src/share/vm/opto/library_call.cpp

Wed, 27 Apr 2016 01:25:04 +0800

author
aoqi
date
Wed, 27 Apr 2016 01:25:04 +0800
changeset 0
f90c822e73f8
child 6876
710a3c8b516e
permissions
-rw-r--r--

Initial load
http://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/
changeset: 6782:28b50d07f6f8
tag: jdk8u25-b17

aoqi@0 1 /*
aoqi@0 2 * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
aoqi@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
aoqi@0 4 *
aoqi@0 5 * This code is free software; you can redistribute it and/or modify it
aoqi@0 6 * under the terms of the GNU General Public License version 2 only, as
aoqi@0 7 * published by the Free Software Foundation.
aoqi@0 8 *
aoqi@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
aoqi@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
aoqi@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
aoqi@0 12 * version 2 for more details (a copy is included in the LICENSE file that
aoqi@0 13 * accompanied this code).
aoqi@0 14 *
aoqi@0 15 * You should have received a copy of the GNU General Public License version
aoqi@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
aoqi@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
aoqi@0 18 *
aoqi@0 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
aoqi@0 20 * or visit www.oracle.com if you need additional information or have any
aoqi@0 21 * questions.
aoqi@0 22 *
aoqi@0 23 */
aoqi@0 24
aoqi@0 25 #include "precompiled.hpp"
aoqi@0 26 #include "classfile/systemDictionary.hpp"
aoqi@0 27 #include "classfile/vmSymbols.hpp"
aoqi@0 28 #include "compiler/compileBroker.hpp"
aoqi@0 29 #include "compiler/compileLog.hpp"
aoqi@0 30 #include "oops/objArrayKlass.hpp"
aoqi@0 31 #include "opto/addnode.hpp"
aoqi@0 32 #include "opto/callGenerator.hpp"
aoqi@0 33 #include "opto/cfgnode.hpp"
aoqi@0 34 #include "opto/idealKit.hpp"
aoqi@0 35 #include "opto/mathexactnode.hpp"
aoqi@0 36 #include "opto/mulnode.hpp"
aoqi@0 37 #include "opto/parse.hpp"
aoqi@0 38 #include "opto/runtime.hpp"
aoqi@0 39 #include "opto/subnode.hpp"
aoqi@0 40 #include "prims/nativeLookup.hpp"
aoqi@0 41 #include "runtime/sharedRuntime.hpp"
aoqi@0 42 #include "trace/traceMacros.hpp"
aoqi@0 43
aoqi@0 44 class LibraryIntrinsic : public InlineCallGenerator {
aoqi@0 45 // Extend the set of intrinsics known to the runtime:
aoqi@0 46 public:
aoqi@0 47 private:
aoqi@0 48 bool _is_virtual;
aoqi@0 49 bool _is_predicted;
aoqi@0 50 bool _does_virtual_dispatch;
aoqi@0 51 vmIntrinsics::ID _intrinsic_id;
aoqi@0 52
aoqi@0 53 public:
aoqi@0 54 LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, bool does_virtual_dispatch, vmIntrinsics::ID id)
aoqi@0 55 : InlineCallGenerator(m),
aoqi@0 56 _is_virtual(is_virtual),
aoqi@0 57 _is_predicted(is_predicted),
aoqi@0 58 _does_virtual_dispatch(does_virtual_dispatch),
aoqi@0 59 _intrinsic_id(id)
aoqi@0 60 {
aoqi@0 61 }
aoqi@0 62 virtual bool is_intrinsic() const { return true; }
aoqi@0 63 virtual bool is_virtual() const { return _is_virtual; }
aoqi@0 64 virtual bool is_predicted() const { return _is_predicted; }
aoqi@0 65 virtual bool does_virtual_dispatch() const { return _does_virtual_dispatch; }
aoqi@0 66 virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);
aoqi@0 67 virtual Node* generate_predicate(JVMState* jvms);
aoqi@0 68 vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
aoqi@0 69 };
aoqi@0 70
aoqi@0 71
aoqi@0 72 // Local helper class for LibraryIntrinsic:
aoqi@0 73 class LibraryCallKit : public GraphKit {
aoqi@0 74 private:
aoqi@0 75 LibraryIntrinsic* _intrinsic; // the library intrinsic being called
aoqi@0 76 Node* _result; // the result node, if any
aoqi@0 77 int _reexecute_sp; // the stack pointer when bytecode needs to be reexecuted
aoqi@0 78
aoqi@0 79 const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
aoqi@0 80
aoqi@0 81 public:
aoqi@0 82 LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
aoqi@0 83 : GraphKit(jvms),
aoqi@0 84 _intrinsic(intrinsic),
aoqi@0 85 _result(NULL)
aoqi@0 86 {
aoqi@0 87 // Check if this is a root compile. In that case we don't have a caller.
aoqi@0 88 if (!jvms->has_method()) {
aoqi@0 89 _reexecute_sp = sp();
aoqi@0 90 } else {
aoqi@0 91 // Find out how many arguments the interpreter needs when deoptimizing
aoqi@0 92 // and save the stack pointer value so it can used by uncommon_trap.
aoqi@0 93 // We find the argument count by looking at the declared signature.
aoqi@0 94 bool ignored_will_link;
aoqi@0 95 ciSignature* declared_signature = NULL;
aoqi@0 96 ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
aoqi@0 97 const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
aoqi@0 98 _reexecute_sp = sp() + nargs; // "push" arguments back on stack
aoqi@0 99 }
aoqi@0 100 }
aoqi@0 101
aoqi@0 102 virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
aoqi@0 103
aoqi@0 104 ciMethod* caller() const { return jvms()->method(); }
aoqi@0 105 int bci() const { return jvms()->bci(); }
aoqi@0 106 LibraryIntrinsic* intrinsic() const { return _intrinsic; }
aoqi@0 107 vmIntrinsics::ID intrinsic_id() const { return _intrinsic->intrinsic_id(); }
aoqi@0 108 ciMethod* callee() const { return _intrinsic->method(); }
aoqi@0 109
aoqi@0 110 bool try_to_inline();
aoqi@0 111 Node* try_to_predicate();
aoqi@0 112
aoqi@0 113 void push_result() {
aoqi@0 114 // Push the result onto the stack.
aoqi@0 115 if (!stopped() && result() != NULL) {
aoqi@0 116 BasicType bt = result()->bottom_type()->basic_type();
aoqi@0 117 push_node(bt, result());
aoqi@0 118 }
aoqi@0 119 }
aoqi@0 120
aoqi@0 121 private:
aoqi@0 122 void fatal_unexpected_iid(vmIntrinsics::ID iid) {
aoqi@0 123 fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
aoqi@0 124 }
aoqi@0 125
aoqi@0 126 void set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
aoqi@0 127 void set_result(RegionNode* region, PhiNode* value);
aoqi@0 128 Node* result() { return _result; }
aoqi@0 129
aoqi@0 130 virtual int reexecute_sp() { return _reexecute_sp; }
aoqi@0 131
aoqi@0 132 // Helper functions to inline natives
aoqi@0 133 Node* generate_guard(Node* test, RegionNode* region, float true_prob);
aoqi@0 134 Node* generate_slow_guard(Node* test, RegionNode* region);
aoqi@0 135 Node* generate_fair_guard(Node* test, RegionNode* region);
aoqi@0 136 Node* generate_negative_guard(Node* index, RegionNode* region,
aoqi@0 137 // resulting CastII of index:
aoqi@0 138 Node* *pos_index = NULL);
aoqi@0 139 Node* generate_nonpositive_guard(Node* index, bool never_negative,
aoqi@0 140 // resulting CastII of index:
aoqi@0 141 Node* *pos_index = NULL);
aoqi@0 142 Node* generate_limit_guard(Node* offset, Node* subseq_length,
aoqi@0 143 Node* array_length,
aoqi@0 144 RegionNode* region);
aoqi@0 145 Node* generate_current_thread(Node* &tls_output);
aoqi@0 146 address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
aoqi@0 147 bool disjoint_bases, const char* &name, bool dest_uninitialized);
aoqi@0 148 Node* load_mirror_from_klass(Node* klass);
aoqi@0 149 Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
aoqi@0 150 RegionNode* region, int null_path,
aoqi@0 151 int offset);
aoqi@0 152 Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
aoqi@0 153 RegionNode* region, int null_path) {
aoqi@0 154 int offset = java_lang_Class::klass_offset_in_bytes();
aoqi@0 155 return load_klass_from_mirror_common(mirror, never_see_null,
aoqi@0 156 region, null_path,
aoqi@0 157 offset);
aoqi@0 158 }
aoqi@0 159 Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
aoqi@0 160 RegionNode* region, int null_path) {
aoqi@0 161 int offset = java_lang_Class::array_klass_offset_in_bytes();
aoqi@0 162 return load_klass_from_mirror_common(mirror, never_see_null,
aoqi@0 163 region, null_path,
aoqi@0 164 offset);
aoqi@0 165 }
aoqi@0 166 Node* generate_access_flags_guard(Node* kls,
aoqi@0 167 int modifier_mask, int modifier_bits,
aoqi@0 168 RegionNode* region);
aoqi@0 169 Node* generate_interface_guard(Node* kls, RegionNode* region);
aoqi@0 170 Node* generate_array_guard(Node* kls, RegionNode* region) {
aoqi@0 171 return generate_array_guard_common(kls, region, false, false);
aoqi@0 172 }
aoqi@0 173 Node* generate_non_array_guard(Node* kls, RegionNode* region) {
aoqi@0 174 return generate_array_guard_common(kls, region, false, true);
aoqi@0 175 }
aoqi@0 176 Node* generate_objArray_guard(Node* kls, RegionNode* region) {
aoqi@0 177 return generate_array_guard_common(kls, region, true, false);
aoqi@0 178 }
aoqi@0 179 Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
aoqi@0 180 return generate_array_guard_common(kls, region, true, true);
aoqi@0 181 }
aoqi@0 182 Node* generate_array_guard_common(Node* kls, RegionNode* region,
aoqi@0 183 bool obj_array, bool not_array);
aoqi@0 184 Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
aoqi@0 185 CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
aoqi@0 186 bool is_virtual = false, bool is_static = false);
aoqi@0 187 CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
aoqi@0 188 return generate_method_call(method_id, false, true);
aoqi@0 189 }
aoqi@0 190 CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
aoqi@0 191 return generate_method_call(method_id, true, false);
aoqi@0 192 }
aoqi@0 193 Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
aoqi@0 194
aoqi@0 195 Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
aoqi@0 196 Node* make_string_method_node(int opcode, Node* str1, Node* str2);
aoqi@0 197 bool inline_string_compareTo();
aoqi@0 198 bool inline_string_indexOf();
aoqi@0 199 Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
aoqi@0 200 bool inline_string_equals();
aoqi@0 201 Node* round_double_node(Node* n);
aoqi@0 202 bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
aoqi@0 203 bool inline_math_native(vmIntrinsics::ID id);
aoqi@0 204 bool inline_trig(vmIntrinsics::ID id);
aoqi@0 205 bool inline_math(vmIntrinsics::ID id);
aoqi@0 206 template <typename OverflowOp>
aoqi@0 207 bool inline_math_overflow(Node* arg1, Node* arg2);
aoqi@0 208 void inline_math_mathExact(Node* math, Node* test);
aoqi@0 209 bool inline_math_addExactI(bool is_increment);
aoqi@0 210 bool inline_math_addExactL(bool is_increment);
aoqi@0 211 bool inline_math_multiplyExactI();
aoqi@0 212 bool inline_math_multiplyExactL();
aoqi@0 213 bool inline_math_negateExactI();
aoqi@0 214 bool inline_math_negateExactL();
aoqi@0 215 bool inline_math_subtractExactI(bool is_decrement);
aoqi@0 216 bool inline_math_subtractExactL(bool is_decrement);
aoqi@0 217 bool inline_exp();
aoqi@0 218 bool inline_pow();
aoqi@0 219 Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
aoqi@0 220 bool inline_min_max(vmIntrinsics::ID id);
aoqi@0 221 Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
aoqi@0 222 // This returns Type::AnyPtr, RawPtr, or OopPtr.
aoqi@0 223 int classify_unsafe_addr(Node* &base, Node* &offset);
aoqi@0 224 Node* make_unsafe_address(Node* base, Node* offset);
aoqi@0 225 // Helper for inline_unsafe_access.
aoqi@0 226 // Generates the guards that check whether the result of
aoqi@0 227 // Unsafe.getObject should be recorded in an SATB log buffer.
aoqi@0 228 void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
aoqi@0 229 bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
aoqi@0 230 bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
aoqi@0 231 static bool klass_needs_init_guard(Node* kls);
aoqi@0 232 bool inline_unsafe_allocate();
aoqi@0 233 bool inline_unsafe_copyMemory();
aoqi@0 234 bool inline_native_currentThread();
aoqi@0 235 #ifdef TRACE_HAVE_INTRINSICS
aoqi@0 236 bool inline_native_classID();
aoqi@0 237 bool inline_native_threadID();
aoqi@0 238 #endif
aoqi@0 239 bool inline_native_time_funcs(address method, const char* funcName);
aoqi@0 240 bool inline_native_isInterrupted();
aoqi@0 241 bool inline_native_Class_query(vmIntrinsics::ID id);
aoqi@0 242 bool inline_native_subtype_check();
aoqi@0 243
aoqi@0 244 bool inline_native_newArray();
aoqi@0 245 bool inline_native_getLength();
aoqi@0 246 bool inline_array_copyOf(bool is_copyOfRange);
aoqi@0 247 bool inline_array_equals();
aoqi@0 248 void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
aoqi@0 249 bool inline_native_clone(bool is_virtual);
aoqi@0 250 bool inline_native_Reflection_getCallerClass();
aoqi@0 251 // Helper function for inlining native object hash method
aoqi@0 252 bool inline_native_hashcode(bool is_virtual, bool is_static);
aoqi@0 253 bool inline_native_getClass();
aoqi@0 254
aoqi@0 255 // Helper functions for inlining arraycopy
aoqi@0 256 bool inline_arraycopy();
aoqi@0 257 void generate_arraycopy(const TypePtr* adr_type,
aoqi@0 258 BasicType basic_elem_type,
aoqi@0 259 Node* src, Node* src_offset,
aoqi@0 260 Node* dest, Node* dest_offset,
aoqi@0 261 Node* copy_length,
aoqi@0 262 bool disjoint_bases = false,
aoqi@0 263 bool length_never_negative = false,
aoqi@0 264 RegionNode* slow_region = NULL);
aoqi@0 265 AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
aoqi@0 266 RegionNode* slow_region);
aoqi@0 267 void generate_clear_array(const TypePtr* adr_type,
aoqi@0 268 Node* dest,
aoqi@0 269 BasicType basic_elem_type,
aoqi@0 270 Node* slice_off,
aoqi@0 271 Node* slice_len,
aoqi@0 272 Node* slice_end);
aoqi@0 273 bool generate_block_arraycopy(const TypePtr* adr_type,
aoqi@0 274 BasicType basic_elem_type,
aoqi@0 275 AllocateNode* alloc,
aoqi@0 276 Node* src, Node* src_offset,
aoqi@0 277 Node* dest, Node* dest_offset,
aoqi@0 278 Node* dest_size, bool dest_uninitialized);
aoqi@0 279 void generate_slow_arraycopy(const TypePtr* adr_type,
aoqi@0 280 Node* src, Node* src_offset,
aoqi@0 281 Node* dest, Node* dest_offset,
aoqi@0 282 Node* copy_length, bool dest_uninitialized);
aoqi@0 283 Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
aoqi@0 284 Node* dest_elem_klass,
aoqi@0 285 Node* src, Node* src_offset,
aoqi@0 286 Node* dest, Node* dest_offset,
aoqi@0 287 Node* copy_length, bool dest_uninitialized);
aoqi@0 288 Node* generate_generic_arraycopy(const TypePtr* adr_type,
aoqi@0 289 Node* src, Node* src_offset,
aoqi@0 290 Node* dest, Node* dest_offset,
aoqi@0 291 Node* copy_length, bool dest_uninitialized);
aoqi@0 292 void generate_unchecked_arraycopy(const TypePtr* adr_type,
aoqi@0 293 BasicType basic_elem_type,
aoqi@0 294 bool disjoint_bases,
aoqi@0 295 Node* src, Node* src_offset,
aoqi@0 296 Node* dest, Node* dest_offset,
aoqi@0 297 Node* copy_length, bool dest_uninitialized);
aoqi@0 298 typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
aoqi@0 299 bool inline_unsafe_load_store(BasicType type, LoadStoreKind kind);
aoqi@0 300 bool inline_unsafe_ordered_store(BasicType type);
aoqi@0 301 bool inline_unsafe_fence(vmIntrinsics::ID id);
aoqi@0 302 bool inline_fp_conversions(vmIntrinsics::ID id);
aoqi@0 303 bool inline_number_methods(vmIntrinsics::ID id);
aoqi@0 304 bool inline_reference_get();
aoqi@0 305 bool inline_aescrypt_Block(vmIntrinsics::ID id);
aoqi@0 306 bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
aoqi@0 307 Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
aoqi@0 308 Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
aoqi@0 309 Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
aoqi@0 310 bool inline_encodeISOArray();
aoqi@0 311 bool inline_updateCRC32();
aoqi@0 312 bool inline_updateBytesCRC32();
aoqi@0 313 bool inline_updateByteBufferCRC32();
aoqi@0 314 };
aoqi@0 315
aoqi@0 316
aoqi@0 317 //---------------------------make_vm_intrinsic----------------------------
aoqi@0 318 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
aoqi@0 319 vmIntrinsics::ID id = m->intrinsic_id();
aoqi@0 320 assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
aoqi@0 321
aoqi@0 322 if (DisableIntrinsic[0] != '\0'
aoqi@0 323 && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
aoqi@0 324 // disabled by a user request on the command line:
aoqi@0 325 // example: -XX:DisableIntrinsic=_hashCode,_getClass
aoqi@0 326 return NULL;
aoqi@0 327 }
aoqi@0 328
aoqi@0 329 if (!m->is_loaded()) {
aoqi@0 330 // do not attempt to inline unloaded methods
aoqi@0 331 return NULL;
aoqi@0 332 }
aoqi@0 333
aoqi@0 334 // Only a few intrinsics implement a virtual dispatch.
aoqi@0 335 // They are expensive calls which are also frequently overridden.
aoqi@0 336 if (is_virtual) {
aoqi@0 337 switch (id) {
aoqi@0 338 case vmIntrinsics::_hashCode:
aoqi@0 339 case vmIntrinsics::_clone:
aoqi@0 340 // OK, Object.hashCode and Object.clone intrinsics come in both flavors
aoqi@0 341 break;
aoqi@0 342 default:
aoqi@0 343 return NULL;
aoqi@0 344 }
aoqi@0 345 }
aoqi@0 346
aoqi@0 347 // -XX:-InlineNatives disables nearly all intrinsics:
aoqi@0 348 if (!InlineNatives) {
aoqi@0 349 switch (id) {
aoqi@0 350 case vmIntrinsics::_indexOf:
aoqi@0 351 case vmIntrinsics::_compareTo:
aoqi@0 352 case vmIntrinsics::_equals:
aoqi@0 353 case vmIntrinsics::_equalsC:
aoqi@0 354 case vmIntrinsics::_getAndAddInt:
aoqi@0 355 case vmIntrinsics::_getAndAddLong:
aoqi@0 356 case vmIntrinsics::_getAndSetInt:
aoqi@0 357 case vmIntrinsics::_getAndSetLong:
aoqi@0 358 case vmIntrinsics::_getAndSetObject:
aoqi@0 359 case vmIntrinsics::_loadFence:
aoqi@0 360 case vmIntrinsics::_storeFence:
aoqi@0 361 case vmIntrinsics::_fullFence:
aoqi@0 362 break; // InlineNatives does not control String.compareTo
aoqi@0 363 case vmIntrinsics::_Reference_get:
aoqi@0 364 break; // InlineNatives does not control Reference.get
aoqi@0 365 default:
aoqi@0 366 return NULL;
aoqi@0 367 }
aoqi@0 368 }
aoqi@0 369
aoqi@0 370 bool is_predicted = false;
aoqi@0 371 bool does_virtual_dispatch = false;
aoqi@0 372
aoqi@0 373 switch (id) {
aoqi@0 374 case vmIntrinsics::_compareTo:
aoqi@0 375 if (!SpecialStringCompareTo) return NULL;
aoqi@0 376 if (!Matcher::match_rule_supported(Op_StrComp)) return NULL;
aoqi@0 377 break;
aoqi@0 378 case vmIntrinsics::_indexOf:
aoqi@0 379 if (!SpecialStringIndexOf) return NULL;
aoqi@0 380 break;
aoqi@0 381 case vmIntrinsics::_equals:
aoqi@0 382 if (!SpecialStringEquals) return NULL;
aoqi@0 383 if (!Matcher::match_rule_supported(Op_StrEquals)) return NULL;
aoqi@0 384 break;
aoqi@0 385 case vmIntrinsics::_equalsC:
aoqi@0 386 if (!SpecialArraysEquals) return NULL;
aoqi@0 387 if (!Matcher::match_rule_supported(Op_AryEq)) return NULL;
aoqi@0 388 break;
aoqi@0 389 case vmIntrinsics::_arraycopy:
aoqi@0 390 if (!InlineArrayCopy) return NULL;
aoqi@0 391 break;
aoqi@0 392 case vmIntrinsics::_copyMemory:
aoqi@0 393 if (StubRoutines::unsafe_arraycopy() == NULL) return NULL;
aoqi@0 394 if (!InlineArrayCopy) return NULL;
aoqi@0 395 break;
aoqi@0 396 case vmIntrinsics::_hashCode:
aoqi@0 397 if (!InlineObjectHash) return NULL;
aoqi@0 398 does_virtual_dispatch = true;
aoqi@0 399 break;
aoqi@0 400 case vmIntrinsics::_clone:
aoqi@0 401 does_virtual_dispatch = true;
aoqi@0 402 case vmIntrinsics::_copyOf:
aoqi@0 403 case vmIntrinsics::_copyOfRange:
aoqi@0 404 if (!InlineObjectCopy) return NULL;
aoqi@0 405 // These also use the arraycopy intrinsic mechanism:
aoqi@0 406 if (!InlineArrayCopy) return NULL;
aoqi@0 407 break;
aoqi@0 408 case vmIntrinsics::_encodeISOArray:
aoqi@0 409 if (!SpecialEncodeISOArray) return NULL;
aoqi@0 410 if (!Matcher::match_rule_supported(Op_EncodeISOArray)) return NULL;
aoqi@0 411 break;
aoqi@0 412 case vmIntrinsics::_checkIndex:
aoqi@0 413 // We do not intrinsify this. The optimizer does fine with it.
aoqi@0 414 return NULL;
aoqi@0 415
aoqi@0 416 case vmIntrinsics::_getCallerClass:
aoqi@0 417 if (!UseNewReflection) return NULL;
aoqi@0 418 if (!InlineReflectionGetCallerClass) return NULL;
aoqi@0 419 if (SystemDictionary::reflect_CallerSensitive_klass() == NULL) return NULL;
aoqi@0 420 break;
aoqi@0 421
aoqi@0 422 case vmIntrinsics::_bitCount_i:
aoqi@0 423 if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
aoqi@0 424 break;
aoqi@0 425
aoqi@0 426 case vmIntrinsics::_bitCount_l:
aoqi@0 427 if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
aoqi@0 428 break;
aoqi@0 429
aoqi@0 430 case vmIntrinsics::_numberOfLeadingZeros_i:
aoqi@0 431 if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
aoqi@0 432 break;
aoqi@0 433
aoqi@0 434 case vmIntrinsics::_numberOfLeadingZeros_l:
aoqi@0 435 if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
aoqi@0 436 break;
aoqi@0 437
aoqi@0 438 case vmIntrinsics::_numberOfTrailingZeros_i:
aoqi@0 439 if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
aoqi@0 440 break;
aoqi@0 441
aoqi@0 442 case vmIntrinsics::_numberOfTrailingZeros_l:
aoqi@0 443 if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
aoqi@0 444 break;
aoqi@0 445
aoqi@0 446 case vmIntrinsics::_reverseBytes_c:
aoqi@0 447 if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
aoqi@0 448 break;
aoqi@0 449 case vmIntrinsics::_reverseBytes_s:
aoqi@0 450 if (!Matcher::match_rule_supported(Op_ReverseBytesS)) return NULL;
aoqi@0 451 break;
aoqi@0 452 case vmIntrinsics::_reverseBytes_i:
aoqi@0 453 if (!Matcher::match_rule_supported(Op_ReverseBytesI)) return NULL;
aoqi@0 454 break;
aoqi@0 455 case vmIntrinsics::_reverseBytes_l:
aoqi@0 456 if (!Matcher::match_rule_supported(Op_ReverseBytesL)) return NULL;
aoqi@0 457 break;
aoqi@0 458
aoqi@0 459 case vmIntrinsics::_Reference_get:
aoqi@0 460 // Use the intrinsic version of Reference.get() so that the value in
aoqi@0 461 // the referent field can be registered by the G1 pre-barrier code.
aoqi@0 462 // Also add memory barrier to prevent commoning reads from this field
aoqi@0 463 // across safepoint since GC can change it value.
aoqi@0 464 break;
aoqi@0 465
aoqi@0 466 case vmIntrinsics::_compareAndSwapObject:
aoqi@0 467 #ifdef _LP64
aoqi@0 468 if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
aoqi@0 469 #endif
aoqi@0 470 break;
aoqi@0 471
aoqi@0 472 case vmIntrinsics::_compareAndSwapLong:
aoqi@0 473 if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
aoqi@0 474 break;
aoqi@0 475
aoqi@0 476 case vmIntrinsics::_getAndAddInt:
aoqi@0 477 if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
aoqi@0 478 break;
aoqi@0 479
aoqi@0 480 case vmIntrinsics::_getAndAddLong:
aoqi@0 481 if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
aoqi@0 482 break;
aoqi@0 483
aoqi@0 484 case vmIntrinsics::_getAndSetInt:
aoqi@0 485 if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
aoqi@0 486 break;
aoqi@0 487
aoqi@0 488 case vmIntrinsics::_getAndSetLong:
aoqi@0 489 if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
aoqi@0 490 break;
aoqi@0 491
aoqi@0 492 case vmIntrinsics::_getAndSetObject:
aoqi@0 493 #ifdef _LP64
aoqi@0 494 if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
aoqi@0 495 if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
aoqi@0 496 break;
aoqi@0 497 #else
aoqi@0 498 if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
aoqi@0 499 break;
aoqi@0 500 #endif
aoqi@0 501
aoqi@0 502 case vmIntrinsics::_aescrypt_encryptBlock:
aoqi@0 503 case vmIntrinsics::_aescrypt_decryptBlock:
aoqi@0 504 if (!UseAESIntrinsics) return NULL;
aoqi@0 505 break;
aoqi@0 506
aoqi@0 507 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
aoqi@0 508 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
aoqi@0 509 if (!UseAESIntrinsics) return NULL;
aoqi@0 510 // these two require the predicated logic
aoqi@0 511 is_predicted = true;
aoqi@0 512 break;
aoqi@0 513
aoqi@0 514 case vmIntrinsics::_updateCRC32:
aoqi@0 515 case vmIntrinsics::_updateBytesCRC32:
aoqi@0 516 case vmIntrinsics::_updateByteBufferCRC32:
aoqi@0 517 if (!UseCRC32Intrinsics) return NULL;
aoqi@0 518 break;
aoqi@0 519
aoqi@0 520 case vmIntrinsics::_incrementExactI:
aoqi@0 521 case vmIntrinsics::_addExactI:
aoqi@0 522 if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
aoqi@0 523 break;
aoqi@0 524 case vmIntrinsics::_incrementExactL:
aoqi@0 525 case vmIntrinsics::_addExactL:
aoqi@0 526 if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
aoqi@0 527 break;
aoqi@0 528 case vmIntrinsics::_decrementExactI:
aoqi@0 529 case vmIntrinsics::_subtractExactI:
aoqi@0 530 if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
aoqi@0 531 break;
aoqi@0 532 case vmIntrinsics::_decrementExactL:
aoqi@0 533 case vmIntrinsics::_subtractExactL:
aoqi@0 534 if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
aoqi@0 535 break;
aoqi@0 536 case vmIntrinsics::_negateExactI:
aoqi@0 537 if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
aoqi@0 538 break;
aoqi@0 539 case vmIntrinsics::_negateExactL:
aoqi@0 540 if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
aoqi@0 541 break;
aoqi@0 542 case vmIntrinsics::_multiplyExactI:
aoqi@0 543 if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
aoqi@0 544 break;
aoqi@0 545 case vmIntrinsics::_multiplyExactL:
aoqi@0 546 if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
aoqi@0 547 break;
aoqi@0 548
aoqi@0 549 default:
aoqi@0 550 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
aoqi@0 551 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
aoqi@0 552 break;
aoqi@0 553 }
aoqi@0 554
aoqi@0 555 // -XX:-InlineClassNatives disables natives from the Class class.
aoqi@0 556 // The flag applies to all reflective calls, notably Array.newArray
aoqi@0 557 // (visible to Java programmers as Array.newInstance).
aoqi@0 558 if (m->holder()->name() == ciSymbol::java_lang_Class() ||
aoqi@0 559 m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
aoqi@0 560 if (!InlineClassNatives) return NULL;
aoqi@0 561 }
aoqi@0 562
aoqi@0 563 // -XX:-InlineThreadNatives disables natives from the Thread class.
aoqi@0 564 if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
aoqi@0 565 if (!InlineThreadNatives) return NULL;
aoqi@0 566 }
aoqi@0 567
aoqi@0 568 // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
aoqi@0 569 if (m->holder()->name() == ciSymbol::java_lang_Math() ||
aoqi@0 570 m->holder()->name() == ciSymbol::java_lang_Float() ||
aoqi@0 571 m->holder()->name() == ciSymbol::java_lang_Double()) {
aoqi@0 572 if (!InlineMathNatives) return NULL;
aoqi@0 573 }
aoqi@0 574
aoqi@0 575 // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
aoqi@0 576 if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
aoqi@0 577 if (!InlineUnsafeOps) return NULL;
aoqi@0 578 }
aoqi@0 579
aoqi@0 580 return new LibraryIntrinsic(m, is_virtual, is_predicted, does_virtual_dispatch, (vmIntrinsics::ID) id);
aoqi@0 581 }
aoqi@0 582
aoqi@0 583 //----------------------register_library_intrinsics-----------------------
aoqi@0 584 // Initialize this file's data structures, for each Compile instance.
aoqi@0 585 void Compile::register_library_intrinsics() {
aoqi@0 586 // Nothing to do here.
aoqi@0 587 }
aoqi@0 588
aoqi@0 589 JVMState* LibraryIntrinsic::generate(JVMState* jvms, Parse* parent_parser) {
aoqi@0 590 LibraryCallKit kit(jvms, this);
aoqi@0 591 Compile* C = kit.C;
aoqi@0 592 int nodes = C->unique();
aoqi@0 593 #ifndef PRODUCT
aoqi@0 594 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
aoqi@0 595 char buf[1000];
aoqi@0 596 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
aoqi@0 597 tty->print_cr("Intrinsic %s", str);
aoqi@0 598 }
aoqi@0 599 #endif
aoqi@0 600 ciMethod* callee = kit.callee();
aoqi@0 601 const int bci = kit.bci();
aoqi@0 602
aoqi@0 603 // Try to inline the intrinsic.
aoqi@0 604 if (kit.try_to_inline()) {
aoqi@0 605 if (C->print_intrinsics() || C->print_inlining()) {
aoqi@0 606 C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
aoqi@0 607 }
aoqi@0 608 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
aoqi@0 609 if (C->log()) {
aoqi@0 610 C->log()->elem("intrinsic id='%s'%s nodes='%d'",
aoqi@0 611 vmIntrinsics::name_at(intrinsic_id()),
aoqi@0 612 (is_virtual() ? " virtual='1'" : ""),
aoqi@0 613 C->unique() - nodes);
aoqi@0 614 }
aoqi@0 615 // Push the result from the inlined method onto the stack.
