src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp

Tue, 23 Nov 2010 13:22:55 -0800

author
stefank
date
Tue, 23 Nov 2010 13:22:55 -0800
changeset 2314
f95d63e2154a
parent 2185
a3f7f95b0165
child 2344
ac637b7220d1
permissions
-rw-r--r--

6989984: Use standard include model for Hospot
Summary: Replaced MakeDeps and the includeDB files with more standardized solutions.
Reviewed-by: coleenp, kvn, kamg

     1 /*
     2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_Compilation.hpp"
    27 #include "c1/c1_LIRAssembler.hpp"
    28 #include "c1/c1_MacroAssembler.hpp"
    29 #include "c1/c1_Runtime1.hpp"
    30 #include "c1/c1_ValueStack.hpp"
    31 #include "ci/ciArrayKlass.hpp"
    32 #include "ci/ciInstance.hpp"
    33 #include "gc_interface/collectedHeap.hpp"
    34 #include "memory/barrierSet.hpp"
    35 #include "memory/cardTableModRefBS.hpp"
    36 #include "nativeInst_sparc.hpp"
    37 #include "oops/objArrayKlass.hpp"
    38 #include "runtime/sharedRuntime.hpp"
    40 #define __ _masm->
    43 //------------------------------------------------------------
    46 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
    47   if (opr->is_constant()) {
    48     LIR_Const* constant = opr->as_constant_ptr();
    49     switch (constant->type()) {
    50       case T_INT: {
    51         jint value = constant->as_jint();
    52         return Assembler::is_simm13(value);
    53       }
    55       default:
    56         return false;
    57     }
    58   }
    59   return false;
    60 }
    63 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
    64   switch (op->code()) {
    65     case lir_null_check:
    66     return true;
    69     case lir_add:
    70     case lir_ushr:
    71     case lir_shr:
    72     case lir_shl:
    73       // integer shifts and adds are always one instruction
    74       return op->result_opr()->is_single_cpu();
    77     case lir_move: {
    78       LIR_Op1* op1 = op->as_Op1();
    79       LIR_Opr src = op1->in_opr();
    80       LIR_Opr dst = op1->result_opr();
    82       if (src == dst) {
    83         NEEDS_CLEANUP;
    84         // this works around a problem where moves with the same src and dst
    85         // end up in the delay slot and then the assembler swallows the mov
    86         // since it has no effect and then it complains because the delay slot
    87         // is empty.  returning false stops the optimizer from putting this in
    88         // the delay slot
    89         return false;
    90       }
    92       // don't put moves involving oops into the delay slot since the VerifyOops code
    93       // will make it much larger than a single instruction.
    94       if (VerifyOops) {
    95         return false;
    96       }
    98       if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
    99           ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
   100         return false;
   101       }
   103       if (dst->is_register()) {
   104         if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
   105           return !PatchALot;
   106         } else if (src->is_single_stack()) {
   107           return true;
   108         }
   109       }
   111       if (src->is_register()) {
   112         if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
   113           return !PatchALot;
   114         } else if (dst->is_single_stack()) {
   115           return true;
   116         }
   117       }
   119       if (dst->is_register() &&
   120           ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
   121            (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
   122         return true;
   123       }
   125       return false;
   126     }
   128     default:
   129       return false;
   130   }
   131   ShouldNotReachHere();
   132 }
   135 LIR_Opr LIR_Assembler::receiverOpr() {
   136   return FrameMap::O0_oop_opr;
   137 }
   140 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
   141   return FrameMap::I0_oop_opr;
   142 }
   145 LIR_Opr LIR_Assembler::osrBufferPointer() {
   146   return FrameMap::I0_opr;
   147 }
   150 int LIR_Assembler::initial_frame_size_in_bytes() {
   151   return in_bytes(frame_map()->framesize_in_bytes());
   152 }
   155 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
   156 // we fetch the class of the receiver (O0) and compare it with the cached class.
   157 // If they do not match we jump to slow case.
   158 int LIR_Assembler::check_icache() {
   159   int offset = __ offset();
   160   __ inline_cache_check(O0, G5_inline_cache_reg);
   161   return offset;
   162 }
   165 void LIR_Assembler::osr_entry() {
   166   // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
   167   //
   168   //   1. Create a new compiled activation.
   169   //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
   170   //      at the osr_bci; it is not initialized.
   171   //   3. Jump to the continuation address in compiled code to resume execution.
   173   // OSR entry point
   174   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   175   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   176   ValueStack* entry_state = osr_entry->end()->state();
   177   int number_of_locks = entry_state->locks_size();
   179   // Create a frame for the compiled activation.
   180   __ build_frame(initial_frame_size_in_bytes());
   182   // OSR buffer is
   183   //
   184   // locals[nlocals-1..0]
   185   // monitors[number_of_locks-1..0]
   186   //
   187   // locals is a direct copy of the interpreter frame so in the osr buffer
   188   // so first slot in the local array is the last local from the interpreter
   189   // and last slot is local[0] (receiver) from the interpreter
   190   //
   191   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   192   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   193   // in the interpreter frame (the method lock if a sync method)
   195   // Initialize monitors in the compiled activation.
   196   //   I0: pointer to osr buffer
   197   //
   198   // All other registers are dead at this point and the locals will be
   199   // copied into place by code emitted in the IR.
   201   Register OSR_buf = osrBufferPointer()->as_register();
   202   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   203     int monitor_offset = BytesPerWord * method()->max_locals() +
   204       (2 * BytesPerWord) * (number_of_locks - 1);
   205     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   206     // the OSR buffer using 2 word entries: first the lock and then
   207     // the oop.
   208     for (int i = 0; i < number_of_locks; i++) {
   209       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   210 #ifdef ASSERT
   211       // verify the interpreter's monitor has a non-null object
   212       {
   213         Label L;
   214         __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   215         __ cmp(G0, O7);
   216         __ br(Assembler::notEqual, false, Assembler::pt, L);
   217         __ delayed()->nop();
   218         __ stop("locked object is NULL");
   219         __ bind(L);
   220       }
   221 #endif // ASSERT
   222       // Copy the lock field into the compiled activation.
   223       __ ld_ptr(OSR_buf, slot_offset + 0, O7);
   224       __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
   225       __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   226       __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
   227     }
   228   }
   229 }
   232 // Optimized Library calls
   233 // This is the fast version of java.lang.String.compare; it has not
   234 // OSR-entry and therefore, we generate a slow version for OSR's
   235 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
   236   Register str0 = left->as_register();
   237   Register str1 = right->as_register();
   239   Label Ldone;
   241   Register result = dst->as_register();
   242   {
   243     // Get a pointer to the first character of string0 in tmp0 and get string0.count in str0
   244     // Get a pointer to the first character of string1 in tmp1 and get string1.count in str1
   245     // Also, get string0.count-string1.count in o7 and get the condition code set
   246     // Note: some instructions have been hoisted for better instruction scheduling
   248     Register tmp0 = L0;
   249     Register tmp1 = L1;
   250     Register tmp2 = L2;
   252     int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
   253     int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
   254     int  count_offset = java_lang_String:: count_offset_in_bytes();
   256     __ ld_ptr(str0, value_offset, tmp0);
   257     __ ld(str0, offset_offset, tmp2);
   258     __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
   259     __ ld(str0, count_offset, str0);
   260     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   262     // str1 may be null
   263     add_debug_info_for_null_check_here(info);
   265     __ ld_ptr(str1, value_offset, tmp1);
   266     __ add(tmp0, tmp2, tmp0);
   268     __ ld(str1, offset_offset, tmp2);
   269     __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
   270     __ ld(str1, count_offset, str1);
   271     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   272     __ subcc(str0, str1, O7);
   273     __ add(tmp1, tmp2, tmp1);
   274   }
   276   {
   277     // Compute the minimum of the string lengths, scale it and store it in limit
   278     Register count0 = I0;
   279     Register count1 = I1;
   280     Register limit  = L3;
   282     Label Lskip;
   283     __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
   284     __ br(Assembler::greater, true, Assembler::pt, Lskip);
   285     __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter
   286     __ bind(Lskip);
   288     // If either string is empty (or both of them) the result is the difference in lengths
   289     __ cmp(limit, 0);
   290     __ br(Assembler::equal, true, Assembler::pn, Ldone);
   291     __ delayed()->mov(O7, result);  // result is difference in lengths
   292   }
   294   {
   295     // Neither string is empty
   296     Label Lloop;
   298     Register base0 = L0;
   299     Register base1 = L1;
   300     Register chr0  = I0;
   301     Register chr1  = I1;
   302     Register limit = L3;
   304     // Shift base0 and base1 to the end of the arrays, negate limit
   305     __ add(base0, limit, base0);
   306     __ add(base1, limit, base1);
   307     __ neg(limit);  // limit = -min{string0.count, strin1.count}
   309     __ lduh(base0, limit, chr0);
   310     __ bind(Lloop);
   311     __ lduh(base1, limit, chr1);
   312     __ subcc(chr0, chr1, chr0);
   313     __ br(Assembler::notZero, false, Assembler::pn, Ldone);
   314     assert(chr0 == result, "result must be pre-placed");
   315     __ delayed()->inccc(limit, sizeof(jchar));
   316     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
   317     __ delayed()->lduh(base0, limit, chr0);
   318   }
   320   // If strings are equal up to min length, return the length difference.
   321   __ mov(O7, result);
   323   // Otherwise, return the difference between the first mismatched chars.
   324   __ bind(Ldone);
   325 }
   328 // --------------------------------------------------------------------------------------------
   330 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
   331   if (!GenerateSynchronizationCode) return;
   333   Register obj_reg = obj_opr->as_register();
   334   Register lock_reg = lock_opr->as_register();
   336   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
   337   Register reg = mon_addr.base();
   338   int offset = mon_addr.disp();
   339   // compute pointer to BasicLock
   340   if (mon_addr.is_simm13()) {
   341     __ add(reg, offset, lock_reg);
   342   }
   343   else {
   344     __ set(offset, lock_reg);
   345     __ add(reg, lock_reg, lock_reg);
   346   }
   347   // unlock object
   348   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
   349   // _slow_case_stubs->append(slow_case);
   350   // temporary fix: must be created after exceptionhandler, therefore as call stub
   351   _slow_case_stubs->append(slow_case);
   352   if (UseFastLocking) {
   353     // try inlined fast unlocking first, revert to slow locking if it fails
   354     // note: lock_reg points to the displaced header since the displaced header offset is 0!
   355     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
   356     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
   357   } else {
   358     // always do slow unlocking
   359     // note: the slow unlocking code could be inlined here, however if we use
   360     //       slow unlocking, speed doesn't matter anyway and this solution is
   361     //       simpler and requires less duplicated code - additionally, the
   362     //       slow unlocking code is the same in either case which simplifies
   363     //       debugging
   364     __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
   365     __ delayed()->nop();
   366   }
   367   // done
   368   __ bind(*slow_case->continuation());
   369 }
   372 int LIR_Assembler::emit_exception_handler() {
   373   // if the last instruction is a call (typically to do a throw which
   374   // is coming at the end after block reordering) the return address
   375   // must still point into the code area in order to avoid assertion
   376   // failures when searching for the corresponding bci => add a nop
   377   // (was bug 5/14/1999 - gri)
   378   __ nop();
   380   // generate code for exception handler
   381   ciMethod* method = compilation()->method();
   383   address handler_base = __ start_a_stub(exception_handler_size);
   385   if (handler_base == NULL) {
   386     // not enough space left for the handler
   387     bailout("exception handler overflow");
   388     return -1;
   389   }
   391   int offset = code_offset();
   393   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
   394   __ delayed()->nop();
   395   debug_only(__ stop("should have gone to the caller");)
   396   assert(code_offset() - offset <= exception_handler_size, "overflow");
   397   __ end_a_stub();
   399   return offset;
   400 }
   403 // Emit the code to remove the frame from the stack in the exception
   404 // unwind path.
