src/cpu/x86/vm/assembler_x86.cpp

Tue, 24 Jul 2012 10:51:00 -0700

author
twisti
date
Tue, 24 Jul 2012 10:51:00 -0700
changeset 3969
1d7922586cf6
parent 3929
2c368ea3e844
child 4001
006050192a5a
permissions
-rw-r--r--

7023639: JSR 292 method handle invocation needs a fast path for compiled code
6984705: JSR 292 method handle creation should not go through JNI
Summary: remove assembly code for JDK 7 chained method handles
Reviewed-by: jrose, twisti, kvn, mhaupt
Contributed-by: John Rose <john.r.rose@oracle.com>, Christian Thalinger <christian.thalinger@oracle.com>, Michael Haupt <michael.haupt@oracle.com>

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "assembler_x86.inline.hpp"
    27 #include "gc_interface/collectedHeap.inline.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "memory/cardTableModRefBS.hpp"
    30 #include "memory/resourceArea.hpp"
    31 #include "prims/methodHandles.hpp"
    32 #include "runtime/biasedLocking.hpp"
    33 #include "runtime/interfaceSupport.hpp"
    34 #include "runtime/objectMonitor.hpp"
    35 #include "runtime/os.hpp"
    36 #include "runtime/sharedRuntime.hpp"
    37 #include "runtime/stubRoutines.hpp"
    38 #ifndef SERIALGC
    39 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    40 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    41 #include "gc_implementation/g1/heapRegion.hpp"
    42 #endif
    44 #ifdef PRODUCT
    45 #define BLOCK_COMMENT(str) /* nothing */
    46 #define STOP(error) stop(error)
    47 #else
    48 #define BLOCK_COMMENT(str) block_comment(str)
    49 #define STOP(error) block_comment(error); stop(error)
    50 #endif
    52 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    53 // Implementation of AddressLiteral
    55 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
    56   _is_lval = false;
    57   _target = target;
    58   switch (rtype) {
    59   case relocInfo::oop_type:
    60     // Oops are a special case. Normally they would be their own section
    61     // but in cases like icBuffer they are literals in the code stream that
    62     // we don't have a section for. We use none so that we get a literal address
    63     // which is always patchable.
    64     break;
    65   case relocInfo::external_word_type:
    66     _rspec = external_word_Relocation::spec(target);
    67     break;
    68   case relocInfo::internal_word_type:
    69     _rspec = internal_word_Relocation::spec(target);
    70     break;
    71   case relocInfo::opt_virtual_call_type:
    72     _rspec = opt_virtual_call_Relocation::spec();
    73     break;
    74   case relocInfo::static_call_type:
    75     _rspec = static_call_Relocation::spec();
    76     break;
    77   case relocInfo::runtime_call_type:
    78     _rspec = runtime_call_Relocation::spec();
    79     break;
    80   case relocInfo::poll_type:
    81   case relocInfo::poll_return_type:
    82     _rspec = Relocation::spec_simple(rtype);
    83     break;
    84   case relocInfo::none:
    85     break;
    86   default:
    87     ShouldNotReachHere();
    88     break;
    89   }
    90 }
    92 // Implementation of Address
    94 #ifdef _LP64
    96 Address Address::make_array(ArrayAddress adr) {
    97   // Not implementable on 64bit machines
    98   // Should have been handled higher up the call chain.
    99   ShouldNotReachHere();
   100   return Address();
   101 }
   103 // exceedingly dangerous constructor
   104 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
   105   _base  = noreg;
   106   _index = noreg;
   107   _scale = no_scale;
   108   _disp  = disp;
   109   switch (rtype) {
   110     case relocInfo::external_word_type:
   111       _rspec = external_word_Relocation::spec(loc);
   112       break;
   113     case relocInfo::internal_word_type:
   114       _rspec = internal_word_Relocation::spec(loc);
   115       break;
   116     case relocInfo::runtime_call_type:
   117       // HMM
   118       _rspec = runtime_call_Relocation::spec();
   119       break;
   120     case relocInfo::poll_type:
   121     case relocInfo::poll_return_type:
   122       _rspec = Relocation::spec_simple(rtype);
   123       break;
   124     case relocInfo::none:
   125       break;
   126     default:
   127       ShouldNotReachHere();
   128   }
   129 }
   130 #else // LP64
   132 Address Address::make_array(ArrayAddress adr) {
   133   AddressLiteral base = adr.base();
   134   Address index = adr.index();
   135   assert(index._disp == 0, "must not have disp"); // maybe it can?
   136   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
   137   array._rspec = base._rspec;
   138   return array;
   139 }
   141 // exceedingly dangerous constructor
   142 Address::Address(address loc, RelocationHolder spec) {
   143   _base  = noreg;
   144   _index = noreg;
   145   _scale = no_scale;
   146   _disp  = (intptr_t) loc;
   147   _rspec = spec;
   148 }
   150 #endif // _LP64
   154 // Convert the raw encoding form into the form expected by the constructor for
   155 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   156 // that to noreg for the Address constructor.
   157 Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
   158   RelocationHolder rspec;
   159   if (disp_is_oop) {
   160     rspec = Relocation::spec_simple(relocInfo::oop_type);
   161   }
   162   bool valid_index = index != rsp->encoding();
   163   if (valid_index) {
   164     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
   165     madr._rspec = rspec;
   166     return madr;
   167   } else {
   168     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
   169     madr._rspec = rspec;
   170     return madr;
   171   }
   172 }
   174 // Implementation of Assembler
   176 int AbstractAssembler::code_fill_byte() {
   177   return (u_char)'\xF4'; // hlt
   178 }
   180 // make this go away someday
   181 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
   182   if (rtype == relocInfo::none)
   183         emit_long(data);
   184   else  emit_data(data, Relocation::spec_simple(rtype), format);
   185 }
   187 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
   188   assert(imm_operand == 0, "default format must be immediate in this file");
   189   assert(inst_mark() != NULL, "must be inside InstructionMark");
   190   if (rspec.type() !=  relocInfo::none) {
   191     #ifdef ASSERT
   192       check_relocation(rspec, format);
   193     #endif
   194     // Do not use AbstractAssembler::relocate, which is not intended for
   195     // embedded words.  Instead, relocate to the enclosing instruction.
   197     // hack. call32 is too wide for mask so use disp32
   198     if (format == call32_operand)
   199       code_section()->relocate(inst_mark(), rspec, disp32_operand);
   200     else
   201       code_section()->relocate(inst_mark(), rspec, format);
   202   }
   203   emit_long(data);
   204 }
   206 static int encode(Register r) {
   207   int enc = r->encoding();
   208   if (enc >= 8) {
   209     enc -= 8;
   210   }
   211   return enc;
   212 }
   214 static int encode(XMMRegister r) {
   215   int enc = r->encoding();
   216   if (enc >= 8) {
   217     enc -= 8;
   218   }
   219   return enc;
   220 }
   222 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
   223   assert(dst->has_byte_register(), "must have byte register");
   224   assert(isByte(op1) && isByte(op2), "wrong opcode");
   225   assert(isByte(imm8), "not a byte");
   226   assert((op1 & 0x01) == 0, "should be 8bit operation");
   227   emit_byte(op1);
   228   emit_byte(op2 | encode(dst));
   229   emit_byte(imm8);
   230 }
   233 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
   234   assert(isByte(op1) && isByte(op2), "wrong opcode");
   235   assert((op1 & 0x01) == 1, "should be 32bit operation");
   236   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   237   if (is8bit(imm32)) {
   238     emit_byte(op1 | 0x02); // set sign bit
   239     emit_byte(op2 | encode(dst));
   240     emit_byte(imm32 & 0xFF);
   241   } else {
   242     emit_byte(op1);
   243     emit_byte(op2 | encode(dst));
   244     emit_long(imm32);
   245   }
   246 }
   248 // Force generation of a 4 byte immediate value even if it fits into 8bit
   249 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
   250   assert(isByte(op1) && isByte(op2), "wrong opcode");
   251   assert((op1 & 0x01) == 1, "should be 32bit operation");
   252   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   253   emit_byte(op1);
   254   emit_byte(op2 | encode(dst));
   255   emit_long(imm32);
   256 }
   258 // immediate-to-memory forms
   259 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
   260   assert((op1 & 0x01) == 1, "should be 32bit operation");
   261   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   262   if (is8bit(imm32)) {
   263     emit_byte(op1 | 0x02); // set sign bit
   264     emit_operand(rm, adr, 1);
   265     emit_byte(imm32 & 0xFF);
   266   } else {
   267     emit_byte(op1);
   268     emit_operand(rm, adr, 4);
   269     emit_long(imm32);
   270   }
   271 }
   273 void Assembler::emit_arith(int op1, int op2, Register dst, jobject obj) {
   274   LP64_ONLY(ShouldNotReachHere());
   275   assert(isByte(op1) && isByte(op2), "wrong opcode");
   276   assert((op1 & 0x01) == 1, "should be 32bit operation");
   277   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   278   InstructionMark im(this);
   279   emit_byte(op1);
   280   emit_byte(op2 | encode(dst));
   281   emit_data((intptr_t)obj, relocInfo::oop_type, 0);
   282 }
   285 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
   286   assert(isByte(op1) && isByte(op2), "wrong opcode");
   287   emit_byte(op1);
   288   emit_byte(op2 | encode(dst) << 3 | encode(src));
   289 }
   292 void Assembler::emit_operand(Register reg, Register base, Register index,
   293                              Address::ScaleFactor scale, int disp,
   294                              RelocationHolder const& rspec,
   295                              int rip_relative_correction) {
   296   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
   298   // Encode the registers as needed in the fields they are used in
   300   int regenc = encode(reg) << 3;
   301   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
   302   int baseenc = base->is_valid() ? encode(base) : 0;
   304   if (base->is_valid()) {
   305     if (index->is_valid()) {
   306       assert(scale != Address::no_scale, "inconsistent address");
   307       // [base + index*scale + disp]
   308       if (disp == 0 && rtype == relocInfo::none  &&
   309           base != rbp LP64_ONLY(&& base != r13)) {
   310         // [base + index*scale]
   311         // [00 reg 100][ss index base]
   312         assert(index != rsp, "illegal addressing mode");
   313         emit_byte(0x04 | regenc);
   314         emit_byte(scale << 6 | indexenc | baseenc);
   315       } else if (is8bit(disp) && rtype == relocInfo::none) {
   316         // [base + index*scale + imm8]
   317         // [01 reg 100][ss index base] imm8
   318         assert(index != rsp, "illegal addressing mode");
   319         emit_byte(0x44 | regenc);
   320         emit_byte(scale << 6 | indexenc | baseenc);
   321         emit_byte(disp & 0xFF);
   322       } else {
   323         // [base + index*scale + disp32]
   324         // [10 reg 100][ss index base] disp32
   325         assert(index != rsp, "illegal addressing mode");
   326         emit_byte(0x84 | regenc);
   327         emit_byte(scale << 6 | indexenc | baseenc);
   328         emit_data(disp, rspec, disp32_operand);
   329       }
   330     } else if (base == rsp LP64_ONLY(|| base == r12)) {
   331       // [rsp + disp]
   332       if (disp == 0 && rtype == relocInfo::none) {
   333         // [rsp]
   334         // [00 reg 100][00 100 100]
   335         emit_byte(0x04 | regenc);
   336         emit_byte(0x24);
   337       } else if (is8bit(disp) && rtype == relocInfo::none) {
   338         // [rsp + imm8]
   339         // [01 reg 100][00 100 100] disp8
   340         emit_byte(0x44 | regenc);
   341         emit_byte(0x24);
   342         emit_byte(disp & 0xFF);
   343       } else {
   344         // [rsp + imm32]
   345         // [10 reg 100][00 100 100] disp32
   346         emit_byte(0x84 | regenc);
   347         emit_byte(0x24);
   348         emit_data(disp, rspec, disp32_operand);
   349       }
   350     } else {
   351       // [base + disp]
   352       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
   353       if (disp == 0 && rtype == relocInfo::none &&
   354           base != rbp LP64_ONLY(&& base != r13)) {
   355         // [base]
   356         // [00 reg base]
   357         emit_byte(0x00 | regenc | baseenc);
   358       } else if (is8bit(disp) && rtype == relocInfo::none) {
   359         // [base + disp8]
   360         // [01 reg base] disp8
   361         emit_byte(0x40 | regenc | baseenc);
   362         emit_byte(disp & 0xFF);
   363       } else {
   364         // [base + disp32]
   365         // [10 reg base] disp32
   366         emit_byte(0x80 | regenc | baseenc);
   367         emit_data(disp, rspec, disp32_operand);
   368       }
   369     }
   370   } else {
   371     if (index->is_valid()) {
   372       assert(scale != Address::no_scale, "inconsistent address");
   373       // [index*scale + disp]
   374       // [00 reg 100][ss index 101] disp32
   375       assert(index != rsp, "illegal addressing mode");
   376       emit_byte(0x04 | regenc);
   377       emit_byte(scale << 6 | indexenc | 0x05);
   378       emit_data(disp, rspec, disp32_operand);
   379     } else if (rtype != relocInfo::none ) {
   380       // [disp] (64bit) RIP-RELATIVE (32bit) abs
   381       // [00 000 101] disp32
   383       emit_byte(0x05 | regenc);
   384       // Note that the RIP-rel. correction applies to the generated
   385       // disp field, but _not_ to the target address in the rspec.
   387       // disp was created by converting the target address minus the pc
   388       // at the start of the instruction. That needs more correction here.
   389       // intptr_t disp = target - next_ip;
   390       assert(inst_mark() != NULL, "must be inside InstructionMark");
   391       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
   392       int64_t adjusted = disp;
   393       // Do rip-rel adjustment for 64bit
   394       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
   395       assert(is_simm32(adjusted),
   396              "must be 32bit offset (RIP relative address)");
   397       emit_data((int32_t) adjusted, rspec, disp32_operand);
   399     } else {
   400       // 32bit never did this, did everything as the rip-rel/disp code above
   401       // [disp] ABSOLUTE
   402       // [00 reg 100][00 100 101] disp32
   403       emit_byte(0x04 | regenc);
   404       emit_byte(0x25);
   405       emit_data(disp, rspec, disp32_operand);
   406     }
   407   }
   408 }
   410 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
   411                              Address::ScaleFactor scale, int disp,
   412                              RelocationHolder const& rspec) {
   413   emit_operand((Register)reg, base, index, scale, disp, rspec);
   414 }
   416 // Secret local extension to Assembler::WhichOperand:
   417 #define end_pc_operand (_WhichOperand_limit)
   419 address Assembler::locate_operand(address inst, WhichOperand which) {
   420   // Decode the given instruction, and return the address of
   421   // an embedded 32-bit operand word.
   423   // If "which" is disp32_operand, selects the displacement portion
   424   // of an effective address specifier.
   425   // If "which" is imm64_operand, selects the trailing immediate constant.
   426   // If "which" is call32_operand, selects the displacement of a call or jump.
   427   // Caller is responsible for ensuring that there is such an operand,
   428   // and that it is 32/64 bits wide.
   430   // If "which" is end_pc_operand, find the end of the instruction.
   432   address ip = inst;
   433   bool is_64bit = false;
   435   debug_only(bool has_disp32 = false);
   436   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
   438   again_after_prefix:
   439   switch (0xFF & *ip++) {
   441   // These convenience macros generate groups of "case" labels for the switch.
   442 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
   443 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
   444              case (x)+4: case (x)+5: case (x)+6: case (x)+7
   445 #define REP16(x) REP8((x)+0): \
   446               case REP8((x)+8)
   448   case CS_segment:
   449   case SS_segment:
   450   case DS_segment:
   451   case ES_segment:
   452   case FS_segment:
   453   case GS_segment:
   454     // Seems dubious
   455     LP64_ONLY(assert(false, "shouldn't have that prefix"));
   456     assert(ip == inst+1, "only one prefix allowed");
   457     goto again_after_prefix;
   459   case 0x67:
   460   case REX:
   461   case REX_B:
   462   case REX_X:
   463   case REX_XB:
   464   case REX_R:
   465   case REX_RB:
   466   case REX_RX:
   467   case REX_RXB:
   468     NOT_LP64(assert(false, "64bit prefixes"));
   469     goto again_after_prefix;
   471   case REX_W:
   472   case REX_WB:
   473   case REX_WX:
   474   case REX_WXB:
   475   case REX_WR:
   476   case REX_WRB:
   477   case REX_WRX:
   478   case REX_WRXB:
   479     NOT_LP64(assert(false, "64bit prefixes"));
   480     is_64bit = true;
   481     goto again_after_prefix;
   483   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
   484   case 0x88: // movb a, r
   485   case 0x89: // movl a, r
   486   case 0x8A: // movb r, a
   487   case 0x8B: // movl r, a
   488   case 0x8F: // popl a
   489     debug_only(has_disp32 = true);
   490     break;
   492   case 0x68: // pushq #32
   493     if (which == end_pc_operand) {
   494       return ip + 4;
   495     }
   496     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
   497     return ip;                  // not produced by emit_operand
   499   case 0x66: // movw ... (size prefix)
   500     again_after_size_prefix2:
   501     switch (0xFF & *ip++) {
   502     case REX:
   503     case REX_B:
   504     case REX_X:
   505     case REX_XB:
   506     case REX_R:
   507     case REX_RB:
   508     case REX_RX:
   509     case REX_RXB:
   510     case REX_W:
   511     case REX_WB:
   512     case REX_WX:
   513     case REX_WXB:
   514     case REX_WR:
   515     case REX_WRB:
   516     case REX_WRX:
   517     case REX_WRXB:
   518       NOT_LP64(assert(false, "64bit prefix found"));
   519       goto again_after_size_prefix2;
   520     case 0x8B: // movw r, a
   521     case 0x89: // movw a, r
   522       debug_only(has_disp32 = true);
   523       break;
   524     case 0xC7: // movw a, #16
   525       debug_only(has_disp32 = true);
   526       tail_size = 2;  // the imm16
   527       break;
   528     case 0x0F: // several SSE/SSE2 variants
   529       ip--;    // reparse the 0x0F
   530       goto again_after_prefix;
   531     default:
   532       ShouldNotReachHere();
   533     }
   534     break;
   536   case REP8(0xB8): // movl/q r, #32/#64(oop?)
   537     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
   538     // these asserts are somewhat nonsensical
   539 #ifndef _LP64
   540     assert(which == imm_operand || which == disp32_operand,
   541            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
   542 #else
   543     assert((which == call32_operand || which == imm_operand) && is_64bit ||
   544            which == narrow_oop_operand && !is_64bit,
   545            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
   546 #endif // _LP64
   547     return ip;
   549   case 0x69: // imul r, a, #32
   550   case 0xC7: // movl a, #32(oop?)
   551     tail_size = 4;
   552     debug_only(has_disp32 = true); // has both kinds of operands!
   553     break;
   555   case 0x0F: // movx..., etc.
   556     switch (0xFF & *ip++) {
   557     case 0x3A: // pcmpestri
   558       tail_size = 1;
   559     case 0x38: // ptest, pmovzxbw
   560       ip++; // skip opcode
   561       debug_only(has_disp32 = true); // has both kinds of operands!
   562       break;
   564     case 0x70: // pshufd r, r/a, #8
   565       debug_only(has_disp32 = true); // has both kinds of operands!
   566     case 0x73: // psrldq r, #8
   567       tail_size = 1;
   568       break;
   570     case 0x12: // movlps
   571     case 0x28: // movaps
   572     case 0x2E: // ucomiss
   573     case 0x2F: // comiss
   574     case 0x54: // andps
   575     case 0x55: // andnps
   576     case 0x56: // orps
   577     case 0x57: // xorps
   578     case 0x6E: // movd
   579     case 0x7E: // movd
   580     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
   581       debug_only(has_disp32 = true);
   582       break;
   584     case 0xAD: // shrd r, a, %cl
   585     case 0xAF: // imul r, a
   586     case 0xBE: // movsbl r, a (movsxb)
   587     case 0xBF: // movswl r, a (movsxw)
   588     case 0xB6: // movzbl r, a (movzxb)
   589     case 0xB7: // movzwl r, a (movzxw)
   590     case REP16(0x40): // cmovl cc, r, a
   591     case 0xB0: // cmpxchgb
   592     case 0xB1: // cmpxchg
   593     case 0xC1: // xaddl
   594     case 0xC7: // cmpxchg8
   595     case REP16(0x90): // setcc a
   596       debug_only(has_disp32 = true);
   597       // fall out of the switch to decode the address
   598       break;
   600     case 0xC4: // pinsrw r, a, #8
   601       debug_only(has_disp32 = true);
   602     case 0xC5: // pextrw r, r, #8
   603       tail_size = 1;  // the imm8
   604       break;
   606     case 0xAC: // shrd r, a, #8
   607       debug_only(has_disp32 = true);
   608       tail_size = 1;  // the imm8
   609       break;
   611     case REP16(0x80): // jcc rdisp32
   612       if (which == end_pc_operand)  return ip + 4;
   613       assert(which == call32_operand, "jcc has no disp32 or imm");
   614       return ip;
   615     default:
   616       ShouldNotReachHere();
   617     }
   618     break;
   620   case 0x81: // addl a, #32; addl r, #32
   621     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   622     // on 32bit in the case of cmpl, the imm might be an oop
   623     tail_size = 4;
   624     debug_only(has_disp32 = true); // has both kinds of operands!
   625     break;
   627   case 0x83: // addl a, #8; addl r, #8
   628     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   629     debug_only(has_disp32 = true); // has both kinds of operands!
   630     tail_size = 1;
   631     break;
   633   case 0x9B:
   634     switch (0xFF & *ip++) {
   635     case 0xD9: // fnstcw a
   636       debug_only(has_disp32 = true);
   637       break;
   638     default:
   639       ShouldNotReachHere();
   640     }
   641     break;
   643   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
   644   case REP4(0x10): // adc...
   645   case REP4(0x20): // and...
   646   case REP4(0x30): // xor...
   647   case REP4(0x08): // or...
   648   case REP4(0x18): // sbb...
   649   case REP4(0x28): // sub...
   650   case 0xF7: // mull a
   651   case 0x8D: // lea r, a
   652   case 0x87: // xchg r, a
   653   case REP4(0x38): // cmp...
   654   case 0x85: // test r, a
   655     debug_only(has_disp32 = true); // has both kinds of operands!
   656     break;
   658   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
   659   case 0xC6: // movb a, #8
   660   case 0x80: // cmpb a, #8
   661   case 0x6B: // imul r, a, #8
   662     debug_only(has_disp32 = true); // has both kinds of operands!
   663     tail_size = 1; // the imm8
   664     break;
   666   case 0xC4: // VEX_3bytes
   667   case 0xC5: // VEX_2bytes
   668     assert((UseAVX > 0), "shouldn't have VEX prefix");
   669     assert(ip == inst+1, "no prefixes allowed");
   670     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
   671     // but they have prefix 0x0F and processed when 0x0F processed above.
   672     //
   673     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
   674     // instructions (these instructions are not supported in 64-bit mode).
   675     // To distinguish them bits [7:6] are set in the VEX second byte since
   676     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
   677     // those VEX bits REX and vvvv bits are inverted.
   678     //
   679     // Fortunately C2 doesn't generate these instructions so we don't need
   680     // to check for them in product version.
   682     // Check second byte
   683     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
   685     // First byte
   686     if ((0xFF & *inst) == VEX_3bytes) {
   687       ip++; // third byte
   688       is_64bit = ((VEX_W & *ip) == VEX_W);
   689     }
   690     ip++; // opcode
   691     // To find the end of instruction (which == end_pc_operand).
   692     switch (0xFF & *ip) {
   693     case 0x61: // pcmpestri r, r/a, #8
   694     case 0x70: // pshufd r, r/a, #8
   695     case 0x73: // psrldq r, #8
   696       tail_size = 1;  // the imm8
   697       break;
   698     default:
   699       break;
   700     }
   701     ip++; // skip opcode
   702     debug_only(has_disp32 = true); // has both kinds of operands!
   703     break;
   705   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
   706   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
   707   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
   708   case 0xDD: // fld_d a; fst_d a; fstp_d a
   709   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
   710   case 0xDF: // fild_d a; fistp_d a
   711   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
   712   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
   713   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
   714     debug_only(has_disp32 = true);
   715     break;
   717   case 0xE8: // call rdisp32
   718   case 0xE9: // jmp  rdisp32
   719     if (which == end_pc_operand)  return ip + 4;
   720     assert(which == call32_operand, "call has no disp32 or imm");
   721     return ip;
   723   case 0xF0:                    // Lock
   724     assert(os::is_MP(), "only on MP");
   725     goto again_after_prefix;
   727   case 0xF3:                    // For SSE
   728   case 0xF2:                    // For SSE2
   729     switch (0xFF & *ip++) {
   730     case REX:
   731     case REX_B:
   732     case REX_X:
   733     case REX_XB:
   734     case REX_R:
   735     case REX_RB:
   736     case REX_RX:
   737     case REX_RXB:
   738     case REX_W:
   739     case REX_WB:
   740     case REX_WX:
   741     case REX_WXB:
   742     case REX_WR:
   743     case REX_WRB:
   744     case REX_WRX:
   745     case REX_WRXB:
   746       NOT_LP64(assert(false, "found 64bit prefix"));
   747       ip++;
   748     default:
   749       ip++;
   750     }
   751     debug_only(has_disp32 = true); // has both kinds of operands!
   752     break;
   754   default:
   755     ShouldNotReachHere();
   757 #undef REP8
   758 #undef REP16
   759   }
   761   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
   762 #ifdef _LP64
   763   assert(which != imm_operand, "instruction is not a movq reg, imm64");
   764 #else
   765   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
   766   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
   767 #endif // LP64
   768   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
   770   // parse the output of emit_operand
   771   int op2 = 0xFF & *ip++;
   772   int base = op2 & 0x07;
   773   int op3 = -1;
   774   const int b100 = 4;
   775   const int b101 = 5;
   776   if (base == b100 && (op2 >> 6) != 3) {
   777     op3 = 0xFF & *ip++;
   778     base = op3 & 0x07;   // refetch the base
   779   }
   780   // now ip points at the disp (if any)
   782   switch (op2 >> 6) {
   783   case 0:
   784     // [00 reg  100][ss index base]
   785     // [00 reg  100][00   100  esp]
   786     // [00 reg base]
   787     // [00 reg  100][ss index  101][disp32]
   788     // [00 reg  101]               [disp32]
   790     if (base == b101) {
   791       if (which == disp32_operand)
   792         return ip;              // caller wants the disp32
   793       ip += 4;                  // skip the disp32
   794     }
   795     break;
   797   case 1:
   798     // [01 reg  100][ss index base][disp8]
   799     // [01 reg  100][00   100  esp][disp8]
   800     // [01 reg base]               [disp8]
   801     ip += 1;                    // skip the disp8
   802     break;
   804   case 2:
   805     // [10 reg  100][ss index base][disp32]
   806     // [10 reg  100][00   100  esp][disp32]
   807     // [10 reg base]               [disp32]
   808     if (which == disp32_operand)
   809       return ip;                // caller wants the disp32
   810     ip += 4;                    // skip the disp32
   811     break;
   813   case 3:
   814     // [11 reg base]  (not a memory addressing mode)
   815     break;
   816   }
   818   if (which == end_pc_operand) {
   819     return ip + tail_size;
   820   }
   822 #ifdef _LP64
   823   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
   824 #else
   825   assert(which == imm_operand, "instruction has only an imm field");
   826 #endif // LP64
   827   return ip;
   828 }
   830 address Assembler::locate_next_instruction(address inst) {
   831   // Secretly share code with locate_operand:
   832   return locate_operand(inst, end_pc_operand);
   833 }
   836 #ifdef ASSERT
   837 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
   838   address inst = inst_mark();
   839   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
   840   address opnd;
   842   Relocation* r = rspec.reloc();
   843   if (r->type() == relocInfo::none) {
   844     return;
   845   } else if (r->is_call() || format == call32_operand) {
   846     // assert(format == imm32_operand, "cannot specify a nonzero format");
   847     opnd = locate_operand(inst, call32_operand);
   848   } else if (r->is_data()) {
   849     assert(format == imm_operand || format == disp32_operand
   850            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
   851     opnd = locate_operand(inst, (WhichOperand)format);
   852   } else {
   853     assert(format == imm_operand, "cannot specify a format");
   854     return;
   855   }
   856   assert(opnd == pc(), "must put operand where relocs can find it");
   857 }
   858 #endif // ASSERT
   860 void Assembler::emit_operand32(Register reg, Address adr) {
   861   assert(reg->encoding() < 8, "no extended registers");
   862   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   863   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   864                adr._rspec);
   865 }
   867 void Assembler::emit_operand(Register reg, Address adr,
   868                              int rip_relative_correction) {
   869   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   870                adr._rspec,
   871                rip_relative_correction);
   872 }
   874 void Assembler::emit_operand(XMMRegister reg, Address adr) {
   875   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   876                adr._rspec);
   877 }
   879 // MMX operations
   880 void Assembler::emit_operand(MMXRegister reg, Address adr) {
   881   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   882   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   883 }
   885 // work around gcc (3.2.1-7a) bug
   886 void Assembler::emit_operand(Address adr, MMXRegister reg) {
   887   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   888   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   889 }
   892 void Assembler::emit_farith(int b1, int b2, int i) {
   893   assert(isByte(b1) && isByte(b2), "wrong opcode");
   894   assert(0 <= i &&  i < 8, "illegal stack offset");
   895   emit_byte(b1);
   896   emit_byte(b2 + i);
   897 }
   900 // Now the Assembler instructions (identical for 32/64 bits)
   902 void Assembler::adcl(Address dst, int32_t imm32) {
   903   InstructionMark im(this);
   904   prefix(dst);
   905   emit_arith_operand(0x81, rdx, dst, imm32);
   906 }
   908 void Assembler::adcl(Address dst, Register src) {
   909   InstructionMark im(this);
   910   prefix(dst, src);
   911   emit_byte(0x11);
   912   emit_operand(src, dst);
   913 }
   915 void Assembler::adcl(Register dst, int32_t imm32) {
   916   prefix(dst);
   917   emit_arith(0x81, 0xD0, dst, imm32);
   918 }
   920 void Assembler::adcl(Register dst, Address src) {
   921   InstructionMark im(this);
   922   prefix(src, dst);
   923   emit_byte(0x13);
   924   emit_operand(dst, src);
   925 }
   927 void Assembler::adcl(Register dst, Register src) {
   928   (void) prefix_and_encode(dst->encoding(), src->encoding());
   929   emit_arith(0x13, 0xC0, dst, src);
   930 }
   932 void Assembler::addl(Address dst, int32_t imm32) {
   933   InstructionMark im(this);
   934   prefix(dst);
   935   emit_arith_operand(0x81, rax, dst, imm32);
   936 }
   938 void Assembler::addl(Address dst, Register src) {
   939   InstructionMark im(this);
   940   prefix(dst, src);
   941   emit_byte(0x01);
   942   emit_operand(src, dst);
   943 }
   945 void Assembler::addl(Register dst, int32_t imm32) {
   946   prefix(dst);
   947   emit_arith(0x81, 0xC0, dst, imm32);
   948 }
   950 void Assembler::addl(Register dst, Address src) {
   951   InstructionMark im(this);
   952   prefix(src, dst);
   953   emit_byte(0x03);
   954   emit_operand(dst, src);
   955 }
   957 void Assembler::addl(Register dst, Register src) {
   958   (void) prefix_and_encode(dst->encoding(), src->encoding());
   959   emit_arith(0x03, 0xC0, dst, src);
   960 }
   962 void Assembler::addr_nop_4() {
   963   assert(UseAddressNop, "no CPU support");
   964   // 4 bytes: NOP DWORD PTR [EAX+0]
   965   emit_byte(0x0F);
   966   emit_byte(0x1F);
   967   emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
   968   emit_byte(0);    // 8-bits offset (1 byte)
   969 }
   971 void Assembler::addr_nop_5() {
   972   assert(UseAddressNop, "no CPU support");
   973   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
   974   emit_byte(0x0F);
   975   emit_byte(0x1F);
   976   emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
   977   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   978   emit_byte(0);    // 8-bits offset (1 byte)
   979 }
   981 void Assembler::addr_nop_7() {
   982   assert(UseAddressNop, "no CPU support");
   983   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
   984   emit_byte(0x0F);
   985   emit_byte(0x1F);
   986   emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
   987   emit_long(0);    // 32-bits offset (4 bytes)
   988 }
   990 void Assembler::addr_nop_8() {
   991   assert(UseAddressNop, "no CPU support");
   992   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
   993   emit_byte(0x0F);
   994   emit_byte(0x1F);
   995   emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
   996   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   997   emit_long(0);    // 32-bits offset (4 bytes)
   998 }
  1000 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
  1001   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1002   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1003   emit_byte(0x58);
  1004   emit_byte(0xC0 | encode);
  1007 void Assembler::addsd(XMMRegister dst, Address src) {
  1008   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1009   InstructionMark im(this);
  1010   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  1011   emit_byte(0x58);
  1012   emit_operand(dst, src);
  1015 void Assembler::addss(XMMRegister dst, XMMRegister src) {
  1016   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1017   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1018   emit_byte(0x58);
  1019   emit_byte(0xC0 | encode);
  1022 void Assembler::addss(XMMRegister dst, Address src) {
  1023   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1024   InstructionMark im(this);
  1025   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  1026   emit_byte(0x58);
  1027   emit_operand(dst, src);
  1030 void Assembler::andl(Address dst, int32_t imm32) {
  1031   InstructionMark im(this);
  1032   prefix(dst);
  1033   emit_byte(0x81);
  1034   emit_operand(rsp, dst, 4);
  1035   emit_long(imm32);
  1038 void Assembler::andl(Register dst, int32_t imm32) {
  1039   prefix(dst);
  1040   emit_arith(0x81, 0xE0, dst, imm32);
  1043 void Assembler::andl(Register dst, Address src) {
  1044   InstructionMark im(this);
  1045   prefix(src, dst);
  1046   emit_byte(0x23);
  1047   emit_operand(dst, src);
  1050 void Assembler::andl(Register dst, Register src) {
  1051   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1052   emit_arith(0x23, 0xC0, dst, src);
  1055 void Assembler::andpd(XMMRegister dst, Address src) {
  1056   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1057   InstructionMark im(this);
  1058   simd_prefix(dst, dst, src, VEX_SIMD_66);
  1059   emit_byte(0x54);
  1060   emit_operand(dst, src);
  1063 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
  1064   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1065   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  1066   emit_byte(0x54);
  1067   emit_byte(0xC0 | encode);
  1070 void Assembler::andps(XMMRegister dst, Address src) {
  1071   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1072   InstructionMark im(this);
  1073   simd_prefix(dst, dst, src, VEX_SIMD_NONE);
  1074   emit_byte(0x54);
  1075   emit_operand(dst, src);
  1078 void Assembler::andps(XMMRegister dst, XMMRegister src) {
  1079   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1080   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE);
  1081   emit_byte(0x54);
  1082   emit_byte(0xC0 | encode);
  1085 void Assembler::bsfl(Register dst, Register src) {
  1086   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1087   emit_byte(0x0F);
  1088   emit_byte(0xBC);
  1089   emit_byte(0xC0 | encode);
  1092 void Assembler::bsrl(Register dst, Register src) {
  1093   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  1094   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1095   emit_byte(0x0F);
  1096   emit_byte(0xBD);
  1097   emit_byte(0xC0 | encode);
  1100 void Assembler::bswapl(Register reg) { // bswap
  1101   int encode = prefix_and_encode(reg->encoding());
  1102   emit_byte(0x0F);
  1103   emit_byte(0xC8 | encode);
  1106 void Assembler::call(Label& L, relocInfo::relocType rtype) {
  1107   // suspect disp32 is always good
  1108   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
  1110   if (L.is_bound()) {
  1111     const int long_size = 5;
  1112     int offs = (int)( target(L) - pc() );
  1113     assert(offs <= 0, "assembler error");
  1114     InstructionMark im(this);
  1115     // 1110 1000 #32-bit disp
  1116     emit_byte(0xE8);
  1117     emit_data(offs - long_size, rtype, operand);
  1118   } else {
  1119     InstructionMark im(this);
  1120     // 1110 1000 #32-bit disp
  1121     L.add_patch_at(code(), locator());
  1123     emit_byte(0xE8);
  1124     emit_data(int(0), rtype, operand);
  1128 void Assembler::call(Register dst) {
  1129   int encode = prefix_and_encode(dst->encoding());
  1130   emit_byte(0xFF);
  1131   emit_byte(0xD0 | encode);
  1135 void Assembler::call(Address adr) {
  1136   InstructionMark im(this);
  1137   prefix(adr);
  1138   emit_byte(0xFF);
  1139   emit_operand(rdx, adr);
  1142 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
  1143   assert(entry != NULL, "call most probably wrong");
  1144   InstructionMark im(this);
  1145   emit_byte(0xE8);
  1146   intptr_t disp = entry - (_code_pos + sizeof(int32_t));
  1147   assert(is_simm32(disp), "must be 32bit offset (call2)");
  1148   // Technically, should use call32_operand, but this format is
  1149   // implied by the fact that we're emitting a call instruction.
  1151   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
  1152   emit_data((int) disp, rspec, operand);
  1155 void Assembler::cdql() {
  1156   emit_byte(0x99);
  1159 void Assembler::cmovl(Condition cc, Register dst, Register src) {
  1160   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1161   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1162   emit_byte(0x0F);
  1163   emit_byte(0x40 | cc);
  1164   emit_byte(0xC0 | encode);
  1168 void Assembler::cmovl(Condition cc, Register dst, Address src) {
  1169   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1170   prefix(src, dst);
  1171   emit_byte(0x0F);
  1172   emit_byte(0x40 | cc);
  1173   emit_operand(dst, src);
  1176 void Assembler::cmpb(Address dst, int imm8) {
  1177   InstructionMark im(this);
  1178   prefix(dst);
  1179   emit_byte(0x80);
  1180   emit_operand(rdi, dst, 1);
  1181   emit_byte(imm8);
  1184 void Assembler::cmpl(Address dst, int32_t imm32) {
  1185   InstructionMark im(this);
  1186   prefix(dst);
  1187   emit_byte(0x81);
  1188   emit_operand(rdi, dst, 4);
  1189   emit_long(imm32);
  1192 void Assembler::cmpl(Register dst, int32_t imm32) {
  1193   prefix(dst);
  1194   emit_arith(0x81, 0xF8, dst, imm32);
  1197 void Assembler::cmpl(Register dst, Register src) {
  1198   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1199   emit_arith(0x3B, 0xC0, dst, src);
  1203 void Assembler::cmpl(Register dst, Address  src) {
  1204   InstructionMark im(this);
  1205   prefix(src, dst);
  1206   emit_byte(0x3B);
  1207   emit_operand(dst, src);
  1210 void Assembler::cmpw(Address dst, int imm16) {
  1211   InstructionMark im(this);
  1212   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
  1213   emit_byte(0x66);
  1214   emit_byte(0x81);
  1215   emit_operand(rdi, dst, 2);
  1216   emit_word(imm16);
  1219 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
  1220 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
  1221 // The ZF is set if the compared values were equal, and cleared otherwise.
  1222 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
  1223   if (Atomics & 2) {
  1224      // caveat: no instructionmark, so this isn't relocatable.
  1225      // Emit a synthetic, non-atomic, CAS equivalent.
  1226      // Beware.  The synthetic form sets all ICCs, not just ZF.
  1227      // cmpxchg r,[m] is equivalent to rax, = CAS (m, rax, r)
  1228      cmpl(rax, adr);
  1229      movl(rax, adr);
  1230      if (reg != rax) {
  1231         Label L ;
  1232         jcc(Assembler::notEqual, L);
  1233         movl(adr, reg);
  1234         bind(L);
  1236   } else {
  1237      InstructionMark im(this);
  1238      prefix(adr, reg);
  1239      emit_byte(0x0F);
  1240      emit_byte(0xB1);
  1241      emit_operand(reg, adr);
  1245 void Assembler::comisd(XMMRegister dst, Address src) {
  1246   // NOTE: dbx seems to decode this as comiss even though the
  1247   // 0x66 is there. Strangly ucomisd comes out correct
  1248   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1249   InstructionMark im(this);
  1250   simd_prefix(dst, src, VEX_SIMD_66);
  1251   emit_byte(0x2F);
  1252   emit_operand(dst, src);
  1255 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
  1256   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1257   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  1258   emit_byte(0x2F);
  1259   emit_byte(0xC0 | encode);
  1262 void Assembler::comiss(XMMRegister dst, Address src) {
  1263   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1264   InstructionMark im(this);
  1265   simd_prefix(dst, src, VEX_SIMD_NONE);
  1266   emit_byte(0x2F);
  1267   emit_operand(dst, src);
  1270 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
  1271   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1272   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_NONE);
  1273   emit_byte(0x2F);
  1274   emit_byte(0xC0 | encode);
  1277 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
  1278   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1279   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
  1280   emit_byte(0xE6);
  1281   emit_byte(0xC0 | encode);
  1284 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
  1285   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1286   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_NONE);
  1287   emit_byte(0x5B);
  1288   emit_byte(0xC0 | encode);
  1291 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
  1292   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1293   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1294   emit_byte(0x5A);
  1295   emit_byte(0xC0 | encode);
  1298 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
  1299   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1300   InstructionMark im(this);
  1301   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  1302   emit_byte(0x5A);
  1303   emit_operand(dst, src);
  1306 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
  1307   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1308   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1309   emit_byte(0x2A);
  1310   emit_byte(0xC0 | encode);
  1313 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
  1314   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1315   InstructionMark im(this);
  1316   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  1317   emit_byte(0x2A);
  1318   emit_operand(dst, src);
  1321 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
  1322   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1323   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1324   emit_byte(0x2A);
  1325   emit_byte(0xC0 | encode);
  1328 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
  1329   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1330   InstructionMark im(this);
  1331   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  1332   emit_byte(0x2A);
  1333   emit_operand(dst, src);
  1336 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
  1337   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1338   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1339   emit_byte(0x5A);
  1340   emit_byte(0xC0 | encode);
  1343 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
  1344   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1345   InstructionMark im(this);
  1346   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  1347   emit_byte(0x5A);
  1348   emit_operand(dst, src);
  1352 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
  1353   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1354   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
  1355   emit_byte(0x2C);
  1356   emit_byte(0xC0 | encode);
  1359 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
  1360   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1361   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
  1362   emit_byte(0x2C);
  1363   emit_byte(0xC0 | encode);
  1366 void Assembler::decl(Address dst) {
  1367   // Don't use it directly. Use MacroAssembler::decrement() instead.