aoqi@0 616 kit.push_result();
aoqi@0 617 return kit.transfer_exceptions_into_jvms();
aoqi@0 618 }
aoqi@0 619
aoqi@0 620 // The intrinsic bailed out
aoqi@0 621 if (C->print_intrinsics() || C->print_inlining()) {
aoqi@0 622 if (jvms->has_method()) {
aoqi@0 623 // Not a root compile.
aoqi@0 624 const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
aoqi@0 625 C->print_inlining(callee, jvms->depth() - 1, bci, msg);
aoqi@0 626 } else {
aoqi@0 627 // Root compile
aoqi@0 628 tty->print("Did not generate intrinsic %s%s at bci:%d in",
aoqi@0 629 vmIntrinsics::name_at(intrinsic_id()),
aoqi@0 630 (is_virtual() ? " (virtual)" : ""), bci);
aoqi@0 631 }
aoqi@0 632 }
aoqi@0 633 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
aoqi@0 634 return NULL;
aoqi@0 635 }
aoqi@0 636
aoqi@0 637 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
aoqi@0 638 LibraryCallKit kit(jvms, this);
aoqi@0 639 Compile* C = kit.C;
aoqi@0 640 int nodes = C->unique();
aoqi@0 641 #ifndef PRODUCT
aoqi@0 642 assert(is_predicted(), "sanity");
aoqi@0 643 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
aoqi@0 644 char buf[1000];
aoqi@0 645 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
aoqi@0 646 tty->print_cr("Predicate for intrinsic %s", str);
aoqi@0 647 }
aoqi@0 648 #endif
aoqi@0 649 ciMethod* callee = kit.callee();
aoqi@0 650 const int bci = kit.bci();
aoqi@0 651
aoqi@0 652 Node* slow_ctl = kit.try_to_predicate();
aoqi@0 653 if (!kit.failing()) {
aoqi@0 654 if (C->print_intrinsics() || C->print_inlining()) {
aoqi@0 655 C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
aoqi@0 656 }
aoqi@0 657 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
aoqi@0 658 if (C->log()) {
aoqi@0 659 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
aoqi@0 660 vmIntrinsics::name_at(intrinsic_id()),
aoqi@0 661 (is_virtual() ? " virtual='1'" : ""),
aoqi@0 662 C->unique() - nodes);
aoqi@0 663 }
aoqi@0 664 return slow_ctl; // Could be NULL if the check folds.
aoqi@0 665 }
aoqi@0 666
aoqi@0 667 // The intrinsic bailed out
aoqi@0 668 if (C->print_intrinsics() || C->print_inlining()) {
aoqi@0 669 if (jvms->has_method()) {
aoqi@0 670 // Not a root compile.
aoqi@0 671 const char* msg = "failed to generate predicate for intrinsic";
aoqi@0 672 C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
aoqi@0 673 } else {
aoqi@0 674 // Root compile
aoqi@0 675 C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
aoqi@0 676 vmIntrinsics::name_at(intrinsic_id()),
aoqi@0 677 (is_virtual() ? " (virtual)" : ""), bci);
aoqi@0 678 }
aoqi@0 679 }
aoqi@0 680 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
aoqi@0 681 return NULL;
aoqi@0 682 }
aoqi@0 683
aoqi@0 684 bool LibraryCallKit::try_to_inline() {
aoqi@0 685 // Handle symbolic names for otherwise undistinguished boolean switches:
aoqi@0 686 const bool is_store = true;
aoqi@0 687 const bool is_native_ptr = true;
aoqi@0 688 const bool is_static = true;
aoqi@0 689 const bool is_volatile = true;
aoqi@0 690
aoqi@0 691 if (!jvms()->has_method()) {
aoqi@0 692 // Root JVMState has a null method.
aoqi@0 693 assert(map()->memory()->Opcode() == Op_Parm, "");
aoqi@0 694 // Insert the memory aliasing node
aoqi@0 695 set_all_memory(reset_memory());
aoqi@0 696 }
aoqi@0 697 assert(merged_memory(), "");
aoqi@0 698
aoqi@0 699
aoqi@0 700 switch (intrinsic_id()) {
aoqi@0 701 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
aoqi@0 702 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static);
aoqi@0 703 case vmIntrinsics::_getClass: return inline_native_getClass();
aoqi@0 704
aoqi@0 705 case vmIntrinsics::_dsin:
aoqi@0 706 case vmIntrinsics::_dcos:
aoqi@0 707 case vmIntrinsics::_dtan:
aoqi@0 708 case vmIntrinsics::_dabs:
aoqi@0 709 case vmIntrinsics::_datan2:
aoqi@0 710 case vmIntrinsics::_dsqrt:
aoqi@0 711 case vmIntrinsics::_dexp:
aoqi@0 712 case vmIntrinsics::_dlog:
aoqi@0 713 case vmIntrinsics::_dlog10:
aoqi@0 714 case vmIntrinsics::_dpow: return inline_math_native(intrinsic_id());
aoqi@0 715
aoqi@0 716 case vmIntrinsics::_min:
aoqi@0 717 case vmIntrinsics::_max: return inline_min_max(intrinsic_id());
aoqi@0 718
aoqi@0 719 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */);
aoqi@0 720 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */);
aoqi@0 721 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */);
aoqi@0 722 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */);
aoqi@0 723 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */);
aoqi@0 724 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */);
aoqi@0 725 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI();
aoqi@0 726 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL();
aoqi@0 727 case vmIntrinsics::_negateExactI: return inline_math_negateExactI();
aoqi@0 728 case vmIntrinsics::_negateExactL: return inline_math_negateExactL();
aoqi@0 729 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */);
aoqi@0 730 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */);
aoqi@0 731
aoqi@0 732 case vmIntrinsics::_arraycopy: return inline_arraycopy();
aoqi@0 733
aoqi@0 734 case vmIntrinsics::_compareTo: return inline_string_compareTo();
aoqi@0 735 case vmIntrinsics::_indexOf: return inline_string_indexOf();
aoqi@0 736 case vmIntrinsics::_equals: return inline_string_equals();
aoqi@0 737
aoqi@0 738 case vmIntrinsics::_getObject: return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, !is_volatile);
aoqi@0 739 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
aoqi@0 740 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, !is_volatile);
aoqi@0 741 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, !is_volatile);
aoqi@0 742 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, !is_volatile);
aoqi@0 743 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, !is_volatile);
aoqi@0 744 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, !is_volatile);
aoqi@0 745 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, !is_volatile);
aoqi@0 746 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, !is_volatile);
aoqi@0 747
aoqi@0 748 case vmIntrinsics::_putObject: return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, !is_volatile);
aoqi@0 749 case vmIntrinsics::_putBoolean: return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, !is_volatile);
aoqi@0 750 case vmIntrinsics::_putByte: return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, !is_volatile);
aoqi@0 751 case vmIntrinsics::_putShort: return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, !is_volatile);
aoqi@0 752 case vmIntrinsics::_putChar: return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, !is_volatile);
aoqi@0 753 case vmIntrinsics::_putInt: return inline_unsafe_access(!is_native_ptr, is_store, T_INT, !is_volatile);
aoqi@0 754 case vmIntrinsics::_putLong: return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, !is_volatile);
aoqi@0 755 case vmIntrinsics::_putFloat: return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, !is_volatile);
aoqi@0 756 case vmIntrinsics::_putDouble: return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, !is_volatile);
aoqi@0 757
aoqi@0 758 case vmIntrinsics::_getByte_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE, !is_volatile);
aoqi@0 759 case vmIntrinsics::_getShort_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT, !is_volatile);
aoqi@0 760 case vmIntrinsics::_getChar_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR, !is_volatile);
aoqi@0 761 case vmIntrinsics::_getInt_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_INT, !is_volatile);
aoqi@0 762 case vmIntrinsics::_getLong_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_LONG, !is_volatile);
aoqi@0 763 case vmIntrinsics::_getFloat_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT, !is_volatile);
aoqi@0 764 case vmIntrinsics::_getDouble_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE, !is_volatile);
aoqi@0 765 case vmIntrinsics::_getAddress_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
aoqi@0 766
aoqi@0 767 case vmIntrinsics::_putByte_raw: return inline_unsafe_access( is_native_ptr, is_store, T_BYTE, !is_volatile);
aoqi@0 768 case vmIntrinsics::_putShort_raw: return inline_unsafe_access( is_native_ptr, is_store, T_SHORT, !is_volatile);
aoqi@0 769 case vmIntrinsics::_putChar_raw: return inline_unsafe_access( is_native_ptr, is_store, T_CHAR, !is_volatile);
aoqi@0 770 case vmIntrinsics::_putInt_raw: return inline_unsafe_access( is_native_ptr, is_store, T_INT, !is_volatile);
aoqi@0 771 case vmIntrinsics::_putLong_raw: return inline_unsafe_access( is_native_ptr, is_store, T_LONG, !is_volatile);
aoqi@0 772 case vmIntrinsics::_putFloat_raw: return inline_unsafe_access( is_native_ptr, is_store, T_FLOAT, !is_volatile);
aoqi@0 773 case vmIntrinsics::_putDouble_raw: return inline_unsafe_access( is_native_ptr, is_store, T_DOUBLE, !is_volatile);
aoqi@0 774 case vmIntrinsics::_putAddress_raw: return inline_unsafe_access( is_native_ptr, is_store, T_ADDRESS, !is_volatile);
aoqi@0 775
aoqi@0 776 case vmIntrinsics::_getObjectVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, is_volatile);
aoqi@0 777 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, is_volatile);
aoqi@0 778 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, is_volatile);
aoqi@0 779 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, is_volatile);
aoqi@0 780 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, is_volatile);
aoqi@0 781 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, is_volatile);
aoqi@0 782 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, is_volatile);
aoqi@0 783 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, is_volatile);
aoqi@0 784 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, is_volatile);
aoqi@0 785
aoqi@0 786 case vmIntrinsics::_putObjectVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, is_volatile);
aoqi@0 787 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, is_volatile);
aoqi@0 788 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, is_volatile);
aoqi@0 789 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, is_volatile);
aoqi@0 790 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, is_volatile);
aoqi@0 791 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_INT, is_volatile);
aoqi@0 792 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, is_volatile);
aoqi@0 793 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, is_volatile);
aoqi@0 794 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, is_volatile);
aoqi@0 795
aoqi@0 796 case vmIntrinsics::_prefetchRead: return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
aoqi@0 797 case vmIntrinsics::_prefetchWrite: return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
aoqi@0 798 case vmIntrinsics::_prefetchReadStatic: return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
aoqi@0 799 case vmIntrinsics::_prefetchWriteStatic: return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
aoqi@0 800
aoqi@0 801 case vmIntrinsics::_compareAndSwapObject: return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
aoqi@0 802 case vmIntrinsics::_compareAndSwapInt: return inline_unsafe_load_store(T_INT, LS_cmpxchg);
aoqi@0 803 case vmIntrinsics::_compareAndSwapLong: return inline_unsafe_load_store(T_LONG, LS_cmpxchg);
aoqi@0 804
aoqi@0 805 case vmIntrinsics::_putOrderedObject: return inline_unsafe_ordered_store(T_OBJECT);
aoqi@0 806 case vmIntrinsics::_putOrderedInt: return inline_unsafe_ordered_store(T_INT);
aoqi@0 807 case vmIntrinsics::_putOrderedLong: return inline_unsafe_ordered_store(T_LONG);
aoqi@0 808
aoqi@0 809 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_xadd);
aoqi@0 810 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_xadd);
aoqi@0 811 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_xchg);
aoqi@0 812 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_xchg);
aoqi@0 813 case vmIntrinsics::_getAndSetObject: return inline_unsafe_load_store(T_OBJECT, LS_xchg);
aoqi@0 814
aoqi@0 815 case vmIntrinsics::_loadFence:
aoqi@0 816 case vmIntrinsics::_storeFence:
aoqi@0 817 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id());
aoqi@0 818
aoqi@0 819 case vmIntrinsics::_currentThread: return inline_native_currentThread();
aoqi@0 820 case vmIntrinsics::_isInterrupted: return inline_native_isInterrupted();
aoqi@0 821
aoqi@0 822 #ifdef TRACE_HAVE_INTRINSICS
aoqi@0 823 case vmIntrinsics::_classID: return inline_native_classID();
aoqi@0 824 case vmIntrinsics::_threadID: return inline_native_threadID();
aoqi@0 825 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
aoqi@0 826 #endif
aoqi@0 827 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
aoqi@0 828 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
aoqi@0 829 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate();
aoqi@0 830 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory();
aoqi@0 831 case vmIntrinsics::_newArray: return inline_native_newArray();
aoqi@0 832 case vmIntrinsics::_getLength: return inline_native_getLength();
aoqi@0 833 case vmIntrinsics::_copyOf: return inline_array_copyOf(false);
aoqi@0 834 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true);
aoqi@0 835 case vmIntrinsics::_equalsC: return inline_array_equals();
aoqi@0 836 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual());
aoqi@0 837
aoqi@0 838 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check();
aoqi@0 839
aoqi@0 840 case vmIntrinsics::_isInstance:
aoqi@0 841 case vmIntrinsics::_getModifiers:
aoqi@0 842 case vmIntrinsics::_isInterface:
aoqi@0 843 case vmIntrinsics::_isArray:
aoqi@0 844 case vmIntrinsics::_isPrimitive:
aoqi@0 845 case vmIntrinsics::_getSuperclass:
aoqi@0 846 case vmIntrinsics::_getComponentType:
aoqi@0 847 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id());
aoqi@0 848
aoqi@0 849 case vmIntrinsics::_floatToRawIntBits:
aoqi@0 850 case vmIntrinsics::_floatToIntBits:
aoqi@0 851 case vmIntrinsics::_intBitsToFloat:
aoqi@0 852 case vmIntrinsics::_doubleToRawLongBits:
aoqi@0 853 case vmIntrinsics::_doubleToLongBits:
aoqi@0 854 case vmIntrinsics::_longBitsToDouble: return inline_fp_conversions(intrinsic_id());
aoqi@0 855
aoqi@0 856 case vmIntrinsics::_numberOfLeadingZeros_i:
aoqi@0 857 case vmIntrinsics::_numberOfLeadingZeros_l:
aoqi@0 858 case vmIntrinsics::_numberOfTrailingZeros_i:
aoqi@0 859 case vmIntrinsics::_numberOfTrailingZeros_l:
aoqi@0 860 case vmIntrinsics::_bitCount_i:
aoqi@0 861 case vmIntrinsics::_bitCount_l:
aoqi@0 862 case vmIntrinsics::_reverseBytes_i:
aoqi@0 863 case vmIntrinsics::_reverseBytes_l:
aoqi@0 864 case vmIntrinsics::_reverseBytes_s:
aoqi@0 865 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id());
aoqi@0 866
aoqi@0 867 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass();
aoqi@0 868
aoqi@0 869 case vmIntrinsics::_Reference_get: return inline_reference_get();
aoqi@0 870
aoqi@0 871 case vmIntrinsics::_aescrypt_encryptBlock:
aoqi@0 872 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id());
aoqi@0 873
aoqi@0 874 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
aoqi@0 875 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
aoqi@0 876 return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
aoqi@0 877
aoqi@0 878 case vmIntrinsics::_encodeISOArray:
aoqi@0 879 return inline_encodeISOArray();
aoqi@0 880
aoqi@0 881 case vmIntrinsics::_updateCRC32:
aoqi@0 882 return inline_updateCRC32();
aoqi@0 883 case vmIntrinsics::_updateBytesCRC32:
aoqi@0 884 return inline_updateBytesCRC32();
aoqi@0 885 case vmIntrinsics::_updateByteBufferCRC32:
aoqi@0 886 return inline_updateByteBufferCRC32();
aoqi@0 887
aoqi@0 888 default:
aoqi@0 889 // If you get here, it may be that someone has added a new intrinsic
aoqi@0 890 // to the list in vmSymbols.hpp without implementing it here.
aoqi@0 891 #ifndef PRODUCT
aoqi@0 892 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
aoqi@0 893 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
aoqi@0 894 vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
aoqi@0 895 }
aoqi@0 896 #endif
aoqi@0 897 return false;
aoqi@0 898 }
aoqi@0 899 }
aoqi@0 900
aoqi@0 901 Node* LibraryCallKit::try_to_predicate() {
aoqi@0 902 if (!jvms()->has_method()) {
aoqi@0 903 // Root JVMState has a null method.
aoqi@0 904 assert(map()->memory()->Opcode() == Op_Parm, "");
aoqi@0 905 // Insert the memory aliasing node
aoqi@0 906 set_all_memory(reset_memory());
aoqi@0 907 }
aoqi@0 908 assert(merged_memory(), "");
aoqi@0 909
aoqi@0 910 switch (intrinsic_id()) {
aoqi@0 911 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
aoqi@0 912 return inline_cipherBlockChaining_AESCrypt_predicate(false);
aoqi@0 913 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
aoqi@0 914 return inline_cipherBlockChaining_AESCrypt_predicate(true);
aoqi@0 915
aoqi@0 916 default:
aoqi@0 917 // If you get here, it may be that someone has added a new intrinsic
aoqi@0 918 // to the list in vmSymbols.hpp without implementing it here.
aoqi@0 919 #ifndef PRODUCT
aoqi@0 920 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
aoqi@0 921 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
aoqi@0 922 vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
aoqi@0 923 }
aoqi@0 924 #endif
aoqi@0 925 Node* slow_ctl = control();
aoqi@0 926 set_control(top()); // No fast path instrinsic
aoqi@0 927 return slow_ctl;
aoqi@0 928 }
aoqi@0 929 }
aoqi@0 930
aoqi@0 931 //------------------------------set_result-------------------------------
aoqi@0 932 // Helper function for finishing intrinsics.
aoqi@0 933 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
aoqi@0 934 record_for_igvn(region);
aoqi@0 935 set_control(_gvn.transform(region));
aoqi@0 936 set_result( _gvn.transform(value));
aoqi@0 937 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
aoqi@0 938 }
aoqi@0 939
aoqi@0 940 //------------------------------generate_guard---------------------------
aoqi@0 941 // Helper function for generating guarded fast-slow graph structures.
aoqi@0 942 // The given 'test', if true, guards a slow path. If the test fails
aoqi@0 943 // then a fast path can be taken. (We generally hope it fails.)
aoqi@0 944 // In all cases, GraphKit::control() is updated to the fast path.
aoqi@0 945 // The returned value represents the control for the slow path.
aoqi@0 946 // The return value is never 'top'; it is either a valid control
aoqi@0 947 // or NULL if it is obvious that the slow path can never be taken.
aoqi@0 948 // Also, if region and the slow control are not NULL, the slow edge
aoqi@0 949 // is appended to the region.
aoqi@0 950 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
aoqi@0 951 if (stopped()) {
aoqi@0 952 // Already short circuited.
aoqi@0 953 return NULL;
aoqi@0 954 }
aoqi@0 955
aoqi@0 956 // Build an if node and its projections.
aoqi@0 957 // If test is true we take the slow path, which we assume is uncommon.
aoqi@0 958 if (_gvn.type(test) == TypeInt::ZERO) {
aoqi@0 959 // The slow branch is never taken. No need to build this guard.
aoqi@0 960 return NULL;
aoqi@0 961 }
aoqi@0 962
aoqi@0 963 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
aoqi@0 964
aoqi@0 965 Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
aoqi@0 966 if (if_slow == top()) {
aoqi@0 967 // The slow branch is never taken. No need to build this guard.
aoqi@0 968 return NULL;
aoqi@0 969 }
aoqi@0 970
aoqi@0 971 if (region != NULL)
aoqi@0 972 region->add_req(if_slow);
aoqi@0 973
aoqi@0 974 Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
aoqi@0 975 set_control(if_fast);
aoqi@0 976
aoqi@0 977 return if_slow;
aoqi@0 978 }
aoqi@0 979
aoqi@0 980 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
aoqi@0 981 return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
aoqi@0 982 }
aoqi@0 983 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
aoqi@0 984 return generate_guard(test, region, PROB_FAIR);
aoqi@0 985 }
aoqi@0 986
aoqi@0 987 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
aoqi@0 988 Node* *pos_index) {
aoqi@0 989 if (stopped())
aoqi@0 990 return NULL; // already stopped
aoqi@0 991 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
aoqi@0 992 return NULL; // index is already adequately typed
aoqi@0 993 Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
aoqi@0 994 Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
aoqi@0 995 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
aoqi@0 996 if (is_neg != NULL && pos_index != NULL) {
aoqi@0 997 // Emulate effect of Parse::adjust_map_after_if.
aoqi@0 998 Node* ccast = new (C) CastIINode(index, TypeInt::POS);
aoqi@0 999 ccast->set_req(0, control());
aoqi@0 1000 (*pos_index) = _gvn.transform(ccast);
aoqi@0 1001 }
aoqi@0 1002 return is_neg;
aoqi@0 1003 }
aoqi@0 1004
aoqi@0 1005 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
aoqi@0 1006 Node* *pos_index) {
aoqi@0 1007 if (stopped())
aoqi@0 1008 return NULL; // already stopped
aoqi@0 1009 if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
aoqi@0 1010 return NULL; // index is already adequately typed
aoqi@0 1011 Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
aoqi@0 1012 BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
aoqi@0 1013 Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
aoqi@0 1014 Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
aoqi@0 1015 if (is_notp != NULL && pos_index != NULL) {
aoqi@0 1016 // Emulate effect of Parse::adjust_map_after_if.
aoqi@0 1017 Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
aoqi@0 1018 ccast->set_req(0, control());
aoqi@0 1019 (*pos_index) = _gvn.transform(ccast);
aoqi@0 1020 }
aoqi@0 1021 return is_notp;
aoqi@0 1022 }
aoqi@0 1023
aoqi@0 1024 // Make sure that 'position' is a valid limit index, in [0..length].
aoqi@0 1025 // There are two equivalent plans for checking this:
aoqi@0 1026 // A. (offset + copyLength) unsigned<= arrayLength
aoqi@0 1027 // B. offset <= (arrayLength - copyLength)
aoqi@0 1028 // We require that all of the values above, except for the sum and
aoqi@0 1029 // difference, are already known to be non-negative.
aoqi@0 1030 // Plan A is robust in the face of overflow, if offset and copyLength
aoqi@0 1031 // are both hugely positive.
aoqi@0 1032 //
aoqi@0 1033 // Plan B is less direct and intuitive, but it does not overflow at
aoqi@0 1034 // all, since the difference of two non-negatives is always
aoqi@0 1035 // representable. Whenever Java methods must perform the equivalent
aoqi@0 1036 // check they generally use Plan B instead of Plan A.
aoqi@0 1037 // For the moment we use Plan A.
aoqi@0 1038 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
aoqi@0 1039 Node* subseq_length,
aoqi@0 1040 Node* array_length,
aoqi@0 1041 RegionNode* region) {
aoqi@0 1042 if (stopped())
aoqi@0 1043 return NULL; // already stopped
aoqi@0 1044 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
aoqi@0 1045 if (zero_offset && subseq_length->eqv_uncast(array_length))
aoqi@0 1046 return NULL; // common case of whole-array copy
aoqi@0 1047 Node* last = subseq_length;
aoqi@0 1048 if (!zero_offset) // last += offset
aoqi@0 1049 last = _gvn.transform(new (C) AddINode(last, offset));
aoqi@0 1050 Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
aoqi@0 1051 Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
aoqi@0 1052 Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
aoqi@0 1053 return is_over;
aoqi@0 1054 }
aoqi@0 1055
aoqi@0 1056
aoqi@0 1057 //--------------------------generate_current_thread--------------------
aoqi@0 1058 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
aoqi@0 1059 ciKlass* thread_klass = env()->Thread_klass();
aoqi@0 1060 const Type* thread_type = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
aoqi@0 1061 Node* thread = _gvn.transform(new (C) ThreadLocalNode());
aoqi@0 1062 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
aoqi@0 1063 Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
aoqi@0 1064 tls_output = thread;
aoqi@0 1065 return threadObj;
aoqi@0 1066 }
aoqi@0 1067
aoqi@0 1068
aoqi@0 1069 //------------------------------make_string_method_node------------------------
aoqi@0 1070 // Helper method for String intrinsic functions. This version is called
aoqi@0 1071 // with str1 and str2 pointing to String object nodes.
aoqi@0 1072 //
aoqi@0 1073 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
aoqi@0 1074 Node* no_ctrl = NULL;
aoqi@0 1075
aoqi@0 1076 // Get start addr of string
aoqi@0 1077 Node* str1_value = load_String_value(no_ctrl, str1);
aoqi@0 1078 Node* str1_offset = load_String_offset(no_ctrl, str1);
aoqi@0 1079 Node* str1_start = array_element_address(str1_value, str1_offset, T_CHAR);
aoqi@0 1080
aoqi@0 1081 // Get length of string 1
aoqi@0 1082 Node* str1_len = load_String_length(no_ctrl, str1);
aoqi@0 1083
aoqi@0 1084 Node* str2_value = load_String_value(no_ctrl, str2);
aoqi@0 1085 Node* str2_offset = load_String_offset(no_ctrl, str2);
aoqi@0 1086 Node* str2_start = array_element_address(str2_value, str2_offset, T_CHAR);
aoqi@0 1087
aoqi@0 1088 Node* str2_len = NULL;
aoqi@0 1089 Node* result = NULL;
aoqi@0 1090
aoqi@0 1091 switch (opcode) {
aoqi@0 1092 case Op_StrIndexOf:
aoqi@0 1093 // Get length of string 2
aoqi@0 1094 str2_len = load_String_length(no_ctrl, str2);
aoqi@0 1095
aoqi@0 1096 result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
aoqi@0 1097 str1_start, str1_len, str2_start, str2_len);
aoqi@0 1098 break;
aoqi@0 1099 case Op_StrComp:
aoqi@0 1100 // Get length of string 2
aoqi@0 1101 str2_len = load_String_length(no_ctrl, str2);
aoqi@0 1102
aoqi@0 1103 result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
aoqi@0 1104 str1_start, str1_len, str2_start, str2_len);
aoqi@0 1105 break;
aoqi@0 1106 case Op_StrEquals:
aoqi@0 1107 result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
aoqi@0 1108 str1_start, str2_start, str1_len);
aoqi@0 1109 break;
aoqi@0 1110 default:
aoqi@0 1111 ShouldNotReachHere();
aoqi@0 1112 return NULL;
aoqi@0 1113 }
aoqi@0 1114
aoqi@0 1115 // All these intrinsics have checks.
aoqi@0 1116 C->set_has_split_ifs(true); // Has chance for split-if optimization
aoqi@0 1117
aoqi@0 1118 return _gvn.transform(result);
aoqi@0 1119 }
aoqi@0 1120
aoqi@0 1121 // Helper method for String intrinsic functions. This version is called
aoqi@0 1122 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
aoqi@0 1123 // to Int nodes containing the lenghts of str1 and str2.
aoqi@0 1124 //
aoqi@0 1125 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
aoqi@0 1126 Node* result = NULL;
aoqi@0 1127 switch (opcode) {
aoqi@0 1128 case Op_StrIndexOf:
aoqi@0 1129 result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
aoqi@0 1130 str1_start, cnt1, str2_start, cnt2);
aoqi@0 1131 break;
aoqi@0 1132 case Op_StrComp:
aoqi@0 1133 result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
aoqi@0 1134 str1_start, cnt1, str2_start, cnt2);
aoqi@0 1135 break;
aoqi@0 1136 case Op_StrEquals:
aoqi@0 1137 result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
aoqi@0 1138 str1_start, str2_start, cnt1);
aoqi@0 1139 break;
aoqi@0 1140 default:
aoqi@0 1141 ShouldNotReachHere();
aoqi@0 1142 return NULL;
aoqi@0 1143 }
aoqi@0 1144
aoqi@0 1145 // All these intrinsics have checks.
aoqi@0 1146 C->set_has_split_ifs(true); // Has chance for split-if optimization
aoqi@0 1147
aoqi@0 1148 return _gvn.transform(result);
aoqi@0 1149 }
aoqi@0 1150
aoqi@0 1151 //------------------------------inline_string_compareTo------------------------
aoqi@0 1152 // public int java.lang.String.compareTo(String anotherString);
aoqi@0 1153 bool LibraryCallKit::inline_string_compareTo() {
aoqi@0 1154 Node* receiver = null_check(argument(0));
aoqi@0 1155 Node* arg = null_check(argument(1));
aoqi@0 1156 if (stopped()) {
aoqi@0 1157 return true;
aoqi@0 1158 }
aoqi@0 1159 set_result(make_string_method_node(Op_StrComp, receiver, arg));
aoqi@0 1160 return true;
aoqi@0 1161 }
aoqi@0 1162
aoqi@0 1163 //------------------------------inline_string_equals------------------------
aoqi@0 1164 bool LibraryCallKit::inline_string_equals() {
aoqi@0 1165 Node* receiver = null_check_receiver();
aoqi@0 1166 // NOTE: Do not null check argument for String.equals() because spec
aoqi@0 1167 // allows to specify NULL as argument.
aoqi@0 1168 Node* argument = this->argument(1);
aoqi@0 1169 if (stopped()) {
aoqi@0 1170 return true;
aoqi@0 1171 }
aoqi@0 1172
aoqi@0 1173 // paths (plus control) merge
aoqi@0 1174 RegionNode* region = new (C) RegionNode(5);
aoqi@0 1175 Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
aoqi@0 1176
aoqi@0 1177 // does source == target string?
aoqi@0 1178 Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
aoqi@0 1179 Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
aoqi@0 1180
aoqi@0 1181 Node* if_eq = generate_slow_guard(bol, NULL);
aoqi@0 1182 if (if_eq != NULL) {
aoqi@0 1183 // receiver == argument
aoqi@0 1184 phi->init_req(2, intcon(1));
aoqi@0 1185 region->init_req(2, if_eq);
aoqi@0 1186 }
aoqi@0 1187
aoqi@0 1188 // get String klass for instanceOf
aoqi@0 1189 ciInstanceKlass* klass = env()->String_klass();
aoqi@0 1190
aoqi@0 1191 if (!stopped()) {
aoqi@0 1192 Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
aoqi@0 1193 Node* cmp = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
aoqi@0 1194 Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
aoqi@0 1195
aoqi@0 1196 Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
aoqi@0 1197 //instanceOf == true, fallthrough
aoqi@0 1198
aoqi@0 1199 if (inst_false != NULL) {
aoqi@0 1200 phi->init_req(3, intcon(0));
aoqi@0 1201 region->init_req(3, inst_false);
aoqi@0 1202 }
aoqi@0 1203 }
aoqi@0 1204
aoqi@0 1205 if (!stopped()) {
aoqi@0 1206 const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
aoqi@0 1207
aoqi@0 1208 // Properly cast the argument to String
aoqi@0 1209 argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
aoqi@0 1210 // This path is taken only when argument's type is String:NotNull.
aoqi@0 1211 argument = cast_not_null(argument, false);
aoqi@0 1212
aoqi@0 1213 Node* no_ctrl = NULL;
aoqi@0 1214
aoqi@0 1215 // Get start addr of receiver
aoqi@0 1216 Node* receiver_val = load_String_value(no_ctrl, receiver);
aoqi@0 1217 Node* receiver_offset = load_String_offset(no_ctrl, receiver);
aoqi@0 1218 Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
aoqi@0 1219
aoqi@0 1220 // Get length of receiver
aoqi@0 1221 Node* receiver_cnt = load_String_length(no_ctrl, receiver);
aoqi@0 1222
aoqi@0 1223 // Get start addr of argument
aoqi@0 1224 Node* argument_val = load_String_value(no_ctrl, argument);
aoqi@0 1225 Node* argument_offset = load_String_offset(no_ctrl, argument);
aoqi@0 1226 Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
aoqi@0 1227
aoqi@0 1228 // Get length of argument
aoqi@0 1229 Node* argument_cnt = load_String_length(no_ctrl, argument);
aoqi@0 1230
aoqi@0 1231 // Check for receiver count != argument count
aoqi@0 1232 Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
aoqi@0 1233 Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
aoqi@0 1234 Node* if_ne = generate_slow_guard(bol, NULL);
aoqi@0 1235 if (if_ne != NULL) {
aoqi@0 1236 phi->init_req(4, intcon(0));
aoqi@0 1237 region->init_req(4, if_ne);
aoqi@0 1238 }
aoqi@0 1239
aoqi@0 1240 // Check for count == 0 is done by assembler code for StrEquals.