   405 int LIR_Assembler::emit_unwind_handler() {
   406 #ifndef PRODUCT
   407   if (CommentedAssembly) {
   408     _masm->block_comment("Unwind handler");
   409   }
   410 #endif
   412   int offset = code_offset();
   414   // Fetch the exception from TLS and clear out exception related thread state
   415   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
   416   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
   417   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
   419   __ bind(_unwind_handler_entry);
   420   __ verify_not_null_oop(O0);
   421   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   422     __ mov(O0, I0);  // Preserve the exception
   423   }
   425   // Preform needed unlocking
   426   MonitorExitStub* stub = NULL;
   427   if (method()->is_synchronized()) {
   428     monitor_address(0, FrameMap::I1_opr);
   429     stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
   430     __ unlock_object(I3, I2, I1, *stub->entry());
   431     __ bind(*stub->continuation());
   432   }
   434   if (compilation()->env()->dtrace_method_probes()) {
   435     __ mov(G2_thread, O0);
   436     jobject2reg(method()->constant_encoding(), O1);
   437     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
   438     __ delayed()->nop();
   439   }
   441   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   442     __ mov(I0, O0);  // Restore the exception
   443   }
   445   // dispatch to the unwind logic
   446   __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
   447   __ delayed()->nop();
   449   // Emit the slow path assembly
   450   if (stub != NULL) {
   451     stub->emit_code(this);
   452   }
   454   return offset;
   455 }
   458 int LIR_Assembler::emit_deopt_handler() {
   459   // if the last instruction is a call (typically to do a throw which
   460   // is coming at the end after block reordering) the return address
   461   // must still point into the code area in order to avoid assertion
   462   // failures when searching for the corresponding bci => add a nop
   463   // (was bug 5/14/1999 - gri)
   464   __ nop();
   466   // generate code for deopt handler
   467   ciMethod* method = compilation()->method();
   468   address handler_base = __ start_a_stub(deopt_handler_size);
   469   if (handler_base == NULL) {
   470     // not enough space left for the handler
   471     bailout("deopt handler overflow");
   472     return -1;
   473   }
   475   int offset = code_offset();
   476   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
   477   __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
   478   __ delayed()->nop();
   479   assert(code_offset() - offset <= deopt_handler_size, "overflow");
   480   debug_only(__ stop("should have gone to the caller");)
   481   __ end_a_stub();
   483   return offset;
   484 }
   487 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
   488   if (o == NULL) {
   489     __ set(NULL_WORD, reg);
   490   } else {
   491     int oop_index = __ oop_recorder()->find_index(o);
   492     RelocationHolder rspec = oop_Relocation::spec(oop_index);
   493     __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
   494   }
   495 }
   498 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
   499   // Allocate a new index in oop table to hold the oop once it's been patched
   500   int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
   501   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
   503   AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
   504   assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
   505   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
   506   // NULL will be dynamically patched later and the patched value may be large.  We must
   507   // therefore generate the sethi/add as a placeholders
   508   __ patchable_set(addrlit, reg);
   510   patching_epilog(patch, lir_patch_normal, reg, info);
   511 }
   514 void LIR_Assembler::emit_op3(LIR_Op3* op) {
   515   Register Rdividend = op->in_opr1()->as_register();
   516   Register Rdivisor  = noreg;
   517   Register Rscratch  = op->in_opr3()->as_register();
   518   Register Rresult   = op->result_opr()->as_register();
   519   int divisor = -1;
   521   if (op->in_opr2()->is_register()) {
   522     Rdivisor = op->in_opr2()->as_register();
   523   } else {
   524     divisor = op->in_opr2()->as_constant_ptr()->as_jint();
   525     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   526   }
   528   assert(Rdividend != Rscratch, "");
   529   assert(Rdivisor  != Rscratch, "");
   530   assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
   532   if (Rdivisor == noreg && is_power_of_2(divisor)) {
   533     // convert division by a power of two into some shifts and logical operations
   534     if (op->code() == lir_idiv) {
   535       if (divisor == 2) {
   536         __ srl(Rdividend, 31, Rscratch);
   537       } else {
   538         __ sra(Rdividend, 31, Rscratch);
   539         __ and3(Rscratch, divisor - 1, Rscratch);
   540       }
   541       __ add(Rdividend, Rscratch, Rscratch);
   542       __ sra(Rscratch, log2_intptr(divisor), Rresult);
   543       return;
   544     } else {
   545       if (divisor == 2) {
   546         __ srl(Rdividend, 31, Rscratch);
   547       } else {
   548         __ sra(Rdividend, 31, Rscratch);
   549         __ and3(Rscratch, divisor - 1,Rscratch);
   550       }
   551       __ add(Rdividend, Rscratch, Rscratch);
   552       __ andn(Rscratch, divisor - 1,Rscratch);
   553       __ sub(Rdividend, Rscratch, Rresult);
   554       return;
   555     }
   556   }
   558   __ sra(Rdividend, 31, Rscratch);
   559   __ wry(Rscratch);
   560   if (!VM_Version::v9_instructions_work()) {
   561     // v9 doesn't require these nops
   562     __ nop();
   563     __ nop();
   564     __ nop();
   565     __ nop();
   566   }
   568   add_debug_info_for_div0_here(op->info());
   570   if (Rdivisor != noreg) {
   571     __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   572   } else {
   573     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   574     __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   575   }
   577   Label skip;
   578   __ br(Assembler::overflowSet, true, Assembler::pn, skip);
   579   __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
   580   __ bind(skip);
   582   if (op->code() == lir_irem) {
   583     if (Rdivisor != noreg) {
   584       __ smul(Rscratch, Rdivisor, Rscratch);
   585     } else {
   586       __ smul(Rscratch, divisor, Rscratch);
   587     }
   588     __ sub(Rdividend, Rscratch, Rresult);
   589   }
   590 }
   593 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
   594 #ifdef ASSERT
   595   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
   596   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
   597   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
   598 #endif
   599   assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
   601   if (op->cond() == lir_cond_always) {
   602     __ br(Assembler::always, false, Assembler::pt, *(op->label()));
   603   } else if (op->code() == lir_cond_float_branch) {
   604     assert(op->ublock() != NULL, "must have unordered successor");
   605     bool is_unordered = (op->ublock() == op->block());
   606     Assembler::Condition acond;
   607     switch (op->cond()) {
   608       case lir_cond_equal:         acond = Assembler::f_equal;    break;
   609       case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
   610       case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
   611       case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
   612       case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
   613       case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
   614       default :                         ShouldNotReachHere();
   615     };
   617     if (!VM_Version::v9_instructions_work()) {
   618       __ nop();
   619     }
   620     __ fb( acond, false, Assembler::pn, *(op->label()));
   621   } else {
   622     assert (op->code() == lir_branch, "just checking");
   624     Assembler::Condition acond;
   625     switch (op->cond()) {
   626       case lir_cond_equal:        acond = Assembler::equal;                break;
   627       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
   628       case lir_cond_less:         acond = Assembler::less;                 break;
   629       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
   630       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
   631       case lir_cond_greater:      acond = Assembler::greater;              break;
   632       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
   633       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
   634       default:                         ShouldNotReachHere();
   635     };
   637     // sparc has different condition codes for testing 32-bit
   638     // vs. 64-bit values.  We could always test xcc is we could
   639     // guarantee that 32-bit loads always sign extended but that isn't
   640     // true and since sign extension isn't free, it would impose a
   641     // slight cost.
   642 #ifdef _LP64
   643     if  (op->type() == T_INT) {
   644       __ br(acond, false, Assembler::pn, *(op->label()));
   645     } else
   646 #endif
   647       __ brx(acond, false, Assembler::pn, *(op->label()));
   648   }
   649   // The peephole pass fills the delay slot
   650 }
   653 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
   654   Bytecodes::Code code = op->bytecode();
   655   LIR_Opr dst = op->result_opr();
   657   switch(code) {
   658     case Bytecodes::_i2l: {
   659       Register rlo  = dst->as_register_lo();
   660       Register rhi  = dst->as_register_hi();
   661       Register rval = op->in_opr()->as_register();
   662 #ifdef _LP64
   663       __ sra(rval, 0, rlo);
   664 #else
   665       __ mov(rval, rlo);
   666       __ sra(rval, BitsPerInt-1, rhi);
   667 #endif
   668       break;
   669     }
   670     case Bytecodes::_i2d:
   671     case Bytecodes::_i2f: {
   672       bool is_double = (code == Bytecodes::_i2d);
   673       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   674       FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   675       FloatRegister rsrc = op->in_opr()->as_float_reg();
   676       if (rsrc != rdst) {
   677         __ fmov(FloatRegisterImpl::S, rsrc, rdst);
   678       }
   679       __ fitof(w, rdst, rdst);
   680       break;
   681     }
   682     case Bytecodes::_f2i:{
   683       FloatRegister rsrc = op->in_opr()->as_float_reg();
   684       Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
   685       Label L;
   686       // result must be 0 if value is NaN; test by comparing value to itself
   687       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
   688       if (!VM_Version::v9_instructions_work()) {
   689         __ nop();
   690       }
   691       __ fb(Assembler::f_unordered, true, Assembler::pn, L);
   692       __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
   693       __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
   694       // move integer result from float register to int register
   695       __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
   696       __ bind (L);
   697       break;
   698     }
   699     case Bytecodes::_l2i: {
   700       Register rlo  = op->in_opr()->as_register_lo();
   701       Register rhi  = op->in_opr()->as_register_hi();
   702       Register rdst = dst->as_register();
   703 #ifdef _LP64
   704       __ sra(rlo, 0, rdst);
   705 #else
   706       __ mov(rlo, rdst);
   707 #endif
   708       break;
   709     }
   710     case Bytecodes::_d2f:
   711     case Bytecodes::_f2d: {
   712       bool is_double = (code == Bytecodes::_f2d);
   713       assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
   714       LIR_Opr val = op->in_opr();
   715       FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
   716       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   717       FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
   718       FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   719       __ ftof(vw, dw, rval, rdst);
   720       break;
   721     }
   722     case Bytecodes::_i2s:
   723     case Bytecodes::_i2b: {
   724       Register rval = op->in_opr()->as_register();
   725       Register rdst = dst->as_register();
   726       int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
   727       __ sll (rval, shift, rdst);
   728       __ sra (rdst, shift, rdst);
   729       break;
   730     }
   731     case Bytecodes::_i2c: {
   732       Register rval = op->in_opr()->as_register();
   733       Register rdst = dst->as_register();
   734       int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
   735       __ sll (rval, shift, rdst);
   736       __ srl (rdst, shift, rdst);
   737       break;
   738     }
   740     default: ShouldNotReachHere();
   741   }
   742 }
   745 void LIR_Assembler::align_call(LIR_Code) {
   746   // do nothing since all instructions are word aligned on sparc
   747 }
   750 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
   751   __ call(op->addr(), rtype);
   752   // The peephole pass fills the delay slot, add_call_info is done in
   753   // LIR_Assembler::emit_delay.
   754 }
   757 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
   758   RelocationHolder rspec = virtual_call_Relocation::spec(pc());
   759   __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
   760   __ relocate(rspec);
   761   __ call(op->addr(), relocInfo::none);
   762   // The peephole pass fills the delay slot, add_call_info is done in
   763   // LIR_Assembler::emit_delay.
   764 }
   767 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
   768   add_debug_info_for_null_check_here(op->info());
   769   __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), G3_scratch);
   770   if (__ is_simm13(op->vtable_offset())) {
   771     __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
   772   } else {
   773     // This will generate 2 instructions
   774     __ set(op->vtable_offset(), G5_method);
   775     // ld_ptr, set_hi, set
   776     __ ld_ptr(G3_scratch, G5_method, G5_method);
   777   }
   778   __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch);
   779   __ callr(G3_scratch, G0);
   780   // the peephole pass fills the delay slot
   781 }
   784 // load with 32-bit displacement
   785 int LIR_Assembler::load(Register s, int disp, Register d, BasicType ld_type, CodeEmitInfo *info) {
   786   int load_offset = code_offset();
   787   if (Assembler::is_simm13(disp)) {
   788     if (info != NULL) add_debug_info_for_null_check_here(info);
   789     switch(ld_type) {
   790       case T_BOOLEAN: // fall through
   791       case T_BYTE  : __ ldsb(s, disp, d); break;
   792       case T_CHAR  : __ lduh(s, disp, d); break;
   793       case T_SHORT : __ ldsh(s, disp, d); break;
   794       case T_INT   : __ ld(s, disp, d); break;
   795       case T_ADDRESS:// fall through
   796       case T_ARRAY : // fall through
   797       case T_OBJECT: __ ld_ptr(s, disp, d); break;
   798       default      : ShouldNotReachHere();
   799     }
   800   } else {
   801     __ set(disp, O7);
   802     if (info != NULL) add_debug_info_for_null_check_here(info);
   803     load_offset = code_offset();
   804     switch(ld_type) {
   805       case T_BOOLEAN: // fall through
   806       case T_BYTE  : __ ldsb(s, O7, d); break;
   807       case T_CHAR  : __ lduh(s, O7, d); break;
   808       case T_SHORT : __ ldsh(s, O7, d); break;
   809       case T_INT   : __ ld(s, O7, d); break;
   810       case T_ADDRESS:// fall through
   811       case T_ARRAY : // fall through
   812       case T_OBJECT: __ ld_ptr(s, O7, d); break;
   813       default      : ShouldNotReachHere();
   814     }
   815   }
   816   if (ld_type == T_ARRAY || ld_type == T_OBJECT) __ verify_oop(d);
   817   return load_offset;
   818 }
   821 // store with 32-bit displacement
   822 void LIR_Assembler::store(Register value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
   823   if (Assembler::is_simm13(offset)) {
   824     if (info != NULL)  add_debug_info_for_null_check_here(info);
   825     switch (type) {
   826       case T_BOOLEAN: // fall through
   827       case T_BYTE  : __ stb(value, base, offset); break;
   828       case T_CHAR  : __ sth(value, base, offset); break;
   829       case T_SHORT : __ sth(value, base, offset); break;
   830       case T_INT   : __ stw(value, base, offset); break;
   831       case T_ADDRESS:// fall through
   832       case T_ARRAY : // fall through
   833       case T_OBJECT: __ st_ptr(value, base, offset); break;
   834       default      : ShouldNotReachHere();
   835     }
   836   } else {
   837     __ set(offset, O7);
   838     if (info != NULL) add_debug_info_for_null_check_here(info);
   839     switch (type) {
   840       case T_BOOLEAN: // fall through
   841       case T_BYTE  : __ stb(value, base, O7); break;
   842       case T_CHAR  : __ sth(value, base, O7); break;
   843       case T_SHORT : __ sth(value, base, O7); break;
   844       case T_INT   : __ stw(value, base, O7); break;
   845       case T_ADDRESS:// fall through
   846       case T_ARRAY : //fall through
   847       case T_OBJECT: __ st_ptr(value, base, O7); break;
   848       default      : ShouldNotReachHere();
   849     }
   850   }
   851   // Note: Do the store before verification as the code might be patched!