  1368   InstructionMark im(this);
  1369   prefix(dst);
  1370   emit_byte(0xFF);
  1371   emit_operand(rcx, dst);
  1374 void Assembler::divsd(XMMRegister dst, Address src) {
  1375   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1376   InstructionMark im(this);
  1377   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  1378   emit_byte(0x5E);
  1379   emit_operand(dst, src);
  1382 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
  1383   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1384   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1385   emit_byte(0x5E);
  1386   emit_byte(0xC0 | encode);
  1389 void Assembler::divss(XMMRegister dst, Address src) {
  1390   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1391   InstructionMark im(this);
  1392   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  1393   emit_byte(0x5E);
  1394   emit_operand(dst, src);
  1397 void Assembler::divss(XMMRegister dst, XMMRegister src) {
  1398   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1399   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1400   emit_byte(0x5E);
  1401   emit_byte(0xC0 | encode);
  1404 void Assembler::emms() {
  1405   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
  1406   emit_byte(0x0F);
  1407   emit_byte(0x77);
  1410 void Assembler::hlt() {
  1411   emit_byte(0xF4);
  1414 void Assembler::idivl(Register src) {
  1415   int encode = prefix_and_encode(src->encoding());
  1416   emit_byte(0xF7);
  1417   emit_byte(0xF8 | encode);
  1420 void Assembler::divl(Register src) { // Unsigned
  1421   int encode = prefix_and_encode(src->encoding());
  1422   emit_byte(0xF7);
  1423   emit_byte(0xF0 | encode);
  1426 void Assembler::imull(Register dst, Register src) {
  1427   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1428   emit_byte(0x0F);
  1429   emit_byte(0xAF);
  1430   emit_byte(0xC0 | encode);
  1434 void Assembler::imull(Register dst, Register src, int value) {
  1435   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1436   if (is8bit(value)) {
  1437     emit_byte(0x6B);
  1438     emit_byte(0xC0 | encode);
  1439     emit_byte(value & 0xFF);
  1440   } else {
  1441     emit_byte(0x69);
  1442     emit_byte(0xC0 | encode);
  1443     emit_long(value);
  1447 void Assembler::incl(Address dst) {
  1448   // Don't use it directly. Use MacroAssembler::increment() instead.
  1449   InstructionMark im(this);
  1450   prefix(dst);
  1451   emit_byte(0xFF);
  1452   emit_operand(rax, dst);
  1455 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
  1456   InstructionMark im(this);
  1457   assert((0 <= cc) && (cc < 16), "illegal cc");
  1458   if (L.is_bound()) {
  1459     address dst = target(L);
  1460     assert(dst != NULL, "jcc most probably wrong");
  1462     const int short_size = 2;
  1463     const int long_size = 6;
  1464     intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos;
  1465     if (maybe_short && is8bit(offs - short_size)) {
  1466       // 0111 tttn #8-bit disp
  1467       emit_byte(0x70 | cc);
  1468       emit_byte((offs - short_size) & 0xFF);
  1469     } else {
  1470       // 0000 1111 1000 tttn #32-bit disp
  1471       assert(is_simm32(offs - long_size),
  1472              "must be 32bit offset (call4)");
  1473       emit_byte(0x0F);
  1474       emit_byte(0x80 | cc);
  1475       emit_long(offs - long_size);
  1477   } else {
  1478     // Note: could eliminate cond. jumps to this jump if condition
  1479     //       is the same however, seems to be rather unlikely case.
  1480     // Note: use jccb() if label to be bound is very close to get
  1481     //       an 8-bit displacement
  1482     L.add_patch_at(code(), locator());
  1483     emit_byte(0x0F);
  1484     emit_byte(0x80 | cc);
  1485     emit_long(0);
  1489 void Assembler::jccb(Condition cc, Label& L) {
  1490   if (L.is_bound()) {
  1491     const int short_size = 2;
  1492     address entry = target(L);
  1493 #ifdef ASSERT
  1494     intptr_t dist = (intptr_t)entry - ((intptr_t)_code_pos + short_size);
  1495     intptr_t delta = short_branch_delta();
  1496     if (delta != 0) {
  1497       dist += (dist < 0 ? (-delta) :delta);
  1499     assert(is8bit(dist), "Dispacement too large for a short jmp");
  1500 #endif
  1501     intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
  1502     // 0111 tttn #8-bit disp
  1503     emit_byte(0x70 | cc);
  1504     emit_byte((offs - short_size) & 0xFF);
  1505   } else {
  1506     InstructionMark im(this);
  1507     L.add_patch_at(code(), locator());
  1508     emit_byte(0x70 | cc);
  1509     emit_byte(0);
  1513 void Assembler::jmp(Address adr) {
  1514   InstructionMark im(this);
  1515   prefix(adr);
  1516   emit_byte(0xFF);
  1517   emit_operand(rsp, adr);
  1520 void Assembler::jmp(Label& L, bool maybe_short) {
  1521   if (L.is_bound()) {
  1522     address entry = target(L);
  1523     assert(entry != NULL, "jmp most probably wrong");
  1524     InstructionMark im(this);
  1525     const int short_size = 2;
  1526     const int long_size = 5;
  1527     intptr_t offs = entry - _code_pos;
  1528     if (maybe_short && is8bit(offs - short_size)) {
  1529       emit_byte(0xEB);
  1530       emit_byte((offs - short_size) & 0xFF);
  1531     } else {
  1532       emit_byte(0xE9);
  1533       emit_long(offs - long_size);
  1535   } else {
  1536     // By default, forward jumps are always 32-bit displacements, since
  1537     // we can't yet know where the label will be bound.  If you're sure that
  1538     // the forward jump will not run beyond 256 bytes, use jmpb to
  1539     // force an 8-bit displacement.
  1540     InstructionMark im(this);
  1541     L.add_patch_at(code(), locator());
  1542     emit_byte(0xE9);
  1543     emit_long(0);
  1547 void Assembler::jmp(Register entry) {
  1548   int encode = prefix_and_encode(entry->encoding());
  1549   emit_byte(0xFF);
  1550   emit_byte(0xE0 | encode);
  1553 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
  1554   InstructionMark im(this);
  1555   emit_byte(0xE9);
  1556   assert(dest != NULL, "must have a target");
  1557   intptr_t disp = dest - (_code_pos + sizeof(int32_t));
  1558   assert(is_simm32(disp), "must be 32bit offset (jmp)");
  1559   emit_data(disp, rspec.reloc(), call32_operand);
  1562 void Assembler::jmpb(Label& L) {
  1563   if (L.is_bound()) {
  1564     const int short_size = 2;
  1565     address entry = target(L);
  1566     assert(entry != NULL, "jmp most probably wrong");
  1567 #ifdef ASSERT
  1568     intptr_t dist = (intptr_t)entry - ((intptr_t)_code_pos + short_size);
  1569     intptr_t delta = short_branch_delta();
  1570     if (delta != 0) {
  1571       dist += (dist < 0 ? (-delta) :delta);
  1573     assert(is8bit(dist), "Dispacement too large for a short jmp");
  1574 #endif
  1575     intptr_t offs = entry - _code_pos;
  1576     emit_byte(0xEB);
  1577     emit_byte((offs - short_size) & 0xFF);
  1578   } else {
  1579     InstructionMark im(this);
  1580     L.add_patch_at(code(), locator());
  1581     emit_byte(0xEB);
  1582     emit_byte(0);
  1586 void Assembler::ldmxcsr( Address src) {
  1587   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1588   InstructionMark im(this);
  1589   prefix(src);
  1590   emit_byte(0x0F);
  1591   emit_byte(0xAE);
  1592   emit_operand(as_Register(2), src);
  1595 void Assembler::leal(Register dst, Address src) {
  1596   InstructionMark im(this);
  1597 #ifdef _LP64
  1598   emit_byte(0x67); // addr32
  1599   prefix(src, dst);
  1600 #endif // LP64
  1601   emit_byte(0x8D);
  1602   emit_operand(dst, src);
  1605 void Assembler::lock() {
  1606   if (Atomics & 1) {
  1607      // Emit either nothing, a NOP, or a NOP: prefix
  1608      emit_byte(0x90) ;
  1609   } else {
  1610      emit_byte(0xF0);
  1614 void Assembler::lzcntl(Register dst, Register src) {
  1615   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  1616   emit_byte(0xF3);
  1617   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1618   emit_byte(0x0F);
  1619   emit_byte(0xBD);
  1620   emit_byte(0xC0 | encode);
  1623 // Emit mfence instruction
  1624 void Assembler::mfence() {
  1625   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
  1626   emit_byte( 0x0F );
  1627   emit_byte( 0xAE );
  1628   emit_byte( 0xF0 );
  1631 void Assembler::mov(Register dst, Register src) {
  1632   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  1635 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
  1636   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1637   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  1638   emit_byte(0x28);
  1639   emit_byte(0xC0 | encode);
  1642 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
  1643   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1644   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_NONE);
  1645   emit_byte(0x28);
  1646   emit_byte(0xC0 | encode);
  1649 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
  1650   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1651   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE);
  1652   emit_byte(0x16);
  1653   emit_byte(0xC0 | encode);
  1656 void Assembler::movb(Register dst, Address src) {
  1657   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  1658   InstructionMark im(this);
  1659   prefix(src, dst, true);
  1660   emit_byte(0x8A);
  1661   emit_operand(dst, src);
  1665 void Assembler::movb(Address dst, int imm8) {
  1666   InstructionMark im(this);
  1667    prefix(dst);
  1668   emit_byte(0xC6);
  1669   emit_operand(rax, dst, 1);
  1670   emit_byte(imm8);
  1674 void Assembler::movb(Address dst, Register src) {
  1675   assert(src->has_byte_register(), "must have byte register");
  1676   InstructionMark im(this);
  1677   prefix(dst, src, true);
  1678   emit_byte(0x88);
  1679   emit_operand(src, dst);
  1682 void Assembler::movdl(XMMRegister dst, Register src) {
  1683   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1684   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  1685   emit_byte(0x6E);
  1686   emit_byte(0xC0 | encode);
  1689 void Assembler::movdl(Register dst, XMMRegister src) {
  1690   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1691   // swap src/dst to get correct prefix
  1692   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66);
  1693   emit_byte(0x7E);
  1694   emit_byte(0xC0 | encode);
  1697 void Assembler::movdl(XMMRegister dst, Address src) {
  1698   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1699   InstructionMark im(this);
  1700   simd_prefix(dst, src, VEX_SIMD_66);
  1701   emit_byte(0x6E);
  1702   emit_operand(dst, src);
  1705 void Assembler::movdl(Address dst, XMMRegister src) {
  1706   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1707   InstructionMark im(this);
  1708   simd_prefix(dst, src, VEX_SIMD_66);
  1709   emit_byte(0x7E);
  1710   emit_operand(src, dst);
  1713 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
  1714   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1715   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  1716   emit_byte(0x6F);
  1717   emit_byte(0xC0 | encode);
  1720 void Assembler::movdqu(XMMRegister dst, Address src) {
  1721   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1722   InstructionMark im(this);
  1723   simd_prefix(dst, src, VEX_SIMD_F3);
  1724   emit_byte(0x6F);
  1725   emit_operand(dst, src);
  1728 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
  1729   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1730   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
  1731   emit_byte(0x6F);
  1732   emit_byte(0xC0 | encode);
  1735 void Assembler::movdqu(Address dst, XMMRegister src) {
  1736   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1737   InstructionMark im(this);
  1738   simd_prefix(dst, src, VEX_SIMD_F3);
  1739   emit_byte(0x7F);
  1740   emit_operand(src, dst);
  1743 // Move Unaligned 256bit Vector
  1744 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
  1745   assert(UseAVX, "");
  1746   bool vector256 = true;
  1747   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector256);
  1748   emit_byte(0x6F);
  1749   emit_byte(0xC0 | encode);
  1752 void Assembler::vmovdqu(XMMRegister dst, Address src) {
  1753   assert(UseAVX, "");
  1754   InstructionMark im(this);
  1755   bool vector256 = true;
  1756   vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector256);
  1757   emit_byte(0x6F);
  1758   emit_operand(dst, src);
  1761 void Assembler::vmovdqu(Address dst, XMMRegister src) {
  1762   assert(UseAVX, "");
  1763   InstructionMark im(this);
  1764   bool vector256 = true;
  1765   // swap src<->dst for encoding
  1766   assert(src != xnoreg, "sanity");
  1767   vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector256);
  1768   emit_byte(0x7F);
  1769   emit_operand(src, dst);
  1772 // Uses zero extension on 64bit
  1774 void Assembler::movl(Register dst, int32_t imm32) {
  1775   int encode = prefix_and_encode(dst->encoding());
  1776   emit_byte(0xB8 | encode);
  1777   emit_long(imm32);
  1780 void Assembler::movl(Register dst, Register src) {
  1781   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1782   emit_byte(0x8B);
  1783   emit_byte(0xC0 | encode);
  1786 void Assembler::movl(Register dst, Address src) {
  1787   InstructionMark im(this);
  1788   prefix(src, dst);
  1789   emit_byte(0x8B);
  1790   emit_operand(dst, src);
  1793 void Assembler::movl(Address dst, int32_t imm32) {
  1794   InstructionMark im(this);
  1795   prefix(dst);
  1796   emit_byte(0xC7);
  1797   emit_operand(rax, dst, 4);
  1798   emit_long(imm32);
  1801 void Assembler::movl(Address dst, Register src) {
  1802   InstructionMark im(this);
  1803   prefix(dst, src);
  1804   emit_byte(0x89);
  1805   emit_operand(src, dst);
  1808 // New cpus require to use movsd and movss to avoid partial register stall
  1809 // when loading from memory. But for old Opteron use movlpd instead of movsd.
  1810 // The selection is done in MacroAssembler::movdbl() and movflt().
  1811 void Assembler::movlpd(XMMRegister dst, Address src) {
  1812   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1813   InstructionMark im(this);
  1814   simd_prefix(dst, dst, src, VEX_SIMD_66);
  1815   emit_byte(0x12);
  1816   emit_operand(dst, src);
  1819 void Assembler::movq( MMXRegister dst, Address src ) {
  1820   assert( VM_Version::supports_mmx(), "" );
  1821   emit_byte(0x0F);
  1822   emit_byte(0x6F);
  1823   emit_operand(dst, src);
  1826 void Assembler::movq( Address dst, MMXRegister src ) {
  1827   assert( VM_Version::supports_mmx(), "" );
  1828   emit_byte(0x0F);
  1829   emit_byte(0x7F);
  1830   // workaround gcc (3.2.1-7a) bug
  1831   // In that version of gcc with only an emit_operand(MMX, Address)
  1832   // gcc will tail jump and try and reverse the parameters completely
  1833   // obliterating dst in the process. By having a version available
  1834   // that doesn't need to swap the args at the tail jump the bug is
  1835   // avoided.
  1836   emit_operand(dst, src);
  1839 void Assembler::movq(XMMRegister dst, Address src) {
  1840   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1841   InstructionMark im(this);
  1842   simd_prefix(dst, src, VEX_SIMD_F3);
  1843   emit_byte(0x7E);
  1844   emit_operand(dst, src);
  1847 void Assembler::movq(Address dst, XMMRegister src) {
  1848   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1849   InstructionMark im(this);
  1850   simd_prefix(dst, src, VEX_SIMD_66);
  1851   emit_byte(0xD6);
  1852   emit_operand(src, dst);
  1855 void Assembler::movsbl(Register dst, Address src) { // movsxb
  1856   InstructionMark im(this);
  1857   prefix(src, dst);
  1858   emit_byte(0x0F);
  1859   emit_byte(0xBE);
  1860   emit_operand(dst, src);
  1863 void Assembler::movsbl(Register dst, Register src) { // movsxb
  1864   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1865   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1866   emit_byte(0x0F);
  1867   emit_byte(0xBE);
  1868   emit_byte(0xC0 | encode);
  1871 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
  1872   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1873   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1874   emit_byte(0x10);
  1875   emit_byte(0xC0 | encode);
  1878 void Assembler::movsd(XMMRegister dst, Address src) {
  1879   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1880   InstructionMark im(this);
  1881   simd_prefix(dst, src, VEX_SIMD_F2);
  1882   emit_byte(0x10);
  1883   emit_operand(dst, src);
  1886 void Assembler::movsd(Address dst, XMMRegister src) {
  1887   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1888   InstructionMark im(this);
  1889   simd_prefix(dst, src, VEX_SIMD_F2);
  1890   emit_byte(0x11);
  1891   emit_operand(src, dst);
  1894 void Assembler::movss(XMMRegister dst, XMMRegister src) {
  1895   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1896   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1897   emit_byte(0x10);
  1898   emit_byte(0xC0 | encode);
  1901 void Assembler::movss(XMMRegister dst, Address src) {
  1902   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1903   InstructionMark im(this);
  1904   simd_prefix(dst, src, VEX_SIMD_F3);
  1905   emit_byte(0x10);
  1906   emit_operand(dst, src);
  1909 void Assembler::movss(Address dst, XMMRegister src) {
  1910   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1911   InstructionMark im(this);
  1912   simd_prefix(dst, src, VEX_SIMD_F3);
  1913   emit_byte(0x11);
  1914   emit_operand(src, dst);
  1917 void Assembler::movswl(Register dst, Address src) { // movsxw
  1918   InstructionMark im(this);
  1919   prefix(src, dst);
  1920   emit_byte(0x0F);
  1921   emit_byte(0xBF);
  1922   emit_operand(dst, src);
  1925 void Assembler::movswl(Register dst, Register src) { // movsxw
  1926   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1927   emit_byte(0x0F);
  1928   emit_byte(0xBF);
  1929   emit_byte(0xC0 | encode);
  1932 void Assembler::movw(Address dst, int imm16) {
  1933   InstructionMark im(this);
  1935   emit_byte(0x66); // switch to 16-bit mode
  1936   prefix(dst);
  1937   emit_byte(0xC7);
  1938   emit_operand(rax, dst, 2);
  1939   emit_word(imm16);
  1942 void Assembler::movw(Register dst, Address src) {
  1943   InstructionMark im(this);
  1944   emit_byte(0x66);
  1945   prefix(src, dst);
  1946   emit_byte(0x8B);
  1947   emit_operand(dst, src);
  1950 void Assembler::movw(Address dst, Register src) {
  1951   InstructionMark im(this);
  1952   emit_byte(0x66);
  1953   prefix(dst, src);
  1954   emit_byte(0x89);
  1955   emit_operand(src, dst);
  1958 void Assembler::movzbl(Register dst, Address src) { // movzxb
  1959   InstructionMark im(this);
  1960   prefix(src, dst);
  1961   emit_byte(0x0F);
  1962   emit_byte(0xB6);
  1963   emit_operand(dst, src);
  1966 void Assembler::movzbl(Register dst, Register src) { // movzxb
  1967   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1968   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1969   emit_byte(0x0F);
  1970   emit_byte(0xB6);
  1971   emit_byte(0xC0 | encode);
  1974 void Assembler::movzwl(Register dst, Address src) { // movzxw
  1975   InstructionMark im(this);
  1976   prefix(src, dst);
  1977   emit_byte(0x0F);
  1978   emit_byte(0xB7);
  1979   emit_operand(dst, src);
  1982 void Assembler::movzwl(Register dst, Register src) { // movzxw
  1983   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1984   emit_byte(0x0F);
  1985   emit_byte(0xB7);
  1986   emit_byte(0xC0 | encode);
  1989 void Assembler::mull(Address src) {
  1990   InstructionMark im(this);
  1991   prefix(src);
  1992   emit_byte(0xF7);
  1993   emit_operand(rsp, src);
  1996 void Assembler::mull(Register src) {
  1997   int encode = prefix_and_encode(src->encoding());
  1998   emit_byte(0xF7);
  1999   emit_byte(0xE0 | encode);
  2002 void Assembler::mulsd(XMMRegister dst, Address src) {
  2003   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2004   InstructionMark im(this);
  2005   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  2006   emit_byte(0x59);
  2007   emit_operand(dst, src);
  2010 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
  2011   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2012   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  2013   emit_byte(0x59);
  2014   emit_byte(0xC0 | encode);
  2017 void Assembler::mulss(XMMRegister dst, Address src) {
  2018   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2019   InstructionMark im(this);
  2020   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  2021   emit_byte(0x59);
  2022   emit_operand(dst, src);
  2025 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
  2026   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2027   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  2028   emit_byte(0x59);
  2029   emit_byte(0xC0 | encode);
  2032 void Assembler::negl(Register dst) {
  2033   int encode = prefix_and_encode(dst->encoding());
  2034   emit_byte(0xF7);
  2035   emit_byte(0xD8 | encode);
  2038 void Assembler::nop(int i) {
  2039 #ifdef ASSERT
  2040   assert(i > 0, " ");
  2041   // The fancy nops aren't currently recognized by debuggers making it a
  2042   // pain to disassemble code while debugging. If asserts are on clearly
  2043   // speed is not an issue so simply use the single byte traditional nop
  2044   // to do alignment.
  2046   for (; i > 0 ; i--) emit_byte(0x90);
  2047   return;
  2049 #endif // ASSERT
  2051   if (UseAddressNop && VM_Version::is_intel()) {
  2052     //
  2053     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
  2054     //  1: 0x90
  2055     //  2: 0x66 0x90
  2056     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2057     //  4: 0x0F 0x1F 0x40 0x00
  2058     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2059     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2060     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2061     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2062     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2063     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2064     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2066     // The rest coding is Intel specific - don't use consecutive address nops
  2068     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2069     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2070     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2071     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2073     while(i >= 15) {
  2074       // For Intel don't generate consecutive addess nops (mix with regular nops)
  2075       i -= 15;
  2076       emit_byte(0x66);   // size prefix
  2077       emit_byte(0x66);   // size prefix
  2078       emit_byte(0x66);   // size prefix
  2079       addr_nop_8();
  2080       emit_byte(0x66);   // size prefix
  2081       emit_byte(0x66);   // size prefix
  2082       emit_byte(0x66);   // size prefix
  2083       emit_byte(0x90);   // nop
  2085     switch (i) {
  2086       case 14:
  2087         emit_byte(0x66); // size prefix
  2088       case 13:
  2089         emit_byte(0x66); // size prefix
  2090       case 12:
  2091         addr_nop_8();
  2092         emit_byte(0x66); // size prefix
  2093         emit_byte(0x66); // size prefix
  2094         emit_byte(0x66); // size prefix
  2095         emit_byte(0x90); // nop
  2096         break;
  2097       case 11:
  2098         emit_byte(0x66); // size prefix
  2099       case 10:
  2100         emit_byte(0x66); // size prefix
  2101       case 9:
  2102         emit_byte(0x66); // size prefix
  2103       case 8:
  2104         addr_nop_8();
  2105         break;
  2106       case 7:
  2107         addr_nop_7();
  2108         break;
  2109       case 6:
  2110         emit_byte(0x66); // size prefix
  2111       case 5:
  2112         addr_nop_5();
  2113         break;
  2114       case 4:
  2115         addr_nop_4();
  2116         break;
  2117       case 3:
  2118         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2119         emit_byte(0x66); // size prefix
  2120       case 2:
  2121         emit_byte(0x66); // size prefix
  2122       case 1:
  2123         emit_byte(0x90); // nop
  2124         break;
  2125       default:
  2126         assert(i == 0, " ");
  2128     return;
  2130   if (UseAddressNop && VM_Version::is_amd()) {
  2131     //
  2132     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
  2133     //  1: 0x90
  2134     //  2: 0x66 0x90
  2135     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2136     //  4: 0x0F 0x1F 0x40 0x00
  2137     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2138     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2139     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2140     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2141     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2142     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2143     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2145     // The rest coding is AMD specific - use consecutive address nops
  2147     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2148     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2149     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2150     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2151     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2152     //     Size prefixes (0x66) are added for larger sizes
  2154     while(i >= 22) {
  2155       i -= 11;
  2156       emit_byte(0x66); // size prefix
  2157       emit_byte(0x66); // size prefix
  2158       emit_byte(0x66); // size prefix
  2159       addr_nop_8();
  2161     // Generate first nop for size between 21-12
  2162     switch (i) {
  2163       case 21:
  2164         i -= 1;
  2165         emit_byte(0x66); // size prefix
  2166       case 20:
  2167       case 19:
  2168         i -= 1;
  2169         emit_byte(0x66); // size prefix
  2170       case 18:
  2171       case 17:
  2172         i -= 1;
  2173         emit_byte(0x66); // size prefix
  2174       case 16:
  2175       case 15:
  2176         i -= 8;
  2177         addr_nop_8();
  2178         break;
  2179       case 14:
  2180       case 13:
  2181         i -= 7;
  2182         addr_nop_7();
  2183         break;
  2184       case 12:
  2185         i -= 6;
  2186         emit_byte(0x66); // size prefix
  2187         addr_nop_5();
  2188         break;
  2189       default:
  2190         assert(i < 12, " ");
  2193     // Generate second nop for size between 11-1
  2194     switch (i) {
  2195       case 11:
  2196         emit_byte(0x66); // size prefix
  2197       case 10:
  2198         emit_byte(0x66); // size prefix
  2199       case 9:
  2200         emit_byte(0x66); // size prefix
  2201       case 8:
  2202         addr_nop_8();
  2203         break;
  2204       case 7:
  2205         addr_nop_7();
  2206         break;
  2207       case 6:
  2208         emit_byte(0x66); // size prefix
  2209       case 5:
  2210         addr_nop_5();
  2211         break;
  2212       case 4:
  2213         addr_nop_4();
  2214         break;
  2215       case 3:
  2216         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2217         emit_byte(0x66); // size prefix
  2218       case 2:
  2219         emit_byte(0x66); // size prefix
  2220       case 1:
  2221         emit_byte(0x90); // nop
  2222         break;
  2223       default:
  2224         assert(i == 0, " ");
  2226     return;
  2229   // Using nops with size prefixes "0x66 0x90".
  2230   // From AMD Optimization Guide:
  2231   //  1: 0x90
  2232   //  2: 0x66 0x90
  2233   //  3: 0x66 0x66 0x90
  2234   //  4: 0x66 0x66 0x66 0x90
  2235   //  5: 0x66 0x66 0x90 0x66 0x90
  2236   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
  2237   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
  2238   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
  2239   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2240   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2241   //
  2242   while(i > 12) {
  2243     i -= 4;
  2244     emit_byte(0x66); // size prefix
  2245     emit_byte(0x66);
  2246     emit_byte(0x66);
  2247     emit_byte(0x90); // nop
  2249   // 1 - 12 nops
  2250   if(i > 8) {
  2251     if(i > 9) {
  2252       i -= 1;
  2253       emit_byte(0x66);
  2255     i -= 3;
  2256     emit_byte(0x66);
  2257     emit_byte(0x66);
  2258     emit_byte(0x90);
  2260   // 1 - 8 nops
  2261   if(i > 4) {
  2262     if(i > 6) {
  2263       i -= 1;
  2264       emit_byte(0x66);
  2266     i -= 3;
  2267     emit_byte(0x66);
  2268     emit_byte(0x66);
  2269     emit_byte(0x90);
  2271   switch (i) {
  2272     case 4:
  2273       emit_byte(0x66);
  2274     case 3:
  2275       emit_byte(0x66);
  2276     case 2:
  2277       emit_byte(0x66);
  2278     case 1:
  2279       emit_byte(0x90);
  2280       break;
  2281     default:
  2282       assert(i == 0, " ");
  2286 void Assembler::notl(Register dst) {
  2287   int encode = prefix_and_encode(dst->encoding());
  2288   emit_byte(0xF7);
  2289   emit_byte(0xD0 | encode );
  2292 void Assembler::orl(Address dst, int32_t imm32) {
  2293   InstructionMark im(this);
  2294   prefix(dst);
  2295   emit_arith_operand(0x81, rcx, dst, imm32);
  2298 void Assembler::orl(Register dst, int32_t imm32) {
  2299   prefix(dst);
  2300   emit_arith(0x81, 0xC8, dst, imm32);
  2303 void Assembler::orl(Register dst, Address src) {
  2304   InstructionMark im(this);
  2305   prefix(src, dst);
  2306   emit_byte(0x0B);
  2307   emit_operand(dst, src);
  2310 void Assembler::orl(Register dst, Register src) {
  2311   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2312   emit_arith(0x0B, 0xC0, dst, src);
  2315 void Assembler::packuswb(XMMRegister dst, Address src) {
  2316   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2317   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2318   InstructionMark im(this);
  2319   simd_prefix(dst, dst, src, VEX_SIMD_66);
  2320   emit_byte(0x67);
  2321   emit_operand(dst, src);
  2324 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
  2325   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2326   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  2327   emit_byte(0x67);
  2328   emit_byte(0xC0 | encode);
  2331 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
  2332   assert(VM_Version::supports_sse4_2(), "");
  2333   InstructionMark im(this);
  2334   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
  2335   emit_byte(0x61);
  2336   emit_operand(dst, src);
  2337   emit_byte(imm8);
  2340 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
  2341   assert(VM_Version::supports_sse4_2(), "");
  2342   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
  2343   emit_byte(0x61);
  2344   emit_byte(0xC0 | encode);
  2345   emit_byte(imm8);
  2348 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
  2349   assert(VM_Version::supports_sse4_1(), "");
  2350   InstructionMark im(this);
  2351   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2352   emit_byte(0x30);
  2353   emit_operand(dst, src);
  2356 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
  2357   assert(VM_Version::supports_sse4_1(), "");
  2358   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2359   emit_byte(0x30);
  2360   emit_byte(0xC0 | encode);
  2363 // generic
  2364 void Assembler::pop(Register dst) {
  2365   int encode = prefix_and_encode(dst->encoding());
  2366   emit_byte(0x58 | encode);
  2369 void Assembler::popcntl(Register dst, Address src) {
  2370   assert(VM_Version::supports_popcnt(), "must support");
  2371   InstructionMark im(this);
  2372   emit_byte(0xF3);
  2373   prefix(src, dst);
  2374   emit_byte(0x0F);
  2375   emit_byte(0xB8);
  2376   emit_operand(dst, src);
  2379 void Assembler::popcntl(Register dst, Register src) {
  2380   assert(VM_Version::supports_popcnt(), "must support");
  2381   emit_byte(0xF3);
  2382   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2383   emit_byte(0x0F);
  2384   emit_byte(0xB8);
  2385   emit_byte(0xC0 | encode);
  2388 void Assembler::popf() {
  2389   emit_byte(0x9D);
  2392 #ifndef _LP64 // no 32bit push/pop on amd64
  2393 void Assembler::popl(Address dst) {
  2394   // NOTE: this will adjust stack by 8byte on 64bits
  2395   InstructionMark im(this);
  2396   prefix(dst);
  2397   emit_byte(0x8F);
  2398   emit_operand(rax, dst);
  2400 #endif
  2402 void Assembler::prefetch_prefix(Address src) {
  2403   prefix(src);
  2404   emit_byte(0x0F);
  2407 void Assembler::prefetchnta(Address src) {
  2408   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2409   InstructionMark im(this);
  2410   prefetch_prefix(src);
  2411   emit_byte(0x18);
  2412   emit_operand(rax, src); // 0, src
  2415 void Assembler::prefetchr(Address src) {
  2416   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2417   InstructionMark im(this);
  2418   prefetch_prefix(src);
  2419   emit_byte(0x0D);
  2420   emit_operand(rax, src); // 0, src
  2423 void Assembler::prefetcht0(Address src) {
  2424   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2425   InstructionMark im(this);
  2426   prefetch_prefix(src);
  2427   emit_byte(0x18);
  2428   emit_operand(rcx, src); // 1, src
  2431 void Assembler::prefetcht1(Address src) {
  2432   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2433   InstructionMark im(this);
  2434   prefetch_prefix(src);
  2435   emit_byte(0x18);
  2436   emit_operand(rdx, src); // 2, src
  2439 void Assembler::prefetcht2(Address src) {
  2440   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2441   InstructionMark im(this);
  2442   prefetch_prefix(src);
  2443   emit_byte(0x18);
  2444   emit_operand(rbx, src); // 3, src
  2447 void Assembler::prefetchw(Address src) {
  2448   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2449   InstructionMark im(this);
  2450   prefetch_prefix(src);
  2451   emit_byte(0x0D);
  2452   emit_operand(rcx, src); // 1, src
  2455 void Assembler::prefix(Prefix p) {
  2456   a_byte(p);
  2459 void Assembler::por(XMMRegister dst, XMMRegister src) {
  2460   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2461   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  2462   emit_byte(0xEB);
  2463   emit_byte(0xC0 | encode);
  2466 void Assembler::por(XMMRegister dst, Address src) {
  2467   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2468   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2469   InstructionMark im(this);
  2470   simd_prefix(dst, dst, src, VEX_SIMD_66);
  2471   emit_byte(0xEB);
  2472   emit_operand(dst, src);
  2475 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
  2476   assert(isByte(mode), "invalid value");
  2477   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2478   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  2479   emit_byte(0x70);
  2480   emit_byte(0xC0 | encode);
  2481   emit_byte(mode & 0xFF);
  2485 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
  2486   assert(isByte(mode), "invalid value");
  2487   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2488   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2489   InstructionMark im(this);
  2490   simd_prefix(dst, src, VEX_SIMD_66);
  2491   emit_byte(0x70);
  2492   emit_operand(dst, src);
  2493   emit_byte(mode & 0xFF);
  2496 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
  2497   assert(isByte(mode), "invalid value");
  2498   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2499   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
  2500   emit_byte(0x70);
  2501   emit_byte(0xC0 | encode);
  2502   emit_byte(mode & 0xFF);
  2505 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
  2506   assert(isByte(mode), "invalid value");
  2507   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2508   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2509   InstructionMark im(this);
  2510   simd_prefix(dst, src, VEX_SIMD_F2);
  2511   emit_byte(0x70);
  2512   emit_operand(dst, src);
  2513   emit_byte(mode & 0xFF);
  2516 void Assembler::psrlq(XMMRegister dst, int shift) {
  2517   // Shift 64 bit value logically right by specified number of bits.
  2518   // HMM Table D-1 says sse2 or mmx.
  2519   // Do not confuse it with psrldq SSE2 instruction which
  2520   // shifts 128 bit value in xmm register by number of bytes.
  2521   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2522   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  2523   emit_byte(0x73);
  2524   emit_byte(0xC0 | encode);
  2525   emit_byte(shift);
  2528 void Assembler::psrldq(XMMRegister dst, int shift) {
  2529   // Shift 128 bit value in xmm register by number of bytes.