aoqi@0 1241
aoqi@0 1242 if (!stopped()) {
aoqi@0 1243 Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
aoqi@0 1244 phi->init_req(1, equals);
aoqi@0 1245 region->init_req(1, control());
aoqi@0 1246 }
aoqi@0 1247 }
aoqi@0 1248
aoqi@0 1249 // post merge
aoqi@0 1250 set_control(_gvn.transform(region));
aoqi@0 1251 record_for_igvn(region);
aoqi@0 1252
aoqi@0 1253 set_result(_gvn.transform(phi));
aoqi@0 1254 return true;
aoqi@0 1255 }
aoqi@0 1256
aoqi@0 1257 //------------------------------inline_array_equals----------------------------
aoqi@0 1258 bool LibraryCallKit::inline_array_equals() {
aoqi@0 1259 Node* arg1 = argument(0);
aoqi@0 1260 Node* arg2 = argument(1);
aoqi@0 1261 set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
aoqi@0 1262 return true;
aoqi@0 1263 }
aoqi@0 1264
aoqi@0 1265 // Java version of String.indexOf(constant string)
aoqi@0 1266 // class StringDecl {
aoqi@0 1267 // StringDecl(char[] ca) {
aoqi@0 1268 // offset = 0;
aoqi@0 1269 // count = ca.length;
aoqi@0 1270 // value = ca;
aoqi@0 1271 // }
aoqi@0 1272 // int offset;
aoqi@0 1273 // int count;
aoqi@0 1274 // char[] value;
aoqi@0 1275 // }
aoqi@0 1276 //
aoqi@0 1277 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
aoqi@0 1278 // int targetOffset, int cache_i, int md2) {
aoqi@0 1279 // int cache = cache_i;
aoqi@0 1280 // int sourceOffset = string_object.offset;
aoqi@0 1281 // int sourceCount = string_object.count;
aoqi@0 1282 // int targetCount = target_object.length;
aoqi@0 1283 //
aoqi@0 1284 // int targetCountLess1 = targetCount - 1;
aoqi@0 1285 // int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
aoqi@0 1286 //
aoqi@0 1287 // char[] source = string_object.value;
aoqi@0 1288 // char[] target = target_object;
aoqi@0 1289 // int lastChar = target[targetCountLess1];
aoqi@0 1290 //
aoqi@0 1291 // outer_loop:
aoqi@0 1292 // for (int i = sourceOffset; i < sourceEnd; ) {
aoqi@0 1293 // int src = source[i + targetCountLess1];
aoqi@0 1294 // if (src == lastChar) {
aoqi@0 1295 // // With random strings and a 4-character alphabet,
aoqi@0 1296 // // reverse matching at this point sets up 0.8% fewer
aoqi@0 1297 // // frames, but (paradoxically) makes 0.3% more probes.
aoqi@0 1298 // // Since those probes are nearer the lastChar probe,
aoqi@0 1299 // // there is may be a net D$ win with reverse matching.
aoqi@0 1300 // // But, reversing loop inhibits unroll of inner loop
aoqi@0 1301 // // for unknown reason. So, does running outer loop from
aoqi@0 1302 // // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
aoqi@0 1303 // for (int j = 0; j < targetCountLess1; j++) {
aoqi@0 1304 // if (target[targetOffset + j] != source[i+j]) {
aoqi@0 1305 // if ((cache & (1 << source[i+j])) == 0) {
aoqi@0 1306 // if (md2 < j+1) {
aoqi@0 1307 // i += j+1;
aoqi@0 1308 // continue outer_loop;
aoqi@0 1309 // }
aoqi@0 1310 // }
aoqi@0 1311 // i += md2;
aoqi@0 1312 // continue outer_loop;
aoqi@0 1313 // }
aoqi@0 1314 // }
aoqi@0 1315 // return i - sourceOffset;
aoqi@0 1316 // }
aoqi@0 1317 // if ((cache & (1 << src)) == 0) {
aoqi@0 1318 // i += targetCountLess1;
aoqi@0 1319 // } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
aoqi@0 1320 // i++;
aoqi@0 1321 // }
aoqi@0 1322 // return -1;
aoqi@0 1323 // }
aoqi@0 1324
aoqi@0 1325 //------------------------------string_indexOf------------------------
aoqi@0 1326 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
aoqi@0 1327 jint cache_i, jint md2_i) {
aoqi@0 1328
aoqi@0 1329 Node* no_ctrl = NULL;
aoqi@0 1330 float likely = PROB_LIKELY(0.9);
aoqi@0 1331 float unlikely = PROB_UNLIKELY(0.9);
aoqi@0 1332
aoqi@0 1333 const int nargs = 0; // no arguments to push back for uncommon trap in predicate
aoqi@0 1334
aoqi@0 1335 Node* source = load_String_value(no_ctrl, string_object);
aoqi@0 1336 Node* sourceOffset = load_String_offset(no_ctrl, string_object);
aoqi@0 1337 Node* sourceCount = load_String_length(no_ctrl, string_object);
aoqi@0 1338
aoqi@0 1339 Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
aoqi@0 1340 jint target_length = target_array->length();
aoqi@0 1341 const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
aoqi@0 1342 const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
aoqi@0 1343
aoqi@0 1344 // String.value field is known to be @Stable.
aoqi@0 1345 if (UseImplicitStableValues) {
aoqi@0 1346 target = cast_array_to_stable(target, target_type);
aoqi@0 1347 }
aoqi@0 1348
aoqi@0 1349 IdealKit kit(this, false, true);
aoqi@0 1350 #define __ kit.
aoqi@0 1351 Node* zero = __ ConI(0);
aoqi@0 1352 Node* one = __ ConI(1);
aoqi@0 1353 Node* cache = __ ConI(cache_i);
aoqi@0 1354 Node* md2 = __ ConI(md2_i);
aoqi@0 1355 Node* lastChar = __ ConI(target_array->char_at(target_length - 1));
aoqi@0 1356 Node* targetCount = __ ConI(target_length);
aoqi@0 1357 Node* targetCountLess1 = __ ConI(target_length - 1);
aoqi@0 1358 Node* targetOffset = __ ConI(targetOffset_i);
aoqi@0 1359 Node* sourceEnd = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
aoqi@0 1360
aoqi@0 1361 IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
aoqi@0 1362 Node* outer_loop = __ make_label(2 /* goto */);
aoqi@0 1363 Node* return_ = __ make_label(1);
aoqi@0 1364
aoqi@0 1365 __ set(rtn,__ ConI(-1));
aoqi@0 1366 __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
aoqi@0 1367 Node* i2 = __ AddI(__ value(i), targetCountLess1);
aoqi@0 1368 // pin to prohibit loading of "next iteration" value which may SEGV (rare)
aoqi@0 1369 Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
aoqi@0 1370 __ if_then(src, BoolTest::eq, lastChar, unlikely); {
aoqi@0 1371 __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
aoqi@0 1372 Node* tpj = __ AddI(targetOffset, __ value(j));
aoqi@0 1373 Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
aoqi@0 1374 Node* ipj = __ AddI(__ value(i), __ value(j));
aoqi@0 1375 Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
aoqi@0 1376 __ if_then(targ, BoolTest::ne, src2); {
aoqi@0 1377 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
aoqi@0 1378 __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
aoqi@0 1379 __ increment(i, __ AddI(__ value(j), one));
aoqi@0 1380 __ goto_(outer_loop);
aoqi@0 1381 } __ end_if(); __ dead(j);
aoqi@0 1382 }__ end_if(); __ dead(j);
aoqi@0 1383 __ increment(i, md2);
aoqi@0 1384 __ goto_(outer_loop);
aoqi@0 1385 }__ end_if();
aoqi@0 1386 __ increment(j, one);
aoqi@0 1387 }__ end_loop(); __ dead(j);
aoqi@0 1388 __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
aoqi@0 1389 __ goto_(return_);
aoqi@0 1390 }__ end_if();
aoqi@0 1391 __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
aoqi@0 1392 __ increment(i, targetCountLess1);
aoqi@0 1393 }__ end_if();
aoqi@0 1394 __ increment(i, one);
aoqi@0 1395 __ bind(outer_loop);
aoqi@0 1396 }__ end_loop(); __ dead(i);
aoqi@0 1397 __ bind(return_);
aoqi@0 1398
aoqi@0 1399 // Final sync IdealKit and GraphKit.
aoqi@0 1400 final_sync(kit);
aoqi@0 1401 Node* result = __ value(rtn);
aoqi@0 1402 #undef __
aoqi@0 1403 C->set_has_loops(true);
aoqi@0 1404 return result;
aoqi@0 1405 }
aoqi@0 1406
aoqi@0 1407 //------------------------------inline_string_indexOf------------------------
aoqi@0 1408 bool LibraryCallKit::inline_string_indexOf() {
aoqi@0 1409 Node* receiver = argument(0);
aoqi@0 1410 Node* arg = argument(1);
aoqi@0 1411
aoqi@0 1412 Node* result;
aoqi@0 1413 // Disable the use of pcmpestri until it can be guaranteed that
aoqi@0 1414 // the load doesn't cross into the uncommited space.
aoqi@0 1415 if (Matcher::has_match_rule(Op_StrIndexOf) &&
aoqi@0 1416 UseSSE42Intrinsics) {
aoqi@0 1417 // Generate SSE4.2 version of indexOf
aoqi@0 1418 // We currently only have match rules that use SSE4.2
aoqi@0 1419
aoqi@0 1420 receiver = null_check(receiver);
aoqi@0 1421 arg = null_check(arg);
aoqi@0 1422 if (stopped()) {
aoqi@0 1423 return true;
aoqi@0 1424 }
aoqi@0 1425
aoqi@0 1426 ciInstanceKlass* str_klass = env()->String_klass();
aoqi@0 1427 const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
aoqi@0 1428
aoqi@0 1429 // Make the merge point
aoqi@0 1430 RegionNode* result_rgn = new (C) RegionNode(4);
aoqi@0 1431 Node* result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
aoqi@0 1432 Node* no_ctrl = NULL;
aoqi@0 1433
aoqi@0 1434 // Get start addr of source string
aoqi@0 1435 Node* source = load_String_value(no_ctrl, receiver);
aoqi@0 1436 Node* source_offset = load_String_offset(no_ctrl, receiver);
aoqi@0 1437 Node* source_start = array_element_address(source, source_offset, T_CHAR);
aoqi@0 1438
aoqi@0 1439 // Get length of source string
aoqi@0 1440 Node* source_cnt = load_String_length(no_ctrl, receiver);
aoqi@0 1441
aoqi@0 1442 // Get start addr of substring
aoqi@0 1443 Node* substr = load_String_value(no_ctrl, arg);
aoqi@0 1444 Node* substr_offset = load_String_offset(no_ctrl, arg);
aoqi@0 1445 Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
aoqi@0 1446
aoqi@0 1447 // Get length of source string
aoqi@0 1448 Node* substr_cnt = load_String_length(no_ctrl, arg);
aoqi@0 1449
aoqi@0 1450 // Check for substr count > string count
aoqi@0 1451 Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
aoqi@0 1452 Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
aoqi@0 1453 Node* if_gt = generate_slow_guard(bol, NULL);
aoqi@0 1454 if (if_gt != NULL) {
aoqi@0 1455 result_phi->init_req(2, intcon(-1));
aoqi@0 1456 result_rgn->init_req(2, if_gt);
aoqi@0 1457 }
aoqi@0 1458
aoqi@0 1459 if (!stopped()) {
aoqi@0 1460 // Check for substr count == 0
aoqi@0 1461 cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
aoqi@0 1462 bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
aoqi@0 1463 Node* if_zero = generate_slow_guard(bol, NULL);
aoqi@0 1464 if (if_zero != NULL) {
aoqi@0 1465 result_phi->init_req(3, intcon(0));
aoqi@0 1466 result_rgn->init_req(3, if_zero);
aoqi@0 1467 }
aoqi@0 1468 }
aoqi@0 1469
aoqi@0 1470 if (!stopped()) {
aoqi@0 1471 result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
aoqi@0 1472 result_phi->init_req(1, result);
aoqi@0 1473 result_rgn->init_req(1, control());
aoqi@0 1474 }
aoqi@0 1475 set_control(_gvn.transform(result_rgn));
aoqi@0 1476 record_for_igvn(result_rgn);
aoqi@0 1477 result = _gvn.transform(result_phi);
aoqi@0 1478
aoqi@0 1479 } else { // Use LibraryCallKit::string_indexOf
aoqi@0 1480 // don't intrinsify if argument isn't a constant string.
aoqi@0 1481 if (!arg->is_Con()) {
aoqi@0 1482 return false;
aoqi@0 1483 }
aoqi@0 1484 const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
aoqi@0 1485 if (str_type == NULL) {
aoqi@0 1486 return false;
aoqi@0 1487 }
aoqi@0 1488 ciInstanceKlass* klass = env()->String_klass();
aoqi@0 1489 ciObject* str_const = str_type->const_oop();
aoqi@0 1490 if (str_const == NULL || str_const->klass() != klass) {
aoqi@0 1491 return false;
aoqi@0 1492 }
aoqi@0 1493 ciInstance* str = str_const->as_instance();
aoqi@0 1494 assert(str != NULL, "must be instance");
aoqi@0 1495
aoqi@0 1496 ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
aoqi@0 1497 ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
aoqi@0 1498
aoqi@0 1499 int o;
aoqi@0 1500 int c;
aoqi@0 1501 if (java_lang_String::has_offset_field()) {
aoqi@0 1502 o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
aoqi@0 1503 c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
aoqi@0 1504 } else {
aoqi@0 1505 o = 0;
aoqi@0 1506 c = pat->length();
aoqi@0 1507 }
aoqi@0 1508
aoqi@0 1509 // constant strings have no offset and count == length which
aoqi@0 1510 // simplifies the resulting code somewhat so lets optimize for that.
aoqi@0 1511 if (o != 0 || c != pat->length()) {
aoqi@0 1512 return false;
aoqi@0 1513 }
aoqi@0 1514
aoqi@0 1515 receiver = null_check(receiver, T_OBJECT);
aoqi@0 1516 // NOTE: No null check on the argument is needed since it's a constant String oop.
aoqi@0 1517 if (stopped()) {
aoqi@0 1518 return true;
aoqi@0 1519 }
aoqi@0 1520
aoqi@0 1521 // The null string as a pattern always returns 0 (match at beginning of string)
aoqi@0 1522 if (c == 0) {
aoqi@0 1523 set_result(intcon(0));
aoqi@0 1524 return true;
aoqi@0 1525 }
aoqi@0 1526
aoqi@0 1527 // Generate default indexOf
aoqi@0 1528 jchar lastChar = pat->char_at(o + (c - 1));
aoqi@0 1529 int cache = 0;
aoqi@0 1530 int i;
aoqi@0 1531 for (i = 0; i < c - 1; i++) {
aoqi@0 1532 assert(i < pat->length(), "out of range");
aoqi@0 1533 cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
aoqi@0 1534 }
aoqi@0 1535
aoqi@0 1536 int md2 = c;
aoqi@0 1537 for (i = 0; i < c - 1; i++) {
aoqi@0 1538 assert(i < pat->length(), "out of range");
aoqi@0 1539 if (pat->char_at(o + i) == lastChar) {
aoqi@0 1540 md2 = (c - 1) - i;
aoqi@0 1541 }
aoqi@0 1542 }
aoqi@0 1543
aoqi@0 1544 result = string_indexOf(receiver, pat, o, cache, md2);
aoqi@0 1545 }
aoqi@0 1546 set_result(result);
aoqi@0 1547 return true;
aoqi@0 1548 }
aoqi@0 1549
aoqi@0 1550 //--------------------------round_double_node--------------------------------
aoqi@0 1551 // Round a double node if necessary.
aoqi@0 1552 Node* LibraryCallKit::round_double_node(Node* n) {
aoqi@0 1553 if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
aoqi@0 1554 n = _gvn.transform(new (C) RoundDoubleNode(0, n));
aoqi@0 1555 return n;
aoqi@0 1556 }
aoqi@0 1557
aoqi@0 1558 //------------------------------inline_math-----------------------------------
aoqi@0 1559 // public static double Math.abs(double)
aoqi@0 1560 // public static double Math.sqrt(double)
aoqi@0 1561 // public static double Math.log(double)
aoqi@0 1562 // public static double Math.log10(double)
aoqi@0 1563 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
aoqi@0 1564 Node* arg = round_double_node(argument(0));
aoqi@0 1565 Node* n;
aoqi@0 1566 switch (id) {
aoqi@0 1567 case vmIntrinsics::_dabs: n = new (C) AbsDNode( arg); break;
aoqi@0 1568 case vmIntrinsics::_dsqrt: n = new (C) SqrtDNode(C, control(), arg); break;
aoqi@0 1569 case vmIntrinsics::_dlog: n = new (C) LogDNode(C, control(), arg); break;
aoqi@0 1570 case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg); break;
aoqi@0 1571 default: fatal_unexpected_iid(id); break;
aoqi@0 1572 }
aoqi@0 1573 set_result(_gvn.transform(n));
aoqi@0 1574 return true;
aoqi@0 1575 }
aoqi@0 1576
aoqi@0 1577 //------------------------------inline_trig----------------------------------
aoqi@0 1578 // Inline sin/cos/tan instructions, if possible. If rounding is required, do
aoqi@0 1579 // argument reduction which will turn into a fast/slow diamond.
aoqi@0 1580 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
aoqi@0 1581 Node* arg = round_double_node(argument(0));
aoqi@0 1582 Node* n = NULL;
aoqi@0 1583
aoqi@0 1584 switch (id) {
aoqi@0 1585 case vmIntrinsics::_dsin: n = new (C) SinDNode(C, control(), arg); break;
aoqi@0 1586 case vmIntrinsics::_dcos: n = new (C) CosDNode(C, control(), arg); break;
aoqi@0 1587 case vmIntrinsics::_dtan: n = new (C) TanDNode(C, control(), arg); break;
aoqi@0 1588 default: fatal_unexpected_iid(id); break;
aoqi@0 1589 }
aoqi@0 1590 n = _gvn.transform(n);
aoqi@0 1591
aoqi@0 1592 // Rounding required? Check for argument reduction!
aoqi@0 1593 if (Matcher::strict_fp_requires_explicit_rounding) {
aoqi@0 1594 static const double pi_4 = 0.7853981633974483;
aoqi@0 1595 static const double neg_pi_4 = -0.7853981633974483;
aoqi@0 1596 // pi/2 in 80-bit extended precision
aoqi@0 1597 // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
aoqi@0 1598 // -pi/2 in 80-bit extended precision
aoqi@0 1599 // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
aoqi@0 1600 // Cutoff value for using this argument reduction technique
aoqi@0 1601 //static const double pi_2_minus_epsilon = 1.564660403643354;
aoqi@0 1602 //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
aoqi@0 1603
aoqi@0 1604 // Pseudocode for sin:
aoqi@0 1605 // if (x <= Math.PI / 4.0) {
aoqi@0 1606 // if (x >= -Math.PI / 4.0) return fsin(x);
aoqi@0 1607 // if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
aoqi@0 1608 // } else {
aoqi@0 1609 // if (x <= Math.PI / 2.0) return fcos(x - Math.PI / 2.0);
aoqi@0 1610 // }
aoqi@0 1611 // return StrictMath.sin(x);
aoqi@0 1612
aoqi@0 1613 // Pseudocode for cos:
aoqi@0 1614 // if (x <= Math.PI / 4.0) {
aoqi@0 1615 // if (x >= -Math.PI / 4.0) return fcos(x);
aoqi@0 1616 // if (x >= -Math.PI / 2.0) return fsin(x + Math.PI / 2.0);
aoqi@0 1617 // } else {
aoqi@0 1618 // if (x <= Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
aoqi@0 1619 // }
aoqi@0 1620 // return StrictMath.cos(x);
aoqi@0 1621
aoqi@0 1622 // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
aoqi@0 1623 // requires a special machine instruction to load it. Instead we'll try
aoqi@0 1624 // the 'easy' case. If we really need the extra range +/- PI/2 we'll
aoqi@0 1625 // probably do the math inside the SIN encoding.
aoqi@0 1626
aoqi@0 1627 // Make the merge point
aoqi@0 1628 RegionNode* r = new (C) RegionNode(3);
aoqi@0 1629 Node* phi = new (C) PhiNode(r, Type::DOUBLE);
aoqi@0 1630
aoqi@0 1631 // Flatten arg so we need only 1 test
aoqi@0 1632 Node *abs = _gvn.transform(new (C) AbsDNode(arg));
aoqi@0 1633 // Node for PI/4 constant
aoqi@0 1634 Node *pi4 = makecon(TypeD::make(pi_4));
aoqi@0 1635 // Check PI/4 : abs(arg)
aoqi@0 1636 Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
aoqi@0 1637 // Check: If PI/4 < abs(arg) then go slow
aoqi@0 1638 Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
aoqi@0 1639 // Branch either way
aoqi@0 1640 IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
aoqi@0 1641 set_control(opt_iff(r,iff));
aoqi@0 1642
aoqi@0 1643 // Set fast path result
aoqi@0 1644 phi->init_req(2, n);
aoqi@0 1645
aoqi@0 1646 // Slow path - non-blocking leaf call
aoqi@0 1647 Node* call = NULL;
aoqi@0 1648 switch (id) {
aoqi@0 1649 case vmIntrinsics::_dsin:
aoqi@0 1650 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
aoqi@0 1651 CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
aoqi@0 1652 "Sin", NULL, arg, top());
aoqi@0 1653 break;
aoqi@0 1654 case vmIntrinsics::_dcos:
aoqi@0 1655 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
aoqi@0 1656 CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
aoqi@0 1657 "Cos", NULL, arg, top());
aoqi@0 1658 break;
aoqi@0 1659 case vmIntrinsics::_dtan:
aoqi@0 1660 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
aoqi@0 1661 CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
aoqi@0 1662 "Tan", NULL, arg, top());
aoqi@0 1663 break;
aoqi@0 1664 }
aoqi@0 1665 assert(control()->in(0) == call, "");
aoqi@0 1666 Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
aoqi@0 1667 r->init_req(1, control());
aoqi@0 1668 phi->init_req(1, slow_result);
aoqi@0 1669
aoqi@0 1670 // Post-merge
aoqi@0 1671 set_control(_gvn.transform(r));
aoqi@0 1672 record_for_igvn(r);
aoqi@0 1673 n = _gvn.transform(phi);
aoqi@0 1674
aoqi@0 1675 C->set_has_split_ifs(true); // Has chance for split-if optimization
aoqi@0 1676 }
aoqi@0 1677 set_result(n);
aoqi@0 1678 return true;
aoqi@0 1679 }
aoqi@0 1680
aoqi@0 1681 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
aoqi@0 1682 //-------------------
aoqi@0 1683 //result=(result.isNaN())? funcAddr():result;
aoqi@0 1684 // Check: If isNaN() by checking result!=result? then either trap
aoqi@0 1685 // or go to runtime
aoqi@0 1686 Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
aoqi@0 1687 // Build the boolean node
aoqi@0 1688 Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
aoqi@0 1689
aoqi@0 1690 if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
aoqi@0 1691 { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
aoqi@0 1692 // The pow or exp intrinsic returned a NaN, which requires a call
aoqi@0 1693 // to the runtime. Recompile with the runtime call.
aoqi@0 1694 uncommon_trap(Deoptimization::Reason_intrinsic,
aoqi@0 1695 Deoptimization::Action_make_not_entrant);
aoqi@0 1696 }
aoqi@0 1697 return result;
aoqi@0 1698 } else {
aoqi@0 1699 // If this inlining ever returned NaN in the past, we compile a call
aoqi@0 1700 // to the runtime to properly handle corner cases
aoqi@0 1701
aoqi@0 1702 IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
aoqi@0 1703 Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
aoqi@0 1704 Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
aoqi@0 1705
aoqi@0 1706 if (!if_slow->is_top()) {
aoqi@0 1707 RegionNode* result_region = new (C) RegionNode(3);
aoqi@0 1708 PhiNode* result_val = new (C) PhiNode(result_region, Type::DOUBLE);
aoqi@0 1709
aoqi@0 1710 result_region->init_req(1, if_fast);
aoqi@0 1711 result_val->init_req(1, result);
aoqi@0 1712
aoqi@0 1713 set_control(if_slow);
aoqi@0 1714
aoqi@0 1715 const TypePtr* no_memory_effects = NULL;
aoqi@0 1716 Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
aoqi@0 1717 no_memory_effects,
aoqi@0 1718 x, top(), y, y ? top() : NULL);
aoqi@0 1719 Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
aoqi@0 1720 #ifdef ASSERT
aoqi@0 1721 Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
aoqi@0 1722 assert(value_top == top(), "second value must be top");
aoqi@0 1723 #endif
aoqi@0 1724
aoqi@0 1725 result_region->init_req(2, control());
aoqi@0 1726 result_val->init_req(2, value);
aoqi@0 1727 set_control(_gvn.transform(result_region));
aoqi@0 1728 return _gvn.transform(result_val);
aoqi@0 1729 } else {
aoqi@0 1730 return result;
aoqi@0 1731 }
aoqi@0 1732 }
aoqi@0 1733 }
aoqi@0 1734
aoqi@0 1735 //------------------------------inline_exp-------------------------------------
aoqi@0 1736 // Inline exp instructions, if possible. The Intel hardware only misses
aoqi@0 1737 // really odd corner cases (+/- Infinity). Just uncommon-trap them.
aoqi@0 1738 bool LibraryCallKit::inline_exp() {
aoqi@0 1739 Node* arg = round_double_node(argument(0));
aoqi@0 1740 Node* n = _gvn.transform(new (C) ExpDNode(C, control(), arg));
aoqi@0 1741
aoqi@0 1742 n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
aoqi@0 1743 set_result(n);
aoqi@0 1744
aoqi@0 1745 C->set_has_split_ifs(true); // Has chance for split-if optimization
aoqi@0 1746 return true;
aoqi@0 1747 }
aoqi@0 1748
aoqi@0 1749 //------------------------------inline_pow-------------------------------------
aoqi@0 1750 // Inline power instructions, if possible.
aoqi@0 1751 bool LibraryCallKit::inline_pow() {
aoqi@0 1752 // Pseudocode for pow
aoqi@0 1753 // if (y == 2) {
aoqi@0 1754 // return x * x;
aoqi@0 1755 // } else {
aoqi@0 1756 // if (x <= 0.0) {
aoqi@0 1757 // long longy = (long)y;
aoqi@0 1758 // if ((double)longy == y) { // if y is long
aoqi@0 1759 // if (y + 1 == y) longy = 0; // huge number: even
aoqi@0 1760 // result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
aoqi@0 1761 // } else {
aoqi@0 1762 // result = NaN;
aoqi@0 1763 // }
aoqi@0 1764 // } else {
aoqi@0 1765 // result = DPow(x,y);
aoqi@0 1766 // }
aoqi@0 1767 // if (result != result)? {
aoqi@0 1768 // result = uncommon_trap() or runtime_call();
aoqi@0 1769 // }
aoqi@0 1770 // return result;
aoqi@0 1771 // }
aoqi@0 1772
aoqi@0 1773 Node* x = round_double_node(argument(0));
aoqi@0 1774 Node* y = round_double_node(argument(2));
aoqi@0 1775
aoqi@0 1776 Node* result = NULL;
aoqi@0 1777
aoqi@0 1778 Node* const_two_node = makecon(TypeD::make(2.0));
aoqi@0 1779 Node* cmp_node = _gvn.transform(new (C) CmpDNode(y, const_two_node));
aoqi@0 1780 Node* bool_node = _gvn.transform(new (C) BoolNode(cmp_node, BoolTest::eq));
aoqi@0 1781 IfNode* if_node = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
aoqi@0 1782 Node* if_true = _gvn.transform(new (C) IfTrueNode(if_node));
aoqi@0 1783 Node* if_false = _gvn.transform(new (C) IfFalseNode(if_node));
aoqi@0 1784
aoqi@0 1785 RegionNode* region_node = new (C) RegionNode(3);
aoqi@0 1786 region_node->init_req(1, if_true);
aoqi@0 1787
aoqi@0 1788 Node* phi_node = new (C) PhiNode(region_node, Type::DOUBLE);
aoqi@0 1789 // special case for x^y where y == 2, we can convert it to x * x
aoqi@0 1790 phi_node->init_req(1, _gvn.transform(new (C) MulDNode(x, x)));
aoqi@0 1791
aoqi@0 1792 // set control to if_false since we will now process the false branch
aoqi@0 1793 set_control(if_false);
aoqi@0 1794
aoqi@0 1795 if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
aoqi@0 1796 // Short form: skip the fancy tests and just check for NaN result.
aoqi@0 1797 result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
aoqi@0 1798 } else {
aoqi@0 1799 // If this inlining ever returned NaN in the past, include all
aoqi@0 1800 // checks + call to the runtime.
aoqi@0 1801
aoqi@0 1802 // Set the merge point for If node with condition of (x <= 0.0)
aoqi@0 1803 // There are four possible paths to region node and phi node
aoqi@0 1804 RegionNode *r = new (C) RegionNode(4);
aoqi@0 1805 Node *phi = new (C) PhiNode(r, Type::DOUBLE);
aoqi@0 1806
aoqi@0 1807 // Build the first if node: if (x <= 0.0)
aoqi@0 1808 // Node for 0 constant
aoqi@0 1809 Node *zeronode = makecon(TypeD::ZERO);
aoqi@0 1810 // Check x:0
aoqi@0 1811 Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
aoqi@0 1812 // Check: If (x<=0) then go complex path
aoqi@0 1813 Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
aoqi@0 1814 // Branch either way
aoqi@0 1815 IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
aoqi@0 1816 // Fast path taken; set region slot 3
aoqi@0 1817 Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
aoqi@0 1818 r->init_req(3,fast_taken); // Capture fast-control
aoqi@0 1819
aoqi@0 1820 // Fast path not-taken, i.e. slow path
aoqi@0 1821 Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
aoqi@0 1822
aoqi@0 1823 // Set fast path result
aoqi@0 1824 Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
aoqi@0 1825 phi->init_req(3, fast_result);
aoqi@0 1826
aoqi@0 1827 // Complex path
aoqi@0 1828 // Build the second if node (if y is long)
aoqi@0 1829 // Node for (long)y
aoqi@0 1830 Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
aoqi@0 1831 // Node for (double)((long) y)
aoqi@0 1832 Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
aoqi@0 1833 // Check (double)((long) y) : y
aoqi@0 1834 Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
aoqi@0 1835 // Check if (y isn't long) then go to slow path
aoqi@0 1836
aoqi@0 1837 Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
aoqi@0 1838 // Branch either way
aoqi@0 1839 IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
aoqi@0 1840 Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
aoqi@0 1841
aoqi@0 1842 Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
aoqi@0 1843
aoqi@0 1844 // Calculate DPow(abs(x), y)*(1 & (long)y)
aoqi@0 1845 // Node for constant 1
aoqi@0 1846 Node *conone = longcon(1);
aoqi@0 1847 // 1& (long)y
aoqi@0 1848 Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
aoqi@0 1849
aoqi@0 1850 // A huge number is always even. Detect a huge number by checking
aoqi@0 1851 // if y + 1 == y and set integer to be tested for parity to 0.
aoqi@0 1852 // Required for corner case:
aoqi@0 1853 // (long)9.223372036854776E18 = max_jlong
aoqi@0 1854 // (double)(long)9.223372036854776E18 = 9.223372036854776E18
aoqi@0 1855 // max_jlong is odd but 9.223372036854776E18 is even
aoqi@0 1856 Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
aoqi@0 1857 Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
aoqi@0 1858 Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
aoqi@0 1859 Node* correctedsign = NULL;
aoqi@0 1860 if (ConditionalMoveLimit != 0) {
aoqi@0 1861 correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
aoqi@0 1862 } else {
aoqi@0 1863 IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
aoqi@0 1864 RegionNode *r = new (C) RegionNode(3);
aoqi@0 1865 Node *phi = new (C) PhiNode(r, TypeLong::LONG);
aoqi@0 1866 r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
aoqi@0 1867 r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
aoqi@0 1868 phi->init_req(1, signnode);
aoqi@0 1869 phi->init_req(2, longcon(0));
aoqi@0 1870 correctedsign = _gvn.transform(phi);
aoqi@0 1871 ylong_path = _gvn.transform(r);
aoqi@0 1872 record_for_igvn(r);
aoqi@0 1873 }
aoqi@0 1874
aoqi@0 1875 // zero node
aoqi@0 1876 Node *conzero = longcon(0);
aoqi@0 1877 // Check (1&(long)y)==0?