   852   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(value);
   853 }
   856 // load float with 32-bit displacement
   857 void LIR_Assembler::load(Register s, int disp, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
   858   FloatRegisterImpl::Width w;
   859   switch(ld_type) {
   860     case T_FLOAT : w = FloatRegisterImpl::S; break;
   861     case T_DOUBLE: w = FloatRegisterImpl::D; break;
   862     default      : ShouldNotReachHere();
   863   }
   865   if (Assembler::is_simm13(disp)) {
   866     if (info != NULL) add_debug_info_for_null_check_here(info);
   867     if (disp % BytesPerLong != 0 && w == FloatRegisterImpl::D) {
   868       __ ldf(FloatRegisterImpl::S, s, disp + BytesPerWord, d->successor());
   869       __ ldf(FloatRegisterImpl::S, s, disp               , d);
   870     } else {
   871       __ ldf(w, s, disp, d);
   872     }
   873   } else {
   874     __ set(disp, O7);
   875     if (info != NULL) add_debug_info_for_null_check_here(info);
   876     __ ldf(w, s, O7, d);
   877   }
   878 }
   881 // store float with 32-bit displacement
   882 void LIR_Assembler::store(FloatRegister value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
   883   FloatRegisterImpl::Width w;
   884   switch(type) {
   885     case T_FLOAT : w = FloatRegisterImpl::S; break;
   886     case T_DOUBLE: w = FloatRegisterImpl::D; break;
   887     default      : ShouldNotReachHere();
   888   }
   890   if (Assembler::is_simm13(offset)) {
   891     if (info != NULL) add_debug_info_for_null_check_here(info);
   892     if (w == FloatRegisterImpl::D && offset % BytesPerLong != 0) {
   893       __ stf(FloatRegisterImpl::S, value->successor(), base, offset + BytesPerWord);
   894       __ stf(FloatRegisterImpl::S, value             , base, offset);
   895     } else {
   896       __ stf(w, value, base, offset);
   897     }
   898   } else {
   899     __ set(offset, O7);
   900     if (info != NULL) add_debug_info_for_null_check_here(info);
   901     __ stf(w, value, O7, base);
   902   }
   903 }
   906 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool unaligned) {
   907   int store_offset;
   908   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   909     assert(!unaligned, "can't handle this");
   910     // for offsets larger than a simm13 we setup the offset in O7
   911     __ set(offset, O7);
   912     store_offset = store(from_reg, base, O7, type);
   913   } else {
   914     if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
   915     store_offset = code_offset();
   916     switch (type) {
   917       case T_BOOLEAN: // fall through
   918       case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
   919       case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
   920       case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
   921       case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
   922       case T_LONG  :
   923 #ifdef _LP64
   924         if (unaligned || PatchALot) {
   925           __ srax(from_reg->as_register_lo(), 32, O7);
   926           __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   927           __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
   928         } else {
   929           __ stx(from_reg->as_register_lo(), base, offset);
   930         }
   931 #else
   932         assert(Assembler::is_simm13(offset + 4), "must be");
   933         __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   934         __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
   935 #endif
   936         break;
   937       case T_ADDRESS:// fall through
   938       case T_ARRAY : // fall through
   939       case T_OBJECT: __ st_ptr(from_reg->as_register(), base, offset); break;
   940       case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
   941       case T_DOUBLE:
   942         {
   943           FloatRegister reg = from_reg->as_double_reg();
   944           // split unaligned stores
   945           if (unaligned || PatchALot) {
   946             assert(Assembler::is_simm13(offset + 4), "must be");
   947             __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
   948             __ stf(FloatRegisterImpl::S, reg,              base, offset);
   949           } else {
   950             __ stf(FloatRegisterImpl::D, reg, base, offset);
   951           }
   952           break;
   953         }
   954       default      : ShouldNotReachHere();
   955     }
   956   }
   957   return store_offset;
   958 }
   961 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type) {
   962   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
   963   int store_offset = code_offset();
   964   switch (type) {
   965     case T_BOOLEAN: // fall through
   966     case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
   967     case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
   968     case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
   969     case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
   970     case T_LONG  :
   971 #ifdef _LP64
   972       __ stx(from_reg->as_register_lo(), base, disp);
   973 #else
   974       assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
   975       __ std(from_reg->as_register_hi(), base, disp);
   976 #endif
   977       break;
   978     case T_ADDRESS:// fall through
   979     case T_ARRAY : // fall through
   980     case T_OBJECT: __ st_ptr(from_reg->as_register(), base, disp); break;
   981     case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
   982     case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
   983     default      : ShouldNotReachHere();
   984   }
   985   return store_offset;
   986 }
   989 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool unaligned) {
   990   int load_offset;
   991   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   992     assert(base != O7, "destroying register");
   993     assert(!unaligned, "can't handle this");
   994     // for offsets larger than a simm13 we setup the offset in O7
   995     __ set(offset, O7);
   996     load_offset = load(base, O7, to_reg, type);
   997   } else {
   998     load_offset = code_offset();
   999     switch(type) {
  1000       case T_BOOLEAN: // fall through
  1001       case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
  1002       case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
  1003       case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
  1004       case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
  1005       case T_LONG  :
  1006         if (!unaligned) {
  1007 #ifdef _LP64
  1008           __ ldx(base, offset, to_reg->as_register_lo());
  1009 #else
  1010           assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
  1011                  "must be sequential");
  1012           __ ldd(base, offset, to_reg->as_register_hi());
  1013 #endif
  1014         } else {
  1015 #ifdef _LP64
  1016           assert(base != to_reg->as_register_lo(), "can't handle this");
  1017           assert(O7 != to_reg->as_register_lo(), "can't handle this");
  1018           __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
  1019           __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
  1020           __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
  1021           __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
  1022 #else
  1023           if (base == to_reg->as_register_lo()) {
  1024             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
  1025             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
  1026           } else {
  1027             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
  1028             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
  1030 #endif
  1032         break;
  1033       case T_ADDRESS:// fall through
  1034       case T_ARRAY : // fall through
  1035       case T_OBJECT: __ ld_ptr(base, offset, to_reg->as_register()); break;
  1036       case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
  1037       case T_DOUBLE:
  1039           FloatRegister reg = to_reg->as_double_reg();
  1040           // split unaligned loads
  1041           if (unaligned || PatchALot) {
  1042             __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
  1043             __ ldf(FloatRegisterImpl::S, base, offset,     reg);
  1044           } else {
  1045             __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
  1047           break;
  1049       default      : ShouldNotReachHere();
  1051     if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
  1053   return load_offset;
  1057 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type) {
  1058   int load_offset = code_offset();
  1059   switch(type) {
  1060     case T_BOOLEAN: // fall through
  1061     case T_BYTE  : __ ldsb(base, disp, to_reg->as_register()); break;
  1062     case T_CHAR  : __ lduh(base, disp, to_reg->as_register()); break;
  1063     case T_SHORT : __ ldsh(base, disp, to_reg->as_register()); break;
  1064     case T_INT   : __ ld(base, disp, to_reg->as_register()); break;
  1065     case T_ADDRESS:// fall through
  1066     case T_ARRAY : // fall through
  1067     case T_OBJECT: __ ld_ptr(base, disp, to_reg->as_register()); break;
  1068     case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
  1069     case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
  1070     case T_LONG  :
  1071 #ifdef _LP64
  1072       __ ldx(base, disp, to_reg->as_register_lo());
  1073 #else
  1074       assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
  1075              "must be sequential");
  1076       __ ldd(base, disp, to_reg->as_register_hi());
  1077 #endif
  1078       break;
  1079     default      : ShouldNotReachHere();
  1081   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
  1082   return load_offset;
  1086 // load/store with an Address
  1087 void LIR_Assembler::load(const Address& a, Register d,  BasicType ld_type, CodeEmitInfo *info, int offset) {
  1088   load(a.base(), a.disp() + offset, d, ld_type, info);
  1092 void LIR_Assembler::store(Register value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
  1093   store(value, dest.base(), dest.disp() + offset, type, info);
  1097 // loadf/storef with an Address
  1098 void LIR_Assembler::load(const Address& a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info, int offset) {
  1099   load(a.base(), a.disp() + offset, d, ld_type, info);
  1103 void LIR_Assembler::store(FloatRegister value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
  1104   store(value, dest.base(), dest.disp() + offset, type, info);
  1108 // load/store with an Address
  1109 void LIR_Assembler::load(LIR_Address* a, Register d,  BasicType ld_type, CodeEmitInfo *info) {
  1110   load(as_Address(a), d, ld_type, info);
  1114 void LIR_Assembler::store(Register value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
  1115   store(value, as_Address(dest), type, info);
  1119 // loadf/storef with an Address
  1120 void LIR_Assembler::load(LIR_Address* a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
  1121   load(as_Address(a), d, ld_type, info);
  1125 void LIR_Assembler::store(FloatRegister value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
  1126   store(value, as_Address(dest), type, info);
  1130 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
  1131   LIR_Const* c = src->as_constant_ptr();
  1132   switch (c->type()) {
  1133     case T_INT:
  1134     case T_FLOAT:
  1135     case T_ADDRESS: {
  1136       Register src_reg = O7;
  1137       int value = c->as_jint_bits();
  1138       if (value == 0) {
  1139         src_reg = G0;
  1140       } else {
  1141         __ set(value, O7);
  1143       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1144       __ stw(src_reg, addr.base(), addr.disp());
  1145       break;
  1147     case T_OBJECT: {
  1148       Register src_reg = O7;
  1149       jobject2reg(c->as_jobject(), src_reg);
  1150       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1151       __ st_ptr(src_reg, addr.base(), addr.disp());
  1152       break;
  1154     case T_LONG:
  1155     case T_DOUBLE: {
  1156       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1158       Register tmp = O7;
  1159       int value_lo = c->as_jint_lo_bits();
  1160       if (value_lo == 0) {
  1161         tmp = G0;
  1162       } else {
  1163         __ set(value_lo, O7);
  1165       __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
  1166       int value_hi = c->as_jint_hi_bits();
  1167       if (value_hi == 0) {
  1168         tmp = G0;
  1169       } else {
  1170         __ set(value_hi, O7);
  1172       __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
  1173       break;
  1175     default:
  1176       Unimplemented();
  1181 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
  1182   LIR_Const* c = src->as_constant_ptr();
  1183   LIR_Address* addr     = dest->as_address_ptr();
  1184   Register base = addr->base()->as_pointer_register();
  1186   if (info != NULL) {
  1187     add_debug_info_for_null_check_here(info);
  1189   switch (c->type()) {
  1190     case T_INT:
  1191     case T_FLOAT:
  1192     case T_ADDRESS: {
  1193       LIR_Opr tmp = FrameMap::O7_opr;
  1194       int value = c->as_jint_bits();
  1195       if (value == 0) {
  1196         tmp = FrameMap::G0_opr;
  1197       } else if (Assembler::is_simm13(value)) {
  1198         __ set(value, O7);
  1200       if (addr->index()->is_valid()) {
  1201         assert(addr->disp() == 0, "must be zero");
  1202         store(tmp, base, addr->index()->as_pointer_register(), type);
  1203       } else {
  1204         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1205         store(tmp, base, addr->disp(), type);