  2530   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2531   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66);
  2532   emit_byte(0x73);
  2533   emit_byte(0xC0 | encode);
  2534   emit_byte(shift);
  2537 void Assembler::ptest(XMMRegister dst, Address src) {
  2538   assert(VM_Version::supports_sse4_1(), "");
  2539   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2540   InstructionMark im(this);
  2541   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2542   emit_byte(0x17);
  2543   emit_operand(dst, src);
  2546 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
  2547   assert(VM_Version::supports_sse4_1(), "");
  2548   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2549   emit_byte(0x17);
  2550   emit_byte(0xC0 | encode);
  2553 void Assembler::punpcklbw(XMMRegister dst, Address src) {
  2554   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2555   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2556   InstructionMark im(this);
  2557   simd_prefix(dst, dst, src, VEX_SIMD_66);
  2558   emit_byte(0x60);
  2559   emit_operand(dst, src);
  2562 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
  2563   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2564   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  2565   emit_byte(0x60);
  2566   emit_byte(0xC0 | encode);
  2569 void Assembler::punpckldq(XMMRegister dst, Address src) {
  2570   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2571   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2572   InstructionMark im(this);
  2573   simd_prefix(dst, dst, src, VEX_SIMD_66);
  2574   emit_byte(0x62);
  2575   emit_operand(dst, src);
  2578 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
  2579   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2580   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  2581   emit_byte(0x62);
  2582   emit_byte(0xC0 | encode);
  2585 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
  2586   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2587   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  2588   emit_byte(0x6C);
  2589   emit_byte(0xC0 | encode);
  2592 void Assembler::push(int32_t imm32) {
  2593   // in 64bits we push 64bits onto the stack but only
  2594   // take a 32bit immediate
  2595   emit_byte(0x68);
  2596   emit_long(imm32);
  2599 void Assembler::push(Register src) {
  2600   int encode = prefix_and_encode(src->encoding());
  2602   emit_byte(0x50 | encode);
  2605 void Assembler::pushf() {
  2606   emit_byte(0x9C);
  2609 #ifndef _LP64 // no 32bit push/pop on amd64
  2610 void Assembler::pushl(Address src) {
  2611   // Note this will push 64bit on 64bit
  2612   InstructionMark im(this);
  2613   prefix(src);
  2614   emit_byte(0xFF);
  2615   emit_operand(rsi, src);
  2617 #endif
  2619 void Assembler::pxor(XMMRegister dst, Address src) {
  2620   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2621   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2622   InstructionMark im(this);
  2623   simd_prefix(dst, dst, src, VEX_SIMD_66);
  2624   emit_byte(0xEF);
  2625   emit_operand(dst, src);
  2628 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
  2629   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2630   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  2631   emit_byte(0xEF);
  2632   emit_byte(0xC0 | encode);
  2635 void Assembler::rcll(Register dst, int imm8) {
  2636   assert(isShiftCount(imm8), "illegal shift count");
  2637   int encode = prefix_and_encode(dst->encoding());
  2638   if (imm8 == 1) {
  2639     emit_byte(0xD1);
  2640     emit_byte(0xD0 | encode);
  2641   } else {
  2642     emit_byte(0xC1);
  2643     emit_byte(0xD0 | encode);
  2644     emit_byte(imm8);
  2648 // copies data from [esi] to [edi] using rcx pointer sized words
  2649 // generic
  2650 void Assembler::rep_mov() {
  2651   emit_byte(0xF3);
  2652   // MOVSQ
  2653   LP64_ONLY(prefix(REX_W));
  2654   emit_byte(0xA5);
  2657 // sets rcx pointer sized words with rax, value at [edi]
  2658 // generic
  2659 void Assembler::rep_set() { // rep_set
  2660   emit_byte(0xF3);
  2661   // STOSQ
  2662   LP64_ONLY(prefix(REX_W));
  2663   emit_byte(0xAB);
  2666 // scans rcx pointer sized words at [edi] for occurance of rax,
  2667 // generic
  2668 void Assembler::repne_scan() { // repne_scan
  2669   emit_byte(0xF2);
  2670   // SCASQ
  2671   LP64_ONLY(prefix(REX_W));
  2672   emit_byte(0xAF);
  2675 #ifdef _LP64
  2676 // scans rcx 4 byte words at [edi] for occurance of rax,
  2677 // generic
  2678 void Assembler::repne_scanl() { // repne_scan
  2679   emit_byte(0xF2);
  2680   // SCASL
  2681   emit_byte(0xAF);
  2683 #endif
  2685 void Assembler::ret(int imm16) {
  2686   if (imm16 == 0) {
  2687     emit_byte(0xC3);
  2688   } else {
  2689     emit_byte(0xC2);
  2690     emit_word(imm16);
  2694 void Assembler::sahf() {
  2695 #ifdef _LP64
  2696   // Not supported in 64bit mode
  2697   ShouldNotReachHere();
  2698 #endif
  2699   emit_byte(0x9E);
  2702 void Assembler::sarl(Register dst, int imm8) {
  2703   int encode = prefix_and_encode(dst->encoding());
  2704   assert(isShiftCount(imm8), "illegal shift count");
  2705   if (imm8 == 1) {
  2706     emit_byte(0xD1);
  2707     emit_byte(0xF8 | encode);
  2708   } else {
  2709     emit_byte(0xC1);
  2710     emit_byte(0xF8 | encode);
  2711     emit_byte(imm8);
  2715 void Assembler::sarl(Register dst) {
  2716   int encode = prefix_and_encode(dst->encoding());
  2717   emit_byte(0xD3);
  2718   emit_byte(0xF8 | encode);
  2721 void Assembler::sbbl(Address dst, int32_t imm32) {
  2722   InstructionMark im(this);
  2723   prefix(dst);
  2724   emit_arith_operand(0x81, rbx, dst, imm32);
  2727 void Assembler::sbbl(Register dst, int32_t imm32) {
  2728   prefix(dst);
  2729   emit_arith(0x81, 0xD8, dst, imm32);
  2733 void Assembler::sbbl(Register dst, Address src) {
  2734   InstructionMark im(this);
  2735   prefix(src, dst);
  2736   emit_byte(0x1B);
  2737   emit_operand(dst, src);
  2740 void Assembler::sbbl(Register dst, Register src) {
  2741   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2742   emit_arith(0x1B, 0xC0, dst, src);
  2745 void Assembler::setb(Condition cc, Register dst) {
  2746   assert(0 <= cc && cc < 16, "illegal cc");
  2747   int encode = prefix_and_encode(dst->encoding(), true);
  2748   emit_byte(0x0F);
  2749   emit_byte(0x90 | cc);
  2750   emit_byte(0xC0 | encode);
  2753 void Assembler::shll(Register dst, int imm8) {
  2754   assert(isShiftCount(imm8), "illegal shift count");
  2755   int encode = prefix_and_encode(dst->encoding());
  2756   if (imm8 == 1 ) {
  2757     emit_byte(0xD1);
  2758     emit_byte(0xE0 | encode);
  2759   } else {
  2760     emit_byte(0xC1);
  2761     emit_byte(0xE0 | encode);
  2762     emit_byte(imm8);
  2766 void Assembler::shll(Register dst) {
  2767   int encode = prefix_and_encode(dst->encoding());
  2768   emit_byte(0xD3);
  2769   emit_byte(0xE0 | encode);
  2772 void Assembler::shrl(Register dst, int imm8) {
  2773   assert(isShiftCount(imm8), "illegal shift count");
  2774   int encode = prefix_and_encode(dst->encoding());
  2775   emit_byte(0xC1);
  2776   emit_byte(0xE8 | encode);
  2777   emit_byte(imm8);
  2780 void Assembler::shrl(Register dst) {
  2781   int encode = prefix_and_encode(dst->encoding());
  2782   emit_byte(0xD3);
  2783   emit_byte(0xE8 | encode);
  2786 // copies a single word from [esi] to [edi]
  2787 void Assembler::smovl() {
  2788   emit_byte(0xA5);
  2791 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
  2792   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2793   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  2794   emit_byte(0x51);
  2795   emit_byte(0xC0 | encode);
  2798 void Assembler::sqrtsd(XMMRegister dst, Address src) {
  2799   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2800   InstructionMark im(this);
  2801   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  2802   emit_byte(0x51);
  2803   emit_operand(dst, src);
  2806 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
  2807   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2808   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  2809   emit_byte(0x51);
  2810   emit_byte(0xC0 | encode);
  2813 void Assembler::sqrtss(XMMRegister dst, Address src) {
  2814   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2815   InstructionMark im(this);
  2816   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  2817   emit_byte(0x51);
  2818   emit_operand(dst, src);
  2821 void Assembler::stmxcsr( Address dst) {
  2822   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2823   InstructionMark im(this);
  2824   prefix(dst);
  2825   emit_byte(0x0F);
  2826   emit_byte(0xAE);
  2827   emit_operand(as_Register(3), dst);
  2830 void Assembler::subl(Address dst, int32_t imm32) {
  2831   InstructionMark im(this);
  2832   prefix(dst);
  2833   emit_arith_operand(0x81, rbp, dst, imm32);
  2836 void Assembler::subl(Address dst, Register src) {
  2837   InstructionMark im(this);
  2838   prefix(dst, src);
  2839   emit_byte(0x29);
  2840   emit_operand(src, dst);
  2843 void Assembler::subl(Register dst, int32_t imm32) {
  2844   prefix(dst);
  2845   emit_arith(0x81, 0xE8, dst, imm32);
  2848 // Force generation of a 4 byte immediate value even if it fits into 8bit
  2849 void Assembler::subl_imm32(Register dst, int32_t imm32) {
  2850   prefix(dst);
  2851   emit_arith_imm32(0x81, 0xE8, dst, imm32);
  2854 void Assembler::subl(Register dst, Address src) {
  2855   InstructionMark im(this);
  2856   prefix(src, dst);
  2857   emit_byte(0x2B);
  2858   emit_operand(dst, src);
  2861 void Assembler::subl(Register dst, Register src) {
  2862   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2863   emit_arith(0x2B, 0xC0, dst, src);
  2866 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
  2867   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2868   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  2869   emit_byte(0x5C);
  2870   emit_byte(0xC0 | encode);
  2873 void Assembler::subsd(XMMRegister dst, Address src) {
  2874   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2875   InstructionMark im(this);
  2876   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  2877   emit_byte(0x5C);
  2878   emit_operand(dst, src);
  2881 void Assembler::subss(XMMRegister dst, XMMRegister src) {
  2882   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2883   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  2884   emit_byte(0x5C);
  2885   emit_byte(0xC0 | encode);
  2888 void Assembler::subss(XMMRegister dst, Address src) {
  2889   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2890   InstructionMark im(this);
  2891   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  2892   emit_byte(0x5C);
  2893   emit_operand(dst, src);
  2896 void Assembler::testb(Register dst, int imm8) {
  2897   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  2898   (void) prefix_and_encode(dst->encoding(), true);
  2899   emit_arith_b(0xF6, 0xC0, dst, imm8);
  2902 void Assembler::testl(Register dst, int32_t imm32) {
  2903   // not using emit_arith because test
  2904   // doesn't support sign-extension of
  2905   // 8bit operands
  2906   int encode = dst->encoding();
  2907   if (encode == 0) {
  2908     emit_byte(0xA9);
  2909   } else {
  2910     encode = prefix_and_encode(encode);
  2911     emit_byte(0xF7);
  2912     emit_byte(0xC0 | encode);
  2914   emit_long(imm32);
  2917 void Assembler::testl(Register dst, Register src) {
  2918   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2919   emit_arith(0x85, 0xC0, dst, src);
  2922 void Assembler::testl(Register dst, Address  src) {
  2923   InstructionMark im(this);
  2924   prefix(src, dst);
  2925   emit_byte(0x85);
  2926   emit_operand(dst, src);
  2929 void Assembler::ucomisd(XMMRegister dst, Address src) {
  2930   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2931   InstructionMark im(this);
  2932   simd_prefix(dst, src, VEX_SIMD_66);
  2933   emit_byte(0x2E);
  2934   emit_operand(dst, src);
  2937 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
  2938   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2939   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  2940   emit_byte(0x2E);
  2941   emit_byte(0xC0 | encode);
  2944 void Assembler::ucomiss(XMMRegister dst, Address src) {
  2945   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2946   InstructionMark im(this);
  2947   simd_prefix(dst, src, VEX_SIMD_NONE);
  2948   emit_byte(0x2E);
  2949   emit_operand(dst, src);
  2952 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
  2953   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2954   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_NONE);
  2955   emit_byte(0x2E);
  2956   emit_byte(0xC0 | encode);
  2960 void Assembler::xaddl(Address dst, Register src) {
  2961   InstructionMark im(this);
  2962   prefix(dst, src);
  2963   emit_byte(0x0F);
  2964   emit_byte(0xC1);
  2965   emit_operand(src, dst);
  2968 void Assembler::xchgl(Register dst, Address src) { // xchg
  2969   InstructionMark im(this);
  2970   prefix(src, dst);
  2971   emit_byte(0x87);
  2972   emit_operand(dst, src);
  2975 void Assembler::xchgl(Register dst, Register src) {
  2976   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2977   emit_byte(0x87);
  2978   emit_byte(0xc0 | encode);
  2981 void Assembler::xorl(Register dst, int32_t imm32) {
  2982   prefix(dst);
  2983   emit_arith(0x81, 0xF0, dst, imm32);
  2986 void Assembler::xorl(Register dst, Address src) {
  2987   InstructionMark im(this);
  2988   prefix(src, dst);
  2989   emit_byte(0x33);
  2990   emit_operand(dst, src);
  2993 void Assembler::xorl(Register dst, Register src) {
  2994   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2995   emit_arith(0x33, 0xC0, dst, src);
  2998 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
  2999   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3000   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  3001   emit_byte(0x57);
  3002   emit_byte(0xC0 | encode);
  3005 void Assembler::xorpd(XMMRegister dst, Address src) {
  3006   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3007   InstructionMark im(this);
  3008   simd_prefix(dst, dst, src, VEX_SIMD_66);
  3009   emit_byte(0x57);
  3010   emit_operand(dst, src);
  3014 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
  3015   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3016   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE);
  3017   emit_byte(0x57);
  3018   emit_byte(0xC0 | encode);
  3021 void Assembler::xorps(XMMRegister dst, Address src) {
  3022   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3023   InstructionMark im(this);
  3024   simd_prefix(dst, dst, src, VEX_SIMD_NONE);
  3025   emit_byte(0x57);
  3026   emit_operand(dst, src);
  3029 // AVX 3-operands non destructive source instructions (encoded with VEX prefix)
  3031 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
  3032   assert(VM_Version::supports_avx(), "");
  3033   InstructionMark im(this);
  3034   vex_prefix(dst, nds, src, VEX_SIMD_F2);
  3035   emit_byte(0x58);
  3036   emit_operand(dst, src);
  3039 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3040   assert(VM_Version::supports_avx(), "");
  3041   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F2);
  3042   emit_byte(0x58);
  3043   emit_byte(0xC0 | encode);
  3046 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
  3047   assert(VM_Version::supports_avx(), "");
  3048   InstructionMark im(this);
  3049   vex_prefix(dst, nds, src, VEX_SIMD_F3);
  3050   emit_byte(0x58);
  3051   emit_operand(dst, src);
  3054 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3055   assert(VM_Version::supports_avx(), "");
  3056   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F3);
  3057   emit_byte(0x58);
  3058   emit_byte(0xC0 | encode);
  3061 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src) {
  3062   assert(VM_Version::supports_avx(), "");
  3063   InstructionMark im(this);
  3064   vex_prefix(dst, nds, src, VEX_SIMD_66); // 128-bit vector
  3065   emit_byte(0x54);
  3066   emit_operand(dst, src);
  3069 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src) {
  3070   assert(VM_Version::supports_avx(), "");
  3071   InstructionMark im(this);
  3072   vex_prefix(dst, nds, src, VEX_SIMD_NONE); // 128-bit vector
  3073   emit_byte(0x54);
  3074   emit_operand(dst, src);
  3077 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
  3078   assert(VM_Version::supports_avx(), "");
  3079   InstructionMark im(this);
  3080   vex_prefix(dst, nds, src, VEX_SIMD_F2);
  3081   emit_byte(0x5E);
  3082   emit_operand(dst, src);
  3085 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3086   assert(VM_Version::supports_avx(), "");
  3087   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F2);
  3088   emit_byte(0x5E);
  3089   emit_byte(0xC0 | encode);
  3092 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
  3093   assert(VM_Version::supports_avx(), "");
  3094   InstructionMark im(this);
  3095   vex_prefix(dst, nds, src, VEX_SIMD_F3);
  3096   emit_byte(0x5E);
  3097   emit_operand(dst, src);
  3100 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3101   assert(VM_Version::supports_avx(), "");
  3102   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F3);
  3103   emit_byte(0x5E);
  3104   emit_byte(0xC0 | encode);
  3107 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
  3108   assert(VM_Version::supports_avx(), "");
  3109   InstructionMark im(this);
  3110   vex_prefix(dst, nds, src, VEX_SIMD_F2);
  3111   emit_byte(0x59);
  3112   emit_operand(dst, src);
  3115 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3116   assert(VM_Version::supports_avx(), "");
  3117   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F2);
  3118   emit_byte(0x59);
  3119   emit_byte(0xC0 | encode);
  3122 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
  3123   InstructionMark im(this);
  3124   vex_prefix(dst, nds, src, VEX_SIMD_F3);
  3125   emit_byte(0x59);
  3126   emit_operand(dst, src);
  3129 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3130   assert(VM_Version::supports_avx(), "");
  3131   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F3);
  3132   emit_byte(0x59);
  3133   emit_byte(0xC0 | encode);
  3137 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
  3138   assert(VM_Version::supports_avx(), "");
  3139   InstructionMark im(this);
  3140   vex_prefix(dst, nds, src, VEX_SIMD_F2);
  3141   emit_byte(0x5C);
  3142   emit_operand(dst, src);
  3145 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3146   assert(VM_Version::supports_avx(), "");
  3147   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F2);
  3148   emit_byte(0x5C);
  3149   emit_byte(0xC0 | encode);
  3152 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
  3153   assert(VM_Version::supports_avx(), "");
  3154   InstructionMark im(this);
  3155   vex_prefix(dst, nds, src, VEX_SIMD_F3);
  3156   emit_byte(0x5C);
  3157   emit_operand(dst, src);
  3160 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3161   assert(VM_Version::supports_avx(), "");
  3162   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F3);
  3163   emit_byte(0x5C);
  3164   emit_byte(0xC0 | encode);
  3167 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src) {
  3168   assert(VM_Version::supports_avx(), "");
  3169   InstructionMark im(this);
  3170   vex_prefix(dst, nds, src, VEX_SIMD_66); // 128-bit vector
  3171   emit_byte(0x57);
  3172   emit_operand(dst, src);
  3175 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3176   assert(VM_Version::supports_avx(), "");
  3177   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256);
  3178   emit_byte(0x57);
  3179   emit_byte(0xC0 | encode);
  3182 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src) {
  3183   assert(VM_Version::supports_avx(), "");
  3184   InstructionMark im(this);
  3185   vex_prefix(dst, nds, src, VEX_SIMD_NONE); // 128-bit vector
  3186   emit_byte(0x57);
  3187   emit_operand(dst, src);
  3190 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3191   assert(VM_Version::supports_avx(), "");
  3192   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_NONE, vector256);
  3193   emit_byte(0x57);
  3194   emit_byte(0xC0 | encode);
  3197 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3198   assert(VM_Version::supports_avx2() || (!vector256) && VM_Version::supports_avx(), "");
  3199   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256);
  3200   emit_byte(0xEF);
  3201   emit_byte(0xC0 | encode);
  3204 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3205   assert(VM_Version::supports_avx(), "");
  3206   bool vector256 = true;
  3207   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
  3208   emit_byte(0x18);
  3209   emit_byte(0xC0 | encode);
  3210   // 0x00 - insert into lower 128 bits
  3211   // 0x01 - insert into upper 128 bits
  3212   emit_byte(0x01);
  3215 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3216   assert(VM_Version::supports_avx2(), "");
  3217   bool vector256 = true;
  3218   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
  3219   emit_byte(0x38);
  3220   emit_byte(0xC0 | encode);
  3221   // 0x00 - insert into lower 128 bits
  3222   // 0x01 - insert into upper 128 bits
  3223   emit_byte(0x01);
  3226 void Assembler::vzeroupper() {
  3227   assert(VM_Version::supports_avx(), "");
  3228   (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE);
  3229   emit_byte(0x77);
  3233 #ifndef _LP64
  3234 // 32bit only pieces of the assembler
  3236 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  3237   // NO PREFIX AS NEVER 64BIT
  3238   InstructionMark im(this);
  3239   emit_byte(0x81);
  3240   emit_byte(0xF8 | src1->encoding());
  3241   emit_data(imm32, rspec, 0);
  3244 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  3245   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
  3246   InstructionMark im(this);
  3247   emit_byte(0x81);
  3248   emit_operand(rdi, src1);
  3249   emit_data(imm32, rspec, 0);
  3252 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
  3253 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
  3254 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
  3255 void Assembler::cmpxchg8(Address adr) {
  3256   InstructionMark im(this);
  3257   emit_byte(0x0F);
  3258   emit_byte(0xc7);
  3259   emit_operand(rcx, adr);
  3262 void Assembler::decl(Register dst) {
  3263   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  3264  emit_byte(0x48 | dst->encoding());
  3267 #endif // _LP64
  3269 // 64bit typically doesn't use the x87 but needs to for the trig funcs
  3271 void Assembler::fabs() {
  3272   emit_byte(0xD9);
  3273   emit_byte(0xE1);
  3276 void Assembler::fadd(int i) {
  3277   emit_farith(0xD8, 0xC0, i);
  3280 void Assembler::fadd_d(Address src) {
  3281   InstructionMark im(this);
  3282   emit_byte(0xDC);
  3283   emit_operand32(rax, src);
  3286 void Assembler::fadd_s(Address src) {
  3287   InstructionMark im(this);
  3288   emit_byte(0xD8);
  3289   emit_operand32(rax, src);
  3292 void Assembler::fadda(int i) {
  3293   emit_farith(0xDC, 0xC0, i);
  3296 void Assembler::faddp(int i) {
  3297   emit_farith(0xDE, 0xC0, i);
  3300 void Assembler::fchs() {
  3301   emit_byte(0xD9);
  3302   emit_byte(0xE0);
  3305 void Assembler::fcom(int i) {
  3306   emit_farith(0xD8, 0xD0, i);
  3309 void Assembler::fcomp(int i) {
  3310   emit_farith(0xD8, 0xD8, i);
  3313 void Assembler::fcomp_d(Address src) {
  3314   InstructionMark im(this);
  3315   emit_byte(0xDC);
  3316   emit_operand32(rbx, src);
  3319 void Assembler::fcomp_s(Address src) {
  3320   InstructionMark im(this);
  3321   emit_byte(0xD8);
  3322   emit_operand32(rbx, src);
  3325 void Assembler::fcompp() {
  3326   emit_byte(0xDE);
  3327   emit_byte(0xD9);
  3330 void Assembler::fcos() {
  3331   emit_byte(0xD9);
  3332   emit_byte(0xFF);
  3335 void Assembler::fdecstp() {
  3336   emit_byte(0xD9);
  3337   emit_byte(0xF6);
  3340 void Assembler::fdiv(int i) {
  3341   emit_farith(0xD8, 0xF0, i);
  3344 void Assembler::fdiv_d(Address src) {
  3345   InstructionMark im(this);
  3346   emit_byte(0xDC);
  3347   emit_operand32(rsi, src);
  3350 void Assembler::fdiv_s(Address src) {
  3351   InstructionMark im(this);
  3352   emit_byte(0xD8);
  3353   emit_operand32(rsi, src);
  3356 void Assembler::fdiva(int i) {
  3357   emit_farith(0xDC, 0xF8, i);
  3360 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
  3361 //       is erroneous for some of the floating-point instructions below.
  3363 void Assembler::fdivp(int i) {
  3364   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
  3367 void Assembler::fdivr(int i) {
  3368   emit_farith(0xD8, 0xF8, i);
  3371 void Assembler::fdivr_d(Address src) {
  3372   InstructionMark im(this);
  3373   emit_byte(0xDC);
  3374   emit_operand32(rdi, src);
  3377 void Assembler::fdivr_s(Address src) {
  3378   InstructionMark im(this);
  3379   emit_byte(0xD8);
  3380   emit_operand32(rdi, src);
  3383 void Assembler::fdivra(int i) {
  3384   emit_farith(0xDC, 0xF0, i);
  3387 void Assembler::fdivrp(int i) {
  3388   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
  3391 void Assembler::ffree(int i) {
  3392   emit_farith(0xDD, 0xC0, i);
  3395 void Assembler::fild_d(Address adr) {
  3396   InstructionMark im(this);
  3397   emit_byte(0xDF);
  3398   emit_operand32(rbp, adr);
  3401 void Assembler::fild_s(Address adr) {
  3402   InstructionMark im(this);
  3403   emit_byte(0xDB);
  3404   emit_operand32(rax, adr);
  3407 void Assembler::fincstp() {
  3408   emit_byte(0xD9);
  3409   emit_byte(0xF7);
  3412 void Assembler::finit() {
  3413   emit_byte(0x9B);
  3414   emit_byte(0xDB);
  3415   emit_byte(0xE3);
  3418 void Assembler::fist_s(Address adr) {
  3419   InstructionMark im(this);
  3420   emit_byte(0xDB);
  3421   emit_operand32(rdx, adr);
  3424 void Assembler::fistp_d(Address adr) {
  3425   InstructionMark im(this);
  3426   emit_byte(0xDF);
  3427   emit_operand32(rdi, adr);
  3430 void Assembler::fistp_s(Address adr) {
  3431   InstructionMark im(this);
  3432   emit_byte(0xDB);
  3433   emit_operand32(rbx, adr);
  3436 void Assembler::fld1() {
  3437   emit_byte(0xD9);
  3438   emit_byte(0xE8);
  3441 void Assembler::fld_d(Address adr) {
  3442   InstructionMark im(this);
  3443   emit_byte(0xDD);
  3444   emit_operand32(rax, adr);
  3447 void Assembler::fld_s(Address adr) {
  3448   InstructionMark im(this);
  3449   emit_byte(0xD9);
  3450   emit_operand32(rax, adr);
  3454 void Assembler::fld_s(int index) {
  3455   emit_farith(0xD9, 0xC0, index);
  3458 void Assembler::fld_x(Address adr) {
  3459   InstructionMark im(this);
  3460   emit_byte(0xDB);
  3461   emit_operand32(rbp, adr);
  3464 void Assembler::fldcw(Address src) {
  3465   InstructionMark im(this);
  3466   emit_byte(0xd9);
  3467   emit_operand32(rbp, src);
  3470 void Assembler::fldenv(Address src) {
  3471   InstructionMark im(this);
  3472   emit_byte(0xD9);
  3473   emit_operand32(rsp, src);
  3476 void Assembler::fldlg2() {
  3477   emit_byte(0xD9);
  3478   emit_byte(0xEC);
  3481 void Assembler::fldln2() {
  3482   emit_byte(0xD9);
  3483   emit_byte(0xED);
  3486 void Assembler::fldz() {
  3487   emit_byte(0xD9);
  3488   emit_byte(0xEE);
  3491 void Assembler::flog() {
  3492   fldln2();
  3493   fxch();
  3494   fyl2x();
  3497 void Assembler::flog10() {
  3498   fldlg2();
  3499   fxch();
  3500   fyl2x();
  3503 void Assembler::fmul(int i) {
  3504   emit_farith(0xD8, 0xC8, i);
  3507 void Assembler::fmul_d(Address src) {
  3508   InstructionMark im(this);
  3509   emit_byte(0xDC);
  3510   emit_operand32(rcx, src);
  3513 void Assembler::fmul_s(Address src) {
  3514   InstructionMark im(this);
  3515   emit_byte(0xD8);
  3516   emit_operand32(rcx, src);
  3519 void Assembler::fmula(int i) {
  3520   emit_farith(0xDC, 0xC8, i);
  3523 void Assembler::fmulp(int i) {
  3524   emit_farith(0xDE, 0xC8, i);
  3527 void Assembler::fnsave(Address dst) {
  3528   InstructionMark im(this);
  3529   emit_byte(0xDD);
  3530   emit_operand32(rsi, dst);
  3533 void Assembler::fnstcw(Address src) {
  3534   InstructionMark im(this);
  3535   emit_byte(0x9B);
  3536   emit_byte(0xD9);
  3537   emit_operand32(rdi, src);
  3540 void Assembler::fnstsw_ax() {
  3541   emit_byte(0xdF);
  3542   emit_byte(0xE0);
  3545 void Assembler::fprem() {
  3546   emit_byte(0xD9);
  3547   emit_byte(0xF8);
  3550 void Assembler::fprem1() {
  3551   emit_byte(0xD9);
  3552   emit_byte(0xF5);
  3555 void Assembler::frstor(Address src) {
  3556   InstructionMark im(this);
  3557   emit_byte(0xDD);
  3558   emit_operand32(rsp, src);
  3561 void Assembler::fsin() {
  3562   emit_byte(0xD9);
  3563   emit_byte(0xFE);
  3566 void Assembler::fsqrt() {
  3567   emit_byte(0xD9);
  3568   emit_byte(0xFA);
  3571 void Assembler::fst_d(Address adr) {
  3572   InstructionMark im(this);
  3573   emit_byte(0xDD);
  3574   emit_operand32(rdx, adr);
  3577 void Assembler::fst_s(Address adr) {
  3578   InstructionMark im(this);
  3579   emit_byte(0xD9);
  3580   emit_operand32(rdx, adr);
  3583 void Assembler::fstp_d(Address adr) {
  3584   InstructionMark im(this);
  3585   emit_byte(0xDD);
  3586   emit_operand32(rbx, adr);
  3589 void Assembler::fstp_d(int index) {
  3590   emit_farith(0xDD, 0xD8, index);
  3593 void Assembler::fstp_s(Address adr) {
  3594   InstructionMark im(this);
  3595   emit_byte(0xD9);
  3596   emit_operand32(rbx, adr);
  3599 void Assembler::fstp_x(Address adr) {
  3600   InstructionMark im(this);
  3601   emit_byte(0xDB);
  3602   emit_operand32(rdi, adr);
  3605 void Assembler::fsub(int i) {
  3606   emit_farith(0xD8, 0xE0, i);
  3609 void Assembler::fsub_d(Address src) {
  3610   InstructionMark im(this);
  3611   emit_byte(0xDC);
  3612   emit_operand32(rsp, src);
  3615 void Assembler::fsub_s(Address src) {
  3616   InstructionMark im(this);
  3617   emit_byte(0xD8);
  3618   emit_operand32(rsp, src);
  3621 void Assembler::fsuba(int i) {
  3622   emit_farith(0xDC, 0xE8, i);
  3625 void Assembler::fsubp(int i) {
  3626   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
  3629 void Assembler::fsubr(int i) {
  3630   emit_farith(0xD8, 0xE8, i);
  3633 void Assembler::fsubr_d(Address src) {
  3634   InstructionMark im(this);
  3635   emit_byte(0xDC);
  3636   emit_operand32(rbp, src);
  3639 void Assembler::fsubr_s(Address src) {
  3640   InstructionMark im(this);
  3641   emit_byte(0xD8);
  3642   emit_operand32(rbp, src);
  3645 void Assembler::fsubra(int i) {
  3646   emit_farith(0xDC, 0xE0, i);
  3649 void Assembler::fsubrp(int i) {
  3650   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
  3653 void Assembler::ftan() {
  3654   emit_byte(0xD9);
  3655   emit_byte(0xF2);
  3656   emit_byte(0xDD);
  3657   emit_byte(0xD8);
  3660 void Assembler::ftst() {
  3661   emit_byte(0xD9);
  3662   emit_byte(0xE4);
  3665 void Assembler::fucomi(int i) {
  3666   // make sure the instruction is supported (introduced for P6, together with cmov)
  3667   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  3668   emit_farith(0xDB, 0xE8, i);
  3671 void Assembler::fucomip(int i) {
  3672   // make sure the instruction is supported (introduced for P6, together with cmov)
  3673   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  3674   emit_farith(0xDF, 0xE8, i);
  3677 void Assembler::fwait() {
  3678   emit_byte(0x9B);
  3681 void Assembler::fxch(int i) {
  3682   emit_farith(0xD9, 0xC8, i);
  3685 void Assembler::fyl2x() {
  3686   emit_byte(0xD9);
  3687   emit_byte(0xF1);
  3690 void Assembler::frndint() {
  3691   emit_byte(0xD9);
  3692   emit_byte(0xFC);
  3695 void Assembler::f2xm1() {
  3696   emit_byte(0xD9);
  3697   emit_byte(0xF0);
  3700 void Assembler::fldl2e() {
  3701   emit_byte(0xD9);
  3702   emit_byte(0xEA);
  3705 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
  3706 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
  3707 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
  3708 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
  3710 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
  3711 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  3712   if (pre > 0) {
  3713     emit_byte(simd_pre[pre]);
  3715   if (rex_w) {
  3716     prefixq(adr, xreg);
  3717   } else {
  3718     prefix(adr, xreg);
  3720   if (opc > 0) {
  3721     emit_byte(0x0F);
  3722     int opc2 = simd_opc[opc];
  3723     if (opc2 > 0) {
  3724       emit_byte(opc2);
  3729 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  3730   if (pre > 0) {
  3731     emit_byte(simd_pre[pre]);
  3733   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
  3734                           prefix_and_encode(dst_enc, src_enc);
  3735   if (opc > 0) {
  3736     emit_byte(0x0F);
  3737     int opc2 = simd_opc[opc];
  3738     if (opc2 > 0) {
  3739       emit_byte(opc2);
  3742   return encode;
  3746 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, bool vector256) {
  3747   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
  3748     prefix(VEX_3bytes);
  3750     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
  3751     byte1 = (~byte1) & 0xE0;
  3752     byte1 |= opc;
  3753     a_byte(byte1);
  3755     int byte2 = ((~nds_enc) & 0xf) << 3;
  3756     byte2 |= (vex_w ? VEX_W : 0) | (vector256 ? 4 : 0) | pre;
  3757     emit_byte(byte2);
  3758   } else {
  3759     prefix(VEX_2bytes);
  3761     int byte1 = vex_r ? VEX_R : 0;
  3762     byte1 = (~byte1) & 0x80;
  3763     byte1 |= ((~nds_enc) & 0xf) << 3;
  3764     byte1 |= (vector256 ? 4 : 0) | pre;
  3765     emit_byte(byte1);
  3769 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256){
  3770   bool vex_r = (xreg_enc >= 8);
  3771   bool vex_b = adr.base_needs_rex();
  3772   bool vex_x = adr.index_needs_rex();
  3773   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  3776 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256) {
  3777   bool vex_r = (dst_enc >= 8);
  3778   bool vex_b = (src_enc >= 8);
  3779   bool vex_x = false;
  3780   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  3781   return (((dst_enc & 7) << 3) | (src_enc & 7));
  3785 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  3786   if (UseAVX > 0) {
  3787     int xreg_enc = xreg->encoding();
  3788     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
  3789     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector256);
  3790   } else {
  3791     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
  3792     rex_prefix(adr, xreg, pre, opc, rex_w);
  3796 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  3797   int dst_enc = dst->encoding();
  3798   int src_enc = src->encoding();
  3799   if (UseAVX > 0) {
  3800     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
  3801     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector256);
  3802   } else {
  3803     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
  3804     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
  3808 #ifndef _LP64
  3810 void Assembler::incl(Register dst) {
  3811   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  3812   emit_byte(0x40 | dst->encoding());
  3815 void Assembler::lea(Register dst, Address src) {
  3816   leal(dst, src);
  3819 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  3820   InstructionMark im(this);
  3821   emit_byte(0xC7);
  3822   emit_operand(rax, dst);
  3823   emit_data((int)imm32, rspec, 0);
  3826 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  3827   InstructionMark im(this);
  3828   int encode = prefix_and_encode(dst->encoding());
  3829   emit_byte(0xB8 | encode);
  3830   emit_data((int)imm32, rspec, 0);
  3833 void Assembler::popa() { // 32bit
  3834   emit_byte(0x61);
  3837 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
  3838   InstructionMark im(this);
  3839   emit_byte(0x68);
  3840   emit_data(imm32, rspec, 0);
  3843 void Assembler::pusha() { // 32bit
  3844   emit_byte(0x60);
  3847 void Assembler::set_byte_if_not_zero(Register dst) {
  3848   emit_byte(0x0F);
  3849   emit_byte(0x95);
  3850   emit_byte(0xE0 | dst->encoding());
  3853 void Assembler::shldl(Register dst, Register src) {
  3854   emit_byte(0x0F);
  3855   emit_byte(0xA5);
  3856   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  3859 void Assembler::shrdl(Register dst, Register src) {
  3860   emit_byte(0x0F);
  3861   emit_byte(0xAD);
  3862   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  3865 #else // LP64
  3867 void Assembler::set_byte_if_not_zero(Register dst) {
  3868   int enc = prefix_and_encode(dst->encoding(), true);
  3869   emit_byte(0x0F);
  3870   emit_byte(0x95);
  3871   emit_byte(0xE0 | enc);
  3874 // 64bit only pieces of the assembler
  3875 // This should only be used by 64bit instructions that can use rip-relative
  3876 // it cannot be used by instructions that want an immediate value.
  3878 bool Assembler::reachable(AddressLiteral adr) {
  3879   int64_t disp;
  3880   // None will force a 64bit literal to the code stream. Likely a placeholder
  3881   // for something that will be patched later and we need to certain it will
  3882   // always be reachable.
  3883   if (adr.reloc() == relocInfo::none) {
  3884     return false;
  3886   if (adr.reloc() == relocInfo::internal_word_type) {
  3887     // This should be rip relative and easily reachable.
  3888     return true;
  3890   if (adr.reloc() == relocInfo::virtual_call_type ||
  3891       adr.reloc() == relocInfo::opt_virtual_call_type ||
  3892       adr.reloc() == relocInfo::static_call_type ||
  3893       adr.reloc() == relocInfo::static_stub_type ) {
  3894     // This should be rip relative within the code cache and easily
  3895     // reachable until we get huge code caches. (At which point
  3896     // ic code is going to have issues).
  3897     return true;
  3899   if (adr.reloc() != relocInfo::external_word_type &&
  3900       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
  3901       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
  3902       adr.reloc() != relocInfo::runtime_call_type ) {
  3903     return false;
  3906   // Stress the correction code
  3907   if (ForceUnreachable) {
  3908     // Must be runtimecall reloc, see if it is in the codecache
  3909     // Flipping stuff in the codecache to be unreachable causes issues
  3910     // with things like inline caches where the additional instructions
  3911     // are not handled.
  3912     if (CodeCache::find_blob(adr._target) == NULL) {
  3913       return false;
  3916   // For external_word_type/runtime_call_type if it is reachable from where we
  3917   // are now (possibly a temp buffer) and where we might end up
  3918   // anywhere in the codeCache then we are always reachable.
  3919   // This would have to change if we ever save/restore shared code
  3920   // to be more pessimistic.
  3921   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
  3922   if (!is_simm32(disp)) return false;
  3923   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
  3924   if (!is_simm32(disp)) return false;
  3926   disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int));
  3928   // Because rip relative is a disp + address_of_next_instruction and we
  3929   // don't know the value of address_of_next_instruction we apply a fudge factor
  3930   // to make sure we will be ok no matter the size of the instruction we get placed into.
  3931   // We don't have to fudge the checks above here because they are already worst case.
  3933   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
  3934   // + 4 because better safe than sorry.
  3935   const int fudge = 12 + 4;
  3936   if (disp < 0) {
  3937     disp -= fudge;
  3938   } else {
  3939     disp += fudge;
  3941   return is_simm32(disp);
  3944 // Check if the polling page is not reachable from the code cache using rip-relative
  3945 // addressing.
  3946 bool Assembler::is_polling_page_far() {
  3947   intptr_t addr = (intptr_t)os::get_polling_page();
  3948   return ForceUnreachable ||
  3949          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
  3950          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
  3953 void Assembler::emit_data64(jlong data,
  3954                             relocInfo::relocType rtype,
  3955                             int format) {
  3956   if (rtype == relocInfo::none) {
  3957     emit_long64(data);
  3958   } else {
  3959     emit_data64(data, Relocation::spec_simple(rtype), format);
  3963 void Assembler::emit_data64(jlong data,
  3964                             RelocationHolder const& rspec,
  3965                             int format) {
  3966   assert(imm_operand == 0, "default format must be immediate in this file");
  3967   assert(imm_operand == format, "must be immediate");
  3968   assert(inst_mark() != NULL, "must be inside InstructionMark");
  3969   // Do not use AbstractAssembler::relocate, which is not intended for
  3970   // embedded words.  Instead, relocate to the enclosing instruction.