aoqi@0 1878 Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
aoqi@0 1879 // Check if (1&(long)y)!=0?, if so the result is negative
aoqi@0 1880 Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
aoqi@0 1881 // abs(x)
aoqi@0 1882 Node *absx=_gvn.transform(new (C) AbsDNode(x));
aoqi@0 1883 // abs(x)^y
aoqi@0 1884 Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
aoqi@0 1885 // -abs(x)^y
aoqi@0 1886 Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
aoqi@0 1887 // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
aoqi@0 1888 Node *signresult = NULL;
aoqi@0 1889 if (ConditionalMoveLimit != 0) {
aoqi@0 1890 signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
aoqi@0 1891 } else {
aoqi@0 1892 IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
aoqi@0 1893 RegionNode *r = new (C) RegionNode(3);
aoqi@0 1894 Node *phi = new (C) PhiNode(r, Type::DOUBLE);
aoqi@0 1895 r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
aoqi@0 1896 r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
aoqi@0 1897 phi->init_req(1, absxpowy);
aoqi@0 1898 phi->init_req(2, negabsxpowy);
aoqi@0 1899 signresult = _gvn.transform(phi);
aoqi@0 1900 ylong_path = _gvn.transform(r);
aoqi@0 1901 record_for_igvn(r);
aoqi@0 1902 }
aoqi@0 1903 // Set complex path fast result
aoqi@0 1904 r->init_req(2, ylong_path);
aoqi@0 1905 phi->init_req(2, signresult);
aoqi@0 1906
aoqi@0 1907 static const jlong nan_bits = CONST64(0x7ff8000000000000);
aoqi@0 1908 Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
aoqi@0 1909 r->init_req(1,slow_path);
aoqi@0 1910 phi->init_req(1,slow_result);
aoqi@0 1911
aoqi@0 1912 // Post merge
aoqi@0 1913 set_control(_gvn.transform(r));
aoqi@0 1914 record_for_igvn(r);
aoqi@0 1915 result = _gvn.transform(phi);
aoqi@0 1916 }
aoqi@0 1917
aoqi@0 1918 result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
aoqi@0 1919
aoqi@0 1920 // control from finish_pow_exp is now input to the region node
aoqi@0 1921 region_node->set_req(2, control());
aoqi@0 1922 // the result from finish_pow_exp is now input to the phi node
aoqi@0 1923 phi_node->init_req(2, result);
aoqi@0 1924 set_control(_gvn.transform(region_node));
aoqi@0 1925 record_for_igvn(region_node);
aoqi@0 1926 set_result(_gvn.transform(phi_node));
aoqi@0 1927
aoqi@0 1928 C->set_has_split_ifs(true); // Has chance for split-if optimization
aoqi@0 1929 return true;
aoqi@0 1930 }
aoqi@0 1931
aoqi@0 1932 //------------------------------runtime_math-----------------------------
aoqi@0 1933 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
aoqi@0 1934 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
aoqi@0 1935 "must be (DD)D or (D)D type");
aoqi@0 1936
aoqi@0 1937 // Inputs
aoqi@0 1938 Node* a = round_double_node(argument(0));
aoqi@0 1939 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
aoqi@0 1940
aoqi@0 1941 const TypePtr* no_memory_effects = NULL;
aoqi@0 1942 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
aoqi@0 1943 no_memory_effects,
aoqi@0 1944 a, top(), b, b ? top() : NULL);
aoqi@0 1945 Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
aoqi@0 1946 #ifdef ASSERT
aoqi@0 1947 Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
aoqi@0 1948 assert(value_top == top(), "second value must be top");
aoqi@0 1949 #endif
aoqi@0 1950
aoqi@0 1951 set_result(value);
aoqi@0 1952 return true;
aoqi@0 1953 }
aoqi@0 1954
aoqi@0 1955 //------------------------------inline_math_native-----------------------------
aoqi@0 1956 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
aoqi@0 1957 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
aoqi@0 1958 switch (id) {
aoqi@0 1959 // These intrinsics are not properly supported on all hardware
aoqi@0 1960 case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
aoqi@0 1961 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos), "COS");
aoqi@0 1962 case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
aoqi@0 1963 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin), "SIN");
aoqi@0 1964 case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
aoqi@0 1965 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN");
aoqi@0 1966
aoqi@0 1967 case vmIntrinsics::_dlog: return Matcher::has_match_rule(Op_LogD) ? inline_math(id) :
aoqi@0 1968 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog), "LOG");
aoqi@0 1969 case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
aoqi@0 1970 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
aoqi@0 1971
aoqi@0 1972 // These intrinsics are supported on all hardware
aoqi@0 1973 case vmIntrinsics::_dsqrt: return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
aoqi@0 1974 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_math(id) : false;
aoqi@0 1975
aoqi@0 1976 case vmIntrinsics::_dexp: return Matcher::has_match_rule(Op_ExpD) ? inline_exp() :
aoqi@0 1977 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp), "EXP");
aoqi@0 1978 case vmIntrinsics::_dpow: return Matcher::has_match_rule(Op_PowD) ? inline_pow() :
aoqi@0 1979 runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow), "POW");
aoqi@0 1980 #undef FN_PTR
aoqi@0 1981
aoqi@0 1982 // These intrinsics are not yet correctly implemented
aoqi@0 1983 case vmIntrinsics::_datan2:
aoqi@0 1984 return false;
aoqi@0 1985
aoqi@0 1986 default:
aoqi@0 1987 fatal_unexpected_iid(id);
aoqi@0 1988 return false;
aoqi@0 1989 }
aoqi@0 1990 }
aoqi@0 1991
aoqi@0 1992 static bool is_simple_name(Node* n) {
aoqi@0 1993 return (n->req() == 1 // constant
aoqi@0 1994 || (n->is_Type() && n->as_Type()->type()->singleton())
aoqi@0 1995 || n->is_Proj() // parameter or return value
aoqi@0 1996 || n->is_Phi() // local of some sort
aoqi@0 1997 );
aoqi@0 1998 }
aoqi@0 1999
aoqi@0 2000 //----------------------------inline_min_max-----------------------------------
aoqi@0 2001 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
aoqi@0 2002 set_result(generate_min_max(id, argument(0), argument(1)));
aoqi@0 2003 return true;
aoqi@0 2004 }
aoqi@0 2005
aoqi@0 2006 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
aoqi@0 2007 Node* bol = _gvn.transform( new (C) BoolNode(test, BoolTest::overflow) );
aoqi@0 2008 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
aoqi@0 2009 Node* fast_path = _gvn.transform( new (C) IfFalseNode(check));
aoqi@0 2010 Node* slow_path = _gvn.transform( new (C) IfTrueNode(check) );
aoqi@0 2011
aoqi@0 2012 {
aoqi@0 2013 PreserveJVMState pjvms(this);
aoqi@0 2014 PreserveReexecuteState preexecs(this);
aoqi@0 2015 jvms()->set_should_reexecute(true);
aoqi@0 2016
aoqi@0 2017 set_control(slow_path);
aoqi@0 2018 set_i_o(i_o());
aoqi@0 2019
aoqi@0 2020 uncommon_trap(Deoptimization::Reason_intrinsic,
aoqi@0 2021 Deoptimization::Action_none);
aoqi@0 2022 }
aoqi@0 2023
aoqi@0 2024 set_control(fast_path);
aoqi@0 2025 set_result(math);
aoqi@0 2026 }
aoqi@0 2027
aoqi@0 2028 template <typename OverflowOp>
aoqi@0 2029 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
aoqi@0 2030 typedef typename OverflowOp::MathOp MathOp;
aoqi@0 2031
aoqi@0 2032 MathOp* mathOp = new(C) MathOp(arg1, arg2);
aoqi@0 2033 Node* operation = _gvn.transform( mathOp );
aoqi@0 2034 Node* ofcheck = _gvn.transform( new(C) OverflowOp(arg1, arg2) );
aoqi@0 2035 inline_math_mathExact(operation, ofcheck);
aoqi@0 2036 return true;
aoqi@0 2037 }
aoqi@0 2038
aoqi@0 2039 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
aoqi@0 2040 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
aoqi@0 2041 }
aoqi@0 2042
aoqi@0 2043 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
aoqi@0 2044 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
aoqi@0 2045 }
aoqi@0 2046
aoqi@0 2047 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
aoqi@0 2048 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
aoqi@0 2049 }
aoqi@0 2050
aoqi@0 2051 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
aoqi@0 2052 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
aoqi@0 2053 }
aoqi@0 2054
aoqi@0 2055 bool LibraryCallKit::inline_math_negateExactI() {
aoqi@0 2056 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
aoqi@0 2057 }
aoqi@0 2058
aoqi@0 2059 bool LibraryCallKit::inline_math_negateExactL() {
aoqi@0 2060 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
aoqi@0 2061 }
aoqi@0 2062
aoqi@0 2063 bool LibraryCallKit::inline_math_multiplyExactI() {
aoqi@0 2064 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
aoqi@0 2065 }
aoqi@0 2066
aoqi@0 2067 bool LibraryCallKit::inline_math_multiplyExactL() {
aoqi@0 2068 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
aoqi@0 2069 }
aoqi@0 2070
aoqi@0 2071 Node*
aoqi@0 2072 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
aoqi@0 2073 // These are the candidate return value:
aoqi@0 2074 Node* xvalue = x0;
aoqi@0 2075 Node* yvalue = y0;
aoqi@0 2076
aoqi@0 2077 if (xvalue == yvalue) {
aoqi@0 2078 return xvalue;
aoqi@0 2079 }
aoqi@0 2080
aoqi@0 2081 bool want_max = (id == vmIntrinsics::_max);
aoqi@0 2082
aoqi@0 2083 const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
aoqi@0 2084 const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
aoqi@0 2085 if (txvalue == NULL || tyvalue == NULL) return top();
aoqi@0 2086 // This is not really necessary, but it is consistent with a
aoqi@0 2087 // hypothetical MaxINode::Value method:
aoqi@0 2088 int widen = MAX2(txvalue->_widen, tyvalue->_widen);
aoqi@0 2089
aoqi@0 2090 // %%% This folding logic should (ideally) be in a different place.
aoqi@0 2091 // Some should be inside IfNode, and there to be a more reliable
aoqi@0 2092 // transformation of ?: style patterns into cmoves. We also want
aoqi@0 2093 // more powerful optimizations around cmove and min/max.
aoqi@0 2094
aoqi@0 2095 // Try to find a dominating comparison of these guys.
aoqi@0 2096 // It can simplify the index computation for Arrays.copyOf
aoqi@0 2097 // and similar uses of System.arraycopy.
aoqi@0 2098 // First, compute the normalized version of CmpI(x, y).
aoqi@0 2099 int cmp_op = Op_CmpI;
aoqi@0 2100 Node* xkey = xvalue;
aoqi@0 2101 Node* ykey = yvalue;
aoqi@0 2102 Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
aoqi@0 2103 if (ideal_cmpxy->is_Cmp()) {
aoqi@0 2104 // E.g., if we have CmpI(length - offset, count),
aoqi@0 2105 // it might idealize to CmpI(length, count + offset)
aoqi@0 2106 cmp_op = ideal_cmpxy->Opcode();
aoqi@0 2107 xkey = ideal_cmpxy->in(1);
aoqi@0 2108 ykey = ideal_cmpxy->in(2);
aoqi@0 2109 }
aoqi@0 2110
aoqi@0 2111 // Start by locating any relevant comparisons.
aoqi@0 2112 Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
aoqi@0 2113 Node* cmpxy = NULL;
aoqi@0 2114 Node* cmpyx = NULL;
aoqi@0 2115 for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
aoqi@0 2116 Node* cmp = start_from->fast_out(k);
aoqi@0 2117 if (cmp->outcnt() > 0 && // must have prior uses
aoqi@0 2118 cmp->in(0) == NULL && // must be context-independent
aoqi@0 2119 cmp->Opcode() == cmp_op) { // right kind of compare
aoqi@0 2120 if (cmp->in(1) == xkey && cmp->in(2) == ykey) cmpxy = cmp;
aoqi@0 2121 if (cmp->in(1) == ykey && cmp->in(2) == xkey) cmpyx = cmp;
aoqi@0 2122 }
aoqi@0 2123 }
aoqi@0 2124
aoqi@0 2125 const int NCMPS = 2;
aoqi@0 2126 Node* cmps[NCMPS] = { cmpxy, cmpyx };
aoqi@0 2127 int cmpn;
aoqi@0 2128 for (cmpn = 0; cmpn < NCMPS; cmpn++) {
aoqi@0 2129 if (cmps[cmpn] != NULL) break; // find a result
aoqi@0 2130 }
aoqi@0 2131 if (cmpn < NCMPS) {
aoqi@0 2132 // Look for a dominating test that tells us the min and max.
aoqi@0 2133 int depth = 0; // Limit search depth for speed
aoqi@0 2134 Node* dom = control();
aoqi@0 2135 for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
aoqi@0 2136 if (++depth >= 100) break;
aoqi@0 2137 Node* ifproj = dom;
aoqi@0 2138 if (!ifproj->is_Proj()) continue;
aoqi@0 2139 Node* iff = ifproj->in(0);
aoqi@0 2140 if (!iff->is_If()) continue;
aoqi@0 2141 Node* bol = iff->in(1);
aoqi@0 2142 if (!bol->is_Bool()) continue;
aoqi@0 2143 Node* cmp = bol->in(1);
aoqi@0 2144 if (cmp == NULL) continue;
aoqi@0 2145 for (cmpn = 0; cmpn < NCMPS; cmpn++)
aoqi@0 2146 if (cmps[cmpn] == cmp) break;
aoqi@0 2147 if (cmpn == NCMPS) continue;
aoqi@0 2148 BoolTest::mask btest = bol->as_Bool()->_test._test;
aoqi@0 2149 if (ifproj->is_IfFalse()) btest = BoolTest(btest).negate();
aoqi@0 2150 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
aoqi@0 2151 // At this point, we know that 'x btest y' is true.
aoqi@0 2152 switch (btest) {
aoqi@0 2153 case BoolTest::eq:
aoqi@0 2154 // They are proven equal, so we can collapse the min/max.
aoqi@0 2155 // Either value is the answer. Choose the simpler.
aoqi@0 2156 if (is_simple_name(yvalue) && !is_simple_name(xvalue))
aoqi@0 2157 return yvalue;
aoqi@0 2158 return xvalue;
aoqi@0 2159 case BoolTest::lt: // x < y
aoqi@0 2160 case BoolTest::le: // x <= y
aoqi@0 2161 return (want_max ? yvalue : xvalue);
aoqi@0 2162 case BoolTest::gt: // x > y
aoqi@0 2163 case BoolTest::ge: // x >= y
aoqi@0 2164 return (want_max ? xvalue : yvalue);
aoqi@0 2165 }
aoqi@0 2166 }
aoqi@0 2167 }
aoqi@0 2168
aoqi@0 2169 // We failed to find a dominating test.
aoqi@0 2170 // Let's pick a test that might GVN with prior tests.
aoqi@0 2171 Node* best_bol = NULL;
aoqi@0 2172 BoolTest::mask best_btest = BoolTest::illegal;
aoqi@0 2173 for (cmpn = 0; cmpn < NCMPS; cmpn++) {
aoqi@0 2174 Node* cmp = cmps[cmpn];
aoqi@0 2175 if (cmp == NULL) continue;
aoqi@0 2176 for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
aoqi@0 2177 Node* bol = cmp->fast_out(j);
aoqi@0 2178 if (!bol->is_Bool()) continue;
aoqi@0 2179 BoolTest::mask btest = bol->as_Bool()->_test._test;
aoqi@0 2180 if (btest == BoolTest::eq || btest == BoolTest::ne) continue;
aoqi@0 2181 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
aoqi@0 2182 if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
aoqi@0 2183 best_bol = bol->as_Bool();
aoqi@0 2184 best_btest = btest;
aoqi@0 2185 }
aoqi@0 2186 }
aoqi@0 2187 }
aoqi@0 2188
aoqi@0 2189 Node* answer_if_true = NULL;
aoqi@0 2190 Node* answer_if_false = NULL;
aoqi@0 2191 switch (best_btest) {
aoqi@0 2192 default:
aoqi@0 2193 if (cmpxy == NULL)
aoqi@0 2194 cmpxy = ideal_cmpxy;
aoqi@0 2195 best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
aoqi@0 2196 // and fall through:
aoqi@0 2197 case BoolTest::lt: // x < y
aoqi@0 2198 case BoolTest::le: // x <= y
aoqi@0 2199 answer_if_true = (want_max ? yvalue : xvalue);
aoqi@0 2200 answer_if_false = (want_max ? xvalue : yvalue);
aoqi@0 2201 break;
aoqi@0 2202 case BoolTest::gt: // x > y
aoqi@0 2203 case BoolTest::ge: // x >= y
aoqi@0 2204 answer_if_true = (want_max ? xvalue : yvalue);
aoqi@0 2205 answer_if_false = (want_max ? yvalue : xvalue);
aoqi@0 2206 break;
aoqi@0 2207 }
aoqi@0 2208
aoqi@0 2209 jint hi, lo;
aoqi@0 2210 if (want_max) {
aoqi@0 2211 // We can sharpen the minimum.
aoqi@0 2212 hi = MAX2(txvalue->_hi, tyvalue->_hi);
aoqi@0 2213 lo = MAX2(txvalue->_lo, tyvalue->_lo);
aoqi@0 2214 } else {
aoqi@0 2215 // We can sharpen the maximum.
aoqi@0 2216 hi = MIN2(txvalue->_hi, tyvalue->_hi);
aoqi@0 2217 lo = MIN2(txvalue->_lo, tyvalue->_lo);
aoqi@0 2218 }
aoqi@0 2219
aoqi@0 2220 // Use a flow-free graph structure, to avoid creating excess control edges
aoqi@0 2221 // which could hinder other optimizations.
aoqi@0 2222 // Since Math.min/max is often used with arraycopy, we want
aoqi@0 2223 // tightly_coupled_allocation to be able to see beyond min/max expressions.
aoqi@0 2224 Node* cmov = CMoveNode::make(C, NULL, best_bol,
aoqi@0 2225 answer_if_false, answer_if_true,
aoqi@0 2226 TypeInt::make(lo, hi, widen));
aoqi@0 2227
aoqi@0 2228 return _gvn.transform(cmov);
aoqi@0 2229
aoqi@0 2230 /*
aoqi@0 2231 // This is not as desirable as it may seem, since Min and Max
aoqi@0 2232 // nodes do not have a full set of optimizations.
aoqi@0 2233 // And they would interfere, anyway, with 'if' optimizations
aoqi@0 2234 // and with CMoveI canonical forms.
aoqi@0 2235 switch (id) {
aoqi@0 2236 case vmIntrinsics::_min:
aoqi@0 2237 result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
aoqi@0 2238 case vmIntrinsics::_max:
aoqi@0 2239 result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
aoqi@0 2240 default:
aoqi@0 2241 ShouldNotReachHere();
aoqi@0 2242 }
aoqi@0 2243 */
aoqi@0 2244 }
aoqi@0 2245
aoqi@0 2246 inline int
aoqi@0 2247 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
aoqi@0 2248 const TypePtr* base_type = TypePtr::NULL_PTR;
aoqi@0 2249 if (base != NULL) base_type = _gvn.type(base)->isa_ptr();
aoqi@0 2250 if (base_type == NULL) {
aoqi@0 2251 // Unknown type.
aoqi@0 2252 return Type::AnyPtr;
aoqi@0 2253 } else if (base_type == TypePtr::NULL_PTR) {
aoqi@0 2254 // Since this is a NULL+long form, we have to switch to a rawptr.
aoqi@0 2255 base = _gvn.transform(new (C) CastX2PNode(offset));
aoqi@0 2256 offset = MakeConX(0);
aoqi@0 2257 return Type::RawPtr;
aoqi@0 2258 } else if (base_type->base() == Type::RawPtr) {
aoqi@0 2259 return Type::RawPtr;
aoqi@0 2260 } else if (base_type->isa_oopptr()) {
aoqi@0 2261 // Base is never null => always a heap address.
aoqi@0 2262 if (base_type->ptr() == TypePtr::NotNull) {
aoqi@0 2263 return Type::OopPtr;
aoqi@0 2264 }
aoqi@0 2265 // Offset is small => always a heap address.
aoqi@0 2266 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
aoqi@0 2267 if (offset_type != NULL &&
aoqi@0 2268 base_type->offset() == 0 && // (should always be?)
aoqi@0 2269 offset_type->_lo >= 0 &&
aoqi@0 2270 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
aoqi@0 2271 return Type::OopPtr;
aoqi@0 2272 }
aoqi@0 2273 // Otherwise, it might either be oop+off or NULL+addr.
aoqi@0 2274 return Type::AnyPtr;
aoqi@0 2275 } else {
aoqi@0 2276 // No information:
aoqi@0 2277 return Type::AnyPtr;
aoqi@0 2278 }
aoqi@0 2279 }
aoqi@0 2280
aoqi@0 2281 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
aoqi@0 2282 int kind = classify_unsafe_addr(base, offset);
aoqi@0 2283 if (kind == Type::RawPtr) {
aoqi@0 2284 return basic_plus_adr(top(), base, offset);
aoqi@0 2285 } else {
aoqi@0 2286 return basic_plus_adr(base, offset);
aoqi@0 2287 }
aoqi@0 2288 }
aoqi@0 2289
aoqi@0 2290 //--------------------------inline_number_methods-----------------------------
aoqi@0 2291 // inline int Integer.numberOfLeadingZeros(int)
aoqi@0 2292 // inline int Long.numberOfLeadingZeros(long)
aoqi@0 2293 //
aoqi@0 2294 // inline int Integer.numberOfTrailingZeros(int)
aoqi@0 2295 // inline int Long.numberOfTrailingZeros(long)
aoqi@0 2296 //
aoqi@0 2297 // inline int Integer.bitCount(int)
aoqi@0 2298 // inline int Long.bitCount(long)
aoqi@0 2299 //
aoqi@0 2300 // inline char Character.reverseBytes(char)
aoqi@0 2301 // inline short Short.reverseBytes(short)
aoqi@0 2302 // inline int Integer.reverseBytes(int)
aoqi@0 2303 // inline long Long.reverseBytes(long)
aoqi@0 2304 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
aoqi@0 2305 Node* arg = argument(0);
aoqi@0 2306 Node* n;
aoqi@0 2307 switch (id) {
aoqi@0 2308 case vmIntrinsics::_numberOfLeadingZeros_i: n = new (C) CountLeadingZerosINode( arg); break;
aoqi@0 2309 case vmIntrinsics::_numberOfLeadingZeros_l: n = new (C) CountLeadingZerosLNode( arg); break;
aoqi@0 2310 case vmIntrinsics::_numberOfTrailingZeros_i: n = new (C) CountTrailingZerosINode(arg); break;
aoqi@0 2311 case vmIntrinsics::_numberOfTrailingZeros_l: n = new (C) CountTrailingZerosLNode(arg); break;
aoqi@0 2312 case vmIntrinsics::_bitCount_i: n = new (C) PopCountINode( arg); break;
aoqi@0 2313 case vmIntrinsics::_bitCount_l: n = new (C) PopCountLNode( arg); break;
aoqi@0 2314 case vmIntrinsics::_reverseBytes_c: n = new (C) ReverseBytesUSNode(0, arg); break;
aoqi@0 2315 case vmIntrinsics::_reverseBytes_s: n = new (C) ReverseBytesSNode( 0, arg); break;
aoqi@0 2316 case vmIntrinsics::_reverseBytes_i: n = new (C) ReverseBytesINode( 0, arg); break;
aoqi@0 2317 case vmIntrinsics::_reverseBytes_l: n = new (C) ReverseBytesLNode( 0, arg); break;
aoqi@0 2318 default: fatal_unexpected_iid(id); break;
aoqi@0 2319 }
aoqi@0 2320 set_result(_gvn.transform(n));
aoqi@0 2321 return true;
aoqi@0 2322 }
aoqi@0 2323
aoqi@0 2324 //----------------------------inline_unsafe_access----------------------------
aoqi@0 2325
aoqi@0 2326 const static BasicType T_ADDRESS_HOLDER = T_LONG;
aoqi@0 2327
aoqi@0 2328 // Helper that guards and inserts a pre-barrier.
aoqi@0 2329 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
aoqi@0 2330 Node* pre_val, bool need_mem_bar) {
aoqi@0 2331 // We could be accessing the referent field of a reference object. If so, when G1
aoqi@0 2332 // is enabled, we need to log the value in the referent field in an SATB buffer.
aoqi@0 2333 // This routine performs some compile time filters and generates suitable
aoqi@0 2334 // runtime filters that guard the pre-barrier code.
aoqi@0 2335 // Also add memory barrier for non volatile load from the referent field
aoqi@0 2336 // to prevent commoning of loads across safepoint.
aoqi@0 2337 if (!UseG1GC && !need_mem_bar)
aoqi@0 2338 return;
aoqi@0 2339
aoqi@0 2340 // Some compile time checks.
aoqi@0 2341
aoqi@0 2342 // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
aoqi@0 2343 const TypeX* otype = offset->find_intptr_t_type();
aoqi@0 2344 if (otype != NULL && otype->is_con() &&
aoqi@0 2345 otype->get_con() != java_lang_ref_Reference::referent_offset) {
aoqi@0 2346 // Constant offset but not the reference_offset so just return
aoqi@0 2347 return;
aoqi@0 2348 }
aoqi@0 2349
aoqi@0 2350 // We only need to generate the runtime guards for instances.
aoqi@0 2351 const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
aoqi@0 2352 if (btype != NULL) {
aoqi@0 2353 if (btype->isa_aryptr()) {
aoqi@0 2354 // Array type so nothing to do
aoqi@0 2355 return;
aoqi@0 2356 }
aoqi@0 2357
aoqi@0 2358 const TypeInstPtr* itype = btype->isa_instptr();
aoqi@0 2359 if (itype != NULL) {
aoqi@0 2360 // Can the klass of base_oop be statically determined to be
aoqi@0 2361 // _not_ a sub-class of Reference and _not_ Object?
aoqi@0 2362 ciKlass* klass = itype->klass();
aoqi@0 2363 if ( klass->is_loaded() &&
aoqi@0 2364 !klass->is_subtype_of(env()->Reference_klass()) &&
aoqi@0 2365 !env()->Object_klass()->is_subtype_of(klass)) {
aoqi@0 2366 return;
aoqi@0 2367 }
aoqi@0 2368 }
aoqi@0 2369 }
aoqi@0 2370
aoqi@0 2371 // The compile time filters did not reject base_oop/offset so
aoqi@0 2372 // we need to generate the following runtime filters
aoqi@0 2373 //
aoqi@0 2374 // if (offset == java_lang_ref_Reference::_reference_offset) {
aoqi@0 2375 // if (instance_of(base, java.lang.ref.Reference)) {
aoqi@0 2376 // pre_barrier(_, pre_val, ...);
aoqi@0 2377 // }
aoqi@0 2378 // }
aoqi@0 2379
aoqi@0 2380 float likely = PROB_LIKELY( 0.999);
aoqi@0 2381 float unlikely = PROB_UNLIKELY(0.999);
aoqi@0 2382
aoqi@0 2383 IdealKit ideal(this);
aoqi@0 2384 #define __ ideal.
aoqi@0 2385
aoqi@0 2386 Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
aoqi@0 2387
aoqi@0 2388 __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
aoqi@0 2389 // Update graphKit memory and control from IdealKit.
aoqi@0 2390 sync_kit(ideal);
aoqi@0 2391
aoqi@0 2392 Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
aoqi@0 2393 Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
aoqi@0 2394
aoqi@0 2395 // Update IdealKit memory and control from graphKit.
aoqi@0 2396 __ sync_kit(this);
aoqi@0 2397
aoqi@0 2398 Node* one = __ ConI(1);
aoqi@0 2399 // is_instof == 0 if base_oop == NULL
aoqi@0 2400 __ if_then(is_instof, BoolTest::eq, one, unlikely); {
aoqi@0 2401
aoqi@0 2402 // Update graphKit from IdeakKit.
aoqi@0 2403 sync_kit(ideal);
aoqi@0 2404
aoqi@0 2405 // Use the pre-barrier to record the value in the referent field
aoqi@0 2406 pre_barrier(false /* do_load */,
aoqi@0 2407 __ ctrl(),
aoqi@0 2408 NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
aoqi@0 2409 pre_val /* pre_val */,
aoqi@0 2410 T_OBJECT);
aoqi@0 2411 if (need_mem_bar) {
aoqi@0 2412 // Add memory barrier to prevent commoning reads from this field
aoqi@0 2413 // across safepoint since GC can change its value.
aoqi@0 2414 insert_mem_bar(Op_MemBarCPUOrder);
aoqi@0 2415 }
aoqi@0 2416 // Update IdealKit from graphKit.
aoqi@0 2417 __ sync_kit(this);
aoqi@0 2418
aoqi@0 2419 } __ end_if(); // _ref_type != ref_none
aoqi@0 2420 } __ end_if(); // offset == referent_offset
aoqi@0 2421
aoqi@0 2422 // Final sync IdealKit and GraphKit.
aoqi@0 2423 final_sync(ideal);
aoqi@0 2424 #undef __
aoqi@0 2425 }
aoqi@0 2426
aoqi@0 2427
aoqi@0 2428 // Interpret Unsafe.fieldOffset cookies correctly:
aoqi@0 2429 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
aoqi@0 2430
aoqi@0 2431 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
aoqi@0 2432 // Attempt to infer a sharper value type from the offset and base type.
aoqi@0 2433 ciKlass* sharpened_klass = NULL;
aoqi@0 2434
aoqi@0 2435 // See if it is an instance field, with an object type.
aoqi@0 2436 if (alias_type->field() != NULL) {
aoqi@0 2437 assert(!is_native_ptr, "native pointer op cannot use a java address");
aoqi@0 2438 if (alias_type->field()->type()->is_klass()) {
aoqi@0 2439 sharpened_klass = alias_type->field()->type()->as_klass();
aoqi@0 2440 }
aoqi@0 2441 }
aoqi@0 2442
aoqi@0 2443 // See if it is a narrow oop array.
aoqi@0 2444 if (adr_type->isa_aryptr()) {
aoqi@0 2445 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
aoqi@0 2446 const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
aoqi@0 2447 if (elem_type != NULL) {
aoqi@0 2448 sharpened_klass = elem_type->klass();
aoqi@0 2449 }
aoqi@0 2450 }
aoqi@0 2451 }
aoqi@0 2452
aoqi@0 2453 // The sharpened class might be unloaded if there is no class loader
aoqi@0 2454 // contraint in place.
aoqi@0 2455 if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
aoqi@0 2456 const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
aoqi@0 2457
aoqi@0 2458 #ifndef PRODUCT
aoqi@0 2459 if (C->print_intrinsics() || C->print_inlining()) {
aoqi@0 2460 tty->print(" from base type: "); adr_type->dump();
aoqi@0 2461 tty->print(" sharpened value: "); tjp->dump();
aoqi@0 2462 }
aoqi@0 2463 #endif
aoqi@0 2464 // Sharpen the value type.
aoqi@0 2465 return tjp;
aoqi@0 2466 }
aoqi@0 2467 return NULL;
aoqi@0 2468 }
aoqi@0 2469
aoqi@0 2470 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
aoqi@0 2471 if (callee()->is_static()) return false; // caller must have the capability!
aoqi@0 2472
aoqi@0 2473 #ifndef PRODUCT
aoqi@0 2474 {
aoqi@0 2475 ResourceMark rm;
aoqi@0 2476 // Check the signatures.