  1207       break;
  1209     case T_LONG:
  1210     case T_DOUBLE: {
  1211       assert(!addr->index()->is_valid(), "can't handle reg reg address here");
  1212       assert(Assembler::is_simm13(addr->disp()) &&
  1213              Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
  1215       Register tmp = O7;
  1216       int value_lo = c->as_jint_lo_bits();
  1217       if (value_lo == 0) {
  1218         tmp = G0;
  1219       } else {
  1220         __ set(value_lo, O7);
  1222       store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT);
  1223       int value_hi = c->as_jint_hi_bits();
  1224       if (value_hi == 0) {
  1225         tmp = G0;
  1226       } else {
  1227         __ set(value_hi, O7);
  1229       store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT);
  1230       break;
  1232     case T_OBJECT: {
  1233       jobject obj = c->as_jobject();
  1234       LIR_Opr tmp;
  1235       if (obj == NULL) {
  1236         tmp = FrameMap::G0_opr;
  1237       } else {
  1238         tmp = FrameMap::O7_opr;
  1239         jobject2reg(c->as_jobject(), O7);
  1241       // handle either reg+reg or reg+disp address
  1242       if (addr->index()->is_valid()) {
  1243         assert(addr->disp() == 0, "must be zero");
  1244         store(tmp, base, addr->index()->as_pointer_register(), type);
  1245       } else {
  1246         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1247         store(tmp, base, addr->disp(), type);
  1250       break;
  1252     default:
  1253       Unimplemented();
  1258 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
  1259   LIR_Const* c = src->as_constant_ptr();
  1260   LIR_Opr to_reg = dest;
  1262   switch (c->type()) {
  1263     case T_INT:
  1264     case T_ADDRESS:
  1266         jint con = c->as_jint();
  1267         if (to_reg->is_single_cpu()) {
  1268           assert(patch_code == lir_patch_none, "no patching handled here");
  1269           __ set(con, to_reg->as_register());
  1270         } else {
  1271           ShouldNotReachHere();
  1272           assert(to_reg->is_single_fpu(), "wrong register kind");
  1274           __ set(con, O7);
  1275           Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
  1276           __ st(O7, temp_slot);
  1277           __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
  1280       break;
  1282     case T_LONG:
  1284         jlong con = c->as_jlong();
  1286         if (to_reg->is_double_cpu()) {
  1287 #ifdef _LP64
  1288           __ set(con,  to_reg->as_register_lo());
  1289 #else
  1290           __ set(low(con),  to_reg->as_register_lo());
  1291           __ set(high(con), to_reg->as_register_hi());
  1292 #endif
  1293 #ifdef _LP64
  1294         } else if (to_reg->is_single_cpu()) {
  1295           __ set(con, to_reg->as_register());
  1296 #endif
  1297         } else {
  1298           ShouldNotReachHere();
  1299           assert(to_reg->is_double_fpu(), "wrong register kind");
  1300           Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
  1301           Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
  1302           __ set(low(con),  O7);
  1303           __ st(O7, temp_slot_lo);
  1304           __ set(high(con), O7);
  1305           __ st(O7, temp_slot_hi);
  1306           __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
  1309       break;
  1311     case T_OBJECT:
  1313         if (patch_code == lir_patch_none) {
  1314           jobject2reg(c->as_jobject(), to_reg->as_register());
  1315         } else {
  1316           jobject2reg_with_patching(to_reg->as_register(), info);
  1319       break;
  1321     case T_FLOAT:
  1323         address const_addr = __ float_constant(c->as_jfloat());
  1324         if (const_addr == NULL) {
  1325           bailout("const section overflow");
  1326           break;
  1328         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1329         AddressLiteral const_addrlit(const_addr, rspec);
  1330         if (to_reg->is_single_fpu()) {
  1331           __ patchable_sethi(const_addrlit, O7);
  1332           __ relocate(rspec);
  1333           __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
  1335         } else {
  1336           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
  1338           __ set(const_addrlit, O7);
  1339           load(O7, 0, to_reg->as_register(), T_INT);
  1342       break;
  1344     case T_DOUBLE:
  1346         address const_addr = __ double_constant(c->as_jdouble());
  1347         if (const_addr == NULL) {
  1348           bailout("const section overflow");
  1349           break;
  1351         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1353         if (to_reg->is_double_fpu()) {
  1354           AddressLiteral const_addrlit(const_addr, rspec);
  1355           __ patchable_sethi(const_addrlit, O7);
  1356           __ relocate(rspec);
  1357           __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
  1358         } else {
  1359           assert(to_reg->is_double_cpu(), "Must be a long register.");
  1360 #ifdef _LP64
  1361           __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
  1362 #else
  1363           __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
  1364           __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
  1365 #endif
  1369       break;
  1371     default:
  1372       ShouldNotReachHere();
  1376 Address LIR_Assembler::as_Address(LIR_Address* addr) {
  1377   Register reg = addr->base()->as_register();
  1378   return Address(reg, addr->disp());
  1382 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1383   switch (type) {
  1384     case T_INT:
  1385     case T_FLOAT: {
  1386       Register tmp = O7;
  1387       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1388       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1389       __ lduw(from.base(), from.disp(), tmp);
  1390       __ stw(tmp, to.base(), to.disp());
  1391       break;
  1393     case T_OBJECT: {
  1394       Register tmp = O7;
  1395       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1396       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1397       __ ld_ptr(from.base(), from.disp(), tmp);
  1398       __ st_ptr(tmp, to.base(), to.disp());
  1399       break;
  1401     case T_LONG:
  1402     case T_DOUBLE: {
  1403       Register tmp = O7;
  1404       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
  1405       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1406       __ lduw(from.base(), from.disp(), tmp);
  1407       __ stw(tmp, to.base(), to.disp());
  1408       __ lduw(from.base(), from.disp() + 4, tmp);
  1409       __ stw(tmp, to.base(), to.disp() + 4);
  1410       break;
  1413     default:
  1414       ShouldNotReachHere();
  1419 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
  1420   Address base = as_Address(addr);
  1421   return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
  1425 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
  1426   Address base = as_Address(addr);
  1427   return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
  1431 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
  1432                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool unaligned) {
  1434   LIR_Address* addr = src_opr->as_address_ptr();
  1435   LIR_Opr to_reg = dest;
  1437   Register src = addr->base()->as_pointer_register();
  1438   Register disp_reg = noreg;
  1439   int disp_value = addr->disp();
  1440   bool needs_patching = (patch_code != lir_patch_none);
  1442   if (addr->base()->type() == T_OBJECT) {
  1443     __ verify_oop(src);
  1446   PatchingStub* patch = NULL;
  1447   if (needs_patching) {
  1448     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1449     assert(!to_reg->is_double_cpu() ||
  1450            patch_code == lir_patch_none ||
  1451            patch_code == lir_patch_normal, "patching doesn't match register");
  1454   if (addr->index()->is_illegal()) {
  1455     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1456       if (needs_patching) {
  1457         __ patchable_set(0, O7);
  1458       } else {
  1459         __ set(disp_value, O7);
  1461       disp_reg = O7;
  1463   } else if (unaligned || PatchALot) {
  1464     __ add(src, addr->index()->as_register(), O7);
  1465     src = O7;
  1466   } else {
  1467     disp_reg = addr->index()->as_pointer_register();
  1468     assert(disp_value == 0, "can't handle 3 operand addresses");
  1471   // remember the offset of the load.  The patching_epilog must be done
  1472   // before the call to add_debug_info, otherwise the PcDescs don't get
  1473   // entered in increasing order.
  1474   int offset = code_offset();
  1476   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1477   if (disp_reg == noreg) {
  1478     offset = load(src, disp_value, to_reg, type, unaligned);
  1479   } else {
  1480     assert(!unaligned, "can't handle this");
  1481     offset = load(src, disp_reg, to_reg, type);
  1484   if (patch != NULL) {
  1485     patching_epilog(patch, patch_code, src, info);
  1488   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1492 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1493   LIR_Address* addr = src->as_address_ptr();
  1494   Address from_addr = as_Address(addr);
  1496   if (VM_Version::has_v9()) {
  1497     __ prefetch(from_addr, Assembler::severalReads);
  1502 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1503   LIR_Address* addr = src->as_address_ptr();
  1504   Address from_addr = as_Address(addr);
  1506   if (VM_Version::has_v9()) {
  1507     __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
  1512 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1513   Address addr;
  1514   if (src->is_single_word()) {
  1515     addr = frame_map()->address_for_slot(src->single_stack_ix());
  1516   } else if (src->is_double_word())  {
  1517     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
  1520   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1521   load(addr.base(), addr.disp(), dest, dest->type(), unaligned);
  1525 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
  1526   Address addr;
  1527   if (dest->is_single_word()) {
  1528     addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1529   } else if (dest->is_double_word())  {
  1530     addr = frame_map()->address_for_slot(dest->double_stack_ix());
  1532   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1533   store(from_reg, addr.base(), addr.disp(), from_reg->type(), unaligned);
  1537 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
  1538   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
  1539     if (from_reg->is_double_fpu()) {
  1540       // double to double moves
  1541       assert(to_reg->is_double_fpu(), "should match");
  1542       __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
  1543     } else {
  1544       // float to float moves
  1545       assert(to_reg->is_single_fpu(), "should match");
  1546       __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
  1548   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
  1549     if (from_reg->is_double_cpu()) {
  1550 #ifdef _LP64
  1551       __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
  1552 #else
  1553       assert(to_reg->is_double_cpu() &&
  1554              from_reg->as_register_hi() != to_reg->as_register_lo() &&
  1555              from_reg->as_register_lo() != to_reg->as_register_hi(),
  1556              "should both be long and not overlap");
  1557       // long to long moves
  1558       __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
  1559       __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
  1560 #endif
  1561 #ifdef _LP64
  1562     } else if (to_reg->is_double_cpu()) {
  1563       // int to int moves
  1564       __ mov(from_reg->as_register(), to_reg->as_register_lo());
  1565 #endif
  1566     } else {
  1567       // int to int moves
  1568       __ mov(from_reg->as_register(), to_reg->as_register());
  1570   } else {
  1571     ShouldNotReachHere();
  1573   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
  1574     __ verify_oop(to_reg->as_register());
  1579 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
  1580                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
  1581                             bool unaligned) {
  1582   LIR_Address* addr = dest->as_address_ptr();
  1584   Register src = addr->base()->as_pointer_register();
  1585   Register disp_reg = noreg;
  1586   int disp_value = addr->disp();
  1587   bool needs_patching = (patch_code != lir_patch_none);
  1589   if (addr->base()->is_oop_register()) {
  1590     __ verify_oop(src);
  1593   PatchingStub* patch = NULL;
  1594   if (needs_patching) {
  1595     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1596     assert(!from_reg->is_double_cpu() ||
  1597            patch_code == lir_patch_none ||
  1598            patch_code == lir_patch_normal, "patching doesn't match register");
  1601   if (addr->index()->is_illegal()) {
  1602     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1603       if (needs_patching) {
  1604         __ patchable_set(0, O7);
  1605       } else {
  1606         __ set(disp_value, O7);
  1608       disp_reg = O7;
  1610   } else if (unaligned || PatchALot) {
  1611     __ add(src, addr->index()->as_register(), O7);
  1612     src = O7;
  1613   } else {
  1614     disp_reg = addr->index()->as_pointer_register();
  1615     assert(disp_value == 0, "can't handle 3 operand addresses");
  1618   // remember the offset of the store.  The patching_epilog must be done
  1619   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
  1620   // entered in increasing order.
