_register(), "must have byte register");
  1582   InstructionMark im(this);
  1583   prefix(dst, src, true);
  1584   emit_byte(0x88);
  1585   emit_operand(src, dst);
  1588 void Assembler::movdl(XMMRegister dst, Register src) {
  1589   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1590   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  1591   emit_byte(0x6E);
  1592   emit_byte(0xC0 | encode);
  1595 void Assembler::movdl(Register dst, XMMRegister src) {
  1596   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1597   // swap src/dst to get correct prefix
  1598   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66);
  1599   emit_byte(0x7E);
  1600   emit_byte(0xC0 | encode);
  1603 void Assembler::movdl(XMMRegister dst, Address src) {
  1604   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1605   InstructionMark im(this);
  1606   simd_prefix(dst, src, VEX_SIMD_66);
  1607   emit_byte(0x6E);
  1608   emit_operand(dst, src);
  1611 void Assembler::movdl(Address dst, XMMRegister src) {
  1612   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1613   InstructionMark im(this);
  1614   simd_prefix(dst, src, VEX_SIMD_66);
  1615   emit_byte(0x7E);
  1616   emit_operand(src, dst);
  1619 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
  1620   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1621   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
  1624 void Assembler::movdqu(XMMRegister dst, Address src) {
  1625   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1626   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
  1629 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
  1630   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1631   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
  1634 void Assembler::movdqu(Address dst, XMMRegister src) {
  1635   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1636   InstructionMark im(this);
  1637   simd_prefix(dst, src, VEX_SIMD_F3);
  1638   emit_byte(0x7F);
  1639   emit_operand(src, dst);
  1642 // Move Unaligned 256bit Vector
  1643 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
  1644   assert(UseAVX, "");
  1645   bool vector256 = true;
  1646   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector256);
  1647   emit_byte(0x6F);
  1648   emit_byte(0xC0 | encode);
  1651 void Assembler::vmovdqu(XMMRegister dst, Address src) {
  1652   assert(UseAVX, "");
  1653   InstructionMark im(this);
  1654   bool vector256 = true;
  1655   vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector256);
  1656   emit_byte(0x6F);
  1657   emit_operand(dst, src);
  1660 void Assembler::vmovdqu(Address dst, XMMRegister src) {
  1661   assert(UseAVX, "");
  1662   InstructionMark im(this);
  1663   bool vector256 = true;
  1664   // swap src<->dst for encoding
  1665   assert(src != xnoreg, "sanity");
  1666   vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector256);
  1667   emit_byte(0x7F);
  1668   emit_operand(src, dst);
  1671 // Uses zero extension on 64bit
  1673 void Assembler::movl(Register dst, int32_t imm32) {
  1674   int encode = prefix_and_encode(dst->encoding());
  1675   emit_byte(0xB8 | encode);
  1676   emit_long(imm32);
  1679 void Assembler::movl(Register dst, Register src) {
  1680   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1681   emit_byte(0x8B);
  1682   emit_byte(0xC0 | encode);
  1685 void Assembler::movl(Register dst, Address src) {
  1686   InstructionMark im(this);
  1687   prefix(src, dst);
  1688   emit_byte(0x8B);
  1689   emit_operand(dst, src);
  1692 void Assembler::movl(Address dst, int32_t imm32) {
  1693   InstructionMark im(this);
  1694   prefix(dst);
  1695   emit_byte(0xC7);
  1696   emit_operand(rax, dst, 4);
  1697   emit_long(imm32);
  1700 void Assembler::movl(Address dst, Register src) {
  1701   InstructionMark im(this);
  1702   prefix(dst, src);
  1703   emit_byte(0x89);
  1704   emit_operand(src, dst);
  1707 // New cpus require to use movsd and movss to avoid partial register stall
  1708 // when loading from memory. But for old Opteron use movlpd instead of movsd.
  1709 // The selection is done in MacroAssembler::movdbl() and movflt().
  1710 void Assembler::movlpd(XMMRegister dst, Address src) {
  1711   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1712   emit_simd_arith(0x12, dst, src, VEX_SIMD_66);
  1715 void Assembler::movq( MMXRegister dst, Address src ) {
  1716   assert( VM_Version::supports_mmx(), "" );
  1717   emit_byte(0x0F);
  1718   emit_byte(0x6F);
  1719   emit_operand(dst, src);
  1722 void Assembler::movq( Address dst, MMXRegister src ) {
  1723   assert( VM_Version::supports_mmx(), "" );
  1724   emit_byte(0x0F);
  1725   emit_byte(0x7F);
  1726   // workaround gcc (3.2.1-7a) bug
  1727   // In that version of gcc with only an emit_operand(MMX, Address)
  1728   // gcc will tail jump and try and reverse the parameters completely
  1729   // obliterating dst in the process. By having a version available
  1730   // that doesn't need to swap the args at the tail jump the bug is
  1731   // avoided.
  1732   emit_operand(dst, src);
  1735 void Assembler::movq(XMMRegister dst, Address src) {
  1736   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1737   InstructionMark im(this);
  1738   simd_prefix(dst, src, VEX_SIMD_F3);
  1739   emit_byte(0x7E);
  1740   emit_operand(dst, src);
  1743 void Assembler::movq(Address dst, XMMRegister src) {
  1744   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1745   InstructionMark im(this);
  1746   simd_prefix(dst, src, VEX_SIMD_66);
  1747   emit_byte(0xD6);
  1748   emit_operand(src, dst);
  1751 void Assembler::movsbl(Register dst, Address src) { // movsxb
  1752   InstructionMark im(this);
  1753   prefix(src, dst);
  1754   emit_byte(0x0F);
  1755   emit_byte(0xBE);
  1756   emit_operand(dst, src);
  1759 void Assembler::movsbl(Register dst, Register src) { // movsxb
  1760   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1761   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1762   emit_byte(0x0F);
  1763   emit_byte(0xBE);
  1764   emit_byte(0xC0 | encode);
  1767 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
  1768   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1769   emit_simd_arith(0x10, dst, src, VEX_SIMD_F2);
  1772 void Assembler::movsd(XMMRegister dst, Address src) {
  1773   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1774   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F2);
  1777 void Assembler::movsd(Address dst, XMMRegister src) {
  1778   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1779   InstructionMark im(this);
  1780   simd_prefix(dst, src, VEX_SIMD_F2);
  1781   emit_byte(0x11);
  1782   emit_operand(src, dst);
  1785 void Assembler::movss(XMMRegister dst, XMMRegister src) {
  1786   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1787   emit_simd_arith(0x10, dst, src, VEX_SIMD_F3);
  1790 void Assembler::movss(XMMRegister dst, Address src) {
  1791   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1792   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3);
  1795 void Assembler::movss(Address dst, XMMRegister src) {
  1796   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1797   InstructionMark im(this);
  1798   simd_prefix(dst, src, VEX_SIMD_F3);
  1799   emit_byte(0x11);
  1800   emit_operand(src, dst);
  1803 void Assembler::movswl(Register dst, Address src) { // movsxw
  1804   InstructionMark im(this);
  1805   prefix(src, dst);
  1806   emit_byte(0x0F);
  1807   emit_byte(0xBF);
  1808   emit_operand(dst, src);
  1811 void Assembler::movswl(Register dst, Register src) { // movsxw
  1812   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1813   emit_byte(0x0F);
  1814   emit_byte(0xBF);
  1815   emit_byte(0xC0 | encode);
  1818 void Assembler::movw(Address dst, int imm16) {
  1819   InstructionMark im(this);
  1821   emit_byte(0x66); // switch to 16-bit mode
  1822   prefix(dst);
  1823   emit_byte(0xC7);
  1824   emit_operand(rax, dst, 2);
  1825   emit_word(imm16);
  1828 void Assembler::movw(Register dst, Address src) {
  1829   InstructionMark im(this);
  1830   emit_byte(0x66);
  1831   prefix(src, dst);
  1832   emit_byte(0x8B);
  1833   emit_operand(dst, src);
  1836 void Assembler::movw(Address dst, Register src) {
  1837   InstructionMark im(this);
  1838   emit_byte(0x66);
  1839   prefix(dst, src);
  1840   emit_byte(0x89);
  1841   emit_operand(src, dst);
  1844 void Assembler::movzbl(Register dst, Address src) { // movzxb
  1845   InstructionMark im(this);
  1846   prefix(src, dst);
  1847   emit_byte(0x0F);
  1848   emit_byte(0xB6);
  1849   emit_operand(dst, src);
  1852 void Assembler::movzbl(Register dst, Register src) { // movzxb
  1853   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1854   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1855   emit_byte(0x0F);
  1856   emit_byte(0xB6);
  1857   emit_byte(0xC0 | encode);
  1860 void Assembler::movzwl(Register dst, Address src) { // movzxw
  1861   InstructionMark im(this);
  1862   prefix(src, dst);
  1863   emit_byte(0x0F);
  1864   emit_byte(0xB7);
  1865   emit_operand(dst, src);
  1868 void Assembler::movzwl(Register dst, Register src) { // movzxw
  1869   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1870   emit_byte(0x0F);
  1871   emit_byte(0xB7);
  1872   emit_byte(0xC0 | encode);
  1875 void Assembler::mull(Address src) {
  1876   InstructionMark im(this);
  1877   prefix(src);
  1878   emit_byte(0xF7);
  1879   emit_operand(rsp, src);
  1882 void Assembler::mull(Register src) {
  1883   int encode = prefix_and_encode(src->encoding());
  1884   emit_byte(0xF7);
  1885   emit_byte(0xE0 | encode);
  1888 void Assembler::mulsd(XMMRegister dst, Address src) {
  1889   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1890   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
  1893 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
  1894   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1895   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
  1898 void Assembler::mulss(XMMRegister dst, Address src) {
  1899   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1900   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
  1903 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
  1904   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1905   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
  1908 void Assembler::negl(Register dst) {
  1909   int encode = prefix_and_encode(dst->encoding());
  1910   emit_byte(0xF7);
  1911   emit_byte(0xD8 | encode);
  1914 void Assembler::nop(int i) {
  1915 #ifdef ASSERT
  1916   assert(i > 0, " ");
  1917   // The fancy nops aren't currently recognized by debuggers making it a
  1918   // pain to disassemble code while debugging. If asserts are on clearly
  1919   // speed is not an issue so simply use the single byte traditional nop
  1920   // to do alignment.
  1922   for (; i > 0 ; i--) emit_byte(0x90);
  1923   return;
  1925 #endif // ASSERT
  1927   if (UseAddressNop && VM_Version::is_intel()) {
  1928     //
  1929     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
  1930     //  1: 0x90
  1931     //  2: 0x66 0x90
  1932     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  1933     //  4: 0x0F 0x1F 0x40 0x00
  1934     //  5: 0x0F 0x1F 0x44 0x00 0x00
  1935     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  1936     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  1937     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1938     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1939     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1940     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1942     // The rest coding is Intel specific - don't use consecutive address nops
  1944     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1945     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1946     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1947     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1949     while(i >= 15) {
  1950       // For Intel don't generate consecutive addess nops (mix with regular nops)
  1951       i -= 15;
  1952       emit_byte(0x66);   // size prefix
  1953       emit_byte(0x66);   // size prefix
  1954       emit_byte(0x66);   // size prefix
  1955       addr_nop_8();
  1956       emit_byte(0x66);   // size prefix
  1957       emit_byte(0x66);   // size prefix
  1958       emit_byte(0x66);   // size prefix
  1959       emit_byte(0x90);   // nop
  1961     switch (i) {
  1962       case 14:
  1963         emit_byte(0x66); // size prefix
  1964       case 13:
  1965         emit_byte(0x66); // size prefix
  1966       case 12:
  1967         addr_nop_8();
  1968         emit_byte(0x66); // size prefix
  1969         emit_byte(0x66); // size prefix
  1970         emit_byte(0x66); // size prefix
  1971         emit_byte(0x90); // nop
  1972         break;
  1973       case 11:
  1974         emit_byte(0x66); // size prefix
  1975       case 10:
  1976         emit_byte(0x66); // size prefix
  1977       case 9:
  1978         emit_byte(0x66); // size prefix
  1979       case 8:
  1980         addr_nop_8();
  1981         break;
  1982       case 7:
  1983         addr_nop_7();
  1984         break;
  1985       case 6:
  1986         emit_byte(0x66); // size prefix
  1987       case 5:
  1988         addr_nop_5();
  1989         break;
  1990       case 4:
  1991         addr_nop_4();
  1992         break;
  1993       case 3:
  1994         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  1995         emit_byte(0x66); // size prefix
  1996       case 2:
  1997         emit_byte(0x66); // size prefix
  1998       case 1:
  1999         emit_byte(0x90); // nop
  2000         break;
  2001       default:
  2002         assert(i == 0, " ");
  2004     return;
  2006   if (UseAddressNop && VM_Version::is_amd()) {
  2007     //
  2008     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
  2009     //  1: 0x90
  2010     //  2: 0x66 0x90
  2011     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2012     //  4: 0x0F 0x1F 0x40 0x00
  2013     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2014     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2015     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2016     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2017     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2018     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2019     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2021     // The rest coding is AMD specific - use consecutive address nops
  2023     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2024     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2025     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2026     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2027     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2028     //     Size prefixes (0x66) are added for larger sizes
  2030     while(i >= 22) {
  2031       i -= 11;
  2032       emit_byte(0x66); // size prefix
  2033       emit_byte(0x66); // size prefix
  2034       emit_byte(0x66); // size prefix
  2035       addr_nop_8();
  2037     // Generate first nop for size between 21-12
  2038     switch (i) {
  2039       case 21:
  2040         i -= 1;
  2041         emit_byte(0x66); // size prefix
  2042       case 20:
  2043       case 19:
  2044         i -= 1;
  2045         emit_byte(0x66); // size prefix
  2046       case 18:
  2047       case 17:
  2048         i -= 1;
  2049         emit_byte(0x66); // size prefix
  2050       case 16:
  2051       case 15:
  2052         i -= 8;
  2053         addr_nop_8();
  2054         break;
  2055       case 14:
  2056       case 13:
  2057         i -= 7;
  2058         addr_nop_7();
  2059         break;
  2060       case 12:
  2061         i -= 6;
  2062         emit_byte(0x66); // size prefix
  2063         addr_nop_5();
  2064         break;
  2065       default:
  2066         assert(i < 12, " ");
  2069     // Generate second nop for size between 11-1
  2070     switch (i) {
  2071       case 11:
  2072         emit_byte(0x66); // size prefix
  2073       case 10:
  2074         emit_byte(0x66); // size prefix
  2075       case 9:
  2076         emit_byte(0x66); // size prefix
  2077       case 8:
  2078         addr_nop_8();
  2079         break;
  2080       case 7:
  2081         addr_nop_7();
  2082         break;
  2083       case 6:
  2084         emit_byte(0x66); // size prefix
  2085       case 5:
  2086         addr_nop_5();
  2087         break;
  2088       case 4:
  2089         addr_nop_4();
  2090         break;
  2091       case 3:
  2092         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2093         emit_byte(0x66); // size prefix
  2094       case 2:
  2095         emit_byte(0x66); // size prefix
  2096       case 1:
  2097         emit_byte(0x90); // nop
  2098         break;
  2099       default:
  2100         assert(i == 0, " ");
  2102     return;
  2105   // Using nops with size prefixes "0x66 0x90".
  2106   // From AMD Optimization Guide:
  2107   //  1: 0x90
  2108   //  2: 0x66 0x90
  2109   //  3: 0x66 0x66 0x90
  2110   //  4: 0x66 0x66 0x66 0x90
  2111   //  5: 0x66 0x66 0x90 0x66 0x90
  2112   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
  2113   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
  2114   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
  2115   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2116   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2117   //
  2118   while(i > 12) {
  2119     i -= 4;
  2120     emit_byte(0x66); // size prefix
  2121     emit_byte(0x66);
  2122     emit_byte(0x66);
  2123     emit_byte(0x90); // nop
  2125   // 1 - 12 nops
  2126   if(i > 8) {
  2127     if(i > 9) {
  2128       i -= 1;
  2129       emit_byte(0x66);
  2131     i -= 3;
  2132     emit_byte(0x66);
  2133     emit_byte(0x66);
  2134     emit_byte(0x90);
  2136   // 1 - 8 nops
  2137   if(i > 4) {
  2138     if(i > 6) {
  2139       i -= 1;
  2140       emit_byte(0x66);
  2142     i -= 3;
  2143     emit_byte(0x66);
  2144     emit_byte(0x66);
  2145     emit_byte(0x90);
  2147   switch (i) {
  2148     case 4:
  2149       emit_byte(0x66);
  2150     case 3:
  2151       emit_byte(0x66);
  2152     case 2:
  2153       emit_byte(0x66);
  2154     case 1:
  2155       emit_byte(0x90);
  2156       break;
  2157     default:
  2158       assert(i == 0, " ");
  2162 void Assembler::notl(Register dst) {
  2163   int encode = prefix_and_encode(dst->encoding());
  2164   emit_byte(0xF7);
  2165   emit_byte(0xD0 | encode );
  2168 void Assembler::orl(Address dst, int32_t imm32) {
  2169   InstructionMark im(this);
  2170   prefix(dst);
  2171   emit_arith_operand(0x81, rcx, dst, imm32);
  2174 void Assembler::orl(Register dst, int32_t imm32) {
  2175   prefix(dst);
  2176   emit_arith(0x81, 0xC8, dst, imm32);
  2179 void Assembler::orl(Register dst, Address src) {
  2180   InstructionMark im(this);
  2181   prefix(src, dst);
  2182   emit_byte(0x0B);
  2183   emit_operand(dst, src);
  2186 void Assembler::orl(Register dst, Register src) {
  2187   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2188   emit_arith(0x0B, 0xC0, dst, src);
  2191 void Assembler::packuswb(XMMRegister dst, Address src) {
  2192   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2193   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2194   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
  2197 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
  2198   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2199   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
  2202 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
  2203   assert(VM_Version::supports_sse4_2(), "");
  2204   InstructionMark im(this);
  2205   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
  2206   emit_byte(0x61);
  2207   emit_operand(dst, src);
  2208   emit_byte(imm8);
  2211 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
  2212   assert(VM_Version::supports_sse4_2(), "");
  2213   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
  2214   emit_byte(0x61);
  2215   emit_byte(0xC0 | encode);
  2216   emit_byte(imm8);
  2219 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
  2220   assert(VM_Version::supports_sse4_1(), "");
  2221   InstructionMark im(this);
  2222   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2223   emit_byte(0x30);
  2224   emit_operand(dst, src);
  2227 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
  2228   assert(VM_Version::supports_sse4_1(), "");
  2229   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2230   emit_byte(0x30);
  2231   emit_byte(0xC0 | encode);
  2234 // generic
  2235 void Assembler::pop(Register dst) {
  2236   int encode = prefix_and_encode(dst->encoding());
  2237   emit_byte(0x58 | encode);
  2240 void Assembler::popcntl(Register dst, Address src) {
  2241   assert(VM_Version::supports_popcnt(), "must support");
  2242   InstructionMark im(this);
  2243   emit_byte(0xF3);
  2244   prefix(src, dst);
  2245   emit_byte(0x0F);
  2246   emit_byte(0xB8);
  2247   emit_operand(dst, src);
  2250 void Assembler::popcntl(Register dst, Register src) {
  2251   assert(VM_Version::supports_popcnt(), "must support");
  2252   emit_byte(0xF3);
  2253   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2254   emit_byte(0x0F);
  2255   emit_byte(0xB8);
  2256   emit_byte(0xC0 | encode);
  2259 void Assembler::popf() {
  2260   emit_byte(0x9D);
  2263 #ifndef _LP64 // no 32bit push/pop on amd64
  2264 void Assembler::popl(Address dst) {
  2265   // NOTE: this will adjust stack by 8byte on 64bits
  2266   InstructionMark im(this);
  2267   prefix(dst);
  2268   emit_byte(0x8F);
  2269   emit_operand(rax, dst);
  2271 #endif
  2273 void Assembler::prefetch_prefix(Address src) {
  2274   prefix(src);
  2275   emit_byte(0x0F);
  2278 void Assembler::prefetchnta(Address src) {
  2279   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2280   InstructionMark im(this);
  2281   prefetch_prefix(src);
  2282   emit_byte(0x18);
  2283   emit_operand(rax, src); // 0, src
  2286 void Assembler::prefetchr(Address src) {
  2287   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2288   InstructionMark im(this);
  2289   prefetch_prefix(src);
  2290   emit_byte(0x0D);
  2291   emit_operand(rax, src); // 0, src
  2294 void Assembler::prefetcht0(Address src) {
  2295   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2296   InstructionMark im(this);
  2297   prefetch_prefix(src);
  2298   emit_byte(0x18);
  2299   emit_operand(rcx, src); // 1, src
  2302 void Assembler::prefetcht1(Address src) {
  2303   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2304   InstructionMark im(this);
  2305   prefetch_prefix(src);
  2306   emit_byte(0x18);
  2307   emit_operand(rdx, src); // 2, src
  2310 void Assembler::prefetcht2(Address src) {
  2311   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2312   InstructionMark im(this);
  2313   prefetch_prefix(src);
  2314   emit_byte(0x18);
  2315   emit_operand(rbx, src); // 3, src
  2318 void Assembler::prefetchw(Address src) {
  2319   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2320   InstructionMark im(this);
  2321   prefetch_prefix(src);
  2322   emit_byte(0x0D);
  2323   emit_operand(rcx, src); // 1, src
  2326 void Assembler::prefix(Prefix p) {
  2327   a_byte(p);
  2330 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
  2331   assert(isByte(mode), "invalid value");
  2332   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2333   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66);
  2334   emit_byte(mode & 0xFF);
  2338 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
  2339   assert(isByte(mode), "invalid value");
  2340   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2341   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2342   InstructionMark im(this);
  2343   simd_prefix(dst, src, VEX_SIMD_66);
  2344   emit_byte(0x70);
  2345   emit_operand(dst, src);
  2346   emit_byte(mode & 0xFF);
  2349 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
  2350   assert(isByte(mode), "invalid value");
  2351   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2352   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2);
  2353   emit_byte(mode & 0xFF);
  2356 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
  2357   assert(isByte(mode), "invalid value");
  2358   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2359   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2360   InstructionMark im(this);
  2361   simd_prefix(dst, src, VEX_SIMD_F2);
  2362   emit_byte(0x70);
  2363   emit_operand(dst, src);
  2364   emit_byte(mode & 0xFF);
  2367 void Assembler::psrldq(XMMRegister dst, int shift) {
  2368   // Shift 128 bit value in xmm register by number of bytes.
  2369   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2370   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66);
  2371   emit_byte(0x73);
  2372   emit_byte(0xC0 | encode);
  2373   emit_byte(shift);
  2376 void Assembler::ptest(XMMRegister dst, Address src) {
  2377   assert(VM_Version::supports_sse4_1(), "");
  2378   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2379   InstructionMark im(this);
  2380   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2381   emit_byte(0x17);
  2382   emit_operand(dst, src);
  2385 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
  2386   assert(VM_Version::supports_sse4_1(), "");
  2387   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2388   emit_byte(0x17);
  2389   emit_byte(0xC0 | encode);
  2392 void Assembler::punpcklbw(XMMRegister dst, Address src) {
  2393   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2394   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2395   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
  2398 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
  2399   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2400   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
  2403 void Assembler::punpckldq(XMMRegister dst, Address src) {
  2404   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2405   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2406   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
  2409 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
  2410   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2411   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
  2414 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
  2415   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2416   emit_simd_arith(0x6C, dst, src, VEX_SIMD_66);
  2419 void Assembler::push(int32_t imm32) {
  2420   // in 64bits we push 64bits onto the stack but only
  2421   // take a 32bit immediate
  2422   emit_byte(0x68);
  2423   emit_long(imm32);
  2426 void Assembler::push(Register src) {
  2427   int encode = prefix_and_encode(src->encoding());
  2429   emit_byte(0x50 | encode);
  2432 void Assembler::pushf() {
  2433   emit_byte(0x9C);
  2436 #ifndef _LP64 // no 32bit push/pop on amd64
  2437 void Assembler::pushl(Address src) {
  2438   // Note this will push 64bit on 64bit
  2439   InstructionMark im(this);
  2440   prefix(src);
  2441   emit_byte(0xFF);
  2442   emit_operand(rsi, src);
  2444 #endif
  2446 void Assembler::rcll(Register dst, int imm8) {
  2447   assert(isShiftCount(imm8), "illegal shift count");
  2448   int encode = prefix_and_encode(dst->encoding());
  2449   if (imm8 == 1) {
  2450     emit_byte(0xD1);
  2451     emit_byte(0xD0 | encode);
  2452   } else {
  2453     emit_byte(0xC1);
  2454     emit_byte(0xD0 | encode);
  2455     emit_byte(imm8);
  2459 // copies data from [esi] to [edi] using rcx pointer sized words
  2460 // generic
  2461 void Assembler::rep_mov() {
  2462   emit_byte(0xF3);
  2463   // MOVSQ
  2464   LP64_ONLY(prefix(REX_W));
  2465   emit_byte(0xA5);
  2468 // sets rcx pointer sized words with rax, value at [edi]
  2469 // generic
  2470 void Assembler::rep_set() { // rep_set
  2471   emit_byte(0xF3);
  2472   // STOSQ
  2473   LP64_ONLY(prefix(REX_W));
  2474   emit_byte(0xAB);
  2477 // scans rcx pointer sized words at [edi] for occurance of rax,
  2478 // generic
  2479 void Assembler::repne_scan() { // repne_scan
  2480   emit_byte(0xF2);
  2481   // SCASQ
  2482   LP64_ONLY(prefix(REX_W));
  2483   emit_byte(0xAF);
  2486 #ifdef _LP64
  2487 // scans rcx 4 byte words at [edi] for occurance of rax,
  2488 // generic
  2489 void Assembler::repne_scanl() { // repne_scan
  2490   emit_byte(0xF2);
  2491   // SCASL
  2492   emit_byte(0xAF);
  2494 #endif
  2496 void Assembler::ret(int imm16) {
  2497   if (imm16 == 0) {
  2498     emit_byte(0xC3);
  2499   } else {
  2500     emit_byte(0xC2);
  2501     emit_word(imm16);
  2505 void Assembler::sahf() {
  2506 #ifdef _LP64
  2507   // Not supported in 64bit mode
  2508   ShouldNotReachHere();
  2509 #endif
  2510   emit_byte(0x9E);
  2513 void Assembler::sarl(Register dst, int imm8) {
  2514   int encode = prefix_and_encode(dst->encoding());
  2515   assert(isShiftCount(imm8), "illegal shift count");
  2516   if (imm8 == 1) {
  2517     emit_byte(0xD1);
  2518     emit_byte(0xF8 | encode);
  2519   } else {
  2520     emit_byte(0xC1);
  2521     emit_byte(0xF8 | encode);
  2522     emit_byte(imm8);
  2526 void Assembler::sarl(Register dst) {
  2527   int encode = prefix_and_encode(dst->encoding());
  2528   emit_byte(0xD3);
  2529   emit_byte(0xF8 | encode);
  2532 void Assembler::sbbl(Address dst, int32_t imm32) {
  2533   InstructionMark im(this);
  2534   prefix(dst);
  2535   emit_arith_operand(0x81, rbx, dst, imm32);
  2538 void Assembler::sbbl(Register dst, int32_t imm32) {
  2539   prefix(dst);
  2540   emit_arith(0x81, 0xD8, dst, imm32);
  2544 void Assembler::sbbl(Register dst, Address src) {
  2545   InstructionMark im(this);
  2546   prefix(src, dst);
  2547   emit_byte(0x1B);
  2548   emit_operand(dst, src);
  2551 void Assembler::sbbl(Register dst, Register src) {
  2552   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2553   emit_arith(0x1B, 0xC0, dst, src);
  2556 void Assembler::setb(Condition cc, Register dst) {
  2557   assert(0 <= cc && cc < 16, "illegal cc");
  2558   int encode = prefix_and_encode(dst->encoding(), true);
  2559   emit_byte(0x0F);
  2560   emit_byte(0x90 | cc);
  2561   emit_byte(0xC0 | encode);
  2564 void Assembler::shll(Register dst, int imm8) {
  2565   assert(isShiftCount(imm8), "illegal shift count");
  2566   int encode = prefix_and_encode(dst->encoding());
  2567   if (imm8 == 1 ) {
  2568     emit_byte(0xD1);
  2569     emit_byte(0xE0 | encode);
  2570   } else {
  2571     emit_byte(0xC1);
  2572     emit_byte(0xE0 | encode);
  2573     emit_byte(imm8);
  2577 void Assembler::shll(Register dst) {
  2578   int encode = prefix_and_encode(dst->encoding());
  2579   emit_byte(0xD3);
  2580   emit_byte(0xE0 | encode);
  2583 void Assembler::shrl(Register dst, int imm8) {
  2584   assert(isShiftCount(imm8), "illegal shift count");
  2585   int encode = prefix_and_encode(dst->encoding());
  2586   emit_byte(0xC1);
  2587   emit_byte(0xE8 | encode);
  2588   emit_byte(imm8);
  2591 void Assembler::shrl(Register dst) {
  2592   int encode = prefix_and_encode(dst->encoding());
  2593   emit_byte(0xD3);
  2594   emit_byte(0xE8 | encode);
  2597 // copies a single word from [esi] to [edi]
  2598 void Assembler::smovl() {
  2599   emit_byte(0xA5);
  2602 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
  2603   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2604   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
  2607 void Assembler::sqrtsd(XMMRegister dst, Address src) {
  2608   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2609   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
  2612 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
  2613   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2614   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
  2617 void Assembler::sqrtss(XMMRegister dst, Address src) {
  2618   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2619   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
  2622 void Assembler::stmxcsr( Address dst) {
  2623   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2624   InstructionMark im(this);
  2625   prefix(dst);
  2626   emit_byte(0x0F);
  2627   emit_byte(0xAE);
  2628   emit_operand(as_Register(3), dst);
  2631 void Assembler::subl(Address dst, int32_t imm32) {
  2632   InstructionMark im(this);
  2633   prefix(dst);
  2634   emit_arith_operand(0x81, rbp, dst, imm32);
  2637 void Assembler::subl(Address dst, Register src) {
  2638   InstructionMark im(this);
  2639   prefix(dst, src);
  2640   emit_byte(0x29);
  2641   emit_operand(src, dst);
  2644 void Assembler::subl(Register dst, int32_t imm32) {
  2645   prefix(dst);
  2646   emit_arith(0x81, 0xE8, dst, imm32);
  2649 // Force generation of a 4 byte immediate value even if it fits into 8bit
  2650 void Assembler::subl_imm32(Register dst, int32_t imm32) {
  2651   prefix(dst);
  2652   emit_arith_imm32(0x81, 0xE8, dst, imm32);
  2655 void Assembler::subl(Register dst, Address src) {
  2656   InstructionMark im(this);
  2657   prefix(src, dst);
  2658   emit_byte(0x2B);
  2659   emit_operand(dst, src);
  2662 void Assembler::subl(Register dst, Register src) {
  2663   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2664   emit_arith(0x2B, 0xC0, dst, src);
  2667 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
  2668   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2669   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
  2672 void Assembler::subsd(XMMRegister dst, Address src) {
  2673   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2674   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
  2677 void Assembler::subss(XMMRegister dst, XMMRegister src) {
  2678   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2679   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
  2682 void Assembler::subss(XMMRegister dst, Address src) {
  2683   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2684   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
  2687 void Assembler::testb(Register dst, int imm8) {
  2688   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  2689   (void) prefix_and_encode(dst->encoding(), true);
  2690   emit_arith_b(0xF6, 0xC0, dst, imm8);
  2693 void Assembler::testl(Register dst, int32_t imm32) {
  2694   // not using emit_arith because test
  2695   // doesn't support sign-extension of
  2696   // 8bit operands
  2697   int encode = dst->encoding();
  2698   if (encode == 0) {
  2699     emit_byte(0xA9);
  2700   } else {
  2701     encode = prefix_and_encode(encode);
  2702     emit_byte(0xF7);
  2703     emit_byte(0xC0 | encode);
  2705   emit_long(imm32);
  2708 void Assembler::testl(Register dst, Register src) {
  2709   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2710   emit_arith(0x85, 0xC0, dst, src);
  2713 void Assembler::testl(Register dst, Address  src) {
  2714   InstructionMark im(this);
  2715   prefix(src, dst);
  2716   emit_byte(0x85);
  2717   emit_operand(dst, src);
  2720 void Assembler::ucomisd(XMMRegister dst, Address src) {
  2721   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2722   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
  2725 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
  2726   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2727   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
  2730 void Assembler::ucomiss(XMMRegister dst, Address src) {
  2731   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2732   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
  2735 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
  2736   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2737   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
  2741 void Assembler::xaddl(Address dst, Register src) {
  2742   InstructionMark im(this);
  2743   prefix(dst, src);
  2744   emit_byte(0x0F);
  2745   emit_byte(0xC1);
  2746   emit_operand(src, dst);
  2749 void Assembler::xchgl(Register dst, Address src) { // xchg
  2750   InstructionMark im(this);
  2751   prefix(src, dst);
  2752   emit_byte(0x87);
  2753   emit_operand(dst, src);
  2756 void Assembler::xchgl(Register dst, Register src) {
  2757   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2758   emit_byte(0x87);
  2759   emit_byte(0xc0 | encode);
  2762 void Assembler::xorl(Register dst, int32_t imm32) {
  2763   prefix(dst);
  2764   emit_arith(0x81, 0xF0, dst, imm32);
  2767 void Assembler::xorl(Register dst, Address src) {
  2768   InstructionMark im(this);
  2769   prefix(src, dst);
  2770   emit_byte(0x33);
  2771   emit_operand(dst, src);
  2774 void Assembler::xorl(Register dst, Register src) {
  2775   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2776   emit_arith(0x33, 0xC0, dst, src);
  2780 // AVX 3-operands scalar float-point arithmetic instructions
  2782 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
  2783   assert(VM_Version::supports_avx(), "");
  2784   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2787 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2788   assert(VM_Version::supports_avx(), "");
  2789   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2792 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
  2793   assert(VM_Version::supports_avx(), "");
  2794   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2797 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2798   assert(VM_Version::supports_avx(), "");
  2799   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2802 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
  2803   assert(VM_Version::supports_avx(), "");
  2804   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2807 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2808   assert(VM_Version::supports_avx(), "");
  2809   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2812 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
  2813   assert(VM_Version::supports_avx(), "");
  2814   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2817 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2818   assert(VM_Version::supports_avx(), "");
  2819   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2822 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
  2823   assert(VM_Version::supports_avx(), "");
  2824   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2827 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2828   assert(VM_Version::supports_avx(), "");
  2829   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2832 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
  2833   assert(VM_Version::supports_avx(), "");
  2834   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2837 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2838   assert(VM_Version::supports_avx(), "");
  2839   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2842 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
  2843   assert(VM_Version::supports_avx(), "");
  2844   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2847 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2848   assert(VM_Version::supports_avx(), "");
  2849   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2852 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
  2853   assert(VM_Version::supports_avx(), "");
  2854   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2857 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2858   assert(VM_Version::supports_avx(), "");
  2859   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2862 //====================VECTOR ARITHMETIC=====================================
  2864 // Float-point vector arithmetic
  2866 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
  2867   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2868   emit_simd_arith(0x58, dst, src, VEX_SIMD_66);
  2871 void Assembler::addps(XMMRegister dst, XMMRegister src) {
  2872   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2873   emit_simd_arith(0x58, dst, src, VEX_SIMD_NONE);
  2876 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2877   assert(VM_Version::supports_avx(), "");
  2878   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
  2881 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2882   assert(VM_Version::supports_avx(), "");
  2883   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
  2886 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  2887   assert(VM_Version::supports_avx(), "");
  2888   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
  2891 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  2892   assert(VM_Version::supports_avx(), "");
  2893   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
  2896 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
  2897   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2898   emit_simd_arith(0x5C, dst, src, VEX_SIMD_66);
  2901 void Assembler::subps(XMMRegister dst, XMMRegister src) {
  2902   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2903   emit_simd_arith(0x5C, dst, src, VEX_SIMD_NONE);
  2906 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2907   assert(VM_Version::supports_avx(), "");
  2908   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
  2911 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2912   assert(VM_Version::supports_avx(), "");
  2913   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
  2916 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  2917   assert(VM_Version::supports_avx(), "");
  2918   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
  2921 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  2922   assert(VM_Version::supports_avx(), "");
  2923   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
  2926 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
  2927   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2928   emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
  2931 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
  2932   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2933   emit_simd_arith(0x59, dst, src, VEX_SIMD_NONE);
  2936 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2937   assert(VM_Version::supports_avx(), "");
  2938   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
  2941 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2942   assert(VM_Version::supports_avx(), "");
  2943   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
  2946 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  2947   assert(VM_Version::supports_avx(), "");
  2948   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
  2951 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  2952   assert(VM_Version::supports_avx(), "");
  2953   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
  2956 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
  2957   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2958   emit_simd_arith(0x5E, dst, src, VEX_SIMD_66);
  2961 void Assembler::divps(XMMRegister dst, XMMRegister src) {
  2962   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2963   emit_simd_arith(0x5E, dst, src, VEX_SIMD_NONE);
  2966 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2967   assert(VM_Version::supports_avx(), "");
  2968   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
  2971 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2972   assert(VM_Version::supports_avx(), "");
  2973   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
  2976 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  2977   assert(VM_Version::supports_avx(), "");
  2978   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
  2981 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  2982   assert(VM_Version::supports_avx(), "");
  2983   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
  2986 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
  2987   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2988   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
  2991 void Assembler::andps(XMMRegister dst, XMMRegister src) {
  2992   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2993   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
  2996 void Assembler::andps(XMMRegister dst, Address src) {
  2997   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2998   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
  3001 void Assembler::andpd(XMMRegister dst, Address src) {
  3002   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3003   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
  3006 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3007   assert(VM_Version::supports_avx(), "");
  3008   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
  3011 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3012   assert(VM_Version::supports_avx(), "");
  3013   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
  3016 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3017   assert(VM_Version::supports_avx(), "");
  3018   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
  3021 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3022   assert(VM_Version::supports_avx(), "");
  3023   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
  3026 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
  3027   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3028   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
  3031 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
  3032   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3033   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
  3036 void Assembler::xorpd(XMMRegister dst, Address src) {
  3037   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3038   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
  3041 void Assembler::xorps(XMMRegister dst, Address src) {
  3042   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3043   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
  3046 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3047   assert(VM_Version::supports_avx(), "");
  3048   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
  3051 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3052   assert(VM_Version::supports_avx(), "");
  3053   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
  3056 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3057   assert(VM_Version::supports_avx(), "");
  3058   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
  3061 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3062   assert(VM_Version::supports_avx(), "");
  3063   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
  3067 // Integer vector arithmetic
  3068 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
  3069   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3070   emit_simd_arith(0xFC, dst, src, VEX_SIMD_66);
  3073 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
  3074   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3075   emit_simd_arith(0xFD, dst, src, VEX_SIMD_66);
  3078 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
  3079   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3080   emit_simd_arith(0xFE, dst, src, VEX_SIMD_66);
  3083 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
  3084   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3085   emit_simd_arith(0xD4, dst, src, VEX_SIMD_66);
  3088 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3089   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3090   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
  3093 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3094   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3095   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
  3098 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3099   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3100   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
  3103 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3104   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3105   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
  3108 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3109   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3110   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
  3113 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3114   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3115   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
  3118 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3119   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3120   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
  3123 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3124   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3125   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
  3128 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
  3129   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3130   emit_simd_arith(0xF8, dst, src, VEX_SIMD_66);
  3133 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
  3134   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3135   emit_simd_arith(0xF9, dst, src, VEX_SIMD_66);
  3138 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
  3139   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3140   emit_simd_arith(0xFA, dst, src, VEX_SIMD_66);
  3143 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
  3144   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3145   emit_simd_arith(0xFB, dst, src, VEX_SIMD_66);
  3148 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3149   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3150   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
  3153 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3154   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3155   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
  3158 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3159   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3160   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
  3163 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3164   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3165   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
  3168 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3169   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3170   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
  3173 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3174   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3175   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
  3178 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3179   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3180   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
  3183 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3184   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3185   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
  3188 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
  3189   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3190   emit_simd_arith(0xD5, dst, src, VEX_SIMD_66);
  3193 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
  3194   assert(VM_Version::supports_sse4_1(), "");
  3195   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  3196   emit_byte(0x40);
  3197   emit_byte(0xC0 | encode);
  3200 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3201   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3202   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
  3205 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3206   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3207   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
  3208   emit_byte(0x40);
  3209   emit_byte(0xC0 | encode);
  3212 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3213   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3214   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
  3217 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3218   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3219   InstructionMark im(this);
  3220   int dst_enc = dst->encoding();
  3221   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
  3222   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
  3223   emit_byte(0x40);
  3224   emit_operand(dst, src);
  3227 // Shift packed integers left by specified number of bits.