aoqi@0 2477 ciSignature* sig = callee()->signature();
aoqi@0 2478 #ifdef ASSERT
aoqi@0 2479 if (!is_store) {
aoqi@0 2480 // Object getObject(Object base, int/long offset), etc.
aoqi@0 2481 BasicType rtype = sig->return_type()->basic_type();
aoqi@0 2482 if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
aoqi@0 2483 rtype = T_ADDRESS; // it is really a C void*
aoqi@0 2484 assert(rtype == type, "getter must return the expected value");
aoqi@0 2485 if (!is_native_ptr) {
aoqi@0 2486 assert(sig->count() == 2, "oop getter has 2 arguments");
aoqi@0 2487 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
aoqi@0 2488 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
aoqi@0 2489 } else {
aoqi@0 2490 assert(sig->count() == 1, "native getter has 1 argument");
aoqi@0 2491 assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
aoqi@0 2492 }
aoqi@0 2493 } else {
aoqi@0 2494 // void putObject(Object base, int/long offset, Object x), etc.
aoqi@0 2495 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
aoqi@0 2496 if (!is_native_ptr) {
aoqi@0 2497 assert(sig->count() == 3, "oop putter has 3 arguments");
aoqi@0 2498 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
aoqi@0 2499 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
aoqi@0 2500 } else {
aoqi@0 2501 assert(sig->count() == 2, "native putter has 2 arguments");
aoqi@0 2502 assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
aoqi@0 2503 }
aoqi@0 2504 BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
aoqi@0 2505 if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
aoqi@0 2506 vtype = T_ADDRESS; // it is really a C void*
aoqi@0 2507 assert(vtype == type, "putter must accept the expected value");
aoqi@0 2508 }
aoqi@0 2509 #endif // ASSERT
aoqi@0 2510 }
aoqi@0 2511 #endif //PRODUCT
aoqi@0 2512
aoqi@0 2513 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
aoqi@0 2514
aoqi@0 2515 Node* receiver = argument(0); // type: oop
aoqi@0 2516
aoqi@0 2517 // Build address expression. See the code in inline_unsafe_prefetch.
aoqi@0 2518 Node* adr;
aoqi@0 2519 Node* heap_base_oop = top();
aoqi@0 2520 Node* offset = top();
aoqi@0 2521 Node* val;
aoqi@0 2522
aoqi@0 2523 if (!is_native_ptr) {
aoqi@0 2524 // The base is either a Java object or a value produced by Unsafe.staticFieldBase
aoqi@0 2525 Node* base = argument(1); // type: oop
aoqi@0 2526 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
aoqi@0 2527 offset = argument(2); // type: long
aoqi@0 2528 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
aoqi@0 2529 // to be plain byte offsets, which are also the same as those accepted
aoqi@0 2530 // by oopDesc::field_base.
aoqi@0 2531 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
aoqi@0 2532 "fieldOffset must be byte-scaled");
aoqi@0 2533 // 32-bit machines ignore the high half!
aoqi@0 2534 offset = ConvL2X(offset);
aoqi@0 2535 adr = make_unsafe_address(base, offset);
aoqi@0 2536 heap_base_oop = base;
aoqi@0 2537 val = is_store ? argument(4) : NULL;
aoqi@0 2538 } else {
aoqi@0 2539 Node* ptr = argument(1); // type: long
aoqi@0 2540 ptr = ConvL2X(ptr); // adjust Java long to machine word
aoqi@0 2541 adr = make_unsafe_address(NULL, ptr);
aoqi@0 2542 val = is_store ? argument(3) : NULL;
aoqi@0 2543 }
aoqi@0 2544
aoqi@0 2545 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
aoqi@0 2546
aoqi@0 2547 // First guess at the value type.
aoqi@0 2548 const Type *value_type = Type::get_const_basic_type(type);
aoqi@0 2549
aoqi@0 2550 // Try to categorize the address. If it comes up as TypeJavaPtr::BOTTOM,
aoqi@0 2551 // there was not enough information to nail it down.
aoqi@0 2552 Compile::AliasType* alias_type = C->alias_type(adr_type);
aoqi@0 2553 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
aoqi@0 2554
aoqi@0 2555 // We will need memory barriers unless we can determine a unique
aoqi@0 2556 // alias category for this reference. (Note: If for some reason
aoqi@0 2557 // the barriers get omitted and the unsafe reference begins to "pollute"
aoqi@0 2558 // the alias analysis of the rest of the graph, either Compile::can_alias
aoqi@0 2559 // or Compile::must_alias will throw a diagnostic assert.)
aoqi@0 2560 bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
aoqi@0 2561
aoqi@0 2562 // If we are reading the value of the referent field of a Reference
aoqi@0 2563 // object (either by using Unsafe directly or through reflection)
aoqi@0 2564 // then, if G1 is enabled, we need to record the referent in an
aoqi@0 2565 // SATB log buffer using the pre-barrier mechanism.
aoqi@0 2566 // Also we need to add memory barrier to prevent commoning reads
aoqi@0 2567 // from this field across safepoint since GC can change its value.
aoqi@0 2568 bool need_read_barrier = !is_native_ptr && !is_store &&
aoqi@0 2569 offset != top() && heap_base_oop != top();
aoqi@0 2570
aoqi@0 2571 if (!is_store && type == T_OBJECT) {
aoqi@0 2572 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
aoqi@0 2573 if (tjp != NULL) {
aoqi@0 2574 value_type = tjp;
aoqi@0 2575 }
aoqi@0 2576 }
aoqi@0 2577
aoqi@0 2578 receiver = null_check(receiver);
aoqi@0 2579 if (stopped()) {
aoqi@0 2580 return true;
aoqi@0 2581 }
aoqi@0 2582 // Heap pointers get a null-check from the interpreter,
aoqi@0 2583 // as a courtesy. However, this is not guaranteed by Unsafe,
aoqi@0 2584 // and it is not possible to fully distinguish unintended nulls
aoqi@0 2585 // from intended ones in this API.
aoqi@0 2586
aoqi@0 2587 if (is_volatile) {
aoqi@0 2588 // We need to emit leading and trailing CPU membars (see below) in
aoqi@0 2589 // addition to memory membars when is_volatile. This is a little
aoqi@0 2590 // too strong, but avoids the need to insert per-alias-type
aoqi@0 2591 // volatile membars (for stores; compare Parse::do_put_xxx), which
aoqi@0 2592 // we cannot do effectively here because we probably only have a
aoqi@0 2593 // rough approximation of type.
aoqi@0 2594 need_mem_bar = true;
aoqi@0 2595 // For Stores, place a memory ordering barrier now.
aoqi@0 2596 if (is_store) {
aoqi@0 2597 insert_mem_bar(Op_MemBarRelease);
aoqi@0 2598 } else {
aoqi@0 2599 if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
aoqi@0 2600 insert_mem_bar(Op_MemBarVolatile);
aoqi@0 2601 }
aoqi@0 2602 }
aoqi@0 2603 }
aoqi@0 2604
aoqi@0 2605 // Memory barrier to prevent normal and 'unsafe' accesses from
aoqi@0 2606 // bypassing each other. Happens after null checks, so the
aoqi@0 2607 // exception paths do not take memory state from the memory barrier,
aoqi@0 2608 // so there's no problems making a strong assert about mixing users
aoqi@0 2609 // of safe & unsafe memory. Otherwise fails in a CTW of rt.jar
aoqi@0 2610 // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
aoqi@0 2611 if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
aoqi@0 2612
aoqi@0 2613 if (!is_store) {
aoqi@0 2614 Node* p = make_load(control(), adr, value_type, type, adr_type, MemNode::unordered, is_volatile);
aoqi@0 2615 // load value
aoqi@0 2616 switch (type) {
aoqi@0 2617 case T_BOOLEAN:
aoqi@0 2618 case T_CHAR:
aoqi@0 2619 case T_BYTE:
aoqi@0 2620 case T_SHORT:
aoqi@0 2621 case T_INT:
aoqi@0 2622 case T_LONG:
aoqi@0 2623 case T_FLOAT:
aoqi@0 2624 case T_DOUBLE:
aoqi@0 2625 break;
aoqi@0 2626 case T_OBJECT:
aoqi@0 2627 if (need_read_barrier) {
aoqi@0 2628 insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
aoqi@0 2629 }
aoqi@0 2630 break;
aoqi@0 2631 case T_ADDRESS:
aoqi@0 2632 // Cast to an int type.
aoqi@0 2633 p = _gvn.transform(new (C) CastP2XNode(NULL, p));
aoqi@0 2634 p = ConvX2UL(p);
aoqi@0 2635 break;
aoqi@0 2636 default:
aoqi@0 2637 fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
aoqi@0 2638 break;
aoqi@0 2639 }
aoqi@0 2640 // The load node has the control of the preceding MemBarCPUOrder. All
aoqi@0 2641 // following nodes will have the control of the MemBarCPUOrder inserted at
aoqi@0 2642 // the end of this method. So, pushing the load onto the stack at a later
aoqi@0 2643 // point is fine.
aoqi@0 2644 set_result(p);
aoqi@0 2645 } else {
aoqi@0 2646 // place effect of store into memory
aoqi@0 2647 switch (type) {
aoqi@0 2648 case T_DOUBLE:
aoqi@0 2649 val = dstore_rounding(val);
aoqi@0 2650 break;
aoqi@0 2651 case T_ADDRESS:
aoqi@0 2652 // Repackage the long as a pointer.
aoqi@0 2653 val = ConvL2X(val);
aoqi@0 2654 val = _gvn.transform(new (C) CastX2PNode(val));
aoqi@0 2655 break;
aoqi@0 2656 }
aoqi@0 2657
aoqi@0 2658 MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
aoqi@0 2659 if (type != T_OBJECT ) {
aoqi@0 2660 (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
aoqi@0 2661 } else {
aoqi@0 2662 // Possibly an oop being stored to Java heap or native memory
aoqi@0 2663 if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
aoqi@0 2664 // oop to Java heap.
aoqi@0 2665 (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
aoqi@0 2666 } else {
aoqi@0 2667 // We can't tell at compile time if we are storing in the Java heap or outside
aoqi@0 2668 // of it. So we need to emit code to conditionally do the proper type of
aoqi@0 2669 // store.
aoqi@0 2670
aoqi@0 2671 IdealKit ideal(this);
aoqi@0 2672 #define __ ideal.
aoqi@0 2673 // QQQ who knows what probability is here??
aoqi@0 2674 __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
aoqi@0 2675 // Sync IdealKit and graphKit.
aoqi@0 2676 sync_kit(ideal);
aoqi@0 2677 Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
aoqi@0 2678 // Update IdealKit memory.
aoqi@0 2679 __ sync_kit(this);
aoqi@0 2680 } __ else_(); {
aoqi@0 2681 __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
aoqi@0 2682 } __ end_if();
aoqi@0 2683 // Final sync IdealKit and GraphKit.
aoqi@0 2684 final_sync(ideal);
aoqi@0 2685 #undef __
aoqi@0 2686 }
aoqi@0 2687 }
aoqi@0 2688 }
aoqi@0 2689
aoqi@0 2690 if (is_volatile) {
aoqi@0 2691 if (!is_store) {
aoqi@0 2692 insert_mem_bar(Op_MemBarAcquire);
aoqi@0 2693 } else {
aoqi@0 2694 if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
aoqi@0 2695 insert_mem_bar(Op_MemBarVolatile);
aoqi@0 2696 }
aoqi@0 2697 }
aoqi@0 2698 }
aoqi@0 2699
aoqi@0 2700 if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
aoqi@0 2701
aoqi@0 2702 return true;
aoqi@0 2703 }
aoqi@0 2704
aoqi@0 2705 //----------------------------inline_unsafe_prefetch----------------------------
aoqi@0 2706
aoqi@0 2707 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
aoqi@0 2708 #ifndef PRODUCT
aoqi@0 2709 {
aoqi@0 2710 ResourceMark rm;
aoqi@0 2711 // Check the signatures.
aoqi@0 2712 ciSignature* sig = callee()->signature();
aoqi@0 2713 #ifdef ASSERT
aoqi@0 2714 // Object getObject(Object base, int/long offset), etc.
aoqi@0 2715 BasicType rtype = sig->return_type()->basic_type();
aoqi@0 2716 if (!is_native_ptr) {
aoqi@0 2717 assert(sig->count() == 2, "oop prefetch has 2 arguments");
aoqi@0 2718 assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
aoqi@0 2719 assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
aoqi@0 2720 } else {
aoqi@0 2721 assert(sig->count() == 1, "native prefetch has 1 argument");
aoqi@0 2722 assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
aoqi@0 2723 }
aoqi@0 2724 #endif // ASSERT
aoqi@0 2725 }
aoqi@0 2726 #endif // !PRODUCT
aoqi@0 2727
aoqi@0 2728 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
aoqi@0 2729
aoqi@0 2730 const int idx = is_static ? 0 : 1;
aoqi@0 2731 if (!is_static) {
aoqi@0 2732 null_check_receiver();
aoqi@0 2733 if (stopped()) {
aoqi@0 2734 return true;
aoqi@0 2735 }
aoqi@0 2736 }
aoqi@0 2737
aoqi@0 2738 // Build address expression. See the code in inline_unsafe_access.
aoqi@0 2739 Node *adr;
aoqi@0 2740 if (!is_native_ptr) {
aoqi@0 2741 // The base is either a Java object or a value produced by Unsafe.staticFieldBase
aoqi@0 2742 Node* base = argument(idx + 0); // type: oop
aoqi@0 2743 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
aoqi@0 2744 Node* offset = argument(idx + 1); // type: long
aoqi@0 2745 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
aoqi@0 2746 // to be plain byte offsets, which are also the same as those accepted
aoqi@0 2747 // by oopDesc::field_base.
aoqi@0 2748 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
aoqi@0 2749 "fieldOffset must be byte-scaled");
aoqi@0 2750 // 32-bit machines ignore the high half!
aoqi@0 2751 offset = ConvL2X(offset);
aoqi@0 2752 adr = make_unsafe_address(base, offset);
aoqi@0 2753 } else {
aoqi@0 2754 Node* ptr = argument(idx + 0); // type: long
aoqi@0 2755 ptr = ConvL2X(ptr); // adjust Java long to machine word
aoqi@0 2756 adr = make_unsafe_address(NULL, ptr);
aoqi@0 2757 }
aoqi@0 2758
aoqi@0 2759 // Generate the read or write prefetch
aoqi@0 2760 Node *prefetch;
aoqi@0 2761 if (is_store) {
aoqi@0 2762 prefetch = new (C) PrefetchWriteNode(i_o(), adr);
aoqi@0 2763 } else {
aoqi@0 2764 prefetch = new (C) PrefetchReadNode(i_o(), adr);
aoqi@0 2765 }
aoqi@0 2766 prefetch->init_req(0, control());
aoqi@0 2767 set_i_o(_gvn.transform(prefetch));
aoqi@0 2768
aoqi@0 2769 return true;
aoqi@0 2770 }
aoqi@0 2771
aoqi@0 2772 //----------------------------inline_unsafe_load_store----------------------------
aoqi@0 2773 // This method serves a couple of different customers (depending on LoadStoreKind):
aoqi@0 2774 //
aoqi@0 2775 // LS_cmpxchg:
aoqi@0 2776 // public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
aoqi@0 2777 // public final native boolean compareAndSwapInt( Object o, long offset, int expected, int x);
aoqi@0 2778 // public final native boolean compareAndSwapLong( Object o, long offset, long expected, long x);
aoqi@0 2779 //
aoqi@0 2780 // LS_xadd:
aoqi@0 2781 // public int getAndAddInt( Object o, long offset, int delta)
aoqi@0 2782 // public long getAndAddLong(Object o, long offset, long delta)
aoqi@0 2783 //
aoqi@0 2784 // LS_xchg:
aoqi@0 2785 // int getAndSet(Object o, long offset, int newValue)
aoqi@0 2786 // long getAndSet(Object o, long offset, long newValue)
aoqi@0 2787 // Object getAndSet(Object o, long offset, Object newValue)
aoqi@0 2788 //
aoqi@0 2789 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
aoqi@0 2790 // This basic scheme here is the same as inline_unsafe_access, but
aoqi@0 2791 // differs in enough details that combining them would make the code
aoqi@0 2792 // overly confusing. (This is a true fact! I originally combined
aoqi@0 2793 // them, but even I was confused by it!) As much code/comments as
aoqi@0 2794 // possible are retained from inline_unsafe_access though to make
aoqi@0 2795 // the correspondences clearer. - dl
aoqi@0 2796
aoqi@0 2797 if (callee()->is_static()) return false; // caller must have the capability!
aoqi@0 2798
aoqi@0 2799 #ifndef PRODUCT
aoqi@0 2800 BasicType rtype;
aoqi@0 2801 {
aoqi@0 2802 ResourceMark rm;
aoqi@0 2803 // Check the signatures.
aoqi@0 2804 ciSignature* sig = callee()->signature();
aoqi@0 2805 rtype = sig->return_type()->basic_type();
aoqi@0 2806 if (kind == LS_xadd || kind == LS_xchg) {
aoqi@0 2807 // Check the signatures.
aoqi@0 2808 #ifdef ASSERT
aoqi@0 2809 assert(rtype == type, "get and set must return the expected type");
aoqi@0 2810 assert(sig->count() == 3, "get and set has 3 arguments");
aoqi@0 2811 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
aoqi@0 2812 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
aoqi@0 2813 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
aoqi@0 2814 #endif // ASSERT
aoqi@0 2815 } else if (kind == LS_cmpxchg) {
aoqi@0 2816 // Check the signatures.
aoqi@0 2817 #ifdef ASSERT
aoqi@0 2818 assert(rtype == T_BOOLEAN, "CAS must return boolean");
aoqi@0 2819 assert(sig->count() == 4, "CAS has 4 arguments");
aoqi@0 2820 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
aoqi@0 2821 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
aoqi@0 2822 #endif // ASSERT
aoqi@0 2823 } else {
aoqi@0 2824 ShouldNotReachHere();
aoqi@0 2825 }
aoqi@0 2826 }
aoqi@0 2827 #endif //PRODUCT
aoqi@0 2828
aoqi@0 2829 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
aoqi@0 2830
aoqi@0 2831 // Get arguments:
aoqi@0 2832 Node* receiver = NULL;
aoqi@0 2833 Node* base = NULL;
aoqi@0 2834 Node* offset = NULL;
aoqi@0 2835 Node* oldval = NULL;
aoqi@0 2836 Node* newval = NULL;
aoqi@0 2837 if (kind == LS_cmpxchg) {
aoqi@0 2838 const bool two_slot_type = type2size[type] == 2;
aoqi@0 2839 receiver = argument(0); // type: oop
aoqi@0 2840 base = argument(1); // type: oop
aoqi@0 2841 offset = argument(2); // type: long
aoqi@0 2842 oldval = argument(4); // type: oop, int, or long
aoqi@0 2843 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long
aoqi@0 2844 } else if (kind == LS_xadd || kind == LS_xchg){
aoqi@0 2845 receiver = argument(0); // type: oop
aoqi@0 2846 base = argument(1); // type: oop
aoqi@0 2847 offset = argument(2); // type: long
aoqi@0 2848 oldval = NULL;
aoqi@0 2849 newval = argument(4); // type: oop, int, or long
aoqi@0 2850 }
aoqi@0 2851
aoqi@0 2852 // Null check receiver.
aoqi@0 2853 receiver = null_check(receiver);
aoqi@0 2854 if (stopped()) {
aoqi@0 2855 return true;
aoqi@0 2856 }
aoqi@0 2857
aoqi@0 2858 // Build field offset expression.
aoqi@0 2859 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
aoqi@0 2860 // to be plain byte offsets, which are also the same as those accepted
aoqi@0 2861 // by oopDesc::field_base.
aoqi@0 2862 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
aoqi@0 2863 // 32-bit machines ignore the high half of long offsets
aoqi@0 2864 offset = ConvL2X(offset);
aoqi@0 2865 Node* adr = make_unsafe_address(base, offset);
aoqi@0 2866 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
aoqi@0 2867
aoqi@0 2868 // For CAS, unlike inline_unsafe_access, there seems no point in
aoqi@0 2869 // trying to refine types. Just use the coarse types here.
aoqi@0 2870 const Type *value_type = Type::get_const_basic_type(type);
aoqi@0 2871 Compile::AliasType* alias_type = C->alias_type(adr_type);
aoqi@0 2872 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
aoqi@0 2873
aoqi@0 2874 if (kind == LS_xchg && type == T_OBJECT) {
aoqi@0 2875 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
aoqi@0 2876 if (tjp != NULL) {
aoqi@0 2877 value_type = tjp;
aoqi@0 2878 }
aoqi@0 2879 }
aoqi@0 2880
aoqi@0 2881 int alias_idx = C->get_alias_index(adr_type);
aoqi@0 2882
aoqi@0 2883 // Memory-model-wise, a LoadStore acts like a little synchronized
aoqi@0 2884 // block, so needs barriers on each side. These don't translate
aoqi@0 2885 // into actual barriers on most machines, but we still need rest of
aoqi@0 2886 // compiler to respect ordering.
aoqi@0 2887
aoqi@0 2888 insert_mem_bar(Op_MemBarRelease);
aoqi@0 2889 insert_mem_bar(Op_MemBarCPUOrder);
aoqi@0 2890
aoqi@0 2891 // 4984716: MemBars must be inserted before this
aoqi@0 2892 // memory node in order to avoid a false
aoqi@0 2893 // dependency which will confuse the scheduler.
aoqi@0 2894 Node *mem = memory(alias_idx);
aoqi@0 2895
aoqi@0 2896 // For now, we handle only those cases that actually exist: ints,
aoqi@0 2897 // longs, and Object. Adding others should be straightforward.
aoqi@0 2898 Node* load_store;
aoqi@0 2899 switch(type) {
aoqi@0 2900 case T_INT:
aoqi@0 2901 if (kind == LS_xadd) {
aoqi@0 2902 load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
aoqi@0 2903 } else if (kind == LS_xchg) {
aoqi@0 2904 load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
aoqi@0 2905 } else if (kind == LS_cmpxchg) {
aoqi@0 2906 load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
aoqi@0 2907 } else {
aoqi@0 2908 ShouldNotReachHere();
aoqi@0 2909 }
aoqi@0 2910 break;
aoqi@0 2911 case T_LONG:
aoqi@0 2912 if (kind == LS_xadd) {
aoqi@0 2913 load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
aoqi@0 2914 } else if (kind == LS_xchg) {
aoqi@0 2915 load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
aoqi@0 2916 } else if (kind == LS_cmpxchg) {
aoqi@0 2917 load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
aoqi@0 2918 } else {
aoqi@0 2919 ShouldNotReachHere();
aoqi@0 2920 }
aoqi@0 2921 break;
aoqi@0 2922 case T_OBJECT:
aoqi@0 2923 // Transformation of a value which could be NULL pointer (CastPP #NULL)
aoqi@0 2924 // could be delayed during Parse (for example, in adjust_map_after_if()).
aoqi@0 2925 // Execute transformation here to avoid barrier generation in such case.
aoqi@0 2926 if (_gvn.type(newval) == TypePtr::NULL_PTR)
aoqi@0 2927 newval = _gvn.makecon(TypePtr::NULL_PTR);
aoqi@0 2928
aoqi@0 2929 // Reference stores need a store barrier.
aoqi@0 2930 if (kind == LS_xchg) {
aoqi@0 2931 // If pre-barrier must execute before the oop store, old value will require do_load here.
aoqi@0 2932 if (!can_move_pre_barrier()) {
aoqi@0 2933 pre_barrier(true /* do_load*/,
aoqi@0 2934 control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
aoqi@0 2935 NULL /* pre_val*/,
aoqi@0 2936 T_OBJECT);
aoqi@0 2937 } // Else move pre_barrier to use load_store value, see below.
aoqi@0 2938 } else if (kind == LS_cmpxchg) {
aoqi@0 2939 // Same as for newval above:
aoqi@0 2940 if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
aoqi@0 2941 oldval = _gvn.makecon(TypePtr::NULL_PTR);
aoqi@0 2942 }
aoqi@0 2943 // The only known value which might get overwritten is oldval.
aoqi@0 2944 pre_barrier(false /* do_load */,
aoqi@0 2945 control(), NULL, NULL, max_juint, NULL, NULL,
aoqi@0 2946 oldval /* pre_val */,
aoqi@0 2947 T_OBJECT);
aoqi@0 2948 } else {
aoqi@0 2949 ShouldNotReachHere();
aoqi@0 2950 }
aoqi@0 2951
aoqi@0 2952 #ifdef _LP64
aoqi@0 2953 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
aoqi@0 2954 Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
aoqi@0 2955 if (kind == LS_xchg) {
aoqi@0 2956 load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
aoqi@0 2957 newval_enc, adr_type, value_type->make_narrowoop()));
aoqi@0 2958 } else {
aoqi@0 2959 assert(kind == LS_cmpxchg, "wrong LoadStore operation");
aoqi@0 2960 Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
aoqi@0 2961 load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
aoqi@0 2962 newval_enc, oldval_enc));
aoqi@0 2963 }
aoqi@0 2964 } else
aoqi@0 2965 #endif
aoqi@0 2966 {
aoqi@0 2967 if (kind == LS_xchg) {
aoqi@0 2968 load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
aoqi@0 2969 } else {
aoqi@0 2970 assert(kind == LS_cmpxchg, "wrong LoadStore operation");
aoqi@0 2971 load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
aoqi@0 2972 }
aoqi@0 2973 }
aoqi@0 2974 post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
aoqi@0 2975 break;
aoqi@0 2976 default:
aoqi@0 2977 fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
aoqi@0 2978 break;
aoqi@0 2979 }
aoqi@0 2980
aoqi@0 2981 // SCMemProjNodes represent the memory state of a LoadStore. Their
aoqi@0 2982 // main role is to prevent LoadStore nodes from being optimized away
aoqi@0 2983 // when their results aren't used.
aoqi@0 2984 Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
aoqi@0 2985 set_memory(proj, alias_idx);
aoqi@0 2986
aoqi@0 2987 if (type == T_OBJECT && kind == LS_xchg) {
aoqi@0 2988 #ifdef _LP64
aoqi@0 2989 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
aoqi@0 2990 load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
aoqi@0 2991 }
aoqi@0 2992 #endif
aoqi@0 2993 if (can_move_pre_barrier()) {
aoqi@0 2994 // Don't need to load pre_val. The old value is returned by load_store.
aoqi@0 2995 // The pre_barrier can execute after the xchg as long as no safepoint
aoqi@0 2996 // gets inserted between them.
aoqi@0 2997 pre_barrier(false /* do_load */,
aoqi@0 2998 control(), NULL, NULL, max_juint, NULL, NULL,
aoqi@0 2999 load_store /* pre_val */,
aoqi@0 3000 T_OBJECT);
aoqi@0 3001 }
aoqi@0 3002 }
aoqi@0 3003
aoqi@0 3004 // Add the trailing membar surrounding the access
aoqi@0 3005 insert_mem_bar(Op_MemBarCPUOrder);
aoqi@0 3006 insert_mem_bar(Op_MemBarAcquire);
aoqi@0 3007
aoqi@0 3008 assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
aoqi@0 3009 set_result(load_store);
aoqi@0 3010 return true;
aoqi@0 3011 }
aoqi@0 3012
aoqi@0 3013 //----------------------------inline_unsafe_ordered_store----------------------
aoqi@0 3014 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
aoqi@0 3015 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
aoqi@0 3016 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
aoqi@0 3017 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
aoqi@0 3018 // This is another variant of inline_unsafe_access, differing in
aoqi@0 3019 // that it always issues store-store ("release") barrier and ensures
aoqi@0 3020 // store-atomicity (which only matters for "long").
aoqi@0 3021
aoqi@0 3022 if (callee()->is_static()) return false; // caller must have the capability!
aoqi@0 3023
aoqi@0 3024 #ifndef PRODUCT
aoqi@0 3025 {
aoqi@0 3026 ResourceMark rm;
aoqi@0 3027 // Check the signatures.
aoqi@0 3028 ciSignature* sig = callee()->signature();
aoqi@0 3029 #ifdef ASSERT
aoqi@0 3030 BasicType rtype = sig->return_type()->basic_type();
aoqi@0 3031 assert(rtype == T_VOID, "must return void");
aoqi@0 3032 assert(sig->count() == 3, "has 3 arguments");
aoqi@0 3033 assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
aoqi@0 3034 assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
aoqi@0 3035 #endif // ASSERT
aoqi@0 3036 }
aoqi@0 3037 #endif //PRODUCT
aoqi@0 3038
aoqi@0 3039 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
aoqi@0 3040
aoqi@0 3041 // Get arguments:
aoqi@0 3042 Node* receiver = argument(0); // type: oop
aoqi@0 3043 Node* base = argument(1); // type: oop
aoqi@0 3044 Node* offset = argument(2); // type: long
aoqi@0 3045 Node* val = argument(4); // type: oop, int, or long
aoqi@0 3046
aoqi@0 3047 // Null check receiver.
aoqi@0 3048 receiver = null_check(receiver);
aoqi@0 3049 if (stopped()) {
aoqi@0 3050 return true;
aoqi@0 3051 }
aoqi@0 3052
aoqi@0 3053 // Build field offset expression.
aoqi@0 3054 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
aoqi@0 3055 // 32-bit machines ignore the high half of long offsets
aoqi@0 3056 offset = ConvL2X(offset);
aoqi@0 3057 Node* adr = make_unsafe_address(base, offset);
aoqi@0 3058 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
aoqi@0 3059 const Type *value_type = Type::get_const_basic_type(type);
aoqi@0 3060 Compile::AliasType* alias_type = C->alias_type(adr_type);
aoqi@0 3061
aoqi@0 3062 insert_mem_bar(Op_MemBarRelease);
aoqi@0 3063 insert_mem_bar(Op_MemBarCPUOrder);
aoqi@0 3064 // Ensure that the store is atomic for longs:
aoqi@0 3065 const bool require_atomic_access = true;
aoqi@0 3066 Node* store;
aoqi@0 3067 if (type == T_OBJECT) // reference stores need a store barrier.
aoqi@0 3068 store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
aoqi@0 3069 else {
aoqi@0 3070 store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
aoqi@0 3071 }
aoqi@0 3072 insert_mem_bar(Op_MemBarCPUOrder);
aoqi@0 3073 return true;
aoqi@0 3074 }
aoqi@0 3075
aoqi@0 3076 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
aoqi@0 3077 // Regardless of form, don't allow previous ld/st to move down,
aoqi@0 3078 // then issue acquire, release, or volatile mem_bar.
aoqi@0 3079 insert_mem_bar(Op_MemBarCPUOrder);
aoqi@0 3080 switch(id) {
aoqi@0 3081 case vmIntrinsics::_loadFence:
aoqi@0 3082 insert_mem_bar(Op_LoadFence);
aoqi@0 3083 return true;
aoqi@0 3084 case vmIntrinsics::_storeFence:
aoqi@0 3085 insert_mem_bar(Op_StoreFence);
aoqi@0 3086 return true;
aoqi@0 3087 case vmIntrinsics::_fullFence:
aoqi@0 3088 insert_mem_bar(Op_MemBarVolatile);
aoqi@0 3089 return true;
aoqi@0 3090 default:
aoqi@0 3091 fatal_unexpected_iid(id);
aoqi@0 3092 return false;
aoqi@0 3093 }
aoqi@0 3094 }
aoqi@0 3095
aoqi@0 3096 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
aoqi@0 3097 if (!kls->is_Con()) {
aoqi@0 3098 return true;
aoqi@0 3099 }
aoqi@0 3100 const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
aoqi@0 3101 if (klsptr == NULL) {
aoqi@0 3102 return true;
aoqi@0 3103 }
aoqi@0 3104 ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
aoqi@0 3105 // don't need a guard for a klass that is already initialized
aoqi@0 3106 return !ik->is_initialized();
aoqi@0 3107 }
aoqi@0 3108
aoqi@0 3109 //----------------------------inline_unsafe_allocate---------------------------
aoqi@0 3110 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
aoqi@0 3111 bool LibraryCallKit::inline_unsafe_allocate() {
aoqi@0 3112 if (callee()->is_static()) return false; // caller must have the capability!