  1621   int offset;
  1623   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1624   if (disp_reg == noreg) {
  1625     offset = store(from_reg, src, disp_value, type, unaligned);
  1626   } else {
  1627     assert(!unaligned, "can't handle this");
  1628     offset = store(from_reg, src, disp_reg, type);
  1631   if (patch != NULL) {
  1632     patching_epilog(patch, patch_code, src, info);
  1635   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1639 void LIR_Assembler::return_op(LIR_Opr result) {
  1640   // the poll may need a register so just pick one that isn't the return register
  1641 #if defined(TIERED) && !defined(_LP64)
  1642   if (result->type_field() == LIR_OprDesc::long_type) {
  1643     // Must move the result to G1
  1644     // Must leave proper result in O0,O1 and G1 (TIERED only)
  1645     __ sllx(I0, 32, G1);          // Shift bits into high G1
  1646     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
  1647     __ or3 (I1, G1, G1);          // OR 64 bits into G1
  1648 #ifdef ASSERT
  1649     // mangle it so any problems will show up
  1650     __ set(0xdeadbeef, I0);
  1651     __ set(0xdeadbeef, I1);
  1652 #endif
  1654 #endif // TIERED
  1655   __ set((intptr_t)os::get_polling_page(), L0);
  1656   __ relocate(relocInfo::poll_return_type);
  1657   __ ld_ptr(L0, 0, G0);
  1658   __ ret();
  1659   __ delayed()->restore();
  1663 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
  1664   __ set((intptr_t)os::get_polling_page(), tmp->as_register());
  1665   if (info != NULL) {
  1666     add_debug_info_for_branch(info);
  1667   } else {
  1668     __ relocate(relocInfo::poll_type);
  1671   int offset = __ offset();
  1672   __ ld_ptr(tmp->as_register(), 0, G0);
  1674   return offset;
  1678 void LIR_Assembler::emit_static_call_stub() {
  1679   address call_pc = __ pc();
  1680   address stub = __ start_a_stub(call_stub_size);
  1681   if (stub == NULL) {
  1682     bailout("static call stub overflow");
  1683     return;
  1686   int start = __ offset();
  1687   __ relocate(static_stub_Relocation::spec(call_pc));
  1689   __ set_oop(NULL, G5);
  1690   // must be set to -1 at code generation time
  1691   AddressLiteral addrlit(-1);
  1692   __ jump_to(addrlit, G3);
  1693   __ delayed()->nop();
  1695   assert(__ offset() - start <= call_stub_size, "stub too big");
  1696   __ end_a_stub();
  1700 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  1701   if (opr1->is_single_fpu()) {
  1702     __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
  1703   } else if (opr1->is_double_fpu()) {
  1704     __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
  1705   } else if (opr1->is_single_cpu()) {
  1706     if (opr2->is_constant()) {
  1707       switch (opr2->as_constant_ptr()->type()) {
  1708         case T_INT:
  1709           { jint con = opr2->as_constant_ptr()->as_jint();
  1710             if (Assembler::is_simm13(con)) {
  1711               __ cmp(opr1->as_register(), con);
  1712             } else {
  1713               __ set(con, O7);
  1714               __ cmp(opr1->as_register(), O7);
  1717           break;
  1719         case T_OBJECT:
  1720           // there are only equal/notequal comparisions on objects
  1721           { jobject con = opr2->as_constant_ptr()->as_jobject();
  1722             if (con == NULL) {
  1723               __ cmp(opr1->as_register(), 0);
  1724             } else {
  1725               jobject2reg(con, O7);
  1726               __ cmp(opr1->as_register(), O7);
  1729           break;
  1731         default:
  1732           ShouldNotReachHere();
  1733           break;
  1735     } else {
  1736       if (opr2->is_address()) {
  1737         LIR_Address * addr = opr2->as_address_ptr();
  1738         BasicType type = addr->type();
  1739         if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1740         else                    __ ld(as_Address(addr), O7);
  1741         __ cmp(opr1->as_register(), O7);
  1742       } else {
  1743         __ cmp(opr1->as_register(), opr2->as_register());
  1746   } else if (opr1->is_double_cpu()) {
  1747     Register xlo = opr1->as_register_lo();
  1748     Register xhi = opr1->as_register_hi();
  1749     if (opr2->is_constant() && opr2->as_jlong() == 0) {
  1750       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
  1751 #ifdef _LP64
  1752       __ orcc(xhi, G0, G0);
  1753 #else
  1754       __ orcc(xhi, xlo, G0);
  1755 #endif
  1756     } else if (opr2->is_register()) {
  1757       Register ylo = opr2->as_register_lo();
  1758       Register yhi = opr2->as_register_hi();
  1759 #ifdef _LP64
  1760       __ cmp(xlo, ylo);
  1761 #else
  1762       __ subcc(xlo, ylo, xlo);
  1763       __ subccc(xhi, yhi, xhi);
  1764       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  1765         __ orcc(xhi, xlo, G0);
  1767 #endif
  1768     } else {
  1769       ShouldNotReachHere();
  1771   } else if (opr1->is_address()) {
  1772     LIR_Address * addr = opr1->as_address_ptr();
  1773     BasicType type = addr->type();
  1774     assert (opr2->is_constant(), "Checking");
  1775     if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1776     else                    __ ld(as_Address(addr), O7);
  1777     __ cmp(O7, opr2->as_constant_ptr()->as_jint());
  1778   } else {
  1779     ShouldNotReachHere();
  1784 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
  1785   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  1786     bool is_unordered_less = (code == lir_ucmp_fd2i);
  1787     if (left->is_single_fpu()) {
  1788       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
  1789     } else if (left->is_double_fpu()) {
  1790       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
  1791     } else {
  1792       ShouldNotReachHere();
  1794   } else if (code == lir_cmp_l2i) {
  1795 #ifdef _LP64
  1796     __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
  1797 #else
  1798     __ lcmp(left->as_register_hi(),  left->as_register_lo(),
  1799             right->as_register_hi(), right->as_register_lo(),
  1800             dst->as_register());
  1801 #endif
  1802   } else {
  1803     ShouldNotReachHere();
  1808 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
  1810   Assembler::Condition acond;
  1811   switch (condition) {
  1812     case lir_cond_equal:        acond = Assembler::equal;        break;
  1813     case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
  1814     case lir_cond_less:         acond = Assembler::less;         break;
  1815     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
  1816     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
  1817     case lir_cond_greater:      acond = Assembler::greater;      break;
  1818     case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
  1819     case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
  1820     default:                         ShouldNotReachHere();
  1821   };
  1823   if (opr1->is_constant() && opr1->type() == T_INT) {
  1824     Register dest = result->as_register();
  1825     // load up first part of constant before branch
  1826     // and do the rest in the delay slot.
  1827     if (!Assembler::is_simm13(opr1->as_jint())) {
  1828       __ sethi(opr1->as_jint(), dest);
  1830   } else if (opr1->is_constant()) {
  1831     const2reg(opr1, result, lir_patch_none, NULL);
  1832   } else if (opr1->is_register()) {
  1833     reg2reg(opr1, result);
  1834   } else if (opr1->is_stack()) {
  1835     stack2reg(opr1, result, result->type());
  1836   } else {
  1837     ShouldNotReachHere();
  1839   Label skip;
  1840   __ br(acond, false, Assembler::pt, skip);
  1841   if (opr1->is_constant() && opr1->type() == T_INT) {
  1842     Register dest = result->as_register();
  1843     if (Assembler::is_simm13(opr1->as_jint())) {
  1844       __ delayed()->or3(G0, opr1->as_jint(), dest);
  1845     } else {
  1846       // the sethi has been done above, so just put in the low 10 bits
  1847       __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
  1849   } else {
  1850     // can't do anything useful in the delay slot
  1851     __ delayed()->nop();
  1853   if (opr2->is_constant()) {
  1854     const2reg(opr2, result, lir_patch_none, NULL);
  1855   } else if (opr2->is_register()) {
  1856     reg2reg(opr2, result);
  1857   } else if (opr2->is_stack()) {
  1858     stack2reg(opr2, result, result->type());
  1859   } else {
  1860     ShouldNotReachHere();
  1862   __ bind(skip);
  1866 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  1867   assert(info == NULL, "unused on this code path");
  1868   assert(left->is_register(), "wrong items state");
  1869   assert(dest->is_register(), "wrong items state");
  1871   if (right->is_register()) {
  1872     if (dest->is_float_kind()) {
  1874       FloatRegister lreg, rreg, res;
  1875       FloatRegisterImpl::Width w;
  1876       if (right->is_single_fpu()) {
  1877         w = FloatRegisterImpl::S;
  1878         lreg = left->as_float_reg();
  1879         rreg = right->as_float_reg();
  1880         res  = dest->as_float_reg();
  1881       } else {
  1882         w = FloatRegisterImpl::D;
  1883         lreg = left->as_double_reg();
  1884         rreg = right->as_double_reg();
  1885         res  = dest->as_double_reg();
  1888       switch (code) {
  1889         case lir_add: __ fadd(w, lreg, rreg, res); break;
  1890         case lir_sub: __ fsub(w, lreg, rreg, res); break;
  1891         case lir_mul: // fall through
  1892         case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
  1893         case lir_div: // fall through
  1894         case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
  1895         default: ShouldNotReachHere();
  1898     } else if (dest->is_double_cpu()) {
  1899 #ifdef _LP64
  1900       Register dst_lo = dest->as_register_lo();
  1901       Register op1_lo = left->as_pointer_register();
  1902       Register op2_lo = right->as_pointer_register();
  1904       switch (code) {
  1905         case lir_add:
  1906           __ add(op1_lo, op2_lo, dst_lo);
  1907           break;
  1909         case lir_sub:
  1910           __ sub(op1_lo, op2_lo, dst_lo);
  1911           break;
  1913         default: ShouldNotReachHere();
  1915 #else
  1916       Register op1_lo = left->as_register_lo();
  1917       Register op1_hi = left->as_register_hi();
  1918       Register op2_lo = right->as_register_lo();
  1919       Register op2_hi = right->as_register_hi();
  1920       Register dst_lo = dest->as_register_lo();
  1921       Register dst_hi = dest->as_register_hi();
  1923       switch (code) {
  1924         case lir_add:
  1925           __ addcc(op1_lo, op2_lo, dst_lo);
  1926           __ addc (op1_hi, op2_hi, dst_hi);
  1927           break;
  1929         case lir_sub:
  1930           __ subcc(op1_lo, op2_lo, dst_lo);
  1931           __ subc (op1_hi, op2_hi, dst_hi);
  1932           break;
  1934         default: ShouldNotReachHere();
  1936 #endif
  1937     } else {
  1938       assert (right->is_single_cpu(), "Just Checking");
  1940       Register lreg = left->as_register();
  1941       Register res  = dest->as_register();
  1942       Register rreg = right->as_register();
  1943       switch (code) {
  1944         case lir_add:  __ add  (lreg, rreg, res); break;
  1945         case lir_sub:  __ sub  (lreg, rreg, res); break;
  1946         case lir_mul:  __ mult (lreg, rreg, res); break;
  1947         default: ShouldNotReachHere();
  1950   } else {
  1951     assert (right->is_constant(), "must be constant");
  1953     if (dest->is_single_cpu()) {
  1954       Register lreg = left->as_register();
  1955       Register res  = dest->as_register();
  1956       int    simm13 = right->as_constant_ptr()->as_jint();
  1958       switch (code) {
  1959         case lir_add:  __ add  (lreg, simm13, res); break;
  1960         case lir_sub:  __ sub  (lreg, simm13, res); break;
  1961         case lir_mul:  __ mult (lreg, simm13, res); break;
  1962         default: ShouldNotReachHere();
  1964     } else {
  1965       Register lreg = left->as_pointer_register();
  1966       Register res  = dest->as_register_lo();
  1967       long con = right->as_constant_ptr()->as_jlong();
  1968       assert(Assembler::is_simm13(con), "must be simm13");
  1970       switch (code) {
  1971         case lir_add:  __ add  (lreg, (int)con, res); break;
  1972         case lir_sub:  __ sub  (lreg, (int)con, res); break;
  1973         case lir_mul:  __ mult (lreg, (int)con, res); break;
  1974         default: ShouldNotReachHere();
  1981 void LIR_Assembler::fpop() {
  1982   // do nothing
  1986 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
  1987   switch (code) {
  1988     case lir_sin:
  1989     case lir_tan:
  1990     case lir_cos: {
  1991       assert(thread->is_valid(), "preserve the thread object for performance reasons");
  1992       assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
  1993       break;
  1995     case lir_sqrt: {
  1996       assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
  1997       FloatRegister src_reg = value->as_double_reg();
  1998       FloatRegister dst_reg = dest->as_double_reg();
  1999       __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
  2000       break;
  2002     case lir_abs: {
  2003       assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
  2004       FloatRegister src_reg = value->as_double_reg();
  2005       FloatRegister dst_reg = dest->as_double_reg();
  2006       __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
  2007       break;
  2009     default: {
  2010       ShouldNotReachHere();
  2011       break;
  2017 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
  2018   if (right->is_constant()) {
  2019     if (dest->is_single_cpu()) {
  2020       int simm13 = right->as_constant_ptr()->as_jint();
  2021       switch (code) {
  2022         case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
  2023         case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
  2024         case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
  2025         default: ShouldNotReachHere();
  2027     } else {
  2028       long c = right->as_constant_ptr()->as_jlong();
  2029       assert(c == (int)c && Assembler::is_simm13(c), "out of range");
  2030       int simm13 = (int)c;
  2031       switch (code) {
  2032         case lir_logic_and:
  2033 #ifndef _LP64
  2034           __ and3 (left->as_register_hi(), 0,      dest->as_register_hi());
  2035 #endif
  2036           __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
  2037           break;
  2039         case lir_logic_or:
  2040 #ifndef _LP64
  2041           __ or3 (left->as_register_hi(), 0,      dest->as_register_hi());
  2042 #endif
  2043           __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
  2044           break;
  2046         case lir_logic_xor:
  2047 #ifndef _LP64
  2048           __ xor3 (left->as_register_hi(), 0,      dest->as_register_hi());
  2049 #endif
  2050           __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
  2051           break;
  2053         default: ShouldNotReachHere();
  2056   } else {
  2057     assert(right->is_register(), "right should be in register");
  2059     if (dest->is_single_cpu()) {
  2060       switch (code) {
  2061         case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
  2062         case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
  2063         case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
  2064         default: ShouldNotReachHere();
  2066     } else {
  2067 #ifdef _LP64
  2068       Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
  2069                                                                         left->as_register_lo();
  2070       Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
  2071                                                                           right->as_register_lo();
  2073       switch (code) {
  2074         case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
  2075         case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
  2076         case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
  2077         default: ShouldNotReachHere();
  2079 #else
  2080       switch (code) {
  2081         case lir_logic_and:
  2082           __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2083           __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2084           break;
  2086         case lir_logic_or:
  2087           __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2088           __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2089           break;
  2091         case lir_logic_xor:
  2092           __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2093           __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2094           break;
  2096         default: ShouldNotReachHere();
  2098 #endif
  2104 int LIR_Assembler::shift_amount(BasicType t) {
  2105   int elem_size = type2aelembytes(t);
  2106   switch (elem_size) {
  2107     case 1 : return 0;
  2108     case 2 : return 1;
  2109     case 4 : return 2;
  2110     case 8 : return 3;
  2112   ShouldNotReachHere();
  2113   return -1;
  2117 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
  2118   assert(exceptionOop->as_register() == Oexception, "should match");
  2119   assert(exceptionPC->as_register() == Oissuing_pc, "should match");
  2121   info->add_register_oop(exceptionOop);
  2123   // reuse the debug info from the safepoint poll for the throw op itself
  2124   address pc_for_athrow  = __ pc();
  2125   int pc_for_athrow_offset = __ offset();
  2126   RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
  2127   __ set(pc_for_athrow, Oissuing_pc, rspec);
  2128   add_call_info(pc_for_athrow_offset, info); // for exception handler
  2130   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
  2131   __ delayed()->nop();
  2135 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
  2136   assert(exceptionOop->as_register() == Oexception, "should match");
  2138   __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
  2139   __ delayed()->nop();
  2143 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  2144   Register src = op->src()->as_register();
  2145   Register dst = op->dst()->as_register();
  2146   Register src_pos = op->src_pos()->as_register();
  2147   Register dst_pos = op->dst_pos()->as_register();
  2148   Register length  = op->length()->as_register();
  2149   Register tmp = op->tmp()->as_register();
  2150   Register tmp2 = O7;
  2152   int flags = op->flags();
  2153   ciArrayKlass* default_type = op->expected_type();
  2154   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  2155   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  2157   // set up the arraycopy stub information
  2158   ArrayCopyStub* stub = op->stub();
  2160   // always do stub if no type information is available.  it's ok if
  2161   // the known type isn't loaded since the code sanity checks
  2162   // in debug mode and the type isn't required when we know the exact type
  2163   // also check that the type is an array type.