  3228 void Assembler::psllw(XMMRegister dst, int shift) {
  3229   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3230   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
  3231   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
  3232   emit_byte(0x71);
  3233   emit_byte(0xC0 | encode);
  3234   emit_byte(shift & 0xFF);
  3237 void Assembler::pslld(XMMRegister dst, int shift) {
  3238   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3239   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
  3240   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
  3241   emit_byte(0x72);
  3242   emit_byte(0xC0 | encode);
  3243   emit_byte(shift & 0xFF);
  3246 void Assembler::psllq(XMMRegister dst, int shift) {
  3247   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3248   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
  3249   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
  3250   emit_byte(0x73);
  3251   emit_byte(0xC0 | encode);
  3252   emit_byte(shift & 0xFF);
  3255 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
  3256   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3257   emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66);
  3260 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
  3261   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3262   emit_simd_arith(0xF2, dst, shift, VEX_SIMD_66);
  3265 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
  3266   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3267   emit_simd_arith(0xF3, dst, shift, VEX_SIMD_66);
  3270 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3271   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3272   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
  3273   emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector256);
  3274   emit_byte(shift & 0xFF);
  3277 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3278   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3279   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
  3280   emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector256);
  3281   emit_byte(shift & 0xFF);
  3284 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3285   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3286   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
  3287   emit_vex_arith(0x73, xmm6, dst, src, VEX_SIMD_66, vector256);
  3288   emit_byte(shift & 0xFF);
  3291 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3292   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3293   emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector256);
  3296 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3297   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3298   emit_vex_arith(0xF2, dst, src, shift, VEX_SIMD_66, vector256);
  3301 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3302   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3303   emit_vex_arith(0xF3, dst, src, shift, VEX_SIMD_66, vector256);
  3306 // Shift packed integers logically right by specified number of bits.
  3307 void Assembler::psrlw(XMMRegister dst, int shift) {
  3308   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3309   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
  3310   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  3311   emit_byte(0x71);
  3312   emit_byte(0xC0 | encode);
  3313   emit_byte(shift & 0xFF);
  3316 void Assembler::psrld(XMMRegister dst, int shift) {
  3317   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3318   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
  3319   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  3320   emit_byte(0x72);
  3321   emit_byte(0xC0 | encode);
  3322   emit_byte(shift & 0xFF);
  3325 void Assembler::psrlq(XMMRegister dst, int shift) {
  3326   // Do not confuse it with psrldq SSE2 instruction which
  3327   // shifts 128 bit value in xmm register by number of bytes.
  3328   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3329   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3330   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  3331   emit_byte(0x73);
  3332   emit_byte(0xC0 | encode);
  3333   emit_byte(shift & 0xFF);
  3336 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
  3337   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3338   emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66);
  3341 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
  3342   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3343   emit_simd_arith(0xD2, dst, shift, VEX_SIMD_66);
  3346 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
  3347   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3348   emit_simd_arith(0xD3, dst, shift, VEX_SIMD_66);
  3351 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3352   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3353   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3354   emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector256);
  3355   emit_byte(shift & 0xFF);
  3358 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3359   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3360   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3361   emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector256);
  3362   emit_byte(shift & 0xFF);
  3365 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3366   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3367   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3368   emit_vex_arith(0x73, xmm2, dst, src, VEX_SIMD_66, vector256);
  3369   emit_byte(shift & 0xFF);
  3372 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3373   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3374   emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector256);
  3377 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3378   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3379   emit_vex_arith(0xD2, dst, src, shift, VEX_SIMD_66, vector256);
  3382 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3383   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3384   emit_vex_arith(0xD3, dst, src, shift, VEX_SIMD_66, vector256);
  3387 // Shift packed integers arithmetically right by specified number of bits.
  3388 void Assembler::psraw(XMMRegister dst, int shift) {
  3389   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3390   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  3391   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
  3392   emit_byte(0x71);
  3393   emit_byte(0xC0 | encode);
  3394   emit_byte(shift & 0xFF);
  3397 void Assembler::psrad(XMMRegister dst, int shift) {
  3398   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3399   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
  3400   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
  3401   emit_byte(0x72);
  3402   emit_byte(0xC0 | encode);
  3403   emit_byte(shift & 0xFF);
  3406 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
  3407   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3408   emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66);
  3411 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
  3412   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3413   emit_simd_arith(0xE2, dst, shift, VEX_SIMD_66);
  3416 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3417   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3418   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  3419   emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector256);
  3420   emit_byte(shift & 0xFF);
  3423 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3424   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3425   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  3426   emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector256);
  3427   emit_byte(shift & 0xFF);
  3430 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3431   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3432   emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector256);
  3435 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3436   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3437   emit_vex_arith(0xE2, dst, src, shift, VEX_SIMD_66, vector256);
  3441 // AND packed integers
  3442 void Assembler::pand(XMMRegister dst, XMMRegister src) {
  3443   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3444   emit_simd_arith(0xDB, dst, src, VEX_SIMD_66);
  3447 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3448   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3449   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
  3452 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3453   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3454   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
  3457 void Assembler::por(XMMRegister dst, XMMRegister src) {
  3458   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3459   emit_simd_arith(0xEB, dst, src, VEX_SIMD_66);
  3462 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3463   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3464   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
  3467 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3468   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3469   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
  3472 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
  3473   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3474   emit_simd_arith(0xEF, dst, src, VEX_SIMD_66);
  3477 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3478   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3479   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
  3482 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3483   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3484   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
  3488 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3489   assert(VM_Version::supports_avx(), "");
  3490   bool vector256 = true;
  3491   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
  3492   emit_byte(0x18);
  3493   emit_byte(0xC0 | encode);
  3494   // 0x00 - insert into lower 128 bits
  3495   // 0x01 - insert into upper 128 bits
  3496   emit_byte(0x01);
  3499 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3500   assert(VM_Version::supports_avx2(), "");
  3501   bool vector256 = true;
  3502   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
  3503   emit_byte(0x38);
  3504   emit_byte(0xC0 | encode);
  3505   // 0x00 - insert into lower 128 bits
  3506   // 0x01 - insert into upper 128 bits
  3507   emit_byte(0x01);
  3510 void Assembler::vzeroupper() {
  3511   assert(VM_Version::supports_avx(), "");
  3512   (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE);
  3513   emit_byte(0x77);
  3517 #ifndef _LP64
  3518 // 32bit only pieces of the assembler
  3520 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  3521   // NO PREFIX AS NEVER 64BIT
  3522   InstructionMark im(this);
  3523   emit_byte(0x81);
  3524   emit_byte(0xF8 | src1->encoding());
  3525   emit_data(imm32, rspec, 0);
  3528 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  3529   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
  3530   InstructionMark im(this);
  3531   emit_byte(0x81);
  3532   emit_operand(rdi, src1);
  3533   emit_data(imm32, rspec, 0);
  3536 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
  3537 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
  3538 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
  3539 void Assembler::cmpxchg8(Address adr) {
  3540   InstructionMark im(this);
  3541   emit_byte(0x0F);
  3542   emit_byte(0xc7);
  3543   emit_operand(rcx, adr);
  3546 void Assembler::decl(Register dst) {
  3547   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  3548  emit_byte(0x48 | dst->encoding());
  3551 #endif // _LP64
  3553 // 64bit typically doesn't use the x87 but needs to for the trig funcs
  3555 void Assembler::fabs() {
  3556   emit_byte(0xD9);
  3557   emit_byte(0xE1);
  3560 void Assembler::fadd(int i) {
  3561   emit_farith(0xD8, 0xC0, i);
  3564 void Assembler::fadd_d(Address src) {
  3565   InstructionMark im(this);
  3566   emit_byte(0xDC);
  3567   emit_operand32(rax, src);
  3570 void Assembler::fadd_s(Address src) {
  3571   InstructionMark im(this);
  3572   emit_byte(0xD8);
  3573   emit_operand32(rax, src);
  3576 void Assembler::fadda(int i) {
  3577   emit_farith(0xDC, 0xC0, i);
  3580 void Assembler::faddp(int i) {
  3581   emit_farith(0xDE, 0xC0, i);
  3584 void Assembler::fchs() {
  3585   emit_byte(0xD9);
  3586   emit_byte(0xE0);
  3589 void Assembler::fcom(int i) {
  3590   emit_farith(0xD8, 0xD0, i);
  3593 void Assembler::fcomp(int i) {
  3594   emit_farith(0xD8, 0xD8, i);
  3597 void Assembler::fcomp_d(Address src) {
  3598   InstructionMark im(this);
  3599   emit_byte(0xDC);
  3600   emit_operand32(rbx, src);
  3603 void Assembler::fcomp_s(Address src) {
  3604   InstructionMark im(this);
  3605   emit_byte(0xD8);
  3606   emit_operand32(rbx, src);
  3609 void Assembler::fcompp() {
  3610   emit_byte(0xDE);
  3611   emit_byte(0xD9);
  3614 void Assembler::fcos() {
  3615   emit_byte(0xD9);
  3616   emit_byte(0xFF);
  3619 void Assembler::fdecstp() {
  3620   emit_byte(0xD9);
  3621   emit_byte(0xF6);
  3624 void Assembler::fdiv(int i) {
  3625   emit_farith(0xD8, 0xF0, i);
  3628 void Assembler::fdiv_d(Address src) {
  3629   InstructionMark im(this);
  3630   emit_byte(0xDC);
  3631   emit_operand32(rsi, src);
  3634 void Assembler::fdiv_s(Address src) {
  3635   InstructionMark im(this);
  3636   emit_byte(0xD8);
  3637   emit_operand32(rsi, src);
  3640 void Assembler::fdiva(int i) {
  3641   emit_farith(0xDC, 0xF8, i);
  3644 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
  3645 //       is erroneous for some of the floating-point instructions below.
  3647 void Assembler::fdivp(int i) {
  3648   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
  3651 void Assembler::fdivr(int i) {
  3652   emit_farith(0xD8, 0xF8, i);
  3655 void Assembler::fdivr_d(Address src) {
  3656   InstructionMark im(this);
  3657   emit_byte(0xDC);
  3658   emit_operand32(rdi, src);
  3661 void Assembler::fdivr_s(Address src) {
  3662   InstructionMark im(this);
  3663   emit_byte(0xD8);
  3664   emit_operand32(rdi, src);
  3667 void Assembler::fdivra(int i) {
  3668   emit_farith(0xDC, 0xF0, i);
  3671 void Assembler::fdivrp(int i) {
  3672   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
  3675 void Assembler::ffree(int i) {
  3676   emit_farith(0xDD, 0xC0, i);
  3679 void Assembler::fild_d(Address adr) {
  3680   InstructionMark im(this);
  3681   emit_byte(0xDF);
  3682   emit_operand32(rbp, adr);
  3685 void Assembler::fild_s(Address adr) {
  3686   InstructionMark im(this);
  3687   emit_byte(0xDB);
  3688   emit_operand32(rax, adr);
  3691 void Assembler::fincstp() {
  3692   emit_byte(0xD9);
  3693   emit_byte(0xF7);
  3696 void Assembler::finit() {
  3697   emit_byte(0x9B);
  3698   emit_byte(0xDB);
  3699   emit_byte(0xE3);
  3702 void Assembler::fist_s(Address adr) {
  3703   InstructionMark im(this);
  3704   emit_byte(0xDB);
  3705   emit_operand32(rdx, adr);
  3708 void Assembler::fistp_d(Address adr) {
  3709   InstructionMark im(this);
  3710   emit_byte(0xDF);
  3711   emit_operand32(rdi, adr);
  3714 void Assembler::fistp_s(Address adr) {
  3715   InstructionMark im(this);
  3716   emit_byte(0xDB);
  3717   emit_operand32(rbx, adr);
  3720 void Assembler::fld1() {
  3721   emit_byte(0xD9);
  3722   emit_byte(0xE8);
  3725 void Assembler::fld_d(Address adr) {
  3726   InstructionMark im(this);
  3727   emit_byte(0xDD);
  3728   emit_operand32(rax, adr);
  3731 void Assembler::fld_s(Address adr) {
  3732   InstructionMark im(this);
  3733   emit_byte(0xD9);
  3734   emit_operand32(rax, adr);
  3738 void Assembler::fld_s(int index) {
  3739   emit_farith(0xD9, 0xC0, index);
  3742 void Assembler::fld_x(Address adr) {
  3743   InstructionMark im(this);
  3744   emit_byte(0xDB);
  3745   emit_operand32(rbp, adr);
  3748 void Assembler::fldcw(Address src) {
  3749   InstructionMark im(this);
  3750   emit_byte(0xd9);
  3751   emit_operand32(rbp, src);
  3754 void Assembler::fldenv(Address src) {
  3755   InstructionMark im(this);
  3756   emit_byte(0xD9);
  3757   emit_operand32(rsp, src);
  3760 void Assembler::fldlg2() {
  3761   emit_byte(0xD9);
  3762   emit_byte(0xEC);
  3765 void Assembler::fldln2() {
  3766   emit_byte(0xD9);
  3767   emit_byte(0xED);
  3770 void Assembler::fldz() {
  3771   emit_byte(0xD9);
  3772   emit_byte(0xEE);
  3775 void Assembler::flog() {
  3776   fldln2();
  3777   fxch();
  3778   fyl2x();
  3781 void Assembler::flog10() {
  3782   fldlg2();
  3783   fxch();
  3784   fyl2x();
  3787 void Assembler::fmul(int i) {
  3788   emit_farith(0xD8, 0xC8, i);
  3791 void Assembler::fmul_d(Address src) {
  3792   InstructionMark im(this);
  3793   emit_byte(0xDC);
  3794   emit_operand32(rcx, src);
  3797 void Assembler::fmul_s(Address src) {
  3798   InstructionMark im(this);
  3799   emit_byte(0xD8);
  3800   emit_operand32(rcx, src);
  3803 void Assembler::fmula(int i) {
  3804   emit_farith(0xDC, 0xC8, i);
  3807 void Assembler::fmulp(int i) {
  3808   emit_farith(0xDE, 0xC8, i);
  3811 void Assembler::fnsave(Address dst) {
  3812   InstructionMark im(this);
  3813   emit_byte(0xDD);
  3814   emit_operand32(rsi, dst);
  3817 void Assembler::fnstcw(Address src) {
  3818   InstructionMark im(this);
  3819   emit_byte(0x9B);
  3820   emit_byte(0xD9);
  3821   emit_operand32(rdi, src);
  3824 void Assembler::fnstsw_ax() {
  3825   emit_byte(0xdF);
  3826   emit_byte(0xE0);
  3829 void Assembler::fprem() {
  3830   emit_byte(0xD9);
  3831   emit_byte(0xF8);
  3834 void Assembler::fprem1() {
  3835   emit_byte(0xD9);
  3836   emit_byte(0xF5);
  3839 void Assembler::frstor(Address src) {
  3840   InstructionMark im(this);
  3841   emit_byte(0xDD);
  3842   emit_operand32(rsp, src);
  3845 void Assembler::fsin() {
  3846   emit_byte(0xD9);
  3847   emit_byte(0xFE);
  3850 void Assembler::fsqrt() {
  3851   emit_byte(0xD9);
  3852   emit_byte(0xFA);
  3855 void Assembler::fst_d(Address adr) {
  3856   InstructionMark im(this);
  3857   emit_byte(0xDD);
  3858   emit_operand32(rdx, adr);
  3861 void Assembler::fst_s(Address adr) {
  3862   InstructionMark im(this);
  3863   emit_byte(0xD9);
  3864   emit_operand32(rdx, adr);
  3867 void Assembler::fstp_d(Address adr) {
  3868   InstructionMark im(this);
  3869   emit_byte(0xDD);
  3870   emit_operand32(rbx, adr);
  3873 void Assembler::fstp_d(int index) {
  3874   emit_farith(0xDD, 0xD8, index);
  3877 void Assembler::fstp_s(Address adr) {
  3878   InstructionMark im(this);
  3879   emit_byte(0xD9);
  3880   emit_operand32(rbx, adr);
  3883 void Assembler::fstp_x(Address adr) {
  3884   InstructionMark im(this);
  3885   emit_byte(0xDB);
  3886   emit_operand32(rdi, adr);
  3889 void Assembler::fsub(int i) {
  3890   emit_farith(0xD8, 0xE0, i);
  3893 void Assembler::fsub_d(Address src) {
  3894   InstructionMark im(this);
  3895   emit_byte(0xDC);
  3896   emit_operand32(rsp, src);
  3899 void Assembler::fsub_s(Address src) {
  3900   InstructionMark im(this);
  3901   emit_byte(0xD8);
  3902   emit_operand32(rsp, src);
  3905 void Assembler::fsuba(int i) {
  3906   emit_farith(0xDC, 0xE8, i);
  3909 void Assembler::fsubp(int i) {
  3910   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
  3913 void Assembler::fsubr(int i) {
  3914   emit_farith(0xD8, 0xE8, i);
  3917 void Assembler::fsubr_d(Address src) {
  3918   InstructionMark im(this);
  3919   emit_byte(0xDC);
  3920   emit_operand32(rbp, src);
  3923 void Assembler::fsubr_s(Address src) {
  3924   InstructionMark im(this);
  3925   emit_byte(0xD8);
  3926   emit_operand32(rbp, src);
  3929 void Assembler::fsubra(int i) {
  3930   emit_farith(0xDC, 0xE0, i);
  3933 void Assembler::fsubrp(int i) {
  3934   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
  3937 void Assembler::ftan() {
  3938   emit_byte(0xD9);
  3939   emit_byte(0xF2);
  3940   emit_byte(0xDD);
  3941   emit_byte(0xD8);
  3944 void Assembler::ftst() {
  3945   emit_byte(0xD9);
  3946   emit_byte(0xE4);
  3949 void Assembler::fucomi(int i) {
  3950   // make sure the instruction is supported (introduced for P6, together with cmov)
  3951   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  3952   emit_farith(0xDB, 0xE8, i);
  3955 void Assembler::fucomip(int i) {
  3956   // make sure the instruction is supported (introduced for P6, together with cmov)
  3957   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  3958   emit_farith(0xDF, 0xE8, i);
  3961 void Assembler::fwait() {
  3962   emit_byte(0x9B);
  3965 void Assembler::fxch(int i) {
  3966   emit_farith(0xD9, 0xC8, i);
  3969 void Assembler::fyl2x() {
  3970   emit_byte(0xD9);
  3971   emit_byte(0xF1);
  3974 void Assembler::frndint() {
  3975   emit_byte(0xD9);
  3976   emit_byte(0xFC);
  3979 void Assembler::f2xm1() {
  3980   emit_byte(0xD9);
  3981   emit_byte(0xF0);
  3984 void Assembler::fldl2e() {
  3985   emit_byte(0xD9);
  3986   emit_byte(0xEA);
  3989 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
  3990 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
  3991 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
  3992 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
  3994 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
  3995 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  3996   if (pre > 0) {
  3997     emit_byte(simd_pre[pre]);
  3999   if (rex_w) {
  4000     prefixq(adr, xreg);
  4001   } else {
  4002     prefix(adr, xreg);
  4004   if (opc > 0) {
  4005     emit_byte(0x0F);
  4006     int opc2 = simd_opc[opc];
  4007     if (opc2 > 0) {
  4008       emit_byte(opc2);
  4013 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  4014   if (pre > 0) {
  4015     emit_byte(simd_pre[pre]);
  4017   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
  4018                           prefix_and_encode(dst_enc, src_enc);
  4019   if (opc > 0) {
  4020     emit_byte(0x0F);
  4021     int opc2 = simd_opc[opc];
  4022     if (opc2 > 0) {
  4023       emit_byte(opc2);
  4026   return encode;
  4030 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, bool vector256) {
  4031   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
  4032     prefix(VEX_3bytes);
  4034     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
  4035     byte1 = (~byte1) & 0xE0;
  4036     byte1 |= opc;
  4037     a_byte(byte1);
  4039     int byte2 = ((~nds_enc) & 0xf) << 3;
  4040     byte2 |= (vex_w ? VEX_W : 0) | (vector256 ? 4 : 0) | pre;
  4041     emit_byte(byte2);
  4042   } else {
  4043     prefix(VEX_2bytes);
  4045     int byte1 = vex_r ? VEX_R : 0;
  4046     byte1 = (~byte1) & 0x80;
  4047     byte1 |= ((~nds_enc) & 0xf) << 3;
  4048     byte1 |= (vector256 ? 4 : 0) | pre;
  4049     emit_byte(byte1);
  4053 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256){
  4054   bool vex_r = (xreg_enc >= 8);
  4055   bool vex_b = adr.base_needs_rex();
  4056   bool vex_x = adr.index_needs_rex();
  4057   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  4060 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256) {
  4061   bool vex_r = (dst_enc >= 8);
  4062   bool vex_b = (src_enc >= 8);
  4063   bool vex_x = false;
  4064   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  4065   return (((dst_enc & 7) << 3) | (src_enc & 7));
  4069 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  4070   if (UseAVX > 0) {
  4071     int xreg_enc = xreg->encoding();
  4072     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
  4073     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector256);
  4074   } else {
  4075     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
  4076     rex_prefix(adr, xreg, pre, opc, rex_w);
  4080 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  4081   int dst_enc = dst->encoding();
  4082   int src_enc = src->encoding();
  4083   if (UseAVX > 0) {
  4084     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
  4085     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector256);
  4086   } else {
  4087     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
  4088     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
  4092 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
  4093   InstructionMark im(this);
  4094   simd_prefix(dst, dst, src, pre);
  4095   emit_byte(opcode);
  4096   emit_operand(dst, src);
  4099 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
  4100   int encode = simd_prefix_and_encode(dst, dst, src, pre);
  4101   emit_byte(opcode);
  4102   emit_byte(0xC0 | encode);
  4105 // Versions with no second source register (non-destructive source).
  4106 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
  4107   InstructionMark im(this);
  4108   simd_prefix(dst, xnoreg, src, pre);
  4109   emit_byte(opcode);
  4110   emit_operand(dst, src);
  4113 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
  4114   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre);
  4115   emit_byte(opcode);
  4116   emit_byte(0xC0 | encode);
  4119 // 3-operands AVX instructions
  4120 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
  4121                                Address src, VexSimdPrefix pre, bool vector256) {
  4122   InstructionMark im(this);
  4123   vex_prefix(dst, nds, src, pre, vector256);
  4124   emit_byte(opcode);
  4125   emit_operand(dst, src);
  4128 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
  4129                                XMMRegister src, VexSimdPrefix pre, bool vector256) {
  4130   int encode = vex_prefix_and_encode(dst, nds, src, pre, vector256);
  4131   emit_byte(opcode);
  4132   emit_byte(0xC0 | encode);
  4135 #ifndef _LP64
  4137 void Assembler::incl(Register dst) {
  4138   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  4139   emit_byte(0x40 | dst->encoding());
  4142 void Assembler::lea(Register dst, Address src) {
  4143   leal(dst, src);
  4146 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  4147   InstructionMark im(this);
  4148   emit_byte(0xC7);
  4149   emit_operand(rax, dst);
  4150   emit_data((int)imm32, rspec, 0);
  4153 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  4154   InstructionMark im(this);
  4155   int encode = prefix_and_encode(dst->encoding());
  4156   emit_byte(0xB8 | encode);
  4157   emit_data((int)imm32, rspec, 0);
  4160 void Assembler::popa() { // 32bit
  4161   emit_byte(0x61);
  4164 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
  4165   InstructionMark im(this);
  4166   emit_byte(0x68);
  4167   emit_data(imm32, rspec, 0);
  4170 void Assembler::pusha() { // 32bit
  4171   emit_byte(0x60);
  4174 void Assembler::set_byte_if_not_zero(Register dst) {
  4175   emit_byte(0x0F);
  4176   emit_byte(0x95);
  4177   emit_byte(0xE0 | dst->encoding());
  4180 void Assembler::shldl(Register dst, Register src) {
  4181   emit_byte(0x0F);
  4182   emit_byte(0xA5);
  4183   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  4186 void Assembler::shrdl(Register dst, Register src) {
  4187   emit_byte(0x0F);
  4188   emit_byte(0xAD);
  4189   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  4192 #else // LP64
  4194 void Assembler::set_byte_if_not_zero(Register dst) {
  4195   int enc = prefix_and_encode(dst->encoding(), true);
  4196   emit_byte(0x0F);
  4197   emit_byte(0x95);
  4198   emit_byte(0xE0 | enc);
  4201 // 64bit only pieces of the assembler
  4202 // This should only be used by 64bit instructions that can use rip-relative
  4203 // it cannot be used by instructions that want an immediate value.
  4205 bool Assembler::reachable(AddressLiteral adr) {
  4206   int64_t disp;
  4207   // None will force a 64bit literal to the code stream. Likely a placeholder
  4208   // for something that will be patched later and we need to certain it will
  4209   // always be reachable.
  4210   if (adr.reloc() == relocInfo::none) {
  4211     return false;
  4213   if (adr.reloc() == relocInfo::internal_word_type) {
  4214     // This should be rip relative and easily reachable.
  4215     return true;
  4217   if (adr.reloc() == relocInfo::virtual_call_type ||
  4218       adr.reloc() == relocInfo::opt_virtual_call_type ||
  4219       adr.reloc() == relocInfo::static_call_type ||
  4220       adr.reloc() == relocInfo::static_stub_type ) {
  4221     // This should be rip relative within the code cache and easily
  4222     // reachable until we get huge code caches. (At which point
  4223     // ic code is going to have issues).
  4224     return true;
  4226   if (adr.reloc() != relocInfo::external_word_type &&
  4227       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
  4228       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
  4229       adr.reloc() != relocInfo::runtime_call_type ) {
  4230     return false;
  4233   // Stress the correction code
  4234   if (ForceUnreachable) {
  4235     // Must be runtimecall reloc, see if it is in the codecache
  4236     // Flipping stuff in the codecache to be unreachable causes issues
  4237     // with things like inline caches where the additional instructions
  4238     // are not handled.
  4239     if (CodeCache::find_blob(adr._target) == NULL) {
  4240       return false;
  4243   // For external_word_type/runtime_call_type if it is reachable from where we
  4244   // are now (possibly a temp buffer) and where we might end up
  4245   // anywhere in the codeCache then we are always reachable.
  4246   // This would have to change if we ever save/restore shared code
  4247   // to be more pessimistic.
  4248   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
  4249   if (!is_simm32(disp)) return false;
  4250   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
  4251   if (!is_simm32(disp)) return false;
  4253   disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int));
  4255   // Because rip relative is a disp + address_of_next_instruction and we
  4256   // don't know the value of address_of_next_instruction we apply a fudge factor
  4257   // to make sure we will be ok no matter the size of the instruction we get placed into.
  4258   // We don't have to fudge the checks above here because they are already worst case.
  4260   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
  4261   // + 4 because better safe than sorry.
  4262   const int fudge = 12 + 4;
  4263   if (disp < 0) {
  4264     disp -= fudge;
  4265   } else {
  4266     disp += fudge;
  4268   return is_simm32(disp);
  4271 // Check if the polling page is not reachable from the code cache using rip-relative
  4272 // addressing.
  4273 bool Assembler::is_polling_page_far() {
  4274   intptr_t addr = (intptr_t)os::get_polling_page();
  4275   return ForceUnreachable ||
  4276          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
  4277          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
  4280 void Assembler::emit_data64(jlong data,
  4281                             relocInfo::relocType rtype,
  4282                             int format) {
  4283   if (rtype == relocInfo::none) {
  4284     emit_long64(data);
  4285   } else {
  4286     emit_data64(data, Relocation::spec_simple(rtype), format);
  4290 void Assembler::emit_data64(jlong data,
  4291                             RelocationHolder const& rspec,
  4292                             int format) {
  4293   assert(imm_operand == 0, "default format must be immediate in this file");
  4294   assert(imm_operand == format, "must be immediate");
  4295   assert(inst_mark() != NULL, "must be inside InstructionMark");
  4296   // Do not use AbstractAssembler::relocate, which is not intended for
  4297   // embedded words.  Instead, relocate to the enclosing instruction.