aoqi@0 3113
aoqi@0 3114 null_check_receiver(); // null-check, then ignore
aoqi@0 3115 Node* cls = null_check(argument(1));
aoqi@0 3116 if (stopped()) return true;
aoqi@0 3117
aoqi@0 3118 Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
aoqi@0 3119 kls = null_check(kls);
aoqi@0 3120 if (stopped()) return true; // argument was like int.class
aoqi@0 3121
aoqi@0 3122 Node* test = NULL;
aoqi@0 3123 if (LibraryCallKit::klass_needs_init_guard(kls)) {
aoqi@0 3124 // Note: The argument might still be an illegal value like
aoqi@0 3125 // Serializable.class or Object[].class. The runtime will handle it.
aoqi@0 3126 // But we must make an explicit check for initialization.
aoqi@0 3127 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
aoqi@0 3128 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
aoqi@0 3129 // can generate code to load it as unsigned byte.
aoqi@0 3130 Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
aoqi@0 3131 Node* bits = intcon(InstanceKlass::fully_initialized);
aoqi@0 3132 test = _gvn.transform(new (C) SubINode(inst, bits));
aoqi@0 3133 // The 'test' is non-zero if we need to take a slow path.
aoqi@0 3134 }
aoqi@0 3135
aoqi@0 3136 Node* obj = new_instance(kls, test);
aoqi@0 3137 set_result(obj);
aoqi@0 3138 return true;
aoqi@0 3139 }
aoqi@0 3140
aoqi@0 3141 #ifdef TRACE_HAVE_INTRINSICS
aoqi@0 3142 /*
aoqi@0 3143 * oop -> myklass
aoqi@0 3144 * myklass->trace_id |= USED
aoqi@0 3145 * return myklass->trace_id & ~0x3
aoqi@0 3146 */
aoqi@0 3147 bool LibraryCallKit::inline_native_classID() {
aoqi@0 3148 null_check_receiver(); // null-check, then ignore
aoqi@0 3149 Node* cls = null_check(argument(1), T_OBJECT);
aoqi@0 3150 Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
aoqi@0 3151 kls = null_check(kls, T_OBJECT);
aoqi@0 3152 ByteSize offset = TRACE_ID_OFFSET;
aoqi@0 3153 Node* insp = basic_plus_adr(kls, in_bytes(offset));
aoqi@0 3154 Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
aoqi@0 3155 Node* bits = longcon(~0x03l); // ignore bit 0 & 1
aoqi@0 3156 Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
aoqi@0 3157 Node* clsused = longcon(0x01l); // set the class bit
aoqi@0 3158 Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
aoqi@0 3159
aoqi@0 3160 const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
aoqi@0 3161 store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
aoqi@0 3162 set_result(andl);
aoqi@0 3163 return true;
aoqi@0 3164 }
aoqi@0 3165
aoqi@0 3166 bool LibraryCallKit::inline_native_threadID() {
aoqi@0 3167 Node* tls_ptr = NULL;
aoqi@0 3168 Node* cur_thr = generate_current_thread(tls_ptr);
aoqi@0 3169 Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
aoqi@0 3170 Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
aoqi@0 3171 p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
aoqi@0 3172
aoqi@0 3173 Node* threadid = NULL;
aoqi@0 3174 size_t thread_id_size = OSThread::thread_id_size();
aoqi@0 3175 if (thread_id_size == (size_t) BytesPerLong) {
aoqi@0 3176 threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
aoqi@0 3177 } else if (thread_id_size == (size_t) BytesPerInt) {
aoqi@0 3178 threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
aoqi@0 3179 } else {
aoqi@0 3180 ShouldNotReachHere();
aoqi@0 3181 }
aoqi@0 3182 set_result(threadid);
aoqi@0 3183 return true;
aoqi@0 3184 }
aoqi@0 3185 #endif
aoqi@0 3186
aoqi@0 3187 //------------------------inline_native_time_funcs--------------
aoqi@0 3188 // inline code for System.currentTimeMillis() and System.nanoTime()
aoqi@0 3189 // these have the same type and signature
aoqi@0 3190 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
aoqi@0 3191 const TypeFunc* tf = OptoRuntime::void_long_Type();
aoqi@0 3192 const TypePtr* no_memory_effects = NULL;
aoqi@0 3193 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
aoqi@0 3194 Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
aoqi@0 3195 #ifdef ASSERT
aoqi@0 3196 Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
aoqi@0 3197 assert(value_top == top(), "second value must be top");
aoqi@0 3198 #endif
aoqi@0 3199 set_result(value);
aoqi@0 3200 return true;
aoqi@0 3201 }
aoqi@0 3202
aoqi@0 3203 //------------------------inline_native_currentThread------------------
aoqi@0 3204 bool LibraryCallKit::inline_native_currentThread() {
aoqi@0 3205 Node* junk = NULL;
aoqi@0 3206 set_result(generate_current_thread(junk));
aoqi@0 3207 return true;
aoqi@0 3208 }
aoqi@0 3209
aoqi@0 3210 //------------------------inline_native_isInterrupted------------------
aoqi@0 3211 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
aoqi@0 3212 bool LibraryCallKit::inline_native_isInterrupted() {
aoqi@0 3213 // Add a fast path to t.isInterrupted(clear_int):
aoqi@0 3214 // (t == Thread.current() &&
aoqi@0 3215 // (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
aoqi@0 3216 // ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
aoqi@0 3217 // So, in the common case that the interrupt bit is false,
aoqi@0 3218 // we avoid making a call into the VM. Even if the interrupt bit
aoqi@0 3219 // is true, if the clear_int argument is false, we avoid the VM call.
aoqi@0 3220 // However, if the receiver is not currentThread, we must call the VM,
aoqi@0 3221 // because there must be some locking done around the operation.
aoqi@0 3222
aoqi@0 3223 // We only go to the fast case code if we pass two guards.
aoqi@0 3224 // Paths which do not pass are accumulated in the slow_region.
aoqi@0 3225
aoqi@0 3226 enum {
aoqi@0 3227 no_int_result_path = 1, // t == Thread.current() && !TLS._osthread._interrupted
aoqi@0 3228 no_clear_result_path = 2, // t == Thread.current() && TLS._osthread._interrupted && !clear_int
aoqi@0 3229 slow_result_path = 3, // slow path: t.isInterrupted(clear_int)
aoqi@0 3230 PATH_LIMIT
aoqi@0 3231 };
aoqi@0 3232
aoqi@0 3233 // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
aoqi@0 3234 // out of the function.
aoqi@0 3235 insert_mem_bar(Op_MemBarCPUOrder);
aoqi@0 3236
aoqi@0 3237 RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
aoqi@0 3238 PhiNode* result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
aoqi@0 3239
aoqi@0 3240 RegionNode* slow_region = new (C) RegionNode(1);
aoqi@0 3241 record_for_igvn(slow_region);
aoqi@0 3242
aoqi@0 3243 // (a) Receiving thread must be the current thread.
aoqi@0 3244 Node* rec_thr = argument(0);
aoqi@0 3245 Node* tls_ptr = NULL;
aoqi@0 3246 Node* cur_thr = generate_current_thread(tls_ptr);
aoqi@0 3247 Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
aoqi@0 3248 Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
aoqi@0 3249
aoqi@0 3250 generate_slow_guard(bol_thr, slow_region);
aoqi@0 3251
aoqi@0 3252 // (b) Interrupt bit on TLS must be false.
aoqi@0 3253 Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
aoqi@0 3254 Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
aoqi@0 3255 p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
aoqi@0 3256
aoqi@0 3257 // Set the control input on the field _interrupted read to prevent it floating up.
aoqi@0 3258 Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
aoqi@0 3259 Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
aoqi@0 3260 Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
aoqi@0 3261
aoqi@0 3262 IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
aoqi@0 3263
aoqi@0 3264 // First fast path: if (!TLS._interrupted) return false;
aoqi@0 3265 Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
aoqi@0 3266 result_rgn->init_req(no_int_result_path, false_bit);
aoqi@0 3267 result_val->init_req(no_int_result_path, intcon(0));
aoqi@0 3268
aoqi@0 3269 // drop through to next case
aoqi@0 3270 set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
aoqi@0 3271
aoqi@0 3272 #ifndef TARGET_OS_FAMILY_windows
aoqi@0 3273 // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
aoqi@0 3274 Node* clr_arg = argument(1);
aoqi@0 3275 Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
aoqi@0 3276 Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
aoqi@0 3277 IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
aoqi@0 3278
aoqi@0 3279 // Second fast path: ... else if (!clear_int) return true;
aoqi@0 3280 Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
aoqi@0 3281 result_rgn->init_req(no_clear_result_path, false_arg);
aoqi@0 3282 result_val->init_req(no_clear_result_path, intcon(1));
aoqi@0 3283
aoqi@0 3284 // drop through to next case
aoqi@0 3285 set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
aoqi@0 3286 #else
aoqi@0 3287 // To return true on Windows you must read the _interrupted field
aoqi@0 3288 // and check the the event state i.e. take the slow path.
aoqi@0 3289 #endif // TARGET_OS_FAMILY_windows
aoqi@0 3290
aoqi@0 3291 // (d) Otherwise, go to the slow path.
aoqi@0 3292 slow_region->add_req(control());
aoqi@0 3293 set_control( _gvn.transform(slow_region));
aoqi@0 3294
aoqi@0 3295 if (stopped()) {
aoqi@0 3296 // There is no slow path.
aoqi@0 3297 result_rgn->init_req(slow_result_path, top());
aoqi@0 3298 result_val->init_req(slow_result_path, top());
aoqi@0 3299 } else {
aoqi@0 3300 // non-virtual because it is a private non-static
aoqi@0 3301 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
aoqi@0 3302
aoqi@0 3303 Node* slow_val = set_results_for_java_call(slow_call);
aoqi@0 3304 // this->control() comes from set_results_for_java_call
aoqi@0 3305
aoqi@0 3306 Node* fast_io = slow_call->in(TypeFunc::I_O);
aoqi@0 3307 Node* fast_mem = slow_call->in(TypeFunc::Memory);
aoqi@0 3308
aoqi@0 3309 // These two phis are pre-filled with copies of of the fast IO and Memory
aoqi@0 3310 PhiNode* result_mem = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
aoqi@0 3311 PhiNode* result_io = PhiNode::make(result_rgn, fast_io, Type::ABIO);
aoqi@0 3312
aoqi@0 3313 result_rgn->init_req(slow_result_path, control());
aoqi@0 3314 result_io ->init_req(slow_result_path, i_o());
aoqi@0 3315 result_mem->init_req(slow_result_path, reset_memory());
aoqi@0 3316 result_val->init_req(slow_result_path, slow_val);
aoqi@0 3317
aoqi@0 3318 set_all_memory(_gvn.transform(result_mem));
aoqi@0 3319 set_i_o( _gvn.transform(result_io));
aoqi@0 3320 }
aoqi@0 3321
aoqi@0 3322 C->set_has_split_ifs(true); // Has chance for split-if optimization
aoqi@0 3323 set_result(result_rgn, result_val);
aoqi@0 3324 return true;
aoqi@0 3325 }
aoqi@0 3326
aoqi@0 3327 //---------------------------load_mirror_from_klass----------------------------
aoqi@0 3328 // Given a klass oop, load its java mirror (a java.lang.Class oop).
aoqi@0 3329 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
aoqi@0 3330 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
aoqi@0 3331 return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
aoqi@0 3332 }
aoqi@0 3333
aoqi@0 3334 //-----------------------load_klass_from_mirror_common-------------------------
aoqi@0 3335 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
aoqi@0 3336 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
aoqi@0 3337 // and branch to the given path on the region.
aoqi@0 3338 // If never_see_null, take an uncommon trap on null, so we can optimistically
aoqi@0 3339 // compile for the non-null case.
aoqi@0 3340 // If the region is NULL, force never_see_null = true.
aoqi@0 3341 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
aoqi@0 3342 bool never_see_null,
aoqi@0 3343 RegionNode* region,
aoqi@0 3344 int null_path,
aoqi@0 3345 int offset) {
aoqi@0 3346 if (region == NULL) never_see_null = true;
aoqi@0 3347 Node* p = basic_plus_adr(mirror, offset);
aoqi@0 3348 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
aoqi@0 3349 Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
aoqi@0 3350 Node* null_ctl = top();
aoqi@0 3351 kls = null_check_oop(kls, &null_ctl, never_see_null);
aoqi@0 3352 if (region != NULL) {
aoqi@0 3353 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
aoqi@0 3354 region->init_req(null_path, null_ctl);
aoqi@0 3355 } else {
aoqi@0 3356 assert(null_ctl == top(), "no loose ends");
aoqi@0 3357 }
aoqi@0 3358 return kls;
aoqi@0 3359 }
aoqi@0 3360
aoqi@0 3361 //--------------------(inline_native_Class_query helpers)---------------------
aoqi@0 3362 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
aoqi@0 3363 // Fall through if (mods & mask) == bits, take the guard otherwise.
aoqi@0 3364 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
aoqi@0 3365 // Branch around if the given klass has the given modifier bit set.
aoqi@0 3366 // Like generate_guard, adds a new path onto the region.
aoqi@0 3367 Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
aoqi@0 3368 Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
aoqi@0 3369 Node* mask = intcon(modifier_mask);
aoqi@0 3370 Node* bits = intcon(modifier_bits);
aoqi@0 3371 Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
aoqi@0 3372 Node* cmp = _gvn.transform(new (C) CmpINode(mbit, bits));
aoqi@0 3373 Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
aoqi@0 3374 return generate_fair_guard(bol, region);
aoqi@0 3375 }
aoqi@0 3376 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
aoqi@0 3377 return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
aoqi@0 3378 }
aoqi@0 3379
aoqi@0 3380 //-------------------------inline_native_Class_query-------------------
aoqi@0 3381 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
aoqi@0 3382 const Type* return_type = TypeInt::BOOL;
aoqi@0 3383 Node* prim_return_value = top(); // what happens if it's a primitive class?
aoqi@0 3384 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
aoqi@0 3385 bool expect_prim = false; // most of these guys expect to work on refs
aoqi@0 3386
aoqi@0 3387 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
aoqi@0 3388
aoqi@0 3389 Node* mirror = argument(0);
aoqi@0 3390 Node* obj = top();
aoqi@0 3391
aoqi@0 3392 switch (id) {
aoqi@0 3393 case vmIntrinsics::_isInstance:
aoqi@0 3394 // nothing is an instance of a primitive type
aoqi@0 3395 prim_return_value = intcon(0);
aoqi@0 3396 obj = argument(1);
aoqi@0 3397 break;
aoqi@0 3398 case vmIntrinsics::_getModifiers:
aoqi@0 3399 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
aoqi@0 3400 assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
aoqi@0 3401 return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
aoqi@0 3402 break;
aoqi@0 3403 case vmIntrinsics::_isInterface:
aoqi@0 3404 prim_return_value = intcon(0);
aoqi@0 3405 break;
aoqi@0 3406 case vmIntrinsics::_isArray:
aoqi@0 3407 prim_return_value = intcon(0);
aoqi@0 3408 expect_prim = true; // cf. ObjectStreamClass.getClassSignature
aoqi@0 3409 break;
aoqi@0 3410 case vmIntrinsics::_isPrimitive:
aoqi@0 3411 prim_return_value = intcon(1);
aoqi@0 3412 expect_prim = true; // obviously
aoqi@0 3413 break;
aoqi@0 3414 case vmIntrinsics::_getSuperclass:
aoqi@0 3415 prim_return_value = null();
aoqi@0 3416 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
aoqi@0 3417 break;
aoqi@0 3418 case vmIntrinsics::_getComponentType:
aoqi@0 3419 prim_return_value = null();
aoqi@0 3420 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
aoqi@0 3421 break;
aoqi@0 3422 case vmIntrinsics::_getClassAccessFlags:
aoqi@0 3423 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
aoqi@0 3424 return_type = TypeInt::INT; // not bool! 6297094
aoqi@0 3425 break;
aoqi@0 3426 default:
aoqi@0 3427 fatal_unexpected_iid(id);
aoqi@0 3428 break;
aoqi@0 3429 }
aoqi@0 3430
aoqi@0 3431 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
aoqi@0 3432 if (mirror_con == NULL) return false; // cannot happen?
aoqi@0 3433
aoqi@0 3434 #ifndef PRODUCT
aoqi@0 3435 if (C->print_intrinsics() || C->print_inlining()) {
aoqi@0 3436 ciType* k = mirror_con->java_mirror_type();
aoqi@0 3437 if (k) {
aoqi@0 3438 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
aoqi@0 3439 k->print_name();
aoqi@0 3440 tty->cr();
aoqi@0 3441 }
aoqi@0 3442 }
aoqi@0 3443 #endif
aoqi@0 3444
aoqi@0 3445 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
aoqi@0 3446 RegionNode* region = new (C) RegionNode(PATH_LIMIT);
aoqi@0 3447 record_for_igvn(region);
aoqi@0 3448 PhiNode* phi = new (C) PhiNode(region, return_type);
aoqi@0 3449
aoqi@0 3450 // The mirror will never be null of Reflection.getClassAccessFlags, however
aoqi@0 3451 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
aoqi@0 3452 // if it is. See bug 4774291.
aoqi@0 3453
aoqi@0 3454 // For Reflection.getClassAccessFlags(), the null check occurs in
aoqi@0 3455 // the wrong place; see inline_unsafe_access(), above, for a similar
aoqi@0 3456 // situation.
aoqi@0 3457 mirror = null_check(mirror);
aoqi@0 3458 // If mirror or obj is dead, only null-path is taken.
aoqi@0 3459 if (stopped()) return true;
aoqi@0 3460
aoqi@0 3461 if (expect_prim) never_see_null = false; // expect nulls (meaning prims)
aoqi@0 3462
aoqi@0 3463 // Now load the mirror's klass metaobject, and null-check it.
aoqi@0 3464 // Side-effects region with the control path if the klass is null.
aoqi@0 3465 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
aoqi@0 3466 // If kls is null, we have a primitive mirror.
aoqi@0 3467 phi->init_req(_prim_path, prim_return_value);
aoqi@0 3468 if (stopped()) { set_result(region, phi); return true; }
aoqi@0 3469 bool safe_for_replace = (region->in(_prim_path) == top());
aoqi@0 3470
aoqi@0 3471 Node* p; // handy temp
aoqi@0 3472 Node* null_ctl;
aoqi@0 3473
aoqi@0 3474 // Now that we have the non-null klass, we can perform the real query.
aoqi@0 3475 // For constant classes, the query will constant-fold in LoadNode::Value.
aoqi@0 3476 Node* query_value = top();
aoqi@0 3477 switch (id) {
aoqi@0 3478 case vmIntrinsics::_isInstance:
aoqi@0 3479 // nothing is an instance of a primitive type
aoqi@0 3480 query_value = gen_instanceof(obj, kls, safe_for_replace);
aoqi@0 3481 break;
aoqi@0 3482
aoqi@0 3483 case vmIntrinsics::_getModifiers:
aoqi@0 3484 p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
aoqi@0 3485 query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
aoqi@0 3486 break;
aoqi@0 3487
aoqi@0 3488 case vmIntrinsics::_isInterface:
aoqi@0 3489 // (To verify this code sequence, check the asserts in JVM_IsInterface.)
aoqi@0 3490 if (generate_interface_guard(kls, region) != NULL)
aoqi@0 3491 // A guard was added. If the guard is taken, it was an interface.
aoqi@0 3492 phi->add_req(intcon(1));
aoqi@0 3493 // If we fall through, it's a plain class.
aoqi@0 3494 query_value = intcon(0);
aoqi@0 3495 break;
aoqi@0 3496
aoqi@0 3497 case vmIntrinsics::_isArray:
aoqi@0 3498 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
aoqi@0 3499 if (generate_array_guard(kls, region) != NULL)
aoqi@0 3500 // A guard was added. If the guard is taken, it was an array.
aoqi@0 3501 phi->add_req(intcon(1));
aoqi@0 3502 // If we fall through, it's a plain class.
aoqi@0 3503 query_value = intcon(0);
aoqi@0 3504 break;
aoqi@0 3505
aoqi@0 3506 case vmIntrinsics::_isPrimitive:
aoqi@0 3507 query_value = intcon(0); // "normal" path produces false
aoqi@0 3508 break;
aoqi@0 3509
aoqi@0 3510 case vmIntrinsics::_getSuperclass:
aoqi@0 3511 // The rules here are somewhat unfortunate, but we can still do better
aoqi@0 3512 // with random logic than with a JNI call.
aoqi@0 3513 // Interfaces store null or Object as _super, but must report null.
aoqi@0 3514 // Arrays store an intermediate super as _super, but must report Object.
aoqi@0 3515 // Other types can report the actual _super.
aoqi@0 3516 // (To verify this code sequence, check the asserts in JVM_IsInterface.)
aoqi@0 3517 if (generate_interface_guard(kls, region) != NULL)
aoqi@0 3518 // A guard was added. If the guard is taken, it was an interface.
aoqi@0 3519 phi->add_req(null());
aoqi@0 3520 if (generate_array_guard(kls, region) != NULL)
aoqi@0 3521 // A guard was added. If the guard is taken, it was an array.
aoqi@0 3522 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
aoqi@0 3523 // If we fall through, it's a plain class. Get its _super.
aoqi@0 3524 p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
aoqi@0 3525 kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
aoqi@0 3526 null_ctl = top();
aoqi@0 3527 kls = null_check_oop(kls, &null_ctl);
aoqi@0 3528 if (null_ctl != top()) {
aoqi@0 3529 // If the guard is taken, Object.superClass is null (both klass and mirror).
aoqi@0 3530 region->add_req(null_ctl);
aoqi@0 3531 phi ->add_req(null());
aoqi@0 3532 }
aoqi@0 3533 if (!stopped()) {
aoqi@0 3534 query_value = load_mirror_from_klass(kls);
aoqi@0 3535 }
aoqi@0 3536 break;
aoqi@0 3537
aoqi@0 3538 case vmIntrinsics::_getComponentType:
aoqi@0 3539 if (generate_array_guard(kls, region) != NULL) {
aoqi@0 3540 // Be sure to pin the oop load to the guard edge just created:
aoqi@0 3541 Node* is_array_ctrl = region->in(region->req()-1);
aoqi@0 3542 Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
aoqi@0 3543 Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
aoqi@0 3544 phi->add_req(cmo);
aoqi@0 3545 }
aoqi@0 3546 query_value = null(); // non-array case is null
aoqi@0 3547 break;
aoqi@0 3548
aoqi@0 3549 case vmIntrinsics::_getClassAccessFlags:
aoqi@0 3550 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
aoqi@0 3551 query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
aoqi@0 3552 break;
aoqi@0 3553
aoqi@0 3554 default:
aoqi@0 3555 fatal_unexpected_iid(id);
aoqi@0 3556 break;
aoqi@0 3557 }
aoqi@0 3558
aoqi@0 3559 // Fall-through is the normal case of a query to a real class.
aoqi@0 3560 phi->init_req(1, query_value);
aoqi@0 3561 region->init_req(1, control());
aoqi@0 3562
aoqi@0 3563 C->set_has_split_ifs(true); // Has chance for split-if optimization
aoqi@0 3564 set_result(region, phi);
aoqi@0 3565 return true;
aoqi@0 3566 }
aoqi@0 3567
aoqi@0 3568 //--------------------------inline_native_subtype_check------------------------
aoqi@0 3569 // This intrinsic takes the JNI calls out of the heart of
aoqi@0 3570 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
aoqi@0 3571 bool LibraryCallKit::inline_native_subtype_check() {
aoqi@0 3572 // Pull both arguments off the stack.
aoqi@0 3573 Node* args[2]; // two java.lang.Class mirrors: superc, subc
aoqi@0 3574 args[0] = argument(0);
aoqi@0 3575 args[1] = argument(1);
aoqi@0 3576 Node* klasses[2]; // corresponding Klasses: superk, subk
aoqi@0 3577 klasses[0] = klasses[1] = top();
aoqi@0 3578
aoqi@0 3579 enum {
aoqi@0 3580 // A full decision tree on {superc is prim, subc is prim}:
aoqi@0 3581 _prim_0_path = 1, // {P,N} => false
aoqi@0 3582 // {P,P} & superc!=subc => false
aoqi@0 3583 _prim_same_path, // {P,P} & superc==subc => true
aoqi@0 3584 _prim_1_path, // {N,P} => false
aoqi@0 3585 _ref_subtype_path, // {N,N} & subtype check wins => true
aoqi@0 3586 _both_ref_path, // {N,N} & subtype check loses => false
aoqi@0 3587 PATH_LIMIT
aoqi@0 3588 };
aoqi@0 3589
aoqi@0 3590 RegionNode* region = new (C) RegionNode(PATH_LIMIT);
aoqi@0 3591 Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
aoqi@0 3592 record_for_igvn(region);
aoqi@0 3593
aoqi@0 3594 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads
aoqi@0 3595 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
aoqi@0 3596 int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
aoqi@0 3597
aoqi@0 3598 // First null-check both mirrors and load each mirror's klass metaobject.
aoqi@0 3599 int which_arg;
aoqi@0 3600 for (which_arg = 0; which_arg <= 1; which_arg++) {
aoqi@0 3601 Node* arg = args[which_arg];
aoqi@0 3602 arg = null_check(arg);
aoqi@0 3603 if (stopped()) break;
aoqi@0 3604 args[which_arg] = arg;
aoqi@0 3605
aoqi@0 3606 Node* p = basic_plus_adr(arg, class_klass_offset);
aoqi@0 3607 Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
aoqi@0 3608 klasses[which_arg] = _gvn.transform(kls);
aoqi@0 3609 }
aoqi@0 3610
aoqi@0 3611 // Having loaded both klasses, test each for null.
aoqi@0 3612 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
aoqi@0 3613 for (which_arg = 0; which_arg <= 1; which_arg++) {
aoqi@0 3614 Node* kls = klasses[which_arg];
aoqi@0 3615 Node* null_ctl = top();
aoqi@0 3616 kls = null_check_oop(kls, &null_ctl, never_see_null);
aoqi@0 3617 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
aoqi@0 3618 region->init_req(prim_path, null_ctl);
aoqi@0 3619 if (stopped()) break;
aoqi@0 3620 klasses[which_arg] = kls;
aoqi@0 3621 }
aoqi@0 3622
aoqi@0 3623 if (!stopped()) {
aoqi@0 3624 // now we have two reference types, in klasses[0..1]
aoqi@0 3625 Node* subk = klasses[1]; // the argument to isAssignableFrom
aoqi@0 3626 Node* superk = klasses[0]; // the receiver
aoqi@0 3627 region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
aoqi@0 3628 // now we have a successful reference subtype check
aoqi@0 3629 region->set_req(_ref_subtype_path, control());
aoqi@0 3630 }
aoqi@0 3631
aoqi@0 3632 // If both operands are primitive (both klasses null), then
aoqi@0 3633 // we must return true when they are identical primitives.
aoqi@0 3634 // It is convenient to test this after the first null klass check.
aoqi@0 3635 set_control(region->in(_prim_0_path)); // go back to first null check
aoqi@0 3636 if (!stopped()) {
aoqi@0 3637 // Since superc is primitive, make a guard for the superc==subc case.
aoqi@0 3638 Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
aoqi@0 3639 Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
aoqi@0 3640 generate_guard(bol_eq, region, PROB_FAIR);
aoqi@0 3641 if (region->req() == PATH_LIMIT+1) {
aoqi@0 3642 // A guard was added. If the added guard is taken, superc==subc.
aoqi@0 3643 region->swap_edges(PATH_LIMIT, _prim_same_path);
aoqi@0 3644 region->del_req(PATH_LIMIT);
aoqi@0 3645 }
aoqi@0 3646 region->set_req(_prim_0_path, control()); // Not equal after all.
aoqi@0 3647 }
aoqi@0 3648
aoqi@0 3649 // these are the only paths that produce 'true':
aoqi@0 3650 phi->set_req(_prim_same_path, intcon(1));
aoqi@0 3651 phi->set_req(_ref_subtype_path, intcon(1));
aoqi@0 3652
aoqi@0 3653 // pull together the cases:
aoqi@0 3654 assert(region->req() == PATH_LIMIT, "sane region");
aoqi@0 3655 for (uint i = 1; i < region->req(); i++) {
aoqi@0 3656 Node* ctl = region->in(i);
aoqi@0 3657 if (ctl == NULL || ctl == top()) {
aoqi@0 3658 region->set_req(i, top());
aoqi@0 3659 phi ->set_req(i, top());
aoqi@0 3660 } else if (phi->in(i) == NULL) {
aoqi@0 3661 phi->set_req(i, intcon(0)); // all other paths produce 'false'
aoqi@0 3662 }
aoqi@0 3663 }
aoqi@0 3664
aoqi@0 3665 set_control(_gvn.transform(region));
aoqi@0 3666 set_result(_gvn.transform(phi));
aoqi@0 3667 return true;
aoqi@0 3668 }
aoqi@0 3669
aoqi@0 3670 //---------------------generate_array_guard_common------------------------
aoqi@0 3671 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
aoqi@0 3672 bool obj_array, bool not_array) {
aoqi@0 3673 // If obj_array/non_array==false/false:
aoqi@0 3674 // Branch around if the given klass is in fact an array (either obj or prim).
aoqi@0 3675 // If obj_array/non_array==false/true:
aoqi@0 3676 // Branch around if the given klass is not an array klass of any kind.
aoqi@0 3677 // If obj_array/non_array==true/true:
aoqi@0 3678 // Branch around if the kls is not an oop array (kls is int[], String, etc.)
aoqi@0 3679 // If obj_array/non_array==true/false:
aoqi@0 3680 // Branch around if the kls is an oop array (Object[] or subtype)
aoqi@0 3681 //
aoqi@0 3682 // Like generate_guard, adds a new path onto the region.
aoqi@0 3683 jint layout_con = 0;
aoqi@0 3684 Node* layout_val = get_layout_helper(kls, layout_con);
aoqi@0 3685 if (layout_val == NULL) {
aoqi@0 3686 bool query = (obj_array
aoqi@0 3687 ? Klass::layout_helper_is_objArray(layout_con)
aoqi@0 3688 : Klass::layout_helper_is_array(layout_con));
aoqi@0 3689 if (query == not_array) {
aoqi@0 3690 return NULL; // never a branch
aoqi@0 3691 } else { // always a branch
aoqi@0 3692 Node* always_branch = control();
aoqi@0 3693 if (region != NULL)
aoqi@0 3694 region->add_req(always_branch);
aoqi@0 3695 set_control(top());
aoqi@0 3696 return always_branch;
aoqi@0 3697 }
aoqi@0 3698 }
aoqi@0 3699 // Now test the correct condition.
aoqi@0 3700 jint nval = (obj_array
aoqi@0 3701 ? ((jint)Klass::_lh_array_tag_type_value
aoqi@0 3702 << Klass::_lh_array_tag_shift)
aoqi@0 3703 : Klass::_lh_neutral_value);
aoqi@0 3704 Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
aoqi@0 3705 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array
aoqi@0 3706 // invert the test if we are looking for a non-array
aoqi@0 3707 if (not_array) btest = BoolTest(btest).negate();
aoqi@0 3708 Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
aoqi@0 3709 return generate_fair_guard(bol, region);
aoqi@0 3710 }
aoqi@0 3711
aoqi@0 3712
aoqi@0 3713 //-----------------------inline_native_newArray--------------------------
aoqi@0 3714 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
aoqi@0 3715 bool LibraryCallKit::inline_native_newArray() {
aoqi@0 3716 Node* mirror = argument(0);
aoqi@0 3717 Node* count_val = argument(1);
aoqi@0 3718
aoqi@0 3719 mirror = null_check(mirror);
aoqi@0 3720 // If mirror or obj is dead, only null-path is taken.
aoqi@0 3721 if (stopped()) return true;
aoqi@0 3722
aoqi@0 3723 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
aoqi@0 3724 RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
aoqi@0 3725 PhiNode* result_val = new(C) PhiNode(result_reg,
aoqi@0 3726 TypeInstPtr::NOTNULL);
aoqi@0 3727 PhiNode* result_io = new(C) PhiNode(result_reg, Type::ABIO);
aoqi@0 3728 PhiNode* result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
aoqi@0 3729 TypePtr::BOTTOM);
aoqi@0 3730
aoqi@0 3731 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
aoqi@0 3732 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
aoqi@0 3733 result_reg, _slow_path);
aoqi@0 3734 Node* normal_ctl = control();
aoqi@0 3735 Node* no_array_ctl = result_reg->in(_slow_path);
aoqi@0 3736
aoqi@0 3737 // Generate code for the slow case. We make a call to newArray().