  3971   code_section()->relocate(inst_mark(), rspec, format);
  3972 #ifdef ASSERT
  3973   check_relocation(rspec, format);
  3974 #endif
  3975   emit_long64(data);
  3978 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
  3979   if (reg_enc >= 8) {
  3980     prefix(REX_B);
  3981     reg_enc -= 8;
  3982   } else if (byteinst && reg_enc >= 4) {
  3983     prefix(REX);
  3985   return reg_enc;
  3988 int Assembler::prefixq_and_encode(int reg_enc) {
  3989   if (reg_enc < 8) {
  3990     prefix(REX_W);
  3991   } else {
  3992     prefix(REX_WB);
  3993     reg_enc -= 8;
  3995   return reg_enc;
  3998 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
  3999   if (dst_enc < 8) {
  4000     if (src_enc >= 8) {
  4001       prefix(REX_B);
  4002       src_enc -= 8;
  4003     } else if (byteinst && src_enc >= 4) {
  4004       prefix(REX);
  4006   } else {
  4007     if (src_enc < 8) {
  4008       prefix(REX_R);
  4009     } else {
  4010       prefix(REX_RB);
  4011       src_enc -= 8;
  4013     dst_enc -= 8;
  4015   return dst_enc << 3 | src_enc;
  4018 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
  4019   if (dst_enc < 8) {
  4020     if (src_enc < 8) {
  4021       prefix(REX_W);
  4022     } else {
  4023       prefix(REX_WB);
  4024       src_enc -= 8;
  4026   } else {
  4027     if (src_enc < 8) {
  4028       prefix(REX_WR);
  4029     } else {
  4030       prefix(REX_WRB);
  4031       src_enc -= 8;
  4033     dst_enc -= 8;
  4035   return dst_enc << 3 | src_enc;
  4038 void Assembler::prefix(Register reg) {
  4039   if (reg->encoding() >= 8) {
  4040     prefix(REX_B);
  4044 void Assembler::prefix(Address adr) {
  4045   if (adr.base_needs_rex()) {
  4046     if (adr.index_needs_rex()) {
  4047       prefix(REX_XB);
  4048     } else {
  4049       prefix(REX_B);
  4051   } else {
  4052     if (adr.index_needs_rex()) {
  4053       prefix(REX_X);
  4058 void Assembler::prefixq(Address adr) {
  4059   if (adr.base_needs_rex()) {
  4060     if (adr.index_needs_rex()) {
  4061       prefix(REX_WXB);
  4062     } else {
  4063       prefix(REX_WB);
  4065   } else {
  4066     if (adr.index_needs_rex()) {
  4067       prefix(REX_WX);
  4068     } else {
  4069       prefix(REX_W);
  4075 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
  4076   if (reg->encoding() < 8) {
  4077     if (adr.base_needs_rex()) {
  4078       if (adr.index_needs_rex()) {
  4079         prefix(REX_XB);
  4080       } else {
  4081         prefix(REX_B);
  4083     } else {
  4084       if (adr.index_needs_rex()) {
  4085         prefix(REX_X);
  4086       } else if (byteinst && reg->encoding() >= 4 ) {
  4087         prefix(REX);
  4090   } else {
  4091     if (adr.base_needs_rex()) {
  4092       if (adr.index_needs_rex()) {
  4093         prefix(REX_RXB);
  4094       } else {
  4095         prefix(REX_RB);
  4097     } else {
  4098       if (adr.index_needs_rex()) {
  4099         prefix(REX_RX);
  4100       } else {
  4101         prefix(REX_R);
  4107 void Assembler::prefixq(Address adr, Register src) {
  4108   if (src->encoding() < 8) {
  4109     if (adr.base_needs_rex()) {
  4110       if (adr.index_needs_rex()) {
  4111         prefix(REX_WXB);
  4112       } else {
  4113         prefix(REX_WB);
  4115     } else {
  4116       if (adr.index_needs_rex()) {
  4117         prefix(REX_WX);
  4118       } else {
  4119         prefix(REX_W);
  4122   } else {
  4123     if (adr.base_needs_rex()) {
  4124       if (adr.index_needs_rex()) {
  4125         prefix(REX_WRXB);
  4126       } else {
  4127         prefix(REX_WRB);
  4129     } else {
  4130       if (adr.index_needs_rex()) {
  4131         prefix(REX_WRX);
  4132       } else {
  4133         prefix(REX_WR);
  4139 void Assembler::prefix(Address adr, XMMRegister reg) {
  4140   if (reg->encoding() < 8) {
  4141     if (adr.base_needs_rex()) {
  4142       if (adr.index_needs_rex()) {
  4143         prefix(REX_XB);
  4144       } else {
  4145         prefix(REX_B);
  4147     } else {
  4148       if (adr.index_needs_rex()) {
  4149         prefix(REX_X);
  4152   } else {
  4153     if (adr.base_needs_rex()) {
  4154       if (adr.index_needs_rex()) {
  4155         prefix(REX_RXB);
  4156       } else {
  4157         prefix(REX_RB);
  4159     } else {
  4160       if (adr.index_needs_rex()) {
  4161         prefix(REX_RX);
  4162       } else {
  4163         prefix(REX_R);
  4169 void Assembler::prefixq(Address adr, XMMRegister src) {
  4170   if (src->encoding() < 8) {
  4171     if (adr.base_needs_rex()) {
  4172       if (adr.index_needs_rex()) {
  4173         prefix(REX_WXB);
  4174       } else {
  4175         prefix(REX_WB);
  4177     } else {
  4178       if (adr.index_needs_rex()) {
  4179         prefix(REX_WX);
  4180       } else {
  4181         prefix(REX_W);
  4184   } else {
  4185     if (adr.base_needs_rex()) {
  4186       if (adr.index_needs_rex()) {
  4187         prefix(REX_WRXB);
  4188       } else {
  4189         prefix(REX_WRB);
  4191     } else {
  4192       if (adr.index_needs_rex()) {
  4193         prefix(REX_WRX);
  4194       } else {
  4195         prefix(REX_WR);
  4201 void Assembler::adcq(Register dst, int32_t imm32) {
  4202   (void) prefixq_and_encode(dst->encoding());
  4203   emit_arith(0x81, 0xD0, dst, imm32);
  4206 void Assembler::adcq(Register dst, Address src) {
  4207   InstructionMark im(this);
  4208   prefixq(src, dst);
  4209   emit_byte(0x13);
  4210   emit_operand(dst, src);
  4213 void Assembler::adcq(Register dst, Register src) {
  4214   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  4215   emit_arith(0x13, 0xC0, dst, src);
  4218 void Assembler::addq(Address dst, int32_t imm32) {
  4219   InstructionMark im(this);
  4220   prefixq(dst);
  4221   emit_arith_operand(0x81, rax, dst,imm32);
  4224 void Assembler::addq(Address dst, Register src) {
  4225   InstructionMark im(this);
  4226   prefixq(dst, src);
  4227   emit_byte(0x01);
  4228   emit_operand(src, dst);
  4231 void Assembler::addq(Register dst, int32_t imm32) {
  4232   (void) prefixq_and_encode(dst->encoding());
  4233   emit_arith(0x81, 0xC0, dst, imm32);
  4236 void Assembler::addq(Register dst, Address src) {
  4237   InstructionMark im(this);
  4238   prefixq(src, dst);
  4239   emit_byte(0x03);
  4240   emit_operand(dst, src);
  4243 void Assembler::addq(Register dst, Register src) {
  4244   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4245   emit_arith(0x03, 0xC0, dst, src);
  4248 void Assembler::andq(Address dst, int32_t imm32) {
  4249   InstructionMark im(this);
  4250   prefixq(dst);
  4251   emit_byte(0x81);
  4252   emit_operand(rsp, dst, 4);
  4253   emit_long(imm32);
  4256 void Assembler::andq(Register dst, int32_t imm32) {
  4257   (void) prefixq_and_encode(dst->encoding());
  4258   emit_arith(0x81, 0xE0, dst, imm32);
  4261 void Assembler::andq(Register dst, Address src) {
  4262   InstructionMark im(this);
  4263   prefixq(src, dst);
  4264   emit_byte(0x23);
  4265   emit_operand(dst, src);
  4268 void Assembler::andq(Register dst, Register src) {
  4269   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  4270   emit_arith(0x23, 0xC0, dst, src);
  4273 void Assembler::bsfq(Register dst, Register src) {
  4274   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4275   emit_byte(0x0F);
  4276   emit_byte(0xBC);
  4277   emit_byte(0xC0 | encode);
  4280 void Assembler::bsrq(Register dst, Register src) {
  4281   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  4282   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4283   emit_byte(0x0F);
  4284   emit_byte(0xBD);
  4285   emit_byte(0xC0 | encode);
  4288 void Assembler::bswapq(Register reg) {
  4289   int encode = prefixq_and_encode(reg->encoding());
  4290   emit_byte(0x0F);
  4291   emit_byte(0xC8 | encode);
  4294 void Assembler::cdqq() {
  4295   prefix(REX_W);
  4296   emit_byte(0x99);
  4299 void Assembler::clflush(Address adr) {
  4300   prefix(adr);
  4301   emit_byte(0x0F);
  4302   emit_byte(0xAE);
  4303   emit_operand(rdi, adr);
  4306 void Assembler::cmovq(Condition cc, Register dst, Register src) {
  4307   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4308   emit_byte(0x0F);
  4309   emit_byte(0x40 | cc);
  4310   emit_byte(0xC0 | encode);
  4313 void Assembler::cmovq(Condition cc, Register dst, Address src) {
  4314   InstructionMark im(this);
  4315   prefixq(src, dst);
  4316   emit_byte(0x0F);
  4317   emit_byte(0x40 | cc);
  4318   emit_operand(dst, src);
  4321 void Assembler::cmpq(Address dst, int32_t imm32) {
  4322   InstructionMark im(this);
  4323   prefixq(dst);
  4324   emit_byte(0x81);
  4325   emit_operand(rdi, dst, 4);
  4326   emit_long(imm32);
  4329 void Assembler::cmpq(Register dst, int32_t imm32) {
  4330   (void) prefixq_and_encode(dst->encoding());
  4331   emit_arith(0x81, 0xF8, dst, imm32);
  4334 void Assembler::cmpq(Address dst, Register src) {
  4335   InstructionMark im(this);
  4336   prefixq(dst, src);
  4337   emit_byte(0x3B);
  4338   emit_operand(src, dst);
  4341 void Assembler::cmpq(Register dst, Register src) {
  4342   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4343   emit_arith(0x3B, 0xC0, dst, src);
  4346 void Assembler::cmpq(Register dst, Address  src) {
  4347   InstructionMark im(this);
  4348   prefixq(src, dst);
  4349   emit_byte(0x3B);
  4350   emit_operand(dst, src);
  4353 void Assembler::cmpxchgq(Register reg, Address adr) {
  4354   InstructionMark im(this);
  4355   prefixq(adr, reg);
  4356   emit_byte(0x0F);
  4357   emit_byte(0xB1);
  4358   emit_operand(reg, adr);
  4361 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
  4362   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4363   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2);
  4364   emit_byte(0x2A);
  4365   emit_byte(0xC0 | encode);
  4368 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
  4369   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4370   InstructionMark im(this);
  4371   simd_prefix_q(dst, dst, src, VEX_SIMD_F2);
  4372   emit_byte(0x2A);
  4373   emit_operand(dst, src);
  4376 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
  4377   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4378   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3);
  4379   emit_byte(0x2A);
  4380   emit_byte(0xC0 | encode);
  4383 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
  4384   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4385   InstructionMark im(this);
  4386   simd_prefix_q(dst, dst, src, VEX_SIMD_F3);
  4387   emit_byte(0x2A);
  4388   emit_operand(dst, src);
  4391 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
  4392   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4393   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2);
  4394   emit_byte(0x2C);
  4395   emit_byte(0xC0 | encode);
  4398 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
  4399   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4400   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3);
  4401   emit_byte(0x2C);
  4402   emit_byte(0xC0 | encode);
  4405 void Assembler::decl(Register dst) {
  4406   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  4407   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
  4408   int encode = prefix_and_encode(dst->encoding());
  4409   emit_byte(0xFF);
  4410   emit_byte(0xC8 | encode);
  4413 void Assembler::decq(Register dst) {
  4414   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  4415   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4416   int encode = prefixq_and_encode(dst->encoding());
  4417   emit_byte(0xFF);
  4418   emit_byte(0xC8 | encode);
  4421 void Assembler::decq(Address dst) {
  4422   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  4423   InstructionMark im(this);
  4424   prefixq(dst);
  4425   emit_byte(0xFF);
  4426   emit_operand(rcx, dst);
  4429 void Assembler::fxrstor(Address src) {
  4430   prefixq(src);
  4431   emit_byte(0x0F);
  4432   emit_byte(0xAE);
  4433   emit_operand(as_Register(1), src);
  4436 void Assembler::fxsave(Address dst) {
  4437   prefixq(dst);
  4438   emit_byte(0x0F);
  4439   emit_byte(0xAE);
  4440   emit_operand(as_Register(0), dst);
  4443 void Assembler::idivq(Register src) {
  4444   int encode = prefixq_and_encode(src->encoding());
  4445   emit_byte(0xF7);
  4446   emit_byte(0xF8 | encode);
  4449 void Assembler::imulq(Register dst, Register src) {
  4450   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4451   emit_byte(0x0F);
  4452   emit_byte(0xAF);
  4453   emit_byte(0xC0 | encode);
  4456 void Assembler::imulq(Register dst, Register src, int value) {
  4457   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4458   if (is8bit(value)) {
  4459     emit_byte(0x6B);
  4460     emit_byte(0xC0 | encode);
  4461     emit_byte(value & 0xFF);
  4462   } else {
  4463     emit_byte(0x69);
  4464     emit_byte(0xC0 | encode);
  4465     emit_long(value);
  4469 void Assembler::incl(Register dst) {
  4470   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  4471   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4472   int encode = prefix_and_encode(dst->encoding());
  4473   emit_byte(0xFF);
  4474   emit_byte(0xC0 | encode);
  4477 void Assembler::incq(Register dst) {
  4478   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  4479   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4480   int encode = prefixq_and_encode(dst->encoding());
  4481   emit_byte(0xFF);
  4482   emit_byte(0xC0 | encode);
  4485 void Assembler::incq(Address dst) {
  4486   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  4487   InstructionMark im(this);
  4488   prefixq(dst);
  4489   emit_byte(0xFF);
  4490   emit_operand(rax, dst);
  4493 void Assembler::lea(Register dst, Address src) {
  4494   leaq(dst, src);
  4497 void Assembler::leaq(Register dst, Address src) {
  4498   InstructionMark im(this);
  4499   prefixq(src, dst);
  4500   emit_byte(0x8D);
  4501   emit_operand(dst, src);
  4504 void Assembler::mov64(Register dst, int64_t imm64) {
  4505   InstructionMark im(this);
  4506   int encode = prefixq_and_encode(dst->encoding());
  4507   emit_byte(0xB8 | encode);
  4508   emit_long64(imm64);
  4511 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
  4512   InstructionMark im(this);
  4513   int encode = prefixq_and_encode(dst->encoding());
  4514   emit_byte(0xB8 | encode);
  4515   emit_data64(imm64, rspec);
  4518 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  4519   InstructionMark im(this);
  4520   int encode = prefix_and_encode(dst->encoding());
  4521   emit_byte(0xB8 | encode);
  4522   emit_data((int)imm32, rspec, narrow_oop_operand);
  4525 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  4526   InstructionMark im(this);
  4527   prefix(dst);
  4528   emit_byte(0xC7);
  4529   emit_operand(rax, dst, 4);
  4530   emit_data((int)imm32, rspec, narrow_oop_operand);
  4533 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  4534   InstructionMark im(this);
  4535   int encode = prefix_and_encode(src1->encoding());
  4536   emit_byte(0x81);
  4537   emit_byte(0xF8 | encode);
  4538   emit_data((int)imm32, rspec, narrow_oop_operand);
  4541 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  4542   InstructionMark im(this);
  4543   prefix(src1);
  4544   emit_byte(0x81);
  4545   emit_operand(rax, src1, 4);
  4546   emit_data((int)imm32, rspec, narrow_oop_operand);
  4549 void Assembler::lzcntq(Register dst, Register src) {
  4550   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  4551   emit_byte(0xF3);
  4552   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4553   emit_byte(0x0F);
  4554   emit_byte(0xBD);
  4555   emit_byte(0xC0 | encode);
  4558 void Assembler::movdq(XMMRegister dst, Register src) {
  4559   // table D-1 says MMX/SSE2
  4560   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4561   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66);
  4562   emit_byte(0x6E);
  4563   emit_byte(0xC0 | encode);
  4566 void Assembler::movdq(Register dst, XMMRegister src) {
  4567   // table D-1 says MMX/SSE2
  4568   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4569   // swap src/dst to get correct prefix
  4570   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66);
  4571   emit_byte(0x7E);
  4572   emit_byte(0xC0 | encode);
  4575 void Assembler::movq(Register dst, Register src) {
  4576   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4577   emit_byte(0x8B);
  4578   emit_byte(0xC0 | encode);
  4581 void Assembler::movq(Register dst, Address src) {
  4582   InstructionMark im(this);
  4583   prefixq(src, dst);
  4584   emit_byte(0x8B);
  4585   emit_operand(dst, src);
  4588 void Assembler::movq(Address dst, Register src) {
  4589   InstructionMark im(this);
  4590   prefixq(dst, src);
  4591   emit_byte(0x89);
  4592   emit_operand(src, dst);
  4595 void Assembler::movsbq(Register dst, Address src) {
  4596   InstructionMark im(this);
  4597   prefixq(src, dst);
  4598   emit_byte(0x0F);
  4599   emit_byte(0xBE);
  4600   emit_operand(dst, src);
  4603 void Assembler::movsbq(Register dst, Register src) {
  4604   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4605   emit_byte(0x0F);
  4606   emit_byte(0xBE);
  4607   emit_byte(0xC0 | encode);
  4610 void Assembler::movslq(Register dst, int32_t imm32) {
  4611   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
  4612   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
  4613   // as a result we shouldn't use until tested at runtime...
  4614   ShouldNotReachHere();
  4615   InstructionMark im(this);
  4616   int encode = prefixq_and_encode(dst->encoding());
  4617   emit_byte(0xC7 | encode);
  4618   emit_long(imm32);
  4621 void Assembler::movslq(Address dst, int32_t imm32) {
  4622   assert(is_simm32(imm32), "lost bits");
  4623   InstructionMark im(this);
  4624   prefixq(dst);
  4625   emit_byte(0xC7);
  4626   emit_operand(rax, dst, 4);
  4627   emit_long(imm32);
  4630 void Assembler::movslq(Register dst, Address src) {
  4631   InstructionMark im(this);
  4632   prefixq(src, dst);
  4633   emit_byte(0x63);
  4634   emit_operand(dst, src);
  4637 void Assembler::movslq(Register dst, Register src) {
  4638   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4639   emit_byte(0x63);
  4640   emit_byte(0xC0 | encode);
  4643 void Assembler::movswq(Register dst, Address src) {
  4644   InstructionMark im(this);
  4645   prefixq(src, dst);
  4646   emit_byte(0x0F);
  4647   emit_byte(0xBF);
  4648   emit_operand(dst, src);
  4651 void Assembler::movswq(Register dst, Register src) {
  4652   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4653   emit_byte(0x0F);
  4654   emit_byte(0xBF);
  4655   emit_byte(0xC0 | encode);
  4658 void Assembler::movzbq(Register dst, Address src) {
  4659   InstructionMark im(this);
  4660   prefixq(src, dst);
  4661   emit_byte(0x0F);
  4662   emit_byte(0xB6);
  4663   emit_operand(dst, src);
  4666 void Assembler::movzbq(Register dst, Register src) {
  4667   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4668   emit_byte(0x0F);
  4669   emit_byte(0xB6);
  4670   emit_byte(0xC0 | encode);
  4673 void Assembler::movzwq(Register dst, Address src) {
  4674   InstructionMark im(this);
  4675   prefixq(src, dst);
  4676   emit_byte(0x0F);
  4677   emit_byte(0xB7);
  4678   emit_operand(dst, src);
  4681 void Assembler::movzwq(Register dst, Register src) {
  4682   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4683   emit_byte(0x0F);
  4684   emit_byte(0xB7);
  4685   emit_byte(0xC0 | encode);
  4688 void Assembler::negq(Register dst) {
  4689   int encode = prefixq_and_encode(dst->encoding());
  4690   emit_byte(0xF7);
  4691   emit_byte(0xD8 | encode);
  4694 void Assembler::notq(Register dst) {
  4695   int encode = prefixq_and_encode(dst->encoding());
  4696   emit_byte(0xF7);
  4697   emit_byte(0xD0 | encode);
  4700 void Assembler::orq(Address dst, int32_t imm32) {
  4701   InstructionMark im(this);
  4702   prefixq(dst);
  4703   emit_byte(0x81);
  4704   emit_operand(rcx, dst, 4);
  4705   emit_long(imm32);
  4708 void Assembler::orq(Register dst, int32_t imm32) {
  4709   (void) prefixq_and_encode(dst->encoding());
  4710   emit_arith(0x81, 0xC8, dst, imm32);
  4713 void Assembler::orq(Register dst, Address src) {
  4714   InstructionMark im(this);
  4715   prefixq(src, dst);
  4716   emit_byte(0x0B);
  4717   emit_operand(dst, src);
  4720 void Assembler::orq(Register dst, Register src) {
  4721   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4722   emit_arith(0x0B, 0xC0, dst, src);
  4725 void Assembler::popa() { // 64bit
  4726   movq(r15, Address(rsp, 0));
  4727   movq(r14, Address(rsp, wordSize));
  4728   movq(r13, Address(rsp, 2 * wordSize));
  4729   movq(r12, Address(rsp, 3 * wordSize));
  4730   movq(r11, Address(rsp, 4 * wordSize));
  4731   movq(r10, Address(rsp, 5 * wordSize));
  4732   movq(r9,  Address(rsp, 6 * wordSize));
  4733   movq(r8,  Address(rsp, 7 * wordSize));
  4734   movq(rdi, Address(rsp, 8 * wordSize));
  4735   movq(rsi, Address(rsp, 9 * wordSize));
  4736   movq(rbp, Address(rsp, 10 * wordSize));
  4737   // skip rsp
  4738   movq(rbx, Address(rsp, 12 * wordSize));
  4739   movq(rdx, Address(rsp, 13 * wordSize));
  4740   movq(rcx, Address(rsp, 14 * wordSize));
  4741   movq(rax, Address(rsp, 15 * wordSize));
  4743   addq(rsp, 16 * wordSize);
  4746 void Assembler::popcntq(Register dst, Address src) {
  4747   assert(VM_Version::supports_popcnt(), "must support");
  4748   InstructionMark im(this);
  4749   emit_byte(0xF3);
  4750   prefixq(src, dst);
  4751   emit_byte(0x0F);
  4752   emit_byte(0xB8);
  4753   emit_operand(dst, src);
  4756 void Assembler::popcntq(Register dst, Register src) {
  4757   assert(VM_Version::supports_popcnt(), "must support");
  4758   emit_byte(0xF3);
  4759   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4760   emit_byte(0x0F);
  4761   emit_byte(0xB8);
  4762   emit_byte(0xC0 | encode);
  4765 void Assembler::popq(Address dst) {
  4766   InstructionMark im(this);
  4767   prefixq(dst);
  4768   emit_byte(0x8F);
  4769   emit_operand(rax, dst);
  4772 void Assembler::pusha() { // 64bit
  4773   // we have to store original rsp.  ABI says that 128 bytes
  4774   // below rsp are local scratch.
  4775   movq(Address(rsp, -5 * wordSize), rsp);
  4777   subq(rsp, 16 * wordSize);
  4779   movq(Address(rsp, 15 * wordSize), rax);
  4780   movq(Address(rsp, 14 * wordSize), rcx);
  4781   movq(Address(rsp, 13 * wordSize), rdx);
  4782   movq(Address(rsp, 12 * wordSize), rbx);
  4783   // skip rsp
  4784   movq(Address(rsp, 10 * wordSize), rbp);
  4785   movq(Address(rsp, 9 * wordSize), rsi);
  4786   movq(Address(rsp, 8 * wordSize), rdi);
  4787   movq(Address(rsp, 7 * wordSize), r8);
  4788   movq(Address(rsp, 6 * wordSize), r9);
  4789   movq(Address(rsp, 5 * wordSize), r10);
  4790   movq(Address(rsp, 4 * wordSize), r11);
  4791   movq(Address(rsp, 3 * wordSize), r12);
  4792   movq(Address(rsp, 2 * wordSize), r13);
  4793   movq(Address(rsp, wordSize), r14);
  4794   movq(Address(rsp, 0), r15);
  4797 void Assembler::pushq(Address src) {
  4798   InstructionMark im(this);
  4799   prefixq(src);
  4800   emit_byte(0xFF);
  4801   emit_operand(rsi, src);
  4804 void Assembler::rclq(Register dst, int imm8) {
  4805   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4806   int encode = prefixq_and_encode(dst->encoding());
  4807   if (imm8 == 1) {
  4808     emit_byte(0xD1);
  4809     emit_byte(0xD0 | encode);
  4810   } else {
  4811     emit_byte(0xC1);
  4812     emit_byte(0xD0 | encode);
  4813     emit_byte(imm8);
  4816 void Assembler::sarq(Register dst, int imm8) {
  4817   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4818   int encode = prefixq_and_encode(dst->encoding());
  4819   if (imm8 == 1) {
  4820     emit_byte(0xD1);
  4821     emit_byte(0xF8 | encode);
  4822   } else {
  4823     emit_byte(0xC1);
  4824     emit_byte(0xF8 | encode);
  4825     emit_byte(imm8);
  4829 void Assembler::sarq(Register dst) {
  4830   int encode = prefixq_and_encode(dst->encoding());
  4831   emit_byte(0xD3);
  4832   emit_byte(0xF8 | encode);
  4835 void Assembler::sbbq(Address dst, int32_t imm32) {
  4836   InstructionMark im(this);
  4837   prefixq(dst);
  4838   emit_arith_operand(0x81, rbx, dst, imm32);
  4841 void Assembler::sbbq(Register dst, int32_t imm32) {
  4842   (void) prefixq_and_encode(dst->encoding());
  4843   emit_arith(0x81, 0xD8, dst, imm32);
  4846 void Assembler::sbbq(Register dst, Address src) {
  4847   InstructionMark im(this);
  4848   prefixq(src, dst);
  4849   emit_byte(0x1B);
  4850   emit_operand(dst, src);
  4853 void Assembler::sbbq(Register dst, Register src) {
  4854   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4855   emit_arith(0x1B, 0xC0, dst, src);
  4858 void Assembler::shlq(Register dst, int imm8) {
  4859   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4860   int encode = prefixq_and_encode(dst->encoding());
  4861   if (imm8 == 1) {
  4862     emit_byte(0xD1);
  4863     emit_byte(0xE0 | encode);
  4864   } else {
  4865     emit_byte(0xC1);
  4866     emit_byte(0xE0 | encode);
  4867     emit_byte(imm8);
  4871 void Assembler::shlq(Register dst) {
  4872   int encode = prefixq_and_encode(dst->encoding());
  4873   emit_byte(0xD3);
  4874   emit_byte(0xE0 | encode);
  4877 void Assembler::shrq(Register dst, int imm8) {
  4878   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4879   int encode = prefixq_and_encode(dst->encoding());
  4880   emit_byte(0xC1);
  4881   emit_byte(0xE8 | encode);
  4882   emit_byte(imm8);
  4885 void Assembler::shrq(Register dst) {
  4886   int encode = prefixq_and_encode(dst->encoding());
  4887   emit_byte(0xD3);
  4888   emit_byte(0xE8 | encode);
  4891 void Assembler::subq(Address dst, int32_t imm32) {
  4892   InstructionMark im(this);
  4893   prefixq(dst);
  4894   emit_arith_operand(0x81, rbp, dst, imm32);
  4897 void Assembler::subq(Address dst, Register src) {
  4898   InstructionMark im(this);
  4899   prefixq(dst, src);
  4900   emit_byte(0x29);
  4901   emit_operand(src, dst);
  4904 void Assembler::subq(Register dst, int32_t imm32) {
  4905   (void) prefixq_and_encode(dst->encoding());
  4906   emit_arith(0x81, 0xE8, dst, imm32);
  4909 // Force generation of a 4 byte immediate value even if it fits into 8bit
  4910 void Assembler::subq_imm32(Register dst, int32_t imm32) {
  4911   (void) prefixq_and_encode(dst->encoding());
  4912   emit_arith_imm32(0x81, 0xE8, dst, imm32);
  4915 void Assembler::subq(Register dst, Address src) {
  4916   InstructionMark im(this);
  4917   prefixq(src, dst);
  4918   emit_byte(0x2B);
  4919   emit_operand(dst, src);
  4922 void Assembler::subq(Register dst, Register src) {
  4923   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4924   emit_arith(0x2B, 0xC0, dst, src);
  4927 void Assembler::testq(Register dst, int32_t imm32) {
  4928   // not using emit_arith because test
  4929   // doesn't support sign-extension of
  4930   // 8bit operands
  4931   int encode = dst->encoding();
  4932   if (encode == 0) {
  4933     prefix(REX_W);
  4934     emit_byte(0xA9);
  4935   } else {
  4936     encode = prefixq_and_encode(encode);
  4937     emit_byte(0xF7);
  4938     emit_byte(0xC0 | encode);
  4940   emit_long(imm32);
  4943 void Assembler::testq(Register dst, Register src) {
  4944   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4945   emit_arith(0x85, 0xC0, dst, src);
  4948 void Assembler::xaddq(Address dst, Register src) {
  4949   InstructionMark im(this);
  4950   prefixq(dst, src);
  4951   emit_byte(0x0F);
  4952   emit_byte(0xC1);
  4953   emit_operand(src, dst);
  4956 void Assembler::xchgq(Register dst, Address src) {
  4957   InstructionMark im(this);
  4958   prefixq(src, dst);
  4959   emit_byte(0x87);
  4960   emit_operand(dst, src);
  4963 void Assembler::xchgq(Register dst, Register src) {
  4964   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4965   emit_byte(0x87);
  4966   emit_byte(0xc0 | encode);
  4969 void Assembler::xorq(Register dst, Register src) {
  4970   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4971   emit_arith(0x33, 0xC0, dst, src);
  4974 void Assembler::xorq(Register dst, Address src) {
  4975   InstructionMark im(this);
  4976   prefixq(src, dst);
  4977   emit_byte(0x33);
  4978   emit_operand(dst, src);
  4981 #endif // !LP64
  4983 static Assembler::Condition reverse[] = {
  4984     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  4985     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  4986     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  4987     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  4988     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  4989     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  4990     Assembler::above          /* belowEqual    = 0x6 */ ,
  4991     Assembler::belowEqual     /* above         = 0x7 */ ,
  4992     Assembler::positive       /* negative      = 0x8 */ ,
  4993     Assembler::negative       /* positive      = 0x9 */ ,
  4994     Assembler::noParity       /* parity        = 0xa */ ,
  4995     Assembler::parity         /* noParity      = 0xb */ ,
  4996     Assembler::greaterEqual   /* less          = 0xc */ ,
  4997     Assembler::less           /* greaterEqual  = 0xd */ ,
  4998     Assembler::greater        /* lessEqual     = 0xe */ ,
  4999     Assembler::lessEqual      /* greater       = 0xf, */
  5001 };
  5004 // Implementation of MacroAssembler
  5006 // First all the versions that have distinct versions depending on 32/64 bit
  5007 // Unless the difference is trivial (1 line or so).
  5009 #ifndef _LP64
  5011 // 32bit versions
  5013 Address MacroAssembler::as_Address(AddressLiteral adr) {
  5014   return Address(adr.target(), adr.rspec());
  5017 Address MacroAssembler::as_Address(ArrayAddress adr) {
  5018   return Address::make_array(adr);
  5021 int MacroAssembler::biased_locking_enter(Register lock_reg,
  5022                                          Register obj_reg,
  5023                                          Register swap_reg,
  5024                                          Register tmp_reg,
  5025                                          bool swap_reg_contains_mark,
  5026                                          Label& done,
  5027                                          Label* slow_case,
  5028                                          BiasedLockingCounters* counters) {
  5029   assert(UseBiasedLocking, "why call this otherwise?");
  5030   assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
  5031   assert_different_registers(lock_reg, obj_reg, swap_reg);
  5033   if (PrintBiasedLockingStatistics && counters == NULL)
  5034     counters = BiasedLocking::counters();
  5036   bool need_tmp_reg = false;
  5037   if (tmp_reg == noreg) {
  5038     need_tmp_reg = true;
  5039     tmp_reg = lock_reg;
  5040   } else {
  5041     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  5043   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  5044   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  5045   Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
  5046   Address saved_mark_addr(lock_reg, 0);
  5048   // Biased locking
  5049   // See whether the lock is currently biased toward our thread and
  5050   // whether the epoch is still valid
  5051   // Note that the runtime guarantees sufficient alignment of JavaThread
  5052   // pointers to allow age to be placed into low bits
  5053   // First check to see whether biasing is even enabled for this object
  5054   Label cas_label;
  5055   int null_check_offset = -1;
  5056   if (!swap_reg_contains_mark) {
  5057     null_check_offset = offset();
  5058     movl(swap_reg, mark_addr);
  5060   if (need_tmp_reg) {
  5061     push(tmp_reg);
  5063   movl(tmp_reg, swap_reg);
  5064   andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5065   cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
  5066   if (need_tmp_reg) {
  5067     pop(tmp_reg);
  5069   jcc(Assembler::notEqual, cas_label);
  5070   // The bias pattern is present in the object's header. Need to check
  5071   // whether the bias owner and the epoch are both still current.
  5072   // Note that because there is no current thread register on x86 we
  5073   // need to store off the mark word we read out of the object to
  5074   // avoid reloading it and needing to recheck invariants below. This
  5075   // store is unfortunate but it makes the overall code shorter and
  5076   // simpler.
  5077   movl(saved_mark_addr, swap_reg);
  5078   if (need_tmp_reg) {
  5079     push(tmp_reg);
  5081   get_thread(tmp_reg);
  5082   xorl(swap_reg, tmp_reg);
  5083   if (swap_reg_contains_mark) {
  5084     null_check_offset = offset();
  5086   movl(tmp_reg, klass_addr);
  5087   xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset()));
  5088   andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
  5089   if (need_tmp_reg) {
  5090     pop(tmp_reg);
  5092   if (counters != NULL) {
  5093     cond_inc32(Assembler::zero,
  5094                ExternalAddress((address)counters->biased_lock_entry_count_addr()));
  5096   jcc(Assembler::equal, done);
  5098   Label try_revoke_bias;
  5099   Label try_rebias;
  5101   // At this point we know that the header has the bias pattern and
  5102   // that we are not the bias owner in the current epoch. We need to
  5103   // figure out more details about the state of the header in order to
  5104   // know what operations can be legally performed on the object's
  5105   // header.
  5107   // If the low three bits in the xor result aren't clear, that means
  5108   // the prototype header is no longer biased and we have to revoke
  5109   // the bias on this object.
  5110   testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
  5111   jcc(Assembler::notZero, try_revoke_bias);
  5113   // Biasing is still enabled for this data type. See whether the
  5114   // epoch of the current bias is still valid, meaning that the epoch
  5115   // bits of the mark word are equal to the epoch bits of the
  5116   // prototype header. (Note that the prototype header's epoch bits
  5117   // only change at a safepoint.) If not, attempt to rebias the object
  5118   // toward the current thread. Note that we must be absolutely sure
  5119   // that the current epoch is invalid in order to do this because
  5120   // otherwise the manipulations it performs on the mark word are
  5121   // illegal.
  5122   testl(swap_reg, markOopDesc::epoch_mask_in_place);
  5123   jcc(Assembler::notZero, try_rebias);
  5125   // The epoch of the current bias is still valid but we know nothing
  5126   // about the owner; it might be set or it might be clear. Try to
  5127   // acquire the bias of the object using an atomic operation. If this
  5128   // fails we will go in to the runtime to revoke the object's bias.
  5129   // Note that we first construct the presumed unbiased header so we
  5130   // don't accidentally blow away another thread's valid bias.
  5131   movl(swap_reg, saved_mark_addr);
  5132   andl(swap_reg,
  5133        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  5134   if (need_tmp_reg) {
  5135     push(tmp_reg);
  5137   get_thread(tmp_reg);
  5138   orl(tmp_reg, swap_reg);
  5139   if (os::is_MP()) {
  5140     lock();
  5142   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  5143   if (need_tmp_reg) {
  5144     pop(tmp_reg);
  5146   // If the biasing toward our thread failed, this means that
  5147   // another thread succeeded in biasing it toward itself and we
  5148   // need to revoke that bias. The revocation will occur in the
  5149   // interpreter runtime in the slow case.
  5150   if (counters != NULL) {
  5151     cond_inc32(Assembler::zero,
  5152                ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
  5154   if (slow_case != NULL) {
  5155     jcc(Assembler::notZero, *slow_case);
  5157   jmp(done);
  5159   bind(try_rebias);
  5160   // At this point we know the epoch has expired, meaning that the
  5161   // current "bias owner", if any, is actually invalid. Under these
  5162   // circumstances _only_, we are allowed to use the current header's
  5163   // value as the comparison value when doing the cas to acquire the
  5164   // bias in the current epoch. In other words, we allow transfer of
  5165   // the bias from one thread to another directly in this situation.
  5166   //
  5167   // FIXME: due to a lack of registers we currently blow away the age
  5168   // bits in this situation. Should attempt to preserve them.
  5169   if (need_tmp_reg) {
  5170     push(tmp_reg);
  5172   get_thread(tmp_reg);
  5173   movl(swap_reg, klass_addr);
  5174   orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset()));
  5175   movl(swap_reg, saved_mark_addr);
  5176   if (os::is_MP()) {
  5177     lock();
  5179   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  5180   if (need_tmp_reg) {
  5181     pop(tmp_reg);
  5183   // If the biasing toward our thread failed, then another thread
  5184   // succeeded in biasing it toward itself and we need to revoke that
  5185   // bias. The revocation will occur in the runtime in the slow case.
  5186   if (counters != NULL) {
  5187     cond_inc32(Assembler::zero,
  5188                ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
  5190   if (slow_case != NULL) {
  5191     jcc(Assembler::notZero, *slow_case);
  5193   jmp(done);
  5195   bind(try_revoke_bias);
  5196   // The prototype mark in the klass doesn't have the bias bit set any
  5197   // more, indicating that objects of this data type are not supposed
  5198   // to be biased any more. We are going to try to reset the mark of
  5199   // this object to the prototype value and fall through to the
  5200   // CAS-based locking scheme. Note that if our CAS fails, it means
  5201   // that another thread raced us for the privilege of revoking the
  5202   // bias of this particular object, so it's okay to continue in the
  5203   // normal locking code.
  5204   //
  5205   // FIXME: due to a lack of registers we currently blow away the age
  5206   // bits in this situation. Should attempt to preserve them.
  5207   movl(swap_reg, saved_mark_addr);
  5208   if (need_tmp_reg) {
  5209     push(tmp_reg);
  5211   movl(tmp_reg, klass_addr);
  5212   movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset()));
  5213   if (os::is_MP()) {
  5214     lock();
  5216   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  5217   if (need_tmp_reg) {
  5218     pop(tmp_reg);
  5220   // Fall through to the normal CAS-based lock, because no matter what
  5221   // the result of the above CAS, some thread must have succeeded in
  5222   // removing the bias bit from the object's header.
  5223   if (counters != NULL) {
  5224     cond_inc32(Assembler::zero,
  5225                ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
  5228   bind(cas_label);
  5230   return null_check_offset;
  5232 void MacroAssembler::call_VM_leaf_base(address entry_point,
  5233                                        int number_of_arguments) {
  5234   call(RuntimeAddress(entry_point));
  5235   increment(rsp, number_of_arguments * wordSize);
  5238 void MacroAssembler::cmpoop(Address src1, jobject obj) {
  5239   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5242 void MacroAssembler::cmpoop(Register src1, jobject obj) {
  5243   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5246 void MacroAssembler::extend_sign(Register hi, Register lo) {
  5247   // According to Intel Doc. AP-526, "Integer Divide", p.18.
  5248   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
  5249     cdql();
  5250   } else {
  5251     movl(hi, lo);
  5252     sarl(hi, 31);
  5256 void MacroAssembler::jC2(Register tmp, Label& L) {
  5257   // set parity bit if FPU flag C2 is set (via rax)
  5258   save_rax(tmp);
  5259   fwait(); fnstsw_ax();
  5260   sahf();
  5261   restore_rax(tmp);
  5262   // branch
  5263   jcc(Assembler::parity, L);
  5266 void MacroAssembler::jnC2(Register tmp, Label& L) {
  5267   // set parity bit if FPU flag C2 is set (via rax)
  5268   save_rax(tmp);
  5269   fwait(); fnstsw_ax();
  5270   sahf();
  5271   restore_rax(tmp);
  5272   // branch
  5273   jcc(Assembler::noParity, L);
  5276 // 32bit can do a case table jump in one instruction but we no longer allow the base
  5277 // to be installed in the Address class
  5278 void MacroAssembler::jump(ArrayAddress entry) {
  5279   jmp(as_Address(entry));
  5282 // Note: y_lo will be destroyed
  5283 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  5284   // Long compare for Java (semantics as described in JVM spec.)
  5285   Label high, low, done;
  5287   cmpl(x_hi, y_hi);
  5288   jcc(Assembler::less, low);
  5289   jcc(Assembler::greater, high);
  5290   // x_hi is the return register
  5291   xorl(x_hi, x_hi);
  5292   cmpl(x_lo, y_lo);
  5293   jcc(Assembler::below, low);
  5294   jcc(Assembler::equal, done);
  5296   bind(high);
  5297   xorl(x_hi, x_hi);
  5298   increment(x_hi);
  5299   jmp(done);
  5301   bind(low);
  5302   xorl(x_hi, x_hi);
  5303   decrementl(x_hi);
  5305   bind(done);
  5308 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  5309     mov_literal32(dst, (int32_t)src.target(), src.rspec());
  5312 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  5313   // leal(dst, as_Address(adr));
  5314   // see note in movl as to why we must use a move
  5315   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
  5318 void MacroAssembler::leave() {
  5319   mov(rsp, rbp);
  5320   pop(rbp);
  5323 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
  5324   // Multiplication of two Java long values stored on the stack
  5325   // as illustrated below. Result is in rdx:rax.
  5326   //
  5327   // rsp ---> [  ??  ] \               \
  5328   //            ....    | y_rsp_offset  |
  5329   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
  5330   //          [ y_hi ]                  | (in bytes)
  5331   //            ....                    |
  5332   //          [ x_lo ]                 /
  5333   //          [ x_hi ]
  5334   //            ....
  5335   //
  5336   // Basic idea: lo(result) = lo(x_lo * y_lo)
  5337   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  5338   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
  5339   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
  5340   Label quick;
  5341   // load x_hi, y_hi and check if quick
  5342   // multiplication is possible
  5343   movl(rbx, x_hi);
  5344   movl(rcx, y_hi);
  5345   movl(rax, rbx);
  5346   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
  5347   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
  5348   // do full multiplication
  5349   // 1st step
  5350   mull(y_lo);                                    // x_hi * y_lo
  5351   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
  5352   // 2nd step
  5353   movl(rax, x_lo);
  5354   mull(rcx);                                     // x_lo * y_hi
  5355   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
  5356   // 3rd step
  5357   bind(quick);                                   // note: rbx, = 0 if quick multiply!
  5358   movl(rax, x_lo);
  5359   mull(y_lo);                                    // x_lo * y_lo
  5360   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
  5363 void MacroAssembler::lneg(Register hi, Register lo) {
  5364   negl(lo);
  5365   adcl(hi, 0);
  5366   negl(hi);
  5369 void MacroAssembler::lshl(Register hi, Register lo) {
  5370   // Java shift left long support (semantics as described in JVM spec., p.305)
  5371   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
  5372   // shift value is in rcx !
  5373   assert(hi != rcx, "must not use rcx");
  5374   assert(lo != rcx, "must not use rcx");
  5375   const Register s = rcx;                        // shift count
  5376   const int      n = BitsPerWord;
  5377   Label L;
  5378   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  5379   cmpl(s, n);                                    // if (s < n)
  5380   jcc(Assembler::less, L);                       // else (s >= n)
  5381   movl(hi, lo);                                  // x := x << n
  5382   xorl(lo, lo);
  5383   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  5384   bind(L);                                       // s (mod n) < n
  5385   shldl(hi, lo);                                 // x := x << s
  5386   shll(lo);
  5390 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
  5391   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
  5392   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
  5393   assert(hi != rcx, "must not use rcx");
  5394   assert(lo != rcx, "must not use rcx");
  5395   const Register s = rcx;                        // shift count
  5396   const int      n = BitsPerWord;
  5397   Label L;
  5398   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  5399   cmpl(s, n);                                    // if (s < n)
  5400   jcc(Assembler::less, L);                       // else (s >= n)
  5401   movl(lo, hi);                                  // x := x >> n
  5402   if (sign_extension) sarl(hi, 31);
  5403   else                xorl(hi, hi);
  5404   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  5405   bind(L);                                       // s (mod n) < n
  5406   shrdl(lo, hi);                                 // x := x >> s
  5407   if (sign_extension) sarl(hi);
  5408   else                shrl(hi);
  5411 void MacroAssembler::movoop(Register dst, jobject obj) {
  5412   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5415 void MacroAssembler::movoop(Address dst, jobject obj) {
  5416   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5419 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  5420   if (src.is_lval()) {
  5421     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
  5422   } else {
  5423     movl(dst, as_Address(src));
  5427 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  5428   movl(as_Address(dst), src);
  5431 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  5432   movl(dst, as_Address(src));
  5435 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  5436 void MacroAssembler::movptr(Address dst, intptr_t src) {
  5437   movl(dst, src);
  5441 void MacroAssembler::pop_callee_saved_registers() {
  5442   pop(rcx);
  5443   pop(rdx);
  5444   pop(rdi);
  5445   pop(rsi);
  5448 void MacroAssembler::pop_fTOS() {
  5449   fld_d(Address(rsp, 0));
  5450   addl(rsp, 2 * wordSize);
  5453 void MacroAssembler::push_callee_saved_registers() {
  5454   push(rsi);
  5455   push(rdi);
  5456   push(rdx);
  5457   push(rcx);
  5460 void MacroAssembler::push_fTOS() {
  5461   subl(rsp, 2 * wordSize);
  5462   fstp_d(Address(rsp, 0));
  5466 void MacroAssembler::pushoop(jobject obj) {
  5467   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
  5471 void MacroAssembler::pushptr(AddressLiteral src) {
  5472   if (src.is_lval()) {
  5473     push_literal32((int32_t)src.target(), src.rspec());
  5474   } else {
  5475     pushl(as_Address(src));
  5479 void MacroAssembler::set_word_if_not_zero(Register dst) {
  5480   xorl(dst, dst);
  5481   set_byte_if_not_zero(dst);
  5484 static void pass_arg0(MacroAssembler* masm, Register arg) {
  5485   masm->push(arg);
  5488 static void pass_arg1(MacroAssembler* masm, Register arg) {
  5489   masm->push(arg);
  5492 static void pass_arg2(MacroAssembler* masm, Register arg) {
  5493   masm->push(arg);
  5496 static void pass_arg3(MacroAssembler* masm, Register arg) {
  5497   masm->push(arg);
  5500 #ifndef PRODUCT
  5501 extern "C" void findpc(intptr_t x);
  5502 #endif
  5504 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
  5505   // In order to get locks to work, we need to fake a in_VM state
  5506   JavaThread* thread = JavaThread::current();
  5507   JavaThreadState saved_state = thread->thread_state();
  5508   thread->set_thread_state(_thread_in_vm);
  5509   if (ShowMessageBoxOnError) {
  5510     JavaThread* thread = JavaThread::current();
  5511     JavaThreadState saved_state = thread->thread_state();
  5512     thread->set_thread_state(_thread_in_vm);
  5513     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  5514       ttyLocker ttyl;
  5515       BytecodeCounter::print();
  5517     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  5518     // This is the value of eip which points to where verify_oop will return.
  5519     if (os::message_box(msg, "Execution stopped, print registers?")) {
  5520       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
  5521       BREAKPOINT;
  5522       assert(false, "start up GDB");
  5524   } else {
  5525     ttyLocker ttyl;
  5526     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
  5527     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
  5529   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  5532 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
  5533   ttyLocker ttyl;
  5534   FlagSetting fs(Debugging, true);
  5535   tty->print_cr("eip = 0x%08x", eip);
  5536 #ifndef PRODUCT
  5537   if ((WizardMode || Verbose) && PrintMiscellaneous) {
  5538     tty->cr();
  5539     findpc(eip);
  5540     tty->cr();
  5542 #endif
  5543 #define PRINT_REG(rax) \
  5544   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
  5545   PRINT_REG(rax);
  5546   PRINT_REG(rbx);
  5547   PRINT_REG(rcx);
  5548   PRINT_REG(rdx);
  5549   PRINT_REG(rdi);
  5550   PRINT_REG(rsi);
  5551   PRINT_REG(rbp);
  5552   PRINT_REG(rsp);
  5553 #undef PRINT_REG
  5554   // Print some words near top of staack.
  5555   int* dump_sp = (int*) rsp;
  5556   for (int col1 = 0; col1 < 8; col1++) {
  5557     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  5558     os::print_location(tty, *dump_sp++);
  5560   for (int row = 0; row < 16; row++) {
  5561     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  5562     for (int col = 0; col < 8; col++) {
  5563       tty->print(" 0x%08x", *dump_sp++);
  5565     tty->cr();
  5567   // Print some instructions around pc:
  5568   Disassembler::decode((address)eip-64, (address)eip);
  5569   tty->print_cr("--------");
  5570   Disassembler::decode((address)eip, (address)eip+32);
  5573 void MacroAssembler::stop(const char* msg) {
  5574   ExternalAddress message((address)msg);
  5575   // push address of message
  5576   pushptr(message.addr());
  5577   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  5578   pusha();                                            // push registers
  5579   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
  5580   hlt();
  5583 void MacroAssembler::warn(const char* msg) {
  5584   push_CPU_state();
  5586   ExternalAddress message((address) msg);
  5587   // push address of message
  5588   pushptr(message.addr());
  5590   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
  5591   addl(rsp, wordSize);       // discard argument
  5592   pop_CPU_state();
  5595 void MacroAssembler::print_state() {
  5596   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  5597   pusha();                                            // push registers
  5599   push_CPU_state();
  5600   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
  5601   pop_CPU_state();
  5603   popa();
  5604   addl(rsp, wordSize);
  5607 #else // _LP64
  5609 // 64 bit versions
  5611 Address MacroAssembler::as_Address(AddressLiteral adr) {
  5612   // amd64 always does this as a pc-rel
  5613   // we can be absolute or disp based on the instruction type
  5614   // jmp/call are displacements others are absolute
  5615   assert(!adr.is_lval(), "must be rval");
  5616   assert(reachable(adr), "must be");
  5617   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
  5621 Address MacroAssembler::as_Address(ArrayAddress adr) {
  5622   AddressLiteral base = adr.base();
  5623   lea(rscratch1, base);
  5624   Address index = adr.index();
  5625   assert(index._disp == 0, "must not have disp"); // maybe it can?