  4298   code_section()->relocate(inst_mark(), rspec, format);
  4299 #ifdef ASSERT
  4300   check_relocation(rspec, format);
  4301 #endif
  4302   emit_long64(data);
  4305 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
  4306   if (reg_enc >= 8) {
  4307     prefix(REX_B);
  4308     reg_enc -= 8;
  4309   } else if (byteinst && reg_enc >= 4) {
  4310     prefix(REX);
  4312   return reg_enc;
  4315 int Assembler::prefixq_and_encode(int reg_enc) {
  4316   if (reg_enc < 8) {
  4317     prefix(REX_W);
  4318   } else {
  4319     prefix(REX_WB);
  4320     reg_enc -= 8;
  4322   return reg_enc;
  4325 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
  4326   if (dst_enc < 8) {
  4327     if (src_enc >= 8) {
  4328       prefix(REX_B);
  4329       src_enc -= 8;
  4330     } else if (byteinst && src_enc >= 4) {
  4331       prefix(REX);
  4333   } else {
  4334     if (src_enc < 8) {
  4335       prefix(REX_R);
  4336     } else {
  4337       prefix(REX_RB);
  4338       src_enc -= 8;
  4340     dst_enc -= 8;
  4342   return dst_enc << 3 | src_enc;
  4345 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
  4346   if (dst_enc < 8) {
  4347     if (src_enc < 8) {
  4348       prefix(REX_W);
  4349     } else {
  4350       prefix(REX_WB);
  4351       src_enc -= 8;
  4353   } else {
  4354     if (src_enc < 8) {
  4355       prefix(REX_WR);
  4356     } else {
  4357       prefix(REX_WRB);
  4358       src_enc -= 8;
  4360     dst_enc -= 8;
  4362   return dst_enc << 3 | src_enc;
  4365 void Assembler::prefix(Register reg) {
  4366   if (reg->encoding() >= 8) {
  4367     prefix(REX_B);
  4371 void Assembler::prefix(Address adr) {
  4372   if (adr.base_needs_rex()) {
  4373     if (adr.index_needs_rex()) {
  4374       prefix(REX_XB);
  4375     } else {
  4376       prefix(REX_B);
  4378   } else {
  4379     if (adr.index_needs_rex()) {
  4380       prefix(REX_X);
  4385 void Assembler::prefixq(Address adr) {
  4386   if (adr.base_needs_rex()) {
  4387     if (adr.index_needs_rex()) {
  4388       prefix(REX_WXB);
  4389     } else {
  4390       prefix(REX_WB);
  4392   } else {
  4393     if (adr.index_needs_rex()) {
  4394       prefix(REX_WX);
  4395     } else {
  4396       prefix(REX_W);
  4402 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
  4403   if (reg->encoding() < 8) {
  4404     if (adr.base_needs_rex()) {
  4405       if (adr.index_needs_rex()) {
  4406         prefix(REX_XB);
  4407       } else {
  4408         prefix(REX_B);
  4410     } else {
  4411       if (adr.index_needs_rex()) {
  4412         prefix(REX_X);
  4413       } else if (byteinst && reg->encoding() >= 4 ) {
  4414         prefix(REX);
  4417   } else {
  4418     if (adr.base_needs_rex()) {
  4419       if (adr.index_needs_rex()) {
  4420         prefix(REX_RXB);
  4421       } else {
  4422         prefix(REX_RB);
  4424     } else {
  4425       if (adr.index_needs_rex()) {
  4426         prefix(REX_RX);
  4427       } else {
  4428         prefix(REX_R);
  4434 void Assembler::prefixq(Address adr, Register src) {
  4435   if (src->encoding() < 8) {
  4436     if (adr.base_needs_rex()) {
  4437       if (adr.index_needs_rex()) {
  4438         prefix(REX_WXB);
  4439       } else {
  4440         prefix(REX_WB);
  4442     } else {
  4443       if (adr.index_needs_rex()) {
  4444         prefix(REX_WX);
  4445       } else {
  4446         prefix(REX_W);
  4449   } else {
  4450     if (adr.base_needs_rex()) {
  4451       if (adr.index_needs_rex()) {
  4452         prefix(REX_WRXB);
  4453       } else {
  4454         prefix(REX_WRB);
  4456     } else {
  4457       if (adr.index_needs_rex()) {
  4458         prefix(REX_WRX);
  4459       } else {
  4460         prefix(REX_WR);
  4466 void Assembler::prefix(Address adr, XMMRegister reg) {
  4467   if (reg->encoding() < 8) {
  4468     if (adr.base_needs_rex()) {
  4469       if (adr.index_needs_rex()) {
  4470         prefix(REX_XB);
  4471       } else {
  4472         prefix(REX_B);
  4474     } else {
  4475       if (adr.index_needs_rex()) {
  4476         prefix(REX_X);
  4479   } else {
  4480     if (adr.base_needs_rex()) {
  4481       if (adr.index_needs_rex()) {
  4482         prefix(REX_RXB);
  4483       } else {
  4484         prefix(REX_RB);
  4486     } else {
  4487       if (adr.index_needs_rex()) {
  4488         prefix(REX_RX);
  4489       } else {
  4490         prefix(REX_R);
  4496 void Assembler::prefixq(Address adr, XMMRegister src) {
  4497   if (src->encoding() < 8) {
  4498     if (adr.base_needs_rex()) {
  4499       if (adr.index_needs_rex()) {
  4500         prefix(REX_WXB);
  4501       } else {
  4502         prefix(REX_WB);
  4504     } else {
  4505       if (adr.index_needs_rex()) {
  4506         prefix(REX_WX);
  4507       } else {
  4508         prefix(REX_W);
  4511   } else {
  4512     if (adr.base_needs_rex()) {
  4513       if (adr.index_needs_rex()) {
  4514         prefix(REX_WRXB);
  4515       } else {
  4516         prefix(REX_WRB);
  4518     } else {
  4519       if (adr.index_needs_rex()) {
  4520         prefix(REX_WRX);
  4521       } else {
  4522         prefix(REX_WR);
  4528 void Assembler::adcq(Register dst, int32_t imm32) {
  4529   (void) prefixq_and_encode(dst->encoding());
  4530   emit_arith(0x81, 0xD0, dst, imm32);
  4533 void Assembler::adcq(Register dst, Address src) {
  4534   InstructionMark im(this);
  4535   prefixq(src, dst);
  4536   emit_byte(0x13);
  4537   emit_operand(dst, src);
  4540 void Assembler::adcq(Register dst, Register src) {
  4541   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  4542   emit_arith(0x13, 0xC0, dst, src);
  4545 void Assembler::addq(Address dst, int32_t imm32) {
  4546   InstructionMark im(this);
  4547   prefixq(dst);
  4548   emit_arith_operand(0x81, rax, dst,imm32);
  4551 void Assembler::addq(Address dst, Register src) {
  4552   InstructionMark im(this);
  4553   prefixq(dst, src);
  4554   emit_byte(0x01);
  4555   emit_operand(src, dst);
  4558 void Assembler::addq(Register dst, int32_t imm32) {
  4559   (void) prefixq_and_encode(dst->encoding());
  4560   emit_arith(0x81, 0xC0, dst, imm32);
  4563 void Assembler::addq(Register dst, Address src) {
  4564   InstructionMark im(this);
  4565   prefixq(src, dst);
  4566   emit_byte(0x03);
  4567   emit_operand(dst, src);
  4570 void Assembler::addq(Register dst, Register src) {
  4571   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4572   emit_arith(0x03, 0xC0, dst, src);
  4575 void Assembler::andq(Address dst, int32_t imm32) {
  4576   InstructionMark im(this);
  4577   prefixq(dst);
  4578   emit_byte(0x81);
  4579   emit_operand(rsp, dst, 4);
  4580   emit_long(imm32);
  4583 void Assembler::andq(Register dst, int32_t imm32) {
  4584   (void) prefixq_and_encode(dst->encoding());
  4585   emit_arith(0x81, 0xE0, dst, imm32);
  4588 void Assembler::andq(Register dst, Address src) {
  4589   InstructionMark im(this);
  4590   prefixq(src, dst);
  4591   emit_byte(0x23);
  4592   emit_operand(dst, src);
  4595 void Assembler::andq(Register dst, Register src) {
  4596   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  4597   emit_arith(0x23, 0xC0, dst, src);
  4600 void Assembler::bsfq(Register dst, Register src) {
  4601   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4602   emit_byte(0x0F);
  4603   emit_byte(0xBC);
  4604   emit_byte(0xC0 | encode);
  4607 void Assembler::bsrq(Register dst, Register src) {
  4608   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  4609   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4610   emit_byte(0x0F);
  4611   emit_byte(0xBD);
  4612   emit_byte(0xC0 | encode);
  4615 void Assembler::bswapq(Register reg) {
  4616   int encode = prefixq_and_encode(reg->encoding());
  4617   emit_byte(0x0F);
  4618   emit_byte(0xC8 | encode);
  4621 void Assembler::cdqq() {
  4622   prefix(REX_W);
  4623   emit_byte(0x99);
  4626 void Assembler::clflush(Address adr) {
  4627   prefix(adr);
  4628   emit_byte(0x0F);
  4629   emit_byte(0xAE);
  4630   emit_operand(rdi, adr);
  4633 void Assembler::cmovq(Condition cc, Register dst, Register src) {
  4634   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4635   emit_byte(0x0F);
  4636   emit_byte(0x40 | cc);
  4637   emit_byte(0xC0 | encode);
  4640 void Assembler::cmovq(Condition cc, Register dst, Address src) {
  4641   InstructionMark im(this);
  4642   prefixq(src, dst);
  4643   emit_byte(0x0F);
  4644   emit_byte(0x40 | cc);
  4645   emit_operand(dst, src);
  4648 void Assembler::cmpq(Address dst, int32_t imm32) {
  4649   InstructionMark im(this);
  4650   prefixq(dst);
  4651   emit_byte(0x81);
  4652   emit_operand(rdi, dst, 4);
  4653   emit_long(imm32);
  4656 void Assembler::cmpq(Register dst, int32_t imm32) {
  4657   (void) prefixq_and_encode(dst->encoding());
  4658   emit_arith(0x81, 0xF8, dst, imm32);
  4661 void Assembler::cmpq(Address dst, Register src) {
  4662   InstructionMark im(this);
  4663   prefixq(dst, src);
  4664   emit_byte(0x3B);
  4665   emit_operand(src, dst);
  4668 void Assembler::cmpq(Register dst, Register src) {
  4669   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4670   emit_arith(0x3B, 0xC0, dst, src);
  4673 void Assembler::cmpq(Register dst, Address  src) {
  4674   InstructionMark im(this);
  4675   prefixq(src, dst);
  4676   emit_byte(0x3B);
  4677   emit_operand(dst, src);
  4680 void Assembler::cmpxchgq(Register reg, Address adr) {
  4681   InstructionMark im(this);
  4682   prefixq(adr, reg);
  4683   emit_byte(0x0F);
  4684   emit_byte(0xB1);
  4685   emit_operand(reg, adr);
  4688 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
  4689   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4690   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2);
  4691   emit_byte(0x2A);
  4692   emit_byte(0xC0 | encode);
  4695 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
  4696   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4697   InstructionMark im(this);
  4698   simd_prefix_q(dst, dst, src, VEX_SIMD_F2);
  4699   emit_byte(0x2A);
  4700   emit_operand(dst, src);
  4703 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
  4704   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4705   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3);
  4706   emit_byte(0x2A);
  4707   emit_byte(0xC0 | encode);
  4710 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
  4711   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4712   InstructionMark im(this);
  4713   simd_prefix_q(dst, dst, src, VEX_SIMD_F3);
  4714   emit_byte(0x2A);
  4715   emit_operand(dst, src);
  4718 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
  4719   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4720   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2);
  4721   emit_byte(0x2C);
  4722   emit_byte(0xC0 | encode);
  4725 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
  4726   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4727   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3);
  4728   emit_byte(0x2C);
  4729   emit_byte(0xC0 | encode);
  4732 void Assembler::decl(Register dst) {
  4733   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  4734   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
  4735   int encode = prefix_and_encode(dst->encoding());
  4736   emit_byte(0xFF);
  4737   emit_byte(0xC8 | encode);
  4740 void Assembler::decq(Register dst) {
  4741   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  4742   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4743   int encode = prefixq_and_encode(dst->encoding());
  4744   emit_byte(0xFF);
  4745   emit_byte(0xC8 | encode);
  4748 void Assembler::decq(Address dst) {
  4749   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  4750   InstructionMark im(this);
  4751   prefixq(dst);
  4752   emit_byte(0xFF);
  4753   emit_operand(rcx, dst);
  4756 void Assembler::fxrstor(Address src) {
  4757   prefixq(src);
  4758   emit_byte(0x0F);
  4759   emit_byte(0xAE);
  4760   emit_operand(as_Register(1), src);
  4763 void Assembler::fxsave(Address dst) {
  4764   prefixq(dst);
  4765   emit_byte(0x0F);
  4766   emit_byte(0xAE);
  4767   emit_operand(as_Register(0), dst);
  4770 void Assembler::idivq(Register src) {
  4771   int encode = prefixq_and_encode(src->encoding());
  4772   emit_byte(0xF7);
  4773   emit_byte(0xF8 | encode);
  4776 void Assembler::imulq(Register dst, Register src) {
  4777   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4778   emit_byte(0x0F);
  4779   emit_byte(0xAF);
  4780   emit_byte(0xC0 | encode);
  4783 void Assembler::imulq(Register dst, Register src, int value) {
  4784   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4785   if (is8bit(value)) {
  4786     emit_byte(0x6B);
  4787     emit_byte(0xC0 | encode);
  4788     emit_byte(value & 0xFF);
  4789   } else {
  4790     emit_byte(0x69);
  4791     emit_byte(0xC0 | encode);
  4792     emit_long(value);
  4796 void Assembler::incl(Register dst) {
  4797   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  4798   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4799   int encode = prefix_and_encode(dst->encoding());
  4800   emit_byte(0xFF);
  4801   emit_byte(0xC0 | encode);
  4804 void Assembler::incq(Register dst) {
  4805   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  4806   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4807   int encode = prefixq_and_encode(dst->encoding());
  4808   emit_byte(0xFF);
  4809   emit_byte(0xC0 | encode);
  4812 void Assembler::incq(Address dst) {
  4813   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  4814   InstructionMark im(this);
  4815   prefixq(dst);
  4816   emit_byte(0xFF);
  4817   emit_operand(rax, dst);
  4820 void Assembler::lea(Register dst, Address src) {
  4821   leaq(dst, src);
  4824 void Assembler::leaq(Register dst, Address src) {
  4825   InstructionMark im(this);
  4826   prefixq(src, dst);
  4827   emit_byte(0x8D);
  4828   emit_operand(dst, src);
  4831 void Assembler::mov64(Register dst, int64_t imm64) {
  4832   InstructionMark im(this);
  4833   int encode = prefixq_and_encode(dst->encoding());
  4834   emit_byte(0xB8 | encode);
  4835   emit_long64(imm64);
  4838 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
  4839   InstructionMark im(this);
  4840   int encode = prefixq_and_encode(dst->encoding());
  4841   emit_byte(0xB8 | encode);
  4842   emit_data64(imm64, rspec);
  4845 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  4846   InstructionMark im(this);
  4847   int encode = prefix_and_encode(dst->encoding());
  4848   emit_byte(0xB8 | encode);
  4849   emit_data((int)imm32, rspec, narrow_oop_operand);
  4852 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  4853   InstructionMark im(this);
  4854   prefix(dst);
  4855   emit_byte(0xC7);
  4856   emit_operand(rax, dst, 4);
  4857   emit_data((int)imm32, rspec, narrow_oop_operand);
  4860 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  4861   InstructionMark im(this);
  4862   int encode = prefix_and_encode(src1->encoding());
  4863   emit_byte(0x81);
  4864   emit_byte(0xF8 | encode);
  4865   emit_data((int)imm32, rspec, narrow_oop_operand);
  4868 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  4869   InstructionMark im(this);
  4870   prefix(src1);
  4871   emit_byte(0x81);
  4872   emit_operand(rax, src1, 4);
  4873   emit_data((int)imm32, rspec, narrow_oop_operand);
  4876 void Assembler::lzcntq(Register dst, Register src) {
  4877   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  4878   emit_byte(0xF3);
  4879   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4880   emit_byte(0x0F);
  4881   emit_byte(0xBD);
  4882   emit_byte(0xC0 | encode);
  4885 void Assembler::movdq(XMMRegister dst, Register src) {
  4886   // table D-1 says MMX/SSE2
  4887   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4888   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66);
  4889   emit_byte(0x6E);
  4890   emit_byte(0xC0 | encode);
  4893 void Assembler::movdq(Register dst, XMMRegister src) {
  4894   // table D-1 says MMX/SSE2
  4895   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4896   // swap src/dst to get correct prefix
  4897   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66);
  4898   emit_byte(0x7E);
  4899   emit_byte(0xC0 | encode);
  4902 void Assembler::movq(Register dst, Register src) {
  4903   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4904   emit_byte(0x8B);
  4905   emit_byte(0xC0 | encode);
  4908 void Assembler::movq(Register dst, Address src) {
  4909   InstructionMark im(this);
  4910   prefixq(src, dst);
  4911   emit_byte(0x8B);
  4912   emit_operand(dst, src);
  4915 void Assembler::movq(Address dst, Register src) {
  4916   InstructionMark im(this);
  4917   prefixq(dst, src);
  4918   emit_byte(0x89);
  4919   emit_operand(src, dst);
  4922 void Assembler::movsbq(Register dst, Address src) {
  4923   InstructionMark im(this);
  4924   prefixq(src, dst);
  4925   emit_byte(0x0F);
  4926   emit_byte(0xBE);
  4927   emit_operand(dst, src);
  4930 void Assembler::movsbq(Register dst, Register src) {
  4931   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4932   emit_byte(0x0F);
  4933   emit_byte(0xBE);
  4934   emit_byte(0xC0 | encode);
  4937 void Assembler::movslq(Register dst, int32_t imm32) {
  4938   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
  4939   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
  4940   // as a result we shouldn't use until tested at runtime...
  4941   ShouldNotReachHere();
  4942   InstructionMark im(this);
  4943   int encode = prefixq_and_encode(dst->encoding());
  4944   emit_byte(0xC7 | encode);
  4945   emit_long(imm32);
  4948 void Assembler::movslq(Address dst, int32_t imm32) {
  4949   assert(is_simm32(imm32), "lost bits");
  4950   InstructionMark im(this);
  4951   prefixq(dst);
  4952   emit_byte(0xC7);
  4953   emit_operand(rax, dst, 4);
  4954   emit_long(imm32);
  4957 void Assembler::movslq(Register dst, Address src) {
  4958   InstructionMark im(this);
  4959   prefixq(src, dst);
  4960   emit_byte(0x63);
  4961   emit_operand(dst, src);
  4964 void Assembler::movslq(Register dst, Register src) {
  4965   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4966   emit_byte(0x63);
  4967   emit_byte(0xC0 | encode);
  4970 void Assembler::movswq(Register dst, Address src) {
  4971   InstructionMark im(this);
  4972   prefixq(src, dst);
  4973   emit_byte(0x0F);
  4974   emit_byte(0xBF);
  4975   emit_operand(dst, src);
  4978 void Assembler::movswq(Register dst, Register src) {
  4979   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4980   emit_byte(0x0F);
  4981   emit_byte(0xBF);
  4982   emit_byte(0xC0 | encode);
  4985 void Assembler::movzbq(Register dst, Address src) {
  4986   InstructionMark im(this);
  4987   prefixq(src, dst);
  4988   emit_byte(0x0F);
  4989   emit_byte(0xB6);
  4990   emit_operand(dst, src);
  4993 void Assembler::movzbq(Register dst, Register src) {
  4994   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4995   emit_byte(0x0F);
  4996   emit_byte(0xB6);
  4997   emit_byte(0xC0 | encode);
  5000 void Assembler::movzwq(Register dst, Address src) {
  5001   InstructionMark im(this);
  5002   prefixq(src, dst);
  5003   emit_byte(0x0F);
  5004   emit_byte(0xB7);
  5005   emit_operand(dst, src);
  5008 void Assembler::movzwq(Register dst, Register src) {
  5009   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5010   emit_byte(0x0F);
  5011   emit_byte(0xB7);
  5012   emit_byte(0xC0 | encode);
  5015 void Assembler::negq(Register dst) {
  5016   int encode = prefixq_and_encode(dst->encoding());
  5017   emit_byte(0xF7);
  5018   emit_byte(0xD8 | encode);
  5021 void Assembler::notq(Register dst) {
  5022   int encode = prefixq_and_encode(dst->encoding());
  5023   emit_byte(0xF7);
  5024   emit_byte(0xD0 | encode);
  5027 void Assembler::orq(Address dst, int32_t imm32) {
  5028   InstructionMark im(this);
  5029   prefixq(dst);
  5030   emit_byte(0x81);
  5031   emit_operand(rcx, dst, 4);
  5032   emit_long(imm32);
  5035 void Assembler::orq(Register dst, int32_t imm32) {
  5036   (void) prefixq_and_encode(dst->encoding());
  5037   emit_arith(0x81, 0xC8, dst, imm32);
  5040 void Assembler::orq(Register dst, Address src) {
  5041   InstructionMark im(this);
  5042   prefixq(src, dst);
  5043   emit_byte(0x0B);
  5044   emit_operand(dst, src);
  5047 void Assembler::orq(Register dst, Register src) {
  5048   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5049   emit_arith(0x0B, 0xC0, dst, src);
  5052 void Assembler::popa() { // 64bit
  5053   movq(r15, Address(rsp, 0));
  5054   movq(r14, Address(rsp, wordSize));
  5055   movq(r13, Address(rsp, 2 * wordSize));
  5056   movq(r12, Address(rsp, 3 * wordSize));
  5057   movq(r11, Address(rsp, 4 * wordSize));
  5058   movq(r10, Address(rsp, 5 * wordSize));
  5059   movq(r9,  Address(rsp, 6 * wordSize));
  5060   movq(r8,  Address(rsp, 7 * wordSize));
  5061   movq(rdi, Address(rsp, 8 * wordSize));
  5062   movq(rsi, Address(rsp, 9 * wordSize));
  5063   movq(rbp, Address(rsp, 10 * wordSize));
  5064   // skip rsp
  5065   movq(rbx, Address(rsp, 12 * wordSize));
  5066   movq(rdx, Address(rsp, 13 * wordSize));
  5067   movq(rcx, Address(rsp, 14 * wordSize));
  5068   movq(rax, Address(rsp, 15 * wordSize));
  5070   addq(rsp, 16 * wordSize);
  5073 void Assembler::popcntq(Register dst, Address src) {
  5074   assert(VM_Version::supports_popcnt(), "must support");
  5075   InstructionMark im(this);
  5076   emit_byte(0xF3);
  5077   prefixq(src, dst);
  5078   emit_byte(0x0F);
  5079   emit_byte(0xB8);
  5080   emit_operand(dst, src);
  5083 void Assembler::popcntq(Register dst, Register src) {
  5084   assert(VM_Version::supports_popcnt(), "must support");
  5085   emit_byte(0xF3);
  5086   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5087   emit_byte(0x0F);
  5088   emit_byte(0xB8);
  5089   emit_byte(0xC0 | encode);
  5092 void Assembler::popq(Address dst) {
  5093   InstructionMark im(this);
  5094   prefixq(dst);
  5095   emit_byte(0x8F);
  5096   emit_operand(rax, dst);
  5099 void Assembler::pusha() { // 64bit
  5100   // we have to store original rsp.  ABI says that 128 bytes
  5101   // below rsp are local scratch.
  5102   movq(Address(rsp, -5 * wordSize), rsp);
  5104   subq(rsp, 16 * wordSize);
  5106   movq(Address(rsp, 15 * wordSize), rax);
  5107   movq(Address(rsp, 14 * wordSize), rcx);
  5108   movq(Address(rsp, 13 * wordSize), rdx);
  5109   movq(Address(rsp, 12 * wordSize), rbx);
  5110   // skip rsp
  5111   movq(Address(rsp, 10 * wordSize), rbp);
  5112   movq(Address(rsp, 9 * wordSize), rsi);
  5113   movq(Address(rsp, 8 * wordSize), rdi);
  5114   movq(Address(rsp, 7 * wordSize), r8);
  5115   movq(Address(rsp, 6 * wordSize), r9);
  5116   movq(Address(rsp, 5 * wordSize), r10);
  5117   movq(Address(rsp, 4 * wordSize), r11);
  5118   movq(Address(rsp, 3 * wordSize), r12);
  5119   movq(Address(rsp, 2 * wordSize), r13);
  5120   movq(Address(rsp, wordSize), r14);
  5121   movq(Address(rsp, 0), r15);
  5124 void Assembler::pushq(Address src) {
  5125   InstructionMark im(this);
  5126   prefixq(src);
  5127   emit_byte(0xFF);
  5128   emit_operand(rsi, src);
  5131 void Assembler::rclq(Register dst, int imm8) {
  5132   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5133   int encode = prefixq_and_encode(dst->encoding());
  5134   if (imm8 == 1) {
  5135     emit_byte(0xD1);
  5136     emit_byte(0xD0 | encode);
  5137   } else {
  5138     emit_byte(0xC1);
  5139     emit_byte(0xD0 | encode);
  5140     emit_byte(imm8);
  5143 void Assembler::sarq(Register dst, int imm8) {
  5144   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5145   int encode = prefixq_and_encode(dst->encoding());
  5146   if (imm8 == 1) {
  5147     emit_byte(0xD1);
  5148     emit_byte(0xF8 | encode);
  5149   } else {
  5150     emit_byte(0xC1);
  5151     emit_byte(0xF8 | encode);
  5152     emit_byte(imm8);
  5156 void Assembler::sarq(Register dst) {
  5157   int encode = prefixq_and_encode(dst->encoding());
  5158   emit_byte(0xD3);
  5159   emit_byte(0xF8 | encode);
  5162 void Assembler::sbbq(Address dst, int32_t imm32) {
  5163   InstructionMark im(this);
  5164   prefixq(dst);
  5165   emit_arith_operand(0x81, rbx, dst, imm32);
  5168 void Assembler::sbbq(Register dst, int32_t imm32) {
  5169   (void) prefixq_and_encode(dst->encoding());
  5170   emit_arith(0x81, 0xD8, dst, imm32);
  5173 void Assembler::sbbq(Register dst, Address src) {
  5174   InstructionMark im(this);
  5175   prefixq(src, dst);
  5176   emit_byte(0x1B);
  5177   emit_operand(dst, src);
  5180 void Assembler::sbbq(Register dst, Register src) {
  5181   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5182   emit_arith(0x1B, 0xC0, dst, src);
  5185 void Assembler::shlq(Register dst, int imm8) {
  5186   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5187   int encode = prefixq_and_encode(dst->encoding());
  5188   if (imm8 == 1) {
  5189     emit_byte(0xD1);
  5190     emit_byte(0xE0 | encode);
  5191   } else {
  5192     emit_byte(0xC1);
  5193     emit_byte(0xE0 | encode);
  5194     emit_byte(imm8);
  5198 void Assembler::shlq(Register dst) {
  5199   int encode = prefixq_and_encode(dst->encoding());
  5200   emit_byte(0xD3);
  5201   emit_byte(0xE0 | encode);
  5204 void Assembler::shrq(Register dst, int imm8) {
  5205   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5206   int encode = prefixq_and_encode(dst->encoding());
  5207   emit_byte(0xC1);
  5208   emit_byte(0xE8 | encode);
  5209   emit_byte(imm8);
  5212 void Assembler::shrq(Register dst) {
  5213   int encode = prefixq_and_encode(dst->encoding());
  5214   emit_byte(0xD3);
  5215   emit_byte(0xE8 | encode);
  5218 void Assembler::subq(Address dst, int32_t imm32) {
  5219   InstructionMark im(this);
  5220   prefixq(dst);
  5221   emit_arith_operand(0x81, rbp, dst, imm32);
  5224 void Assembler::subq(Address dst, Register src) {
  5225   InstructionMark im(this);
  5226   prefixq(dst, src);
  5227   emit_byte(0x29);
  5228   emit_operand(src, dst);
  5231 void Assembler::subq(Register dst, int32_t imm32) {
  5232   (void) prefixq_and_encode(dst->encoding());
  5233   emit_arith(0x81, 0xE8, dst, imm32);
  5236 // Force generation of a 4 byte immediate value even if it fits into 8bit
  5237 void Assembler::subq_imm32(Register dst, int32_t imm32) {
  5238   (void) prefixq_and_encode(dst->encoding());
  5239   emit_arith_imm32(0x81, 0xE8, dst, imm32);
  5242 void Assembler::subq(Register dst, Address src) {
  5243   InstructionMark im(this);
  5244   prefixq(src, dst);
  5245   emit_byte(0x2B);
  5246   emit_operand(dst, src);
  5249 void Assembler::subq(Register dst, Register src) {
  5250   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5251   emit_arith(0x2B, 0xC0, dst, src);
  5254 void Assembler::testq(Register dst, int32_t imm32) {
  5255   // not using emit_arith because test
  5256   // doesn't support sign-extension of
  5257   // 8bit operands
  5258   int encode = dst->encoding();
  5259   if (encode == 0) {
  5260     prefix(REX_W);
  5261     emit_byte(0xA9);
  5262   } else {
  5263     encode = prefixq_and_encode(encode);
  5264     emit_byte(0xF7);
  5265     emit_byte(0xC0 | encode);
  5267   emit_long(imm32);
  5270 void Assembler::testq(Register dst, Register src) {
  5271   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5272   emit_arith(0x85, 0xC0, dst, src);
  5275 void Assembler::xaddq(Address dst, Register src) {
  5276   InstructionMark im(this);
  5277   prefixq(dst, src);
  5278   emit_byte(0x0F);
  5279   emit_byte(0xC1);
  5280   emit_operand(src, dst);
  5283 void Assembler::xchgq(Register dst, Address src) {
  5284   InstructionMark im(this);
  5285   prefixq(src, dst);
  5286   emit_byte(0x87);
  5287   emit_operand(dst, src);
  5290 void Assembler::xchgq(Register dst, Register src) {
  5291   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5292   emit_byte(0x87);
  5293   emit_byte(0xc0 | encode);
  5296 void Assembler::xorq(Register dst, Register src) {
  5297   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5298   emit_arith(0x33, 0xC0, dst, src);
  5301 void Assembler::xorq(Register dst, Address src) {
  5302   InstructionMark im(this);
  5303   prefixq(src, dst);
  5304   emit_byte(0x33);
  5305   emit_operand(dst, src);
  5308 #endif // !LP64
  5310 static Assembler::Condition reverse[] = {
  5311     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  5312     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  5313     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  5314     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  5315     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  5316     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  5317     Assembler::above          /* belowEqual    = 0x6 */ ,
  5318     Assembler::belowEqual     /* above         = 0x7 */ ,
  5319     Assembler::positive       /* negative      = 0x8 */ ,
  5320     Assembler::negative       /* positive      = 0x9 */ ,
  5321     Assembler::noParity       /* parity        = 0xa */ ,
  5322     Assembler::parity         /* noParity      = 0xb */ ,
  5323     Assembler::greaterEqual   /* less          = 0xc */ ,
  5324     Assembler::less           /* greaterEqual  = 0xd */ ,
  5325     Assembler::greater        /* lessEqual     = 0xe */ ,
  5326     Assembler::lessEqual      /* greater       = 0xf, */
  5328 };
  5331 // Implementation of MacroAssembler
  5333 // First all the versions that have distinct versions depending on 32/64 bit
  5334 // Unless the difference is trivial (1 line or so).
  5336 #ifndef _LP64
  5338 // 32bit versions
  5340 Address MacroAssembler::as_Address(AddressLiteral adr) {
  5341   return Address(adr.target(), adr.rspec());
  5344 Address MacroAssembler::as_Address(ArrayAddress adr) {
  5345   return Address::make_array(adr);
  5348 int MacroAssembler::biased_locking_enter(Register lock_reg,
  5349                                          Register obj_reg,
  5350                                          Register swap_reg,
  5351                                          Register tmp_reg,
  5352                                          bool swap_reg_contains_mark,
  5353                                          Label& done,
  5354                                          Label* slow_case,
  5355                                          BiasedLockingCounters* counters) {
  5356   assert(UseBiasedLocking, "why call this otherwise?");
  5357   assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
  5358   assert_different_registers(lock_reg, obj_reg, swap_reg);
  5360   if (PrintBiasedLockingStatistics && counters == NULL)
  5361     counters = BiasedLocking::counters();
  5363   bool need_tmp_reg = false;
  5364   if (tmp_reg == noreg) {
  5365     need_tmp_reg = true;
  5366     tmp_reg = lock_reg;
  5367   } else {
  5368     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  5370   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  5371   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  5372   Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
  5373   Address saved_mark_addr(lock_reg, 0);
  5375   // Biased locking
  5376   // See whether the lock is currently biased toward our thread and
  5377   // whether the epoch is still valid
  5378   // Note that the runtime guarantees sufficient alignment of JavaThread
  5379   // pointers to allow age to be placed into low bits
  5380   // First check to see whether biasing is even enabled for this object
  5381   Label cas_label;
  5382   int null_check_offset = -1;
  5383   if (!swap_reg_contains_mark) {
  5384     null_check_offset = offset();
  5385     movl(swap_reg, mark_addr);
  5387   if (need_tmp_reg) {
  5388     push(tmp_reg);
  5390   movl(tmp_reg, swap_reg);
  5391   andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5392   cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
  5393   if (need_tmp_reg) {
  5394     pop(tmp_reg);
  5396   jcc(Assembler::notEqual, cas_label);
  5397   // The bias pattern is present in the object's header. Need to check
  5398   // whether the bias owner and the epoch are both still current.
  5399   // Note that because there is no current thread register on x86 we
  5400   // need to store off the mark word we read out of the object to
  5401   // avoid reloading it and needing to recheck invariants below. This
  5402   // store is unfortunate but it makes the overall code shorter and
  5403   // simpler.
  5404   movl(saved_mark_addr, swap_reg);
  5405   if (need_tmp_reg) {
  5406     push(tmp_reg);
  5408   get_thread(tmp_reg);
  5409   xorl(swap_reg, tmp_reg);
  5410   if (swap_reg_contains_mark) {
  5411     null_check_offset = offset();
  5413   movl(tmp_reg, klass_addr);
  5414   xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset()));
  5415   andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
  5416   if (need_tmp_reg) {
  5417     pop(tmp_reg);
  5419   if (counters != NULL) {
  5420     cond_inc32(Assembler::zero,
  5421                ExternalAddress((address)counters->biased_lock_entry_count_addr()));
  5423   jcc(Assembler::equal, done);
  5425   Label try_revoke_bias;
  5426   Label try_rebias;
  5428   // At this point we know that the header has the bias pattern and
  5429   // that we are not the bias owner in the current epoch. We need to
  5430   // figure out more details about the state of the header in order to
  5431   // know what operations can be legally performed on the object's
  5432   // header.
  5434   // If the low three bits in the xor result aren't clear, that means
  5435   // the prototype header is no longer biased and we have to revoke
  5436   // the bias on this object.
  5437   testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
  5438   jcc(Assembler::notZero, try_revoke_bias);
  5440   // Biasing is still enabled for this data type. See whether the
  5441   // epoch of the current bias is still valid, meaning that the epoch
  5442   // bits of the mark word are equal to the epoch bits of the
  5443   // prototype header. (Note that the prototype header's epoch bits
  5444   // only change at a safepoint.) If not, attempt to rebias the object
  5445   // toward the current thread. Note that we must be absolutely sure
  5446   // that the current epoch is invalid in order to do this because
  5447   // otherwise the manipulations it performs on the mark word are
  5448   // illegal.
  5449   testl(swap_reg, markOopDesc::epoch_mask_in_place);
  5450   jcc(Assembler::notZero, try_rebias);
  5452   // The epoch of the current bias is still valid but we know nothing
  5453   // about the owner; it might be set or it might be clear. Try to
  5454   // acquire the bias of the object using an atomic operation. If this
  5455   // fails we will go in to the runtime to revoke the object's bias.
  5456   // Note that we first construct the presumed unbiased header so we
  5457   // don't accidentally blow away another thread's valid bias.
  5458   movl(swap_reg, saved_mark_addr);
  5459   andl(swap_reg,
  5460        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  5461   if (need_tmp_reg) {
  5462     push(tmp_reg);
  5464   get_thread(tmp_reg);
  5465   orl(tmp_reg, swap_reg);
  5466   if (os::is_MP()) {
  5467     lock();
  5469   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  5470   if (need_tmp_reg) {
  5471     pop(tmp_reg);
  5473   // If the biasing toward our thread failed, this means that
  5474   // another thread succeeded in biasing it toward itself and we
  5475   // need to revoke that bias. The revocation will occur in the
  5476   // interpreter runtime in the slow case.
  5477   if (counters != NULL) {
  5478     cond_inc32(Assembler::zero,
  5479                ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
  5481   if (slow_case != NULL) {
  5482     jcc(Assembler::notZero, *slow_case);
  5484   jmp(done);
  5486   bind(try_rebias);
  5487   // At this point we know the epoch has expired, meaning that the
  5488   // current "bias owner", if any, is actually invalid. Under these
  5489   // circumstances _only_, we are allowed to use the current header's
  5490   // value as the comparison value when doing the cas to acquire the
  5491   // bias in the current epoch. In other words, we allow transfer of
  5492   // the bias from one thread to another directly in this situation.
  5493   //
  5494   // FIXME: due to a lack of registers we currently blow away the age
  5495   // bits in this situation. Should attempt to preserve them.
  5496   if (need_tmp_reg) {
  5497     push(tmp_reg);
  5499   get_thread(tmp_reg);
  5500   movl(swap_reg, klass_addr);
  5501   orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset()));
  5502   movl(swap_reg, saved_mark_addr);
  5503   if (os::is_MP()) {
  5504     lock();
  5506   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  5507   if (need_tmp_reg) {
  5508     pop(tmp_reg);
  5510   // If the biasing toward our thread failed, then another thread
  5511   // succeeded in biasing it toward itself and we need to revoke that
  5512   // bias. The revocation will occur in the runtime in the slow case.
  5513   if (counters != NULL) {
  5514     cond_inc32(Assembler::zero,
  5515                ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
  5517   if (slow_case != NULL) {
  5518     jcc(Assembler::notZero, *slow_case);
  5520   jmp(done);
  5522   bind(try_revoke_bias);
  5523   // The prototype mark in the klass doesn't have the bias bit set any
  5524   // more, indicating that objects of this data type are not supposed
  5525   // to be biased any more. We are going to try to reset the mark of
  5526   // this object to the prototype value and fall through to the
  5527   // CAS-based locking scheme. Note that if our CAS fails, it means
  5528   // that another thread raced us for the privilege of revoking the
  5529   // bias of this particular object, so it's okay to continue in the
  5530   // normal locking code.
  5531   //
  5532   // FIXME: due to a lack of registers we currently blow away the age
  5533   // bits in this situation. Should attempt to preserve them.