  2164   // We also, for now, always call the stub if the barrier set requires a
  2165   // write_ref_pre barrier (which the stub does, but none of the optimized
  2166   // cases currently does).
  2167   if (op->expected_type() == NULL ||
  2168       Universe::heap()->barrier_set()->has_write_ref_pre_barrier()) {
  2169     __ mov(src,     O0);
  2170     __ mov(src_pos, O1);
  2171     __ mov(dst,     O2);
  2172     __ mov(dst_pos, O3);
  2173     __ mov(length,  O4);
  2174     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
  2176     __ br_zero(Assembler::less, false, Assembler::pn, O0, *stub->entry());
  2177     __ delayed()->nop();
  2178     __ bind(*stub->continuation());
  2179     return;
  2182   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
  2184   // make sure src and dst are non-null and load array length
  2185   if (flags & LIR_OpArrayCopy::src_null_check) {
  2186     __ tst(src);
  2187     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2188     __ delayed()->nop();
  2191   if (flags & LIR_OpArrayCopy::dst_null_check) {
  2192     __ tst(dst);
  2193     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2194     __ delayed()->nop();
  2197   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  2198     // test src_pos register
  2199     __ tst(src_pos);
  2200     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
  2201     __ delayed()->nop();
  2204   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  2205     // test dst_pos register
  2206     __ tst(dst_pos);
  2207     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
  2208     __ delayed()->nop();
  2211   if (flags & LIR_OpArrayCopy::length_positive_check) {
  2212     // make sure length isn't negative
  2213     __ tst(length);
  2214     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
  2215     __ delayed()->nop();
  2218   if (flags & LIR_OpArrayCopy::src_range_check) {
  2219     __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2220     __ add(length, src_pos, tmp);
  2221     __ cmp(tmp2, tmp);
  2222     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2223     __ delayed()->nop();
  2226   if (flags & LIR_OpArrayCopy::dst_range_check) {
  2227     __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2228     __ add(length, dst_pos, tmp);
  2229     __ cmp(tmp2, tmp);
  2230     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2231     __ delayed()->nop();
  2234   if (flags & LIR_OpArrayCopy::type_check) {
  2235     __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
  2236     __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2237     __ cmp(tmp, tmp2);
  2238     __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  2239     __ delayed()->nop();
  2242 #ifdef ASSERT
  2243   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  2244     // Sanity check the known type with the incoming class.  For the
  2245     // primitive case the types must match exactly with src.klass and
  2246     // dst.klass each exactly matching the default type.  For the
  2247     // object array case, if no type check is needed then either the
  2248     // dst type is exactly the expected type and the src type is a
  2249     // subtype which we can't check or src is the same array as dst
  2250     // but not necessarily exactly of type default_type.
  2251     Label known_ok, halt;
  2252     jobject2reg(op->expected_type()->constant_encoding(), tmp);
  2253     __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2254     if (basic_type != T_OBJECT) {
  2255       __ cmp(tmp, tmp2);
  2256       __ br(Assembler::notEqual, false, Assembler::pn, halt);
  2257       __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
  2258       __ cmp(tmp, tmp2);
  2259       __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2260       __ delayed()->nop();
  2261     } else {
  2262       __ cmp(tmp, tmp2);
  2263       __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2264       __ delayed()->cmp(src, dst);
  2265       __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2266       __ delayed()->nop();
  2268     __ bind(halt);
  2269     __ stop("incorrect type information in arraycopy");
  2270     __ bind(known_ok);
  2272 #endif
  2274   int shift = shift_amount(basic_type);
  2276   Register src_ptr = O0;
  2277   Register dst_ptr = O1;
  2278   Register len     = O2;
  2280   __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
  2281   LP64_ONLY(__ sra(src_pos, 0, src_pos);) //higher 32bits must be null
  2282   if (shift == 0) {
  2283     __ add(src_ptr, src_pos, src_ptr);
  2284   } else {
  2285     __ sll(src_pos, shift, tmp);
  2286     __ add(src_ptr, tmp, src_ptr);
  2289   __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
  2290   LP64_ONLY(__ sra(dst_pos, 0, dst_pos);) //higher 32bits must be null
  2291   if (shift == 0) {
  2292     __ add(dst_ptr, dst_pos, dst_ptr);
  2293   } else {
  2294     __ sll(dst_pos, shift, tmp);
  2295     __ add(dst_ptr, tmp, dst_ptr);
  2298   if (basic_type != T_OBJECT) {
  2299     if (shift == 0) {
  2300       __ mov(length, len);
  2301     } else {
  2302       __ sll(length, shift, len);
  2304     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy));
  2305   } else {
  2306     // oop_arraycopy takes a length in number of elements, so don't scale it.
  2307     __ mov(length, len);
  2308     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy));
  2311   __ bind(*stub->continuation());
  2315 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  2316   if (dest->is_single_cpu()) {
  2317 #ifdef _LP64
  2318     if (left->type() == T_OBJECT) {
  2319       switch (code) {
  2320         case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
  2321         case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
  2322         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2323         default: ShouldNotReachHere();
  2325     } else
  2326 #endif
  2327       switch (code) {
  2328         case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
  2329         case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
  2330         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2331         default: ShouldNotReachHere();
  2333   } else {
  2334 #ifdef _LP64
  2335     switch (code) {
  2336       case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2337       case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2338       case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2339       default: ShouldNotReachHere();
  2341 #else
  2342     switch (code) {
  2343       case lir_shl:  __ lshl  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2344       case lir_shr:  __ lshr  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2345       case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2346       default: ShouldNotReachHere();
  2348 #endif
  2353 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  2354 #ifdef _LP64
  2355   if (left->type() == T_OBJECT) {
  2356     count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
  2357     Register l = left->as_register();
  2358     Register d = dest->as_register_lo();
  2359     switch (code) {
  2360       case lir_shl:  __ sllx  (l, count, d); break;
  2361       case lir_shr:  __ srax  (l, count, d); break;
  2362       case lir_ushr: __ srlx  (l, count, d); break;
  2363       default: ShouldNotReachHere();
  2365     return;
  2367 #endif
  2369   if (dest->is_single_cpu()) {
  2370     count = count & 0x1F; // Java spec
  2371     switch (code) {
  2372       case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
  2373       case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
  2374       case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
  2375       default: ShouldNotReachHere();
  2377   } else if (dest->is_double_cpu()) {
  2378     count = count & 63; // Java spec
  2379     switch (code) {
  2380       case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2381       case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2382       case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2383       default: ShouldNotReachHere();
  2385   } else {
  2386     ShouldNotReachHere();
  2391 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  2392   assert(op->tmp1()->as_register()  == G1 &&
  2393          op->tmp2()->as_register()  == G3 &&
  2394          op->tmp3()->as_register()  == G4 &&
  2395          op->obj()->as_register()   == O0 &&
  2396          op->klass()->as_register() == G5, "must be");
  2397   if (op->init_check()) {
  2398     __ ld(op->klass()->as_register(),
  2399           instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc),
  2400           op->tmp1()->as_register());
  2401     add_debug_info_for_null_check_here(op->stub()->info());
  2402     __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
  2403     __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
  2404     __ delayed()->nop();
  2406   __ allocate_object(op->obj()->as_register(),
  2407                      op->tmp1()->as_register(),
  2408                      op->tmp2()->as_register(),
  2409                      op->tmp3()->as_register(),
  2410                      op->header_size(),
  2411                      op->object_size(),
  2412                      op->klass()->as_register(),
  2413                      *op->stub()->entry());
  2414   __ bind(*op->stub()->continuation());
  2415   __ verify_oop(op->obj()->as_register());
  2419 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  2420   assert(op->tmp1()->as_register()  == G1 &&
  2421          op->tmp2()->as_register()  == G3 &&
  2422          op->tmp3()->as_register()  == G4 &&
  2423          op->tmp4()->as_register()  == O1 &&
  2424          op->klass()->as_register() == G5, "must be");
  2425   if (UseSlowPath ||
  2426       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  2427       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  2428     __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2429     __ delayed()->nop();
  2430   } else {
  2431     __ allocate_array(op->obj()->as_register(),
  2432                       op->len()->as_register(),
  2433                       op->tmp1()->as_register(),
  2434                       op->tmp2()->as_register(),
  2435                       op->tmp3()->as_register(),
  2436                       arrayOopDesc::header_size(op->type()),
  2437                       type2aelembytes(op->type()),
  2438                       op->klass()->as_register(),
  2439                       *op->stub()->entry());
  2441   __ bind(*op->stub()->continuation());
  2445 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
  2446                                         ciMethodData *md, ciProfileData *data,
  2447                                         Register recv, Register tmp1, Label* update_done) {
  2448   uint i;
  2449   for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2450     Label next_test;
  2451     // See if the receiver is receiver[n].
  2452     Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
  2453                           mdo_offset_bias);
  2454     __ ld_ptr(receiver_addr, tmp1);
  2455     __ verify_oop(tmp1);
  2456     __ cmp(recv, tmp1);
  2457     __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
  2458     __ delayed()->nop();
  2459     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
  2460                       mdo_offset_bias);
  2461     __ ld_ptr(data_addr, tmp1);
  2462     __ add(tmp1, DataLayout::counter_increment, tmp1);
  2463     __ st_ptr(tmp1, data_addr);
  2464     __ ba(false, *update_done);
  2465     __ delayed()->nop();
  2466     __ bind(next_test);
  2469   // Didn't find receiver; find next empty slot and fill it in
  2470   for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2471     Label next_test;
  2472     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
  2473                       mdo_offset_bias);
  2474     load(recv_addr, tmp1, T_OBJECT);
  2475     __ br_notnull(tmp1, false, Assembler::pt, next_test);
  2476     __ delayed()->nop();
  2477     __ st_ptr(recv, recv_addr);
  2478     __ set(DataLayout::counter_increment, tmp1);
  2479     __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
  2480               mdo_offset_bias);
  2481     __ ba(false, *update_done);
  2482     __ delayed()->nop();
  2483     __ bind(next_test);
  2488 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
  2489                                     ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
  2490   md = method->method_data();
  2491   if (md == NULL) {
  2492     bailout("out of memory building methodDataOop");
  2493     return;
  2495   data = md->bci_to_data(bci);
  2496   assert(data != NULL,       "need data for checkcast");
  2497   assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  2498   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
  2499     // The offset is large so bias the mdo by the base of the slot so
  2500     // that the ld can use simm13s to reference the slots of the data
  2501     mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
  2505 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
  2506   // we always need a stub for the failure case.