  5626   Address array(rscratch1, index._index, index._scale, index._disp);
  5627   return array;
  5630 int MacroAssembler::biased_locking_enter(Register lock_reg,
  5631                                          Register obj_reg,
  5632                                          Register swap_reg,
  5633                                          Register tmp_reg,
  5634                                          bool swap_reg_contains_mark,
  5635                                          Label& done,
  5636                                          Label* slow_case,
  5637                                          BiasedLockingCounters* counters) {
  5638   assert(UseBiasedLocking, "why call this otherwise?");
  5639   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
  5640   assert(tmp_reg != noreg, "tmp_reg must be supplied");
  5641   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  5642   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  5643   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  5644   Address saved_mark_addr(lock_reg, 0);
  5646   if (PrintBiasedLockingStatistics && counters == NULL)
  5647     counters = BiasedLocking::counters();
  5649   // Biased locking
  5650   // See whether the lock is currently biased toward our thread and
  5651   // whether the epoch is still valid
  5652   // Note that the runtime guarantees sufficient alignment of JavaThread
  5653   // pointers to allow age to be placed into low bits
  5654   // First check to see whether biasing is even enabled for this object
  5655   Label cas_label;
  5656   int null_check_offset = -1;
  5657   if (!swap_reg_contains_mark) {
  5658     null_check_offset = offset();
  5659     movq(swap_reg, mark_addr);
  5661   movq(tmp_reg, swap_reg);
  5662   andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5663   cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
  5664   jcc(Assembler::notEqual, cas_label);
  5665   // The bias pattern is present in the object's header. Need to check
  5666   // whether the bias owner and the epoch are both still current.
  5667   load_prototype_header(tmp_reg, obj_reg);
  5668   orq(tmp_reg, r15_thread);
  5669   xorq(tmp_reg, swap_reg);
  5670   andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
  5671   if (counters != NULL) {
  5672     cond_inc32(Assembler::zero,
  5673                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  5675   jcc(Assembler::equal, done);
  5677   Label try_revoke_bias;
  5678   Label try_rebias;
  5680   // At this point we know that the header has the bias pattern and
  5681   // that we are not the bias owner in the current epoch. We need to
  5682   // figure out more details about the state of the header in order to
  5683   // know what operations can be legally performed on the object's
  5684   // header.
  5686   // If the low three bits in the xor result aren't clear, that means
  5687   // the prototype header is no longer biased and we have to revoke
  5688   // the bias on this object.
  5689   testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5690   jcc(Assembler::notZero, try_revoke_bias);
  5692   // Biasing is still enabled for this data type. See whether the
  5693   // epoch of the current bias is still valid, meaning that the epoch
  5694   // bits of the mark word are equal to the epoch bits of the
  5695   // prototype header. (Note that the prototype header's epoch bits
  5696   // only change at a safepoint.) If not, attempt to rebias the object
  5697   // toward the current thread. Note that we must be absolutely sure
  5698   // that the current epoch is invalid in order to do this because
  5699   // otherwise the manipulations it performs on the mark word are
  5700   // illegal.
  5701   testq(tmp_reg, markOopDesc::epoch_mask_in_place);
  5702   jcc(Assembler::notZero, try_rebias);
  5704   // The epoch of the current bias is still valid but we know nothing
  5705   // about the owner; it might be set or it might be clear. Try to
  5706   // acquire the bias of the object using an atomic operation. If this
  5707   // fails we will go in to the runtime to revoke the object's bias.
  5708   // Note that we first construct the presumed unbiased header so we
  5709   // don't accidentally blow away another thread's valid bias.
  5710   andq(swap_reg,
  5711        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  5712   movq(tmp_reg, swap_reg);
  5713   orq(tmp_reg, r15_thread);
  5714   if (os::is_MP()) {
  5715     lock();
  5717   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5718   // If the biasing toward our thread failed, this means that
  5719   // another thread succeeded in biasing it toward itself and we
  5720   // need to revoke that bias. The revocation will occur in the
  5721   // interpreter runtime in the slow case.
  5722   if (counters != NULL) {
  5723     cond_inc32(Assembler::zero,
  5724                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  5726   if (slow_case != NULL) {
  5727     jcc(Assembler::notZero, *slow_case);
  5729   jmp(done);
  5731   bind(try_rebias);
  5732   // At this point we know the epoch has expired, meaning that the
  5733   // current "bias owner", if any, is actually invalid. Under these
  5734   // circumstances _only_, we are allowed to use the current header's
  5735   // value as the comparison value when doing the cas to acquire the
  5736   // bias in the current epoch. In other words, we allow transfer of
  5737   // the bias from one thread to another directly in this situation.
  5738   //
  5739   // FIXME: due to a lack of registers we currently blow away the age
  5740   // bits in this situation. Should attempt to preserve them.
  5741   load_prototype_header(tmp_reg, obj_reg);
  5742   orq(tmp_reg, r15_thread);
  5743   if (os::is_MP()) {
  5744     lock();
  5746   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5747   // If the biasing toward our thread failed, then another thread
  5748   // succeeded in biasing it toward itself and we need to revoke that
  5749   // bias. The revocation will occur in the runtime in the slow case.
  5750   if (counters != NULL) {
  5751     cond_inc32(Assembler::zero,
  5752                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
  5754   if (slow_case != NULL) {
  5755     jcc(Assembler::notZero, *slow_case);
  5757   jmp(done);
  5759   bind(try_revoke_bias);
  5760   // The prototype mark in the klass doesn't have the bias bit set any
  5761   // more, indicating that objects of this data type are not supposed
  5762   // to be biased any more. We are going to try to reset the mark of
  5763   // this object to the prototype value and fall through to the
  5764   // CAS-based locking scheme. Note that if our CAS fails, it means
  5765   // that another thread raced us for the privilege of revoking the
  5766   // bias of this particular object, so it's okay to continue in the
  5767   // normal locking code.
  5768   //
  5769   // FIXME: due to a lack of registers we currently blow away the age
  5770   // bits in this situation. Should attempt to preserve them.
  5771   load_prototype_header(tmp_reg, obj_reg);
  5772   if (os::is_MP()) {
  5773     lock();
  5775   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5776   // Fall through to the normal CAS-based lock, because no matter what
  5777   // the result of the above CAS, some thread must have succeeded in
  5778   // removing the bias bit from the object's header.
  5779   if (counters != NULL) {
  5780     cond_inc32(Assembler::zero,
  5781                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
  5784   bind(cas_label);
  5786   return null_check_offset;
  5789 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
  5790   Label L, E;
  5792 #ifdef _WIN64
  5793   // Windows always allocates space for it's register args
  5794   assert(num_args <= 4, "only register arguments supported");
  5795   subq(rsp,  frame::arg_reg_save_area_bytes);
  5796 #endif
  5798   // Align stack if necessary
  5799   testl(rsp, 15);
  5800   jcc(Assembler::zero, L);
  5802   subq(rsp, 8);
  5804     call(RuntimeAddress(entry_point));
  5806   addq(rsp, 8);
  5807   jmp(E);
  5809   bind(L);
  5811     call(RuntimeAddress(entry_point));
  5814   bind(E);
  5816 #ifdef _WIN64
  5817   // restore stack pointer
  5818   addq(rsp, frame::arg_reg_save_area_bytes);
  5819 #endif
  5823 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
  5824   assert(!src2.is_lval(), "should use cmpptr");
  5826   if (reachable(src2)) {
  5827     cmpq(src1, as_Address(src2));
  5828   } else {
  5829     lea(rscratch1, src2);
  5830     Assembler::cmpq(src1, Address(rscratch1, 0));
  5834 int MacroAssembler::corrected_idivq(Register reg) {
  5835   // Full implementation of Java ldiv and lrem; checks for special
  5836   // case as described in JVM spec., p.243 & p.271.  The function
  5837   // returns the (pc) offset of the idivl instruction - may be needed
  5838   // for implicit exceptions.
  5839   //
  5840   //         normal case                           special case
  5841   //
  5842   // input : rax: dividend                         min_long
  5843   //         reg: divisor   (may not be eax/edx)   -1
  5844   //
  5845   // output: rax: quotient  (= rax idiv reg)       min_long
  5846   //         rdx: remainder (= rax irem reg)       0
  5847   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
  5848   static const int64_t min_long = 0x8000000000000000;
  5849   Label normal_case, special_case;
  5851   // check for special case
  5852   cmp64(rax, ExternalAddress((address) &min_long));
  5853   jcc(Assembler::notEqual, normal_case);
  5854   xorl(rdx, rdx); // prepare rdx for possible special case (where
  5855                   // remainder = 0)
  5856   cmpq(reg, -1);
  5857   jcc(Assembler::equal, special_case);
  5859   // handle normal case
  5860   bind(normal_case);
  5861   cdqq();
  5862   int idivq_offset = offset();
  5863   idivq(reg);
  5865   // normal and special case exit
  5866   bind(special_case);
  5868   return idivq_offset;
  5871 void MacroAssembler::decrementq(Register reg, int value) {
  5872   if (value == min_jint) { subq(reg, value); return; }
  5873   if (value <  0) { incrementq(reg, -value); return; }
  5874   if (value == 0) {                        ; return; }
  5875   if (value == 1 && UseIncDec) { decq(reg) ; return; }
  5876   /* else */      { subq(reg, value)       ; return; }
  5879 void MacroAssembler::decrementq(Address dst, int value) {
  5880   if (value == min_jint) { subq(dst, value); return; }
  5881   if (value <  0) { incrementq(dst, -value); return; }
  5882   if (value == 0) {                        ; return; }
  5883   if (value == 1 && UseIncDec) { decq(dst) ; return; }
  5884   /* else */      { subq(dst, value)       ; return; }
  5887 void MacroAssembler::incrementq(Register reg, int value) {
  5888   if (value == min_jint) { addq(reg, value); return; }
  5889   if (value <  0) { decrementq(reg, -value); return; }
  5890   if (value == 0) {                        ; return; }
  5891   if (value == 1 && UseIncDec) { incq(reg) ; return; }
  5892   /* else */      { addq(reg, value)       ; return; }
  5895 void MacroAssembler::incrementq(Address dst, int value) {
  5896   if (value == min_jint) { addq(dst, value); return; }
  5897   if (value <  0) { decrementq(dst, -value); return; }
  5898   if (value == 0) {                        ; return; }
  5899   if (value == 1 && UseIncDec) { incq(dst) ; return; }
  5900   /* else */      { addq(dst, value)       ; return; }
  5903 // 32bit can do a case table jump in one instruction but we no longer allow the base
  5904 // to be installed in the Address class
  5905 void MacroAssembler::jump(ArrayAddress entry) {
  5906   lea(rscratch1, entry.base());
  5907   Address dispatch = entry.index();
  5908   assert(dispatch._base == noreg, "must be");
  5909   dispatch._base = rscratch1;
  5910   jmp(dispatch);
  5913 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  5914   ShouldNotReachHere(); // 64bit doesn't use two regs
  5915   cmpq(x_lo, y_lo);
  5918 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  5919     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  5922 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  5923   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
  5924   movptr(dst, rscratch1);
  5927 void MacroAssembler::leave() {
  5928   // %%% is this really better? Why not on 32bit too?
  5929   emit_byte(0xC9); // LEAVE
  5932 void MacroAssembler::lneg(Register hi, Register lo) {
  5933   ShouldNotReachHere(); // 64bit doesn't use two regs
  5934   negq(lo);
  5937 void MacroAssembler::movoop(Register dst, jobject obj) {
  5938   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  5941 void MacroAssembler::movoop(Address dst, jobject obj) {
  5942   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  5943   movq(dst, rscratch1);
  5946 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  5947   if (src.is_lval()) {
  5948     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  5949   } else {
  5950     if (reachable(src)) {
  5951       movq(dst, as_Address(src));
  5952     } else {
  5953       lea(rscratch1, src);
  5954       movq(dst, Address(rscratch1,0));
  5959 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  5960   movq(as_Address(dst), src);
  5963 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  5964   movq(dst, as_Address(src));
  5967 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  5968 void MacroAssembler::movptr(Address dst, intptr_t src) {
  5969   mov64(rscratch1, src);
  5970   movq(dst, rscratch1);
  5973 // These are mostly for initializing NULL
  5974 void MacroAssembler::movptr(Address dst, int32_t src) {
  5975   movslq(dst, src);
  5978 void MacroAssembler::movptr(Register dst, int32_t src) {
  5979   mov64(dst, (intptr_t)src);
  5982 void MacroAssembler::pushoop(jobject obj) {
  5983   movoop(rscratch1, obj);
  5984   push(rscratch1);
  5987 void MacroAssembler::pushptr(AddressLiteral src) {
  5988   lea(rscratch1, src);
  5989   if (src.is_lval()) {
  5990     push(rscratch1);
  5991   } else {
  5992     pushq(Address(rscratch1, 0));
  5996 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
  5997                                            bool clear_pc) {
  5998   // we must set sp to zero to clear frame
  5999   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  6000   // must clear fp, so that compiled frames are not confused; it is
  6001   // possible that we need it only for debugging
  6002   if (clear_fp) {
  6003     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  6006   if (clear_pc) {
  6007     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  6011 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
  6012                                          Register last_java_fp,
  6013                                          address  last_java_pc) {
  6014   // determine last_java_sp register
  6015   if (!last_java_sp->is_valid()) {
  6016     last_java_sp = rsp;
  6019   // last_java_fp is optional
  6020   if (last_java_fp->is_valid()) {
  6021     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
  6022            last_java_fp);
  6025   // last_java_pc is optional
  6026   if (last_java_pc != NULL) {
  6027     Address java_pc(r15_thread,
  6028                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  6029     lea(rscratch1, InternalAddress(last_java_pc));
  6030     movptr(java_pc, rscratch1);
  6033   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  6036 static void pass_arg0(MacroAssembler* masm, Register arg) {
  6037   if (c_rarg0 != arg ) {
  6038     masm->mov(c_rarg0, arg);
  6042 static void pass_arg1(MacroAssembler* masm, Register arg) {
  6043   if (c_rarg1 != arg ) {
  6044     masm->mov(c_rarg1, arg);
  6048 static void pass_arg2(MacroAssembler* masm, Register arg) {
  6049   if (c_rarg2 != arg ) {
  6050     masm->mov(c_rarg2, arg);
  6054 static void pass_arg3(MacroAssembler* masm, Register arg) {
  6055   if (c_rarg3 != arg ) {
  6056     masm->mov(c_rarg3, arg);
  6060 void MacroAssembler::stop(const char* msg) {
  6061   address rip = pc();
  6062   pusha(); // get regs on stack
  6063   lea(c_rarg0, ExternalAddress((address) msg));
  6064   lea(c_rarg1, InternalAddress(rip));
  6065   movq(c_rarg2, rsp); // pass pointer to regs array
  6066   andq(rsp, -16); // align stack as required by ABI
  6067   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  6068   hlt();
  6071 void MacroAssembler::warn(const char* msg) {
  6072   push(rbp);
  6073   movq(rbp, rsp);
  6074   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  6075   push_CPU_state();   // keeps alignment at 16 bytes
  6076   lea(c_rarg0, ExternalAddress((address) msg));
  6077   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
  6078   pop_CPU_state();
  6079   mov(rsp, rbp);
  6080   pop(rbp);
  6083 void MacroAssembler::print_state() {
  6084   address rip = pc();
  6085   pusha();            // get regs on stack
  6086   push(rbp);
  6087   movq(rbp, rsp);
  6088   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  6089   push_CPU_state();   // keeps alignment at 16 bytes
  6091   lea(c_rarg0, InternalAddress(rip));
  6092   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
  6093   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
  6095   pop_CPU_state();
  6096   mov(rsp, rbp);
  6097   pop(rbp);
  6098   popa();
  6101 #ifndef PRODUCT
  6102 extern "C" void findpc(intptr_t x);
  6103 #endif
  6105 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
  6106   // In order to get locks to work, we need to fake a in_VM state
  6107   if (ShowMessageBoxOnError) {
  6108     JavaThread* thread = JavaThread::current();
  6109     JavaThreadState saved_state = thread->thread_state();
  6110     thread->set_thread_state(_thread_in_vm);
  6111 #ifndef PRODUCT
  6112     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  6113       ttyLocker ttyl;
  6114       BytecodeCounter::print();
  6116 #endif
  6117     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  6118     // XXX correct this offset for amd64
  6119     // This is the value of eip which points to where verify_oop will return.
  6120     if (os::message_box(msg, "Execution stopped, print registers?")) {
  6121       print_state64(pc, regs);
  6122       BREAKPOINT;
  6123       assert(false, "start up GDB");
  6125     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  6126   } else {
  6127     ttyLocker ttyl;
  6128     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
  6129                     msg);
  6130     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
  6134 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
  6135   ttyLocker ttyl;
  6136   FlagSetting fs(Debugging, true);
  6137   tty->print_cr("rip = 0x%016lx", pc);
  6138 #ifndef PRODUCT
  6139   tty->cr();
  6140   findpc(pc);
  6141   tty->cr();
  6142 #endif
  6143 #define PRINT_REG(rax, value) \
  6144   { tty->print("%s = ", #rax); os::print_location(tty, value); }
  6145   PRINT_REG(rax, regs[15]);
  6146   PRINT_REG(rbx, regs[12]);
  6147   PRINT_REG(rcx, regs[14]);
  6148   PRINT_REG(rdx, regs[13]);
  6149   PRINT_REG(rdi, regs[8]);
  6150   PRINT_REG(rsi, regs[9]);
  6151   PRINT_REG(rbp, regs[10]);
  6152   PRINT_REG(rsp, regs[11]);
  6153   PRINT_REG(r8 , regs[7]);
  6154   PRINT_REG(r9 , regs[6]);
  6155   PRINT_REG(r10, regs[5]);
  6156   PRINT_REG(r11, regs[4]);
  6157   PRINT_REG(r12, regs[3]);
  6158   PRINT_REG(r13, regs[2]);
  6159   PRINT_REG(r14, regs[1]);
  6160   PRINT_REG(r15, regs[0]);
  6161 #undef PRINT_REG
  6162   // Print some words near top of staack.
  6163   int64_t* rsp = (int64_t*) regs[11];
  6164   int64_t* dump_sp = rsp;
  6165   for (int col1 = 0; col1 < 8; col1++) {
  6166     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
  6167     os::print_location(tty, *dump_sp++);
  6169   for (int row = 0; row < 25; row++) {
  6170     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
  6171     for (int col = 0; col < 4; col++) {
  6172       tty->print(" 0x%016lx", *dump_sp++);
  6174     tty->cr();
  6176   // Print some instructions around pc:
  6177   Disassembler::decode((address)pc-64, (address)pc);
  6178   tty->print_cr("--------");
  6179   Disassembler::decode((address)pc, (address)pc+32);
  6182 #endif // _LP64
  6184 // Now versions that are common to 32/64 bit
  6186 void MacroAssembler::addptr(Register dst, int32_t imm32) {
  6187   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
  6190 void MacroAssembler::addptr(Register dst, Register src) {
  6191   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  6194 void MacroAssembler::addptr(Address dst, Register src) {
  6195   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  6198 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
  6199   if (reachable(src)) {
  6200     Assembler::addsd(dst, as_Address(src));
  6201   } else {
  6202     lea(rscratch1, src);
  6203     Assembler::addsd(dst, Address(rscratch1, 0));
  6207 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
  6208   if (reachable(src)) {
  6209     addss(dst, as_Address(src));
  6210   } else {
  6211     lea(rscratch1, src);
  6212     addss(dst, Address(rscratch1, 0));
  6216 void MacroAssembler::align(int modulus) {
  6217   if (offset() % modulus != 0) {
  6218     nop(modulus - (offset() % modulus));
  6222 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
  6223   // Used in sign-masking with aligned address.
  6224   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  6225   if (reachable(src)) {
  6226     Assembler::andpd(dst, as_Address(src));
  6227   } else {
  6228     lea(rscratch1, src);
  6229     Assembler::andpd(dst, Address(rscratch1, 0));
  6233 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
  6234   // Used in sign-masking with aligned address.
  6235   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  6236   if (reachable(src)) {
  6237     Assembler::andps(dst, as_Address(src));
  6238   } else {
  6239     lea(rscratch1, src);
  6240     Assembler::andps(dst, Address(rscratch1, 0));
  6244 void MacroAssembler::andptr(Register dst, int32_t imm32) {
  6245   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
  6248 void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
  6249   pushf();
  6250   if (os::is_MP())
  6251     lock();
  6252   incrementl(counter_addr);
  6253   popf();
  6256 // Writes to stack successive pages until offset reached to check for
  6257 // stack overflow + shadow pages.  This clobbers tmp.
  6258 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
  6259   movptr(tmp, rsp);
  6260   // Bang stack for total size given plus shadow page size.
  6261   // Bang one page at a time because large size can bang beyond yellow and
  6262   // red zones.
  6263   Label loop;
  6264   bind(loop);
  6265   movl(Address(tmp, (-os::vm_page_size())), size );
  6266   subptr(tmp, os::vm_page_size());
  6267   subl(size, os::vm_page_size());
  6268   jcc(Assembler::greater, loop);
  6270   // Bang down shadow pages too.
  6271   // The -1 because we already subtracted 1 page.
  6272   for (int i = 0; i< StackShadowPages-1; i++) {
  6273     // this could be any sized move but this is can be a debugging crumb
  6274     // so the bigger the better.
  6275     movptr(Address(tmp, (-i*os::vm_page_size())), size );
  6279 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
  6280   assert(UseBiasedLocking, "why call this otherwise?");
  6282   // Check for biased locking unlock case, which is a no-op
  6283   // Note: we do not have to check the thread ID for two reasons.
  6284   // First, the interpreter checks for IllegalMonitorStateException at
  6285   // a higher level. Second, if the bias was revoked while we held the
  6286   // lock, the object could not be rebiased toward another thread, so
  6287   // the bias bit would be clear.
  6288   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
  6289   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
  6290   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
  6291   jcc(Assembler::equal, done);
  6294 void MacroAssembler::c2bool(Register x) {
  6295   // implements x == 0 ? 0 : 1
  6296   // note: must only look at least-significant byte of x
  6297   //       since C-style booleans are stored in one byte
  6298   //       only! (was bug)
  6299   andl(x, 0xFF);
  6300   setb(Assembler::notZero, x);
  6303 // Wouldn't need if AddressLiteral version had new name
  6304 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
  6305   Assembler::call(L, rtype);
  6308 void MacroAssembler::call(Register entry) {
  6309   Assembler::call(entry);
  6312 void MacroAssembler::call(AddressLiteral entry) {
  6313   if (reachable(entry)) {
  6314     Assembler::call_literal(entry.target(), entry.rspec());
  6315   } else {
  6316     lea(rscratch1, entry);
  6317     Assembler::call(rscratch1);
  6321 // Implementation of call_VM versions
  6323 void MacroAssembler::call_VM(Register oop_result,
  6324                              address entry_point,
  6325                              bool check_exceptions) {
  6326   Label C, E;
  6327   call(C, relocInfo::none);
  6328   jmp(E);
  6330   bind(C);
  6331   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
  6332   ret(0);
  6334   bind(E);
  6337 void MacroAssembler::call_VM(Register oop_result,
  6338                              address entry_point,
  6339                              Register arg_1,
  6340                              bool check_exceptions) {
  6341   Label C, E;
  6342   call(C, relocInfo::none);
  6343   jmp(E);
  6345   bind(C);
  6346   pass_arg1(this, arg_1);
  6347   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
  6348   ret(0);
  6350   bind(E);
  6353 void MacroAssembler::call_VM(Register oop_result,
  6354                              address entry_point,
  6355                              Register arg_1,
  6356                              Register arg_2,
  6357                              bool check_exceptions) {
  6358   Label C, E;
  6359   call(C, relocInfo::none);
  6360   jmp(E);
  6362   bind(C);
  6364   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6366   pass_arg2(this, arg_2);
  6367   pass_arg1(this, arg_1);
  6368   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
  6369   ret(0);
  6371   bind(E);
  6374 void MacroAssembler::call_VM(Register oop_result,
  6375                              address entry_point,
  6376                              Register arg_1,
  6377                              Register arg_2,
  6378                              Register arg_3,
  6379                              bool check_exceptions) {
  6380   Label C, E;
  6381   call(C, relocInfo::none);
  6382   jmp(E);
  6384   bind(C);
  6386   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  6387   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  6388   pass_arg3(this, arg_3);
  6390   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6391   pass_arg2(this, arg_2);
  6393   pass_arg1(this, arg_1);
  6394   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
  6395   ret(0);
  6397   bind(E);
  6400 void MacroAssembler::call_VM(Register oop_result,
  6401                              Register last_java_sp,
  6402                              address entry_point,
  6403                              int number_of_arguments,
  6404                              bool check_exceptions) {
  6405   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  6406   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  6409 void MacroAssembler::call_VM(Register oop_result,
  6410                              Register last_java_sp,
  6411                              address entry_point,
  6412                              Register arg_1,
  6413                              bool check_exceptions) {
  6414   pass_arg1(this, arg_1);
  6415   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  6418 void MacroAssembler::call_VM(Register oop_result,
  6419                              Register last_java_sp,
  6420                              address entry_point,
  6421                              Register arg_1,
  6422                              Register arg_2,
  6423                              bool check_exceptions) {
  6425   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6426   pass_arg2(this, arg_2);
  6427   pass_arg1(this, arg_1);
  6428   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  6431 void MacroAssembler::call_VM(Register oop_result,
  6432                              Register last_java_sp,
  6433                              address entry_point,
  6434                              Register arg_1,
  6435                              Register arg_2,
  6436                              Register arg_3,
  6437                              bool check_exceptions) {
  6438   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  6439   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  6440   pass_arg3(this, arg_3);
  6441   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6442   pass_arg2(this, arg_2);
  6443   pass_arg1(this, arg_1);
  6444   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  6447 void MacroAssembler::super_call_VM(Register oop_result,
  6448                                    Register last_java_sp,
  6449                                    address entry_point,
  6450                                    int number_of_arguments,
  6451                                    bool check_exceptions) {
  6452   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  6453   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  6456 void MacroAssembler::super_call_VM(Register oop_result,
  6457                                    Register last_java_sp,
  6458                                    address entry_point,
  6459                                    Register arg_1,
  6460                                    bool check_exceptions) {
  6461   pass_arg1(this, arg_1);
  6462   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  6465 void MacroAssembler::super_call_VM(Register oop_result,
  6466                                    Register last_java_sp,
  6467                                    address entry_point,
  6468                                    Register arg_1,
  6469                                    Register arg_2,
  6470                                    bool check_exceptions) {
  6472   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6473   pass_arg2(this, arg_2);
  6474   pass_arg1(this, arg_1);
  6475   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  6478 void MacroAssembler::super_call_VM(Register oop_result,
  6479                                    Register last_java_sp,
  6480                                    address entry_point,
  6481                                    Register arg_1,
  6482                                    Register arg_2,
  6483                                    Register arg_3,
  6484                                    bool check_exceptions) {
  6485   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  6486   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  6487   pass_arg3(this, arg_3);
  6488   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6489   pass_arg2(this, arg_2);
  6490   pass_arg1(this, arg_1);
  6491   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  6494 void MacroAssembler::call_VM_base(Register oop_result,
  6495                                   Register java_thread,
  6496                                   Register last_java_sp,
  6497                                   address  entry_point,
  6498                                   int      number_of_arguments,
  6499                                   bool     check_exceptions) {
  6500   // determine java_thread register
  6501   if (!java_thread->is_valid()) {
  6502 #ifdef _LP64
  6503     java_thread = r15_thread;
  6504 #else
  6505     java_thread = rdi;
  6506     get_thread(java_thread);
  6507 #endif // LP64
  6509   // determine last_java_sp register
  6510   if (!last_java_sp->is_valid()) {
  6511     last_java_sp = rsp;
  6513   // debugging support
  6514   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  6515   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
  6516 #ifdef ASSERT
  6517   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
  6518   // r12 is the heapbase.
  6519   LP64_ONLY(if (UseCompressedOops && !TraceBytecodes) verify_heapbase("call_VM_base");)
  6520 #endif // ASSERT
  6522   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
  6523   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
  6525   // push java thread (becomes first argument of C function)
  6527   NOT_LP64(push(java_thread); number_of_arguments++);
  6528   LP64_ONLY(mov(c_rarg0, r15_thread));
  6530   // set last Java frame before call
  6531   assert(last_java_sp != rbp, "can't use ebp/rbp");
  6533   // Only interpreter should have to set fp
  6534   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
  6536   // do the call, remove parameters
  6537   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
  6539   // restore the thread (cannot use the pushed argument since arguments
  6540   // may be overwritten by C code generated by an optimizing compiler);
  6541   // however can use the register value directly if it is callee saved.
  6542   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
  6543     // rdi & rsi (also r15) are callee saved -> nothing to do
  6544 #ifdef ASSERT
  6545     guarantee(java_thread != rax, "change this code");
  6546     push(rax);
  6547     { Label L;
  6548       get_thread(rax);
  6549       cmpptr(java_thread, rax);
  6550       jcc(Assembler::equal, L);
  6551       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
  6552       bind(L);
  6554     pop(rax);
  6555 #endif
  6556   } else {
  6557     get_thread(java_thread);
  6559   // reset last Java frame
  6560   // Only interpreter should have to clear fp
  6561   reset_last_Java_frame(java_thread, true, false);
  6563 #ifndef CC_INTERP
  6564    // C++ interp handles this in the interpreter
  6565   check_and_handle_popframe(java_thread);
  6566   check_and_handle_earlyret(java_thread);
  6567 #endif /* CC_INTERP */
  6569   if (check_exceptions) {
  6570     // check for pending exceptions (java_thread is set upon return)
  6571     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
  6572 #ifndef _LP64
  6573     jump_cc(Assembler::notEqual,
  6574             RuntimeAddress(StubRoutines::forward_exception_entry()));
  6575 #else
  6576     // This used to conditionally jump to forward_exception however it is
  6577     // possible if we relocate that the branch will not reach. So we must jump
  6578     // around so we can always reach
  6580     Label ok;
  6581     jcc(Assembler::equal, ok);
  6582     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  6583     bind(ok);
  6584 #endif // LP64
  6587   // get oop result if there is one and reset the value in the thread
  6588   if (oop_result->is_valid()) {
  6589     movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
  6590     movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
  6591     verify_oop(oop_result, "broken oop in call_VM_base");
  6595 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  6597   // Calculate the value for last_Java_sp
  6598   // somewhat subtle. call_VM does an intermediate call
  6599   // which places a return address on the stack just under the
  6600   // stack pointer as the user finsihed with it. This allows
  6601   // use to retrieve last_Java_pc from last_Java_sp[-1].
  6602   // On 32bit we then have to push additional args on the stack to accomplish
  6603   // the actual requested call. On 64bit call_VM only can use register args
  6604   // so the only extra space is the return address that call_VM created.
  6605   // This hopefully explains the calculations here.
  6607 #ifdef _LP64
  6608   // We've pushed one address, correct last_Java_sp
  6609   lea(rax, Address(rsp, wordSize));
  6610 #else
  6611   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
  6612 #endif // LP64
  6614   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
  6618 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
  6619   call_VM_leaf_base(entry_point, number_of_arguments);
  6622 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
  6623   pass_arg0(this, arg_0);
  6624   call_VM_leaf(entry_point, 1);
  6627 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  6629   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6630   pass_arg1(this, arg_1);
  6631   pass_arg0(this, arg_0);
  6632   call_VM_leaf(entry_point, 2);
  6635 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  6636   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  6637   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6638   pass_arg2(this, arg_2);
  6639   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6640   pass_arg1(this, arg_1);
  6641   pass_arg0(this, arg_0);
  6642   call_VM_leaf(entry_point, 3);
  6645 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
  6646   pass_arg0(this, arg_0);
  6647   MacroAssembler::call_VM_leaf_base(entry_point, 1);
  6650 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  6652   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6653   pass_arg1(this, arg_1);
  6654   pass_arg0(this, arg_0);
  6655   MacroAssembler::call_VM_leaf_base(entry_point, 2);
  6658 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  6659   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  6660   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6661   pass_arg2(this, arg_2);
  6662   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6663   pass_arg1(this, arg_1);
  6664   pass_arg0(this, arg_0);
  6665   MacroAssembler::call_VM_leaf_base(entry_point, 3);
  6668 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
  6669   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
  6670   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  6671   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  6672   pass_arg3(this, arg_3);
  6673   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  6674   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6675   pass_arg2(this, arg_2);
  6676   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6677   pass_arg1(this, arg_1);
  6678   pass_arg0(this, arg_0);
  6679   MacroAssembler::call_VM_leaf_base(entry_point, 4);
  6682 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
  6685 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
  6688 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
  6689   if (reachable(src1)) {
  6690     cmpl(as_Address(src1), imm);
  6691   } else {
  6692     lea(rscratch1, src1);
  6693     cmpl(Address(rscratch1, 0), imm);
  6697 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
  6698   assert(!src2.is_lval(), "use cmpptr");
  6699   if (reachable(src2)) {
  6700     cmpl(src1, as_Address(src2));
  6701   } else {
  6702     lea(rscratch1, src2);
  6703     cmpl(src1, Address(rscratch1, 0));
  6707 void MacroAssembler::cmp32(Register src1, int32_t imm) {
  6708   Assembler::cmpl(src1, imm);
  6711 void MacroAssembler::cmp32(Register src1, Address src2) {
  6712   Assembler::cmpl(src1, src2);
  6715 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  6716   ucomisd(opr1, opr2);
  6718   Label L;
  6719   if (unordered_is_less) {
  6720     movl(dst, -1);
  6721     jcc(Assembler::parity, L);
  6722     jcc(Assembler::below , L);
  6723     movl(dst, 0);
  6724     jcc(Assembler::equal , L);
  6725     increment(dst);
  6726   } else { // unordered is greater
  6727     movl(dst, 1);
  6728     jcc(Assembler::parity, L);
  6729     jcc(Assembler::above , L);
  6730     movl(dst, 0);
  6731     jcc(Assembler::equal , L);
  6732     decrementl(dst);
  6734   bind(L);
  6737 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  6738   ucomiss(opr1, opr2);
  6740   Label L;
  6741   if (unordered_is_less) {
  6742     movl(dst, -1);
  6743     jcc(Assembler::parity, L);
  6744     jcc(Assembler::below , L);
  6745     movl(dst, 0);
  6746     jcc(Assembler::equal , L);
  6747     increment(dst);
  6748   } else { // unordered is greater
  6749     movl(dst, 1);
  6750     jcc(Assembler::parity, L);
  6751     jcc(Assembler::above , L);
  6752     movl(dst, 0);
  6753     jcc(Assembler::equal , L);
  6754     decrementl(dst);
  6756   bind(L);
  6760 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
  6761   if (reachable(src1)) {
  6762     cmpb(as_Address(src1), imm);
  6763   } else {
  6764     lea(rscratch1, src1);
  6765     cmpb(Address(rscratch1, 0), imm);
  6769 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
  6770 #ifdef _LP64
  6771   if (src2.is_lval()) {
  6772     movptr(rscratch1, src2);
  6773     Assembler::cmpq(src1, rscratch1);
  6774   } else if (reachable(src2)) {
  6775     cmpq(src1, as_Address(src2));
  6776   } else {
  6777     lea(rscratch1, src2);
  6778     Assembler::cmpq(src1, Address(rscratch1, 0));
  6780 #else
  6781   if (src2.is_lval()) {
  6782     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  6783   } else {
  6784     cmpl(src1, as_Address(src2));
  6786 #endif // _LP64
  6789 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
  6790   assert(src2.is_lval(), "not a mem-mem compare");
  6791 #ifdef _LP64
  6792   // moves src2's literal address
  6793   movptr(rscratch1, src2);
  6794   Assembler::cmpq(src1, rscratch1);
  6795 #else
  6796   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  6797 #endif // _LP64
  6800 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
  6801   if (reachable(adr)) {
  6802     if (os::is_MP())
  6803       lock();
  6804     cmpxchgptr(reg, as_Address(adr));
  6805   } else {
  6806     lea(rscratch1, adr);
  6807     if (os::is_MP())
  6808       lock();
  6809     cmpxchgptr(reg, Address(rscratch1, 0));
  6813 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
  6814   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
  6817 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
  6818   if (reachable(src)) {
  6819     Assembler::comisd(dst, as_Address(src));
  6820   } else {
  6821     lea(rscratch1, src);
  6822     Assembler::comisd(dst, Address(rscratch1, 0));
  6826 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
  6827   if (reachable(src)) {
  6828     Assembler::comiss(dst, as_Address(src));
  6829   } else {
  6830     lea(rscratch1, src);
  6831     Assembler::comiss(dst, Address(rscratch1, 0));
  6836 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
  6837   Condition negated_cond = negate_condition(cond);
  6838   Label L;
  6839   jcc(negated_cond, L);
  6840   atomic_incl(counter_addr);
  6841   bind(L);
  6844 int MacroAssembler::corrected_idivl(Register reg) {
  6845   // Full implementation of Java idiv and irem; checks for
  6846   // special case as described in JVM spec., p.243 & p.271.
  6847   // The function returns the (pc) offset of the idivl
  6848   // instruction - may be needed for implicit exceptions.
  6849   //
  6850   //         normal case                           special case
  6851   //
  6852   // input : rax,: dividend                         min_int
  6853   //         reg: divisor   (may not be rax,/rdx)   -1
  6854   //
  6855   // output: rax,: quotient  (= rax, idiv reg)       min_int
  6856   //         rdx: remainder (= rax, irem reg)       0
  6857   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
  6858   const int min_int = 0x80000000;
  6859   Label normal_case, special_case;
  6861   // check for special case
  6862   cmpl(rax, min_int);
  6863   jcc(Assembler::notEqual, normal_case);
  6864   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
  6865   cmpl(reg, -1);
  6866   jcc(Assembler::equal, special_case);
  6868   // handle normal case
  6869   bind(normal_case);
  6870   cdql();
  6871   int idivl_offset = offset();
  6872   idivl(reg);
  6874   // normal and special case exit
  6875   bind(special_case);
  6877   return idivl_offset;
  6882 void MacroAssembler::decrementl(Register reg, int value) {
  6883   if (value == min_jint) {subl(reg, value) ; return; }
  6884   if (value <  0) { incrementl(reg, -value); return; }
  6885   if (value == 0) {                        ; return; }
  6886   if (value == 1 && UseIncDec) { decl(reg) ; return; }
  6887   /* else */      { subl(reg, value)       ; return; }
  6890 void MacroAssembler::decrementl(Address dst, int value) {
  6891   if (value == min_jint) {subl(dst, value) ; return; }
  6892   if (value <  0) { incrementl(dst, -value); return; }
  6893   if (value == 0) {                        ; return; }
  6894   if (value == 1 && UseIncDec) { decl(dst) ; return; }
  6895   /* else */      { subl(dst, value)       ; return; }
  6898 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
  6899   assert (shift_value > 0, "illegal shift value");
  6900   Label _is_positive;
  6901   testl (reg, reg);
  6902   jcc (Assembler::positive, _is_positive);
  6903   int offset = (1 << shift_value) - 1 ;
  6905   if (offset == 1) {
  6906     incrementl(reg);
  6907   } else {
  6908     addl(reg, offset);
  6911   bind (_is_positive);
  6912   sarl(reg, shift_value);
  6915 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
  6916   if (reachable(src)) {
  6917     Assembler::divsd(dst, as_Address(src));
  6918   } else {
  6919     lea(rscratch1, src);
  6920     Assembler::divsd(dst, Address(rscratch1, 0));
  6924 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
  6925   if (reachable(src)) {
  6926     Assembler::divss(dst, as_Address(src));
  6927   } else {
  6928     lea(rscratch1, src);
  6929     Assembler::divss(dst, Address(rscratch1, 0));
  6933 // !defined(COMPILER2) is because of stupid core builds
  6934 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
  6935 void MacroAssembler::empty_FPU_stack() {
  6936   if (VM_Version::supports_mmx()) {
  6937     emms();
  6938   } else {
  6939     for (int i = 8; i-- > 0; ) ffree(i);
  6942 #endif // !LP64 || C1 || !C2
  6945 // Defines obj, preserves var_size_in_bytes
  6946 void MacroAssembler::eden_allocate(Register obj,
  6947                                    Register var_size_in_bytes,
  6948                                    int con_size_in_bytes,
  6949                                    Register t1,
  6950                                    Label& slow_case) {
  6951   assert(obj == rax, "obj must be in rax, for cmpxchg");
  6952   assert_different_registers(obj, var_size_in_bytes, t1);
  6953   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  6954     jmp(slow_case);
  6955   } else {
  6956     Register end = t1;
  6957     Label retry;
  6958     bind(retry);
  6959     ExternalAddress heap_top((address) Universe::heap()->top_addr());
  6960     movptr(obj, heap_top);
  6961     if (var_size_in_bytes == noreg) {
  6962       lea(end, Address(obj, con_size_in_bytes));
  6963     } else {
  6964       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  6966     // if end < obj then we wrapped around => object too long => slow case
  6967     cmpptr(end, obj);
  6968     jcc(Assembler::below, slow_case);
  6969     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
  6970     jcc(Assembler::above, slow_case);
  6971     // Compare obj with the top addr, and if still equal, store the new top addr in
  6972     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
  6973     // it otherwise. Use lock prefix for atomicity on MPs.