  5534   movl(swap_reg, saved_mark_addr);
  5535   if (need_tmp_reg) {
  5536     push(tmp_reg);
  5538   movl(tmp_reg, klass_addr);
  5539   movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset()));
  5540   if (os::is_MP()) {
  5541     lock();
  5543   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  5544   if (need_tmp_reg) {
  5545     pop(tmp_reg);
  5547   // Fall through to the normal CAS-based lock, because no matter what
  5548   // the result of the above CAS, some thread must have succeeded in
  5549   // removing the bias bit from the object's header.
  5550   if (counters != NULL) {
  5551     cond_inc32(Assembler::zero,
  5552                ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
  5555   bind(cas_label);
  5557   return null_check_offset;
  5559 void MacroAssembler::call_VM_leaf_base(address entry_point,
  5560                                        int number_of_arguments) {
  5561   call(RuntimeAddress(entry_point));
  5562   increment(rsp, number_of_arguments * wordSize);
  5565 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
  5566   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  5569 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
  5570   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  5573 void MacroAssembler::cmpoop(Address src1, jobject obj) {
  5574   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5577 void MacroAssembler::cmpoop(Register src1, jobject obj) {
  5578   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5581 void MacroAssembler::extend_sign(Register hi, Register lo) {
  5582   // According to Intel Doc. AP-526, "Integer Divide", p.18.
  5583   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
  5584     cdql();
  5585   } else {
  5586     movl(hi, lo);
  5587     sarl(hi, 31);
  5591 void MacroAssembler::jC2(Register tmp, Label& L) {
  5592   // set parity bit if FPU flag C2 is set (via rax)
  5593   save_rax(tmp);
  5594   fwait(); fnstsw_ax();
  5595   sahf();
  5596   restore_rax(tmp);
  5597   // branch
  5598   jcc(Assembler::parity, L);
  5601 void MacroAssembler::jnC2(Register tmp, Label& L) {
  5602   // set parity bit if FPU flag C2 is set (via rax)
  5603   save_rax(tmp);
  5604   fwait(); fnstsw_ax();
  5605   sahf();
  5606   restore_rax(tmp);
  5607   // branch
  5608   jcc(Assembler::noParity, L);
  5611 // 32bit can do a case table jump in one instruction but we no longer allow the base
  5612 // to be installed in the Address class
  5613 void MacroAssembler::jump(ArrayAddress entry) {
  5614   jmp(as_Address(entry));
  5617 // Note: y_lo will be destroyed
  5618 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  5619   // Long compare for Java (semantics as described in JVM spec.)
  5620   Label high, low, done;
  5622   cmpl(x_hi, y_hi);
  5623   jcc(Assembler::less, low);
  5624   jcc(Assembler::greater, high);
  5625   // x_hi is the return register
  5626   xorl(x_hi, x_hi);
  5627   cmpl(x_lo, y_lo);
  5628   jcc(Assembler::below, low);
  5629   jcc(Assembler::equal, done);
  5631   bind(high);
  5632   xorl(x_hi, x_hi);
  5633   increment(x_hi);
  5634   jmp(done);
  5636   bind(low);
  5637   xorl(x_hi, x_hi);
  5638   decrementl(x_hi);
  5640   bind(done);
  5643 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  5644     mov_literal32(dst, (int32_t)src.target(), src.rspec());
  5647 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  5648   // leal(dst, as_Address(adr));
  5649   // see note in movl as to why we must use a move
  5650   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
  5653 void MacroAssembler::leave() {
  5654   mov(rsp, rbp);
  5655   pop(rbp);
  5658 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
  5659   // Multiplication of two Java long values stored on the stack
  5660   // as illustrated below. Result is in rdx:rax.
  5661   //
  5662   // rsp ---> [  ??  ] \               \
  5663   //            ....    | y_rsp_offset  |
  5664   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
  5665   //          [ y_hi ]                  | (in bytes)
  5666   //            ....                    |
  5667   //          [ x_lo ]                 /
  5668   //          [ x_hi ]
  5669   //            ....
  5670   //
  5671   // Basic idea: lo(result) = lo(x_lo * y_lo)
  5672   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  5673   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
  5674   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
  5675   Label quick;
  5676   // load x_hi, y_hi and check if quick
  5677   // multiplication is possible
  5678   movl(rbx, x_hi);
  5679   movl(rcx, y_hi);
  5680   movl(rax, rbx);
  5681   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
  5682   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
  5683   // do full multiplication
  5684   // 1st step
  5685   mull(y_lo);                                    // x_hi * y_lo
  5686   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
  5687   // 2nd step
  5688   movl(rax, x_lo);
  5689   mull(rcx);                                     // x_lo * y_hi
  5690   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
  5691   // 3rd step
  5692   bind(quick);                                   // note: rbx, = 0 if quick multiply!
  5693   movl(rax, x_lo);
  5694   mull(y_lo);                                    // x_lo * y_lo
  5695   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
  5698 void MacroAssembler::lneg(Register hi, Register lo) {
  5699   negl(lo);
  5700   adcl(hi, 0);
  5701   negl(hi);
  5704 void MacroAssembler::lshl(Register hi, Register lo) {
  5705   // Java shift left long support (semantics as described in JVM spec., p.305)
  5706   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
  5707   // shift value is in rcx !
  5708   assert(hi != rcx, "must not use rcx");
  5709   assert(lo != rcx, "must not use rcx");
  5710   const Register s = rcx;                        // shift count
  5711   const int      n = BitsPerWord;
  5712   Label L;
  5713   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  5714   cmpl(s, n);                                    // if (s < n)
  5715   jcc(Assembler::less, L);                       // else (s >= n)
  5716   movl(hi, lo);                                  // x := x << n
  5717   xorl(lo, lo);
  5718   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  5719   bind(L);                                       // s (mod n) < n
  5720   shldl(hi, lo);                                 // x := x << s
  5721   shll(lo);
  5725 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
  5726   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
  5727   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
  5728   assert(hi != rcx, "must not use rcx");
  5729   assert(lo != rcx, "must not use rcx");
  5730   const Register s = rcx;                        // shift count
  5731   const int      n = BitsPerWord;
  5732   Label L;
  5733   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  5734   cmpl(s, n);                                    // if (s < n)
  5735   jcc(Assembler::less, L);                       // else (s >= n)
  5736   movl(lo, hi);                                  // x := x >> n
  5737   if (sign_extension) sarl(hi, 31);
  5738   else                xorl(hi, hi);
  5739   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  5740   bind(L);                                       // s (mod n) < n
  5741   shrdl(lo, hi);                                 // x := x >> s
  5742   if (sign_extension) sarl(hi);
  5743   else                shrl(hi);
  5746 void MacroAssembler::movoop(Register dst, jobject obj) {
  5747   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5750 void MacroAssembler::movoop(Address dst, jobject obj) {
  5751   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5754 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
  5755   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  5758 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
  5759   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  5762 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  5763   if (src.is_lval()) {
  5764     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
  5765   } else {
  5766     movl(dst, as_Address(src));
  5770 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  5771   movl(as_Address(dst), src);
  5774 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  5775   movl(dst, as_Address(src));
  5778 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  5779 void MacroAssembler::movptr(Address dst, intptr_t src) {
  5780   movl(dst, src);
  5784 void MacroAssembler::pop_callee_saved_registers() {
  5785   pop(rcx);
  5786   pop(rdx);
  5787   pop(rdi);
  5788   pop(rsi);
  5791 void MacroAssembler::pop_fTOS() {
  5792   fld_d(Address(rsp, 0));
  5793   addl(rsp, 2 * wordSize);
  5796 void MacroAssembler::push_callee_saved_registers() {
  5797   push(rsi);
  5798   push(rdi);
  5799   push(rdx);
  5800   push(rcx);
  5803 void MacroAssembler::push_fTOS() {
  5804   subl(rsp, 2 * wordSize);
  5805   fstp_d(Address(rsp, 0));
  5809 void MacroAssembler::pushoop(jobject obj) {
  5810   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
  5813 void MacroAssembler::pushklass(Metadata* obj) {
  5814   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
  5817 void MacroAssembler::pushptr(AddressLiteral src) {
  5818   if (src.is_lval()) {
  5819     push_literal32((int32_t)src.target(), src.rspec());
  5820   } else {
  5821     pushl(as_Address(src));
  5825 void MacroAssembler::set_word_if_not_zero(Register dst) {
  5826   xorl(dst, dst);
  5827   set_byte_if_not_zero(dst);
  5830 static void pass_arg0(MacroAssembler* masm, Register arg) {
  5831   masm->push(arg);
  5834 static void pass_arg1(MacroAssembler* masm, Register arg) {
  5835   masm->push(arg);
  5838 static void pass_arg2(MacroAssembler* masm, Register arg) {
  5839   masm->push(arg);
  5842 static void pass_arg3(MacroAssembler* masm, Register arg) {
  5843   masm->push(arg);
  5846 #ifndef PRODUCT
  5847 extern "C" void findpc(intptr_t x);
  5848 #endif
  5850 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
  5851   // In order to get locks to work, we need to fake a in_VM state
  5852   JavaThread* thread = JavaThread::current();
  5853   JavaThreadState saved_state = thread->thread_state();
  5854   thread->set_thread_state(_thread_in_vm);
  5855   if (ShowMessageBoxOnError) {
  5856     JavaThread* thread = JavaThread::current();
  5857     JavaThreadState saved_state = thread->thread_state();
  5858     thread->set_thread_state(_thread_in_vm);
  5859     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  5860       ttyLocker ttyl;
  5861       BytecodeCounter::print();
  5863     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  5864     // This is the value of eip which points to where verify_oop will return.
  5865     if (os::message_box(msg, "Execution stopped, print registers?")) {
  5866       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
  5867       BREAKPOINT;
  5869   } else {
  5870     ttyLocker ttyl;
  5871     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
  5873   // Don't assert holding the ttyLock
  5874     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
  5875   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  5878 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
  5879   ttyLocker ttyl;
  5880   FlagSetting fs(Debugging, true);
  5881   tty->print_cr("eip = 0x%08x", eip);
  5882 #ifndef PRODUCT
  5883   if ((WizardMode || Verbose) && PrintMiscellaneous) {
  5884     tty->cr();
  5885     findpc(eip);
  5886     tty->cr();
  5888 #endif
  5889 #define PRINT_REG(rax) \
  5890   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
  5891   PRINT_REG(rax);
  5892   PRINT_REG(rbx);
  5893   PRINT_REG(rcx);
  5894   PRINT_REG(rdx);
  5895   PRINT_REG(rdi);
  5896   PRINT_REG(rsi);
  5897   PRINT_REG(rbp);
  5898   PRINT_REG(rsp);
  5899 #undef PRINT_REG
  5900   // Print some words near top of staack.
  5901   int* dump_sp = (int*) rsp;
  5902   for (int col1 = 0; col1 < 8; col1++) {
  5903     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  5904     os::print_location(tty, *dump_sp++);
  5906   for (int row = 0; row < 16; row++) {
  5907     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  5908     for (int col = 0; col < 8; col++) {
  5909       tty->print(" 0x%08x", *dump_sp++);
  5911     tty->cr();
  5913   // Print some instructions around pc:
  5914   Disassembler::decode((address)eip-64, (address)eip);
  5915   tty->print_cr("--------");
  5916   Disassembler::decode((address)eip, (address)eip+32);
  5919 void MacroAssembler::stop(const char* msg) {
  5920   ExternalAddress message((address)msg);
  5921   // push address of message
  5922   pushptr(message.addr());
  5923   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  5924   pusha();                                            // push registers
  5925   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
  5926   hlt();
  5929 void MacroAssembler::warn(const char* msg) {
  5930   push_CPU_state();
  5932   ExternalAddress message((address) msg);
  5933   // push address of message
  5934   pushptr(message.addr());
  5936   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
  5937   addl(rsp, wordSize);       // discard argument
  5938   pop_CPU_state();
  5941 void MacroAssembler::print_state() {
  5942   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  5943   pusha();                                            // push registers
  5945   push_CPU_state();
  5946   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
  5947   pop_CPU_state();
  5949   popa();
  5950   addl(rsp, wordSize);
  5953 #else // _LP64
  5955 // 64 bit versions
  5957 Address MacroAssembler::as_Address(AddressLiteral adr) {
  5958   // amd64 always does this as a pc-rel
  5959   // we can be absolute or disp based on the instruction type
  5960   // jmp/call are displacements others are absolute
  5961   assert(!adr.is_lval(), "must be rval");
  5962   assert(reachable(adr), "must be");
  5963   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
  5967 Address MacroAssembler::as_Address(ArrayAddress adr) {
  5968   AddressLiteral base = adr.base();
  5969   lea(rscratch1, base);
  5970   Address index = adr.index();
  5971   assert(index._disp == 0, "must not have disp"); // maybe it can?
  5972   Address array(rscratch1, index._index, index._scale, index._disp);
  5973   return array;
  5976 int MacroAssembler::biased_locking_enter(Register lock_reg,
  5977                                          Register obj_reg,
  5978                                          Register swap_reg,
  5979                                          Register tmp_reg,
  5980                                          bool swap_reg_contains_mark,
  5981                                          Label& done,
  5982                                          Label* slow_case,
  5983                                          BiasedLockingCounters* counters) {
  5984   assert(UseBiasedLocking, "why call this otherwise?");
  5985   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
  5986   assert(tmp_reg != noreg, "tmp_reg must be supplied");
  5987   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  5988   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  5989   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  5990   Address saved_mark_addr(lock_reg, 0);
  5992   if (PrintBiasedLockingStatistics && counters == NULL)
  5993     counters = BiasedLocking::counters();
  5995   // Biased locking
  5996   // See whether the lock is currently biased toward our thread and
  5997   // whether the epoch is still valid
  5998   // Note that the runtime guarantees sufficient alignment of JavaThread
  5999   // pointers to allow age to be placed into low bits
  6000   // First check to see whether biasing is even enabled for this object
  6001   Label cas_label;
  6002   int null_check_offset = -1;
  6003   if (!swap_reg_contains_mark) {
  6004     null_check_offset = offset();
  6005     movq(swap_reg, mark_addr);
  6007   movq(tmp_reg, swap_reg);
  6008   andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  6009   cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
  6010   jcc(Assembler::notEqual, cas_label);
  6011   // The bias pattern is present in the object's header. Need to check
  6012   // whether the bias owner and the epoch are both still current.
  6013   load_prototype_header(tmp_reg, obj_reg);
  6014   orq(tmp_reg, r15_thread);
  6015   xorq(tmp_reg, swap_reg);
  6016   andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
  6017   if (counters != NULL) {
  6018     cond_inc32(Assembler::zero,
  6019                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  6021   jcc(Assembler::equal, done);
  6023   Label try_revoke_bias;
  6024   Label try_rebias;
  6026   // At this point we know that the header has the bias pattern and
  6027   // that we are not the bias owner in the current epoch. We need to
  6028   // figure out more details about the state of the header in order to
  6029   // know what operations can be legally performed on the object's
  6030   // header.
  6032   // If the low three bits in the xor result aren't clear, that means
  6033   // the prototype header is no longer biased and we have to revoke
  6034   // the bias on this object.
  6035   testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  6036   jcc(Assembler::notZero, try_revoke_bias);
  6038   // Biasing is still enabled for this data type. See whether the
  6039   // epoch of the current bias is still valid, meaning that the epoch
  6040   // bits of the mark word are equal to the epoch bits of the
  6041   // prototype header. (Note that the prototype header's epoch bits
  6042   // only change at a safepoint.) If not, attempt to rebias the object
  6043   // toward the current thread. Note that we must be absolutely sure
  6044   // that the current epoch is invalid in order to do this because
  6045   // otherwise the manipulations it performs on the mark word are
  6046   // illegal.
  6047   testq(tmp_reg, markOopDesc::epoch_mask_in_place);
  6048   jcc(Assembler::notZero, try_rebias);
  6050   // The epoch of the current bias is still valid but we know nothing
  6051   // about the owner; it might be set or it might be clear. Try to
  6052   // acquire the bias of the object using an atomic operation. If this
  6053   // fails we will go in to the runtime to revoke the object's bias.
  6054   // Note that we first construct the presumed unbiased header so we
  6055   // don't accidentally blow away another thread's valid bias.
  6056   andq(swap_reg,
  6057        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  6058   movq(tmp_reg, swap_reg);
  6059   orq(tmp_reg, r15_thread);
  6060   if (os::is_MP()) {
  6061     lock();
  6063   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  6064   // If the biasing toward our thread failed, this means that
  6065   // another thread succeeded in biasing it toward itself and we
  6066   // need to revoke that bias. The revocation will occur in the
  6067   // interpreter runtime in the slow case.
  6068   if (counters != NULL) {
  6069     cond_inc32(Assembler::zero,
  6070                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  6072   if (slow_case != NULL) {
  6073     jcc(Assembler::notZero, *slow_case);
  6075   jmp(done);
  6077   bind(try_rebias);
  6078   // At this point we know the epoch has expired, meaning that the
  6079   // current "bias owner", if any, is actually invalid. Under these
  6080   // circumstances _only_, we are allowed to use the current header's
  6081   // value as the comparison value when doing the cas to acquire the
  6082   // bias in the current epoch. In other words, we allow transfer of
  6083   // the bias from one thread to another directly in this situation.
  6084   //
  6085   // FIXME: due to a lack of registers we currently blow away the age
  6086   // bits in this situation. Should attempt to preserve them.
  6087   load_prototype_header(tmp_reg, obj_reg);
  6088   orq(tmp_reg, r15_thread);
  6089   if (os::is_MP()) {
  6090     lock();
  6092   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  6093   // If the biasing toward our thread failed, then another thread
  6094   // succeeded in biasing it toward itself and we need to revoke that
  6095   // bias. The revocation will occur in the runtime in the slow case.
  6096   if (counters != NULL) {
  6097     cond_inc32(Assembler::zero,
  6098                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
  6100   if (slow_case != NULL) {
  6101     jcc(Assembler::notZero, *slow_case);
  6103   jmp(done);
  6105   bind(try_revoke_bias);
  6106   // The prototype mark in the klass doesn't have the bias bit set any
  6107   // more, indicating that objects of this data type are not supposed
  6108   // to be biased any more. We are going to try to reset the mark of
  6109   // this object to the prototype value and fall through to the
  6110   // CAS-based locking scheme. Note that if our CAS fails, it means
  6111   // that another thread raced us for the privilege of revoking the
  6112   // bias of this particular object, so it's okay to continue in the
  6113   // normal locking code.
  6114   //
  6115   // FIXME: due to a lack of registers we currently blow away the age
  6116   // bits in this situation. Should attempt to preserve them.
  6117   load_prototype_header(tmp_reg, obj_reg);
  6118   if (os::is_MP()) {
  6119     lock();
  6121   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  6122   // Fall through to the normal CAS-based lock, because no matter what
  6123   // the result of the above CAS, some thread must have succeeded in
  6124   // removing the bias bit from the object's header.
  6125   if (counters != NULL) {
  6126     cond_inc32(Assembler::zero,
  6127                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
  6130   bind(cas_label);
  6132   return null_check_offset;
  6135 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
  6136   Label L, E;
  6138 #ifdef _WIN64
  6139   // Windows always allocates space for it's register args
  6140   assert(num_args <= 4, "only register arguments supported");
  6141   subq(rsp,  frame::arg_reg_save_area_bytes);
  6142 #endif
  6144   // Align stack if necessary
  6145   testl(rsp, 15);
  6146   jcc(Assembler::zero, L);
  6148   subq(rsp, 8);
  6150     call(RuntimeAddress(entry_point));
  6152   addq(rsp, 8);
  6153   jmp(E);
  6155   bind(L);
  6157     call(RuntimeAddress(entry_point));
  6160   bind(E);
  6162 #ifdef _WIN64
  6163   // restore stack pointer
  6164   addq(rsp, frame::arg_reg_save_area_bytes);
  6165 #endif
  6169 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
  6170   assert(!src2.is_lval(), "should use cmpptr");
  6172   if (reachable(src2)) {
  6173     cmpq(src1, as_Address(src2));
  6174   } else {
  6175     lea(rscratch1, src2);
  6176     Assembler::cmpq(src1, Address(rscratch1, 0));
  6180 int MacroAssembler::corrected_idivq(Register reg) {
  6181   // Full implementation of Java ldiv and lrem; checks for special
  6182   // case as described in JVM spec., p.243 & p.271.  The function
  6183   // returns the (pc) offset of the idivl instruction - may be needed
  6184   // for implicit exceptions.
  6185   //
  6186   //         normal case                           special case
  6187   //
  6188   // input : rax: dividend                         min_long
  6189   //         reg: divisor   (may not be eax/edx)   -1
  6190   //
  6191   // output: rax: quotient  (= rax idiv reg)       min_long
  6192   //         rdx: remainder (= rax irem reg)       0
  6193   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
  6194   static const int64_t min_long = 0x8000000000000000;
  6195   Label normal_case, special_case;
  6197   // check for special case
  6198   cmp64(rax, ExternalAddress((address) &min_long));
  6199   jcc(Assembler::notEqual, normal_case);
  6200   xorl(rdx, rdx); // prepare rdx for possible special case (where
  6201                   // remainder = 0)
  6202   cmpq(reg, -1);
  6203   jcc(Assembler::equal, special_case);
  6205   // handle normal case
  6206   bind(normal_case);
  6207   cdqq();
  6208   int idivq_offset = offset();
  6209   idivq(reg);
  6211   // normal and special case exit
  6212   bind(special_case);
  6214   return idivq_offset;
  6217 void MacroAssembler::decrementq(Register reg, int value) {
  6218   if (value == min_jint) { subq(reg, value); return; }
  6219   if (value <  0) { incrementq(reg, -value); return; }
  6220   if (value == 0) {                        ; return; }
  6221   if (value == 1 && UseIncDec) { decq(reg) ; return; }
  6222   /* else */      { subq(reg, value)       ; return; }
  6225 void MacroAssembler::decrementq(Address dst, int value) {
  6226   if (value == min_jint) { subq(dst, value); return; }
  6227   if (value <  0) { incrementq(dst, -value); return; }
  6228   if (value == 0) {                        ; return; }
  6229   if (value == 1 && UseIncDec) { decq(dst) ; return; }
  6230   /* else */      { subq(dst, value)       ; return; }
  6233 void MacroAssembler::incrementq(Register reg, int value) {
  6234   if (value == min_jint) { addq(reg, value); return; }
  6235   if (value <  0) { decrementq(reg, -value); return; }
  6236   if (value == 0) {                        ; return; }
  6237   if (value == 1 && UseIncDec) { incq(reg) ; return; }
  6238   /* else */      { addq(reg, value)       ; return; }
  6241 void MacroAssembler::incrementq(Address dst, int value) {
  6242   if (value == min_jint) { addq(dst, value); return; }
  6243   if (value <  0) { decrementq(dst, -value); return; }
  6244   if (value == 0) {                        ; return; }
  6245   if (value == 1 && UseIncDec) { incq(dst) ; return; }
  6246   /* else */      { addq(dst, value)       ; return; }
  6249 // 32bit can do a case table jump in one instruction but we no longer allow the base
  6250 // to be installed in the Address class
  6251 void MacroAssembler::jump(ArrayAddress entry) {
  6252   lea(rscratch1, entry.base());
  6253   Address dispatch = entry.index();
  6254   assert(dispatch._base == noreg, "must be");
  6255   dispatch._base = rscratch1;
  6256   jmp(dispatch);
  6259 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  6260   ShouldNotReachHere(); // 64bit doesn't use two regs
  6261   cmpq(x_lo, y_lo);
  6264 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  6265     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  6268 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  6269   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
  6270   movptr(dst, rscratch1);
  6273 void MacroAssembler::leave() {
  6274   // %%% is this really better? Why not on 32bit too?
  6275   emit_byte(0xC9); // LEAVE
  6278 void MacroAssembler::lneg(Register hi, Register lo) {
  6279   ShouldNotReachHere(); // 64bit doesn't use two regs
  6280   negq(lo);
  6283 void MacroAssembler::movoop(Register dst, jobject obj) {
  6284   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  6287 void MacroAssembler::movoop(Address dst, jobject obj) {
  6288   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  6289   movq(dst, rscratch1);
  6292 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
  6293   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
  6296 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
  6297   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
  6298   movq(dst, rscratch1);
  6301 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  6302   if (src.is_lval()) {
  6303     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  6304   } else {
  6305     if (reachable(src)) {
  6306       movq(dst, as_Address(src));
  6307     } else {
  6308       lea(rscratch1, src);
  6309       movq(dst, Address(rscratch1,0));
  6314 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  6315   movq(as_Address(dst), src);
  6318 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  6319   movq(dst, as_Address(src));
  6322 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  6323 void MacroAssembler::movptr(Address dst, intptr_t src) {
  6324   mov64(rscratch1, src);
  6325   movq(dst, rscratch1);
  6328 // These are mostly for initializing NULL
  6329 void MacroAssembler::movptr(Address dst, int32_t src) {
  6330   movslq(dst, src);
  6333 void MacroAssembler::movptr(Register dst, int32_t src) {
  6334   mov64(dst, (intptr_t)src);
  6337 void MacroAssembler::pushoop(jobject obj) {
  6338   movoop(rscratch1, obj);
  6339   push(rscratch1);
  6342 void MacroAssembler::pushklass(Metadata* obj) {
  6343   mov_metadata(rscratch1, obj);
  6344   push(rscratch1);
  6347 void MacroAssembler::pushptr(AddressLiteral src) {
  6348   lea(rscratch1, src);
  6349   if (src.is_lval()) {
  6350     push(rscratch1);
  6351   } else {
  6352     pushq(Address(rscratch1, 0));
  6356 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
  6357                                            bool clear_pc) {
  6358   // we must set sp to zero to clear frame
  6359   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  6360   // must clear fp, so that compiled frames are not confused; it is
  6361   // possible that we need it only for debugging
  6362   if (clear_fp) {
  6363     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  6366   if (clear_pc) {
  6367     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  6371 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
  6372                                          Register last_java_fp,
  6373                                          address  last_java_pc) {
  6374   // determine last_java_sp register
  6375   if (!last_java_sp->is_valid()) {
  6376     last_java_sp = rsp;
  6379   // last_java_fp is optional
  6380   if (last_java_fp->is_valid()) {
  6381     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
  6382            last_java_fp);
  6385   // last_java_pc is optional
  6386   if (last_java_pc != NULL) {
  6387     Address java_pc(r15_thread,
  6388                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  6389     lea(rscratch1, InternalAddress(last_java_pc));
  6390     movptr(java_pc, rscratch1);
  6393   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  6396 static void pass_arg0(MacroAssembler* masm, Register arg) {
  6397   if (c_rarg0 != arg ) {
  6398     masm->mov(c_rarg0, arg);
  6402 static void pass_arg1(MacroAssembler* masm, Register arg) {
  6403   if (c_rarg1 != arg ) {
  6404     masm->mov(c_rarg1, arg);
  6408 static void pass_arg2(MacroAssembler* masm, Register arg) {
  6409   if (c_rarg2 != arg ) {
  6410     masm->mov(c_rarg2, arg);
  6414 static void pass_arg3(MacroAssembler* masm, Register arg) {
  6415   if (c_rarg3 != arg ) {
  6416     masm->mov(c_rarg3, arg);
  6420 void MacroAssembler::stop(const char* msg) {
  6421   address rip = pc();
  6422   pusha(); // get regs on stack
  6423   lea(c_rarg0, ExternalAddress((address) msg));
  6424   lea(c_rarg1, InternalAddress(rip));
  6425   movq(c_rarg2, rsp); // pass pointer to regs array
  6426   andq(rsp, -16); // align stack as required by ABI
  6427   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  6428   hlt();
  6431 void MacroAssembler::warn(const char* msg) {
  6432   push(rbp);
  6433   movq(rbp, rsp);
  6434   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  6435   push_CPU_state();   // keeps alignment at 16 bytes
  6436   lea(c_rarg0, ExternalAddress((address) msg));
  6437   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
  6438   pop_CPU_state();
  6439   mov(rsp, rbp);
  6440   pop(rbp);
  6443 void MacroAssembler::print_state() {
  6444   address rip = pc();
  6445   pusha();            // get regs on stack
  6446   push(rbp);
  6447   movq(rbp, rsp);
  6448   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  6449   push_CPU_state();   // keeps alignment at 16 bytes
  6451   lea(c_rarg0, InternalAddress(rip));
  6452   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
  6453   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
  6455   pop_CPU_state();
  6456   mov(rsp, rbp);
  6457   pop(rbp);
  6458   popa();
  6461 #ifndef PRODUCT
  6462 extern "C" void findpc(intptr_t x);
  6463 #endif
  6465 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
  6466   // In order to get locks to work, we need to fake a in_VM state
  6467   if (ShowMessageBoxOnError) {
  6468     JavaThread* thread = JavaThread::current();
  6469     JavaThreadState saved_state = thread->thread_state();
  6470     thread->set_thread_state(_thread_in_vm);
  6471 #ifndef PRODUCT
  6472     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  6473       ttyLocker ttyl;
  6474       BytecodeCounter::print();
  6476 #endif
  6477     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  6478     // XXX correct this offset for amd64
  6479     // This is the value of eip which points to where verify_oop will return.
  6480     if (os::message_box(msg, "Execution stopped, print registers?")) {
  6481       print_state64(pc, regs);
  6482       BREAKPOINT;
  6483       assert(false, "start up GDB");
  6485     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  6486   } else {
  6487     ttyLocker ttyl;
  6488     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
  6489                     msg);
  6490     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
  6494 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
  6495   ttyLocker ttyl;
  6496   FlagSetting fs(Debugging, true);
  6497   tty->print_cr("rip = 0x%016lx", pc);
  6498 #ifndef PRODUCT
  6499   tty->cr();
  6500   findpc(pc);
  6501   tty->cr();
  6502 #endif
  6503 #define PRINT_REG(rax, value) \
  6504   { tty->print("%s = ", #rax); os::print_location(tty, value); }
  6505   PRINT_REG(rax, regs[15]);
  6506   PRINT_REG(rbx, regs[12]);
  6507   PRINT_REG(rcx, regs[14]);
  6508   PRINT_REG(rdx, regs[13]);
  6509   PRINT_REG(rdi, regs[8]);
  6510   PRINT_REG(rsi, regs[9]);
  6511   PRINT_REG(rbp, regs[10]);
  6512   PRINT_REG(rsp, regs[11]);
  6513   PRINT_REG(r8 , regs[7]);
  6514   PRINT_REG(r9 , regs[6]);
  6515   PRINT_REG(r10, regs[5]);
  6516   PRINT_REG(r11, regs[4]);
  6517   PRINT_REG(r12, regs[3]);
  6518   PRINT_REG(r13, regs[2]);
  6519   PRINT_REG(r14, regs[1]);
  6520   PRINT_REG(r15, regs[0]);
  6521 #undef PRINT_REG
  6522   // Print some words near top of staack.
  6523   int64_t* rsp = (int64_t*) regs[11];
  6524   int64_t* dump_sp = rsp;
  6525   for (int col1 = 0; col1 < 8; col1++) {
  6526     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
  6527     os::print_location(tty, *dump_sp++);
  6529   for (int row = 0; row < 25; row++) {
  6530     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
  6531     for (int col = 0; col < 4; col++) {
  6532       tty->print(" 0x%016lx", *dump_sp++);
  6534     tty->cr();
  6536   // Print some instructions around pc:
  6537   Disassembler::decode((address)pc-64, (address)pc);
  6538   tty->print_cr("--------");
  6539   Disassembler::decode((address)pc, (address)pc+32);
  6542 #endif // _LP64
  6544 // Now versions that are common to 32/64 bit
  6546 void MacroAssembler::addptr(Register dst, int32_t imm32) {
  6547   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
  6550 void MacroAssembler::addptr(Register dst, Register src) {
  6551   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  6554 void MacroAssembler::addptr(Address dst, Register src) {
  6555   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  6558 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
  6559   if (reachable(src)) {
  6560     Assembler::addsd(dst, as_Address(src));
  6561   } else {
  6562     lea(rscratch1, src);
  6563     Assembler::addsd(dst, Address(rscratch1, 0));
  6567 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
  6568   if (reachable(src)) {
  6569     addss(dst, as_Address(src));
  6570   } else {
  6571     lea(rscratch1, src);
  6572     addss(dst, Address(rscratch1, 0));
  6576 void MacroAssembler::align(int modulus) {
  6577   if (offset() % modulus != 0) {
  6578     nop(modulus - (offset() % modulus));
  6582 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
  6583   // Used in sign-masking with aligned address.
  6584   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  6585   if (reachable(src)) {
  6586     Assembler::andpd(dst, as_Address(src));
  6587   } else {
  6588     lea(rscratch1, src);
  6589     Assembler::andpd(dst, Address(rscratch1, 0));
  6593 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
  6594   // Used in sign-masking with aligned address.
  6595   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  6596   if (reachable(src)) {
  6597     Assembler::andps(dst, as_Address(src));
  6598   } else {
  6599     lea(rscratch1, src);
  6600     Assembler::andps(dst, Address(rscratch1, 0));
  6604 void MacroAssembler::andptr(Register dst, int32_t imm32) {
  6605   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
  6608 void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
  6609   pushf();
  6610   if (os::is_MP())
  6611     lock();
  6612   incrementl(counter_addr);
  6613   popf();
  6616 // Writes to stack successive pages until offset reached to check for
  6617 // stack overflow + shadow pages.  This clobbers tmp.
  6618 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
  6619   movptr(tmp, rsp);
  6620   // Bang stack for total size given plus shadow page size.
  6621   // Bang one page at a time because large size can bang beyond yellow and
  6622   // red zones.
  6623   Label loop;
  6624   bind(loop);
  6625   movl(Address(tmp, (-os::vm_page_size())), size );
  6626   subptr(tmp, os::vm_page_size());
  6627   subl(size, os::vm_page_size());
  6628   jcc(Assembler::greater, loop);
  6630   // Bang down shadow pages too.
  6631   // The -1 because we already subtracted 1 page.
  6632   for (int i = 0; i< StackShadowPages-1; i++) {
  6633     // this could be any sized move but this is can be a debugging crumb
  6634     // so the bigger the better.
  6635     movptr(Address(tmp, (-i*os::vm_page_size())), size );
  6639 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
  6640   assert(UseBiasedLocking, "why call this otherwise?");
  6642   // Check for biased locking unlock case, which is a no-op
  6643   // Note: we do not have to check the thread ID for two reasons.
  6644   // First, the interpreter checks for IllegalMonitorStateException at
  6645   // a higher level. Second, if the bias was revoked while we held the
  6646   // lock, the object could not be rebiased toward another thread, so
  6647   // the bias bit would be clear.