  2507   CodeStub* stub = op->stub();
  2508   Register obj = op->object()->as_register();
  2509   Register k_RInfo = op->tmp1()->as_register();
  2510   Register klass_RInfo = op->tmp2()->as_register();
  2511   Register dst = op->result_opr()->as_register();
  2512   Register Rtmp1 = op->tmp3()->as_register();
  2513   ciKlass* k = op->klass();
  2516   if (obj == k_RInfo) {
  2517     k_RInfo = klass_RInfo;
  2518     klass_RInfo = obj;
  2521   ciMethodData* md;
  2522   ciProfileData* data;
  2523   int mdo_offset_bias = 0;
  2524   if (op->should_profile()) {
  2525     ciMethod* method = op->profiled_method();
  2526     assert(method != NULL, "Should have method");
  2527     setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
  2529     Label not_null;
  2530     __ br_notnull(obj, false, Assembler::pn, not_null);
  2531     __ delayed()->nop();
  2532     Register mdo      = k_RInfo;
  2533     Register data_val = Rtmp1;
  2534     jobject2reg(md->constant_encoding(), mdo);
  2535     if (mdo_offset_bias > 0) {
  2536       __ set(mdo_offset_bias, data_val);
  2537       __ add(mdo, data_val, mdo);
  2539     Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
  2540     __ ldub(flags_addr, data_val);
  2541     __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
  2542     __ stb(data_val, flags_addr);
  2543     __ ba(false, *obj_is_null);
  2544     __ delayed()->nop();
  2545     __ bind(not_null);
  2546   } else {
  2547     __ br_null(obj, false, Assembler::pn, *obj_is_null);
  2548     __ delayed()->nop();
  2551   Label profile_cast_failure, profile_cast_success;
  2552   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
  2553   Label *success_target = op->should_profile() ? &profile_cast_success : success;
  2555   // patching may screw with our temporaries on sparc,
  2556   // so let's do it before loading the class
  2557   if (k->is_loaded()) {
  2558     jobject2reg(k->constant_encoding(), k_RInfo);
  2559   } else {
  2560     jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  2562   assert(obj != k_RInfo, "must be different");
  2564   // get object class
  2565   // not a safepoint as obj null check happens earlier
  2566   load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
  2567   if (op->fast_check()) {
  2568     assert_different_registers(klass_RInfo, k_RInfo);
  2569     __ cmp(k_RInfo, klass_RInfo);
  2570     __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
  2571     __ delayed()->nop();
  2572   } else {
  2573     bool need_slow_path = true;
  2574     if (k->is_loaded()) {
  2575       if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
  2576         need_slow_path = false;
  2577       // perform the fast part of the checking logic
  2578       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
  2579                                        (need_slow_path ? success_target : NULL),
  2580                                        failure_target, NULL,
  2581                                        RegisterOrConstant(k->super_check_offset()));
  2582     } else {
  2583       // perform the fast part of the checking logic
  2584       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
  2585                                        failure_target, NULL);
  2587     if (need_slow_path) {
  2588       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2589       assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2590       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2591       __ delayed()->nop();
  2592       __ cmp(G3, 0);
  2593       __ br(Assembler::equal, false, Assembler::pn, *failure_target);
  2594       __ delayed()->nop();
  2595       // Fall through to success case
  2599   if (op->should_profile()) {
  2600     Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
  2601     assert_different_registers(obj, mdo, recv, tmp1);
  2602     __ bind(profile_cast_success);
  2603     jobject2reg(md->constant_encoding(), mdo);
  2604     if (mdo_offset_bias > 0) {
  2605       __ set(mdo_offset_bias, tmp1);
  2606       __ add(mdo, tmp1, mdo);
  2608     load(Address(obj, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
  2609     type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
  2610     // Jump over the failure case
  2611     __ ba(false, *success);
  2612     __ delayed()->nop();
  2613     // Cast failure case
  2614     __ bind(profile_cast_failure);
  2615     jobject2reg(md->constant_encoding(), mdo);
  2616     if (mdo_offset_bias > 0) {
  2617       __ set(mdo_offset_bias, tmp1);
  2618       __ add(mdo, tmp1, mdo);
  2620     Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2621     __ ld_ptr(data_addr, tmp1);
  2622     __ sub(tmp1, DataLayout::counter_increment, tmp1);
  2623     __ st_ptr(tmp1, data_addr);
  2624     __ ba(false, *failure);
  2625     __ delayed()->nop();
  2627   __ ba(false, *success);
  2628   __ delayed()->nop();
  2631 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  2632   LIR_Code code = op->code();
  2633   if (code == lir_store_check) {
  2634     Register value = op->object()->as_register();
  2635     Register array = op->array()->as_register();
  2636     Register k_RInfo = op->tmp1()->as_register();
  2637     Register klass_RInfo = op->tmp2()->as_register();
  2638     Register Rtmp1 = op->tmp3()->as_register();
  2640     __ verify_oop(value);
  2641     CodeStub* stub = op->stub();
  2642     // check if it needs to be profiled
  2643     ciMethodData* md;
  2644     ciProfileData* data;
  2645     int mdo_offset_bias = 0;
  2646     if (op->should_profile()) {
  2647       ciMethod* method = op->profiled_method();
  2648       assert(method != NULL, "Should have method");
  2649       setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
  2651     Label profile_cast_success, profile_cast_failure, done;
  2652     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
  2653     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
  2655     if (op->should_profile()) {
  2656       Label not_null;
  2657       __ br_notnull(value, false, Assembler::pn, not_null);
  2658       __ delayed()->nop();
  2659       Register mdo      = k_RInfo;
  2660       Register data_val = Rtmp1;
  2661       jobject2reg(md->constant_encoding(), mdo);
  2662       if (mdo_offset_bias > 0) {
  2663         __ set(mdo_offset_bias, data_val);
  2664         __ add(mdo, data_val, mdo);
  2666       Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
  2667       __ ldub(flags_addr, data_val);
  2668       __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
  2669       __ stb(data_val, flags_addr);
  2670       __ ba(false, done);
  2671       __ delayed()->nop();
  2672       __ bind(not_null);
  2673     } else {
  2674       __ br_null(value, false, Assembler::pn, done);
  2675       __ delayed()->nop();
  2677     load(array, oopDesc::klass_offset_in_bytes(), k_RInfo, T_OBJECT, op->info_for_exception());
  2678     load(value, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
  2680     // get instance klass
  2681     load(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc), k_RInfo, T_OBJECT, NULL);
  2682     // perform the fast part of the checking logic
  2683     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
  2685     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2686     assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2687     __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2688     __ delayed()->nop();
  2689     __ cmp(G3, 0);
  2690     __ br(Assembler::equal, false, Assembler::pn, *failure_target);
  2691     __ delayed()->nop();
  2692     // fall through to the success case
  2694     if (op->should_profile()) {
  2695       Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
  2696       assert_different_registers(value, mdo, recv, tmp1);
  2697       __ bind(profile_cast_success);
  2698       jobject2reg(md->constant_encoding(), mdo);
  2699       if (mdo_offset_bias > 0) {
  2700         __ set(mdo_offset_bias, tmp1);
  2701         __ add(mdo, tmp1, mdo);
  2703       load(Address(value, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
  2704       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
  2705       __ ba(false, done);
  2706       __ delayed()->nop();
  2707       // Cast failure case
  2708       __ bind(profile_cast_failure);
  2709       jobject2reg(md->constant_encoding(), mdo);
  2710       if (mdo_offset_bias > 0) {
  2711         __ set(mdo_offset_bias, tmp1);
  2712         __ add(mdo, tmp1, mdo);
  2714       Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2715       __ ld_ptr(data_addr, tmp1);
  2716       __ sub(tmp1, DataLayout::counter_increment, tmp1);
  2717       __ st_ptr(tmp1, data_addr);
  2718       __ ba(false, *stub->entry());
  2719       __ delayed()->nop();
  2721     __ bind(done);
  2722   } else if (code == lir_checkcast) {
  2723     Register obj = op->object()->as_register();
  2724     Register dst = op->result_opr()->as_register();
  2725     Label success;
  2726     emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
  2727     __ bind(success);
  2728     __ mov(obj, dst);
  2729   } else if (code == lir_instanceof) {
  2730     Register obj = op->object()->as_register();
  2731     Register dst = op->result_opr()->as_register();
  2732     Label success, failure, done;
  2733     emit_typecheck_helper(op, &success, &failure, &failure);
  2734     __ bind(failure);
  2735     __ set(0, dst);
  2736     __ ba(false, done);
  2737     __ delayed()->nop();
  2738     __ bind(success);
  2739     __ set(1, dst);
  2740     __ bind(done);
  2741   } else {
  2742     ShouldNotReachHere();
  2748 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  2749   if (op->code() == lir_cas_long) {
  2750     assert(VM_Version::supports_cx8(), "wrong machine");
  2751     Register addr = op->addr()->as_pointer_register();
  2752     Register cmp_value_lo = op->cmp_value()->as_register_lo();
  2753     Register cmp_value_hi = op->cmp_value()->as_register_hi();
  2754     Register new_value_lo = op->new_value()->as_register_lo();
  2755     Register new_value_hi = op->new_value()->as_register_hi();
  2756     Register t1 = op->tmp1()->as_register();
  2757     Register t2 = op->tmp2()->as_register();
  2758 #ifdef _LP64
  2759     __ mov(cmp_value_lo, t1);
  2760     __ mov(new_value_lo, t2);
  2761 #else
  2762     // move high and low halves of long values into single registers
  2763     __ sllx(cmp_value_hi, 32, t1);         // shift high half into temp reg
  2764     __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
  2765     __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
  2766     __ sllx(new_value_hi, 32, t2);
  2767     __ srl(new_value_lo, 0, new_value_lo);
  2768     __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
  2769 #endif
  2770     // perform the compare and swap operation
  2771     __ casx(addr, t1, t2);
  2772     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
  2773     // overwritten with the original value in "addr" and will be equal to t1.
  2774     __ cmp(t1, t2);
  2776   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
  2777     Register addr = op->addr()->as_pointer_register();
  2778     Register cmp_value = op->cmp_value()->as_register();
  2779     Register new_value = op->new_value()->as_register();
  2780     Register t1 = op->tmp1()->as_register();
  2781     Register t2 = op->tmp2()->as_register();
  2782     __ mov(cmp_value, t1);
  2783     __ mov(new_value, t2);
  2784 #ifdef _LP64
  2785     if (op->code() == lir_cas_obj) {
  2786       __ casx(addr, t1, t2);
  2787     } else
  2788 #endif
  2790         __ cas(addr, t1, t2);
  2792     __ cmp(t1, t2);
  2793   } else {
  2794     Unimplemented();
  2798 void LIR_Assembler::set_24bit_FPU() {
  2799   Unimplemented();
  2803 void LIR_Assembler::reset_FPU() {
  2804   Unimplemented();
  2808 void LIR_Assembler::breakpoint() {
  2809   __ breakpoint_trap();
  2813 void LIR_Assembler::push(LIR_Opr opr) {
  2814   Unimplemented();
  2818 void LIR_Assembler::pop(LIR_Opr opr) {
  2819   Unimplemented();
  2823 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
  2824   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
  2825   Register dst = dst_opr->as_register();
  2826   Register reg = mon_addr.base();
  2827   int offset = mon_addr.disp();
  2828   // compute pointer to BasicLock
  2829   if (mon_addr.is_simm13()) {
  2830     __ add(reg, offset, dst);
  2831   } else {
  2832     __ set(offset, dst);
  2833     __ add(dst, reg, dst);
  2838 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  2839   Register obj = op->obj_opr()->as_register();
  2840   Register hdr = op->hdr_opr()->as_register();
  2841   Register lock = op->lock_opr()->as_register();
  2843   // obj may not be an oop
  2844   if (op->code() == lir_lock) {
  2845     MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
  2846     if (UseFastLocking) {
  2847       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  2848       // add debug info for NullPointerException only if one is possible
  2849       if (op->info() != NULL) {
  2850         add_debug_info_for_null_check_here(op->info());
  2852       __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
  2853     } else {
  2854       // always do slow locking
  2855       // note: the slow locking code could be inlined here, however if we use
  2856       //       slow locking, speed doesn't matter anyway and this solution is
  2857       //       simpler and requires less duplicated code - additionally, the
  2858       //       slow locking code is the same in either case which simplifies
  2859       //       debugging
  2860       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2861       __ delayed()->nop();
  2863   } else {
  2864     assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
  2865     if (UseFastLocking) {
  2866       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  2867       __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  2868     } else {
  2869       // always do slow unlocking
  2870       // note: the slow unlocking code could be inlined here, however if we use
  2871       //       slow unlocking, speed doesn't matter anyway and this solution is
  2872       //       simpler and requires less duplicated code - additionally, the
  2873       //       slow unlocking code is the same in either case which simplifies
  2874       //       debugging
  2875       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2876       __ delayed()->nop();
  2879   __ bind(*op->stub()->continuation());
  2883 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  2884   ciMethod* method = op->profiled_method();
  2885   int bci          = op->profiled_bci();
  2887   // Update counter for all call types
  2888   ciMethodData* md = method->method_data();
  2889   if (md == NULL) {
  2890     bailout("out of memory building methodDataOop");
  2891     return;
  2893   ciProfileData* data = md->bci_to_data(bci);
  2894   assert(data->is_CounterData(), "need CounterData for calls");
  2895   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  2896   Register mdo  = op->mdo()->as_register();
  2897 #ifdef _LP64
  2898   assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
  2899   Register tmp1 = op->tmp1()->as_register_lo();
  2900 #else
  2901   assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
  2902   Register tmp1 = op->tmp1()->as_register();
  2903 #endif
  2904   jobject2reg(md->constant_encoding(), mdo);
  2905   int mdo_offset_bias = 0;
  2906   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
  2907                             data->size_in_bytes())) {
  2908     // The offset is large so bias the mdo by the base of the slot so
  2909     // that the ld can use simm13s to reference the slots of the data
  2910     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
  2911     __ set(mdo_offset_bias, O7);
  2912     __ add(mdo, O7, mdo);
  2915   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2916   Bytecodes::Code bc = method->java_code_at_bci(bci);
  2917   // Perform additional virtual call profiling for invokevirtual and
  2918   // invokeinterface bytecodes
  2919   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  2920       C1ProfileVirtualCalls) {
  2921     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  2922     Register recv = op->recv()->as_register();
  2923     assert_different_registers(mdo, tmp1, recv);
  2924     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  2925     ciKlass* known_klass = op->known_holder();
  2926     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
  2927       // We know the type that will be seen at this call site; we can
  2928       // statically update the methodDataOop rather than needing to do
  2929       // dynamic tests on the receiver type
  2931       // NOTE: we should probably put a lock around this search to
  2932       // avoid collisions by concurrent compilations
  2933       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  2934       uint i;
  2935       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2936         ciKlass* receiver = vc_data->receiver(i);
  2937         if (known_klass->equals(receiver)) {
  2938           Address data_addr(mdo, md->byte_offset_of_slot(data,
  2939                                                          VirtualCallData::receiver_count_offset(i)) -
  2940                             mdo_offset_bias);
  2941           __ ld_ptr(data_addr, tmp1);
  2942           __ add(tmp1, DataLayout::counter_increment, tmp1);
  2943           __ st_ptr(tmp1, data_addr);
  2944           return;
  2948       // Receiver type not found in profile data; select an empty slot
  2950       // Note that this is less efficient than it should be because it
  2951       // always does a write to the receiver part of the
  2952       // VirtualCallData rather than just the first time
  2953       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2954         ciKlass* receiver = vc_data->receiver(i);
  2955         if (receiver == NULL) {
  2956           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
  2957                             mdo_offset_bias);
  2958           jobject2reg(known_klass->constant_encoding(), tmp1);
  2959           __ st_ptr(tmp1, recv_addr);
  2960           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
  2961                             mdo_offset_bias);
  2962           __ ld_ptr(data_addr, tmp1);
  2963           __ add(tmp1, DataLayout::counter_increment, tmp1);
  2964           __ st_ptr(tmp1, data_addr);
  2965           return;
  2968     } else {
  2969       load(Address(recv, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
  2970       Label update_done;
  2971       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
  2972       // Receiver did not match any saved receiver and there is no empty row for it.