  6974     locked_cmpxchgptr(end, heap_top);
  6975     jcc(Assembler::notEqual, retry);
  6979 void MacroAssembler::enter() {
  6980   push(rbp);
  6981   mov(rbp, rsp);
  6984 // A 5 byte nop that is safe for patching (see patch_verified_entry)
  6985 void MacroAssembler::fat_nop() {
  6986   if (UseAddressNop) {
  6987     addr_nop_5();
  6988   } else {
  6989     emit_byte(0x26); // es:
  6990     emit_byte(0x2e); // cs:
  6991     emit_byte(0x64); // fs:
  6992     emit_byte(0x65); // gs:
  6993     emit_byte(0x90);
  6997 void MacroAssembler::fcmp(Register tmp) {
  6998   fcmp(tmp, 1, true, true);
  7001 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
  7002   assert(!pop_right || pop_left, "usage error");
  7003   if (VM_Version::supports_cmov()) {
  7004     assert(tmp == noreg, "unneeded temp");
  7005     if (pop_left) {
  7006       fucomip(index);
  7007     } else {
  7008       fucomi(index);
  7010     if (pop_right) {
  7011       fpop();
  7013   } else {
  7014     assert(tmp != noreg, "need temp");
  7015     if (pop_left) {
  7016       if (pop_right) {
  7017         fcompp();
  7018       } else {
  7019         fcomp(index);
  7021     } else {
  7022       fcom(index);
  7024     // convert FPU condition into eflags condition via rax,
  7025     save_rax(tmp);
  7026     fwait(); fnstsw_ax();
  7027     sahf();
  7028     restore_rax(tmp);
  7030   // condition codes set as follows:
  7031   //
  7032   // CF (corresponds to C0) if x < y
  7033   // PF (corresponds to C2) if unordered
  7034   // ZF (corresponds to C3) if x = y
  7037 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
  7038   fcmp2int(dst, unordered_is_less, 1, true, true);
  7041 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
  7042   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
  7043   Label L;
  7044   if (unordered_is_less) {
  7045     movl(dst, -1);
  7046     jcc(Assembler::parity, L);
  7047     jcc(Assembler::below , L);
  7048     movl(dst, 0);
  7049     jcc(Assembler::equal , L);
  7050     increment(dst);
  7051   } else { // unordered is greater
  7052     movl(dst, 1);
  7053     jcc(Assembler::parity, L);
  7054     jcc(Assembler::above , L);
  7055     movl(dst, 0);
  7056     jcc(Assembler::equal , L);
  7057     decrementl(dst);
  7059   bind(L);
  7062 void MacroAssembler::fld_d(AddressLiteral src) {
  7063   fld_d(as_Address(src));
  7066 void MacroAssembler::fld_s(AddressLiteral src) {
  7067   fld_s(as_Address(src));
  7070 void MacroAssembler::fld_x(AddressLiteral src) {
  7071   Assembler::fld_x(as_Address(src));
  7074 void MacroAssembler::fldcw(AddressLiteral src) {
  7075   Assembler::fldcw(as_Address(src));
  7078 void MacroAssembler::pow_exp_core_encoding() {
  7079   // kills rax, rcx, rdx
  7080   subptr(rsp,sizeof(jdouble));
  7081   // computes 2^X. Stack: X ...
  7082   // f2xm1 computes 2^X-1 but only operates on -1<=X<=1. Get int(X) and
  7083   // keep it on the thread's stack to compute 2^int(X) later
  7084   // then compute 2^(X-int(X)) as (2^(X-int(X)-1+1)
  7085   // final result is obtained with: 2^X = 2^int(X) * 2^(X-int(X))
  7086   fld_s(0);                 // Stack: X X ...
  7087   frndint();                // Stack: int(X) X ...
  7088   fsuba(1);                 // Stack: int(X) X-int(X) ...
  7089   fistp_s(Address(rsp,0));  // move int(X) as integer to thread's stack. Stack: X-int(X) ...
  7090   f2xm1();                  // Stack: 2^(X-int(X))-1 ...
  7091   fld1();                   // Stack: 1 2^(X-int(X))-1 ...
  7092   faddp(1);                 // Stack: 2^(X-int(X))
  7093   // computes 2^(int(X)): add exponent bias (1023) to int(X), then
  7094   // shift int(X)+1023 to exponent position.
  7095   // Exponent is limited to 11 bits if int(X)+1023 does not fit in 11
  7096   // bits, set result to NaN. 0x000 and 0x7FF are reserved exponent
  7097   // values so detect them and set result to NaN.
  7098   movl(rax,Address(rsp,0));
  7099   movl(rcx, -2048); // 11 bit mask and valid NaN binary encoding
  7100   addl(rax, 1023);
  7101   movl(rdx,rax);
  7102   shll(rax,20);
  7103   // Check that 0 < int(X)+1023 < 2047. Otherwise set rax to NaN.
  7104   addl(rdx,1);
  7105   // Check that 1 < int(X)+1023+1 < 2048
  7106   // in 3 steps:
  7107   // 1- (int(X)+1023+1)&-2048 == 0 => 0 <= int(X)+1023+1 < 2048
  7108   // 2- (int(X)+1023+1)&-2048 != 0
  7109   // 3- (int(X)+1023+1)&-2048 != 1
  7110   // Do 2- first because addl just updated the flags.
  7111   cmov32(Assembler::equal,rax,rcx);
  7112   cmpl(rdx,1);
  7113   cmov32(Assembler::equal,rax,rcx);
  7114   testl(rdx,rcx);
  7115   cmov32(Assembler::notEqual,rax,rcx);
  7116   movl(Address(rsp,4),rax);
  7117   movl(Address(rsp,0),0);
  7118   fmul_d(Address(rsp,0));   // Stack: 2^X ...
  7119   addptr(rsp,sizeof(jdouble));
  7122 void MacroAssembler::increase_precision() {
  7123   subptr(rsp, BytesPerWord);
  7124   fnstcw(Address(rsp, 0));
  7125   movl(rax, Address(rsp, 0));
  7126   orl(rax, 0x300);
  7127   push(rax);
  7128   fldcw(Address(rsp, 0));
  7129   pop(rax);
  7132 void MacroAssembler::restore_precision() {
  7133   fldcw(Address(rsp, 0));
  7134   addptr(rsp, BytesPerWord);
  7137 void MacroAssembler::fast_pow() {
  7138   // computes X^Y = 2^(Y * log2(X))
  7139   // if fast computation is not possible, result is NaN. Requires
  7140   // fallback from user of this macro.
  7141   // increase precision for intermediate steps of the computation
  7142   increase_precision();
  7143   fyl2x();                 // Stack: (Y*log2(X)) ...
  7144   pow_exp_core_encoding(); // Stack: exp(X) ...
  7145   restore_precision();
  7148 void MacroAssembler::fast_exp() {
  7149   // computes exp(X) = 2^(X * log2(e))
  7150   // if fast computation is not possible, result is NaN. Requires
  7151   // fallback from user of this macro.
  7152   // increase precision for intermediate steps of the computation
  7153   increase_precision();
  7154   fldl2e();                // Stack: log2(e) X ...
  7155   fmulp(1);                // Stack: (X*log2(e)) ...
  7156   pow_exp_core_encoding(); // Stack: exp(X) ...
  7157   restore_precision();
  7160 void MacroAssembler::pow_or_exp(bool is_exp, int num_fpu_regs_in_use) {
  7161   // kills rax, rcx, rdx
  7162   // pow and exp needs 2 extra registers on the fpu stack.
  7163   Label slow_case, done;
  7164   Register tmp = noreg;
  7165   if (!VM_Version::supports_cmov()) {
  7166     // fcmp needs a temporary so preserve rdx,
  7167     tmp = rdx;
  7169   Register tmp2 = rax;
  7170   Register tmp3 = rcx;
  7172   if (is_exp) {
  7173     // Stack: X
  7174     fld_s(0);                   // duplicate argument for runtime call. Stack: X X
  7175     fast_exp();                 // Stack: exp(X) X
  7176     fcmp(tmp, 0, false, false); // Stack: exp(X) X
  7177     // exp(X) not equal to itself: exp(X) is NaN go to slow case.
  7178     jcc(Assembler::parity, slow_case);
  7179     // get rid of duplicate argument. Stack: exp(X)
  7180     if (num_fpu_regs_in_use > 0) {
  7181       fxch();
  7182       fpop();
  7183     } else {
  7184       ffree(1);
  7186     jmp(done);
  7187   } else {
  7188     // Stack: X Y
  7189     Label x_negative, y_odd;
  7191     fldz();                     // Stack: 0 X Y
  7192     fcmp(tmp, 1, true, false);  // Stack: X Y
  7193     jcc(Assembler::above, x_negative);
  7195     // X >= 0
  7197     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
  7198     fld_s(1);                   // Stack: X Y X Y
  7199     fast_pow();                 // Stack: X^Y X Y
  7200     fcmp(tmp, 0, false, false); // Stack: X^Y X Y
  7201     // X^Y not equal to itself: X^Y is NaN go to slow case.
  7202     jcc(Assembler::parity, slow_case);
  7203     // get rid of duplicate arguments. Stack: X^Y
  7204     if (num_fpu_regs_in_use > 0) {
  7205       fxch(); fpop();
  7206       fxch(); fpop();
  7207     } else {
  7208       ffree(2);
  7209       ffree(1);
  7211     jmp(done);
  7213     // X <= 0
  7214     bind(x_negative);
  7216     fld_s(1);                   // Stack: Y X Y
  7217     frndint();                  // Stack: int(Y) X Y
  7218     fcmp(tmp, 2, false, false); // Stack: int(Y) X Y
  7219     jcc(Assembler::notEqual, slow_case);
  7221     subptr(rsp, 8);
  7223     // For X^Y, when X < 0, Y has to be an integer and the final
  7224     // result depends on whether it's odd or even. We just checked
  7225     // that int(Y) == Y.  We move int(Y) to gp registers as a 64 bit
  7226     // integer to test its parity. If int(Y) is huge and doesn't fit
  7227     // in the 64 bit integer range, the integer indefinite value will
  7228     // end up in the gp registers. Huge numbers are all even, the
  7229     // integer indefinite number is even so it's fine.
  7231 #ifdef ASSERT
  7232     // Let's check we don't end up with an integer indefinite number
  7233     // when not expected. First test for huge numbers: check whether
  7234     // int(Y)+1 == int(Y) which is true for very large numbers and
  7235     // those are all even. A 64 bit integer is guaranteed to not
  7236     // overflow for numbers where y+1 != y (when precision is set to
  7237     // double precision).
  7238     Label y_not_huge;
  7240     fld1();                     // Stack: 1 int(Y) X Y
  7241     fadd(1);                    // Stack: 1+int(Y) int(Y) X Y
  7243 #ifdef _LP64
  7244     // trip to memory to force the precision down from double extended
  7245     // precision
  7246     fstp_d(Address(rsp, 0));
  7247     fld_d(Address(rsp, 0));
  7248 #endif
  7250     fcmp(tmp, 1, true, false);  // Stack: int(Y) X Y
  7251 #endif
  7253     // move int(Y) as 64 bit integer to thread's stack
  7254     fistp_d(Address(rsp,0));    // Stack: X Y
  7256 #ifdef ASSERT
  7257     jcc(Assembler::notEqual, y_not_huge);
  7259     // Y is huge so we know it's even. It may not fit in a 64 bit
  7260     // integer and we don't want the debug code below to see the
  7261     // integer indefinite value so overwrite int(Y) on the thread's
  7262     // stack with 0.
  7263     movl(Address(rsp, 0), 0);
  7264     movl(Address(rsp, 4), 0);
  7266     bind(y_not_huge);
  7267 #endif
  7269     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
  7270     fld_s(1);                   // Stack: X Y X Y
  7271     fabs();                     // Stack: abs(X) Y X Y
  7272     fast_pow();                 // Stack: abs(X)^Y X Y
  7273     fcmp(tmp, 0, false, false); // Stack: abs(X)^Y X Y
  7274     // abs(X)^Y not equal to itself: abs(X)^Y is NaN go to slow case.
  7276     pop(tmp2);
  7277     NOT_LP64(pop(tmp3));
  7278     jcc(Assembler::parity, slow_case);
  7280 #ifdef ASSERT
  7281     // Check that int(Y) is not integer indefinite value (int
  7282     // overflow). Shouldn't happen because for values that would
  7283     // overflow, 1+int(Y)==Y which was tested earlier.
  7284 #ifndef _LP64
  7286       Label integer;
  7287       testl(tmp2, tmp2);
  7288       jcc(Assembler::notZero, integer);
  7289       cmpl(tmp3, 0x80000000);
  7290       jcc(Assembler::notZero, integer);
  7291       STOP("integer indefinite value shouldn't be seen here");
  7292       bind(integer);
  7294 #else
  7296       Label integer;
  7297       mov(tmp3, tmp2); // preserve tmp2 for parity check below
  7298       shlq(tmp3, 1);
  7299       jcc(Assembler::carryClear, integer);
  7300       jcc(Assembler::notZero, integer);
  7301       STOP("integer indefinite value shouldn't be seen here");
  7302       bind(integer);
  7304 #endif
  7305 #endif
  7307     // get rid of duplicate arguments. Stack: X^Y
  7308     if (num_fpu_regs_in_use > 0) {
  7309       fxch(); fpop();
  7310       fxch(); fpop();
  7311     } else {
  7312       ffree(2);
  7313       ffree(1);
  7316     testl(tmp2, 1);
  7317     jcc(Assembler::zero, done); // X <= 0, Y even: X^Y = abs(X)^Y
  7318     // X <= 0, Y even: X^Y = -abs(X)^Y
  7320     fchs();                     // Stack: -abs(X)^Y Y
  7321     jmp(done);
  7324   // slow case: runtime call
  7325   bind(slow_case);
  7327   fpop();                       // pop incorrect result or int(Y)
  7329   fp_runtime_fallback(is_exp ? CAST_FROM_FN_PTR(address, SharedRuntime::dexp) : CAST_FROM_FN_PTR(address, SharedRuntime::dpow),
  7330                       is_exp ? 1 : 2, num_fpu_regs_in_use);
  7332   // Come here with result in F-TOS
  7333   bind(done);
  7336 void MacroAssembler::fpop() {
  7337   ffree();
  7338   fincstp();
  7341 void MacroAssembler::fremr(Register tmp) {
  7342   save_rax(tmp);
  7343   { Label L;
  7344     bind(L);
  7345     fprem();
  7346     fwait(); fnstsw_ax();
  7347 #ifdef _LP64
  7348     testl(rax, 0x400);
  7349     jcc(Assembler::notEqual, L);
  7350 #else
  7351     sahf();
  7352     jcc(Assembler::parity, L);
  7353 #endif // _LP64
  7355   restore_rax(tmp);
  7356   // Result is in ST0.
  7357   // Note: fxch & fpop to get rid of ST1
  7358   // (otherwise FPU stack could overflow eventually)
  7359   fxch(1);
  7360   fpop();
  7364 void MacroAssembler::incrementl(AddressLiteral dst) {
  7365   if (reachable(dst)) {
  7366     incrementl(as_Address(dst));
  7367   } else {
  7368     lea(rscratch1, dst);
  7369     incrementl(Address(rscratch1, 0));
  7373 void MacroAssembler::incrementl(ArrayAddress dst) {
  7374   incrementl(as_Address(dst));
  7377 void MacroAssembler::incrementl(Register reg, int value) {
  7378   if (value == min_jint) {addl(reg, value) ; return; }
  7379   if (value <  0) { decrementl(reg, -value); return; }
  7380   if (value == 0) {                        ; return; }
  7381   if (value == 1 && UseIncDec) { incl(reg) ; return; }
  7382   /* else */      { addl(reg, value)       ; return; }
  7385 void MacroAssembler::incrementl(Address dst, int value) {
  7386   if (value == min_jint) {addl(dst, value) ; return; }
  7387   if (value <  0) { decrementl(dst, -value); return; }
  7388   if (value == 0) {                        ; return; }
  7389   if (value == 1 && UseIncDec) { incl(dst) ; return; }
  7390   /* else */      { addl(dst, value)       ; return; }
  7393 void MacroAssembler::jump(AddressLiteral dst) {
  7394   if (reachable(dst)) {
  7395     jmp_literal(dst.target(), dst.rspec());
  7396   } else {
  7397     lea(rscratch1, dst);
  7398     jmp(rscratch1);
  7402 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
  7403   if (reachable(dst)) {
  7404     InstructionMark im(this);
  7405     relocate(dst.reloc());
  7406     const int short_size = 2;
  7407     const int long_size = 6;
  7408     int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos);
  7409     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
  7410       // 0111 tttn #8-bit disp
  7411       emit_byte(0x70 | cc);
  7412       emit_byte((offs - short_size) & 0xFF);
  7413     } else {
  7414       // 0000 1111 1000 tttn #32-bit disp
  7415       emit_byte(0x0F);
  7416       emit_byte(0x80 | cc);
  7417       emit_long(offs - long_size);
  7419   } else {
  7420 #ifdef ASSERT
  7421     warning("reversing conditional branch");
  7422 #endif /* ASSERT */
  7423     Label skip;
  7424     jccb(reverse[cc], skip);
  7425     lea(rscratch1, dst);
  7426     Assembler::jmp(rscratch1);
  7427     bind(skip);
  7431 void MacroAssembler::ldmxcsr(AddressLiteral src) {
  7432   if (reachable(src)) {
  7433     Assembler::ldmxcsr(as_Address(src));
  7434   } else {
  7435     lea(rscratch1, src);
  7436     Assembler::ldmxcsr(Address(rscratch1, 0));
  7440 int MacroAssembler::load_signed_byte(Register dst, Address src) {
  7441   int off;
  7442   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  7443     off = offset();
  7444     movsbl(dst, src); // movsxb
  7445   } else {
  7446     off = load_unsigned_byte(dst, src);
  7447     shll(dst, 24);
  7448     sarl(dst, 24);
  7450   return off;
  7453 // Note: load_signed_short used to be called load_signed_word.
  7454 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
  7455 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
  7456 // The term "word" in HotSpot means a 32- or 64-bit machine word.
  7457 int MacroAssembler::load_signed_short(Register dst, Address src) {
  7458   int off;
  7459   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  7460     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
  7461     // version but this is what 64bit has always done. This seems to imply
  7462     // that users are only using 32bits worth.
  7463     off = offset();
  7464     movswl(dst, src); // movsxw
  7465   } else {
  7466     off = load_unsigned_short(dst, src);
  7467     shll(dst, 16);
  7468     sarl(dst, 16);
  7470   return off;
  7473 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
  7474   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  7475   // and "3.9 Partial Register Penalties", p. 22).
  7476   int off;
  7477   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
  7478     off = offset();
  7479     movzbl(dst, src); // movzxb
  7480   } else {
  7481     xorl(dst, dst);
  7482     off = offset();
  7483     movb(dst, src);
  7485   return off;
  7488 // Note: load_unsigned_short used to be called load_unsigned_word.
  7489 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
  7490   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  7491   // and "3.9 Partial Register Penalties", p. 22).
  7492   int off;
  7493   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
  7494     off = offset();
  7495     movzwl(dst, src); // movzxw
  7496   } else {
  7497     xorl(dst, dst);
  7498     off = offset();
  7499     movw(dst, src);
  7501   return off;
  7504 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
  7505   switch (size_in_bytes) {
  7506 #ifndef _LP64
  7507   case  8:
  7508     assert(dst2 != noreg, "second dest register required");
  7509     movl(dst,  src);
  7510     movl(dst2, src.plus_disp(BytesPerInt));
  7511     break;
  7512 #else
  7513   case  8:  movq(dst, src); break;
  7514 #endif
  7515   case  4:  movl(dst, src); break;
  7516   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
  7517   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
  7518   default:  ShouldNotReachHere();
  7522 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
  7523   switch (size_in_bytes) {
  7524 #ifndef _LP64
  7525   case  8:
  7526     assert(src2 != noreg, "second source register required");
  7527     movl(dst,                        src);
  7528     movl(dst.plus_disp(BytesPerInt), src2);
  7529     break;
  7530 #else
  7531   case  8:  movq(dst, src); break;
  7532 #endif
  7533   case  4:  movl(dst, src); break;
  7534   case  2:  movw(dst, src); break;
  7535   case  1:  movb(dst, src); break;
  7536   default:  ShouldNotReachHere();
  7540 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
  7541   if (reachable(dst)) {
  7542     movl(as_Address(dst), src);
  7543   } else {
  7544     lea(rscratch1, dst);
  7545     movl(Address(rscratch1, 0), src);
  7549 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
  7550   if (reachable(src)) {
  7551     movl(dst, as_Address(src));
  7552   } else {
  7553     lea(rscratch1, src);
  7554     movl(dst, Address(rscratch1, 0));
  7558 // C++ bool manipulation
  7560 void MacroAssembler::movbool(Register dst, Address src) {
  7561   if(sizeof(bool) == 1)
  7562     movb(dst, src);
  7563   else if(sizeof(bool) == 2)
  7564     movw(dst, src);
  7565   else if(sizeof(bool) == 4)
  7566     movl(dst, src);
  7567   else
  7568     // unsupported
  7569     ShouldNotReachHere();
  7572 void MacroAssembler::movbool(Address dst, bool boolconst) {
  7573   if(sizeof(bool) == 1)
  7574     movb(dst, (int) boolconst);
  7575   else if(sizeof(bool) == 2)
  7576     movw(dst, (int) boolconst);
  7577   else if(sizeof(bool) == 4)
  7578     movl(dst, (int) boolconst);
  7579   else
  7580     // unsupported
  7581     ShouldNotReachHere();
  7584 void MacroAssembler::movbool(Address dst, Register src) {
  7585   if(sizeof(bool) == 1)
  7586     movb(dst, src);
  7587   else if(sizeof(bool) == 2)
  7588     movw(dst, src);
  7589   else if(sizeof(bool) == 4)
  7590     movl(dst, src);
  7591   else
  7592     // unsupported
  7593     ShouldNotReachHere();
  7596 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
  7597   movb(as_Address(dst), src);
  7600 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
  7601   if (reachable(src)) {
  7602     movdl(dst, as_Address(src));
  7603   } else {
  7604     lea(rscratch1, src);
  7605     movdl(dst, Address(rscratch1, 0));
  7609 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
  7610   if (reachable(src)) {
  7611     movq(dst, as_Address(src));
  7612   } else {
  7613     lea(rscratch1, src);
  7614     movq(dst, Address(rscratch1, 0));
  7618 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
  7619   if (reachable(src)) {
  7620     if (UseXmmLoadAndClearUpper) {
  7621       movsd (dst, as_Address(src));
  7622     } else {
  7623       movlpd(dst, as_Address(src));
  7625   } else {
  7626     lea(rscratch1, src);
  7627     if (UseXmmLoadAndClearUpper) {
  7628       movsd (dst, Address(rscratch1, 0));
  7629     } else {
  7630       movlpd(dst, Address(rscratch1, 0));
  7635 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
  7636   if (reachable(src)) {
  7637     movss(dst, as_Address(src));
  7638   } else {
  7639     lea(rscratch1, src);
  7640     movss(dst, Address(rscratch1, 0));
  7644 void MacroAssembler::movptr(Register dst, Register src) {
  7645   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  7648 void MacroAssembler::movptr(Register dst, Address src) {
  7649   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  7652 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  7653 void MacroAssembler::movptr(Register dst, intptr_t src) {
  7654   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
  7657 void MacroAssembler::movptr(Address dst, Register src) {
  7658   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  7661 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
  7662   if (reachable(src)) {
  7663     Assembler::movsd(dst, as_Address(src));
  7664   } else {
  7665     lea(rscratch1, src);
  7666     Assembler::movsd(dst, Address(rscratch1, 0));
  7670 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
  7671   if (reachable(src)) {
  7672     Assembler::movss(dst, as_Address(src));
  7673   } else {
  7674     lea(rscratch1, src);
  7675     Assembler::movss(dst, Address(rscratch1, 0));
  7679 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
  7680   if (reachable(src)) {
  7681     Assembler::mulsd(dst, as_Address(src));
  7682   } else {
  7683     lea(rscratch1, src);
  7684     Assembler::mulsd(dst, Address(rscratch1, 0));
  7688 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
  7689   if (reachable(src)) {
  7690     Assembler::mulss(dst, as_Address(src));
  7691   } else {
  7692     lea(rscratch1, src);
  7693     Assembler::mulss(dst, Address(rscratch1, 0));
  7697 void MacroAssembler::null_check(Register reg, int offset) {
  7698   if (needs_explicit_null_check(offset)) {
  7699     // provoke OS NULL exception if reg = NULL by
  7700     // accessing M[reg] w/o changing any (non-CC) registers
  7701     // NOTE: cmpl is plenty here to provoke a segv
  7702     cmpptr(rax, Address(reg, 0));
  7703     // Note: should probably use testl(rax, Address(reg, 0));
  7704     //       may be shorter code (however, this version of
  7705     //       testl needs to be implemented first)
  7706   } else {
  7707     // nothing to do, (later) access of M[reg + offset]
  7708     // will provoke OS NULL exception if reg = NULL
  7712 void MacroAssembler::os_breakpoint() {
  7713   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
  7714   // (e.g., MSVC can't call ps() otherwise)
  7715   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
  7718 void MacroAssembler::pop_CPU_state() {
  7719   pop_FPU_state();
  7720   pop_IU_state();
  7723 void MacroAssembler::pop_FPU_state() {
  7724   NOT_LP64(frstor(Address(rsp, 0));)
  7725   LP64_ONLY(fxrstor(Address(rsp, 0));)
  7726   addptr(rsp, FPUStateSizeInWords * wordSize);
  7729 void MacroAssembler::pop_IU_state() {
  7730   popa();
  7731   LP64_ONLY(addq(rsp, 8));
  7732   popf();
  7735 // Save Integer and Float state
  7736 // Warning: Stack must be 16 byte aligned (64bit)
  7737 void MacroAssembler::push_CPU_state() {
  7738   push_IU_state();
  7739   push_FPU_state();
  7742 void MacroAssembler::push_FPU_state() {
  7743   subptr(rsp, FPUStateSizeInWords * wordSize);
  7744 #ifndef _LP64
  7745   fnsave(Address(rsp, 0));
  7746   fwait();
  7747 #else
  7748   fxsave(Address(rsp, 0));
  7749 #endif // LP64
  7752 void MacroAssembler::push_IU_state() {
  7753   // Push flags first because pusha kills them
  7754   pushf();
  7755   // Make sure rsp stays 16-byte aligned
  7756   LP64_ONLY(subq(rsp, 8));
  7757   pusha();
  7760 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
  7761   // determine java_thread register
  7762   if (!java_thread->is_valid()) {
  7763     java_thread = rdi;
  7764     get_thread(java_thread);
  7766   // we must set sp to zero to clear frame
  7767   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  7768   if (clear_fp) {
  7769     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  7772   if (clear_pc)
  7773     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  7777 void MacroAssembler::restore_rax(Register tmp) {
  7778   if (tmp == noreg) pop(rax);
  7779   else if (tmp != rax) mov(rax, tmp);
  7782 void MacroAssembler::round_to(Register reg, int modulus) {
  7783   addptr(reg, modulus - 1);
  7784   andptr(reg, -modulus);
  7787 void MacroAssembler::save_rax(Register tmp) {
  7788   if (tmp == noreg) push(rax);
  7789   else if (tmp != rax) mov(tmp, rax);
  7792 // Write serialization page so VM thread can do a pseudo remote membar.
  7793 // We use the current thread pointer to calculate a thread specific
  7794 // offset to write to within the page. This minimizes bus traffic
  7795 // due to cache line collision.
  7796 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
  7797   movl(tmp, thread);
  7798   shrl(tmp, os::get_serialize_page_shift_count());
  7799   andl(tmp, (os::vm_page_size() - sizeof(int)));
  7801   Address index(noreg, tmp, Address::times_1);
  7802   ExternalAddress page(os::get_memory_serialize_page());
  7804   // Size of store must match masking code above
  7805   movl(as_Address(ArrayAddress(page, index)), tmp);
  7808 // Calls to C land
  7809 //
  7810 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
  7811 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
  7812 // has to be reset to 0. This is required to allow proper stack traversal.
  7813 void MacroAssembler::set_last_Java_frame(Register java_thread,
  7814                                          Register last_java_sp,
  7815                                          Register last_java_fp,
  7816                                          address  last_java_pc) {
  7817   // determine java_thread register
  7818   if (!java_thread->is_valid()) {
  7819     java_thread = rdi;
  7820     get_thread(java_thread);
  7822   // determine last_java_sp register
  7823   if (!last_java_sp->is_valid()) {
  7824     last_java_sp = rsp;
  7827   // last_java_fp is optional
  7829   if (last_java_fp->is_valid()) {
  7830     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
  7833   // last_java_pc is optional
  7835   if (last_java_pc != NULL) {
  7836     lea(Address(java_thread,
  7837                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
  7838         InternalAddress(last_java_pc));
  7841   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  7844 void MacroAssembler::shlptr(Register dst, int imm8) {
  7845   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
  7848 void MacroAssembler::shrptr(Register dst, int imm8) {
  7849   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
  7852 void MacroAssembler::sign_extend_byte(Register reg) {
  7853   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
  7854     movsbl(reg, reg); // movsxb
  7855   } else {
  7856     shll(reg, 24);
  7857     sarl(reg, 24);
  7861 void MacroAssembler::sign_extend_short(Register reg) {
  7862   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  7863     movswl(reg, reg); // movsxw
  7864   } else {
  7865     shll(reg, 16);
  7866     sarl(reg, 16);
  7870 void MacroAssembler::testl(Register dst, AddressLiteral src) {
  7871   assert(reachable(src), "Address should be reachable");
  7872   testl(dst, as_Address(src));
  7875 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
  7876   if (reachable(src)) {
  7877     Assembler::sqrtsd(dst, as_Address(src));
  7878   } else {
  7879     lea(rscratch1, src);
  7880     Assembler::sqrtsd(dst, Address(rscratch1, 0));
  7884 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
  7885   if (reachable(src)) {
  7886     Assembler::sqrtss(dst, as_Address(src));
  7887   } else {
  7888     lea(rscratch1, src);
  7889     Assembler::sqrtss(dst, Address(rscratch1, 0));
  7893 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
  7894   if (reachable(src)) {
  7895     Assembler::subsd(dst, as_Address(src));
  7896   } else {
  7897     lea(rscratch1, src);
  7898     Assembler::subsd(dst, Address(rscratch1, 0));
  7902 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
  7903   if (reachable(src)) {
  7904     Assembler::subss(dst, as_Address(src));
  7905   } else {
  7906     lea(rscratch1, src);
  7907     Assembler::subss(dst, Address(rscratch1, 0));
  7911 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
  7912   if (reachable(src)) {
  7913     Assembler::ucomisd(dst, as_Address(src));
  7914   } else {
  7915     lea(rscratch1, src);
  7916     Assembler::ucomisd(dst, Address(rscratch1, 0));
  7920 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
  7921   if (reachable(src)) {
  7922     Assembler::ucomiss(dst, as_Address(src));
  7923   } else {
  7924     lea(rscratch1, src);
  7925     Assembler::ucomiss(dst, Address(rscratch1, 0));
  7929 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
  7930   // Used in sign-bit flipping with aligned address.
  7931   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  7932   if (reachable(src)) {
  7933     Assembler::xorpd(dst, as_Address(src));
  7934   } else {
  7935     lea(rscratch1, src);
  7936     Assembler::xorpd(dst, Address(rscratch1, 0));
  7940 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
  7941   // Used in sign-bit flipping with aligned address.
  7942   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  7943   if (reachable(src)) {
  7944     Assembler::xorps(dst, as_Address(src));
  7945   } else {
  7946     lea(rscratch1, src);
  7947     Assembler::xorps(dst, Address(rscratch1, 0));
  7951 // AVX 3-operands instructions
  7953 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7954   if (reachable(src)) {
  7955     vaddsd(dst, nds, as_Address(src));
  7956   } else {
  7957     lea(rscratch1, src);
  7958     vaddsd(dst, nds, Address(rscratch1, 0));
  7962 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7963   if (reachable(src)) {
  7964     vaddss(dst, nds, as_Address(src));
  7965   } else {
  7966     lea(rscratch1, src);
  7967     vaddss(dst, nds, Address(rscratch1, 0));
  7971 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7972   if (reachable(src)) {
  7973     vandpd(dst, nds, as_Address(src));
  7974   } else {
  7975     lea(rscratch1, src);
  7976     vandpd(dst, nds, Address(rscratch1, 0));
  7980 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7981   if (reachable(src)) {
  7982     vandps(dst, nds, as_Address(src));
  7983   } else {
  7984     lea(rscratch1, src);
  7985     vandps(dst, nds, Address(rscratch1, 0));
  7989 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7990   if (reachable(src)) {
  7991     vdivsd(dst, nds, as_Address(src));
  7992   } else {
  7993     lea(rscratch1, src);
  7994     vdivsd(dst, nds, Address(rscratch1, 0));
  7998 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7999   if (reachable(src)) {
  8000     vdivss(dst, nds, as_Address(src));
  8001   } else {
  8002     lea(rscratch1, src);
  8003     vdivss(dst, nds, Address(rscratch1, 0));
  8007 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8008   if (reachable(src)) {
  8009     vmulsd(dst, nds, as_Address(src));
  8010   } else {
  8011     lea(rscratch1, src);
  8012     vmulsd(dst, nds, Address(rscratch1, 0));
  8016 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8017   if (reachable(src)) {
  8018     vmulss(dst, nds, as_Address(src));
  8019   } else {
  8020     lea(rscratch1, src);
  8021     vmulss(dst, nds, Address(rscratch1, 0));
  8025 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8026   if (reachable(src)) {
  8027     vsubsd(dst, nds, as_Address(src));
  8028   } else {
  8029     lea(rscratch1, src);
  8030     vsubsd(dst, nds, Address(rscratch1, 0));
  8034 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8035   if (reachable(src)) {
  8036     vsubss(dst, nds, as_Address(src));
  8037   } else {
  8038     lea(rscratch1, src);
  8039     vsubss(dst, nds, Address(rscratch1, 0));
  8043 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8044   if (reachable(src)) {
  8045     vxorpd(dst, nds, as_Address(src));
  8046   } else {
  8047     lea(rscratch1, src);
  8048     vxorpd(dst, nds, Address(rscratch1, 0));
  8052 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8053   if (reachable(src)) {
  8054     vxorps(dst, nds, as_Address(src));
  8055   } else {
  8056     lea(rscratch1, src);
  8057     vxorps(dst, nds, Address(rscratch1, 0));
  8062 //////////////////////////////////////////////////////////////////////////////////
  8063 #ifndef SERIALGC
  8065 void MacroAssembler::g1_write_barrier_pre(Register obj,
  8066                                           Register pre_val,
  8067                                           Register thread,
  8068                                           Register tmp,
  8069                                           bool tosca_live,
  8070                                           bool expand_call) {
  8072   // If expand_call is true then we expand the call_VM_leaf macro
  8073   // directly to skip generating the check by
  8074   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
  8076 #ifdef _LP64
  8077   assert(thread == r15_thread, "must be");
  8078 #endif // _LP64
  8080   Label done;
  8081   Label runtime;
  8083   assert(pre_val != noreg, "check this code");
  8085   if (obj != noreg) {
  8086     assert_different_registers(obj, pre_val, tmp);
  8087     assert(pre_val != rax, "check this code");
  8090   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  8091                                        PtrQueue::byte_offset_of_active()));
  8092   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  8093                                        PtrQueue::byte_offset_of_index()));
  8094   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  8095                                        PtrQueue::byte_offset_of_buf()));
  8098   // Is marking active?
  8099   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  8100     cmpl(in_progress, 0);
  8101   } else {
  8102     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
  8103     cmpb(in_progress, 0);
  8105   jcc(Assembler::equal, done);
  8107   // Do we need to load the previous value?
  8108   if (obj != noreg) {
  8109     load_heap_oop(pre_val, Address(obj, 0));
  8112   // Is the previous value null?
  8113   cmpptr(pre_val, (int32_t) NULL_WORD);
  8114   jcc(Assembler::equal, done);
  8116   // Can we store original value in the thread's buffer?
  8117   // Is index == 0?
  8118   // (The index field is typed as size_t.)
  8120   movptr(tmp, index);                   // tmp := *index_adr
  8121   cmpptr(tmp, 0);                       // tmp == 0?
  8122   jcc(Assembler::equal, runtime);       // If yes, goto runtime
  8124   subptr(tmp, wordSize);                // tmp := tmp - wordSize
  8125   movptr(index, tmp);                   // *index_adr := tmp
  8126   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
  8128   // Record the previous value
  8129   movptr(Address(tmp, 0), pre_val);
  8130   jmp(done);
  8132   bind(runtime);
  8133   // save the live input values
  8134   if(tosca_live) push(rax);
  8136   if (obj != noreg && obj != rax)
  8137     push(obj);
  8139   if (pre_val != rax)
  8140     push(pre_val);
  8142   // Calling the runtime using the regular call_VM_leaf mechanism generates
  8143   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
  8144   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
  8145   //
  8146   // If we care generating the pre-barrier without a frame (e.g. in the
  8147   // intrinsified Reference.get() routine) then ebp might be pointing to
  8148   // the caller frame and so this check will most likely fail at runtime.
  8149   //
  8150   // Expanding the call directly bypasses the generation of the check.
  8151   // So when we do not have have a full interpreter frame on the stack
  8152   // expand_call should be passed true.
  8154   NOT_LP64( push(thread); )
  8156   if (expand_call) {
  8157     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
  8158     pass_arg1(this, thread);
  8159     pass_arg0(this, pre_val);
  8160     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
  8161   } else {
  8162     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
  8165   NOT_LP64( pop(thread); )
  8167   // save the live input values
  8168   if (pre_val != rax)
  8169     pop(pre_val);
  8171   if (obj != noreg && obj != rax)
  8172     pop(obj);
  8174   if(tosca_live) pop(rax);
  8176   bind(done);
  8179 void MacroAssembler::g1_write_barrier_post(Register store_addr,
  8180                                            Register new_val,
  8181                                            Register thread,
  8182                                            Register tmp,
  8183                                            Register tmp2) {
  8184 #ifdef _LP64
  8185   assert(thread == r15_thread, "must be");
  8186 #endif // _LP64
  8188   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  8189                                        PtrQueue::byte_offset_of_index()));
  8190   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  8191                                        PtrQueue::byte_offset_of_buf()));
  8193   BarrierSet* bs = Universe::heap()->barrier_set();
  8194   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  8195   Label done;
  8196   Label runtime;
  8198   // Does store cross heap regions?
  8200   movptr(tmp, store_addr);
  8201   xorptr(tmp, new_val);
  8202   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
  8203   jcc(Assembler::equal, done);
  8205   // crosses regions, storing NULL?
  8207   cmpptr(new_val, (int32_t) NULL_WORD);
  8208   jcc(Assembler::equal, done);
  8210   // storing region crossing non-NULL, is card already dirty?
  8212   ExternalAddress cardtable((address) ct->byte_map_base);
  8213   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  8214 #ifdef _LP64
  8215   const Register card_addr = tmp;
  8217   movq(card_addr, store_addr);
  8218   shrq(card_addr, CardTableModRefBS::card_shift);
  8220   lea(tmp2, cardtable);
  8222   // get the address of the card
  8223   addq(card_addr, tmp2);
  8224 #else
  8225   const Register card_index = tmp;
  8227   movl(card_index, store_addr);
  8228   shrl(card_index, CardTableModRefBS::card_shift);
  8230   Address index(noreg, card_index, Address::times_1);
  8231   const Register card_addr = tmp;
  8232   lea(card_addr, as_Address(ArrayAddress(cardtable, index)));
  8233 #endif
  8234   cmpb(Address(card_addr, 0), 0);
  8235   jcc(Assembler::equal, done);
  8237   // storing a region crossing, non-NULL oop, card is clean.
  8238   // dirty card and log.
  8240   movb(Address(card_addr, 0), 0);
  8242   cmpl(queue_index, 0);
  8243   jcc(Assembler::equal, runtime);
  8244   subl(queue_index, wordSize);
  8245   movptr(tmp2, buffer);
  8246 #ifdef _LP64
  8247   movslq(rscratch1, queue_index);
  8248   addq(tmp2, rscratch1);
  8249   movq(Address(tmp2, 0), card_addr);
  8250 #else
  8251   addl(tmp2, queue_index);
  8252   movl(Address(tmp2, 0), card_index);
  8253 #endif
  8254   jmp(done);
  8256   bind(runtime);
  8257   // save the live input values
  8258   push(store_addr);
  8259   push(new_val);
  8260 #ifdef _LP64
  8261   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
  8262 #else
  8263   push(thread);
  8264   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  8265   pop(thread);
  8266 #endif
  8267   pop(new_val);
  8268   pop(store_addr);
  8270   bind(done);
  8273 #endif // SERIALGC
  8274 //////////////////////////////////////////////////////////////////////////////////
  8277 void MacroAssembler::store_check(Register obj) {
  8278   // Does a store check for the oop in register obj. The content of
  8279   // register obj is destroyed afterwards.
  8280   store_check_part_1(obj);
  8281   store_check_part_2(obj);
  8284 void MacroAssembler::store_check(Register obj, Address dst) {
  8285   store_check(obj);
  8289 // split the store check operation so that other instructions can be scheduled inbetween
  8290 void MacroAssembler::store_check_part_1(Register obj) {
  8291   BarrierSet* bs = Universe::heap()->barrier_set();
  8292   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  8293   shrptr(obj, CardTableModRefBS::card_shift);
  8296 void MacroAssembler::store_check_part_2(Register obj) {
  8297   BarrierSet* bs = Universe::heap()->barrier_set();
  8298   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  8299   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  8300   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  8302   // The calculation for byte_map_base is as follows:
  8303   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
  8304   // So this essentially converts an address to a displacement and
  8305   // it will never need to be relocated. On 64bit however the value may be too
  8306   // large for a 32bit displacement
  8308   intptr_t disp = (intptr_t) ct->byte_map_base;
  8309   if (is_simm32(disp)) {
  8310     Address cardtable(noreg, obj, Address::times_1, disp);
  8311     movb(cardtable, 0);
  8312   } else {
  8313     // By doing it as an ExternalAddress disp could be converted to a rip-relative
  8314     // displacement and done in a single instruction given favorable mapping and
  8315     // a smarter version of as_Address. Worst case it is two instructions which
  8316     // is no worse off then loading disp into a register and doing as a simple
  8317     // Address() as above.