  6648   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
  6649   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
  6650   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
  6651   jcc(Assembler::equal, done);
  6654 void MacroAssembler::c2bool(Register x) {
  6655   // implements x == 0 ? 0 : 1
  6656   // note: must only look at least-significant byte of x
  6657   //       since C-style booleans are stored in one byte
  6658   //       only! (was bug)
  6659   andl(x, 0xFF);
  6660   setb(Assembler::notZero, x);
  6663 // Wouldn't need if AddressLiteral version had new name
  6664 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
  6665   Assembler::call(L, rtype);
  6668 void MacroAssembler::call(Register entry) {
  6669   Assembler::call(entry);
  6672 void MacroAssembler::call(AddressLiteral entry) {
  6673   if (reachable(entry)) {
  6674     Assembler::call_literal(entry.target(), entry.rspec());
  6675   } else {
  6676     lea(rscratch1, entry);
  6677     Assembler::call(rscratch1);
  6681 void MacroAssembler::ic_call(address entry) {
  6682   RelocationHolder rh = virtual_call_Relocation::spec(pc());
  6683   movptr(rax, (intptr_t)Universe::non_oop_word());
  6684   call(AddressLiteral(entry, rh));
  6687 // Implementation of call_VM versions
  6689 void MacroAssembler::call_VM(Register oop_result,
  6690                              address entry_point,
  6691                              bool check_exceptions) {
  6692   Label C, E;
  6693   call(C, relocInfo::none);
  6694   jmp(E);
  6696   bind(C);
  6697   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
  6698   ret(0);
  6700   bind(E);
  6703 void MacroAssembler::call_VM(Register oop_result,
  6704                              address entry_point,
  6705                              Register arg_1,
  6706                              bool check_exceptions) {
  6707   Label C, E;
  6708   call(C, relocInfo::none);
  6709   jmp(E);
  6711   bind(C);
  6712   pass_arg1(this, arg_1);
  6713   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
  6714   ret(0);
  6716   bind(E);
  6719 void MacroAssembler::call_VM(Register oop_result,
  6720                              address entry_point,
  6721                              Register arg_1,
  6722                              Register arg_2,
  6723                              bool check_exceptions) {
  6724   Label C, E;
  6725   call(C, relocInfo::none);
  6726   jmp(E);
  6728   bind(C);
  6730   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6732   pass_arg2(this, arg_2);
  6733   pass_arg1(this, arg_1);
  6734   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
  6735   ret(0);
  6737   bind(E);
  6740 void MacroAssembler::call_VM(Register oop_result,
  6741                              address entry_point,
  6742                              Register arg_1,
  6743                              Register arg_2,
  6744                              Register arg_3,
  6745                              bool check_exceptions) {
  6746   Label C, E;
  6747   call(C, relocInfo::none);
  6748   jmp(E);
  6750   bind(C);
  6752   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  6753   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  6754   pass_arg3(this, arg_3);
  6756   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6757   pass_arg2(this, arg_2);
  6759   pass_arg1(this, arg_1);
  6760   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
  6761   ret(0);
  6763   bind(E);
  6766 void MacroAssembler::call_VM(Register oop_result,
  6767                              Register last_java_sp,
  6768                              address entry_point,
  6769                              int number_of_arguments,
  6770                              bool check_exceptions) {
  6771   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  6772   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  6775 void MacroAssembler::call_VM(Register oop_result,
  6776                              Register last_java_sp,
  6777                              address entry_point,
  6778                              Register arg_1,
  6779                              bool check_exceptions) {
  6780   pass_arg1(this, arg_1);
  6781   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  6784 void MacroAssembler::call_VM(Register oop_result,
  6785                              Register last_java_sp,
  6786                              address entry_point,
  6787                              Register arg_1,
  6788                              Register arg_2,
  6789                              bool check_exceptions) {
  6791   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6792   pass_arg2(this, arg_2);
  6793   pass_arg1(this, arg_1);
  6794   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  6797 void MacroAssembler::call_VM(Register oop_result,
  6798                              Register last_java_sp,
  6799                              address entry_point,
  6800                              Register arg_1,
  6801                              Register arg_2,
  6802                              Register arg_3,
  6803                              bool check_exceptions) {
  6804   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  6805   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  6806   pass_arg3(this, arg_3);
  6807   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6808   pass_arg2(this, arg_2);
  6809   pass_arg1(this, arg_1);
  6810   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  6813 void MacroAssembler::super_call_VM(Register oop_result,
  6814                                    Register last_java_sp,
  6815                                    address entry_point,
  6816                                    int number_of_arguments,
  6817                                    bool check_exceptions) {
  6818   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  6819   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  6822 void MacroAssembler::super_call_VM(Register oop_result,
  6823                                    Register last_java_sp,
  6824                                    address entry_point,
  6825                                    Register arg_1,
  6826                                    bool check_exceptions) {
  6827   pass_arg1(this, arg_1);
  6828   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  6831 void MacroAssembler::super_call_VM(Register oop_result,
  6832                                    Register last_java_sp,
  6833                                    address entry_point,
  6834                                    Register arg_1,
  6835                                    Register arg_2,
  6836                                    bool check_exceptions) {
  6838   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6839   pass_arg2(this, arg_2);
  6840   pass_arg1(this, arg_1);
  6841   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  6844 void MacroAssembler::super_call_VM(Register oop_result,
  6845                                    Register last_java_sp,
  6846                                    address entry_point,
  6847                                    Register arg_1,
  6848                                    Register arg_2,
  6849                                    Register arg_3,
  6850                                    bool check_exceptions) {
  6851   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  6852   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  6853   pass_arg3(this, arg_3);
  6854   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6855   pass_arg2(this, arg_2);
  6856   pass_arg1(this, arg_1);
  6857   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  6860 void MacroAssembler::call_VM_base(Register oop_result,
  6861                                   Register java_thread,
  6862                                   Register last_java_sp,
  6863                                   address  entry_point,
  6864                                   int      number_of_arguments,
  6865                                   bool     check_exceptions) {
  6866   // determine java_thread register
  6867   if (!java_thread->is_valid()) {
  6868 #ifdef _LP64
  6869     java_thread = r15_thread;
  6870 #else
  6871     java_thread = rdi;
  6872     get_thread(java_thread);
  6873 #endif // LP64
  6875   // determine last_java_sp register
  6876   if (!last_java_sp->is_valid()) {
  6877     last_java_sp = rsp;
  6879   // debugging support
  6880   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  6881   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
  6882 #ifdef ASSERT
  6883   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
  6884   // r12 is the heapbase.
  6885   LP64_ONLY(if (UseCompressedOops && !TraceBytecodes) verify_heapbase("call_VM_base");)
  6886 #endif // ASSERT
  6888   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
  6889   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
  6891   // push java thread (becomes first argument of C function)
  6893   NOT_LP64(push(java_thread); number_of_arguments++);
  6894   LP64_ONLY(mov(c_rarg0, r15_thread));
  6896   // set last Java frame before call
  6897   assert(last_java_sp != rbp, "can't use ebp/rbp");
  6899   // Only interpreter should have to set fp
  6900   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
  6902   // do the call, remove parameters
  6903   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
  6905   // restore the thread (cannot use the pushed argument since arguments
  6906   // may be overwritten by C code generated by an optimizing compiler);
  6907   // however can use the register value directly if it is callee saved.
  6908   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
  6909     // rdi & rsi (also r15) are callee saved -> nothing to do
  6910 #ifdef ASSERT
  6911     guarantee(java_thread != rax, "change this code");
  6912     push(rax);
  6913     { Label L;
  6914       get_thread(rax);
  6915       cmpptr(java_thread, rax);
  6916       jcc(Assembler::equal, L);
  6917       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
  6918       bind(L);
  6920     pop(rax);
  6921 #endif
  6922   } else {
  6923     get_thread(java_thread);
  6925   // reset last Java frame
  6926   // Only interpreter should have to clear fp
  6927   reset_last_Java_frame(java_thread, true, false);
  6929 #ifndef CC_INTERP
  6930    // C++ interp handles this in the interpreter
  6931   check_and_handle_popframe(java_thread);
  6932   check_and_handle_earlyret(java_thread);
  6933 #endif /* CC_INTERP */
  6935   if (check_exceptions) {
  6936     // check for pending exceptions (java_thread is set upon return)
  6937     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
  6938 #ifndef _LP64
  6939     jump_cc(Assembler::notEqual,
  6940             RuntimeAddress(StubRoutines::forward_exception_entry()));
  6941 #else
  6942     // This used to conditionally jump to forward_exception however it is
  6943     // possible if we relocate that the branch will not reach. So we must jump
  6944     // around so we can always reach
  6946     Label ok;
  6947     jcc(Assembler::equal, ok);
  6948     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  6949     bind(ok);
  6950 #endif // LP64
  6953   // get oop result if there is one and reset the value in the thread
  6954   if (oop_result->is_valid()) {
  6955     get_vm_result(oop_result, java_thread);
  6959 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  6961   // Calculate the value for last_Java_sp
  6962   // somewhat subtle. call_VM does an intermediate call
  6963   // which places a return address on the stack just under the
  6964   // stack pointer as the user finsihed with it. This allows
  6965   // use to retrieve last_Java_pc from last_Java_sp[-1].
  6966   // On 32bit we then have to push additional args on the stack to accomplish
  6967   // the actual requested call. On 64bit call_VM only can use register args
  6968   // so the only extra space is the return address that call_VM created.
  6969   // This hopefully explains the calculations here.
  6971 #ifdef _LP64
  6972   // We've pushed one address, correct last_Java_sp
  6973   lea(rax, Address(rsp, wordSize));
  6974 #else
  6975   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
  6976 #endif // LP64
  6978   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
  6982 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
  6983   call_VM_leaf_base(entry_point, number_of_arguments);
  6986 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
  6987   pass_arg0(this, arg_0);
  6988   call_VM_leaf(entry_point, 1);
  6991 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  6993   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6994   pass_arg1(this, arg_1);
  6995   pass_arg0(this, arg_0);
  6996   call_VM_leaf(entry_point, 2);
  6999 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  7000   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  7001   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  7002   pass_arg2(this, arg_2);
  7003   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  7004   pass_arg1(this, arg_1);
  7005   pass_arg0(this, arg_0);
  7006   call_VM_leaf(entry_point, 3);
  7009 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
  7010   pass_arg0(this, arg_0);
  7011   MacroAssembler::call_VM_leaf_base(entry_point, 1);
  7014 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  7016   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  7017   pass_arg1(this, arg_1);
  7018   pass_arg0(this, arg_0);
  7019   MacroAssembler::call_VM_leaf_base(entry_point, 2);
  7022 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  7023   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  7024   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  7025   pass_arg2(this, arg_2);
  7026   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  7027   pass_arg1(this, arg_1);
  7028   pass_arg0(this, arg_0);
  7029   MacroAssembler::call_VM_leaf_base(entry_point, 3);
  7032 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
  7033   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
  7034   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  7035   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  7036   pass_arg3(this, arg_3);
  7037   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  7038   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  7039   pass_arg2(this, arg_2);
  7040   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  7041   pass_arg1(this, arg_1);
  7042   pass_arg0(this, arg_0);
  7043   MacroAssembler::call_VM_leaf_base(entry_point, 4);
  7046 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
  7047   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
  7048   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
  7049   verify_oop(oop_result, "broken oop in call_VM_base");
  7052 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
  7053   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
  7054   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
  7057 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
  7060 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
  7063 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
  7064   if (reachable(src1)) {
  7065     cmpl(as_Address(src1), imm);
  7066   } else {
  7067     lea(rscratch1, src1);
  7068     cmpl(Address(rscratch1, 0), imm);
  7072 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
  7073   assert(!src2.is_lval(), "use cmpptr");
  7074   if (reachable(src2)) {
  7075     cmpl(src1, as_Address(src2));
  7076   } else {
  7077     lea(rscratch1, src2);
  7078     cmpl(src1, Address(rscratch1, 0));
  7082 void MacroAssembler::cmp32(Register src1, int32_t imm) {
  7083   Assembler::cmpl(src1, imm);
  7086 void MacroAssembler::cmp32(Register src1, Address src2) {
  7087   Assembler::cmpl(src1, src2);
  7090 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  7091   ucomisd(opr1, opr2);
  7093   Label L;
  7094   if (unordered_is_less) {
  7095     movl(dst, -1);
  7096     jcc(Assembler::parity, L);
  7097     jcc(Assembler::below , L);
  7098     movl(dst, 0);
  7099     jcc(Assembler::equal , L);
  7100     increment(dst);
  7101   } else { // unordered is greater
  7102     movl(dst, 1);
  7103     jcc(Assembler::parity, L);
  7104     jcc(Assembler::above , L);
  7105     movl(dst, 0);
  7106     jcc(Assembler::equal , L);
  7107     decrementl(dst);
  7109   bind(L);
  7112 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  7113   ucomiss(opr1, opr2);
  7115   Label L;
  7116   if (unordered_is_less) {
  7117     movl(dst, -1);
  7118     jcc(Assembler::parity, L);
  7119     jcc(Assembler::below , L);
  7120     movl(dst, 0);
  7121     jcc(Assembler::equal , L);
  7122     increment(dst);
  7123   } else { // unordered is greater
  7124     movl(dst, 1);
  7125     jcc(Assembler::parity, L);
  7126     jcc(Assembler::above , L);
  7127     movl(dst, 0);
  7128     jcc(Assembler::equal , L);
  7129     decrementl(dst);
  7131   bind(L);
  7135 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
  7136   if (reachable(src1)) {
  7137     cmpb(as_Address(src1), imm);
  7138   } else {
  7139     lea(rscratch1, src1);
  7140     cmpb(Address(rscratch1, 0), imm);
  7144 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
  7145 #ifdef _LP64
  7146   if (src2.is_lval()) {
  7147     movptr(rscratch1, src2);
  7148     Assembler::cmpq(src1, rscratch1);
  7149   } else if (reachable(src2)) {
  7150     cmpq(src1, as_Address(src2));
  7151   } else {
  7152     lea(rscratch1, src2);
  7153     Assembler::cmpq(src1, Address(rscratch1, 0));
  7155 #else
  7156   if (src2.is_lval()) {
  7157     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  7158   } else {
  7159     cmpl(src1, as_Address(src2));
  7161 #endif // _LP64
  7164 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
  7165   assert(src2.is_lval(), "not a mem-mem compare");
  7166 #ifdef _LP64
  7167   // moves src2's literal address
  7168   movptr(rscratch1, src2);
  7169   Assembler::cmpq(src1, rscratch1);
  7170 #else
  7171   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  7172 #endif // _LP64
  7175 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
  7176   if (reachable(adr)) {
  7177     if (os::is_MP())
  7178       lock();
  7179     cmpxchgptr(reg, as_Address(adr));
  7180   } else {
  7181     lea(rscratch1, adr);
  7182     if (os::is_MP())
  7183       lock();
  7184     cmpxchgptr(reg, Address(rscratch1, 0));
  7188 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
  7189   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
  7192 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
  7193   if (reachable(src)) {
  7194     Assembler::comisd(dst, as_Address(src));
  7195   } else {
  7196     lea(rscratch1, src);
  7197     Assembler::comisd(dst, Address(rscratch1, 0));
  7201 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
  7202   if (reachable(src)) {
  7203     Assembler::comiss(dst, as_Address(src));
  7204   } else {
  7205     lea(rscratch1, src);
  7206     Assembler::comiss(dst, Address(rscratch1, 0));
  7211 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
  7212   Condition negated_cond = negate_condition(cond);
  7213   Label L;
  7214   jcc(negated_cond, L);
  7215   atomic_incl(counter_addr);
  7216   bind(L);
  7219 int MacroAssembler::corrected_idivl(Register reg) {
  7220   // Full implementation of Java idiv and irem; checks for
  7221   // special case as described in JVM spec., p.243 & p.271.
  7222   // The function returns the (pc) offset of the idivl
  7223   // instruction - may be needed for implicit exceptions.
  7224   //
  7225   //         normal case                           special case
  7226   //
  7227   // input : rax,: dividend                         min_int
  7228   //         reg: divisor   (may not be rax,/rdx)   -1
  7229   //
  7230   // output: rax,: quotient  (= rax, idiv reg)       min_int
  7231   //         rdx: remainder (= rax, irem reg)       0
  7232   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
  7233   const int min_int = 0x80000000;
  7234   Label normal_case, special_case;
  7236   // check for special case
  7237   cmpl(rax, min_int);
  7238   jcc(Assembler::notEqual, normal_case);
  7239   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
  7240   cmpl(reg, -1);
  7241   jcc(Assembler::equal, special_case);
  7243   // handle normal case
  7244   bind(normal_case);
  7245   cdql();
  7246   int idivl_offset = offset();
  7247   idivl(reg);
  7249   // normal and special case exit
  7250   bind(special_case);
  7252   return idivl_offset;
  7257 void MacroAssembler::decrementl(Register reg, int value) {
  7258   if (value == min_jint) {subl(reg, value) ; return; }
  7259   if (value <  0) { incrementl(reg, -value); return; }
  7260   if (value == 0) {                        ; return; }
  7261   if (value == 1 && UseIncDec) { decl(reg) ; return; }
  7262   /* else */      { subl(reg, value)       ; return; }
  7265 void MacroAssembler::decrementl(Address dst, int value) {
  7266   if (value == min_jint) {subl(dst, value) ; return; }
  7267   if (value <  0) { incrementl(dst, -value); return; }
  7268   if (value == 0) {                        ; return; }
  7269   if (value == 1 && UseIncDec) { decl(dst) ; return; }
  7270   /* else */      { subl(dst, value)       ; return; }
  7273 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
  7274   assert (shift_value > 0, "illegal shift value");
  7275   Label _is_positive;
  7276   testl (reg, reg);
  7277   jcc (Assembler::positive, _is_positive);
  7278   int offset = (1 << shift_value) - 1 ;
  7280   if (offset == 1) {
  7281     incrementl(reg);
  7282   } else {
  7283     addl(reg, offset);
  7286   bind (_is_positive);
  7287   sarl(reg, shift_value);
  7290 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
  7291   if (reachable(src)) {
  7292     Assembler::divsd(dst, as_Address(src));
  7293   } else {
  7294     lea(rscratch1, src);
  7295     Assembler::divsd(dst, Address(rscratch1, 0));
  7299 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
  7300   if (reachable(src)) {
  7301     Assembler::divss(dst, as_Address(src));
  7302   } else {
  7303     lea(rscratch1, src);
  7304     Assembler::divss(dst, Address(rscratch1, 0));
  7308 // !defined(COMPILER2) is because of stupid core builds
  7309 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
  7310 void MacroAssembler::empty_FPU_stack() {
  7311   if (VM_Version::supports_mmx()) {
  7312     emms();
  7313   } else {
  7314     for (int i = 8; i-- > 0; ) ffree(i);
  7317 #endif // !LP64 || C1 || !C2
  7320 // Defines obj, preserves var_size_in_bytes
  7321 void MacroAssembler::eden_allocate(Register obj,
  7322                                    Register var_size_in_bytes,
  7323                                    int con_size_in_bytes,
  7324                                    Register t1,
  7325                                    Label& slow_case) {
  7326   assert(obj == rax, "obj must be in rax, for cmpxchg");
  7327   assert_different_registers(obj, var_size_in_bytes, t1);
  7328   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  7329     jmp(slow_case);
  7330   } else {
  7331     Register end = t1;
  7332     Label retry;
  7333     bind(retry);
  7334     ExternalAddress heap_top((address) Universe::heap()->top_addr());
  7335     movptr(obj, heap_top);
  7336     if (var_size_in_bytes == noreg) {
  7337       lea(end, Address(obj, con_size_in_bytes));
  7338     } else {
  7339       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  7341     // if end < obj then we wrapped around => object too long => slow case
  7342     cmpptr(end, obj);
  7343     jcc(Assembler::below, slow_case);
  7344     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
  7345     jcc(Assembler::above, slow_case);
  7346     // Compare obj with the top addr, and if still equal, store the new top addr in
  7347     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
  7348     // it otherwise. Use lock prefix for atomicity on MPs.
  7349     locked_cmpxchgptr(end, heap_top);
  7350     jcc(Assembler::notEqual, retry);
  7354 void MacroAssembler::enter() {
  7355   push(rbp);
  7356   mov(rbp, rsp);
  7359 // A 5 byte nop that is safe for patching (see patch_verified_entry)
  7360 void MacroAssembler::fat_nop() {
  7361   if (UseAddressNop) {
  7362     addr_nop_5();
  7363   } else {
  7364     emit_byte(0x26); // es:
  7365     emit_byte(0x2e); // cs:
  7366     emit_byte(0x64); // fs:
  7367     emit_byte(0x65); // gs:
  7368     emit_byte(0x90);
  7372 void MacroAssembler::fcmp(Register tmp) {
  7373   fcmp(tmp, 1, true, true);
  7376 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
  7377   assert(!pop_right || pop_left, "usage error");
  7378   if (VM_Version::supports_cmov()) {
  7379     assert(tmp == noreg, "unneeded temp");
  7380     if (pop_left) {
  7381       fucomip(index);
  7382     } else {
  7383       fucomi(index);
  7385     if (pop_right) {
  7386       fpop();
  7388   } else {
  7389     assert(tmp != noreg, "need temp");
  7390     if (pop_left) {
  7391       if (pop_right) {
  7392         fcompp();
  7393       } else {
  7394         fcomp(index);
  7396     } else {
  7397       fcom(index);
  7399     // convert FPU condition into eflags condition via rax,
  7400     save_rax(tmp);
  7401     fwait(); fnstsw_ax();
  7402     sahf();
  7403     restore_rax(tmp);
  7405   // condition codes set as follows:
  7406   //
  7407   // CF (corresponds to C0) if x < y
  7408   // PF (corresponds to C2) if unordered
  7409   // ZF (corresponds to C3) if x = y
  7412 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
  7413   fcmp2int(dst, unordered_is_less, 1, true, true);
  7416 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
  7417   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
  7418   Label L;
  7419   if (unordered_is_less) {
  7420     movl(dst, -1);
  7421     jcc(Assembler::parity, L);
  7422     jcc(Assembler::below , L);
  7423     movl(dst, 0);
  7424     jcc(Assembler::equal , L);
  7425     increment(dst);
  7426   } else { // unordered is greater
  7427     movl(dst, 1);
  7428     jcc(Assembler::parity, L);
  7429     jcc(Assembler::above , L);
  7430     movl(dst, 0);
  7431     jcc(Assembler::equal , L);
  7432     decrementl(dst);
  7434   bind(L);
  7437 void MacroAssembler::fld_d(AddressLiteral src) {
  7438   fld_d(as_Address(src));
  7441 void MacroAssembler::fld_s(AddressLiteral src) {
  7442   fld_s(as_Address(src));
  7445 void MacroAssembler::fld_x(AddressLiteral src) {
  7446   Assembler::fld_x(as_Address(src));
  7449 void MacroAssembler::fldcw(AddressLiteral src) {
  7450   Assembler::fldcw(as_Address(src));
  7453 void MacroAssembler::pow_exp_core_encoding() {
  7454   // kills rax, rcx, rdx
  7455   subptr(rsp,sizeof(jdouble));
  7456   // computes 2^X. Stack: X ...
  7457   // f2xm1 computes 2^X-1 but only operates on -1<=X<=1. Get int(X) and
  7458   // keep it on the thread's stack to compute 2^int(X) later
  7459   // then compute 2^(X-int(X)) as (2^(X-int(X)-1+1)
  7460   // final result is obtained with: 2^X = 2^int(X) * 2^(X-int(X))
  7461   fld_s(0);                 // Stack: X X ...
  7462   frndint();                // Stack: int(X) X ...
  7463   fsuba(1);                 // Stack: int(X) X-int(X) ...
  7464   fistp_s(Address(rsp,0));  // move int(X) as integer to thread's stack. Stack: X-int(X) ...
  7465   f2xm1();                  // Stack: 2^(X-int(X))-1 ...
  7466   fld1();                   // Stack: 1 2^(X-int(X))-1 ...
  7467   faddp(1);                 // Stack: 2^(X-int(X))
  7468   // computes 2^(int(X)): add exponent bias (1023) to int(X), then
  7469   // shift int(X)+1023 to exponent position.
  7470   // Exponent is limited to 11 bits if int(X)+1023 does not fit in 11
  7471   // bits, set result to NaN. 0x000 and 0x7FF are reserved exponent
  7472   // values so detect them and set result to NaN.
  7473   movl(rax,Address(rsp,0));
  7474   movl(rcx, -2048); // 11 bit mask and valid NaN binary encoding
  7475   addl(rax, 1023);
  7476   movl(rdx,rax);
  7477   shll(rax,20);
  7478   // Check that 0 < int(X)+1023 < 2047. Otherwise set rax to NaN.
  7479   addl(rdx,1);
  7480   // Check that 1 < int(X)+1023+1 < 2048
  7481   // in 3 steps:
  7482   // 1- (int(X)+1023+1)&-2048 == 0 => 0 <= int(X)+1023+1 < 2048
  7483   // 2- (int(X)+1023+1)&-2048 != 0
  7484   // 3- (int(X)+1023+1)&-2048 != 1
  7485   // Do 2- first because addl just updated the flags.
  7486   cmov32(Assembler::equal,rax,rcx);
  7487   cmpl(rdx,1);
  7488   cmov32(Assembler::equal,rax,rcx);
  7489   testl(rdx,rcx);
  7490   cmov32(Assembler::notEqual,rax,rcx);
  7491   movl(Address(rsp,4),rax);
  7492   movl(Address(rsp,0),0);
  7493   fmul_d(Address(rsp,0));   // Stack: 2^X ...
  7494   addptr(rsp,sizeof(jdouble));
  7497 void MacroAssembler::increase_precision() {
  7498   subptr(rsp, BytesPerWord);
  7499   fnstcw(Address(rsp, 0));
  7500   movl(rax, Address(rsp, 0));
  7501   orl(rax, 0x300);
  7502   push(rax);
  7503   fldcw(Address(rsp, 0));
  7504   pop(rax);
  7507 void MacroAssembler::restore_precision() {
  7508   fldcw(Address(rsp, 0));
  7509   addptr(rsp, BytesPerWord);
  7512 void MacroAssembler::fast_pow() {
  7513   // computes X^Y = 2^(Y * log2(X))
  7514   // if fast computation is not possible, result is NaN. Requires
  7515   // fallback from user of this macro.
  7516   // increase precision for intermediate steps of the computation
  7517   increase_precision();
  7518   fyl2x();                 // Stack: (Y*log2(X)) ...
  7519   pow_exp_core_encoding(); // Stack: exp(X) ...
  7520   restore_precision();
  7523 void MacroAssembler::fast_exp() {
  7524   // computes exp(X) = 2^(X * log2(e))
  7525   // if fast computation is not possible, result is NaN. Requires
  7526   // fallback from user of this macro.
  7527   // increase precision for intermediate steps of the computation
  7528   increase_precision();
  7529   fldl2e();                // Stack: log2(e) X ...
  7530   fmulp(1);                // Stack: (X*log2(e)) ...
  7531   pow_exp_core_encoding(); // Stack: exp(X) ...
  7532   restore_precision();
  7535 void MacroAssembler::pow_or_exp(bool is_exp, int num_fpu_regs_in_use) {
  7536   // kills rax, rcx, rdx
  7537   // pow and exp needs 2 extra registers on the fpu stack.
  7538   Label slow_case, done;
  7539   Register tmp = noreg;
  7540   if (!VM_Version::supports_cmov()) {
  7541     // fcmp needs a temporary so preserve rdx,
  7542     tmp = rdx;
  7544   Register tmp2 = rax;
  7545   Register tmp3 = rcx;
  7547   if (is_exp) {
  7548     // Stack: X
  7549     fld_s(0);                   // duplicate argument for runtime call. Stack: X X
  7550     fast_exp();                 // Stack: exp(X) X
  7551     fcmp(tmp, 0, false, false); // Stack: exp(X) X
  7552     // exp(X) not equal to itself: exp(X) is NaN go to slow case.
  7553     jcc(Assembler::parity, slow_case);
  7554     // get rid of duplicate argument. Stack: exp(X)
  7555     if (num_fpu_regs_in_use > 0) {
  7556       fxch();
  7557       fpop();
  7558     } else {
  7559       ffree(1);
  7561     jmp(done);
  7562   } else {
  7563     // Stack: X Y
  7564     Label x_negative, y_odd;
  7566     fldz();                     // Stack: 0 X Y
  7567     fcmp(tmp, 1, true, false);  // Stack: X Y
  7568     jcc(Assembler::above, x_negative);
  7570     // X >= 0
  7572     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
  7573     fld_s(1);                   // Stack: X Y X Y
  7574     fast_pow();                 // Stack: X^Y X Y
  7575     fcmp(tmp, 0, false, false); // Stack: X^Y X Y
  7576     // X^Y not equal to itself: X^Y is NaN go to slow case.
  7577     jcc(Assembler::parity, slow_case);
  7578     // get rid of duplicate arguments. Stack: X^Y
  7579     if (num_fpu_regs_in_use > 0) {
  7580       fxch(); fpop();
  7581       fxch(); fpop();
  7582     } else {
  7583       ffree(2);
  7584       ffree(1);
  7586     jmp(done);
  7588     // X <= 0
  7589     bind(x_negative);
  7591     fld_s(1);                   // Stack: Y X Y
  7592     frndint();                  // Stack: int(Y) X Y
  7593     fcmp(tmp, 2, false, false); // Stack: int(Y) X Y
  7594     jcc(Assembler::notEqual, slow_case);
  7596     subptr(rsp, 8);
  7598     // For X^Y, when X < 0, Y has to be an integer and the final
  7599     // result depends on whether it's odd or even. We just checked
  7600     // that int(Y) == Y.  We move int(Y) to gp registers as a 64 bit
  7601     // integer to test its parity. If int(Y) is huge and doesn't fit
  7602     // in the 64 bit integer range, the integer indefinite value will
  7603     // end up in the gp registers. Huge numbers are all even, the
  7604     // integer indefinite number is even so it's fine.
  7606 #ifdef ASSERT
  7607     // Let's check we don't end up with an integer indefinite number
  7608     // when not expected. First test for huge numbers: check whether
  7609     // int(Y)+1 == int(Y) which is true for very large numbers and
  7610     // those are all even. A 64 bit integer is guaranteed to not
  7611     // overflow for numbers where y+1 != y (when precision is set to
  7612     // double precision).
  7613     Label y_not_huge;
  7615     fld1();                     // Stack: 1 int(Y) X Y
  7616     fadd(1);                    // Stack: 1+int(Y) int(Y) X Y
  7618 #ifdef _LP64
  7619     // trip to memory to force the precision down from double extended
  7620     // precision
  7621     fstp_d(Address(rsp, 0));
  7622     fld_d(Address(rsp, 0));
  7623 #endif
  7625     fcmp(tmp, 1, true, false);  // Stack: int(Y) X Y
  7626 #endif
  7628     // move int(Y) as 64 bit integer to thread's stack
  7629     fistp_d(Address(rsp,0));    // Stack: X Y
  7631 #ifdef ASSERT
  7632     jcc(Assembler::notEqual, y_not_huge);
  7634     // Y is huge so we know it's even. It may not fit in a 64 bit
  7635     // integer and we don't want the debug code below to see the
  7636     // integer indefinite value so overwrite int(Y) on the thread's
  7637     // stack with 0.
  7638     movl(Address(rsp, 0), 0);
  7639     movl(Address(rsp, 4), 0);
  7641     bind(y_not_huge);
  7642 #endif
  7644     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
  7645     fld_s(1);                   // Stack: X Y X Y
  7646     fabs();                     // Stack: abs(X) Y X Y
  7647     fast_pow();                 // Stack: abs(X)^Y X Y
  7648     fcmp(tmp, 0, false, false); // Stack: abs(X)^Y X Y
  7649     // abs(X)^Y not equal to itself: abs(X)^Y is NaN go to slow case.
  7651     pop(tmp2);
  7652     NOT_LP64(pop(tmp3));
  7653     jcc(Assembler::parity, slow_case);
  7655 #ifdef ASSERT
  7656     // Check that int(Y) is not integer indefinite value (int
  7657     // overflow). Shouldn't happen because for values that would
  7658     // overflow, 1+int(Y)==Y which was tested earlier.
  7659 #ifndef _LP64
  7661       Label integer;
  7662       testl(tmp2, tmp2);
  7663       jcc(Assembler::notZero, integer);
  7664       cmpl(tmp3, 0x80000000);
  7665       jcc(Assembler::notZero, integer);
  7666       STOP("integer indefinite value shouldn't be seen here");
  7667       bind(integer);
  7669 #else
  7671       Label integer;
  7672       mov(tmp3, tmp2); // preserve tmp2 for parity check below
  7673       shlq(tmp3, 1);
  7674       jcc(Assembler::carryClear, integer);
  7675       jcc(Assembler::notZero, integer);
  7676       STOP("integer indefinite value shouldn't be seen here");
  7677       bind(integer);
  7679 #endif
  7680 #endif
  7682     // get rid of duplicate arguments. Stack: X^Y
  7683     if (num_fpu_regs_in_use > 0) {
  7684       fxch(); fpop();
  7685       fxch(); fpop();
  7686     } else {
  7687       ffree(2);
  7688       ffree(1);
  7691     testl(tmp2, 1);
  7692     jcc(Assembler::zero, done); // X <= 0, Y even: X^Y = abs(X)^Y
  7693     // X <= 0, Y even: X^Y = -abs(X)^Y
  7695     fchs();                     // Stack: -abs(X)^Y Y
  7696     jmp(done);
  7699   // slow case: runtime call
  7700   bind(slow_case);
  7702   fpop();                       // pop incorrect result or int(Y)
  7704   fp_runtime_fallback(is_exp ? CAST_FROM_FN_PTR(address, SharedRuntime::dexp) : CAST_FROM_FN_PTR(address, SharedRuntime::dpow),
  7705                       is_exp ? 1 : 2, num_fpu_regs_in_use);
  7707   // Come here with result in F-TOS
  7708   bind(done);
  7711 void MacroAssembler::fpop() {
  7712   ffree();
  7713   fincstp();
  7716 void MacroAssembler::fremr(Register tmp) {
  7717   save_rax(tmp);
  7718   { Label L;
  7719     bind(L);
  7720     fprem();
  7721     fwait(); fnstsw_ax();
  7722 #ifdef _LP64
  7723     testl(rax, 0x400);
  7724     jcc(Assembler::notEqual, L);
  7725 #else
  7726     sahf();
  7727     jcc(Assembler::parity, L);
  7728 #endif // _LP64
  7730   restore_rax(tmp);
  7731   // Result is in ST0.
  7732   // Note: fxch & fpop to get rid of ST1
  7733   // (otherwise FPU stack could overflow eventually)
  7734   fxch(1);
  7735   fpop();
  7739 void MacroAssembler::incrementl(AddressLiteral dst) {
  7740   if (reachable(dst)) {
  7741     incrementl(as_Address(dst));
  7742   } else {
  7743     lea(rscratch1, dst);
  7744     incrementl(Address(rscratch1, 0));
  7748 void MacroAssembler::incrementl(ArrayAddress dst) {
  7749   incrementl(as_Address(dst));
  7752 void MacroAssembler::incrementl(Register reg, int value) {
  7753   if (value == min_jint) {addl(reg, value) ; return; }
  7754   if (value <  0) { decrementl(reg, -value); return; }
  7755   if (value == 0) {                        ; return; }
  7756   if (value == 1 && UseIncDec) { incl(reg) ; return; }
  7757   /* else */      { addl(reg, value)       ; return; }
  7760 void MacroAssembler::incrementl(Address dst, int value) {
  7761   if (value == min_jint) {addl(dst, value) ; return; }
  7762   if (value <  0) { decrementl(dst, -value); return; }
  7763   if (value == 0) {                        ; return; }
  7764   if (value == 1 && UseIncDec) { incl(dst) ; return; }
  7765   /* else */      { addl(dst, value)       ; return; }
  7768 void MacroAssembler::jump(AddressLiteral dst) {
  7769   if (reachable(dst)) {
  7770     jmp_literal(dst.target(), dst.rspec());
  7771   } else {
  7772     lea(rscratch1, dst);
  7773     jmp(rscratch1);
  7777 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
  7778   if (reachable(dst)) {
  7779     InstructionMark im(this);
  7780     relocate(dst.reloc());
  7781     const int short_size = 2;
  7782     const int long_size = 6;
  7783     int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos);
  7784     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
  7785       // 0111 tttn #8-bit disp
  7786       emit_byte(0x70 | cc);
  7787       emit_byte((offs - short_size) & 0xFF);
  7788     } else {
  7789       // 0000 1111 1000 tttn #32-bit disp
  7790       emit_byte(0x0F);
  7791       emit_byte(0x80 | cc);
  7792       emit_long(offs - long_size);
  7794   } else {
  7795 #ifdef ASSERT
  7796     warning("reversing conditional branch");
  7797 #endif /* ASSERT */
  7798     Label skip;
  7799     jccb(reverse[cc], skip);
  7800     lea(rscratch1, dst);
  7801     Assembler::jmp(rscratch1);
  7802     bind(skip);
  7806 void MacroAssembler::ldmxcsr(AddressLiteral src) {
  7807   if (reachable(src)) {
  7808     Assembler::ldmxcsr(as_Address(src));
  7809   } else {
  7810     lea(rscratch1, src);
  7811     Assembler::ldmxcsr(Address(rscratch1, 0));
  7815 int MacroAssembler::load_signed_byte(Register dst, Address src) {
  7816   int off;
  7817   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  7818     off = offset();
  7819     movsbl(dst, src); // movsxb
  7820   } else {
  7821     off = load_unsigned_byte(dst, src);
  7822     shll(dst, 24);
  7823     sarl(dst, 24);
  7825   return off;
  7828 // Note: load_signed_short used to be called load_signed_word.