  2973       // Increment total counter to indicate polymorphic case.
  2974       __ ld_ptr(counter_addr, tmp1);
  2975       __ add(tmp1, DataLayout::counter_increment, tmp1);
  2976       __ st_ptr(tmp1, counter_addr);
  2978       __ bind(update_done);
  2980   } else {
  2981     // Static call
  2982     __ ld_ptr(counter_addr, tmp1);
  2983     __ add(tmp1, DataLayout::counter_increment, tmp1);
  2984     __ st_ptr(tmp1, counter_addr);
  2988 void LIR_Assembler::align_backward_branch_target() {
  2989   __ align(OptoLoopAlignment);
  2993 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
  2994   // make sure we are expecting a delay
  2995   // this has the side effect of clearing the delay state
  2996   // so we can use _masm instead of _masm->delayed() to do the
  2997   // code generation.
  2998   __ delayed();
  3000   // make sure we only emit one instruction
  3001   int offset = code_offset();
  3002   op->delay_op()->emit_code(this);
  3003 #ifdef ASSERT
  3004   if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
  3005     op->delay_op()->print();
  3007   assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
  3008          "only one instruction can go in a delay slot");
  3009 #endif
  3011   // we may also be emitting the call info for the instruction
  3012   // which we are the delay slot of.
  3013   CodeEmitInfo* call_info = op->call_info();
  3014   if (call_info) {
  3015     add_call_info(code_offset(), call_info);
  3018   if (VerifyStackAtCalls) {
  3019     _masm->sub(FP, SP, O7);
  3020     _masm->cmp(O7, initial_frame_size_in_bytes());
  3021     _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
  3026 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  3027   assert(left->is_register(), "can only handle registers");
  3029   if (left->is_single_cpu()) {
  3030     __ neg(left->as_register(), dest->as_register());
  3031   } else if (left->is_single_fpu()) {
  3032     __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
  3033   } else if (left->is_double_fpu()) {
  3034     __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
  3035   } else {
  3036     assert (left->is_double_cpu(), "Must be a long");
  3037     Register Rlow = left->as_register_lo();
  3038     Register Rhi = left->as_register_hi();
  3039 #ifdef _LP64
  3040     __ sub(G0, Rlow, dest->as_register_lo());
  3041 #else
  3042     __ subcc(G0, Rlow, dest->as_register_lo());
  3043     __ subc (G0, Rhi,  dest->as_register_hi());
  3044 #endif
  3049 void LIR_Assembler::fxch(int i) {
  3050   Unimplemented();
  3053 void LIR_Assembler::fld(int i) {
  3054   Unimplemented();
  3057 void LIR_Assembler::ffree(int i) {
  3058   Unimplemented();
  3061 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
  3062                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  3064   // if tmp is invalid, then the function being called doesn't destroy the thread
  3065   if (tmp->is_valid()) {
  3066     __ save_thread(tmp->as_register());
  3068   __ call(dest, relocInfo::runtime_call_type);
  3069   __ delayed()->nop();
  3070   if (info != NULL) {
  3071     add_call_info_here(info);
  3073   if (tmp->is_valid()) {
  3074     __ restore_thread(tmp->as_register());
  3077 #ifdef ASSERT
  3078   __ verify_thread();
  3079 #endif // ASSERT
  3083 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  3084 #ifdef _LP64
  3085   ShouldNotReachHere();
  3086 #endif
  3088   NEEDS_CLEANUP;
  3089   if (type == T_LONG) {
  3090     LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
  3092     // (extended to allow indexed as well as constant displaced for JSR-166)
  3093     Register idx = noreg; // contains either constant offset or index
  3095     int disp = mem_addr->disp();
  3096     if (mem_addr->index() == LIR_OprFact::illegalOpr) {
  3097       if (!Assembler::is_simm13(disp)) {
  3098         idx = O7;
  3099         __ set(disp, idx);
  3101     } else {
  3102       assert(disp == 0, "not both indexed and disp");
  3103       idx = mem_addr->index()->as_register();
  3106     int null_check_offset = -1;
  3108     Register base = mem_addr->base()->as_register();
  3109     if (src->is_register() && dest->is_address()) {
  3110       // G4 is high half, G5 is low half
  3111       if (VM_Version::v9_instructions_work()) {
  3112         // clear the top bits of G5, and scale up G4
  3113         __ srl (src->as_register_lo(),  0, G5);
  3114         __ sllx(src->as_register_hi(), 32, G4);
  3115         // combine the two halves into the 64 bits of G4
  3116         __ or3(G4, G5, G4);
  3117         null_check_offset = __ offset();
  3118         if (idx == noreg) {
  3119           __ stx(G4, base, disp);
  3120         } else {
  3121           __ stx(G4, base, idx);
  3123       } else {
  3124         __ mov (src->as_register_hi(), G4);
  3125         __ mov (src->as_register_lo(), G5);
  3126         null_check_offset = __ offset();
  3127         if (idx == noreg) {
  3128           __ std(G4, base, disp);
  3129         } else {
  3130           __ std(G4, base, idx);
  3133     } else if (src->is_address() && dest->is_register()) {
  3134       null_check_offset = __ offset();
  3135       if (VM_Version::v9_instructions_work()) {
  3136         if (idx == noreg) {
  3137           __ ldx(base, disp, G5);
  3138         } else {
  3139           __ ldx(base, idx, G5);
  3141         __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
  3142         __ mov (G5, dest->as_register_lo());     // copy low half into lo
  3143       } else {
  3144         if (idx == noreg) {
  3145           __ ldd(base, disp, G4);
  3146         } else {
  3147           __ ldd(base, idx, G4);
  3149         // G4 is high half, G5 is low half
  3150         __ mov (G4, dest->as_register_hi());
  3151         __ mov (G5, dest->as_register_lo());
  3153     } else {
  3154       Unimplemented();
  3156     if (info != NULL) {
  3157       add_debug_info_for_null_check(null_check_offset, info);
  3160   } else {
  3161     // use normal move for all other volatiles since they don't need
  3162     // special handling to remain atomic.
  3163     move_op(src, dest, type, lir_patch_none, info, false, false);
  3167 void LIR_Assembler::membar() {
  3168   // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
  3169   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3172 void LIR_Assembler::membar_acquire() {
  3173   // no-op on TSO
  3176 void LIR_Assembler::membar_release() {
  3177   // no-op on TSO
  3180 // Pack two sequential registers containing 32 bit values
  3181 // into a single 64 bit register.
  3182 // src and src->successor() are packed into dst
  3183 // src and dst may be the same register.
  3184 // Note: src is destroyed
  3185 void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
  3186   Register rs = src->as_register();
  3187   Register rd = dst->as_register_lo();
  3188   __ sllx(rs, 32, rs);
  3189   __ srl(rs->successor(), 0, rs->successor());
  3190   __ or3(rs, rs->successor(), rd);
  3193 // Unpack a 64 bit value in a register into
  3194 // two sequential registers.
  3195 // src is unpacked into dst and dst->successor()
  3196 void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
  3197   Register rs = src->as_register_lo();
  3198   Register rd = dst->as_register_hi();
  3199   assert_different_registers(rs, rd, rd->successor());
  3200   __ srlx(rs, 32, rd);
  3201   __ srl (rs,  0, rd->successor());
  3205 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
  3206   LIR_Address* addr = addr_opr->as_address_ptr();
  3207   assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
  3209   __ add(addr->base()->as_pointer_register(), addr->disp(), dest->as_pointer_register());
  3213 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  3214   assert(result_reg->is_register(), "check");
  3215   __ mov(G2_thread, result_reg->as_register());
  3219 void LIR_Assembler::peephole(LIR_List* lir) {
  3220   LIR_OpList* inst = lir->instructions_list();
  3221   for (int i = 0; i < inst->length(); i++) {
  3222     LIR_Op* op = inst->at(i);
  3223     switch (op->code()) {
  3224       case lir_cond_float_branch:
  3225       case lir_branch: {
  3226         LIR_OpBranch* branch = op->as_OpBranch();
  3227         assert(branch->info() == NULL, "shouldn't be state on branches anymore");
  3228         LIR_Op* delay_op = NULL;
  3229         // we'd like to be able to pull following instructions into
  3230         // this slot but we don't know enough to do it safely yet so
  3231         // only optimize block to block control flow.
  3232         if (LIRFillDelaySlots && branch->block()) {
  3233           LIR_Op* prev = inst->at(i - 1);
  3234           if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
  3235             // swap previous instruction into delay slot
  3236             inst->at_put(i - 1, op);
  3237             inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3238 #ifndef PRODUCT
  3239             if (LIRTracePeephole) {
  3240               tty->print_cr("delayed");
  3241               inst->at(i - 1)->print();
  3242               inst->at(i)->print();
  3243               tty->cr();
  3245 #endif
  3246             continue;
  3250         if (!delay_op) {
  3251           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
  3253         inst->insert_before(i + 1, delay_op);
  3254         break;
  3256       case lir_static_call:
  3257       case lir_virtual_call:
  3258       case lir_icvirtual_call:
  3259       case lir_optvirtual_call:
  3260       case lir_dynamic_call: {
  3261         LIR_Op* prev = inst->at(i - 1);
  3262         if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
  3263             (op->code() != lir_virtual_call ||
  3264              !prev->result_opr()->is_single_cpu() ||
  3265              prev->result_opr()->as_register() != O0) &&
  3266             LIR_Assembler::is_single_instruction(prev)) {
  3267           // Only moves without info can be put into the delay slot.
  3268           // Also don't allow the setup of the receiver in the delay
  3269           // slot for vtable calls.
  3270           inst->at_put(i - 1, op);
  3271           inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3272 #ifndef PRODUCT
  3273           if (LIRTracePeephole) {
  3274             tty->print_cr("delayed");
  3275             inst->at(i - 1)->print();
  3276             inst->at(i)->print();
  3277             tty->cr();
  3279 #endif
  3280         } else {
  3281           LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
  3282           inst->insert_before(i + 1, delay_op);
  3283           i++;
  3286 #if defined(TIERED) && !defined(_LP64)
  3287         // fixup the return value from G1 to O0/O1 for long returns.
  3288         // It's done here instead of in LIRGenerator because there's
  3289         // such a mismatch between the single reg and double reg
  3290         // calling convention.
  3291         LIR_OpJavaCall* callop = op->as_OpJavaCall();
  3292         if (callop->result_opr() == FrameMap::out_long_opr) {
  3293           LIR_OpJavaCall* call;
  3294           LIR_OprList* arguments = new LIR_OprList(callop->arguments()->length());
  3295           for (int a = 0; a < arguments->length(); a++) {
  3296             arguments[a] = callop->arguments()[a];
  3298           if (op->code() == lir_virtual_call) {
  3299             call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
  3300                                       callop->vtable_offset(), arguments, callop->info());
  3301           } else {
  3302             call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
  3303                                       callop->addr(), arguments, callop->info());
  3305           inst->at_put(i - 1, call);
  3306           inst->insert_before(i + 1, new LIR_Op1(lir_unpack64, FrameMap::g1_long_single_opr, callop->result_opr(),
  3307                                                  T_LONG, lir_patch_none, NULL));
  3309 #endif
  3310         break;
  3319 #undef __

mercurial