  8318     // We can't do as ExternalAddress as the only style since if disp == 0 we'll
  8319     // assert since NULL isn't acceptable in a reloci (see 6644928). In any case
  8320     // in some cases we'll get a single instruction version.
  8322     ExternalAddress cardtable((address)disp);
  8323     Address index(noreg, obj, Address::times_1);
  8324     movb(as_Address(ArrayAddress(cardtable, index)), 0);
  8328 void MacroAssembler::subptr(Register dst, int32_t imm32) {
  8329   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
  8332 // Force generation of a 4 byte immediate value even if it fits into 8bit
  8333 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
  8334   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
  8337 void MacroAssembler::subptr(Register dst, Register src) {
  8338   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
  8341 // C++ bool manipulation
  8342 void MacroAssembler::testbool(Register dst) {
  8343   if(sizeof(bool) == 1)
  8344     testb(dst, 0xff);
  8345   else if(sizeof(bool) == 2) {
  8346     // testw implementation needed for two byte bools
  8347     ShouldNotReachHere();
  8348   } else if(sizeof(bool) == 4)
  8349     testl(dst, dst);
  8350   else
  8351     // unsupported
  8352     ShouldNotReachHere();
  8355 void MacroAssembler::testptr(Register dst, Register src) {
  8356   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
  8359 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
  8360 void MacroAssembler::tlab_allocate(Register obj,
  8361                                    Register var_size_in_bytes,
  8362                                    int con_size_in_bytes,
  8363                                    Register t1,
  8364                                    Register t2,
  8365                                    Label& slow_case) {
  8366   assert_different_registers(obj, t1, t2);
  8367   assert_different_registers(obj, var_size_in_bytes, t1);
  8368   Register end = t2;
  8369   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
  8371   verify_tlab();
  8373   NOT_LP64(get_thread(thread));
  8375   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
  8376   if (var_size_in_bytes == noreg) {
  8377     lea(end, Address(obj, con_size_in_bytes));
  8378   } else {
  8379     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  8381   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
  8382   jcc(Assembler::above, slow_case);
  8384   // update the tlab top pointer
  8385   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
  8387   // recover var_size_in_bytes if necessary
  8388   if (var_size_in_bytes == end) {
  8389     subptr(var_size_in_bytes, obj);
  8391   verify_tlab();
  8394 // Preserves rbx, and rdx.
  8395 Register MacroAssembler::tlab_refill(Label& retry,
  8396                                      Label& try_eden,
  8397                                      Label& slow_case) {
  8398   Register top = rax;
  8399   Register t1  = rcx;
  8400   Register t2  = rsi;
  8401   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
  8402   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
  8403   Label do_refill, discard_tlab;
  8405   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  8406     // No allocation in the shared eden.
  8407     jmp(slow_case);
  8410   NOT_LP64(get_thread(thread_reg));
  8412   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  8413   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  8415   // calculate amount of free space
  8416   subptr(t1, top);
  8417   shrptr(t1, LogHeapWordSize);
  8419   // Retain tlab and allocate object in shared space if
  8420   // the amount free in the tlab is too large to discard.
  8421   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
  8422   jcc(Assembler::lessEqual, discard_tlab);
  8424   // Retain
  8425   // %%% yuck as movptr...
  8426   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
  8427   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
  8428   if (TLABStats) {
  8429     // increment number of slow_allocations
  8430     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
  8432   jmp(try_eden);
  8434   bind(discard_tlab);
  8435   if (TLABStats) {
  8436     // increment number of refills
  8437     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
  8438     // accumulate wastage -- t1 is amount free in tlab
  8439     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
  8442   // if tlab is currently allocated (top or end != null) then
  8443   // fill [top, end + alignment_reserve) with array object
  8444   testptr(top, top);
  8445   jcc(Assembler::zero, do_refill);
  8447   // set up the mark word
  8448   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
  8449   // set the length to the remaining space
  8450   subptr(t1, typeArrayOopDesc::header_size(T_INT));
  8451   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
  8452   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
  8453   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
  8454   // set klass to intArrayKlass
  8455   // dubious reloc why not an oop reloc?
  8456   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
  8457   // store klass last.  concurrent gcs assumes klass length is valid if
  8458   // klass field is not null.
  8459   store_klass(top, t1);
  8461   movptr(t1, top);
  8462   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  8463   incr_allocated_bytes(thread_reg, t1, 0);
  8465   // refill the tlab with an eden allocation
  8466   bind(do_refill);
  8467   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  8468   shlptr(t1, LogHeapWordSize);
  8469   // allocate new tlab, address returned in top
  8470   eden_allocate(top, t1, 0, t2, slow_case);
  8472   // Check that t1 was preserved in eden_allocate.
  8473 #ifdef ASSERT
  8474   if (UseTLAB) {
  8475     Label ok;
  8476     Register tsize = rsi;
  8477     assert_different_registers(tsize, thread_reg, t1);
  8478     push(tsize);
  8479     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  8480     shlptr(tsize, LogHeapWordSize);
  8481     cmpptr(t1, tsize);
  8482     jcc(Assembler::equal, ok);
  8483     STOP("assert(t1 != tlab size)");
  8484     should_not_reach_here();
  8486     bind(ok);
  8487     pop(tsize);
  8489 #endif
  8490   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
  8491   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
  8492   addptr(top, t1);
  8493   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
  8494   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
  8495   verify_tlab();
  8496   jmp(retry);
  8498   return thread_reg; // for use by caller
  8501 void MacroAssembler::incr_allocated_bytes(Register thread,
  8502                                           Register var_size_in_bytes,
  8503                                           int con_size_in_bytes,
  8504                                           Register t1) {
  8505   if (!thread->is_valid()) {
  8506 #ifdef _LP64
  8507     thread = r15_thread;
  8508 #else
  8509     assert(t1->is_valid(), "need temp reg");
  8510     thread = t1;
  8511     get_thread(thread);
  8512 #endif
  8515 #ifdef _LP64
  8516   if (var_size_in_bytes->is_valid()) {
  8517     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  8518   } else {
  8519     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  8521 #else
  8522   if (var_size_in_bytes->is_valid()) {
  8523     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  8524   } else {
  8525     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  8527   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
  8528 #endif
  8531 void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
  8532   pusha();
  8534   // if we are coming from c1, xmm registers may be live
  8535   if (UseSSE >= 1) {
  8536     subptr(rsp, sizeof(jdouble)* LP64_ONLY(16) NOT_LP64(8));
  8538   int off = 0;
  8539   if (UseSSE == 1)  {
  8540     movflt(Address(rsp,off++*sizeof(jdouble)),xmm0);
  8541     movflt(Address(rsp,off++*sizeof(jdouble)),xmm1);
  8542     movflt(Address(rsp,off++*sizeof(jdouble)),xmm2);
  8543     movflt(Address(rsp,off++*sizeof(jdouble)),xmm3);
  8544     movflt(Address(rsp,off++*sizeof(jdouble)),xmm4);
  8545     movflt(Address(rsp,off++*sizeof(jdouble)),xmm5);
  8546     movflt(Address(rsp,off++*sizeof(jdouble)),xmm6);
  8547     movflt(Address(rsp,off++*sizeof(jdouble)),xmm7);
  8548   } else if (UseSSE >= 2)  {
  8549     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm0);
  8550     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm1);
  8551     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm2);
  8552     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm3);
  8553     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm4);
  8554     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm5);
  8555     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm6);
  8556     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm7);
  8557 #ifdef _LP64
  8558     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm8);
  8559     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm9);
  8560     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm10);
  8561     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm11);
  8562     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm12);
  8563     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm13);
  8564     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm14);
  8565     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm15);
  8566 #endif
  8569   // Preserve registers across runtime call
  8570   int incoming_argument_and_return_value_offset = -1;
  8571   if (num_fpu_regs_in_use > 1) {
  8572     // Must preserve all other FPU regs (could alternatively convert
  8573     // SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
  8574     // FPU state, but can not trust C compiler)
  8575     NEEDS_CLEANUP;
  8576     // NOTE that in this case we also push the incoming argument(s) to
  8577     // the stack and restore it later; we also use this stack slot to
  8578     // hold the return value from dsin, dcos etc.
  8579     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  8580       subptr(rsp, sizeof(jdouble));
  8581       fstp_d(Address(rsp, 0));
  8583     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
  8584     for (int i = nb_args-1; i >= 0; i--) {
  8585       fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
  8589   subptr(rsp, nb_args*sizeof(jdouble));
  8590   for (int i = 0; i < nb_args; i++) {
  8591     fstp_d(Address(rsp, i*sizeof(jdouble)));
  8594 #ifdef _LP64
  8595   if (nb_args > 0) {
  8596     movdbl(xmm0, Address(rsp, 0));
  8598   if (nb_args > 1) {
  8599     movdbl(xmm1, Address(rsp, sizeof(jdouble)));
  8601   assert(nb_args <= 2, "unsupported number of args");
  8602 #endif // _LP64
  8604   // NOTE: we must not use call_VM_leaf here because that requires a
  8605   // complete interpreter frame in debug mode -- same bug as 4387334
  8606   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
  8607   // do proper 64bit abi
  8609   NEEDS_CLEANUP;
  8610   // Need to add stack banging before this runtime call if it needs to
  8611   // be taken; however, there is no generic stack banging routine at
  8612   // the MacroAssembler level
  8614   MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
  8616 #ifdef _LP64
  8617   movsd(Address(rsp, 0), xmm0);
  8618   fld_d(Address(rsp, 0));
  8619 #endif // _LP64
  8620   addptr(rsp, sizeof(jdouble) * nb_args);
  8621   if (num_fpu_regs_in_use > 1) {
  8622     // Must save return value to stack and then restore entire FPU
  8623     // stack except incoming arguments
  8624     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
  8625     for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
  8626       fld_d(Address(rsp, 0));
  8627       addptr(rsp, sizeof(jdouble));
  8629     fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
  8630     addptr(rsp, sizeof(jdouble) * nb_args);
  8633   off = 0;
  8634   if (UseSSE == 1)  {
  8635     movflt(xmm0, Address(rsp,off++*sizeof(jdouble)));
  8636     movflt(xmm1, Address(rsp,off++*sizeof(jdouble)));
  8637     movflt(xmm2, Address(rsp,off++*sizeof(jdouble)));
  8638     movflt(xmm3, Address(rsp,off++*sizeof(jdouble)));
  8639     movflt(xmm4, Address(rsp,off++*sizeof(jdouble)));
  8640     movflt(xmm5, Address(rsp,off++*sizeof(jdouble)));
  8641     movflt(xmm6, Address(rsp,off++*sizeof(jdouble)));
  8642     movflt(xmm7, Address(rsp,off++*sizeof(jdouble)));
  8643   } else if (UseSSE >= 2)  {
  8644     movdbl(xmm0, Address(rsp,off++*sizeof(jdouble)));
  8645     movdbl(xmm1, Address(rsp,off++*sizeof(jdouble)));
  8646     movdbl(xmm2, Address(rsp,off++*sizeof(jdouble)));
  8647     movdbl(xmm3, Address(rsp,off++*sizeof(jdouble)));
  8648     movdbl(xmm4, Address(rsp,off++*sizeof(jdouble)));
  8649     movdbl(xmm5, Address(rsp,off++*sizeof(jdouble)));
  8650     movdbl(xmm6, Address(rsp,off++*sizeof(jdouble)));
  8651     movdbl(xmm7, Address(rsp,off++*sizeof(jdouble)));
  8652 #ifdef _LP64
  8653     movdbl(xmm8, Address(rsp,off++*sizeof(jdouble)));
  8654     movdbl(xmm9, Address(rsp,off++*sizeof(jdouble)));
  8655     movdbl(xmm10, Address(rsp,off++*sizeof(jdouble)));
  8656     movdbl(xmm11, Address(rsp,off++*sizeof(jdouble)));
  8657     movdbl(xmm12, Address(rsp,off++*sizeof(jdouble)));
  8658     movdbl(xmm13, Address(rsp,off++*sizeof(jdouble)));
  8659     movdbl(xmm14, Address(rsp,off++*sizeof(jdouble)));
  8660     movdbl(xmm15, Address(rsp,off++*sizeof(jdouble)));
  8661 #endif
  8663   if (UseSSE >= 1) {
  8664     addptr(rsp, sizeof(jdouble)* LP64_ONLY(16) NOT_LP64(8));
  8666   popa();
  8669 static const double     pi_4 =  0.7853981633974483;
  8671 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
  8672   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
  8673   // was attempted in this code; unfortunately it appears that the
  8674   // switch to 80-bit precision and back causes this to be
  8675   // unprofitable compared with simply performing a runtime call if
  8676   // the argument is out of the (-pi/4, pi/4) range.
  8678   Register tmp = noreg;
  8679   if (!VM_Version::supports_cmov()) {
  8680     // fcmp needs a temporary so preserve rbx,
  8681     tmp = rbx;
  8682     push(tmp);
  8685   Label slow_case, done;
  8687   ExternalAddress pi4_adr = (address)&pi_4;
  8688   if (reachable(pi4_adr)) {
  8689     // x ?<= pi/4
  8690     fld_d(pi4_adr);
  8691     fld_s(1);                // Stack:  X  PI/4  X
  8692     fabs();                  // Stack: |X| PI/4  X
  8693     fcmp(tmp);
  8694     jcc(Assembler::above, slow_case);
  8696     // fastest case: -pi/4 <= x <= pi/4
  8697     switch(trig) {
  8698     case 's':
  8699       fsin();
  8700       break;
  8701     case 'c':
  8702       fcos();
  8703       break;
  8704     case 't':
  8705       ftan();
  8706       break;
  8707     default:
  8708       assert(false, "bad intrinsic");
  8709       break;
  8711     jmp(done);
  8714   // slow case: runtime call
  8715   bind(slow_case);
  8717   switch(trig) {
  8718   case 's':
  8720       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
  8722     break;
  8723   case 'c':
  8725       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
  8727     break;
  8728   case 't':
  8730       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
  8732     break;
  8733   default:
  8734     assert(false, "bad intrinsic");
  8735     break;
  8738   // Come here with result in F-TOS
  8739   bind(done);
  8741   if (tmp != noreg) {
  8742     pop(tmp);
  8747 // Look up the method for a megamorphic invokeinterface call.
  8748 // The target method is determined by <intf_klass, itable_index>.
  8749 // The receiver klass is in recv_klass.
  8750 // On success, the result will be in method_result, and execution falls through.
  8751 // On failure, execution transfers to the given label.
  8752 void MacroAssembler::lookup_interface_method(Register recv_klass,
  8753                                              Register intf_klass,
  8754                                              RegisterOrConstant itable_index,
  8755                                              Register method_result,
  8756                                              Register scan_temp,
  8757                                              Label& L_no_such_interface) {
  8758   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  8759   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  8760          "caller must use same register for non-constant itable index as for method");
  8762   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  8763   int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
  8764   int itentry_off = itableMethodEntry::method_offset_in_bytes();
  8765   int scan_step   = itableOffsetEntry::size() * wordSize;
  8766   int vte_size    = vtableEntry::size() * wordSize;
  8767   Address::ScaleFactor times_vte_scale = Address::times_ptr;
  8768   assert(vte_size == wordSize, "else adjust times_vte_scale");
  8770   movl(scan_temp, Address(recv_klass, instanceKlass::vtable_length_offset() * wordSize));
  8772   // %%% Could store the aligned, prescaled offset in the klassoop.
  8773   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
  8774   if (HeapWordsPerLong > 1) {
  8775     // Round up to align_object_offset boundary
  8776     // see code for instanceKlass::start_of_itable!
  8777     round_to(scan_temp, BytesPerLong);
  8780   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  8781   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  8782   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
  8784   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  8785   //   if (scan->interface() == intf) {
  8786   //     result = (klass + scan->offset() + itable_index);
  8787   //   }
  8788   // }
  8789   Label search, found_method;
  8791   for (int peel = 1; peel >= 0; peel--) {
  8792     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
  8793     cmpptr(intf_klass, method_result);
  8795     if (peel) {
  8796       jccb(Assembler::equal, found_method);
  8797     } else {
  8798       jccb(Assembler::notEqual, search);
  8799       // (invert the test to fall through to found_method...)
  8802     if (!peel)  break;
  8804     bind(search);
  8806     // Check that the previous entry is non-null.  A null entry means that
  8807     // the receiver class doesn't implement the interface, and wasn't the
  8808     // same as when the caller was compiled.
  8809     testptr(method_result, method_result);
  8810     jcc(Assembler::zero, L_no_such_interface);
  8811     addptr(scan_temp, scan_step);
  8814   bind(found_method);
  8816   // Got a hit.
  8817   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
  8818   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
  8822 // virtual method calling
  8823 void MacroAssembler::lookup_virtual_method(Register recv_klass,
  8824                                            RegisterOrConstant vtable_index,
  8825                                            Register method_result) {
  8826   const int base = instanceKlass::vtable_start_offset() * wordSize;
  8827   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
  8828   Address vtable_entry_addr(recv_klass,
  8829                             vtable_index, Address::times_ptr,
  8830                             base + vtableEntry::method_offset_in_bytes());
  8831   movptr(method_result, vtable_entry_addr);
  8835 void MacroAssembler::check_klass_subtype(Register sub_klass,
  8836                            Register super_klass,
  8837                            Register temp_reg,
  8838                            Label& L_success) {
  8839   Label L_failure;
  8840   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
  8841   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
  8842   bind(L_failure);
  8846 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  8847                                                    Register super_klass,
  8848                                                    Register temp_reg,
  8849                                                    Label* L_success,
  8850                                                    Label* L_failure,
  8851                                                    Label* L_slow_path,
  8852                                         RegisterOrConstant super_check_offset) {
  8853   assert_different_registers(sub_klass, super_klass, temp_reg);
  8854   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
  8855   if (super_check_offset.is_register()) {
  8856     assert_different_registers(sub_klass, super_klass,
  8857                                super_check_offset.as_register());
  8858   } else if (must_load_sco) {
  8859     assert(temp_reg != noreg, "supply either a temp or a register offset");
  8862   Label L_fallthrough;
  8863   int label_nulls = 0;
  8864   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  8865   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  8866   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  8867   assert(label_nulls <= 1, "at most one NULL in the batch");
  8869   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  8870   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  8871   Address super_check_offset_addr(super_klass, sco_offset);
  8873   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
  8874   // range of a jccb.  If this routine grows larger, reconsider at
  8875   // least some of these.
  8876 #define local_jcc(assembler_cond, label)                                \
  8877   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
  8878   else                             jcc( assembler_cond, label) /*omit semi*/
  8880   // Hacked jmp, which may only be used just before L_fallthrough.
  8881 #define final_jmp(label)                                                \
  8882   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
  8883   else                            jmp(label)                /*omit semi*/
  8885   // If the pointers are equal, we are done (e.g., String[] elements).
  8886   // This self-check enables sharing of secondary supertype arrays among
  8887   // non-primary types such as array-of-interface.  Otherwise, each such
  8888   // type would need its own customized SSA.
  8889   // We move this check to the front of the fast path because many
  8890   // type checks are in fact trivially successful in this manner,
  8891   // so we get a nicely predicted branch right at the start of the check.
  8892   cmpptr(sub_klass, super_klass);
  8893   local_jcc(Assembler::equal, *L_success);
  8895   // Check the supertype display:
  8896   if (must_load_sco) {
  8897     // Positive movl does right thing on LP64.
  8898     movl(temp_reg, super_check_offset_addr);
  8899     super_check_offset = RegisterOrConstant(temp_reg);
  8901   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
  8902   cmpptr(super_klass, super_check_addr); // load displayed supertype
  8904   // This check has worked decisively for primary supers.
  8905   // Secondary supers are sought in the super_cache ('super_cache_addr').
  8906   // (Secondary supers are interfaces and very deeply nested subtypes.)
  8907   // This works in the same check above because of a tricky aliasing
  8908   // between the super_cache and the primary super display elements.
  8909   // (The 'super_check_addr' can address either, as the case requires.)
  8910   // Note that the cache is updated below if it does not help us find
  8911   // what we need immediately.
  8912   // So if it was a primary super, we can just fail immediately.
  8913   // Otherwise, it's the slow path for us (no success at this point).
  8915   if (super_check_offset.is_register()) {
  8916     local_jcc(Assembler::equal, *L_success);
  8917     cmpl(super_check_offset.as_register(), sc_offset);
  8918     if (L_failure == &L_fallthrough) {
  8919       local_jcc(Assembler::equal, *L_slow_path);
  8920     } else {
  8921       local_jcc(Assembler::notEqual, *L_failure);
  8922       final_jmp(*L_slow_path);
  8924   } else if (super_check_offset.as_constant() == sc_offset) {
  8925     // Need a slow path; fast failure is impossible.
  8926     if (L_slow_path == &L_fallthrough) {
  8927       local_jcc(Assembler::equal, *L_success);
  8928     } else {
  8929       local_jcc(Assembler::notEqual, *L_slow_path);
  8930       final_jmp(*L_success);
  8932   } else {
  8933     // No slow path; it's a fast decision.
  8934     if (L_failure == &L_fallthrough) {
  8935       local_jcc(Assembler::equal, *L_success);
  8936     } else {
  8937       local_jcc(Assembler::notEqual, *L_failure);
  8938       final_jmp(*L_success);
  8942   bind(L_fallthrough);
  8944 #undef local_jcc
  8945 #undef final_jmp
  8949 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  8950                                                    Register super_klass,
  8951                                                    Register temp_reg,
  8952                                                    Register temp2_reg,
  8953                                                    Label* L_success,
  8954                                                    Label* L_failure,
  8955                                                    bool set_cond_codes) {
  8956   assert_different_registers(sub_klass, super_klass, temp_reg);
  8957   if (temp2_reg != noreg)
  8958     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
  8959 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
  8961   Label L_fallthrough;
  8962   int label_nulls = 0;
  8963   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  8964   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  8965   assert(label_nulls <= 1, "at most one NULL in the batch");
  8967   // a couple of useful fields in sub_klass:
  8968   int ss_offset = in_bytes(Klass::secondary_supers_offset());
  8969   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  8970   Address secondary_supers_addr(sub_klass, ss_offset);
  8971   Address super_cache_addr(     sub_klass, sc_offset);
  8973   // Do a linear scan of the secondary super-klass chain.
  8974   // This code is rarely used, so simplicity is a virtue here.
  8975   // The repne_scan instruction uses fixed registers, which we must spill.
  8976   // Don't worry too much about pre-existing connections with the input regs.
  8978   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
  8979   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
  8981   // Get super_klass value into rax (even if it was in rdi or rcx).
  8982   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
  8983   if (super_klass != rax || UseCompressedOops) {
  8984     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
  8985     mov(rax, super_klass);
  8987   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
  8988   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
  8990 #ifndef PRODUCT
  8991   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  8992   ExternalAddress pst_counter_addr((address) pst_counter);
  8993   NOT_LP64(  incrementl(pst_counter_addr) );
  8994   LP64_ONLY( lea(rcx, pst_counter_addr) );
  8995   LP64_ONLY( incrementl(Address(rcx, 0)) );
  8996 #endif //PRODUCT
  8998   // We will consult the secondary-super array.
  8999   movptr(rdi, secondary_supers_addr);
  9000   // Load the array length.  (Positive movl does right thing on LP64.)
  9001   movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
  9002   // Skip to start of data.
  9003   addptr(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
  9005   // Scan RCX words at [RDI] for an occurrence of RAX.
  9006   // Set NZ/Z based on last compare.
  9007   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
  9008   // not change flags (only scas instruction which is repeated sets flags).
  9009   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
  9010 #ifdef _LP64
  9011   // This part is tricky, as values in supers array could be 32 or 64 bit wide
  9012   // and we store values in objArrays always encoded, thus we need to encode
  9013   // the value of rax before repne.  Note that rax is dead after the repne.
  9014   if (UseCompressedOops) {
  9015     encode_heap_oop_not_null(rax); // Changes flags.
  9016     // The superclass is never null; it would be a basic system error if a null
  9017     // pointer were to sneak in here.  Note that we have already loaded the
  9018     // Klass::super_check_offset from the super_klass in the fast path,
  9019     // so if there is a null in that register, we are already in the afterlife.
  9020     testl(rax,rax); // Set Z = 0
  9021     repne_scanl();
  9022   } else
  9023 #endif // _LP64
  9025     testptr(rax,rax); // Set Z = 0
  9026     repne_scan();
  9028   // Unspill the temp. registers:
  9029   if (pushed_rdi)  pop(rdi);
  9030   if (pushed_rcx)  pop(rcx);
  9031   if (pushed_rax)  pop(rax);
  9033   if (set_cond_codes) {
  9034     // Special hack for the AD files:  rdi is guaranteed non-zero.
  9035     assert(!pushed_rdi, "rdi must be left non-NULL");
  9036     // Also, the condition codes are properly set Z/NZ on succeed/failure.
  9039   if (L_failure == &L_fallthrough)
  9040         jccb(Assembler::notEqual, *L_failure);
  9041   else  jcc(Assembler::notEqual, *L_failure);
  9043   // Success.  Cache the super we found and proceed in triumph.
  9044   movptr(super_cache_addr, super_klass);
  9046   if (L_success != &L_fallthrough) {
  9047     jmp(*L_success);
  9050 #undef IS_A_TEMP
  9052   bind(L_fallthrough);
  9056 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
  9057   if (VM_Version::supports_cmov()) {
  9058     cmovl(cc, dst, src);
  9059   } else {
  9060     Label L;
  9061     jccb(negate_condition(cc), L);
  9062     movl(dst, src);
  9063     bind(L);
  9067 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
  9068   if (VM_Version::supports_cmov()) {
  9069     cmovl(cc, dst, src);
  9070   } else {
  9071     Label L;
  9072     jccb(negate_condition(cc), L);
  9073     movl(dst, src);
  9074     bind(L);
  9078 void MacroAssembler::verify_oop(Register reg, const char* s) {
  9079   if (!VerifyOops) return;
  9081   // Pass register number to verify_oop_subroutine
  9082   char* b = new char[strlen(s) + 50];
  9083   sprintf(b, "verify_oop: %s: %s", reg->name(), s);
  9084   BLOCK_COMMENT("verify_oop {");
  9085 #ifdef _LP64
  9086   push(rscratch1);                    // save r10, trashed by movptr()
  9087 #endif
  9088   push(rax);                          // save rax,
  9089   push(reg);                          // pass register argument
  9090   ExternalAddress buffer((address) b);
  9091   // avoid using pushptr, as it modifies scratch registers
  9092   // and our contract is not to modify anything
  9093   movptr(rax, buffer.addr());
  9094   push(rax);
  9095   // call indirectly to solve generation ordering problem
  9096   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  9097   call(rax);
  9098   // Caller pops the arguments (oop, message) and restores rax, r10
  9099   BLOCK_COMMENT("} verify_oop");
  9103 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  9104                                                       Register tmp,
  9105                                                       int offset) {
  9106   intptr_t value = *delayed_value_addr;
  9107   if (value != 0)
  9108     return RegisterOrConstant(value + offset);
  9110   // load indirectly to solve generation ordering problem
  9111   movptr(tmp, ExternalAddress((address) delayed_value_addr));
  9113 #ifdef ASSERT
  9114   { Label L;
  9115     testptr(tmp, tmp);
  9116     if (WizardMode) {
  9117       jcc(Assembler::notZero, L);
  9118       char* buf = new char[40];
  9119       sprintf(buf, "DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
  9120       STOP(buf);
  9121     } else {
  9122       jccb(Assembler::notZero, L);
  9123       hlt();
  9125     bind(L);
  9127 #endif
  9129   if (offset != 0)
  9130     addptr(tmp, offset);
  9132   return RegisterOrConstant(tmp);
  9136 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  9137                                          int extra_slot_offset) {
  9138   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  9139   int stackElementSize = Interpreter::stackElementSize;
  9140   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
  9141 #ifdef ASSERT
  9142   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
  9143   assert(offset1 - offset == stackElementSize, "correct arithmetic");
  9144 #endif
  9145   Register             scale_reg    = noreg;
  9146   Address::ScaleFactor scale_factor = Address::no_scale;
  9147   if (arg_slot.is_constant()) {
  9148     offset += arg_slot.as_constant() * stackElementSize;
  9149   } else {
  9150     scale_reg    = arg_slot.as_register();
  9151     scale_factor = Address::times(stackElementSize);
  9153   offset += wordSize;           // return PC is on stack
  9154   return Address(rsp, scale_reg, scale_factor, offset);
  9158 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
  9159   if (!VerifyOops) return;
  9161   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
  9162   // Pass register number to verify_oop_subroutine
  9163   char* b = new char[strlen(s) + 50];
  9164   sprintf(b, "verify_oop_addr: %s", s);
  9166 #ifdef _LP64
  9167   push(rscratch1);                    // save r10, trashed by movptr()
  9168 #endif
  9169   push(rax);                          // save rax,
  9170   // addr may contain rsp so we will have to adjust it based on the push
  9171   // we just did (and on 64 bit we do two pushes)
  9172   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
  9173   // stores rax into addr which is backwards of what was intended.
  9174   if (addr.uses(rsp)) {
  9175     lea(rax, addr);
  9176     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
  9177   } else {
  9178     pushptr(addr);
  9181   ExternalAddress buffer((address) b);
  9182   // pass msg argument
  9183   // avoid using pushptr, as it modifies scratch registers
  9184   // and our contract is not to modify anything
  9185   movptr(rax, buffer.addr());
  9186   push(rax);
  9188   // call indirectly to solve generation ordering problem
  9189   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  9190   call(rax);
  9191   // Caller pops the arguments (addr, message) and restores rax, r10.
  9194 void MacroAssembler::verify_tlab() {
  9195 #ifdef ASSERT
  9196   if (UseTLAB && VerifyOops) {
  9197     Label next, ok;
  9198     Register t1 = rsi;
  9199     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
  9201     push(t1);
  9202     NOT_LP64(push(thread_reg));
  9203     NOT_LP64(get_thread(thread_reg));
  9205     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  9206     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  9207     jcc(Assembler::aboveEqual, next);
  9208     STOP("assert(top >= start)");
  9209     should_not_reach_here();
  9211     bind(next);
  9212     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  9213     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  9214     jcc(Assembler::aboveEqual, ok);
  9215     STOP("assert(top <= end)");
  9216     should_not_reach_here();
  9218     bind(ok);
  9219     NOT_LP64(pop(thread_reg));
  9220     pop(t1);
  9222 #endif
  9225 class ControlWord {
  9226  public:
  9227   int32_t _value;
  9229   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
  9230   int  precision_control() const       { return  (_value >>  8) & 3      ; }
  9231   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  9232   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  9233   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  9234   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  9235   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  9236   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  9238   void print() const {
  9239     // rounding control
  9240     const char* rc;
  9241     switch (rounding_control()) {
  9242       case 0: rc = "round near"; break;
  9243       case 1: rc = "round down"; break;
  9244       case 2: rc = "round up  "; break;
  9245       case 3: rc = "chop      "; break;
  9246     };
  9247     // precision control
  9248     const char* pc;
  9249     switch (precision_control()) {
  9250       case 0: pc = "24 bits "; break;
  9251       case 1: pc = "reserved"; break;
  9252       case 2: pc = "53 bits "; break;
  9253       case 3: pc = "64 bits "; break;
  9254     };
  9255     // flags
  9256     char f[9];
  9257     f[0] = ' ';
  9258     f[1] = ' ';
  9259     f[2] = (precision   ()) ? 'P' : 'p';
  9260     f[3] = (underflow   ()) ? 'U' : 'u';
  9261     f[4] = (overflow    ()) ? 'O' : 'o';
  9262     f[5] = (zero_divide ()) ? 'Z' : 'z';
  9263     f[6] = (denormalized()) ? 'D' : 'd';
  9264     f[7] = (invalid     ()) ? 'I' : 'i';
  9265     f[8] = '\x0';
  9266     // output
  9267     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
  9270 };
  9272 class StatusWord {
  9273  public:
  9274   int32_t _value;
  9276   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
  9277   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
  9278   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
  9279   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
  9280   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
  9281   int  top() const                     { return  (_value >> 11) & 7      ; }
  9282   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
  9283   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
  9284   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  9285   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  9286   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  9287   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  9288   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  9289   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  9291   void print() const {
  9292     // condition codes
  9293     char c[5];
  9294     c[0] = (C3()) ? '3' : '-';
  9295     c[1] = (C2()) ? '2' : '-';
  9296     c[2] = (C1()) ? '1' : '-';
  9297     c[3] = (C0()) ? '0' : '-';
  9298     c[4] = '\x0';
  9299     // flags
  9300     char f[9];
  9301     f[0] = (error_status()) ? 'E' : '-';
  9302     f[1] = (stack_fault ()) ? 'S' : '-';
  9303     f[2] = (precision   ()) ? 'P' : '-';
  9304     f[3] = (underflow   ()) ? 'U' : '-';
  9305     f[4] = (overflow    ()) ? 'O' : '-';
  9306     f[5] = (zero_divide ()) ? 'Z' : '-';
  9307     f[6] = (denormalized()) ? 'D' : '-';
  9308     f[7] = (invalid     ()) ? 'I' : '-';
  9309     f[8] = '\x0';
  9310     // output
  9311     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
  9314 };
  9316 class TagWord {
  9317  public:
  9318   int32_t _value;
  9320   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
  9322   void print() const {
  9323     printf("%04x", _value & 0xFFFF);
  9326 };
  9328 class FPU_Register {
  9329  public:
  9330   int32_t _m0;
  9331   int32_t _m1;
  9332   int16_t _ex;
  9334   bool is_indefinite() const           {
  9335     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
  9338   void print() const {
  9339     char  sign = (_ex < 0) ? '-' : '+';
  9340     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
  9341     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
  9342   };
  9344 };
  9346 class FPU_State {
  9347  public:
  9348   enum {
  9349     register_size       = 10,
  9350     number_of_registers =  8,
  9351     register_mask       =  7
  9352   };
  9354   ControlWord  _control_word;
  9355   StatusWord   _status_word;
  9356   TagWord      _tag_word;
  9357   int32_t      _error_offset;
  9358   int32_t      _error_selector;
  9359   int32_t      _data_offset;
  9360   int32_t      _data_selector;
  9361   int8_t       _register[register_size * number_of_registers];
  9363   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
  9364   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
  9366   const char* tag_as_string(int tag) const {
  9367     switch (tag) {
  9368       case 0: return "valid";
  9369       case 1: return "zero";
  9370       case 2: return "special";
  9371       case 3: return "empty";
  9373     ShouldNotReachHere();
  9374     return NULL;
  9377   void print() const {
  9378     // print computation registers
  9379     { int t = _status_word.top();
  9380       for (int i = 0; i < number_of_registers; i++) {
  9381         int j = (i - t) & register_mask;
  9382         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
  9383         st(j)->print();
  9384         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
  9387     printf("\n");
  9388     // print control registers
  9389     printf("ctrl = "); _control_word.print(); printf("\n");
  9390     printf("stat = "); _status_word .print(); printf("\n");
  9391     printf("tags = "); _tag_word    .print(); printf("\n");
  9394 };
  9396 class Flag_Register {
  9397  public:
  9398   int32_t _value;
  9400   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
  9401   bool direction() const               { return ((_value >> 10) & 1) != 0; }
  9402   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
  9403   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
  9404   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
  9405   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
  9406   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
  9408   void print() const {
  9409     // flags
  9410     char f[8];
  9411     f[0] = (overflow       ()) ? 'O' : '-';
  9412     f[1] = (direction      ()) ? 'D' : '-';
  9413     f[2] = (sign           ()) ? 'S' : '-';
  9414     f[3] = (zero           ()) ? 'Z' : '-';
  9415     f[4] = (auxiliary_carry()) ? 'A' : '-';
  9416     f[5] = (parity         ()) ? 'P' : '-';
  9417     f[6] = (carry          ()) ? 'C' : '-';
  9418     f[7] = '\x0';
  9419     // output
  9420     printf("%08x  flags = %s", _value, f);
  9423 };
  9425 class IU_Register {
  9426  public:
  9427   int32_t _value;
  9429   void print() const {
  9430     printf("%08x  %11d", _value, _value);
  9433 };
  9435 class IU_State {
  9436  public:
  9437   Flag_Register _eflags;
  9438   IU_Register   _rdi;
  9439   IU_Register   _rsi;
  9440   IU_Register   _rbp;
  9441   IU_Register   _rsp;
  9442   IU_Register   _rbx;
  9443   IU_Register   _rdx;
  9444   IU_Register   _rcx;
  9445   IU_Register   _rax;
  9447   void print() const {
  9448     // computation registers
  9449     printf("rax,  = "); _rax.print(); printf("\n");
  9450     printf("rbx,  = "); _rbx.print(); printf("\n");
  9451     printf("rcx  = "); _rcx.print(); printf("\n");
  9452     printf("rdx  = "); _rdx.print(); printf("\n");
  9453     printf("rdi  = "); _rdi.print(); printf("\n");
  9454     printf("rsi  = "); _rsi.print(); printf("\n");
  9455     printf("rbp,  = "); _rbp.print(); printf("\n");
  9456     printf("rsp  = "); _rsp.print(); printf("\n");
  9457     printf("\n");
  9458     // control registers
  9459     printf("flgs = "); _eflags.print(); printf("\n");
  9461 };
  9464 class CPU_State {
  9465  public:
  9466   FPU_State _fpu_state;
  9467   IU_State  _iu_state;
  9469   void print() const {
  9470     printf("--------------------------------------------------\n");
  9471     _iu_state .print();
  9472     printf("\n");
  9473     _fpu_state.print();
  9474     printf("--------------------------------------------------\n");
  9477 };
  9480 static void _print_CPU_state(CPU_State* state) {
  9481   state->print();
  9482 };
  9485 void MacroAssembler::print_CPU_state() {
  9486   push_CPU_state();
  9487   push(rsp);                // pass CPU state
  9488   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
  9489   addptr(rsp, wordSize);       // discard argument
  9490   pop_CPU_state();
  9494 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
  9495   static int counter = 0;
  9496   FPU_State* fs = &state->_fpu_state;
  9497   counter++;
  9498   // For leaf calls, only verify that the top few elements remain empty.
  9499   // We only need 1 empty at the top for C2 code.
  9500   if( stack_depth < 0 ) {
  9501     if( fs->tag_for_st(7) != 3 ) {
  9502       printf("FPR7 not empty\n");
  9503       state->print();
  9504       assert(false, "error");
  9505       return false;
  9507     return true;                // All other stack states do not matter
  9510   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
  9511          "bad FPU control word");
  9513   // compute stack depth
  9514   int i = 0;
  9515   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
  9516   int d = i;
  9517   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
  9518   // verify findings
  9519   if (i != FPU_State::number_of_registers) {
  9520     // stack not contiguous
  9521     printf("%s: stack not contiguous at ST%d\n", s, i);
  9522     state->print();
  9523     assert(false, "error");
  9524     return false;
  9526   // check if computed stack depth corresponds to expected stack depth
  9527   if (stack_depth < 0) {
  9528     // expected stack depth is -stack_depth or less
  9529     if (d > -stack_depth) {
  9530       // too many elements on the stack
  9531       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
  9532       state->print();
  9533       assert(false, "error");
  9534       return false;
  9536   } else {
  9537     // expected stack depth is stack_depth
  9538     if (d != stack_depth) {
  9539       // wrong stack depth
  9540       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
  9541       state->print();
  9542       assert(false, "error");
  9543       return false;
  9546   // everything is cool
  9547   return true;
  9551 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  9552   if (!VerifyFPU) return;
  9553   push_CPU_state();
  9554   push(rsp);                // pass CPU state
  9555   ExternalAddress msg((address) s);
  9556   // pass message string s
  9557   pushptr(msg.addr());
  9558   push(stack_depth);        // pass stack depth
  9559   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
  9560   addptr(rsp, 3 * wordSize);   // discard arguments
  9561   // check for error
  9562   { Label L;
  9563     testl(rax, rax);
  9564     jcc(Assembler::notZero, L);
  9565     int3();                  // break if error condition
  9566     bind(L);
  9568   pop_CPU_state();
  9571 void MacroAssembler::load_klass(Register dst, Register src) {
  9572 #ifdef _LP64
  9573   if (UseCompressedOops) {
  9574     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  9575     decode_heap_oop_not_null(dst);
  9576   } else
  9577 #endif
  9578     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  9581 void MacroAssembler::load_prototype_header(Register dst, Register src) {
  9582 #ifdef _LP64
  9583   if (UseCompressedOops) {
  9584     assert (Universe::heap() != NULL, "java heap should be initialized");
  9585     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  9586     if (Universe::narrow_oop_shift() != 0) {
  9587       assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9588       if (LogMinObjAlignmentInBytes == Address::times_8) {
  9589         movq(dst, Address(r12_heapbase, dst, Address::times_8, Klass::prototype_header_offset()));
  9590       } else {
  9591         // OK to use shift since we don't need to preserve flags.