  7829 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
  7830 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
  7831 // The term "word" in HotSpot means a 32- or 64-bit machine word.
  7832 int MacroAssembler::load_signed_short(Register dst, Address src) {
  7833   int off;
  7834   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  7835     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
  7836     // version but this is what 64bit has always done. This seems to imply
  7837     // that users are only using 32bits worth.
  7838     off = offset();
  7839     movswl(dst, src); // movsxw
  7840   } else {
  7841     off = load_unsigned_short(dst, src);
  7842     shll(dst, 16);
  7843     sarl(dst, 16);
  7845   return off;
  7848 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
  7849   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  7850   // and "3.9 Partial Register Penalties", p. 22).
  7851   int off;
  7852   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
  7853     off = offset();
  7854     movzbl(dst, src); // movzxb
  7855   } else {
  7856     xorl(dst, dst);
  7857     off = offset();
  7858     movb(dst, src);
  7860   return off;
  7863 // Note: load_unsigned_short used to be called load_unsigned_word.
  7864 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
  7865   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  7866   // and "3.9 Partial Register Penalties", p. 22).
  7867   int off;
  7868   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
  7869     off = offset();
  7870     movzwl(dst, src); // movzxw
  7871   } else {
  7872     xorl(dst, dst);
  7873     off = offset();
  7874     movw(dst, src);
  7876   return off;
  7879 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
  7880   switch (size_in_bytes) {
  7881 #ifndef _LP64
  7882   case  8:
  7883     assert(dst2 != noreg, "second dest register required");
  7884     movl(dst,  src);
  7885     movl(dst2, src.plus_disp(BytesPerInt));
  7886     break;
  7887 #else
  7888   case  8:  movq(dst, src); break;
  7889 #endif
  7890   case  4:  movl(dst, src); break;
  7891   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
  7892   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
  7893   default:  ShouldNotReachHere();
  7897 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
  7898   switch (size_in_bytes) {
  7899 #ifndef _LP64
  7900   case  8:
  7901     assert(src2 != noreg, "second source register required");
  7902     movl(dst,                        src);
  7903     movl(dst.plus_disp(BytesPerInt), src2);
  7904     break;
  7905 #else
  7906   case  8:  movq(dst, src); break;
  7907 #endif
  7908   case  4:  movl(dst, src); break;
  7909   case  2:  movw(dst, src); break;
  7910   case  1:  movb(dst, src); break;
  7911   default:  ShouldNotReachHere();
  7915 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
  7916   if (reachable(dst)) {
  7917     movl(as_Address(dst), src);
  7918   } else {
  7919     lea(rscratch1, dst);
  7920     movl(Address(rscratch1, 0), src);
  7924 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
  7925   if (reachable(src)) {
  7926     movl(dst, as_Address(src));
  7927   } else {
  7928     lea(rscratch1, src);
  7929     movl(dst, Address(rscratch1, 0));
  7933 // C++ bool manipulation
  7935 void MacroAssembler::movbool(Register dst, Address src) {
  7936   if(sizeof(bool) == 1)
  7937     movb(dst, src);
  7938   else if(sizeof(bool) == 2)
  7939     movw(dst, src);
  7940   else if(sizeof(bool) == 4)
  7941     movl(dst, src);
  7942   else
  7943     // unsupported
  7944     ShouldNotReachHere();
  7947 void MacroAssembler::movbool(Address dst, bool boolconst) {
  7948   if(sizeof(bool) == 1)
  7949     movb(dst, (int) boolconst);
  7950   else if(sizeof(bool) == 2)
  7951     movw(dst, (int) boolconst);
  7952   else if(sizeof(bool) == 4)
  7953     movl(dst, (int) boolconst);
  7954   else
  7955     // unsupported
  7956     ShouldNotReachHere();
  7959 void MacroAssembler::movbool(Address dst, Register src) {
  7960   if(sizeof(bool) == 1)
  7961     movb(dst, src);
  7962   else if(sizeof(bool) == 2)
  7963     movw(dst, src);
  7964   else if(sizeof(bool) == 4)
  7965     movl(dst, src);
  7966   else
  7967     // unsupported
  7968     ShouldNotReachHere();
  7971 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
  7972   movb(as_Address(dst), src);
  7975 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
  7976   if (reachable(src)) {
  7977     movdl(dst, as_Address(src));
  7978   } else {
  7979     lea(rscratch1, src);
  7980     movdl(dst, Address(rscratch1, 0));
  7984 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
  7985   if (reachable(src)) {
  7986     movq(dst, as_Address(src));
  7987   } else {
  7988     lea(rscratch1, src);
  7989     movq(dst, Address(rscratch1, 0));
  7993 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
  7994   if (reachable(src)) {
  7995     if (UseXmmLoadAndClearUpper) {
  7996       movsd (dst, as_Address(src));
  7997     } else {
  7998       movlpd(dst, as_Address(src));
  8000   } else {
  8001     lea(rscratch1, src);
  8002     if (UseXmmLoadAndClearUpper) {
  8003       movsd (dst, Address(rscratch1, 0));
  8004     } else {
  8005       movlpd(dst, Address(rscratch1, 0));
  8010 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
  8011   if (reachable(src)) {
  8012     movss(dst, as_Address(src));
  8013   } else {
  8014     lea(rscratch1, src);
  8015     movss(dst, Address(rscratch1, 0));
  8019 void MacroAssembler::movptr(Register dst, Register src) {
  8020   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  8023 void MacroAssembler::movptr(Register dst, Address src) {
  8024   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  8027 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  8028 void MacroAssembler::movptr(Register dst, intptr_t src) {
  8029   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
  8032 void MacroAssembler::movptr(Address dst, Register src) {
  8033   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  8036 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
  8037   if (reachable(src)) {
  8038     Assembler::movsd(dst, as_Address(src));
  8039   } else {
  8040     lea(rscratch1, src);
  8041     Assembler::movsd(dst, Address(rscratch1, 0));
  8045 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
  8046   if (reachable(src)) {
  8047     Assembler::movss(dst, as_Address(src));
  8048   } else {
  8049     lea(rscratch1, src);
  8050     Assembler::movss(dst, Address(rscratch1, 0));
  8054 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
  8055   if (reachable(src)) {
  8056     Assembler::mulsd(dst, as_Address(src));
  8057   } else {
  8058     lea(rscratch1, src);
  8059     Assembler::mulsd(dst, Address(rscratch1, 0));
  8063 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
  8064   if (reachable(src)) {
  8065     Assembler::mulss(dst, as_Address(src));
  8066   } else {
  8067     lea(rscratch1, src);
  8068     Assembler::mulss(dst, Address(rscratch1, 0));
  8072 void MacroAssembler::null_check(Register reg, int offset) {
  8073   if (needs_explicit_null_check(offset)) {
  8074     // provoke OS NULL exception if reg = NULL by
  8075     // accessing M[reg] w/o changing any (non-CC) registers
  8076     // NOTE: cmpl is plenty here to provoke a segv
  8077     cmpptr(rax, Address(reg, 0));
  8078     // Note: should probably use testl(rax, Address(reg, 0));
  8079     //       may be shorter code (however, this version of
  8080     //       testl needs to be implemented first)
  8081   } else {
  8082     // nothing to do, (later) access of M[reg + offset]
  8083     // will provoke OS NULL exception if reg = NULL
  8087 void MacroAssembler::os_breakpoint() {
  8088   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
  8089   // (e.g., MSVC can't call ps() otherwise)
  8090   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
  8093 void MacroAssembler::pop_CPU_state() {
  8094   pop_FPU_state();
  8095   pop_IU_state();
  8098 void MacroAssembler::pop_FPU_state() {
  8099   NOT_LP64(frstor(Address(rsp, 0));)
  8100   LP64_ONLY(fxrstor(Address(rsp, 0));)
  8101   addptr(rsp, FPUStateSizeInWords * wordSize);
  8104 void MacroAssembler::pop_IU_state() {
  8105   popa();
  8106   LP64_ONLY(addq(rsp, 8));
  8107   popf();
  8110 // Save Integer and Float state
  8111 // Warning: Stack must be 16 byte aligned (64bit)
  8112 void MacroAssembler::push_CPU_state() {
  8113   push_IU_state();
  8114   push_FPU_state();
  8117 void MacroAssembler::push_FPU_state() {
  8118   subptr(rsp, FPUStateSizeInWords * wordSize);
  8119 #ifndef _LP64
  8120   fnsave(Address(rsp, 0));
  8121   fwait();
  8122 #else
  8123   fxsave(Address(rsp, 0));
  8124 #endif // LP64
  8127 void MacroAssembler::push_IU_state() {
  8128   // Push flags first because pusha kills them
  8129   pushf();
  8130   // Make sure rsp stays 16-byte aligned
  8131   LP64_ONLY(subq(rsp, 8));
  8132   pusha();
  8135 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
  8136   // determine java_thread register
  8137   if (!java_thread->is_valid()) {
  8138     java_thread = rdi;
  8139     get_thread(java_thread);
  8141   // we must set sp to zero to clear frame
  8142   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  8143   if (clear_fp) {
  8144     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  8147   if (clear_pc)
  8148     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  8152 void MacroAssembler::restore_rax(Register tmp) {
  8153   if (tmp == noreg) pop(rax);
  8154   else if (tmp != rax) mov(rax, tmp);
  8157 void MacroAssembler::round_to(Register reg, int modulus) {
  8158   addptr(reg, modulus - 1);
  8159   andptr(reg, -modulus);
  8162 void MacroAssembler::save_rax(Register tmp) {
  8163   if (tmp == noreg) push(rax);
  8164   else if (tmp != rax) mov(tmp, rax);
  8167 // Write serialization page so VM thread can do a pseudo remote membar.
  8168 // We use the current thread pointer to calculate a thread specific
  8169 // offset to write to within the page. This minimizes bus traffic
  8170 // due to cache line collision.
  8171 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
  8172   movl(tmp, thread);
  8173   shrl(tmp, os::get_serialize_page_shift_count());
  8174   andl(tmp, (os::vm_page_size() - sizeof(int)));
  8176   Address index(noreg, tmp, Address::times_1);
  8177   ExternalAddress page(os::get_memory_serialize_page());
  8179   // Size of store must match masking code above
  8180   movl(as_Address(ArrayAddress(page, index)), tmp);
  8183 // Calls to C land
  8184 //
  8185 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
  8186 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
  8187 // has to be reset to 0. This is required to allow proper stack traversal.
  8188 void MacroAssembler::set_last_Java_frame(Register java_thread,
  8189                                          Register last_java_sp,
  8190                                          Register last_java_fp,
  8191                                          address  last_java_pc) {
  8192   // determine java_thread register
  8193   if (!java_thread->is_valid()) {
  8194     java_thread = rdi;
  8195     get_thread(java_thread);
  8197   // determine last_java_sp register
  8198   if (!last_java_sp->is_valid()) {
  8199     last_java_sp = rsp;
  8202   // last_java_fp is optional
  8204   if (last_java_fp->is_valid()) {
  8205     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
  8208   // last_java_pc is optional
  8210   if (last_java_pc != NULL) {
  8211     lea(Address(java_thread,
  8212                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
  8213         InternalAddress(last_java_pc));
  8216   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  8219 void MacroAssembler::shlptr(Register dst, int imm8) {
  8220   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
  8223 void MacroAssembler::shrptr(Register dst, int imm8) {
  8224   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
  8227 void MacroAssembler::sign_extend_byte(Register reg) {
  8228   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
  8229     movsbl(reg, reg); // movsxb
  8230   } else {
  8231     shll(reg, 24);
  8232     sarl(reg, 24);
  8236 void MacroAssembler::sign_extend_short(Register reg) {
  8237   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  8238     movswl(reg, reg); // movsxw
  8239   } else {
  8240     shll(reg, 16);
  8241     sarl(reg, 16);
  8245 void MacroAssembler::testl(Register dst, AddressLiteral src) {
  8246   assert(reachable(src), "Address should be reachable");
  8247   testl(dst, as_Address(src));
  8250 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
  8251   if (reachable(src)) {
  8252     Assembler::sqrtsd(dst, as_Address(src));
  8253   } else {
  8254     lea(rscratch1, src);
  8255     Assembler::sqrtsd(dst, Address(rscratch1, 0));
  8259 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
  8260   if (reachable(src)) {
  8261     Assembler::sqrtss(dst, as_Address(src));
  8262   } else {
  8263     lea(rscratch1, src);
  8264     Assembler::sqrtss(dst, Address(rscratch1, 0));
  8268 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
  8269   if (reachable(src)) {
  8270     Assembler::subsd(dst, as_Address(src));
  8271   } else {
  8272     lea(rscratch1, src);
  8273     Assembler::subsd(dst, Address(rscratch1, 0));
  8277 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
  8278   if (reachable(src)) {
  8279     Assembler::subss(dst, as_Address(src));
  8280   } else {
  8281     lea(rscratch1, src);
  8282     Assembler::subss(dst, Address(rscratch1, 0));
  8286 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
  8287   if (reachable(src)) {
  8288     Assembler::ucomisd(dst, as_Address(src));
  8289   } else {
  8290     lea(rscratch1, src);
  8291     Assembler::ucomisd(dst, Address(rscratch1, 0));
  8295 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
  8296   if (reachable(src)) {
  8297     Assembler::ucomiss(dst, as_Address(src));
  8298   } else {
  8299     lea(rscratch1, src);
  8300     Assembler::ucomiss(dst, Address(rscratch1, 0));
  8304 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
  8305   // Used in sign-bit flipping with aligned address.
  8306   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  8307   if (reachable(src)) {
  8308     Assembler::xorpd(dst, as_Address(src));
  8309   } else {
  8310     lea(rscratch1, src);
  8311     Assembler::xorpd(dst, Address(rscratch1, 0));
  8315 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
  8316   // Used in sign-bit flipping with aligned address.
  8317   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  8318   if (reachable(src)) {
  8319     Assembler::xorps(dst, as_Address(src));
  8320   } else {
  8321     lea(rscratch1, src);
  8322     Assembler::xorps(dst, Address(rscratch1, 0));
  8326 // AVX 3-operands instructions
  8328 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8329   if (reachable(src)) {
  8330     vaddsd(dst, nds, as_Address(src));
  8331   } else {
  8332     lea(rscratch1, src);
  8333     vaddsd(dst, nds, Address(rscratch1, 0));
  8337 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8338   if (reachable(src)) {
  8339     vaddss(dst, nds, as_Address(src));
  8340   } else {
  8341     lea(rscratch1, src);
  8342     vaddss(dst, nds, Address(rscratch1, 0));
  8346 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  8347   if (reachable(src)) {
  8348     vandpd(dst, nds, as_Address(src), vector256);
  8349   } else {
  8350     lea(rscratch1, src);
  8351     vandpd(dst, nds, Address(rscratch1, 0), vector256);
  8355 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  8356   if (reachable(src)) {
  8357     vandps(dst, nds, as_Address(src), vector256);
  8358   } else {
  8359     lea(rscratch1, src);
  8360     vandps(dst, nds, Address(rscratch1, 0), vector256);
  8364 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8365   if (reachable(src)) {
  8366     vdivsd(dst, nds, as_Address(src));
  8367   } else {
  8368     lea(rscratch1, src);
  8369     vdivsd(dst, nds, Address(rscratch1, 0));
  8373 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8374   if (reachable(src)) {
  8375     vdivss(dst, nds, as_Address(src));
  8376   } else {
  8377     lea(rscratch1, src);
  8378     vdivss(dst, nds, Address(rscratch1, 0));
  8382 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8383   if (reachable(src)) {
  8384     vmulsd(dst, nds, as_Address(src));
  8385   } else {
  8386     lea(rscratch1, src);
  8387     vmulsd(dst, nds, Address(rscratch1, 0));
  8391 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8392   if (reachable(src)) {
  8393     vmulss(dst, nds, as_Address(src));
  8394   } else {
  8395     lea(rscratch1, src);
  8396     vmulss(dst, nds, Address(rscratch1, 0));
  8400 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8401   if (reachable(src)) {
  8402     vsubsd(dst, nds, as_Address(src));
  8403   } else {
  8404     lea(rscratch1, src);
  8405     vsubsd(dst, nds, Address(rscratch1, 0));
  8409 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8410   if (reachable(src)) {
  8411     vsubss(dst, nds, as_Address(src));
  8412   } else {
  8413     lea(rscratch1, src);
  8414     vsubss(dst, nds, Address(rscratch1, 0));
  8418 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  8419   if (reachable(src)) {
  8420     vxorpd(dst, nds, as_Address(src), vector256);
  8421   } else {
  8422     lea(rscratch1, src);
  8423     vxorpd(dst, nds, Address(rscratch1, 0), vector256);
  8427 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  8428   if (reachable(src)) {
  8429     vxorps(dst, nds, as_Address(src), vector256);
  8430   } else {
  8431     lea(rscratch1, src);
  8432     vxorps(dst, nds, Address(rscratch1, 0), vector256);
  8437 //////////////////////////////////////////////////////////////////////////////////
  8438 #ifndef SERIALGC
  8440 void MacroAssembler::g1_write_barrier_pre(Register obj,
  8441                                           Register pre_val,
  8442                                           Register thread,
  8443                                           Register tmp,
  8444                                           bool tosca_live,
  8445                                           bool expand_call) {
  8447   // If expand_call is true then we expand the call_VM_leaf macro
  8448   // directly to skip generating the check by
  8449   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
  8451 #ifdef _LP64
  8452   assert(thread == r15_thread, "must be");
  8453 #endif // _LP64
  8455   Label done;
  8456   Label runtime;
  8458   assert(pre_val != noreg, "check this code");
  8460   if (obj != noreg) {
  8461     assert_different_registers(obj, pre_val, tmp);
  8462     assert(pre_val != rax, "check this code");
  8465   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  8466                                        PtrQueue::byte_offset_of_active()));
  8467   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  8468                                        PtrQueue::byte_offset_of_index()));
  8469   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  8470                                        PtrQueue::byte_offset_of_buf()));
  8473   // Is marking active?
  8474   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  8475     cmpl(in_progress, 0);
  8476   } else {
  8477     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
  8478     cmpb(in_progress, 0);
  8480   jcc(Assembler::equal, done);
  8482   // Do we need to load the previous value?
  8483   if (obj != noreg) {
  8484     load_heap_oop(pre_val, Address(obj, 0));
  8487   // Is the previous value null?
  8488   cmpptr(pre_val, (int32_t) NULL_WORD);
  8489   jcc(Assembler::equal, done);
  8491   // Can we store original value in the thread's buffer?
  8492   // Is index == 0?
  8493   // (The index field is typed as size_t.)
  8495   movptr(tmp, index);                   // tmp := *index_adr
  8496   cmpptr(tmp, 0);                       // tmp == 0?
  8497   jcc(Assembler::equal, runtime);       // If yes, goto runtime
  8499   subptr(tmp, wordSize);                // tmp := tmp - wordSize
  8500   movptr(index, tmp);                   // *index_adr := tmp
  8501   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
  8503   // Record the previous value
  8504   movptr(Address(tmp, 0), pre_val);
  8505   jmp(done);
  8507   bind(runtime);
  8508   // save the live input values
  8509   if(tosca_live) push(rax);
  8511   if (obj != noreg && obj != rax)
  8512     push(obj);
  8514   if (pre_val != rax)
  8515     push(pre_val);
  8517   // Calling the runtime using the regular call_VM_leaf mechanism generates
  8518   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
  8519   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
  8520   //
  8521   // If we care generating the pre-barrier without a frame (e.g. in the
  8522   // intrinsified Reference.get() routine) then ebp might be pointing to
  8523   // the caller frame and so this check will most likely fail at runtime.
  8524   //
  8525   // Expanding the call directly bypasses the generation of the check.
  8526   // So when we do not have have a full interpreter frame on the stack
  8527   // expand_call should be passed true.
  8529   NOT_LP64( push(thread); )
  8531   if (expand_call) {
  8532     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
  8533     pass_arg1(this, thread);
  8534     pass_arg0(this, pre_val);
  8535     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
  8536   } else {
  8537     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
  8540   NOT_LP64( pop(thread); )
  8542   // save the live input values
  8543   if (pre_val != rax)
  8544     pop(pre_val);
  8546   if (obj != noreg && obj != rax)
  8547     pop(obj);
  8549   if(tosca_live) pop(rax);
  8551   bind(done);
  8554 void MacroAssembler::g1_write_barrier_post(Register store_addr,
  8555                                            Register new_val,
  8556                                            Register thread,
  8557                                            Register tmp,
  8558                                            Register tmp2) {
  8559 #ifdef _LP64
  8560   assert(thread == r15_thread, "must be");
  8561 #endif // _LP64
  8563   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  8564                                        PtrQueue::byte_offset_of_index()));
  8565   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  8566                                        PtrQueue::byte_offset_of_buf()));
  8568   BarrierSet* bs = Universe::heap()->barrier_set();
  8569   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  8570   Label done;
  8571   Label runtime;
  8573   // Does store cross heap regions?
  8575   movptr(tmp, store_addr);
  8576   xorptr(tmp, new_val);
  8577   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
  8578   jcc(Assembler::equal, done);
  8580   // crosses regions, storing NULL?
  8582   cmpptr(new_val, (int32_t) NULL_WORD);
  8583   jcc(Assembler::equal, done);
  8585   // storing region crossing non-NULL, is card already dirty?
  8587   ExternalAddress cardtable((address) ct->byte_map_base);
  8588   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  8589 #ifdef _LP64
  8590   const Register card_addr = tmp;
  8592   movq(card_addr, store_addr);
  8593   shrq(card_addr, CardTableModRefBS::card_shift);
  8595   lea(tmp2, cardtable);
  8597   // get the address of the card
  8598   addq(card_addr, tmp2);
  8599 #else
  8600   const Register card_index = tmp;
  8602   movl(card_index, store_addr);
  8603   shrl(card_index, CardTableModRefBS::card_shift);
  8605   Address index(noreg, card_index, Address::times_1);
  8606   const Register card_addr = tmp;
  8607   lea(card_addr, as_Address(ArrayAddress(cardtable, index)));
  8608 #endif
  8609   cmpb(Address(card_addr, 0), 0);
  8610   jcc(Assembler::equal, done);
  8612   // storing a region crossing, non-NULL oop, card is clean.
  8613   // dirty card and log.
  8615   movb(Address(card_addr, 0), 0);
  8617   cmpl(queue_index, 0);
  8618   jcc(Assembler::equal, runtime);
  8619   subl(queue_index, wordSize);
  8620   movptr(tmp2, buffer);
  8621 #ifdef _LP64
  8622   movslq(rscratch1, queue_index);
  8623   addq(tmp2, rscratch1);
  8624   movq(Address(tmp2, 0), card_addr);
  8625 #else
  8626   addl(tmp2, queue_index);
  8627   movl(Address(tmp2, 0), card_index);
  8628 #endif
  8629   jmp(done);
  8631   bind(runtime);
  8632   // save the live input values
  8633   push(store_addr);
  8634   push(new_val);
  8635 #ifdef _LP64
  8636   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
  8637 #else
  8638   push(thread);
  8639   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  8640   pop(thread);
  8641 #endif
  8642   pop(new_val);
  8643   pop(store_addr);
  8645   bind(done);
  8648 #endif // SERIALGC
  8649 //////////////////////////////////////////////////////////////////////////////////
  8652 void MacroAssembler::store_check(Register obj) {
  8653   // Does a store check for the oop in register obj. The content of
  8654   // register obj is destroyed afterwards.
  8655   store_check_part_1(obj);
  8656   store_check_part_2(obj);
  8659 void MacroAssembler::store_check(Register obj, Address dst) {
  8660   store_check(obj);
  8664 // split the store check operation so that other instructions can be scheduled inbetween
  8665 void MacroAssembler::store_check_part_1(Register obj) {
  8666   BarrierSet* bs = Universe::heap()->barrier_set();
  8667   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  8668   shrptr(obj, CardTableModRefBS::card_shift);
  8671 void MacroAssembler::store_check_part_2(Register obj) {
  8672   BarrierSet* bs = Universe::heap()->barrier_set();
  8673   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  8674   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  8675   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  8677   // The calculation for byte_map_base is as follows:
  8678   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
  8679   // So this essentially converts an address to a displacement and
  8680   // it will never need to be relocated. On 64bit however the value may be too
  8681   // large for a 32bit displacement
  8683   intptr_t disp = (intptr_t) ct->byte_map_base;
  8684   if (is_simm32(disp)) {
  8685     Address cardtable(noreg, obj, Address::times_1, disp);
  8686     movb(cardtable, 0);
  8687   } else {
  8688     // By doing it as an ExternalAddress disp could be converted to a rip-relative
  8689     // displacement and done in a single instruction given favorable mapping and
  8690     // a smarter version of as_Address. Worst case it is two instructions which
  8691     // is no worse off then loading disp into a register and doing as a simple
  8692     // Address() as above.
  8693     // We can't do as ExternalAddress as the only style since if disp == 0 we'll
  8694     // assert since NULL isn't acceptable in a reloci (see 6644928). In any case
  8695     // in some cases we'll get a single instruction version.
  8697     ExternalAddress cardtable((address)disp);
  8698     Address index(noreg, obj, Address::times_1);
  8699     movb(as_Address(ArrayAddress(cardtable, index)), 0);
  8703 void MacroAssembler::subptr(Register dst, int32_t imm32) {
  8704   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
  8707 // Force generation of a 4 byte immediate value even if it fits into 8bit
  8708 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
  8709   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
  8712 void MacroAssembler::subptr(Register dst, Register src) {
  8713   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
  8716 // C++ bool manipulation
  8717 void MacroAssembler::testbool(Register dst) {
  8718   if(sizeof(bool) == 1)
  8719     testb(dst, 0xff);
  8720   else if(sizeof(bool) == 2) {
  8721     // testw implementation needed for two byte bools
  8722     ShouldNotReachHere();
  8723   } else if(sizeof(bool) == 4)
  8724     testl(dst, dst);
  8725   else
  8726     // unsupported
  8727     ShouldNotReachHere();
  8730 void MacroAssembler::testptr(Register dst, Register src) {
  8731   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
  8734 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
  8735 void MacroAssembler::tlab_allocate(Register obj,
  8736                                    Register var_size_in_bytes,
  8737                                    int con_size_in_bytes,
  8738                                    Register t1,
  8739                                    Register t2,
  8740                                    Label& slow_case) {
  8741   assert_different_registers(obj, t1, t2);
  8742   assert_different_registers(obj, var_size_in_bytes, t1);
  8743   Register end = t2;
  8744   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
  8746   verify_tlab();
  8748   NOT_LP64(get_thread(thread));
  8750   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
  8751   if (var_size_in_bytes == noreg) {
  8752     lea(end, Address(obj, con_size_in_bytes));
  8753   } else {
  8754     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  8756   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
  8757   jcc(Assembler::above, slow_case);
  8759   // update the tlab top pointer
  8760   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
  8762   // recover var_size_in_bytes if necessary
  8763   if (var_size_in_bytes == end) {
  8764     subptr(var_size_in_bytes, obj);
  8766   verify_tlab();
  8769 // Preserves rbx, and rdx.
  8770 Register MacroAssembler::tlab_refill(Label& retry,
  8771                                      Label& try_eden,
  8772                                      Label& slow_case) {
  8773   Register top = rax;
  8774   Register t1  = rcx;
  8775   Register t2  = rsi;
  8776   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
  8777   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
  8778   Label do_refill, discard_tlab;
  8780   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  8781     // No allocation in the shared eden.
  8782     jmp(slow_case);
  8785   NOT_LP64(get_thread(thread_reg));
  8787   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  8788   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  8790   // calculate amount of free space
  8791   subptr(t1, top);
  8792   shrptr(t1, LogHeapWordSize);
  8794   // Retain tlab and allocate object in shared space if
  8795   // the amount free in the tlab is too large to discard.
  8796   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
  8797   jcc(Assembler::lessEqual, discard_tlab);
  8799   // Retain
  8800   // %%% yuck as movptr...
  8801   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
  8802   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
  8803   if (TLABStats) {
  8804     // increment number of slow_allocations
  8805     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
  8807   jmp(try_eden);
  8809   bind(discard_tlab);
  8810   if (TLABStats) {
  8811     // increment number of refills
  8812     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
  8813     // accumulate wastage -- t1 is amount free in tlab
  8814     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
  8817   // if tlab is currently allocated (top or end != null) then
  8818   // fill [top, end + alignment_reserve) with array object
  8819   testptr(top, top);
  8820   jcc(Assembler::zero, do_refill);
  8822   // set up the mark word
  8823   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
  8824   // set the length to the remaining space
  8825   subptr(t1, typeArrayOopDesc::header_size(T_INT));
  8826   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
  8827   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
  8828   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
  8829   // set klass to intArrayKlass
  8830   // dubious reloc why not an oop reloc?
  8831   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
  8832   // store klass last.  concurrent gcs assumes klass length is valid if
  8833   // klass field is not null.
  8834   store_klass(top, t1);
  8836   movptr(t1, top);
  8837   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  8838   incr_allocated_bytes(thread_reg, t1, 0);
  8840   // refill the tlab with an eden allocation
  8841   bind(do_refill);
  8842   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  8843   shlptr(t1, LogHeapWordSize);
  8844   // allocate new tlab, address returned in top
  8845   eden_allocate(top, t1, 0, t2, slow_case);
  8847   // Check that t1 was preserved in eden_allocate.
  8848 #ifdef ASSERT
  8849   if (UseTLAB) {
  8850     Label ok;
  8851     Register tsize = rsi;
  8852     assert_different_registers(tsize, thread_reg, t1);
  8853     push(tsize);
  8854     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  8855     shlptr(tsize, LogHeapWordSize);
  8856     cmpptr(t1, tsize);
  8857     jcc(Assembler::equal, ok);
  8858     STOP("assert(t1 != tlab size)");
  8859     should_not_reach_here();
  8861     bind(ok);
  8862     pop(tsize);
  8864 #endif
  8865   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
  8866   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
  8867   addptr(top, t1);
  8868   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
  8869   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
  8870   verify_tlab();
  8871   jmp(retry);
  8873   return thread_reg; // for use by caller
  8876 void MacroAssembler::incr_allocated_bytes(Register thread,
  8877                                           Register var_size_in_bytes,
  8878                                           int con_size_in_bytes,
  8879                                           Register t1) {
  8880   if (!thread->is_valid()) {
  8881 #ifdef _LP64
  8882     thread = r15_thread;
  8883 #else
  8884     assert(t1->is_valid(), "need temp reg");
  8885     thread = t1;
  8886     get_thread(thread);
  8887 #endif
  8890 #ifdef _LP64
  8891   if (var_size_in_bytes->is_valid()) {
  8892     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  8893   } else {
  8894     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  8896 #else
  8897   if (var_size_in_bytes->is_valid()) {
  8898     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  8899   } else {
  8900     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  8902   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
  8903 #endif
  8906 void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
  8907   pusha();
  8909   // if we are coming from c1, xmm registers may be live
  8910   if (UseSSE >= 1) {
  8911     subptr(rsp, sizeof(jdouble)* LP64_ONLY(16) NOT_LP64(8));
  8913   int off = 0;
  8914   if (UseSSE == 1)  {
  8915     movflt(Address(rsp,off++*sizeof(jdouble)),xmm0);
  8916     movflt(Address(rsp,off++*sizeof(jdouble)),xmm1);
  8917     movflt(Address(rsp,off++*sizeof(jdouble)),xmm2);
  8918     movflt(Address(rsp,off++*sizeof(jdouble)),xmm3);
  8919     movflt(Address(rsp,off++*sizeof(jdouble)),xmm4);
  8920     movflt(Address(rsp,off++*sizeof(jdouble)),xmm5);
  8921     movflt(Address(rsp,off++*sizeof(jdouble)),xmm6);
  8922     movflt(Address(rsp,off++*sizeof(jdouble)),xmm7);
  8923   } else if (UseSSE >= 2)  {
  8924     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm0);
  8925     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm1);
  8926     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm2);
  8927     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm3);
  8928     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm4);
  8929     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm5);
  8930     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm6);
  8931     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm7);
  8932 #ifdef _LP64
  8933     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm8);
  8934     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm9);
  8935     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm10);
  8936     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm11);
  8937     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm12);
  8938     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm13);
  8939     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm14);
  8940     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm15);
  8941 #endif
  8944   // Preserve registers across runtime call
  8945   int incoming_argument_and_return_value_offset = -1;
  8946   if (num_fpu_regs_in_use > 1) {
  8947     // Must preserve all other FPU regs (could alternatively convert
  8948     // SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
  8949     // FPU state, but can not trust C compiler)
  8950     NEEDS_CLEANUP;
  8951     // NOTE that in this case we also push the incoming argument(s) to
  8952     // the stack and restore it later; we also use this stack slot to
  8953     // hold the return value from dsin, dcos etc.
  8954     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  8955       subptr(rsp, sizeof(jdouble));
  8956       fstp_d(Address(rsp, 0));
  8958     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
  8959     for (int i = nb_args-1; i >= 0; i--) {
  8960       fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
  8964   subptr(rsp, nb_args*sizeof(jdouble));
  8965   for (int i = 0; i < nb_args; i++) {
  8966     fstp_d(Address(rsp, i*sizeof(jdouble)));
  8969 #ifdef _LP64
  8970   if (nb_args > 0) {
  8971     movdbl(xmm0, Address(rsp, 0));
  8973   if (nb_args > 1) {
  8974     movdbl(xmm1, Address(rsp, sizeof(jdouble)));
  8976   assert(nb_args <= 2, "unsupported number of args");
  8977 #endif // _LP64
  8979   // NOTE: we must not use call_VM_leaf here because that requires a
  8980   // complete interpreter frame in debug mode -- same bug as 4387334
  8981   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
  8982   // do proper 64bit abi
  8984   NEEDS_CLEANUP;
  8985   // Need to add stack banging before this runtime call if it needs to
  8986   // be taken; however, there is no generic stack banging routine at
  8987   // the MacroAssembler level
  8989   MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
  8991 #ifdef _LP64
  8992   movsd(Address(rsp, 0), xmm0);
  8993   fld_d(Address(rsp, 0));
  8994 #endif // _LP64
  8995   addptr(rsp, sizeof(jdouble) * nb_args);
  8996   if (num_fpu_regs_in_use > 1) {
  8997     // Must save return value to stack and then restore entire FPU
  8998     // stack except incoming arguments
  8999     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
  9000     for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
  9001       fld_d(Address(rsp, 0));
  9002       addptr(rsp, sizeof(jdouble));
  9004     fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
  9005     addptr(rsp, sizeof(jdouble) * nb_args);
  9008   off = 0;
  9009   if (UseSSE == 1)  {
  9010     movflt(xmm0, Address(rsp,off++*sizeof(jdouble)));
  9011     movflt(xmm1, Address(rsp,off++*sizeof(jdouble)));
  9012     movflt(xmm2, Address(rsp,off++*sizeof(jdouble)));
  9013     movflt(xmm3, Address(rsp,off++*sizeof(jdouble)));
  9014     movflt(xmm4, Address(rsp,off++*sizeof(jdouble)));
  9015     movflt(xmm5, Address(rsp,off++*sizeof(jdouble)));
  9016     movflt(xmm6, Address(rsp,off++*sizeof(jdouble)));
  9017     movflt(xmm7, Address(rsp,off++*sizeof(jdouble)));
  9018   } else if (UseSSE >= 2)  {
  9019     movdbl(xmm0, Address(rsp,off++*sizeof(jdouble)));
  9020     movdbl(xmm1, Address(rsp,off++*sizeof(jdouble)));
  9021     movdbl(xmm2, Address(rsp,off++*sizeof(jdouble)));
  9022     movdbl(xmm3, Address(rsp,off++*sizeof(jdouble)));
  9023     movdbl(xmm4, Address(rsp,off++*sizeof(jdouble)));
  9024     movdbl(xmm5, Address(rsp,off++*sizeof(jdouble)));
  9025     movdbl(xmm6, Address(rsp,off++*sizeof(jdouble)));
  9026     movdbl(xmm7, Address(rsp,off++*sizeof(jdouble)));
  9027 #ifdef _LP64
  9028     movdbl(xmm8, Address(rsp,off++*sizeof(jdouble)));
  9029     movdbl(xmm9, Address(rsp,off++*sizeof(jdouble)));
  9030     movdbl(xmm10, Address(rsp,off++*sizeof(jdouble)));
  9031     movdbl(xmm11, Address(rsp,off++*sizeof(jdouble)));
  9032     movdbl(xmm12, Address(rsp,off++*sizeof(jdouble)));
  9033     movdbl(xmm13, Address(rsp,off++*sizeof(jdouble)));
  9034     movdbl(xmm14, Address(rsp,off++*sizeof(jdouble)));
  9035     movdbl(xmm15, Address(rsp,off++*sizeof(jdouble)));
  9036 #endif
  9038   if (UseSSE >= 1) {
  9039     addptr(rsp, sizeof(jdouble)* LP64_ONLY(16) NOT_LP64(8));
  9041   popa();
  9044 static const double     pi_4 =  0.7853981633974483;
  9046 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
  9047   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
  9048   // was attempted in this code; unfortunately it appears that the
  9049   // switch to 80-bit precision and back causes this to be
  9050   // unprofitable compared with simply performing a runtime call if
  9051   // the argument is out of the (-pi/4, pi/4) range.