aoqi@0 3738 set_control(no_array_ctl);
aoqi@0 3739 if (!stopped()) {
aoqi@0 3740 // Either the input type is void.class, or else the
aoqi@0 3741 // array klass has not yet been cached. Either the
aoqi@0 3742 // ensuing call will throw an exception, or else it
aoqi@0 3743 // will cache the array klass for next time.
aoqi@0 3744 PreserveJVMState pjvms(this);
aoqi@0 3745 CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
aoqi@0 3746 Node* slow_result = set_results_for_java_call(slow_call);
aoqi@0 3747 // this->control() comes from set_results_for_java_call
aoqi@0 3748 result_reg->set_req(_slow_path, control());
aoqi@0 3749 result_val->set_req(_slow_path, slow_result);
aoqi@0 3750 result_io ->set_req(_slow_path, i_o());
aoqi@0 3751 result_mem->set_req(_slow_path, reset_memory());
aoqi@0 3752 }
aoqi@0 3753
aoqi@0 3754 set_control(normal_ctl);
aoqi@0 3755 if (!stopped()) {
aoqi@0 3756 // Normal case: The array type has been cached in the java.lang.Class.
aoqi@0 3757 // The following call works fine even if the array type is polymorphic.
aoqi@0 3758 // It could be a dynamic mix of int[], boolean[], Object[], etc.
aoqi@0 3759 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push
aoqi@0 3760 result_reg->init_req(_normal_path, control());
aoqi@0 3761 result_val->init_req(_normal_path, obj);
aoqi@0 3762 result_io ->init_req(_normal_path, i_o());
aoqi@0 3763 result_mem->init_req(_normal_path, reset_memory());
aoqi@0 3764 }
aoqi@0 3765
aoqi@0 3766 // Return the combined state.
aoqi@0 3767 set_i_o( _gvn.transform(result_io) );
aoqi@0 3768 set_all_memory( _gvn.transform(result_mem));
aoqi@0 3769
aoqi@0 3770 C->set_has_split_ifs(true); // Has chance for split-if optimization
aoqi@0 3771 set_result(result_reg, result_val);
aoqi@0 3772 return true;
aoqi@0 3773 }
aoqi@0 3774
aoqi@0 3775 //----------------------inline_native_getLength--------------------------
aoqi@0 3776 // public static native int java.lang.reflect.Array.getLength(Object array);
aoqi@0 3777 bool LibraryCallKit::inline_native_getLength() {
aoqi@0 3778 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
aoqi@0 3779
aoqi@0 3780 Node* array = null_check(argument(0));
aoqi@0 3781 // If array is dead, only null-path is taken.
aoqi@0 3782 if (stopped()) return true;
aoqi@0 3783
aoqi@0 3784 // Deoptimize if it is a non-array.
aoqi@0 3785 Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
aoqi@0 3786
aoqi@0 3787 if (non_array != NULL) {
aoqi@0 3788 PreserveJVMState pjvms(this);
aoqi@0 3789 set_control(non_array);
aoqi@0 3790 uncommon_trap(Deoptimization::Reason_intrinsic,
aoqi@0 3791 Deoptimization::Action_maybe_recompile);
aoqi@0 3792 }
aoqi@0 3793
aoqi@0 3794 // If control is dead, only non-array-path is taken.
aoqi@0 3795 if (stopped()) return true;
aoqi@0 3796
aoqi@0 3797 // The works fine even if the array type is polymorphic.
aoqi@0 3798 // It could be a dynamic mix of int[], boolean[], Object[], etc.
aoqi@0 3799 Node* result = load_array_length(array);
aoqi@0 3800
aoqi@0 3801 C->set_has_split_ifs(true); // Has chance for split-if optimization
aoqi@0 3802 set_result(result);
aoqi@0 3803 return true;
aoqi@0 3804 }
aoqi@0 3805
aoqi@0 3806 //------------------------inline_array_copyOf----------------------------
aoqi@0 3807 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType);
aoqi@0 3808 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType);
aoqi@0 3809 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
aoqi@0 3810 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
aoqi@0 3811
aoqi@0 3812 // Get the arguments.
aoqi@0 3813 Node* original = argument(0);
aoqi@0 3814 Node* start = is_copyOfRange? argument(1): intcon(0);
aoqi@0 3815 Node* end = is_copyOfRange? argument(2): argument(1);
aoqi@0 3816 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
aoqi@0 3817
aoqi@0 3818 Node* newcopy;
aoqi@0 3819
aoqi@0 3820 // Set the original stack and the reexecute bit for the interpreter to reexecute
aoqi@0 3821 // the bytecode that invokes Arrays.copyOf if deoptimization happens.
aoqi@0 3822 { PreserveReexecuteState preexecs(this);
aoqi@0 3823 jvms()->set_should_reexecute(true);
aoqi@0 3824
aoqi@0 3825 array_type_mirror = null_check(array_type_mirror);
aoqi@0 3826 original = null_check(original);
aoqi@0 3827
aoqi@0 3828 // Check if a null path was taken unconditionally.
aoqi@0 3829 if (stopped()) return true;
aoqi@0 3830
aoqi@0 3831 Node* orig_length = load_array_length(original);
aoqi@0 3832
aoqi@0 3833 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
aoqi@0 3834 klass_node = null_check(klass_node);
aoqi@0 3835
aoqi@0 3836 RegionNode* bailout = new (C) RegionNode(1);
aoqi@0 3837 record_for_igvn(bailout);
aoqi@0 3838
aoqi@0 3839 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
aoqi@0 3840 // Bail out if that is so.
aoqi@0 3841 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
aoqi@0 3842 if (not_objArray != NULL) {
aoqi@0 3843 // Improve the klass node's type from the new optimistic assumption:
aoqi@0 3844 ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
aoqi@0 3845 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
aoqi@0 3846 Node* cast = new (C) CastPPNode(klass_node, akls);
aoqi@0 3847 cast->init_req(0, control());
aoqi@0 3848 klass_node = _gvn.transform(cast);
aoqi@0 3849 }
aoqi@0 3850
aoqi@0 3851 // Bail out if either start or end is negative.
aoqi@0 3852 generate_negative_guard(start, bailout, &start);
aoqi@0 3853 generate_negative_guard(end, bailout, &end);
aoqi@0 3854
aoqi@0 3855 Node* length = end;
aoqi@0 3856 if (_gvn.type(start) != TypeInt::ZERO) {
aoqi@0 3857 length = _gvn.transform(new (C) SubINode(end, start));
aoqi@0 3858 }
aoqi@0 3859
aoqi@0 3860 // Bail out if length is negative.
aoqi@0 3861 // Without this the new_array would throw
aoqi@0 3862 // NegativeArraySizeException but IllegalArgumentException is what
aoqi@0 3863 // should be thrown
aoqi@0 3864 generate_negative_guard(length, bailout, &length);
aoqi@0 3865
aoqi@0 3866 if (bailout->req() > 1) {
aoqi@0 3867 PreserveJVMState pjvms(this);
aoqi@0 3868 set_control(_gvn.transform(bailout));
aoqi@0 3869 uncommon_trap(Deoptimization::Reason_intrinsic,
aoqi@0 3870 Deoptimization::Action_maybe_recompile);
aoqi@0 3871 }
aoqi@0 3872
aoqi@0 3873 if (!stopped()) {
aoqi@0 3874 // How many elements will we copy from the original?
aoqi@0 3875 // The answer is MinI(orig_length - start, length).
aoqi@0 3876 Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
aoqi@0 3877 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
aoqi@0 3878
aoqi@0 3879 newcopy = new_array(klass_node, length, 0); // no argments to push
aoqi@0 3880
aoqi@0 3881 // Generate a direct call to the right arraycopy function(s).
aoqi@0 3882 // We know the copy is disjoint but we might not know if the
aoqi@0 3883 // oop stores need checking.
aoqi@0 3884 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class).
aoqi@0 3885 // This will fail a store-check if x contains any non-nulls.
aoqi@0 3886 bool disjoint_bases = true;
aoqi@0 3887 // if start > orig_length then the length of the copy may be
aoqi@0 3888 // negative.
aoqi@0 3889 bool length_never_negative = !is_copyOfRange;
aoqi@0 3890 generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
aoqi@0 3891 original, start, newcopy, intcon(0), moved,
aoqi@0 3892 disjoint_bases, length_never_negative);
aoqi@0 3893 }
aoqi@0 3894 } // original reexecute is set back here
aoqi@0 3895
aoqi@0 3896 C->set_has_split_ifs(true); // Has chance for split-if optimization
aoqi@0 3897 if (!stopped()) {
aoqi@0 3898 set_result(newcopy);
aoqi@0 3899 }
aoqi@0 3900 return true;
aoqi@0 3901 }
aoqi@0 3902
aoqi@0 3903
aoqi@0 3904 //----------------------generate_virtual_guard---------------------------
aoqi@0 3905 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call.
aoqi@0 3906 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
aoqi@0 3907 RegionNode* slow_region) {
aoqi@0 3908 ciMethod* method = callee();
aoqi@0 3909 int vtable_index = method->vtable_index();
aoqi@0 3910 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
aoqi@0 3911 err_msg_res("bad index %d", vtable_index));
aoqi@0 3912 // Get the Method* out of the appropriate vtable entry.
aoqi@0 3913 int entry_offset = (InstanceKlass::vtable_start_offset() +
aoqi@0 3914 vtable_index*vtableEntry::size()) * wordSize +
aoqi@0 3915 vtableEntry::method_offset_in_bytes();
aoqi@0 3916 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset);
aoqi@0 3917 Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
aoqi@0 3918
aoqi@0 3919 // Compare the target method with the expected method (e.g., Object.hashCode).
aoqi@0 3920 const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
aoqi@0 3921
aoqi@0 3922 Node* native_call = makecon(native_call_addr);
aoqi@0 3923 Node* chk_native = _gvn.transform(new(C) CmpPNode(target_call, native_call));
aoqi@0 3924 Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
aoqi@0 3925
aoqi@0 3926 return generate_slow_guard(test_native, slow_region);
aoqi@0 3927 }
aoqi@0 3928
aoqi@0 3929 //-----------------------generate_method_call----------------------------
aoqi@0 3930 // Use generate_method_call to make a slow-call to the real
aoqi@0 3931 // method if the fast path fails. An alternative would be to
aoqi@0 3932 // use a stub like OptoRuntime::slow_arraycopy_Java.
aoqi@0 3933 // This only works for expanding the current library call,
aoqi@0 3934 // not another intrinsic. (E.g., don't use this for making an
aoqi@0 3935 // arraycopy call inside of the copyOf intrinsic.)
aoqi@0 3936 CallJavaNode*
aoqi@0 3937 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
aoqi@0 3938 // When compiling the intrinsic method itself, do not use this technique.
aoqi@0 3939 guarantee(callee() != C->method(), "cannot make slow-call to self");
aoqi@0 3940
aoqi@0 3941 ciMethod* method = callee();
aoqi@0 3942 // ensure the JVMS we have will be correct for this call
aoqi@0 3943 guarantee(method_id == method->intrinsic_id(), "must match");
aoqi@0 3944
aoqi@0 3945 const TypeFunc* tf = TypeFunc::make(method);
aoqi@0 3946 CallJavaNode* slow_call;
aoqi@0 3947 if (is_static) {
aoqi@0 3948 assert(!is_virtual, "");
aoqi@0 3949 slow_call = new(C) CallStaticJavaNode(C, tf,
aoqi@0 3950 SharedRuntime::get_resolve_static_call_stub(),
aoqi@0 3951 method, bci());
aoqi@0 3952 } else if (is_virtual) {
aoqi@0 3953 null_check_receiver();
aoqi@0 3954 int vtable_index = Method::invalid_vtable_index;
aoqi@0 3955 if (UseInlineCaches) {
aoqi@0 3956 // Suppress the vtable call
aoqi@0 3957 } else {
aoqi@0 3958 // hashCode and clone are not a miranda methods,
aoqi@0 3959 // so the vtable index is fixed.
aoqi@0 3960 // No need to use the linkResolver to get it.
aoqi@0 3961 vtable_index = method->vtable_index();
aoqi@0 3962 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
aoqi@0 3963 err_msg_res("bad index %d", vtable_index));
aoqi@0 3964 }
aoqi@0 3965 slow_call = new(C) CallDynamicJavaNode(tf,
aoqi@0 3966 SharedRuntime::get_resolve_virtual_call_stub(),
aoqi@0 3967 method, vtable_index, bci());
aoqi@0 3968 } else { // neither virtual nor static: opt_virtual
aoqi@0 3969 null_check_receiver();
aoqi@0 3970 slow_call = new(C) CallStaticJavaNode(C, tf,
aoqi@0 3971 SharedRuntime::get_resolve_opt_virtual_call_stub(),
aoqi@0 3972 method, bci());
aoqi@0 3973 slow_call->set_optimized_virtual(true);
aoqi@0 3974 }
aoqi@0 3975 set_arguments_for_java_call(slow_call);
aoqi@0 3976 set_edges_for_java_call(slow_call);
aoqi@0 3977 return slow_call;
aoqi@0 3978 }
aoqi@0 3979
aoqi@0 3980
aoqi@0 3981 /**
aoqi@0 3982 * Build special case code for calls to hashCode on an object. This call may
aoqi@0 3983 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
aoqi@0 3984 * slightly different code.
aoqi@0 3985 */
aoqi@0 3986 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
aoqi@0 3987 assert(is_static == callee()->is_static(), "correct intrinsic selection");
aoqi@0 3988 assert(!(is_virtual && is_static), "either virtual, special, or static");
aoqi@0 3989
aoqi@0 3990 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
aoqi@0 3991
aoqi@0 3992 RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
aoqi@0 3993 PhiNode* result_val = new(C) PhiNode(result_reg, TypeInt::INT);
aoqi@0 3994 PhiNode* result_io = new(C) PhiNode(result_reg, Type::ABIO);
aoqi@0 3995 PhiNode* result_mem = new(C) PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
aoqi@0 3996 Node* obj = NULL;
aoqi@0 3997 if (!is_static) {
aoqi@0 3998 // Check for hashing null object
aoqi@0 3999 obj = null_check_receiver();
aoqi@0 4000 if (stopped()) return true; // unconditionally null
aoqi@0 4001 result_reg->init_req(_null_path, top());
aoqi@0 4002 result_val->init_req(_null_path, top());
aoqi@0 4003 } else {
aoqi@0 4004 // Do a null check, and return zero if null.
aoqi@0 4005 // System.identityHashCode(null) == 0
aoqi@0 4006 obj = argument(0);
aoqi@0 4007 Node* null_ctl = top();
aoqi@0 4008 obj = null_check_oop(obj, &null_ctl);
aoqi@0 4009 result_reg->init_req(_null_path, null_ctl);
aoqi@0 4010 result_val->init_req(_null_path, _gvn.intcon(0));
aoqi@0 4011 }
aoqi@0 4012
aoqi@0 4013 // Unconditionally null? Then return right away.
aoqi@0 4014 if (stopped()) {
aoqi@0 4015 set_control( result_reg->in(_null_path));
aoqi@0 4016 if (!stopped())
aoqi@0 4017 set_result(result_val->in(_null_path));
aoqi@0 4018 return true;
aoqi@0 4019 }
aoqi@0 4020
aoqi@0 4021 // We only go to the fast case code if we pass a number of guards. The
aoqi@0 4022 // paths which do not pass are accumulated in the slow_region.
aoqi@0 4023 RegionNode* slow_region = new (C) RegionNode(1);
aoqi@0 4024 record_for_igvn(slow_region);
aoqi@0 4025
aoqi@0 4026 // If this is a virtual call, we generate a funny guard. We pull out
aoqi@0 4027 // the vtable entry corresponding to hashCode() from the target object.
aoqi@0 4028 // If the target method which we are calling happens to be the native
aoqi@0 4029 // Object hashCode() method, we pass the guard. We do not need this
aoqi@0 4030 // guard for non-virtual calls -- the caller is known to be the native
aoqi@0 4031 // Object hashCode().
aoqi@0 4032 if (is_virtual) {
aoqi@0 4033 // After null check, get the object's klass.
aoqi@0 4034 Node* obj_klass = load_object_klass(obj);
aoqi@0 4035 generate_virtual_guard(obj_klass, slow_region);
aoqi@0 4036 }
aoqi@0 4037
aoqi@0 4038 // Get the header out of the object, use LoadMarkNode when available
aoqi@0 4039 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
aoqi@0 4040 // The control of the load must be NULL. Otherwise, the load can move before
aoqi@0 4041 // the null check after castPP removal.
aoqi@0 4042 Node* no_ctrl = NULL;
aoqi@0 4043 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
aoqi@0 4044
aoqi@0 4045 // Test the header to see if it is unlocked.
aoqi@0 4046 Node* lock_mask = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
aoqi@0 4047 Node* lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
aoqi@0 4048 Node* unlocked_val = _gvn.MakeConX(markOopDesc::unlocked_value);
aoqi@0 4049 Node* chk_unlocked = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
aoqi@0 4050 Node* test_unlocked = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
aoqi@0 4051
aoqi@0 4052 generate_slow_guard(test_unlocked, slow_region);
aoqi@0 4053
aoqi@0 4054 // Get the hash value and check to see that it has been properly assigned.
aoqi@0 4055 // We depend on hash_mask being at most 32 bits and avoid the use of
aoqi@0 4056 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
aoqi@0 4057 // vm: see markOop.hpp.
aoqi@0 4058 Node* hash_mask = _gvn.intcon(markOopDesc::hash_mask);
aoqi@0 4059 Node* hash_shift = _gvn.intcon(markOopDesc::hash_shift);
aoqi@0 4060 Node* hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
aoqi@0 4061 // This hack lets the hash bits live anywhere in the mark object now, as long
aoqi@0 4062 // as the shift drops the relevant bits into the low 32 bits. Note that
aoqi@0 4063 // Java spec says that HashCode is an int so there's no point in capturing
aoqi@0 4064 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
aoqi@0 4065 hshifted_header = ConvX2I(hshifted_header);
aoqi@0 4066 Node* hash_val = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
aoqi@0 4067
aoqi@0 4068 Node* no_hash_val = _gvn.intcon(markOopDesc::no_hash);
aoqi@0 4069 Node* chk_assigned = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
aoqi@0 4070 Node* test_assigned = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
aoqi@0 4071
aoqi@0 4072 generate_slow_guard(test_assigned, slow_region);
aoqi@0 4073
aoqi@0 4074 Node* init_mem = reset_memory();
aoqi@0 4075 // fill in the rest of the null path:
aoqi@0 4076 result_io ->init_req(_null_path, i_o());
aoqi@0 4077 result_mem->init_req(_null_path, init_mem);
aoqi@0 4078
aoqi@0 4079 result_val->init_req(_fast_path, hash_val);
aoqi@0 4080 result_reg->init_req(_fast_path, control());
aoqi@0 4081 result_io ->init_req(_fast_path, i_o());
aoqi@0 4082 result_mem->init_req(_fast_path, init_mem);
aoqi@0 4083
aoqi@0 4084 // Generate code for the slow case. We make a call to hashCode().
aoqi@0 4085 set_control(_gvn.transform(slow_region));
aoqi@0 4086 if (!stopped()) {
aoqi@0 4087 // No need for PreserveJVMState, because we're using up the present state.
aoqi@0 4088 set_all_memory(init_mem);
aoqi@0 4089 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
aoqi@0 4090 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
aoqi@0 4091 Node* slow_result = set_results_for_java_call(slow_call);
aoqi@0 4092 // this->control() comes from set_results_for_java_call
aoqi@0 4093 result_reg->init_req(_slow_path, control());
aoqi@0 4094 result_val->init_req(_slow_path, slow_result);
aoqi@0 4095 result_io ->set_req(_slow_path, i_o());
aoqi@0 4096 result_mem ->set_req(_slow_path, reset_memory());
aoqi@0 4097 }
aoqi@0 4098
aoqi@0 4099 // Return the combined state.
aoqi@0 4100 set_i_o( _gvn.transform(result_io) );
aoqi@0 4101 set_all_memory( _gvn.transform(result_mem));
aoqi@0 4102
aoqi@0 4103 set_result(result_reg, result_val);
aoqi@0 4104 return true;
aoqi@0 4105 }
aoqi@0 4106
aoqi@0 4107 //---------------------------inline_native_getClass----------------------------
aoqi@0 4108 // public final native Class<?> java.lang.Object.getClass();
aoqi@0 4109 //
aoqi@0 4110 // Build special case code for calls to getClass on an object.
aoqi@0 4111 bool LibraryCallKit::inline_native_getClass() {
aoqi@0 4112 Node* obj = null_check_receiver();
aoqi@0 4113 if (stopped()) return true;
aoqi@0 4114 set_result(load_mirror_from_klass(load_object_klass(obj)));
aoqi@0 4115 return true;
aoqi@0 4116 }
aoqi@0 4117
aoqi@0 4118 //-----------------inline_native_Reflection_getCallerClass---------------------
aoqi@0 4119 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
aoqi@0 4120 //
aoqi@0 4121 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
aoqi@0 4122 //
aoqi@0 4123 // NOTE: This code must perform the same logic as JVM_GetCallerClass
aoqi@0 4124 // in that it must skip particular security frames and checks for
aoqi@0 4125 // caller sensitive methods.
aoqi@0 4126 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
aoqi@0 4127 #ifndef PRODUCT
aoqi@0 4128 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
aoqi@0 4129 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
aoqi@0 4130 }
aoqi@0 4131 #endif
aoqi@0 4132
aoqi@0 4133 if (!jvms()->has_method()) {
aoqi@0 4134 #ifndef PRODUCT
aoqi@0 4135 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
aoqi@0 4136 tty->print_cr(" Bailing out because intrinsic was inlined at top level");
aoqi@0 4137 }
aoqi@0 4138 #endif
aoqi@0 4139 return false;
aoqi@0 4140 }
aoqi@0 4141
aoqi@0 4142 // Walk back up the JVM state to find the caller at the required
aoqi@0 4143 // depth.
aoqi@0 4144 JVMState* caller_jvms = jvms();
aoqi@0 4145
aoqi@0 4146 // Cf. JVM_GetCallerClass
aoqi@0 4147 // NOTE: Start the loop at depth 1 because the current JVM state does
aoqi@0 4148 // not include the Reflection.getCallerClass() frame.
aoqi@0 4149 for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
aoqi@0 4150 ciMethod* m = caller_jvms->method();
aoqi@0 4151 switch (n) {
aoqi@0 4152 case 0:
aoqi@0 4153 fatal("current JVM state does not include the Reflection.getCallerClass frame");
aoqi@0 4154 break;
aoqi@0 4155 case 1:
aoqi@0 4156 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
aoqi@0 4157 if (!m->caller_sensitive()) {
aoqi@0 4158 #ifndef PRODUCT
aoqi@0 4159 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
aoqi@0 4160 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n);
aoqi@0 4161 }
aoqi@0 4162 #endif
aoqi@0 4163 return false; // bail-out; let JVM_GetCallerClass do the work
aoqi@0 4164 }
aoqi@0 4165 break;
aoqi@0 4166 default:
aoqi@0 4167 if (!m->is_ignored_by_security_stack_walk()) {
aoqi@0 4168 // We have reached the desired frame; return the holder class.
aoqi@0 4169 // Acquire method holder as java.lang.Class and push as constant.
aoqi@0 4170 ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
aoqi@0 4171 ciInstance* caller_mirror = caller_klass->java_mirror();
aoqi@0 4172 set_result(makecon(TypeInstPtr::make(caller_mirror)));
aoqi@0 4173
aoqi@0 4174 #ifndef PRODUCT
aoqi@0 4175 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
aoqi@0 4176 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
aoqi@0 4177 tty->print_cr(" JVM state at this point:");
aoqi@0 4178 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
aoqi@0 4179 ciMethod* m = jvms()->of_depth(i)->method();
aoqi@0 4180 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
aoqi@0 4181 }
aoqi@0 4182 }
aoqi@0 4183 #endif
aoqi@0 4184 return true;
aoqi@0 4185 }
aoqi@0 4186 break;
aoqi@0 4187 }
aoqi@0 4188 }
aoqi@0 4189
aoqi@0 4190 #ifndef PRODUCT
aoqi@0 4191 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
aoqi@0 4192 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
aoqi@0 4193 tty->print_cr(" JVM state at this point:");
aoqi@0 4194 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
aoqi@0 4195 ciMethod* m = jvms()->of_depth(i)->method();
aoqi@0 4196 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
aoqi@0 4197 }
aoqi@0 4198 }
aoqi@0 4199 #endif
aoqi@0 4200
aoqi@0 4201 return false; // bail-out; let JVM_GetCallerClass do the work
aoqi@0 4202 }
aoqi@0 4203
aoqi@0 4204 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
aoqi@0 4205 Node* arg = argument(0);
aoqi@0 4206 Node* result;
aoqi@0 4207
aoqi@0 4208 switch (id) {
aoqi@0 4209 case vmIntrinsics::_floatToRawIntBits: result = new (C) MoveF2INode(arg); break;
aoqi@0 4210 case vmIntrinsics::_intBitsToFloat: result = new (C) MoveI2FNode(arg); break;
aoqi@0 4211 case vmIntrinsics::_doubleToRawLongBits: result = new (C) MoveD2LNode(arg); break;
aoqi@0 4212 case vmIntrinsics::_longBitsToDouble: result = new (C) MoveL2DNode(arg); break;
aoqi@0 4213
aoqi@0 4214 case vmIntrinsics::_doubleToLongBits: {
aoqi@0 4215 // two paths (plus control) merge in a wood
aoqi@0 4216 RegionNode *r = new (C) RegionNode(3);
aoqi@0 4217 Node *phi = new (C) PhiNode(r, TypeLong::LONG);
aoqi@0 4218
aoqi@0 4219 Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
aoqi@0 4220 // Build the boolean node
aoqi@0 4221 Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
aoqi@0 4222
aoqi@0 4223 // Branch either way.
aoqi@0 4224 // NaN case is less traveled, which makes all the difference.
aoqi@0 4225 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
aoqi@0 4226 Node *opt_isnan = _gvn.transform(ifisnan);
aoqi@0 4227 assert( opt_isnan->is_If(), "Expect an IfNode");
aoqi@0 4228 IfNode *opt_ifisnan = (IfNode*)opt_isnan;
aoqi@0 4229 Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
aoqi@0 4230
aoqi@0 4231 set_control(iftrue);
aoqi@0 4232
aoqi@0 4233 static const jlong nan_bits = CONST64(0x7ff8000000000000);
aoqi@0 4234 Node *slow_result = longcon(nan_bits); // return NaN
aoqi@0 4235 phi->init_req(1, _gvn.transform( slow_result ));
aoqi@0 4236 r->init_req(1, iftrue);
aoqi@0 4237
aoqi@0 4238 // Else fall through
aoqi@0 4239 Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
aoqi@0 4240 set_control(iffalse);
aoqi@0 4241
aoqi@0 4242 phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
aoqi@0 4243 r->init_req(2, iffalse);
aoqi@0 4244
aoqi@0 4245 // Post merge
aoqi@0 4246 set_control(_gvn.transform(r));
aoqi@0 4247 record_for_igvn(r);
aoqi@0 4248
aoqi@0 4249 C->set_has_split_ifs(true); // Has chance for split-if optimization
aoqi@0 4250 result = phi;
aoqi@0 4251 assert(result->bottom_type()->isa_long(), "must be");
aoqi@0 4252 break;
aoqi@0 4253 }
aoqi@0 4254
aoqi@0 4255 case vmIntrinsics::_floatToIntBits: {
aoqi@0 4256 // two paths (plus control) merge in a wood
aoqi@0 4257 RegionNode *r = new (C) RegionNode(3);
aoqi@0 4258 Node *phi = new (C) PhiNode(r, TypeInt::INT);
aoqi@0 4259
aoqi@0 4260 Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
aoqi@0 4261 // Build the boolean node
aoqi@0 4262 Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
aoqi@0 4263
aoqi@0 4264 // Branch either way.
aoqi@0 4265 // NaN case is less traveled, which makes all the difference.
aoqi@0 4266 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
aoqi@0 4267 Node *opt_isnan = _gvn.transform(ifisnan);
aoqi@0 4268 assert( opt_isnan->is_If(), "Expect an IfNode");
aoqi@0 4269 IfNode *opt_ifisnan = (IfNode*)opt_isnan;
aoqi@0 4270 Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
aoqi@0 4271
aoqi@0 4272 set_control(iftrue);
aoqi@0 4273
aoqi@0 4274 static const jint nan_bits = 0x7fc00000;
aoqi@0 4275 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
aoqi@0 4276 phi->init_req(1, _gvn.transform( slow_result ));
aoqi@0 4277 r->init_req(1, iftrue);
aoqi@0 4278
aoqi@0 4279 // Else fall through
aoqi@0 4280 Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
aoqi@0 4281 set_control(iffalse);
aoqi@0 4282
aoqi@0 4283 phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
aoqi@0 4284 r->init_req(2, iffalse);
aoqi@0 4285
aoqi@0 4286 // Post merge
aoqi@0 4287 set_control(_gvn.transform(r));
aoqi@0 4288 record_for_igvn(r);
aoqi@0 4289
aoqi@0 4290 C->set_has_split_ifs(true); // Has chance for split-if optimization
aoqi@0 4291 result = phi;
aoqi@0 4292 assert(result->bottom_type()->isa_int(), "must be");
aoqi@0 4293 break;
aoqi@0 4294 }
aoqi@0 4295
aoqi@0 4296 default:
aoqi@0 4297 fatal_unexpected_iid(id);
aoqi@0 4298 break;
aoqi@0 4299 }
aoqi@0 4300 set_result(_gvn.transform(result));
aoqi@0 4301 return true;
aoqi@0 4302 }
aoqi@0 4303
aoqi@0 4304 #ifdef _LP64
aoqi@0 4305 #define XTOP ,top() /*additional argument*/
aoqi@0 4306 #else //_LP64
aoqi@0 4307 #define XTOP /*no additional argument*/
aoqi@0 4308 #endif //_LP64
aoqi@0 4309
aoqi@0 4310 //----------------------inline_unsafe_copyMemory-------------------------
aoqi@0 4311 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
aoqi@0 4312 bool LibraryCallKit::inline_unsafe_copyMemory() {
aoqi@0 4313 if (callee()->is_static()) return false; // caller must have the capability!
aoqi@0 4314 null_check_receiver(); // null-check receiver
aoqi@0 4315 if (stopped()) return true;
aoqi@0 4316
aoqi@0 4317 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
aoqi@0 4318
aoqi@0 4319 Node* src_ptr = argument(1); // type: oop
aoqi@0 4320 Node* src_off = ConvL2X(argument(2)); // type: long
aoqi@0 4321 Node* dst_ptr = argument(4); // type: oop
aoqi@0 4322 Node* dst_off = ConvL2X(argument(5)); // type: long
aoqi@0 4323 Node* size = ConvL2X(argument(7)); // type: long
aoqi@0 4324
aoqi@0 4325 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
aoqi@0 4326 "fieldOffset must be byte-scaled");
aoqi@0 4327
aoqi@0 4328 Node* src = make_unsafe_address(src_ptr, src_off);
aoqi@0 4329 Node* dst = make_unsafe_address(dst_ptr, dst_off);
aoqi@0 4330
aoqi@0 4331 // Conservatively insert a memory barrier on all memory slices.
aoqi@0 4332 // Do not let writes of the copy source or destination float below the copy.
aoqi@0 4333 insert_mem_bar(Op_MemBarCPUOrder);
aoqi@0 4334
aoqi@0 4335 // Call it. Note that the length argument is not scaled.