  9592         shlq(dst, LogMinObjAlignmentInBytes);
  9593         movq(dst, Address(r12_heapbase, dst, Address::times_1, Klass::prototype_header_offset()));
  9595     } else {
  9596       movq(dst, Address(dst, Klass::prototype_header_offset()));
  9598   } else
  9599 #endif
  9601     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  9602     movptr(dst, Address(dst, Klass::prototype_header_offset()));
  9606 void MacroAssembler::store_klass(Register dst, Register src) {
  9607 #ifdef _LP64
  9608   if (UseCompressedOops) {
  9609     encode_heap_oop_not_null(src);
  9610     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  9611   } else
  9612 #endif
  9613     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  9616 void MacroAssembler::load_heap_oop(Register dst, Address src) {
  9617 #ifdef _LP64
  9618   if (UseCompressedOops) {
  9619     movl(dst, src);
  9620     decode_heap_oop(dst);
  9621   } else
  9622 #endif
  9623     movptr(dst, src);
  9626 // Doesn't do verfication, generates fixed size code
  9627 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
  9628 #ifdef _LP64
  9629   if (UseCompressedOops) {
  9630     movl(dst, src);
  9631     decode_heap_oop_not_null(dst);
  9632   } else
  9633 #endif
  9634     movptr(dst, src);
  9637 void MacroAssembler::store_heap_oop(Address dst, Register src) {
  9638 #ifdef _LP64
  9639   if (UseCompressedOops) {
  9640     assert(!dst.uses(src), "not enough registers");
  9641     encode_heap_oop(src);
  9642     movl(dst, src);
  9643   } else
  9644 #endif
  9645     movptr(dst, src);
  9648 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
  9649   assert_different_registers(src1, tmp);
  9650 #ifdef _LP64
  9651   if (UseCompressedOops) {
  9652     bool did_push = false;
  9653     if (tmp == noreg) {
  9654       tmp = rax;
  9655       push(tmp);
  9656       did_push = true;
  9657       assert(!src2.uses(rsp), "can't push");
  9659     load_heap_oop(tmp, src2);
  9660     cmpptr(src1, tmp);
  9661     if (did_push)  pop(tmp);
  9662   } else
  9663 #endif
  9664     cmpptr(src1, src2);
  9667 // Used for storing NULLs.
  9668 void MacroAssembler::store_heap_oop_null(Address dst) {
  9669 #ifdef _LP64
  9670   if (UseCompressedOops) {
  9671     movl(dst, (int32_t)NULL_WORD);
  9672   } else {
  9673     movslq(dst, (int32_t)NULL_WORD);
  9675 #else
  9676   movl(dst, (int32_t)NULL_WORD);
  9677 #endif
  9680 #ifdef _LP64
  9681 void MacroAssembler::store_klass_gap(Register dst, Register src) {
  9682   if (UseCompressedOops) {
  9683     // Store to klass gap in destination
  9684     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
  9688 #ifdef ASSERT
  9689 void MacroAssembler::verify_heapbase(const char* msg) {
  9690   assert (UseCompressedOops, "should be compressed");
  9691   assert (Universe::heap() != NULL, "java heap should be initialized");
  9692   if (CheckCompressedOops) {
  9693     Label ok;
  9694     push(rscratch1); // cmpptr trashes rscratch1
  9695     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
  9696     jcc(Assembler::equal, ok);
  9697     STOP(msg);
  9698     bind(ok);
  9699     pop(rscratch1);
  9702 #endif
  9704 // Algorithm must match oop.inline.hpp encode_heap_oop.
  9705 void MacroAssembler::encode_heap_oop(Register r) {
  9706 #ifdef ASSERT
  9707   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
  9708 #endif
  9709   verify_oop(r, "broken oop in encode_heap_oop");
  9710   if (Universe::narrow_oop_base() == NULL) {
  9711     if (Universe::narrow_oop_shift() != 0) {
  9712       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9713       shrq(r, LogMinObjAlignmentInBytes);
  9715     return;
  9717   testq(r, r);
  9718   cmovq(Assembler::equal, r, r12_heapbase);
  9719   subq(r, r12_heapbase);
  9720   shrq(r, LogMinObjAlignmentInBytes);
  9723 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  9724 #ifdef ASSERT
  9725   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
  9726   if (CheckCompressedOops) {
  9727     Label ok;
  9728     testq(r, r);
  9729     jcc(Assembler::notEqual, ok);
  9730     STOP("null oop passed to encode_heap_oop_not_null");
  9731     bind(ok);
  9733 #endif
  9734   verify_oop(r, "broken oop in encode_heap_oop_not_null");
  9735   if (Universe::narrow_oop_base() != NULL) {
  9736     subq(r, r12_heapbase);
  9738   if (Universe::narrow_oop_shift() != 0) {
  9739     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9740     shrq(r, LogMinObjAlignmentInBytes);
  9744 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
  9745 #ifdef ASSERT
  9746   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
  9747   if (CheckCompressedOops) {
  9748     Label ok;
  9749     testq(src, src);
  9750     jcc(Assembler::notEqual, ok);
  9751     STOP("null oop passed to encode_heap_oop_not_null2");
  9752     bind(ok);
  9754 #endif
  9755   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
  9756   if (dst != src) {
  9757     movq(dst, src);
  9759   if (Universe::narrow_oop_base() != NULL) {
  9760     subq(dst, r12_heapbase);
  9762   if (Universe::narrow_oop_shift() != 0) {
  9763     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9764     shrq(dst, LogMinObjAlignmentInBytes);
  9768 void  MacroAssembler::decode_heap_oop(Register r) {
  9769 #ifdef ASSERT
  9770   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
  9771 #endif
  9772   if (Universe::narrow_oop_base() == NULL) {
  9773     if (Universe::narrow_oop_shift() != 0) {
  9774       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9775       shlq(r, LogMinObjAlignmentInBytes);
  9777   } else {
  9778     Label done;
  9779     shlq(r, LogMinObjAlignmentInBytes);
  9780     jccb(Assembler::equal, done);
  9781     addq(r, r12_heapbase);
  9782     bind(done);
  9784   verify_oop(r, "broken oop in decode_heap_oop");
  9787 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  9788   // Note: it will change flags
  9789   assert (UseCompressedOops, "should only be used for compressed headers");
  9790   assert (Universe::heap() != NULL, "java heap should be initialized");
  9791   // Cannot assert, unverified entry point counts instructions (see .ad file)
  9792   // vtableStubs also counts instructions in pd_code_size_limit.
  9793   // Also do not verify_oop as this is called by verify_oop.
  9794   if (Universe::narrow_oop_shift() != 0) {
  9795     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9796     shlq(r, LogMinObjAlignmentInBytes);
  9797     if (Universe::narrow_oop_base() != NULL) {
  9798       addq(r, r12_heapbase);
  9800   } else {
  9801     assert (Universe::narrow_oop_base() == NULL, "sanity");
  9805 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
  9806   // Note: it will change flags
  9807   assert (UseCompressedOops, "should only be used for compressed headers");
  9808   assert (Universe::heap() != NULL, "java heap should be initialized");
  9809   // Cannot assert, unverified entry point counts instructions (see .ad file)
  9810   // vtableStubs also counts instructions in pd_code_size_limit.
  9811   // Also do not verify_oop as this is called by verify_oop.
  9812   if (Universe::narrow_oop_shift() != 0) {
  9813     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9814     if (LogMinObjAlignmentInBytes == Address::times_8) {
  9815       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
  9816     } else {
  9817       if (dst != src) {
  9818         movq(dst, src);
  9820       shlq(dst, LogMinObjAlignmentInBytes);
  9821       if (Universe::narrow_oop_base() != NULL) {
  9822         addq(dst, r12_heapbase);
  9825   } else {
  9826     assert (Universe::narrow_oop_base() == NULL, "sanity");
  9827     if (dst != src) {
  9828       movq(dst, src);
  9833 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
  9834   assert (UseCompressedOops, "should only be used for compressed headers");
  9835   assert (Universe::heap() != NULL, "java heap should be initialized");
  9836   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  9837   int oop_index = oop_recorder()->find_index(obj);
  9838   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  9839   mov_narrow_oop(dst, oop_index, rspec);
  9842 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
  9843   assert (UseCompressedOops, "should only be used for compressed headers");
  9844   assert (Universe::heap() != NULL, "java heap should be initialized");
  9845   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  9846   int oop_index = oop_recorder()->find_index(obj);
  9847   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  9848   mov_narrow_oop(dst, oop_index, rspec);
  9851 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
  9852   assert (UseCompressedOops, "should only be used for compressed headers");
  9853   assert (Universe::heap() != NULL, "java heap should be initialized");
  9854   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  9855   int oop_index = oop_recorder()->find_index(obj);
  9856   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  9857   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  9860 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
  9861   assert (UseCompressedOops, "should only be used for compressed headers");
  9862   assert (Universe::heap() != NULL, "java heap should be initialized");
  9863   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  9864   int oop_index = oop_recorder()->find_index(obj);
  9865   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  9866   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  9869 void MacroAssembler::reinit_heapbase() {
  9870   if (UseCompressedOops) {
  9871     movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
  9874 #endif // _LP64
  9877 // C2 compiled method's prolog code.
  9878 void MacroAssembler::verified_entry(int framesize, bool stack_bang, bool fp_mode_24b) {
  9880   // WARNING: Initial instruction MUST be 5 bytes or longer so that
  9881   // NativeJump::patch_verified_entry will be able to patch out the entry
  9882   // code safely. The push to verify stack depth is ok at 5 bytes,
  9883   // the frame allocation can be either 3 or 6 bytes. So if we don't do
  9884   // stack bang then we must use the 6 byte frame allocation even if
  9885   // we have no frame. :-(
  9887   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  9888   // Remove word for return addr
  9889   framesize -= wordSize;
  9891   // Calls to C2R adapters often do not accept exceptional returns.
  9892   // We require that their callers must bang for them.  But be careful, because
  9893   // some VM calls (such as call site linkage) can use several kilobytes of
  9894   // stack.  But the stack safety zone should account for that.
  9895   // See bugs 4446381, 4468289, 4497237.
  9896   if (stack_bang) {
  9897     generate_stack_overflow_check(framesize);
  9899     // We always push rbp, so that on return to interpreter rbp, will be
  9900     // restored correctly and we can correct the stack.
  9901     push(rbp);
  9902     // Remove word for ebp
  9903     framesize -= wordSize;
  9905     // Create frame
  9906     if (framesize) {
  9907       subptr(rsp, framesize);
  9909   } else {
  9910     // Create frame (force generation of a 4 byte immediate value)
  9911     subptr_imm32(rsp, framesize);
  9913     // Save RBP register now.
  9914     framesize -= wordSize;
  9915     movptr(Address(rsp, framesize), rbp);
  9918   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
  9919     framesize -= wordSize;
  9920     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
  9923 #ifndef _LP64
  9924   // If method sets FPU control word do it now
  9925   if (fp_mode_24b) {
  9926     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  9928   if (UseSSE >= 2 && VerifyFPU) {
  9929     verify_FPU(0, "FPU stack must be clean on entry");
  9931 #endif
  9933 #ifdef ASSERT
  9934   if (VerifyStackAtCalls) {
  9935     Label L;
  9936     push(rax);
  9937     mov(rax, rsp);
  9938     andptr(rax, StackAlignmentInBytes-1);
  9939     cmpptr(rax, StackAlignmentInBytes-wordSize);
  9940     pop(rax);
  9941     jcc(Assembler::equal, L);
  9942     STOP("Stack is not properly aligned!");
  9943     bind(L);
  9945 #endif
  9950 // IndexOf for constant substrings with size >= 8 chars
  9951 // which don't need to be loaded through stack.
  9952 void MacroAssembler::string_indexofC8(Register str1, Register str2,
  9953                                       Register cnt1, Register cnt2,
  9954                                       int int_cnt2,  Register result,
  9955                                       XMMRegister vec, Register tmp) {
  9956   ShortBranchVerifier sbv(this);
  9957   assert(UseSSE42Intrinsics, "SSE4.2 is required");
  9959   // This method uses pcmpestri inxtruction with bound registers
  9960   //   inputs:
  9961   //     xmm - substring
  9962   //     rax - substring length (elements count)
  9963   //     mem - scanned string
  9964   //     rdx - string length (elements count)
  9965   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
  9966   //   outputs:
  9967   //     rcx - matched index in string
  9968   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  9970   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
  9971         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
  9972         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
  9974   // Note, inline_string_indexOf() generates checks:
  9975   // if (substr.count > string.count) return -1;
  9976   // if (substr.count == 0) return 0;
  9977   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
  9979   // Load substring.
  9980   movdqu(vec, Address(str2, 0));
  9981   movl(cnt2, int_cnt2);
  9982   movptr(result, str1); // string addr
  9984   if (int_cnt2 > 8) {
  9985     jmpb(SCAN_TO_SUBSTR);
  9987     // Reload substr for rescan, this code
  9988     // is executed only for large substrings (> 8 chars)
  9989     bind(RELOAD_SUBSTR);
  9990     movdqu(vec, Address(str2, 0));
  9991     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
  9993     bind(RELOAD_STR);
  9994     // We came here after the beginning of the substring was
  9995     // matched but the rest of it was not so we need to search
  9996     // again. Start from the next element after the previous match.
  9998     // cnt2 is number of substring reminding elements and
  9999     // cnt1 is number of string reminding elements when cmp failed.
 10000     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
 10001     subl(cnt1, cnt2);
 10002     addl(cnt1, int_cnt2);
 10003     movl(cnt2, int_cnt2); // Now restore cnt2
 10005     decrementl(cnt1);     // Shift to next element
 10006     cmpl(cnt1, cnt2);
 10007     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
 10009     addptr(result, 2);
 10011   } // (int_cnt2 > 8)
 10013   // Scan string for start of substr in 16-byte vectors
 10014   bind(SCAN_TO_SUBSTR);
 10015   pcmpestri(vec, Address(result, 0), 0x0d);
 10016   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
 10017   subl(cnt1, 8);
 10018   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
 10019   cmpl(cnt1, cnt2);
 10020   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
 10021   addptr(result, 16);
 10022   jmpb(SCAN_TO_SUBSTR);
 10024   // Found a potential substr
 10025   bind(FOUND_CANDIDATE);
 10026   // Matched whole vector if first element matched (tmp(rcx) == 0).
 10027   if (int_cnt2 == 8) {
 10028     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
 10029   } else { // int_cnt2 > 8
 10030     jccb(Assembler::overflow, FOUND_SUBSTR);
 10032   // After pcmpestri tmp(rcx) contains matched element index
 10033   // Compute start addr of substr
 10034   lea(result, Address(result, tmp, Address::times_2));
 10036   // Make sure string is still long enough
 10037   subl(cnt1, tmp);
 10038   cmpl(cnt1, cnt2);
 10039   if (int_cnt2 == 8) {
 10040     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
 10041   } else { // int_cnt2 > 8
 10042     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
 10044   // Left less then substring.
 10046   bind(RET_NOT_FOUND);
 10047   movl(result, -1);
 10048   jmpb(EXIT);
 10050   if (int_cnt2 > 8) {
 10051     // This code is optimized for the case when whole substring
 10052     // is matched if its head is matched.
 10053     bind(MATCH_SUBSTR_HEAD);
 10054     pcmpestri(vec, Address(result, 0), 0x0d);
 10055     // Reload only string if does not match
 10056     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
 10058     Label CONT_SCAN_SUBSTR;
 10059     // Compare the rest of substring (> 8 chars).
 10060     bind(FOUND_SUBSTR);
 10061     // First 8 chars are already matched.
 10062     negptr(cnt2);
 10063     addptr(cnt2, 8);
 10065     bind(SCAN_SUBSTR);
 10066     subl(cnt1, 8);
 10067     cmpl(cnt2, -8); // Do not read beyond substring
 10068     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
 10069     // Back-up strings to avoid reading beyond substring:
 10070     // cnt1 = cnt1 - cnt2 + 8
 10071     addl(cnt1, cnt2); // cnt2 is negative
 10072     addl(cnt1, 8);
 10073     movl(cnt2, 8); negptr(cnt2);
 10074     bind(CONT_SCAN_SUBSTR);
 10075     if (int_cnt2 < (int)G) {
 10076       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
 10077       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
 10078     } else {
 10079       // calculate index in register to avoid integer overflow (int_cnt2*2)
 10080       movl(tmp, int_cnt2);
 10081       addptr(tmp, cnt2);
 10082       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
 10083       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
 10085     // Need to reload strings pointers if not matched whole vector
 10086     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
 10087     addptr(cnt2, 8);
 10088     jcc(Assembler::negative, SCAN_SUBSTR);
 10089     // Fall through if found full substring
 10091   } // (int_cnt2 > 8)
 10093   bind(RET_FOUND);
 10094   // Found result if we matched full small substring.
 10095   // Compute substr offset
 10096   subptr(result, str1);
 10097   shrl(result, 1); // index
 10098   bind(EXIT);
 10100 } // string_indexofC8
 10102 // Small strings are loaded through stack if they cross page boundary.
 10103 void MacroAssembler::string_indexof(Register str1, Register str2,
 10104                                     Register cnt1, Register cnt2,
 10105                                     int int_cnt2,  Register result,
 10106                                     XMMRegister vec, Register tmp) {
 10107   ShortBranchVerifier sbv(this);
 10108   assert(UseSSE42Intrinsics, "SSE4.2 is required");
 10109   //
 10110   // int_cnt2 is length of small (< 8 chars) constant substring
 10111   // or (-1) for non constant substring in which case its length
 10112   // is in cnt2 register.
 10113   //
 10114   // Note, inline_string_indexOf() generates checks:
 10115   // if (substr.count > string.count) return -1;
 10116   // if (substr.count == 0) return 0;
 10117   //
 10118   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
 10120   // This method uses pcmpestri inxtruction with bound registers
 10121   //   inputs:
 10122   //     xmm - substring
 10123   //     rax - substring length (elements count)
 10124   //     mem - scanned string
 10125   //     rdx - string length (elements count)
 10126   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
 10127   //   outputs:
 10128   //     rcx - matched index in string
 10129   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
 10131   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
 10132         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
 10133         FOUND_CANDIDATE;
 10135   { //========================================================
 10136     // We don't know where these strings are located
 10137     // and we can't read beyond them. Load them through stack.
 10138     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
 10140     movptr(tmp, rsp); // save old SP
 10142     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
 10143       if (int_cnt2 == 1) {  // One char
 10144         load_unsigned_short(result, Address(str2, 0));
 10145         movdl(vec, result); // move 32 bits
 10146       } else if (int_cnt2 == 2) { // Two chars
 10147         movdl(vec, Address(str2, 0)); // move 32 bits
 10148       } else if (int_cnt2 == 4) { // Four chars
 10149         movq(vec, Address(str2, 0));  // move 64 bits
 10150       } else { // cnt2 = { 3, 5, 6, 7 }
 10151         // Array header size is 12 bytes in 32-bit VM
 10152         // + 6 bytes for 3 chars == 18 bytes,
 10153         // enough space to load vec and shift.
 10154         assert(HeapWordSize*typeArrayKlass::header_size() >= 12,"sanity");
 10155         movdqu(vec, Address(str2, (int_cnt2*2)-16));
 10156         psrldq(vec, 16-(int_cnt2*2));
 10158     } else { // not constant substring
 10159       cmpl(cnt2, 8);
 10160       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
 10162       // We can read beyond string if srt+16 does not cross page boundary
 10163       // since heaps are aligned and mapped by pages.
 10164       assert(os::vm_page_size() < (int)G, "default page should be small");
 10165       movl(result, str2); // We need only low 32 bits
 10166       andl(result, (os::vm_page_size()-1));
 10167       cmpl(result, (os::vm_page_size()-16));
 10168       jccb(Assembler::belowEqual, CHECK_STR);
 10170       // Move small strings to stack to allow load 16 bytes into vec.
 10171       subptr(rsp, 16);
 10172       int stk_offset = wordSize-2;
 10173       push(cnt2);
 10175       bind(COPY_SUBSTR);
 10176       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
 10177       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
 10178       decrement(cnt2);
 10179       jccb(Assembler::notZero, COPY_SUBSTR);
 10181       pop(cnt2);
 10182       movptr(str2, rsp);  // New substring address
 10183     } // non constant
 10185     bind(CHECK_STR);
 10186     cmpl(cnt1, 8);
 10187     jccb(Assembler::aboveEqual, BIG_STRINGS);
 10189     // Check cross page boundary.
 10190     movl(result, str1); // We need only low 32 bits
 10191     andl(result, (os::vm_page_size()-1));
 10192     cmpl(result, (os::vm_page_size()-16));
 10193     jccb(Assembler::belowEqual, BIG_STRINGS);
 10195     subptr(rsp, 16);
 10196     int stk_offset = -2;
 10197     if (int_cnt2 < 0) { // not constant
 10198       push(cnt2);
 10199       stk_offset += wordSize;
 10201     movl(cnt2, cnt1);
 10203     bind(COPY_STR);
 10204     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
 10205     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
 10206     decrement(cnt2);
 10207     jccb(Assembler::notZero, COPY_STR);
 10209     if (int_cnt2 < 0) { // not constant
 10210       pop(cnt2);
 10212     movptr(str1, rsp);  // New string address
 10214     bind(BIG_STRINGS);
 10215     // Load substring.
 10216     if (int_cnt2 < 0) { // -1
 10217       movdqu(vec, Address(str2, 0));
 10218       push(cnt2);       // substr count
 10219       push(str2);       // substr addr
 10220       push(str1);       // string addr
 10221     } else {
 10222       // Small (< 8 chars) constant substrings are loaded already.
 10223       movl(cnt2, int_cnt2);
 10225     push(tmp);  // original SP
 10227   } // Finished loading
 10229   //========================================================
 10230   // Start search
 10231   //
 10233   movptr(result, str1); // string addr
 10235   if (int_cnt2  < 0) {  // Only for non constant substring
 10236     jmpb(SCAN_TO_SUBSTR);
 10238     // SP saved at sp+0
 10239     // String saved at sp+1*wordSize
 10240     // Substr saved at sp+2*wordSize
 10241     // Substr count saved at sp+3*wordSize
 10243     // Reload substr for rescan, this code
 10244     // is executed only for large substrings (> 8 chars)
 10245     bind(RELOAD_SUBSTR);
 10246     movptr(str2, Address(rsp, 2*wordSize));
 10247     movl(cnt2, Address(rsp, 3*wordSize));
 10248     movdqu(vec, Address(str2, 0));
 10249     // We came here after the beginning of the substring was
 10250     // matched but the rest of it was not so we need to search
 10251     // again. Start from the next element after the previous match.
 10252     subptr(str1, result); // Restore counter
 10253     shrl(str1, 1);
 10254     addl(cnt1, str1);
 10255     decrementl(cnt1);   // Shift to next element
 10256     cmpl(cnt1, cnt2);
 10257     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
 10259     addptr(result, 2);
 10260   } // non constant
 10262   // Scan string for start of substr in 16-byte vectors
 10263   bind(SCAN_TO_SUBSTR);
 10264   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
 10265   pcmpestri(vec, Address(result, 0), 0x0d);
 10266   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
 10267   subl(cnt1, 8);
 10268   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
 10269   cmpl(cnt1, cnt2);
 10270   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
 10271   addptr(result, 16);
 10273   bind(ADJUST_STR);
 10274   cmpl(cnt1, 8); // Do not read beyond string
 10275   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
 10276   // Back-up string to avoid reading beyond string.
 10277   lea(result, Address(result, cnt1, Address::times_2, -16));
 10278   movl(cnt1, 8);
 10279   jmpb(SCAN_TO_SUBSTR);
 10281   // Found a potential substr
 10282   bind(FOUND_CANDIDATE);
 10283   // After pcmpestri tmp(rcx) contains matched element index
 10285   // Make sure string is still long enough
 10286   subl(cnt1, tmp);
 10287   cmpl(cnt1, cnt2);
 10288   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
 10289   // Left less then substring.
 10291   bind(RET_NOT_FOUND);
 10292   movl(result, -1);
 10293   jmpb(CLEANUP);
 10295   bind(FOUND_SUBSTR);
 10296   // Compute start addr of substr
 10297   lea(result, Address(result, tmp, Address::times_2));
 10299   if (int_cnt2 > 0) { // Constant substring
 10300     // Repeat search for small substring (< 8 chars)
 10301     // from new point without reloading substring.
 10302     // Have to check that we don't read beyond string.
 10303     cmpl(tmp, 8-int_cnt2);
 10304     jccb(Assembler::greater, ADJUST_STR);
 10305     // Fall through if matched whole substring.
 10306   } else { // non constant
 10307     assert(int_cnt2 == -1, "should be != 0");
 10309     addl(tmp, cnt2);
 10310     // Found result if we matched whole substring.
 10311     cmpl(tmp, 8);
 10312     jccb(Assembler::lessEqual, RET_FOUND);
 10314     // Repeat search for small substring (<= 8 chars)
 10315     // from new point 'str1' without reloading substring.
 10316     cmpl(cnt2, 8);
 10317     // Have to check that we don't read beyond string.
 10318     jccb(Assembler::lessEqual, ADJUST_STR);
 10320     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
 10321     // Compare the rest of substring (> 8 chars).
 10322     movptr(str1, result);
 10324     cmpl(tmp, cnt2);
 10325     // First 8 chars are already matched.
 10326     jccb(Assembler::equal, CHECK_NEXT);
 10328     bind(SCAN_SUBSTR);
 10329     pcmpestri(vec, Address(str1, 0), 0x0d);
 10330     // Need to reload strings pointers if not matched whole vector
 10331     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
 10333     bind(CHECK_NEXT);
 10334     subl(cnt2, 8);
 10335     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
 10336     addptr(str1, 16);
 10337     addptr(str2, 16);
 10338     subl(cnt1, 8);
 10339     cmpl(cnt2, 8); // Do not read beyond substring
 10340     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
 10341     // Back-up strings to avoid reading beyond substring.
 10342     lea(str2, Address(str2, cnt2, Address::times_2, -16));
 10343     lea(str1, Address(str1, cnt2, Address::times_2, -16));
 10344     subl(cnt1, cnt2);
 10345     movl(cnt2, 8);
 10346     addl(cnt1, 8);
 10347     bind(CONT_SCAN_SUBSTR);
 10348     movdqu(vec, Address(str2, 0));
 10349     jmpb(SCAN_SUBSTR);
 10351     bind(RET_FOUND_LONG);
 10352     movptr(str1, Address(rsp, wordSize));
 10353   } // non constant
 10355   bind(RET_FOUND);
 10356   // Compute substr offset
 10357   subptr(result, str1);
 10358   shrl(result, 1); // index
 10360   bind(CLEANUP);
 10361   pop(rsp); // restore SP
 10363 } // string_indexof
 10365 // Compare strings.
 10366 void MacroAssembler::string_compare(Register str1, Register str2,
 10367                                     Register cnt1, Register cnt2, Register result,
 10368                                     XMMRegister vec1) {
 10369   ShortBranchVerifier sbv(this);
 10370   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
 10372   // Compute the minimum of the string lengths and the
 10373   // difference of the string lengths (stack).
 10374   // Do the conditional move stuff
 10375   movl(result, cnt1);
 10376   subl(cnt1, cnt2);
 10377   push(cnt1);
 10378   cmov32(Assembler::lessEqual, cnt2, result);
 10380   // Is the minimum length zero?
 10381   testl(cnt2, cnt2);
 10382   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
 10384   // Load first characters
 10385   load_unsigned_short(result, Address(str1, 0));
 10386   load_unsigned_short(cnt1, Address(str2, 0));
 10388   // Compare first characters
 10389   subl(result, cnt1);
 10390   jcc(Assembler::notZero,  POP_LABEL);
 10391   decrementl(cnt2);
 10392   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
 10395     // Check after comparing first character to see if strings are equivalent
 10396     Label LSkip2;
 10397     // Check if the strings start at same location
 10398     cmpptr(str1, str2);
 10399     jccb(Assembler::notEqual, LSkip2);
 10401     // Check if the length difference is zero (from stack)
 10402     cmpl(Address(rsp, 0), 0x0);
 10403     jcc(Assembler::equal,  LENGTH_DIFF_LABEL);
 10405     // Strings might not be equivalent
 10406     bind(LSkip2);
 10409   Address::ScaleFactor scale = Address::times_2;
 10410   int stride = 8;
 10412   // Advance to next element
 10413   addptr(str1, 16/stride);
 10414   addptr(str2, 16/stride);
 10416   if (UseSSE42Intrinsics) {
 10417     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
 10418     int pcmpmask = 0x19;
 10419     // Setup to compare 16-byte vectors
 10420     movl(result, cnt2);
 10421     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
 10422     jccb(Assembler::zero, COMPARE_TAIL);
 10424     lea(str1, Address(str1, result, scale));
 10425     lea(str2, Address(str2, result, scale));
 10426     negptr(result);
 10428     // pcmpestri
 10429     //   inputs:
 10430     //     vec1- substring
 10431     //     rax - negative string length (elements count)
 10432     //     mem - scaned string
 10433     //     rdx - string length (elements count)
 10434     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
 10435     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
 10436     //   outputs:
 10437     //     rcx - first mismatched element index
 10438     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
 10440     bind(COMPARE_WIDE_VECTORS);
 10441     movdqu(vec1, Address(str1, result, scale));
 10442     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
 10443     // After pcmpestri cnt1(rcx) contains mismatched element index
 10445     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
 10446     addptr(result, stride);
 10447     subptr(cnt2, stride);
 10448     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
 10450     // compare wide vectors tail
 10451     testl(result, result);
 10452     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
 10454     movl(cnt2, stride);
 10455     movl(result, stride);
 10456     negptr(result);
 10457     movdqu(vec1, Address(str1, result, scale));
 10458     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
 10459     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
 10461     // Mismatched characters in the vectors
 10462     bind(VECTOR_NOT_EQUAL);
 10463     addptr(result, cnt1);
 10464     movptr(cnt2, result);
 10465     load_unsigned_short(result, Address(str1, cnt2, scale));
 10466     load_unsigned_short(cnt1, Address(str2, cnt2, scale));
 10467     subl(result, cnt1);
 10468     jmpb(POP_LABEL);
 10470     bind(COMPARE_TAIL); // limit is zero
 10471     movl(cnt2, result);
 10472     // Fallthru to tail compare
 10475   // Shift str2 and str1 to the end of the arrays, negate min
 10476   lea(str1, Address(str1, cnt2, scale, 0));
 10477   lea(str2, Address(str2, cnt2, scale, 0));
 10478   negptr(cnt2);
 10480   // Compare the rest of the elements
 10481   bind(WHILE_HEAD_LABEL);
 10482   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
 10483   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
 10484   subl(result, cnt1);
 10485   jccb(Assembler::notZero, POP_LABEL);
 10486   increment(cnt2);
 10487   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
 10489   // Strings are equal up to min length.  Return the length difference.
 10490   bind(LENGTH_DIFF_LABEL);
 10491   pop(result);
 10492   jmpb(DONE_LABEL);
 10494   // Discard the stored length difference
 10495   bind(POP_LABEL);
 10496   pop(cnt1);
 10498   // That's it
 10499   bind(DONE_LABEL);
 10502 // Compare char[] arrays aligned to 4 bytes or substrings.
 10503 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
 10504                                         Register limit, Register result, Register chr,
 10505                                         XMMRegister vec1, XMMRegister vec2) {
 10506   ShortBranchVerifier sbv(this);
 10507   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
 10509   int length_offset  = arrayOopDesc::length_offset_in_bytes();
 10510   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
 10512   // Check the input args
 10513   cmpptr(ary1, ary2);
 10514   jcc(Assembler::equal, TRUE_LABEL);
 10516   if (is_array_equ) {
 10517     // Need additional checks for arrays_equals.
 10518     testptr(ary1, ary1);
 10519     jcc(Assembler::zero, FALSE_LABEL);
 10520     testptr(ary2, ary2);
 10521     jcc(Assembler::zero, FALSE_LABEL);
 10523     // Check the lengths
 10524     movl(limit, Address(ary1, length_offset));
 10525     cmpl(limit, Address(ary2, length_offset));
 10526     jcc(Assembler::notEqual, FALSE_LABEL);
 10529   // count == 0
 10530   testl(limit, limit);
 10531   jcc(Assembler::zero, TRUE_LABEL);
 10533   if (is_array_equ) {
 10534     // Load array address
 10535     lea(ary1, Address(ary1, base_offset));
 10536     lea(ary2, Address(ary2, base_offset));
 10539   shll(limit, 1);      // byte count != 0
 10540   movl(result, limit); // copy
 10542   if (UseSSE42Intrinsics) {
 10543     // With SSE4.2, use double quad vector compare
 10544     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
 10546     // Compare 16-byte vectors
 10547     andl(result, 0x0000000e);  //   tail count (in bytes)
 10548     andl(limit, 0xfffffff0);   // vector count (in bytes)
 10549     jccb(Assembler::zero, COMPARE_TAIL);
 10551     lea(ary1, Address(ary1, limit, Address::times_1));
 10552     lea(ary2, Address(ary2, limit, Address::times_1));
 10553     negptr(limit);
 10555     bind(COMPARE_WIDE_VECTORS);
 10556     movdqu(vec1, Address(ary1, limit, Address::times_1));
 10557     movdqu(vec2, Address(ary2, limit, Address::times_1));
 10558     pxor(vec1, vec2);
 10560     ptest(vec1, vec1);
 10561     jccb(Assembler::notZero, FALSE_LABEL);
 10562     addptr(limit, 16);
 10563     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
 10565     testl(result, result);
 10566     jccb(Assembler::zero, TRUE_LABEL);
 10568     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
 10569     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
 10570     pxor(vec1, vec2);
 10572     ptest(vec1, vec1);
 10573     jccb(Assembler::notZero, FALSE_LABEL);
 10574     jmpb(TRUE_LABEL);
 10576     bind(COMPARE_TAIL); // limit is zero
 10577     movl(limit, result);
 10578     // Fallthru to tail compare
 10581   // Compare 4-byte vectors
 10582   andl(limit, 0xfffffffc); // vector count (in bytes)
 10583   jccb(Assembler::zero, COMPARE_CHAR);
 10585   lea(ary1, Address(ary1, limit, Address::times_1));
 10586   lea(ary2, Address(ary2, limit, Address::times_1));
 10587   negptr(limit);
 10589   bind(COMPARE_VECTORS);
 10590   movl(chr, Address(ary1, limit, Address::times_1));
 10591   cmpl(chr, Address(ary2, limit, Address::times_1));
 10592   jccb(Assembler::notEqual, FALSE_LABEL);
 10593   addptr(limit, 4);
 10594   jcc(Assembler::notZero, COMPARE_VECTORS);
 10596   // Compare trailing char (final 2 bytes), if any
 10597   bind(COMPARE_CHAR);
 10598   testl(result, 0x2);   // tail  char
 10599   jccb(Assembler::zero, TRUE_LABEL);
 10600   load_unsigned_short(chr, Address(ary1, 0));
 10601   load_unsigned_short(limit, Address(ary2, 0));
 10602   cmpl(chr, limit);
 10603   jccb(Assembler::notEqual, FALSE_LABEL);
 10605   bind(TRUE_LABEL);
 10606   movl(result, 1);   // return true
 10607   jmpb(DONE);
 10609   bind(FALSE_LABEL);
 10610   xorl(result, result); // return false
 10612   // That's it
 10613   bind(DONE);
 10616 void MacroAssembler::generate_fill(BasicType t, bool aligned,
 10617                                    Register to, Register value, Register count,
 10618                                    Register rtmp, XMMRegister xtmp) {
 10619   ShortBranchVerifier sbv(this);
 10620   assert_different_registers(to, value, count, rtmp);
 10621   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
 10622   Label L_fill_2_bytes, L_fill_4_bytes;
 10624   int shift = -1;
 10625   switch (t) {
 10626     case T_BYTE:
 10627       shift = 2;
 10628       break;
 10629     case T_SHORT:
 10630       shift = 1;
 10631       break;
 10632     case T_INT:
 10633       shift = 0;
 10634       break;
 10635     default: ShouldNotReachHere();
 10638   if (t == T_BYTE) {
 10639     andl(value, 0xff);
 10640     movl(rtmp, value);
 10641     shll(rtmp, 8);
 10642     orl(value, rtmp);
 10644   if (t == T_SHORT) {
 10645     andl(value, 0xffff);
 10647   if (t == T_BYTE || t == T_SHORT) {
 10648     movl(rtmp, value);
 10649     shll(rtmp, 16);
 10650     orl(value, rtmp);
 10653   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
 10654   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
 10655   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
 10656     // align source address at 4 bytes address boundary
 10657     if (t == T_BYTE) {
 10658       // One byte misalignment happens only for byte arrays
 10659       testptr(to, 1);
 10660       jccb(Assembler::zero, L_skip_align1);
 10661       movb(Address(to, 0), value);
 10662       increment(to);
 10663       decrement(count);
 10664       BIND(L_skip_align1);
 10666     // Two bytes misalignment happens only for byte and short (char) arrays
 10667     testptr(to, 2);
 10668     jccb(Assembler::zero, L_skip_align2);
 10669     movw(Address(to, 0), value);
 10670     addptr(to, 2);
 10671     subl(count, 1<<(shift-1));
 10672     BIND(L_skip_align2);
 10674   if (UseSSE < 2) {
 10675     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
 10676     // Fill 32-byte chunks
 10677     subl(count, 8 << shift);
 10678     jcc(Assembler::less, L_check_fill_8_bytes);
 10679     align(16);
 10681     BIND(L_fill_32_bytes_loop);
 10683     for (int i = 0; i < 32; i += 4) {
 10684       movl(Address(to, i), value);
 10687     addptr(to, 32);
 10688     subl(count, 8 << shift);
 10689     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
 10690     BIND(L_check_fill_8_bytes);
 10691     addl(count, 8 << shift);
 10692     jccb(Assembler::zero, L_exit);
 10693     jmpb(L_fill_8_bytes);
 10695     //
 10696     // length is too short, just fill qwords
 10697     //
 10698     BIND(L_fill_8_bytes_loop);
 10699     movl(Address(to, 0), value);
 10700     movl(Address(to, 4), value);
 10701     addptr(to, 8);
 10702     BIND(L_fill_8_bytes);
 10703     subl(count, 1 << (shift + 1));
 10704     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
 10705     // fall through to fill 4 bytes
 10706   } else {
 10707     Label L_fill_32_bytes;
 10708     if (!UseUnalignedLoadStores) {
 10709       // align to 8 bytes, we know we are 4 byte aligned to start
 10710       testptr(to, 4);
 10711       jccb(Assembler::zero, L_fill_32_bytes);
 10712       movl(Address(to, 0), value);
 10713       addptr(to, 4);
 10714       subl(count, 1<<shift);
 10716     BIND(L_fill_32_bytes);
 10718       assert( UseSSE >= 2, "supported cpu only" );
 10719       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
 10720       // Fill 32-byte chunks
 10721       movdl(xtmp, value);
 10722       pshufd(xtmp, xtmp, 0);
 10724       subl(count, 8 << shift);
 10725       jcc(Assembler::less, L_check_fill_8_bytes);
 10726       align(16);
 10728       BIND(L_fill_32_bytes_loop);
 10730       if (UseUnalignedLoadStores) {
 10731         movdqu(Address(to, 0), xtmp);
 10732         movdqu(Address(to, 16), xtmp);
 10733       } else {
 10734         movq(Address(to, 0), xtmp);
 10735         movq(Address(to, 8), xtmp);
 10736         movq(Address(to, 16), xtmp);
 10737         movq(Address(to, 24), xtmp);
 10740       addptr(to, 32);
 10741       subl(count, 8 << shift);
 10742       jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
 10743       BIND(L_check_fill_8_bytes);
 10744       addl(count, 8 << shift);
 10745       jccb(Assembler::zero, L_exit);
 10746       jmpb(L_fill_8_bytes);
 10748       //
 10749       // length is too short, just fill qwords
 10750       //
 10751       BIND(L_fill_8_bytes_loop);
 10752       movq(Address(to, 0), xtmp);
 10753       addptr(to, 8);
 10754       BIND(L_fill_8_bytes);
 10755       subl(count, 1 << (shift + 1));
 10756       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
 10759   // fill trailing 4 bytes
 10760   BIND(L_fill_4_bytes);
 10761   testl(count, 1<<shift);
 10762   jccb(Assembler::zero, L_fill_2_bytes);
 10763   movl(Address(to, 0), value);
 10764   if (t == T_BYTE || t == T_SHORT) {
 10765     addptr(to, 4);
 10766     BIND(L_fill_2_bytes);
 10767     // fill trailing 2 bytes
 10768     testl(count, 1<<(shift-1));
 10769     jccb(Assembler::zero, L_fill_byte);
 10770     movw(Address(to, 0), value);
 10771     if (t == T_BYTE) {
 10772       addptr(to, 2);
 10773       BIND(L_fill_byte);
 10774       // fill trailing byte
 10775       testl(count, 1);
 10776       jccb(Assembler::zero, L_exit);
 10777       movb(Address(to, 0), value);
 10778     } else {
 10779       BIND(L_fill_byte);
 10781   } else {
 10782     BIND(L_fill_2_bytes);
 10784   BIND(L_exit);
 10786 #undef BIND
 10787 #undef BLOCK_COMMENT
 10790 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
 10791   switch (cond) {
 10792     // Note some conditions are synonyms for others
 10793     case Assembler::zero:         return Assembler::notZero;
 10794     case Assembler::notZero:      return Assembler::zero;
 10795     case Assembler::less:         return Assembler::greaterEqual;
 10796     case Assembler::lessEqual:    return Assembler::greater;
 10797     case Assembler::greater:      return Assembler::lessEqual;
 10798     case Assembler::greaterEqual: return Assembler::less;
 10799     case Assembler::below:        return Assembler::aboveEqual;
 10800     case Assembler::belowEqual:   return Assembler::above;
 10801     case Assembler::above:        return Assembler::belowEqual;
 10802     case Assembler::aboveEqual:   return Assembler::below;
 10803     case Assembler::overflow:     return Assembler::noOverflow;
 10804     case Assembler::noOverflow:   return Assembler::overflow;
 10805     case Assembler::negative:     return Assembler::positive;
 10806     case Assembler::positive:     return Assembler::negative;
 10807     case Assembler::parity:       return Assembler::noParity;
 10808     case Assembler::noParity:     return Assembler::parity;
 10810   ShouldNotReachHere(); return Assembler::overflow;
 10813 SkipIfEqual::SkipIfEqual(
 10814     MacroAssembler* masm, const bool* flag_addr, bool value) {
 10815   _masm = masm;
 10816   _masm->cmp8(ExternalAddress((address)flag_addr), value);
 10817   _masm->jcc(Assembler::equal, _label);
 10820 SkipIfEqual::~SkipIfEqual() {
 10821   _masm->bind(_label);

mercurial