  9053   Register tmp = noreg;
  9054   if (!VM_Version::supports_cmov()) {
  9055     // fcmp needs a temporary so preserve rbx,
  9056     tmp = rbx;
  9057     push(tmp);
  9060   Label slow_case, done;
  9062   ExternalAddress pi4_adr = (address)&pi_4;
  9063   if (reachable(pi4_adr)) {
  9064     // x ?<= pi/4
  9065     fld_d(pi4_adr);
  9066     fld_s(1);                // Stack:  X  PI/4  X
  9067     fabs();                  // Stack: |X| PI/4  X
  9068     fcmp(tmp);
  9069     jcc(Assembler::above, slow_case);
  9071     // fastest case: -pi/4 <= x <= pi/4
  9072     switch(trig) {
  9073     case 's':
  9074       fsin();
  9075       break;
  9076     case 'c':
  9077       fcos();
  9078       break;
  9079     case 't':
  9080       ftan();
  9081       break;
  9082     default:
  9083       assert(false, "bad intrinsic");
  9084       break;
  9086     jmp(done);
  9089   // slow case: runtime call
  9090   bind(slow_case);
  9092   switch(trig) {
  9093   case 's':
  9095       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
  9097     break;
  9098   case 'c':
  9100       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
  9102     break;
  9103   case 't':
  9105       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
  9107     break;
  9108   default:
  9109     assert(false, "bad intrinsic");
  9110     break;
  9113   // Come here with result in F-TOS
  9114   bind(done);
  9116   if (tmp != noreg) {
  9117     pop(tmp);
  9122 // Look up the method for a megamorphic invokeinterface call.
  9123 // The target method is determined by <intf_klass, itable_index>.
  9124 // The receiver klass is in recv_klass.
  9125 // On success, the result will be in method_result, and execution falls through.
  9126 // On failure, execution transfers to the given label.
  9127 void MacroAssembler::lookup_interface_method(Register recv_klass,
  9128                                              Register intf_klass,
  9129                                              RegisterOrConstant itable_index,
  9130                                              Register method_result,
  9131                                              Register scan_temp,
  9132                                              Label& L_no_such_interface) {
  9133   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  9134   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  9135          "caller must use same register for non-constant itable index as for method");
  9137   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  9138   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
  9139   int itentry_off = itableMethodEntry::method_offset_in_bytes();
  9140   int scan_step   = itableOffsetEntry::size() * wordSize;
  9141   int vte_size    = vtableEntry::size() * wordSize;
  9142   Address::ScaleFactor times_vte_scale = Address::times_ptr;
  9143   assert(vte_size == wordSize, "else adjust times_vte_scale");
  9145   movl(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
  9147   // %%% Could store the aligned, prescaled offset in the klassoop.
  9148   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
  9149   if (HeapWordsPerLong > 1) {
  9150     // Round up to align_object_offset boundary
  9151     // see code for InstanceKlass::start_of_itable!
  9152     round_to(scan_temp, BytesPerLong);
  9155   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  9156   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  9157   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
  9159   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  9160   //   if (scan->interface() == intf) {
  9161   //     result = (klass + scan->offset() + itable_index);
  9162   //   }
  9163   // }
  9164   Label search, found_method;
  9166   for (int peel = 1; peel >= 0; peel--) {
  9167     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
  9168     cmpptr(intf_klass, method_result);
  9170     if (peel) {
  9171       jccb(Assembler::equal, found_method);
  9172     } else {
  9173       jccb(Assembler::notEqual, search);
  9174       // (invert the test to fall through to found_method...)
  9177     if (!peel)  break;
  9179     bind(search);
  9181     // Check that the previous entry is non-null.  A null entry means that
  9182     // the receiver class doesn't implement the interface, and wasn't the
  9183     // same as when the caller was compiled.
  9184     testptr(method_result, method_result);
  9185     jcc(Assembler::zero, L_no_such_interface);
  9186     addptr(scan_temp, scan_step);
  9189   bind(found_method);
  9191   // Got a hit.
  9192   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
  9193   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
  9197 // virtual method calling
  9198 void MacroAssembler::lookup_virtual_method(Register recv_klass,
  9199                                            RegisterOrConstant vtable_index,
  9200                                            Register method_result) {
  9201   const int base = InstanceKlass::vtable_start_offset() * wordSize;
  9202   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
  9203   Address vtable_entry_addr(recv_klass,
  9204                             vtable_index, Address::times_ptr,
  9205                             base + vtableEntry::method_offset_in_bytes());
  9206   movptr(method_result, vtable_entry_addr);
  9210 void MacroAssembler::check_klass_subtype(Register sub_klass,
  9211                            Register super_klass,
  9212                            Register temp_reg,
  9213                            Label& L_success) {
  9214   Label L_failure;
  9215   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
  9216   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
  9217   bind(L_failure);
  9221 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  9222                                                    Register super_klass,
  9223                                                    Register temp_reg,
  9224                                                    Label* L_success,
  9225                                                    Label* L_failure,
  9226                                                    Label* L_slow_path,
  9227                                         RegisterOrConstant super_check_offset) {
  9228   assert_different_registers(sub_klass, super_klass, temp_reg);
  9229   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
  9230   if (super_check_offset.is_register()) {
  9231     assert_different_registers(sub_klass, super_klass,
  9232                                super_check_offset.as_register());
  9233   } else if (must_load_sco) {
  9234     assert(temp_reg != noreg, "supply either a temp or a register offset");
  9237   Label L_fallthrough;
  9238   int label_nulls = 0;
  9239   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  9240   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  9241   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  9242   assert(label_nulls <= 1, "at most one NULL in the batch");
  9244   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  9245   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  9246   Address super_check_offset_addr(super_klass, sco_offset);
  9248   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
  9249   // range of a jccb.  If this routine grows larger, reconsider at
  9250   // least some of these.
  9251 #define local_jcc(assembler_cond, label)                                \
  9252   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
  9253   else                             jcc( assembler_cond, label) /*omit semi*/
  9255   // Hacked jmp, which may only be used just before L_fallthrough.
  9256 #define final_jmp(label)                                                \
  9257   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
  9258   else                            jmp(label)                /*omit semi*/
  9260   // If the pointers are equal, we are done (e.g., String[] elements).
  9261   // This self-check enables sharing of secondary supertype arrays among
  9262   // non-primary types such as array-of-interface.  Otherwise, each such
  9263   // type would need its own customized SSA.
  9264   // We move this check to the front of the fast path because many
  9265   // type checks are in fact trivially successful in this manner,
  9266   // so we get a nicely predicted branch right at the start of the check.
  9267   cmpptr(sub_klass, super_klass);
  9268   local_jcc(Assembler::equal, *L_success);
  9270   // Check the supertype display:
  9271   if (must_load_sco) {
  9272     // Positive movl does right thing on LP64.
  9273     movl(temp_reg, super_check_offset_addr);
  9274     super_check_offset = RegisterOrConstant(temp_reg);
  9276   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
  9277   cmpptr(super_klass, super_check_addr); // load displayed supertype
  9279   // This check has worked decisively for primary supers.
  9280   // Secondary supers are sought in the super_cache ('super_cache_addr').
  9281   // (Secondary supers are interfaces and very deeply nested subtypes.)
  9282   // This works in the same check above because of a tricky aliasing
  9283   // between the super_cache and the primary super display elements.
  9284   // (The 'super_check_addr' can address either, as the case requires.)
  9285   // Note that the cache is updated below if it does not help us find
  9286   // what we need immediately.
  9287   // So if it was a primary super, we can just fail immediately.
  9288   // Otherwise, it's the slow path for us (no success at this point).
  9290   if (super_check_offset.is_register()) {
  9291     local_jcc(Assembler::equal, *L_success);
  9292     cmpl(super_check_offset.as_register(), sc_offset);
  9293     if (L_failure == &L_fallthrough) {
  9294       local_jcc(Assembler::equal, *L_slow_path);
  9295     } else {
  9296       local_jcc(Assembler::notEqual, *L_failure);
  9297       final_jmp(*L_slow_path);
  9299   } else if (super_check_offset.as_constant() == sc_offset) {
  9300     // Need a slow path; fast failure is impossible.
  9301     if (L_slow_path == &L_fallthrough) {
  9302       local_jcc(Assembler::equal, *L_success);
  9303     } else {
  9304       local_jcc(Assembler::notEqual, *L_slow_path);
  9305       final_jmp(*L_success);
  9307   } else {
  9308     // No slow path; it's a fast decision.
  9309     if (L_failure == &L_fallthrough) {
  9310       local_jcc(Assembler::equal, *L_success);
  9311     } else {
  9312       local_jcc(Assembler::notEqual, *L_failure);
  9313       final_jmp(*L_success);
  9317   bind(L_fallthrough);
  9319 #undef local_jcc
  9320 #undef final_jmp
  9324 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  9325                                                    Register super_klass,
  9326                                                    Register temp_reg,
  9327                                                    Register temp2_reg,
  9328                                                    Label* L_success,
  9329                                                    Label* L_failure,
  9330                                                    bool set_cond_codes) {
  9331   assert_different_registers(sub_klass, super_klass, temp_reg);
  9332   if (temp2_reg != noreg)
  9333     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
  9334 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
  9336   Label L_fallthrough;
  9337   int label_nulls = 0;
  9338   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  9339   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  9340   assert(label_nulls <= 1, "at most one NULL in the batch");
  9342   // a couple of useful fields in sub_klass:
  9343   int ss_offset = in_bytes(Klass::secondary_supers_offset());
  9344   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  9345   Address secondary_supers_addr(sub_klass, ss_offset);
  9346   Address super_cache_addr(     sub_klass, sc_offset);
  9348   // Do a linear scan of the secondary super-klass chain.
  9349   // This code is rarely used, so simplicity is a virtue here.
  9350   // The repne_scan instruction uses fixed registers, which we must spill.
  9351   // Don't worry too much about pre-existing connections with the input regs.
  9353   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
  9354   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
  9356   // Get super_klass value into rax (even if it was in rdi or rcx).
  9357   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
  9358   if (super_klass != rax || UseCompressedOops) {
  9359     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
  9360     mov(rax, super_klass);
  9362   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
  9363   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
  9365 #ifndef PRODUCT
  9366   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  9367   ExternalAddress pst_counter_addr((address) pst_counter);
  9368   NOT_LP64(  incrementl(pst_counter_addr) );
  9369   LP64_ONLY( lea(rcx, pst_counter_addr) );
  9370   LP64_ONLY( incrementl(Address(rcx, 0)) );
  9371 #endif //PRODUCT
  9373   // We will consult the secondary-super array.
  9374   movptr(rdi, secondary_supers_addr);
  9375   // Load the array length.  (Positive movl does right thing on LP64.)
  9376   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
  9377   // Skip to start of data.
  9378   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
  9380   // Scan RCX words at [RDI] for an occurrence of RAX.
  9381   // Set NZ/Z based on last compare.
  9382   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
  9383   // not change flags (only scas instruction which is repeated sets flags).
  9384   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
  9386     testptr(rax,rax); // Set Z = 0
  9387     repne_scan();
  9389   // Unspill the temp. registers:
  9390   if (pushed_rdi)  pop(rdi);
  9391   if (pushed_rcx)  pop(rcx);
  9392   if (pushed_rax)  pop(rax);
  9394   if (set_cond_codes) {
  9395     // Special hack for the AD files:  rdi is guaranteed non-zero.
  9396     assert(!pushed_rdi, "rdi must be left non-NULL");
  9397     // Also, the condition codes are properly set Z/NZ on succeed/failure.
  9400   if (L_failure == &L_fallthrough)
  9401         jccb(Assembler::notEqual, *L_failure);
  9402   else  jcc(Assembler::notEqual, *L_failure);
  9404   // Success.  Cache the super we found and proceed in triumph.
  9405   movptr(super_cache_addr, super_klass);
  9407   if (L_success != &L_fallthrough) {
  9408     jmp(*L_success);
  9411 #undef IS_A_TEMP
  9413   bind(L_fallthrough);
  9417 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
  9418   if (VM_Version::supports_cmov()) {
  9419     cmovl(cc, dst, src);
  9420   } else {
  9421     Label L;
  9422     jccb(negate_condition(cc), L);
  9423     movl(dst, src);
  9424     bind(L);
  9428 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
  9429   if (VM_Version::supports_cmov()) {
  9430     cmovl(cc, dst, src);
  9431   } else {
  9432     Label L;
  9433     jccb(negate_condition(cc), L);
  9434     movl(dst, src);
  9435     bind(L);
  9439 void MacroAssembler::verify_oop(Register reg, const char* s) {
  9440   if (!VerifyOops) return;
  9442   // Pass register number to verify_oop_subroutine
  9443   char* b = new char[strlen(s) + 50];
  9444   sprintf(b, "verify_oop: %s: %s", reg->name(), s);
  9445   BLOCK_COMMENT("verify_oop {");
  9446 #ifdef _LP64
  9447   push(rscratch1);                    // save r10, trashed by movptr()
  9448 #endif
  9449   push(rax);                          // save rax,
  9450   push(reg);                          // pass register argument
  9451   ExternalAddress buffer((address) b);
  9452   // avoid using pushptr, as it modifies scratch registers
  9453   // and our contract is not to modify anything
  9454   movptr(rax, buffer.addr());
  9455   push(rax);
  9456   // call indirectly to solve generation ordering problem
  9457   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  9458   call(rax);
  9459   // Caller pops the arguments (oop, message) and restores rax, r10
  9460   BLOCK_COMMENT("} verify_oop");
  9464 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  9465                                                       Register tmp,
  9466                                                       int offset) {
  9467   intptr_t value = *delayed_value_addr;
  9468   if (value != 0)
  9469     return RegisterOrConstant(value + offset);
  9471   // load indirectly to solve generation ordering problem
  9472   movptr(tmp, ExternalAddress((address) delayed_value_addr));
  9474 #ifdef ASSERT
  9475   { Label L;
  9476     testptr(tmp, tmp);
  9477     if (WizardMode) {
  9478       jcc(Assembler::notZero, L);
  9479       char* buf = new char[40];
  9480       sprintf(buf, "DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
  9481       STOP(buf);
  9482     } else {
  9483       jccb(Assembler::notZero, L);
  9484       hlt();
  9486     bind(L);
  9488 #endif
  9490   if (offset != 0)
  9491     addptr(tmp, offset);
  9493   return RegisterOrConstant(tmp);
  9497 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  9498                                          int extra_slot_offset) {
  9499   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  9500   int stackElementSize = Interpreter::stackElementSize;
  9501   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
  9502 #ifdef ASSERT
  9503   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
  9504   assert(offset1 - offset == stackElementSize, "correct arithmetic");
  9505 #endif
  9506   Register             scale_reg    = noreg;
  9507   Address::ScaleFactor scale_factor = Address::no_scale;
  9508   if (arg_slot.is_constant()) {
  9509     offset += arg_slot.as_constant() * stackElementSize;
  9510   } else {
  9511     scale_reg    = arg_slot.as_register();
  9512     scale_factor = Address::times(stackElementSize);
  9514   offset += wordSize;           // return PC is on stack
  9515   return Address(rsp, scale_reg, scale_factor, offset);
  9519 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
  9520   if (!VerifyOops) return;
  9522   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
  9523   // Pass register number to verify_oop_subroutine
  9524   char* b = new char[strlen(s) + 50];
  9525   sprintf(b, "verify_oop_addr: %s", s);
  9527 #ifdef _LP64
  9528   push(rscratch1);                    // save r10, trashed by movptr()
  9529 #endif
  9530   push(rax);                          // save rax,
  9531   // addr may contain rsp so we will have to adjust it based on the push
  9532   // we just did (and on 64 bit we do two pushes)
  9533   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
  9534   // stores rax into addr which is backwards of what was intended.
  9535   if (addr.uses(rsp)) {
  9536     lea(rax, addr);
  9537     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
  9538   } else {
  9539     pushptr(addr);
  9542   ExternalAddress buffer((address) b);
  9543   // pass msg argument
  9544   // avoid using pushptr, as it modifies scratch registers
  9545   // and our contract is not to modify anything
  9546   movptr(rax, buffer.addr());
  9547   push(rax);
  9549   // call indirectly to solve generation ordering problem
  9550   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  9551   call(rax);
  9552   // Caller pops the arguments (addr, message) and restores rax, r10.
  9555 void MacroAssembler::verify_tlab() {
  9556 #ifdef ASSERT
  9557   if (UseTLAB && VerifyOops) {
  9558     Label next, ok;
  9559     Register t1 = rsi;
  9560     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
  9562     push(t1);
  9563     NOT_LP64(push(thread_reg));
  9564     NOT_LP64(get_thread(thread_reg));
  9566     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  9567     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  9568     jcc(Assembler::aboveEqual, next);
  9569     STOP("assert(top >= start)");
  9570     should_not_reach_here();
  9572     bind(next);
  9573     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  9574     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  9575     jcc(Assembler::aboveEqual, ok);
  9576     STOP("assert(top <= end)");
  9577     should_not_reach_here();
  9579     bind(ok);
  9580     NOT_LP64(pop(thread_reg));
  9581     pop(t1);
  9583 #endif
  9586 class ControlWord {
  9587  public:
  9588   int32_t _value;
  9590   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
  9591   int  precision_control() const       { return  (_value >>  8) & 3      ; }
  9592   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  9593   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  9594   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  9595   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  9596   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  9597   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  9599   void print() const {
  9600     // rounding control
  9601     const char* rc;
  9602     switch (rounding_control()) {
  9603       case 0: rc = "round near"; break;
  9604       case 1: rc = "round down"; break;
  9605       case 2: rc = "round up  "; break;
  9606       case 3: rc = "chop      "; break;
  9607     };
  9608     // precision control
  9609     const char* pc;
  9610     switch (precision_control()) {
  9611       case 0: pc = "24 bits "; break;
  9612       case 1: pc = "reserved"; break;
  9613       case 2: pc = "53 bits "; break;
  9614       case 3: pc = "64 bits "; break;
  9615     };
  9616     // flags
  9617     char f[9];
  9618     f[0] = ' ';
  9619     f[1] = ' ';
  9620     f[2] = (precision   ()) ? 'P' : 'p';
  9621     f[3] = (underflow   ()) ? 'U' : 'u';
  9622     f[4] = (overflow    ()) ? 'O' : 'o';
  9623     f[5] = (zero_divide ()) ? 'Z' : 'z';
  9624     f[6] = (denormalized()) ? 'D' : 'd';
  9625     f[7] = (invalid     ()) ? 'I' : 'i';
  9626     f[8] = '\x0';
  9627     // output
  9628     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
  9631 };
  9633 class StatusWord {
  9634  public:
  9635   int32_t _value;
  9637   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
  9638   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
  9639   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
  9640   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
  9641   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
  9642   int  top() const                     { return  (_value >> 11) & 7      ; }
  9643   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
  9644   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
  9645   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  9646   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  9647   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  9648   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  9649   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  9650   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  9652   void print() const {
  9653     // condition codes
  9654     char c[5];
  9655     c[0] = (C3()) ? '3' : '-';
  9656     c[1] = (C2()) ? '2' : '-';
  9657     c[2] = (C1()) ? '1' : '-';
  9658     c[3] = (C0()) ? '0' : '-';
  9659     c[4] = '\x0';
  9660     // flags
  9661     char f[9];
  9662     f[0] = (error_status()) ? 'E' : '-';
  9663     f[1] = (stack_fault ()) ? 'S' : '-';
  9664     f[2] = (precision   ()) ? 'P' : '-';
  9665     f[3] = (underflow   ()) ? 'U' : '-';
  9666     f[4] = (overflow    ()) ? 'O' : '-';
  9667     f[5] = (zero_divide ()) ? 'Z' : '-';
  9668     f[6] = (denormalized()) ? 'D' : '-';
  9669     f[7] = (invalid     ()) ? 'I' : '-';
  9670     f[8] = '\x0';
  9671     // output
  9672     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
  9675 };
  9677 class TagWord {
  9678  public:
  9679   int32_t _value;
  9681   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
  9683   void print() const {
  9684     printf("%04x", _value & 0xFFFF);
  9687 };
  9689 class FPU_Register {
  9690  public:
  9691   int32_t _m0;
  9692   int32_t _m1;
  9693   int16_t _ex;
  9695   bool is_indefinite() const           {
  9696     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
  9699   void print() const {
  9700     char  sign = (_ex < 0) ? '-' : '+';
  9701     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
  9702     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
  9703   };
  9705 };
  9707 class FPU_State {
  9708  public:
  9709   enum {
  9710     register_size       = 10,
  9711     number_of_registers =  8,
  9712     register_mask       =  7
  9713   };
  9715   ControlWord  _control_word;
  9716   StatusWord   _status_word;
  9717   TagWord      _tag_word;
  9718   int32_t      _error_offset;
  9719   int32_t      _error_selector;
  9720   int32_t      _data_offset;
  9721   int32_t      _data_selector;
  9722   int8_t       _register[register_size * number_of_registers];
  9724   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
  9725   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
  9727   const char* tag_as_string(int tag) const {
  9728     switch (tag) {
  9729       case 0: return "valid";
  9730       case 1: return "zero";
  9731       case 2: return "special";
  9732       case 3: return "empty";
  9734     ShouldNotReachHere();
  9735     return NULL;
  9738   void print() const {
  9739     // print computation registers
  9740     { int t = _status_word.top();
  9741       for (int i = 0; i < number_of_registers; i++) {
  9742         int j = (i - t) & register_mask;
  9743         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
  9744         st(j)->print();
  9745         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
  9748     printf("\n");
  9749     // print control registers
  9750     printf("ctrl = "); _control_word.print(); printf("\n");
  9751     printf("stat = "); _status_word .print(); printf("\n");
  9752     printf("tags = "); _tag_word    .print(); printf("\n");
  9755 };
  9757 class Flag_Register {
  9758  public:
  9759   int32_t _value;
  9761   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
  9762   bool direction() const               { return ((_value >> 10) & 1) != 0; }
  9763   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
  9764   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
  9765   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
  9766   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
  9767   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
  9769   void print() const {
  9770     // flags
  9771     char f[8];
  9772     f[0] = (overflow       ()) ? 'O' : '-';
  9773     f[1] = (direction      ()) ? 'D' : '-';
  9774     f[2] = (sign           ()) ? 'S' : '-';
  9775     f[3] = (zero           ()) ? 'Z' : '-';
  9776     f[4] = (auxiliary_carry()) ? 'A' : '-';
  9777     f[5] = (parity         ()) ? 'P' : '-';
  9778     f[6] = (carry          ()) ? 'C' : '-';
  9779     f[7] = '\x0';
  9780     // output
  9781     printf("%08x  flags = %s", _value, f);
  9784 };
  9786 class IU_Register {
  9787  public:
  9788   int32_t _value;
  9790   void print() const {
  9791     printf("%08x  %11d", _value, _value);
  9794 };
  9796 class IU_State {
  9797  public:
  9798   Flag_Register _eflags;
  9799   IU_Register   _rdi;
  9800   IU_Register   _rsi;
  9801   IU_Register   _rbp;
  9802   IU_Register   _rsp;
  9803   IU_Register   _rbx;
  9804   IU_Register   _rdx;
  9805   IU_Register   _rcx;
  9806   IU_Register   _rax;
  9808   void print() const {
  9809     // computation registers
  9810     printf("rax,  = "); _rax.print(); printf("\n");
  9811     printf("rbx,  = "); _rbx.print(); printf("\n");
  9812     printf("rcx  = "); _rcx.print(); printf("\n");
  9813     printf("rdx  = "); _rdx.print(); printf("\n");
  9814     printf("rdi  = "); _rdi.print(); printf("\n");
  9815     printf("rsi  = "); _rsi.print(); printf("\n");
  9816     printf("rbp,  = "); _rbp.print(); printf("\n");
  9817     printf("rsp  = "); _rsp.print(); printf("\n");
  9818     printf("\n");
  9819     // control registers
  9820     printf("flgs = "); _eflags.print(); printf("\n");
  9822 };
  9825 class CPU_State {
  9826  public:
  9827   FPU_State _fpu_state;
  9828   IU_State  _iu_state;
  9830   void print() const {
  9831     printf("--------------------------------------------------\n");
  9832     _iu_state .print();
  9833     printf("\n");
  9834     _fpu_state.print();
  9835     printf("--------------------------------------------------\n");
  9838 };
  9841 static void _print_CPU_state(CPU_State* state) {
  9842   state->print();
  9843 };
  9846 void MacroAssembler::print_CPU_state() {
  9847   push_CPU_state();
  9848   push(rsp);                // pass CPU state
  9849   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
  9850   addptr(rsp, wordSize);       // discard argument
  9851   pop_CPU_state();
  9855 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
  9856   static int counter = 0;
  9857   FPU_State* fs = &state->_fpu_state;
  9858   counter++;
  9859   // For leaf calls, only verify that the top few elements remain empty.
  9860   // We only need 1 empty at the top for C2 code.
  9861   if( stack_depth < 0 ) {
  9862     if( fs->tag_for_st(7) != 3 ) {
  9863       printf("FPR7 not empty\n");
  9864       state->print();
  9865       assert(false, "error");
  9866       return false;
  9868     return true;                // All other stack states do not matter
  9871   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
  9872          "bad FPU control word");
  9874   // compute stack depth
  9875   int i = 0;
  9876   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
  9877   int d = i;
  9878   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
  9879   // verify findings
  9880   if (i != FPU_State::number_of_registers) {
  9881     // stack not contiguous
  9882     printf("%s: stack not contiguous at ST%d\n", s, i);
  9883     state->print();
  9884     assert(false, "error");
  9885     return false;
  9887   // check if computed stack depth corresponds to expected stack depth
  9888   if (stack_depth < 0) {
  9889     // expected stack depth is -stack_depth or less
  9890     if (d > -stack_depth) {
  9891       // too many elements on the stack
  9892       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
  9893       state->print();
  9894       assert(false, "error");
  9895       return false;
  9897   } else {
  9898     // expected stack depth is stack_depth
  9899     if (d != stack_depth) {
  9900       // wrong stack depth
  9901       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
  9902       state->print();
  9903       assert(false, "error");
  9904       return false;
  9907   // everything is cool
  9908   return true;
  9912 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  9913   if (!VerifyFPU) return;
  9914   push_CPU_state();
  9915   push(rsp);                // pass CPU state
  9916   ExternalAddress msg((address) s);
  9917   // pass message string s
  9918   pushptr(msg.addr());
  9919   push(stack_depth);        // pass stack depth
  9920   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
  9921   addptr(rsp, 3 * wordSize);   // discard arguments
  9922   // check for error
  9923   { Label L;
  9924     testl(rax, rax);
  9925     jcc(Assembler::notZero, L);
  9926     int3();                  // break if error condition
  9927     bind(L);
  9929   pop_CPU_state();
  9932 void MacroAssembler::load_klass(Register dst, Register src) {
  9933 #ifdef _LP64
  9934   if (UseCompressedKlassPointers) {
  9935     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  9936     decode_heap_oop_not_null(dst);
  9937   } else
  9938 #endif
  9939     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  9942 void MacroAssembler::load_prototype_header(Register dst, Register src) {
  9943 #ifdef _LP64
  9944   if (UseCompressedKlassPointers) {
  9945     assert (Universe::heap() != NULL, "java heap should be initialized");
  9946     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  9947     if (Universe::narrow_oop_shift() != 0) {
  9948       assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9949       if (LogMinObjAlignmentInBytes == Address::times_8) {
  9950         movq(dst, Address(r12_heapbase, dst, Address::times_8, Klass::prototype_header_offset()));
  9951       } else {
  9952         // OK to use shift since we don't need to preserve flags.
  9953         shlq(dst, LogMinObjAlignmentInBytes);
  9954         movq(dst, Address(r12_heapbase, dst, Address::times_1, Klass::prototype_header_offset()));
  9956     } else {
  9957       movq(dst, Address(dst, Klass::prototype_header_offset()));
  9959   } else
  9960 #endif
  9962     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  9963     movptr(dst, Address(dst, Klass::prototype_header_offset()));
  9967 void MacroAssembler::store_klass(Register dst, Register src) {
  9968 #ifdef _LP64
  9969   if (UseCompressedKlassPointers) {
  9970     encode_heap_oop_not_null(src);
  9971     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  9972   } else
  9973 #endif
  9974     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  9977 void MacroAssembler::load_heap_oop(Register dst, Address src) {
  9978 #ifdef _LP64
  9979   // FIXME: Must change all places where we try to load the klass.
  9980   if (UseCompressedOops) {
  9981     movl(dst, src);
  9982     decode_heap_oop(dst);
  9983   } else
  9984 #endif
  9985     movptr(dst, src);
  9988 // Doesn't do verfication, generates fixed size code
  9989 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
  9990 #ifdef _LP64
  9991   if (UseCompressedOops) {
  9992     movl(dst, src);
  9993     decode_heap_oop_not_null(dst);
  9994   } else
  9995 #endif
  9996     movptr(dst, src);
  9999 void MacroAssembler::store_heap_oop(Address dst, Register src) {
 10000 #ifdef _LP64
 10001   if (UseCompressedOops) {
 10002     assert(!dst.uses(src), "not enough registers");
 10003     encode_heap_oop(src);
 10004     movl(dst, src);
 10005   } else
 10006 #endif
 10007     movptr(dst, src);
 10010 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
 10011   assert_different_registers(src1, tmp);
 10012 #ifdef _LP64
 10013   if (UseCompressedOops) {
 10014     bool did_push = false;
 10015     if (tmp == noreg) {
 10016       tmp = rax;
 10017       push(tmp);
 10018       did_push = true;
 10019       assert(!src2.uses(rsp), "can't push");
 10021     load_heap_oop(tmp, src2);
 10022     cmpptr(src1, tmp);
 10023     if (did_push)  pop(tmp);
 10024   } else
 10025 #endif
 10026     cmpptr(src1, src2);
 10029 // Used for storing NULLs.
 10030 void MacroAssembler::store_heap_oop_null(Address dst) {
 10031 #ifdef _LP64
 10032   if (UseCompressedOops) {
 10033     movl(dst, (int32_t)NULL_WORD);
 10034   } else {
 10035     movslq(dst, (int32_t)NULL_WORD);
 10037 #else
 10038   movl(dst, (int32_t)NULL_WORD);
 10039 #endif
 10042 #ifdef _LP64
 10043 void MacroAssembler::store_klass_gap(Register dst, Register src) {
 10044   if (UseCompressedKlassPointers) {
 10045     // Store to klass gap in destination
 10046     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
 10050 #ifdef ASSERT
 10051 void MacroAssembler::verify_heapbase(const char* msg) {
 10052   assert (UseCompressedOops, "should be compressed");
 10053   assert (Universe::heap() != NULL, "java heap should be initialized");
 10054   if (CheckCompressedOops) {
 10055     Label ok;
 10056     push(rscratch1); // cmpptr trashes rscratch1
 10057     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
 10058     jcc(Assembler::equal, ok);
 10059     STOP(msg);
 10060     bind(ok);
 10061     pop(rscratch1);
 10064 #endif
 10066 // Algorithm must match oop.inline.hpp encode_heap_oop.
 10067 void MacroAssembler::encode_heap_oop(Register r) {
 10068 #ifdef ASSERT
 10069   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
 10070 #endif
 10071   verify_oop(r, "broken oop in encode_heap_oop");
 10072   if (Universe::narrow_oop_base() == NULL) {
 10073     if (Universe::narrow_oop_shift() != 0) {
 10074       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
 10075       shrq(r, LogMinObjAlignmentInBytes);
 10077     return;
 10079   testq(r, r);
 10080   cmovq(Assembler::equal, r, r12_heapbase);
 10081   subq(r, r12_heapbase);
 10082   shrq(r, LogMinObjAlignmentInBytes);
 10085 void MacroAssembler::encode_heap_oop_not_null(Register r) {
 10086 #ifdef ASSERT
 10087   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
 10088   if (CheckCompressedOops) {
 10089     Label ok;
 10090     testq(r, r);
 10091     jcc(Assembler::notEqual, ok);
 10092     STOP("null oop passed to encode_heap_oop_not_null");
 10093     bind(ok);
 10095 #endif
 10096   verify_oop(r, "broken oop in encode_heap_oop_not_null");
 10097   if (Universe::narrow_oop_base() != NULL) {
 10098     subq(r, r12_heapbase);
 10100   if (Universe::narrow_oop_shift() != 0) {
 10101     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
 10102     shrq(r, LogMinObjAlignmentInBytes);
 10106 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
 10107 #ifdef ASSERT
 10108   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
 10109   if (CheckCompressedOops) {
 10110     Label ok;
 10111     testq(src, src);
 10112     jcc(Assembler::notEqual, ok);
 10113     STOP("null oop passed to encode_heap_oop_not_null2");
 10114     bind(ok);
 10116 #endif
 10117   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
 10118   if (dst != src) {
 10119     movq(dst, src);
 10121   if (Universe::narrow_oop_base() != NULL) {
 10122     subq(dst, r12_heapbase);
 10124   if (Universe::narrow_oop_shift() != 0) {
 10125     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
 10126     shrq(dst, LogMinObjAlignmentInBytes);
 10130 void  MacroAssembler::decode_heap_oop(Register r) {
 10131 #ifdef ASSERT
 10132   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
 10133 #endif
 10134   if (Universe::narrow_oop_base() == NULL) {
 10135     if (Universe::narrow_oop_shift() != 0) {
 10136       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
 10137       shlq(r, LogMinObjAlignmentInBytes);
 10139   } else {
 10140     Label done;
 10141     shlq(r, LogMinObjAlignmentInBytes);
 10142     jccb(Assembler::equal, done);
 10143     addq(r, r12_heapbase);
 10144     bind(done);
 10146   verify_oop(r, "broken oop in decode_heap_oop");
 10149 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
 10150   // Note: it will change flags
 10151   assert (UseCompressedOops, "should only be used for compressed headers");
 10152   assert (Universe::heap() != NULL, "java heap should be initialized");
 10153   // Cannot assert, unverified entry point counts instructions (see .ad file)
 10154   // vtableStubs also counts instructions in pd_code_size_limit.
 10155   // Also do not verify_oop as this is called by verify_oop.
 10156   if (Universe::narrow_oop_shift() != 0) {
 10157     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
 10158     shlq(r, LogMinObjAlignmentInBytes);
 10159     if (Universe::narrow_oop_base() != NULL) {
 10160       addq(r, r12_heapbase);
 10162   } else {
 10163     assert (Universe::narrow_oop_base() == NULL, "sanity");
 10167 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
 10168   // Note: it will change flags
 10169   assert (UseCompressedOops, "should only be used for compressed headers");
 10170   assert (Universe::heap() != NULL, "java heap should be initialized");
 10171   // Cannot assert, unverified entry point counts instructions (see .ad file)
 10172   // vtableStubs also counts instructions in pd_code_size_limit.
 10173   // Also do not verify_oop as this is called by verify_oop.
 10174   if (Universe::narrow_oop_shift() != 0) {
 10175     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
 10176     if (LogMinObjAlignmentInBytes == Address::times_8) {
 10177       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
 10178     } else {
 10179       if (dst != src) {
 10180         movq(dst, src);
 10182       shlq(dst, LogMinObjAlignmentInBytes);
 10183       if (Universe::narrow_oop_base() != NULL) {
 10184         addq(dst, r12_heapbase);
 10187   } else {
 10188     assert (Universe::narrow_oop_base() == NULL, "sanity");
 10189     if (dst != src) {
 10190       movq(dst, src);
 10195 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
 10196   assert (UseCompressedOops, "should only be used for compressed headers");
 10197   assert (Universe::heap() != NULL, "java heap should be initialized");
 10198   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
 10199   int oop_index = oop_recorder()->find_index(obj);
 10200   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 10201   mov_narrow_oop(dst, oop_index, rspec);
 10204 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
 10205   assert (UseCompressedOops, "should only be used for compressed headers");
 10206   assert (Universe::heap() != NULL, "java heap should be initialized");
 10207   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
 10208   int oop_index = oop_recorder()->find_index(obj);
 10209   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 10210   mov_narrow_oop(dst, oop_index, rspec);
 10213 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
 10214   assert (UseCompressedOops, "should only be used for compressed headers");
 10215   assert (Universe::heap() != NULL, "java heap should be initialized");
 10216   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
 10217   int oop_index = oop_recorder()->find_index(obj);
 10218   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 10219   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
 10222 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
 10223   assert (UseCompressedOops, "should only be used for compressed headers");
 10224   assert (Universe::heap() != NULL, "java heap should be initialized");
 10225   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
 10226   int oop_index = oop_recorder()->find_index(obj);
 10227   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 10228   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
 10231 void MacroAssembler::reinit_heapbase() {
 10232   if (UseCompressedOops) {
 10233     movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
 10236 #endif // _LP64
 10239 // C2 compiled method's prolog code.
 10240 void MacroAssembler::verified_entry(int framesize, bool stack_bang, bool fp_mode_24b) {
 10242   // WARNING: Initial instruction MUST be 5 bytes or longer so that
 10243   // NativeJump::patch_verified_entry will be able to patch out the entry
 10244   // code safely. The push to verify stack depth is ok at 5 bytes,
 10245   // the frame allocation can be either 3 or 6 bytes. So if we don't do
 10246   // stack bang then we must use the 6 byte frame allocation even if
 10247   // we have no frame. :-(
 10249   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 10250   // Remove word for return addr
 10251   framesize -= wordSize;
 10253   // Calls to C2R adapters often do not accept exceptional returns.
 10254   // We require that their callers must bang for them.  But be careful, because
 10255   // some VM calls (such as call site linkage) can use several kilobytes of
 10256   // stack.  But the stack safety zone should account for that.
 10257   // See bugs 4446381, 4468289, 4497237.
 10258   if (stack_bang) {
 10259     generate_stack_overflow_check(framesize);
 10261     // We always push rbp, so that on return to interpreter rbp, will be
 10262     // restored correctly and we can correct the stack.
 10263     push(rbp);
 10264     // Remove word for ebp
 10265     framesize -= wordSize;
 10267     // Create frame
 10268     if (framesize) {
 10269       subptr(rsp, framesize);
 10271   } else {
 10272     // Create frame (force generation of a 4 byte immediate value)
 10273     subptr_imm32(rsp, framesize);
 10275     // Save RBP register now.
 10276     framesize -= wordSize;
 10277     movptr(Address(rsp, framesize), rbp);
 10280   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
 10281     framesize -= wordSize;
 10282     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
 10285 #ifndef _LP64
 10286   // If method sets FPU control word do it now
 10287   if (fp_mode_24b) {
 10288     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 10290   if (UseSSE >= 2 && VerifyFPU) {
 10291     verify_FPU(0, "FPU stack must be clean on entry");
 10293 #endif
 10295 #ifdef ASSERT
 10296   if (VerifyStackAtCalls) {
 10297     Label L;
 10298     push(rax);
 10299     mov(rax, rsp);
 10300     andptr(rax, StackAlignmentInBytes-1);
 10301     cmpptr(rax, StackAlignmentInBytes-wordSize);
 10302     pop(rax);
 10303     jcc(Assembler::equal, L);
 10304     STOP("Stack is not properly aligned!");
 10305     bind(L);
 10307 #endif
 10312 // IndexOf for constant substrings with size >= 8 chars
 10313 // which don't need to be loaded through stack.
 10314 void MacroAssembler::string_indexofC8(Register str1, Register str2,
 10315                                       Register cnt1, Register cnt2,
 10316                                       int int_cnt2,  Register result,
 10317                                       XMMRegister vec, Register tmp) {
 10318   ShortBranchVerifier sbv(this);
 10319   assert(UseSSE42Intrinsics, "SSE4.2 is required");
 10321   // This method uses pcmpestri inxtruction with bound registers
 10322   //   inputs:
 10323   //     xmm - substring
 10324   //     rax - substring length (elements count)
 10325   //     mem - scanned string
 10326   //     rdx - string length (elements count)
 10327   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
 10328   //   outputs:
 10329   //     rcx - matched index in string
 10330   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
 10332   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
 10333         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
 10334         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
 10336   // Note, inline_string_indexOf() generates checks:
 10337   // if (substr.count > string.count) return -1;
 10338   // if (substr.count == 0) return 0;
 10339   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
 10341   // Load substring.
 10342   movdqu(vec, Address(str2, 0));
 10343   movl(cnt2, int_cnt2);
 10344   movptr(result, str1); // string addr
 10346   if (int_cnt2 > 8) {
 10347     jmpb(SCAN_TO_SUBSTR);
 10349     // Reload substr for rescan, this code
 10350     // is executed only for large substrings (> 8 chars)
 10351     bind(RELOAD_SUBSTR);
 10352     movdqu(vec, Address(str2, 0));
 10353     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
 10355     bind(RELOAD_STR);
 10356     // We came here after the beginning of the substring was
 10357     // matched but the rest of it was not so we need to search
 10358     // again. Start from the next element after the previous match.
 10360     // cnt2 is number of substring reminding elements and
 10361     // cnt1 is number of string reminding elements when cmp failed.
 10362     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
 10363     subl(cnt1, cnt2);
 10364     addl(cnt1, int_cnt2);
 10365     movl(cnt2, int_cnt2); // Now restore cnt2
 10367     decrementl(cnt1);     // Shift to next element
 10368     cmpl(cnt1, cnt2);
 10369     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
 10371     addptr(result, 2);
 10373   } // (int_cnt2 > 8)
 10375   // Scan string for start of substr in 16-byte vectors
 10376   bind(SCAN_TO_SUBSTR);
 10377   pcmpestri(vec, Address(result, 0), 0x0d);
 10378   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
 10379   subl(cnt1, 8);
 10380   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
 10381   cmpl(cnt1, cnt2);
 10382   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
 10383   addptr(result, 16);
 10384   jmpb(SCAN_TO_SUBSTR);
 10386   // Found a potential substr
 10387   bind(FOUND_CANDIDATE);
 10388   // Matched whole vector if first element matched (tmp(rcx) == 0).
 10389   if (int_cnt2 == 8) {
 10390     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
 10391   } else { // int_cnt2 > 8
 10392     jccb(Assembler::overflow, FOUND_SUBSTR);
 10394   // After pcmpestri tmp(rcx) contains matched element index
 10395   // Compute start addr of substr
 10396   lea(result, Address(result, tmp, Address::times_2));
 10398   // Make sure string is still long enough
 10399   subl(cnt1, tmp);
 10400   cmpl(cnt1, cnt2);
 10401   if (int_cnt2 == 8) {
 10402     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
 10403   } else { // int_cnt2 > 8
 10404     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
 10406   // Left less then substring.
 10408   bind(RET_NOT_FOUND);
 10409   movl(result, -1);
 10410   jmpb(EXIT);
 10412   if (int_cnt2 > 8) {
 10413     // This code is optimized for the case when whole substring
 10414     // is matched if its head is matched.
 10415     bind(MATCH_SUBSTR_HEAD);
 10416     pcmpestri(vec, Address(result, 0), 0x0d);
 10417     // Reload only string if does not match
 10418     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
 10420     Label CONT_SCAN_SUBSTR;
 10421     // Compare the rest of substring (> 8 chars).
 10422     bind(FOUND_SUBSTR);
 10423     // First 8 chars are already matched.
 10424     negptr(cnt2);
 10425     addptr(cnt2, 8);
 10427     bind(SCAN_SUBSTR);
 10428     subl(cnt1, 8);
 10429     cmpl(cnt2, -8); // Do not read beyond substring
 10430     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
 10431     // Back-up strings to avoid reading beyond substring:
 10432     // cnt1 = cnt1 - cnt2 + 8
 10433     addl(cnt1, cnt2); // cnt2 is negative
 10434     addl(cnt1, 8);
 10435     movl(cnt2, 8); negptr(cnt2);
 10436     bind(CONT_SCAN_SUBSTR);
 10437     if (int_cnt2 < (int)G) {
 10438       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
 10439       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
 10440     } else {
 10441       // calculate index in register to avoid integer overflow (int_cnt2*2)
 10442       movl(tmp, int_cnt2);
 10443       addptr(tmp, cnt2);
 10444       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
 10445       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
 10447     // Need to reload strings pointers if not matched whole vector
 10448     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
 10449     addptr(cnt2, 8);
 10450     jcc(Assembler::negative, SCAN_SUBSTR);
 10451     // Fall through if found full substring
 10453   } // (int_cnt2 > 8)
 10455   bind(RET_FOUND);
 10456   // Found result if we matched full small substring.
 10457   // Compute substr offset
 10458   subptr(result, str1);
 10459   shrl(result, 1); // index
 10460   bind(EXIT);
 10462 } // string_indexofC8
 10464 // Small strings are loaded through stack if they cross page boundary.
 10465 void MacroAssembler::string_indexof(Register str1, Register str2,
 10466                                     Register cnt1, Register cnt2,
 10467                                     int int_cnt2,  Register result,
 10468                                     XMMRegister vec, Register tmp) {
 10469   ShortBranchVerifier sbv(this);
 10470   assert(UseSSE42Intrinsics, "SSE4.2 is required");
 10471   //
 10472   // int_cnt2 is length of small (< 8 chars) constant substring
 10473   // or (-1) for non constant substring in which case its length
 10474   // is in cnt2 register.
 10475   //
 10476   // Note, inline_string_indexOf() generates checks:
 10477   // if (substr.count > string.count) return -1;
 10478   // if (substr.count == 0) return 0;
 10479   //
 10480   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
 10482   // This method uses pcmpestri inxtruction with bound registers
 10483   //   inputs:
 10484   //     xmm - substring
 10485   //     rax - substring length (elements count)
 10486   //     mem - scanned string
 10487   //     rdx - string length (elements count)
 10488   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
 10489   //   outputs:
 10490   //     rcx - matched index in string
 10491   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
 10493   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
 10494         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
 10495         FOUND_CANDIDATE;
 10497   { //========================================================
 10498     // We don't know where these strings are located
 10499     // and we can't read beyond them. Load them through stack.
 10500     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
 10502     movptr(tmp, rsp); // save old SP
 10504     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
 10505       if (int_cnt2 == 1) {  // One char
 10506         load_unsigned_short(result, Address(str2, 0));
 10507         movdl(vec, result); // move 32 bits
 10508       } else if (int_cnt2 == 2) { // Two chars
 10509         movdl(vec, Address(str2, 0)); // move 32 bits
 10510       } else if (int_cnt2 == 4) { // Four chars
 10511         movq(vec, Address(str2, 0));  // move 64 bits
 10512       } else { // cnt2 = { 3, 5, 6, 7 }
 10513         // Array header size is 12 bytes in 32-bit VM
 10514         // + 6 bytes for 3 chars == 18 bytes,
 10515         // enough space to load vec and shift.
 10516         assert(HeapWordSize*typeArrayKlass::header_size() >= 12,"sanity");
 10517         movdqu(vec, Address(str2, (int_cnt2*2)-16));
 10518         psrldq(vec, 16-(int_cnt2*2));
 10520     } else { // not constant substring
 10521       cmpl(cnt2, 8);
 10522       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
 10524       // We can read beyond string if srt+16 does not cross page boundary
 10525       // since heaps are aligned and mapped by pages.
 10526       assert(os::vm_page_size() < (int)G, "default page should be small");
 10527       movl(result, str2); // We need only low 32 bits
 10528       andl(result, (os::vm_page_size()-1));
 10529       cmpl(result, (os::vm_page_size()-16));
 10530       jccb(Assembler::belowEqual, CHECK_STR);
 10532       // Move small strings to stack to allow load 16 bytes into vec.
 10533       subptr(rsp, 16);
 10534       int stk_offset = wordSize-2;
 10535       push(cnt2);
 10537       bind(COPY_SUBSTR);
 10538       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
 10539       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
 10540       decrement(cnt2);
 10541       jccb(Assembler::notZero, COPY_SUBSTR);
 10543       pop(cnt2);
 10544       movptr(str2, rsp);  // New substring address
 10545     } // non constant
 10547     bind(CHECK_STR);
 10548     cmpl(cnt1, 8);
 10549     jccb(Assembler::aboveEqual, BIG_STRINGS);
 10551     // Check cross page boundary.
 10552     movl(result, str1); // We need only low 32 bits
 10553     andl(result, (os::vm_page_size()-1));
 10554     cmpl(result, (os::vm_page_size()-16));
 10555     jccb(Assembler::belowEqual, BIG_STRINGS);
 10557     subptr(rsp, 16);
 10558     int stk_offset = -2;
 10559     if (int_cnt2 < 0) { // not constant
 10560       push(cnt2);
 10561       stk_offset += wordSize;
 10563     movl(cnt2, cnt1);
 10565     bind(COPY_STR);
 10566     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
 10567     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
 10568     decrement(cnt2);
 10569     jccb(Assembler::notZero, COPY_STR);
 10571     if (int_cnt2 < 0) { // not constant
 10572       pop(cnt2);
 10574     movptr(str1, rsp);  // New string address
 10576     bind(BIG_STRINGS);
 10577     // Load substring.
 10578     if (int_cnt2 < 0) { // -1
 10579       movdqu(vec, Address(str2, 0));
 10580       push(cnt2);       // substr count
 10581       push(str2);       // substr addr
 10582       push(str1);       // string addr
 10583     } else {
 10584       // Small (< 8 chars) constant substrings are loaded already.
 10585       movl(cnt2, int_cnt2);
 10587     push(tmp);  // original SP
 10589   } // Finished loading
 10591   //========================================================
 10592   // Start search
 10593   //
 10595   movptr(result, str1); // string addr
 10597   if (int_cnt2  < 0) {  // Only for non constant substring
 10598     jmpb(SCAN_TO_SUBSTR);
 10600     // SP saved at sp+0
 10601     // String saved at sp+1*wordSize
 10602     // Substr saved at sp+2*wordSize
 10603     // Substr count saved at sp+3*wordSize
 10605     // Reload substr for rescan, this code
 10606     // is executed only for large substrings (> 8 chars)
 10607     bind(RELOAD_SUBSTR);
 10608     movptr(str2, Address(rsp, 2*wordSize));
 10609     movl(cnt2, Address(rsp, 3*wordSize));
 10610     movdqu(vec, Address(str2, 0));
 10611     // We came here after the beginning of the substring was
 10612     // matched but the rest of it was not so we need to search
 10613     // again. Start from the next element after the previous match.
 10614     subptr(str1, result); // Restore counter
 10615     shrl(str1, 1);
 10616     addl(cnt1, str1);
 10617     decrementl(cnt1);   // Shift to next element
 10618     cmpl(cnt1, cnt2);
 10619     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
 10621     addptr(result, 2);
 10622   } // non constant
 10624   // Scan string for start of substr in 16-byte vectors
 10625   bind(SCAN_TO_SUBSTR);
 10626   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
 10627   pcmpestri(vec, Address(result, 0), 0x0d);
 10628   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
 10629   subl(cnt1, 8);
 10630   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
 10631   cmpl(cnt1, cnt2);
 10632   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
 10633   addptr(result, 16);
 10635   bind(ADJUST_STR);
 10636   cmpl(cnt1, 8); // Do not read beyond string
 10637   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
 10638   // Back-up string to avoid reading beyond string.
 10639   lea(result, Address(result, cnt1, Address::times_2, -16));
 10640   movl(cnt1, 8);
 10641   jmpb(SCAN_TO_SUBSTR);
 10643   // Found a potential substr
 10644   bind(FOUND_CANDIDATE);
 10645   // After pcmpestri tmp(rcx) contains matched element index
 10647   // Make sure string is still long enough
 10648   subl(cnt1, tmp);
 10649   cmpl(cnt1, cnt2);
 10650   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
 10651   // Left less then substring.
 10653   bind(RET_NOT_FOUND);
 10654   movl(result, -1);
 10655   jmpb(CLEANUP);
 10657   bind(FOUND_SUBSTR);
 10658   // Compute start addr of substr
 10659   lea(result, Address(result, tmp, Address::times_2));
 10661   if (int_cnt2 > 0) { // Constant substring
 10662     // Repeat search for small substring (< 8 chars)
 10663     // from new point without reloading substring.
 10664     // Have to check that we don't read beyond string.
 10665     cmpl(tmp, 8-int_cnt2);
 10666     jccb(Assembler::greater, ADJUST_STR);
 10667     // Fall through if matched whole substring.
 10668   } else { // non constant
 10669     assert(int_cnt2 == -1, "should be != 0");
 10671     addl(tmp, cnt2);
 10672     // Found result if we matched whole substring.
 10673     cmpl(tmp, 8);
 10674     jccb(Assembler::lessEqual, RET_FOUND);
 10676     // Repeat search for small substring (<= 8 chars)
 10677     // from new point 'str1' without reloading substring.
 10678     cmpl(cnt2, 8);
 10679     // Have to check that we don't read beyond string.
 10680     jccb(Assembler::lessEqual, ADJUST_STR);
 10682     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
 10683     // Compare the rest of substring (> 8 chars).
 10684     movptr(str1, result);
 10686     cmpl(tmp, cnt2);
 10687     // First 8 chars are already matched.
 10688     jccb(Assembler::equal, CHECK_NEXT);
 10690     bind(SCAN_SUBSTR);
 10691     pcmpestri(vec, Address(str1, 0), 0x0d);
 10692     // Need to reload strings pointers if not matched whole vector
 10693     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
 10695     bind(CHECK_NEXT);
 10696     subl(cnt2, 8);
 10697     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
 10698     addptr(str1, 16);
 10699     addptr(str2, 16);
 10700     subl(cnt1, 8);
 10701     cmpl(cnt2, 8); // Do not read beyond substring
 10702     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
 10703     // Back-up strings to avoid reading beyond substring.
 10704     lea(str2, Address(str2, cnt2, Address::times_2, -16));
 10705     lea(str1, Address(str1, cnt2, Address::times_2, -16));
 10706     subl(cnt1, cnt2);
 10707     movl(cnt2, 8);
 10708     addl(cnt1, 8);
 10709     bind(CONT_SCAN_SUBSTR);
 10710     movdqu(vec, Address(str2, 0));
 10711     jmpb(SCAN_SUBSTR);
 10713     bind(RET_FOUND_LONG);
 10714     movptr(str1, Address(rsp, wordSize));
 10715   } // non constant
 10717   bind(RET_FOUND);
 10718   // Compute substr offset
 10719   subptr(result, str1);
 10720   shrl(result, 1); // index
 10722   bind(CLEANUP);
 10723   pop(rsp); // restore SP
 10725 } // string_indexof
 10727 // Compare strings.
 10728 void MacroAssembler::string_compare(Register str1, Register str2,
 10729                                     Register cnt1, Register cnt2, Register result,
 10730                                     XMMRegister vec1) {
 10731   ShortBranchVerifier sbv(this);
 10732   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
 10734   // Compute the minimum of the string lengths and the
 10735   // difference of the string lengths (stack).
 10736   // Do the conditional move stuff
 10737   movl(result, cnt1);
 10738   subl(cnt1, cnt2);
 10739   push(cnt1);
 10740   cmov32(Assembler::lessEqual, cnt2, result);
 10742   // Is the minimum length zero?
 10743   testl(cnt2, cnt2);
 10744   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
 10746   // Load first characters
 10747   load_unsigned_short(result, Address(str1, 0));
 10748   load_unsigned_short(cnt1, Address(str2, 0));
 10750   // Compare first characters
 10751   subl(result, cnt1);
 10752   jcc(Assembler::notZero,  POP_LABEL);
 10753   decrementl(cnt2);
 10754   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
 10757     // Check after comparing first character to see if strings are equivalent
 10758     Label LSkip2;
 10759     // Check if the strings start at same location
 10760     cmpptr(str1, str2);
 10761     jccb(Assembler::notEqual, LSkip2);
 10763     // Check if the length difference is zero (from stack)
 10764     cmpl(Address(rsp, 0), 0x0);
 10765     jcc(Assembler::equal,  LENGTH_DIFF_LABEL);
 10767     // Strings might not be equivalent
 10768     bind(LSkip2);
 10771   Address::ScaleFactor scale = Address::times_2;
 10772   int stride = 8;
 10774   // Advance to next element
 10775   addptr(str1, 16/stride);
 10776   addptr(str2, 16/stride);
 10778   if (UseSSE42Intrinsics) {
 10779     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
 10780     int pcmpmask = 0x19;
 10781     // Setup to compare 16-byte vectors
 10782     movl(result, cnt2);
 10783     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
 10784     jccb(Assembler::zero, COMPARE_TAIL);
 10786     lea(str1, Address(str1, result, scale));
 10787     lea(str2, Address(str2, result, scale));
 10788     negptr(result);
 10790     // pcmpestri
 10791     //   inputs:
 10792     //     vec1- substring
 10793     //     rax - negative string length (elements count)
 10794     //     mem - scaned string
 10795     //     rdx - string length (elements count)
 10796     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
 10797     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
 10798     //   outputs:
 10799     //     rcx - first mismatched element index
 10800     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
 10802     bind(COMPARE_WIDE_VECTORS);
 10803     movdqu(vec1, Address(str1, result, scale));
 10804     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
 10805     // After pcmpestri cnt1(rcx) contains mismatched element index
 10807     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
 10808     addptr(result, stride);
 10809     subptr(cnt2, stride);
 10810     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
 10812     // compare wide vectors tail
 10813     testl(result, result);
 10814     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
 10816     movl(cnt2, stride);
 10817     movl(result, stride);
 10818     negptr(result);
 10819     movdqu(vec1, Address(str1, result, scale));
 10820     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
 10821     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
 10823     // Mismatched characters in the vectors
 10824     bind(VECTOR_NOT_EQUAL);
 10825     addptr(result, cnt1);
 10826     movptr(cnt2, result);
 10827     load_unsigned_short(result, Address(str1, cnt2, scale));
 10828     load_unsigned_short(cnt1, Address(str2, cnt2, scale));
 10829     subl(result, cnt1);
 10830     jmpb(POP_LABEL);
 10832     bind(COMPARE_TAIL); // limit is zero
 10833     movl(cnt2, result);
 10834     // Fallthru to tail compare
 10837   // Shift str2 and str1 to the end of the arrays, negate min
 10838   lea(str1, Address(str1, cnt2, scale, 0));
 10839   lea(str2, Address(str2, cnt2, scale, 0));
 10840   negptr(cnt2);
 10842   // Compare the rest of the elements
 10843   bind(WHILE_HEAD_LABEL);
 10844   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
 10845   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
 10846   subl(result, cnt1);
 10847   jccb(Assembler::notZero, POP_LABEL);
 10848   increment(cnt2);
 10849   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
 10851   // Strings are equal up to min length.  Return the length difference.
 10852   bind(LENGTH_DIFF_LABEL);
 10853   pop(result);
 10854   jmpb(DONE_LABEL);
 10856   // Discard the stored length difference
 10857   bind(POP_LABEL);
 10858   pop(cnt1);
 10860   // That's it
 10861   bind(DONE_LABEL);
 10864 // Compare char[] arrays aligned to 4 bytes or substrings.
 10865 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
 10866                                         Register limit, Register result, Register chr,
 10867                                         XMMRegister vec1, XMMRegister vec2) {
 10868   ShortBranchVerifier sbv(this);
 10869   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
 10871   int length_offset  = arrayOopDesc::length_offset_in_bytes();
 10872   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
 10874   // Check the input args
 10875   cmpptr(ary1, ary2);
 10876   jcc(Assembler::equal, TRUE_LABEL);
 10878   if (is_array_equ) {
 10879     // Need additional checks for arrays_equals.
 10880     testptr(ary1, ary1);
 10881     jcc(Assembler::zero, FALSE_LABEL);
 10882     testptr(ary2, ary2);
 10883     jcc(Assembler::zero, FALSE_LABEL);
 10885     // Check the lengths
 10886     movl(limit, Address(ary1, length_offset));
 10887     cmpl(limit, Address(ary2, length_offset));
 10888     jcc(Assembler::notEqual, FALSE_LABEL);
 10891   // count == 0
 10892   testl(limit, limit);
 10893   jcc(Assembler::zero, TRUE_LABEL);
 10895   if (is_array_equ) {
 10896     // Load array address
 10897     lea(ary1, Address(ary1, base_offset));
 10898     lea(ary2, Address(ary2, base_offset));
 10901   shll(limit, 1);      // byte count != 0
 10902   movl(result, limit); // copy
 10904   if (UseSSE42Intrinsics) {
 10905     // With SSE4.2, use double quad vector compare
 10906     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
 10908     // Compare 16-byte vectors
 10909     andl(result, 0x0000000e);  //   tail count (in bytes)
 10910     andl(limit, 0xfffffff0);   // vector count (in bytes)
 10911     jccb(Assembler::zero, COMPARE_TAIL);
 10913     lea(ary1, Address(ary1, limit, Address::times_1));
 10914     lea(ary2, Address(ary2, limit, Address::times_1));
 10915     negptr(limit);
 10917     bind(COMPARE_WIDE_VECTORS);
 10918     movdqu(vec1, Address(ary1, limit, Address::times_1));
 10919     movdqu(vec2, Address(ary2, limit, Address::times_1));
 10920     pxor(vec1, vec2);
 10922     ptest(vec1, vec1);
 10923     jccb(Assembler::notZero, FALSE_LABEL);
 10924     addptr(limit, 16);
 10925     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
 10927     testl(result, result);
 10928     jccb(Assembler::zero, TRUE_LABEL);
 10930     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
 10931     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
 10932     pxor(vec1, vec2);
 10934     ptest(vec1, vec1);
 10935     jccb(Assembler::notZero, FALSE_LABEL);
 10936     jmpb(TRUE_LABEL);
 10938     bind(COMPARE_TAIL); // limit is zero
 10939     movl(limit, result);
 10940     // Fallthru to tail compare
 10943   // Compare 4-byte vectors
 10944   andl(limit, 0xfffffffc); // vector count (in bytes)
 10945   jccb(Assembler::zero, COMPARE_CHAR);
 10947   lea(ary1, Address(ary1, limit, Address::times_1));
 10948   lea(ary2, Address(ary2, limit, Address::times_1));
 10949   negptr(limit);
 10951   bind(COMPARE_VECTORS);
 10952   movl(chr, Address(ary1, limit, Address::times_1));
 10953   cmpl(chr, Address(ary2, limit, Address::times_1));
 10954   jccb(Assembler::notEqual, FALSE_LABEL);
 10955   addptr(limit, 4);
 10956   jcc(Assembler::notZero, COMPARE_VECTORS);
 10958   // Compare trailing char (final 2 bytes), if any
 10959   bind(COMPARE_CHAR);
 10960   testl(result, 0x2);   // tail  char
 10961   jccb(Assembler::zero, TRUE_LABEL);
 10962   load_unsigned_short(chr, Address(ary1, 0));
 10963   load_unsigned_short(limit, Address(ary2, 0));
 10964   cmpl(chr, limit);
 10965   jccb(Assembler::notEqual, FALSE_LABEL);
 10967   bind(TRUE_LABEL);
 10968   movl(result, 1);   // return true
 10969   jmpb(DONE);
 10971   bind(FALSE_LABEL);
 10972   xorl(result, result); // return false
 10974   // That's it
 10975   bind(DONE);
 10978 void MacroAssembler::generate_fill(BasicType t, bool aligned,
 10979                                    Register to, Register value, Register count,
 10980                                    Register rtmp, XMMRegister xtmp) {
 10981   ShortBranchVerifier sbv(this);
 10982   assert_different_registers(to, value, count, rtmp);
 10983   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
 10984   Label L_fill_2_bytes, L_fill_4_bytes;
 10986   int shift = -1;
 10987   switch (t) {
 10988     case T_BYTE:
 10989       shift = 2;
 10990       break;
 10991     case T_SHORT:
 10992       shift = 1;
 10993       break;
 10994     case T_INT:
 10995       shift = 0;
 10996       break;
 10997     default: ShouldNotReachHere();
 11000   if (t == T_BYTE) {
 11001     andl(value, 0xff);
 11002     movl(rtmp, value);
 11003     shll(rtmp, 8);
 11004     orl(value, rtmp);
 11006   if (t == T_SHORT) {
 11007     andl(value, 0xffff);
 11009   if (t == T_BYTE || t == T_SHORT) {
 11010     movl(rtmp, value);
 11011     shll(rtmp, 16);
 11012     orl(value, rtmp);
 11015   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
 11016   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
 11017   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
 11018     // align source address at 4 bytes address boundary
 11019     if (t == T_BYTE) {
 11020       // One byte misalignment happens only for byte arrays
 11021       testptr(to, 1);
 11022       jccb(Assembler::zero, L_skip_align1);
 11023       movb(Address(to, 0), value);
 11024       increment(to);
 11025       decrement(count);
 11026       BIND(L_skip_align1);
 11028     // Two bytes misalignment happens only for byte and short (char) arrays
 11029     testptr(to, 2);
 11030     jccb(Assembler::zero, L_skip_align2);
 11031     movw(Address(to, 0), value);
 11032     addptr(to, 2);
 11033     subl(count, 1<<(shift-1));
 11034     BIND(L_skip_align2);
 11036   if (UseSSE < 2) {
 11037     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
 11038     // Fill 32-byte chunks
 11039     subl(count, 8 << shift);
 11040     jcc(Assembler::less, L_check_fill_8_bytes);
 11041     align(16);
 11043     BIND(L_fill_32_bytes_loop);
 11045     for (int i = 0; i < 32; i += 4) {
 11046       movl(Address(to, i), value);
 11049     addptr(to, 32);
 11050     subl(count, 8 << shift);
 11051     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
 11052     BIND(L_check_fill_8_bytes);
 11053     addl(count, 8 << shift);
 11054     jccb(Assembler::zero, L_exit);
 11055     jmpb(L_fill_8_bytes);
 11057     //
 11058     // length is too short, just fill qwords
 11059     //
 11060     BIND(L_fill_8_bytes_loop);
 11061     movl(Address(to, 0), value);
 11062     movl(Address(to, 4), value);
 11063     addptr(to, 8);
 11064     BIND(L_fill_8_bytes);
 11065     subl(count, 1 << (shift + 1));
 11066     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
 11067     // fall through to fill 4 bytes
 11068   } else {
 11069     Label L_fill_32_bytes;
 11070     if (!UseUnalignedLoadStores) {
 11071       // align to 8 bytes, we know we are 4 byte aligned to start
 11072       testptr(to, 4);
 11073       jccb(Assembler::zero, L_fill_32_bytes);
 11074       movl(Address(to, 0), value);
 11075       addptr(to, 4);
 11076       subl(count, 1<<shift);
 11078     BIND(L_fill_32_bytes);
 11080       assert( UseSSE >= 2, "supported cpu only" );
 11081       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
 11082       // Fill 32-byte chunks
 11083       movdl(xtmp, value);
 11084       pshufd(xtmp, xtmp, 0);
 11086       subl(count, 8 << shift);
 11087       jcc(Assembler::less, L_check_fill_8_bytes);
 11088       align(16);
 11090       BIND(L_fill_32_bytes_loop);
 11092       if (UseUnalignedLoadStores) {
 11093         movdqu(Address(to, 0), xtmp);
 11094         movdqu(Address(to, 16), xtmp);
 11095       } else {
 11096         movq(Address(to, 0), xtmp);
 11097         movq(Address(to, 8), xtmp);
 11098         movq(Address(to, 16), xtmp);
 11099         movq(Address(to, 24), xtmp);
 11102       addptr(to, 32);
 11103       subl(count, 8 << shift);
 11104       jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
 11105       BIND(L_check_fill_8_bytes);
 11106       addl(count, 8 << shift);
 11107       jccb(Assembler::zero, L_exit);
 11108       jmpb(L_fill_8_bytes);
 11110       //
 11111       // length is too short, just fill qwords
 11112       //
 11113       BIND(L_fill_8_bytes_loop);
 11114       movq(Address(to, 0), xtmp);
 11115       addptr(to, 8);
 11116       BIND(L_fill_8_bytes);
 11117       subl(count, 1 << (shift + 1));
 11118       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
 11121   // fill trailing 4 bytes
 11122   BIND(L_fill_4_bytes);
 11123   testl(count, 1<<shift);
 11124   jccb(Assembler::zero, L_fill_2_bytes);
 11125   movl(Address(to, 0), value);
 11126   if (t == T_BYTE || t == T_SHORT) {
 11127     addptr(to, 4);
 11128     BIND(L_fill_2_bytes);
 11129     // fill trailing 2 bytes
 11130     testl(count, 1<<(shift-1));
 11131     jccb(Assembler::zero, L_fill_byte);
 11132     movw(Address(to, 0), value);
 11133     if (t == T_BYTE) {
 11134       addptr(to, 2);
 11135       BIND(L_fill_byte);
 11136       // fill trailing byte
 11137       testl(count, 1);
 11138       jccb(Assembler::zero, L_exit);
 11139       movb(Address(to, 0), value);
 11140     } else {
 11141       BIND(L_fill_byte);
 11143   } else {
 11144     BIND(L_fill_2_bytes);
 11146   BIND(L_exit);
 11148 #undef BIND
 11149 #undef BLOCK_COMMENT
 11152 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
 11153   switch (cond) {
 11154     // Note some conditions are synonyms for others
 11155     case Assembler::zero:         return Assembler::notZero;
 11156     case Assembler::notZero:      return Assembler::zero;
 11157     case Assembler::less:         return Assembler::greaterEqual;
 11158     case Assembler::lessEqual:    return Assembler::greater;
 11159     case Assembler::greater:      return Assembler::lessEqual;
 11160     case Assembler::greaterEqual: return Assembler::less;
 11161     case Assembler::below:        return Assembler::aboveEqual;
 11162     case Assembler::belowEqual:   return Assembler::above;
 11163     case Assembler::above:        return Assembler::belowEqual;
 11164     case Assembler::aboveEqual:   return Assembler::below;
 11165     case Assembler::overflow:     return Assembler::noOverflow;
 11166     case Assembler::noOverflow:   return Assembler::overflow;
 11167     case Assembler::negative:     return Assembler::positive;
 11168     case Assembler::positive:     return Assembler::negative;
 11169     case Assembler::parity:       return Assembler::noParity;
 11170     case Assembler::noParity:     return Assembler::parity;
 11172   ShouldNotReachHere(); return Assembler::overflow;
 11175 SkipIfEqual::SkipIfEqual(
 11176     MacroAssembler* masm, const bool* flag_addr, bool value) {
 11177   _masm = masm;
 11178   _masm->cmp8(ExternalAddress((address)flag_addr), value);
 11179   _masm->jcc(Assembler::equal, _label);
 11182 SkipIfEqual::~SkipIfEqual() {
 11183   _masm->bind(_label);

mercurial