aoqi@0 4336 make_runtime_call(RC_LEAF|RC_NO_FP,
aoqi@0 4337 OptoRuntime::fast_arraycopy_Type(),
aoqi@0 4338 StubRoutines::unsafe_arraycopy(),
aoqi@0 4339 "unsafe_arraycopy",
aoqi@0 4340 TypeRawPtr::BOTTOM,
aoqi@0 4341 src, dst, size XTOP);
aoqi@0 4342
aoqi@0 4343 // Do not let reads of the copy destination float above the copy.
aoqi@0 4344 insert_mem_bar(Op_MemBarCPUOrder);
aoqi@0 4345
aoqi@0 4346 return true;
aoqi@0 4347 }
aoqi@0 4348
aoqi@0 4349 //------------------------clone_coping-----------------------------------
aoqi@0 4350 // Helper function for inline_native_clone.
aoqi@0 4351 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
aoqi@0 4352 assert(obj_size != NULL, "");
aoqi@0 4353 Node* raw_obj = alloc_obj->in(1);
aoqi@0 4354 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
aoqi@0 4355
aoqi@0 4356 AllocateNode* alloc = NULL;
aoqi@0 4357 if (ReduceBulkZeroing) {
aoqi@0 4358 // We will be completely responsible for initializing this object -
aoqi@0 4359 // mark Initialize node as complete.
aoqi@0 4360 alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
aoqi@0 4361 // The object was just allocated - there should be no any stores!
aoqi@0 4362 guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
aoqi@0 4363 // Mark as complete_with_arraycopy so that on AllocateNode
aoqi@0 4364 // expansion, we know this AllocateNode is initialized by an array
aoqi@0 4365 // copy and a StoreStore barrier exists after the array copy.
aoqi@0 4366 alloc->initialization()->set_complete_with_arraycopy();
aoqi@0 4367 }
aoqi@0 4368
aoqi@0 4369 // Copy the fastest available way.
aoqi@0 4370 // TODO: generate fields copies for small objects instead.
aoqi@0 4371 Node* src = obj;
aoqi@0 4372 Node* dest = alloc_obj;
aoqi@0 4373 Node* size = _gvn.transform(obj_size);
aoqi@0 4374
aoqi@0 4375 // Exclude the header but include array length to copy by 8 bytes words.
aoqi@0 4376 // Can't use base_offset_in_bytes(bt) since basic type is unknown.
aoqi@0 4377 int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
aoqi@0 4378 instanceOopDesc::base_offset_in_bytes();
aoqi@0 4379 // base_off:
aoqi@0 4380 // 8 - 32-bit VM
aoqi@0 4381 // 12 - 64-bit VM, compressed klass
aoqi@0 4382 // 16 - 64-bit VM, normal klass
aoqi@0 4383 if (base_off % BytesPerLong != 0) {
aoqi@0 4384 assert(UseCompressedClassPointers, "");
aoqi@0 4385 if (is_array) {
aoqi@0 4386 // Exclude length to copy by 8 bytes words.
aoqi@0 4387 base_off += sizeof(int);
aoqi@0 4388 } else {
aoqi@0 4389 // Include klass to copy by 8 bytes words.
aoqi@0 4390 base_off = instanceOopDesc::klass_offset_in_bytes();
aoqi@0 4391 }
aoqi@0 4392 assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
aoqi@0 4393 }
aoqi@0 4394 src = basic_plus_adr(src, base_off);
aoqi@0 4395 dest = basic_plus_adr(dest, base_off);
aoqi@0 4396
aoqi@0 4397 // Compute the length also, if needed:
aoqi@0 4398 Node* countx = size;
aoqi@0 4399 countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
aoqi@0 4400 countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
aoqi@0 4401
aoqi@0 4402 const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
aoqi@0 4403 bool disjoint_bases = true;
aoqi@0 4404 generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
aoqi@0 4405 src, NULL, dest, NULL, countx,
aoqi@0 4406 /*dest_uninitialized*/true);
aoqi@0 4407
aoqi@0 4408 // If necessary, emit some card marks afterwards. (Non-arrays only.)
aoqi@0 4409 if (card_mark) {
aoqi@0 4410 assert(!is_array, "");
aoqi@0 4411 // Put in store barrier for any and all oops we are sticking
aoqi@0 4412 // into this object. (We could avoid this if we could prove
aoqi@0 4413 // that the object type contains no oop fields at all.)
aoqi@0 4414 Node* no_particular_value = NULL;
aoqi@0 4415 Node* no_particular_field = NULL;
aoqi@0 4416 int raw_adr_idx = Compile::AliasIdxRaw;
aoqi@0 4417 post_barrier(control(),
aoqi@0 4418 memory(raw_adr_type),
aoqi@0 4419 alloc_obj,
aoqi@0 4420 no_particular_field,
aoqi@0 4421 raw_adr_idx,
aoqi@0 4422 no_particular_value,
aoqi@0 4423 T_OBJECT,
aoqi@0 4424 false);
aoqi@0 4425 }
aoqi@0 4426
aoqi@0 4427 // Do not let reads from the cloned object float above the arraycopy.
aoqi@0 4428 if (alloc != NULL) {
aoqi@0 4429 // Do not let stores that initialize this object be reordered with
aoqi@0 4430 // a subsequent store that would make this object accessible by
aoqi@0 4431 // other threads.
aoqi@0 4432 // Record what AllocateNode this StoreStore protects so that
aoqi@0 4433 // escape analysis can go from the MemBarStoreStoreNode to the
aoqi@0 4434 // AllocateNode and eliminate the MemBarStoreStoreNode if possible
aoqi@0 4435 // based on the escape status of the AllocateNode.
aoqi@0 4436 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
aoqi@0 4437 } else {
aoqi@0 4438 insert_mem_bar(Op_MemBarCPUOrder);
aoqi@0 4439 }
aoqi@0 4440 }
aoqi@0 4441
aoqi@0 4442 //------------------------inline_native_clone----------------------------
aoqi@0 4443 // protected native Object java.lang.Object.clone();
aoqi@0 4444 //
aoqi@0 4445 // Here are the simple edge cases:
aoqi@0 4446 // null receiver => normal trap
aoqi@0 4447 // virtual and clone was overridden => slow path to out-of-line clone
aoqi@0 4448 // not cloneable or finalizer => slow path to out-of-line Object.clone
aoqi@0 4449 //
aoqi@0 4450 // The general case has two steps, allocation and copying.
aoqi@0 4451 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
aoqi@0 4452 //
aoqi@0 4453 // Copying also has two cases, oop arrays and everything else.
aoqi@0 4454 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
aoqi@0 4455 // Everything else uses the tight inline loop supplied by CopyArrayNode.
aoqi@0 4456 //
aoqi@0 4457 // These steps fold up nicely if and when the cloned object's klass
aoqi@0 4458 // can be sharply typed as an object array, a type array, or an instance.
aoqi@0 4459 //
aoqi@0 4460 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
aoqi@0 4461 PhiNode* result_val;
aoqi@0 4462
aoqi@0 4463 // Set the reexecute bit for the interpreter to reexecute
aoqi@0 4464 // the bytecode that invokes Object.clone if deoptimization happens.
aoqi@0 4465 { PreserveReexecuteState preexecs(this);
aoqi@0 4466 jvms()->set_should_reexecute(true);
aoqi@0 4467
aoqi@0 4468 Node* obj = null_check_receiver();
aoqi@0 4469 if (stopped()) return true;
aoqi@0 4470
aoqi@0 4471 Node* obj_klass = load_object_klass(obj);
aoqi@0 4472 const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
aoqi@0 4473 const TypeOopPtr* toop = ((tklass != NULL)
aoqi@0 4474 ? tklass->as_instance_type()
aoqi@0 4475 : TypeInstPtr::NOTNULL);
aoqi@0 4476
aoqi@0 4477 // Conservatively insert a memory barrier on all memory slices.
aoqi@0 4478 // Do not let writes into the original float below the clone.
aoqi@0 4479 insert_mem_bar(Op_MemBarCPUOrder);
aoqi@0 4480
aoqi@0 4481 // paths into result_reg:
aoqi@0 4482 enum {
aoqi@0 4483 _slow_path = 1, // out-of-line call to clone method (virtual or not)
aoqi@0 4484 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy
aoqi@0 4485 _array_path, // plain array allocation, plus arrayof_long_arraycopy
aoqi@0 4486 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy
aoqi@0 4487 PATH_LIMIT
aoqi@0 4488 };
aoqi@0 4489 RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
aoqi@0 4490 result_val = new(C) PhiNode(result_reg,
aoqi@0 4491 TypeInstPtr::NOTNULL);
aoqi@0 4492 PhiNode* result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
aoqi@0 4493 PhiNode* result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
aoqi@0 4494 TypePtr::BOTTOM);
aoqi@0 4495 record_for_igvn(result_reg);
aoqi@0 4496
aoqi@0 4497 const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
aoqi@0 4498 int raw_adr_idx = Compile::AliasIdxRaw;
aoqi@0 4499
aoqi@0 4500 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
aoqi@0 4501 if (array_ctl != NULL) {
aoqi@0 4502 // It's an array.
aoqi@0 4503 PreserveJVMState pjvms(this);
aoqi@0 4504 set_control(array_ctl);
aoqi@0 4505 Node* obj_length = load_array_length(obj);
aoqi@0 4506 Node* obj_size = NULL;
aoqi@0 4507 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size); // no arguments to push
aoqi@0 4508
aoqi@0 4509 if (!use_ReduceInitialCardMarks()) {
aoqi@0 4510 // If it is an oop array, it requires very special treatment,
aoqi@0 4511 // because card marking is required on each card of the array.
aoqi@0 4512 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
aoqi@0 4513 if (is_obja != NULL) {
aoqi@0 4514 PreserveJVMState pjvms2(this);
aoqi@0 4515 set_control(is_obja);
aoqi@0 4516 // Generate a direct call to the right arraycopy function(s).
aoqi@0 4517 bool disjoint_bases = true;
aoqi@0 4518 bool length_never_negative = true;
aoqi@0 4519 generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
aoqi@0 4520 obj, intcon(0), alloc_obj, intcon(0),
aoqi@0 4521 obj_length,
aoqi@0 4522 disjoint_bases, length_never_negative);
aoqi@0 4523 result_reg->init_req(_objArray_path, control());
aoqi@0 4524 result_val->init_req(_objArray_path, alloc_obj);
aoqi@0 4525 result_i_o ->set_req(_objArray_path, i_o());
aoqi@0 4526 result_mem ->set_req(_objArray_path, reset_memory());
aoqi@0 4527 }
aoqi@0 4528 }
aoqi@0 4529 // Otherwise, there are no card marks to worry about.
aoqi@0 4530 // (We can dispense with card marks if we know the allocation
aoqi@0 4531 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks
aoqi@0 4532 // causes the non-eden paths to take compensating steps to
aoqi@0 4533 // simulate a fresh allocation, so that no further
aoqi@0 4534 // card marks are required in compiled code to initialize
aoqi@0 4535 // the object.)
aoqi@0 4536
aoqi@0 4537 if (!stopped()) {
aoqi@0 4538 copy_to_clone(obj, alloc_obj, obj_size, true, false);
aoqi@0 4539
aoqi@0 4540 // Present the results of the copy.
aoqi@0 4541 result_reg->init_req(_array_path, control());
aoqi@0 4542 result_val->init_req(_array_path, alloc_obj);
aoqi@0 4543 result_i_o ->set_req(_array_path, i_o());
aoqi@0 4544 result_mem ->set_req(_array_path, reset_memory());
aoqi@0 4545 }
aoqi@0 4546 }
aoqi@0 4547
aoqi@0 4548 // We only go to the instance fast case code if we pass a number of guards.
aoqi@0 4549 // The paths which do not pass are accumulated in the slow_region.
aoqi@0 4550 RegionNode* slow_region = new (C) RegionNode(1);
aoqi@0 4551 record_for_igvn(slow_region);
aoqi@0 4552 if (!stopped()) {
aoqi@0 4553 // It's an instance (we did array above). Make the slow-path tests.
aoqi@0 4554 // If this is a virtual call, we generate a funny guard. We grab
aoqi@0 4555 // the vtable entry corresponding to clone() from the target object.
aoqi@0 4556 // If the target method which we are calling happens to be the
aoqi@0 4557 // Object clone() method, we pass the guard. We do not need this
aoqi@0 4558 // guard for non-virtual calls; the caller is known to be the native
aoqi@0 4559 // Object clone().
aoqi@0 4560 if (is_virtual) {
aoqi@0 4561 generate_virtual_guard(obj_klass, slow_region);
aoqi@0 4562 }
aoqi@0 4563
aoqi@0 4564 // The object must be cloneable and must not have a finalizer.
aoqi@0 4565 // Both of these conditions may be checked in a single test.
aoqi@0 4566 // We could optimize the cloneable test further, but we don't care.
aoqi@0 4567 generate_access_flags_guard(obj_klass,
aoqi@0 4568 // Test both conditions:
aoqi@0 4569 JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
aoqi@0 4570 // Must be cloneable but not finalizer:
aoqi@0 4571 JVM_ACC_IS_CLONEABLE,
aoqi@0 4572 slow_region);
aoqi@0 4573 }
aoqi@0 4574
aoqi@0 4575 if (!stopped()) {
aoqi@0 4576 // It's an instance, and it passed the slow-path tests.
aoqi@0 4577 PreserveJVMState pjvms(this);
aoqi@0 4578 Node* obj_size = NULL;
aoqi@0 4579 // Need to deoptimize on exception from allocation since Object.clone intrinsic
aoqi@0 4580 // is reexecuted if deoptimization occurs and there could be problems when merging
aoqi@0 4581 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
aoqi@0 4582 Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
aoqi@0 4583
aoqi@0 4584 copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
aoqi@0 4585
aoqi@0 4586 // Present the results of the slow call.
aoqi@0 4587 result_reg->init_req(_instance_path, control());
aoqi@0 4588 result_val->init_req(_instance_path, alloc_obj);
aoqi@0 4589 result_i_o ->set_req(_instance_path, i_o());
aoqi@0 4590 result_mem ->set_req(_instance_path, reset_memory());
aoqi@0 4591 }
aoqi@0 4592
aoqi@0 4593 // Generate code for the slow case. We make a call to clone().
aoqi@0 4594 set_control(_gvn.transform(slow_region));
aoqi@0 4595 if (!stopped()) {
aoqi@0 4596 PreserveJVMState pjvms(this);
aoqi@0 4597 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
aoqi@0 4598 Node* slow_result = set_results_for_java_call(slow_call);
aoqi@0 4599 // this->control() comes from set_results_for_java_call
aoqi@0 4600 result_reg->init_req(_slow_path, control());
aoqi@0 4601 result_val->init_req(_slow_path, slow_result);
aoqi@0 4602 result_i_o ->set_req(_slow_path, i_o());
aoqi@0 4603 result_mem ->set_req(_slow_path, reset_memory());
aoqi@0 4604 }
aoqi@0 4605
aoqi@0 4606 // Return the combined state.
aoqi@0 4607 set_control( _gvn.transform(result_reg));
aoqi@0 4608 set_i_o( _gvn.transform(result_i_o));
aoqi@0 4609 set_all_memory( _gvn.transform(result_mem));
aoqi@0 4610 } // original reexecute is set back here
aoqi@0 4611
aoqi@0 4612 set_result(_gvn.transform(result_val));
aoqi@0 4613 return true;
aoqi@0 4614 }
aoqi@0 4615
aoqi@0 4616 //------------------------------basictype2arraycopy----------------------------
aoqi@0 4617 address LibraryCallKit::basictype2arraycopy(BasicType t,
aoqi@0 4618 Node* src_offset,
aoqi@0 4619 Node* dest_offset,
aoqi@0 4620 bool disjoint_bases,
aoqi@0 4621 const char* &name,
aoqi@0 4622 bool dest_uninitialized) {
aoqi@0 4623 const TypeInt* src_offset_inttype = gvn().find_int_type(src_offset);;
aoqi@0 4624 const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
aoqi@0 4625
aoqi@0 4626 bool aligned = false;
aoqi@0 4627 bool disjoint = disjoint_bases;
aoqi@0 4628
aoqi@0 4629 // if the offsets are the same, we can treat the memory regions as
aoqi@0 4630 // disjoint, because either the memory regions are in different arrays,
aoqi@0 4631 // or they are identical (which we can treat as disjoint.) We can also
aoqi@0 4632 // treat a copy with a destination index less that the source index
aoqi@0 4633 // as disjoint since a low->high copy will work correctly in this case.
aoqi@0 4634 if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
aoqi@0 4635 dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
aoqi@0 4636 // both indices are constants
aoqi@0 4637 int s_offs = src_offset_inttype->get_con();
aoqi@0 4638 int d_offs = dest_offset_inttype->get_con();
aoqi@0 4639 int element_size = type2aelembytes(t);
aoqi@0 4640 aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
aoqi@0 4641 ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
aoqi@0 4642 if (s_offs >= d_offs) disjoint = true;
aoqi@0 4643 } else if (src_offset == dest_offset && src_offset != NULL) {
aoqi@0 4644 // This can occur if the offsets are identical non-constants.
aoqi@0 4645 disjoint = true;
aoqi@0 4646 }
aoqi@0 4647
aoqi@0 4648 return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
aoqi@0 4649 }
aoqi@0 4650
aoqi@0 4651
aoqi@0 4652 //------------------------------inline_arraycopy-----------------------
aoqi@0 4653 // public static native void java.lang.System.arraycopy(Object src, int srcPos,
aoqi@0 4654 // Object dest, int destPos,
aoqi@0 4655 // int length);
aoqi@0 4656 bool LibraryCallKit::inline_arraycopy() {
aoqi@0 4657 // Get the arguments.
aoqi@0 4658 Node* src = argument(0); // type: oop
aoqi@0 4659 Node* src_offset = argument(1); // type: int
aoqi@0 4660 Node* dest = argument(2); // type: oop
aoqi@0 4661 Node* dest_offset = argument(3); // type: int
aoqi@0 4662 Node* length = argument(4); // type: int
aoqi@0 4663
aoqi@0 4664 // Compile time checks. If any of these checks cannot be verified at compile time,
aoqi@0 4665 // we do not make a fast path for this call. Instead, we let the call remain as it
aoqi@0 4666 // is. The checks we choose to mandate at compile time are:
aoqi@0 4667 //
aoqi@0 4668 // (1) src and dest are arrays.
aoqi@0 4669 const Type* src_type = src->Value(&_gvn);
aoqi@0 4670 const Type* dest_type = dest->Value(&_gvn);
aoqi@0 4671 const TypeAryPtr* top_src = src_type->isa_aryptr();
aoqi@0 4672 const TypeAryPtr* top_dest = dest_type->isa_aryptr();
aoqi@0 4673
aoqi@0 4674 // Do we have the type of src?
aoqi@0 4675 bool has_src = (top_src != NULL && top_src->klass() != NULL);
aoqi@0 4676 // Do we have the type of dest?
aoqi@0 4677 bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
aoqi@0 4678 // Is the type for src from speculation?
aoqi@0 4679 bool src_spec = false;
aoqi@0 4680 // Is the type for dest from speculation?
aoqi@0 4681 bool dest_spec = false;
aoqi@0 4682
aoqi@0 4683 if (!has_src || !has_dest) {
aoqi@0 4684 // We don't have sufficient type information, let's see if
aoqi@0 4685 // speculative types can help. We need to have types for both src
aoqi@0 4686 // and dest so that it pays off.
aoqi@0 4687
aoqi@0 4688 // Do we already have or could we have type information for src
aoqi@0 4689 bool could_have_src = has_src;
aoqi@0 4690 // Do we already have or could we have type information for dest
aoqi@0 4691 bool could_have_dest = has_dest;
aoqi@0 4692
aoqi@0 4693 ciKlass* src_k = NULL;
aoqi@0 4694 if (!has_src) {
aoqi@0 4695 src_k = src_type->speculative_type();
aoqi@0 4696 if (src_k != NULL && src_k->is_array_klass()) {
aoqi@0 4697 could_have_src = true;
aoqi@0 4698 }
aoqi@0 4699 }
aoqi@0 4700
aoqi@0 4701 ciKlass* dest_k = NULL;
aoqi@0 4702 if (!has_dest) {
aoqi@0 4703 dest_k = dest_type->speculative_type();
aoqi@0 4704 if (dest_k != NULL && dest_k->is_array_klass()) {
aoqi@0 4705 could_have_dest = true;
aoqi@0 4706 }
aoqi@0 4707 }
aoqi@0 4708
aoqi@0 4709 if (could_have_src && could_have_dest) {
aoqi@0 4710 // This is going to pay off so emit the required guards
aoqi@0 4711 if (!has_src) {
aoqi@0 4712 src = maybe_cast_profiled_obj(src, src_k);
aoqi@0 4713 src_type = _gvn.type(src);
aoqi@0 4714 top_src = src_type->isa_aryptr();
aoqi@0 4715 has_src = (top_src != NULL && top_src->klass() != NULL);
aoqi@0 4716 src_spec = true;
aoqi@0 4717 }
aoqi@0 4718 if (!has_dest) {
aoqi@0 4719 dest = maybe_cast_profiled_obj(dest, dest_k);
aoqi@0 4720 dest_type = _gvn.type(dest);
aoqi@0 4721 top_dest = dest_type->isa_aryptr();
aoqi@0 4722 has_dest = (top_dest != NULL && top_dest->klass() != NULL);
aoqi@0 4723 dest_spec = true;
aoqi@0 4724 }
aoqi@0 4725 }
aoqi@0 4726 }
aoqi@0 4727
aoqi@0 4728 if (!has_src || !has_dest) {
aoqi@0 4729 // Conservatively insert a memory barrier on all memory slices.
aoqi@0 4730 // Do not let writes into the source float below the arraycopy.
aoqi@0 4731 insert_mem_bar(Op_MemBarCPUOrder);
aoqi@0 4732
aoqi@0 4733 // Call StubRoutines::generic_arraycopy stub.
aoqi@0 4734 generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
aoqi@0 4735 src, src_offset, dest, dest_offset, length);
aoqi@0 4736
aoqi@0 4737 // Do not let reads from the destination float above the arraycopy.
aoqi@0 4738 // Since we cannot type the arrays, we don't know which slices
aoqi@0 4739 // might be affected. We could restrict this barrier only to those
aoqi@0 4740 // memory slices which pertain to array elements--but don't bother.
aoqi@0 4741 if (!InsertMemBarAfterArraycopy)
aoqi@0 4742 // (If InsertMemBarAfterArraycopy, there is already one in place.)
aoqi@0 4743 insert_mem_bar(Op_MemBarCPUOrder);
aoqi@0 4744 return true;
aoqi@0 4745 }
aoqi@0 4746
aoqi@0 4747 // (2) src and dest arrays must have elements of the same BasicType
aoqi@0 4748 // Figure out the size and type of the elements we will be copying.
aoqi@0 4749 BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type();
aoqi@0 4750 BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
aoqi@0 4751 if (src_elem == T_ARRAY) src_elem = T_OBJECT;
aoqi@0 4752 if (dest_elem == T_ARRAY) dest_elem = T_OBJECT;
aoqi@0 4753
aoqi@0 4754 if (src_elem != dest_elem || dest_elem == T_VOID) {
aoqi@0 4755 // The component types are not the same or are not recognized. Punt.
aoqi@0 4756 // (But, avoid the native method wrapper to JVM_ArrayCopy.)
aoqi@0 4757 generate_slow_arraycopy(TypePtr::BOTTOM,
aoqi@0 4758 src, src_offset, dest, dest_offset, length,
aoqi@0 4759 /*dest_uninitialized*/false);
aoqi@0 4760 return true;
aoqi@0 4761 }
aoqi@0 4762
aoqi@0 4763 if (src_elem == T_OBJECT) {
aoqi@0 4764 // If both arrays are object arrays then having the exact types
aoqi@0 4765 // for both will remove the need for a subtype check at runtime
aoqi@0 4766 // before the call and may make it possible to pick a faster copy
aoqi@0 4767 // routine (without a subtype check on every element)
aoqi@0 4768 // Do we have the exact type of src?
aoqi@0 4769 bool could_have_src = src_spec;
aoqi@0 4770 // Do we have the exact type of dest?
aoqi@0 4771 bool could_have_dest = dest_spec;
aoqi@0 4772 ciKlass* src_k = top_src->klass();
aoqi@0 4773 ciKlass* dest_k = top_dest->klass();
aoqi@0 4774 if (!src_spec) {
aoqi@0 4775 src_k = src_type->speculative_type();
aoqi@0 4776 if (src_k != NULL && src_k->is_array_klass()) {
aoqi@0 4777 could_have_src = true;
aoqi@0 4778 }
aoqi@0 4779 }
aoqi@0 4780 if (!dest_spec) {
aoqi@0 4781 dest_k = dest_type->speculative_type();
aoqi@0 4782 if (dest_k != NULL && dest_k->is_array_klass()) {
aoqi@0 4783 could_have_dest = true;
aoqi@0 4784 }
aoqi@0 4785 }
aoqi@0 4786 if (could_have_src && could_have_dest) {
aoqi@0 4787 // If we can have both exact types, emit the missing guards
aoqi@0 4788 if (could_have_src && !src_spec) {
aoqi@0 4789 src = maybe_cast_profiled_obj(src, src_k);
aoqi@0 4790 }
aoqi@0 4791 if (could_have_dest && !dest_spec) {
aoqi@0 4792 dest = maybe_cast_profiled_obj(dest, dest_k);
aoqi@0 4793 }
aoqi@0 4794 }
aoqi@0 4795 }
aoqi@0 4796
aoqi@0 4797 //---------------------------------------------------------------------------
aoqi@0 4798 // We will make a fast path for this call to arraycopy.
aoqi@0 4799
aoqi@0 4800 // We have the following tests left to perform:
aoqi@0 4801 //
aoqi@0 4802 // (3) src and dest must not be null.
aoqi@0 4803 // (4) src_offset must not be negative.
aoqi@0 4804 // (5) dest_offset must not be negative.
aoqi@0 4805 // (6) length must not be negative.
aoqi@0 4806 // (7) src_offset + length must not exceed length of src.
aoqi@0 4807 // (8) dest_offset + length must not exceed length of dest.
aoqi@0 4808 // (9) each element of an oop array must be assignable
aoqi@0 4809
aoqi@0 4810 RegionNode* slow_region = new (C) RegionNode(1);
aoqi@0 4811 record_for_igvn(slow_region);
aoqi@0 4812
aoqi@0 4813 // (3) operands must not be null
aoqi@0 4814 // We currently perform our null checks with the null_check routine.
aoqi@0 4815 // This means that the null exceptions will be reported in the caller
aoqi@0 4816 // rather than (correctly) reported inside of the native arraycopy call.
aoqi@0 4817 // This should be corrected, given time. We do our null check with the
aoqi@0 4818 // stack pointer restored.
aoqi@0 4819 src = null_check(src, T_ARRAY);
aoqi@0 4820 dest = null_check(dest, T_ARRAY);
aoqi@0 4821
aoqi@0 4822 // (4) src_offset must not be negative.
aoqi@0 4823 generate_negative_guard(src_offset, slow_region);
aoqi@0 4824
aoqi@0 4825 // (5) dest_offset must not be negative.
aoqi@0 4826 generate_negative_guard(dest_offset, slow_region);
aoqi@0 4827
aoqi@0 4828 // (6) length must not be negative (moved to generate_arraycopy()).
aoqi@0 4829 // generate_negative_guard(length, slow_region);
aoqi@0 4830
aoqi@0 4831 // (7) src_offset + length must not exceed length of src.
aoqi@0 4832 generate_limit_guard(src_offset, length,
aoqi@0 4833 load_array_length(src),
aoqi@0 4834 slow_region);
aoqi@0 4835
aoqi@0 4836 // (8) dest_offset + length must not exceed length of dest.
aoqi@0 4837 generate_limit_guard(dest_offset, length,
aoqi@0 4838 load_array_length(dest),
aoqi@0 4839 slow_region);
aoqi@0 4840
aoqi@0 4841 // (9) each element of an oop array must be assignable
aoqi@0 4842 // The generate_arraycopy subroutine checks this.
aoqi@0 4843
aoqi@0 4844 // This is where the memory effects are placed:
aoqi@0 4845 const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
aoqi@0 4846 generate_arraycopy(adr_type, dest_elem,
aoqi@0 4847 src, src_offset, dest, dest_offset, length,
aoqi@0 4848 false, false, slow_region);
aoqi@0 4849
aoqi@0 4850 return true;
aoqi@0 4851 }
aoqi@0 4852
aoqi@0 4853 //-----------------------------generate_arraycopy----------------------
aoqi@0 4854 // Generate an optimized call to arraycopy.
aoqi@0 4855 // Caller must guard against non-arrays.
aoqi@0 4856 // Caller must determine a common array basic-type for both arrays.
aoqi@0 4857 // Caller must validate offsets against array bounds.
aoqi@0 4858 // The slow_region has already collected guard failure paths
aoqi@0 4859 // (such as out of bounds length or non-conformable array types).
aoqi@0 4860 // The generated code has this shape, in general:
aoqi@0 4861 //
aoqi@0 4862 // if (length == 0) return // via zero_path
aoqi@0 4863 // slowval = -1
aoqi@0 4864 // if (types unknown) {
aoqi@0 4865 // slowval = call generic copy loop
aoqi@0 4866 // if (slowval == 0) return // via checked_path
aoqi@0 4867 // } else if (indexes in bounds) {
aoqi@0 4868 // if ((is object array) && !(array type check)) {
aoqi@0 4869 // slowval = call checked copy loop
aoqi@0 4870 // if (slowval == 0) return // via checked_path
aoqi@0 4871 // } else {
aoqi@0 4872 // call bulk copy loop
aoqi@0 4873 // return // via fast_path
aoqi@0 4874 // }
aoqi@0 4875 // }
aoqi@0 4876 // // adjust params for remaining work:
aoqi@0 4877 // if (slowval != -1) {
aoqi@0 4878 // n = -1^slowval; src_offset += n; dest_offset += n; length -= n
aoqi@0 4879 // }
aoqi@0 4880 // slow_region:
aoqi@0 4881 // call slow arraycopy(src, src_offset, dest, dest_offset, length)
aoqi@0 4882 // return // via slow_call_path
aoqi@0 4883 //
aoqi@0 4884 // This routine is used from several intrinsics: System.arraycopy,
aoqi@0 4885 // Object.clone (the array subcase), and Arrays.copyOf[Range].
aoqi@0 4886 //
aoqi@0 4887 void
aoqi@0 4888 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
aoqi@0 4889 BasicType basic_elem_type,
aoqi@0 4890 Node* src, Node* src_offset,
aoqi@0 4891 Node* dest, Node* dest_offset,
aoqi@0 4892 Node* copy_length,
aoqi@0 4893 bool disjoint_bases,
aoqi@0 4894 bool length_never_negative,
aoqi@0 4895 RegionNode* slow_region) {
aoqi@0 4896
aoqi@0 4897 if (slow_region == NULL) {
aoqi@0 4898 slow_region = new(C) RegionNode(1);
aoqi@0 4899 record_for_igvn(slow_region);
aoqi@0 4900 }
aoqi@0 4901
aoqi@0 4902 Node* original_dest = dest;
aoqi@0 4903 AllocateArrayNode* alloc = NULL; // used for zeroing, if needed
aoqi@0 4904 bool dest_uninitialized = false;
aoqi@0 4905
aoqi@0 4906 // See if this is the initialization of a newly-allocated array.
aoqi@0 4907 // If so, we will take responsibility here for initializing it to zero.
aoqi@0 4908 // (Note: Because tightly_coupled_allocation performs checks on the
aoqi@0 4909 // out-edges of the dest, we need to avoid making derived pointers
aoqi@0 4910 // from it until we have checked its uses.)
aoqi@0 4911 if (ReduceBulkZeroing
aoqi@0 4912 && !ZeroTLAB // pointless if already zeroed
aoqi@0 4913 && basic_elem_type != T_CONFLICT // avoid corner case
aoqi@0 4914 && !src->eqv_uncast(dest)
aoqi@0 4915 && ((alloc = tightly_coupled_allocation(dest, slow_region))
aoqi@0 4916 != NULL)
aoqi@0 4917 && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
aoqi@0 4918 && alloc->maybe_set_complete(&_gvn)) {
aoqi@0 4919 // "You break it, you buy it."
aoqi@0 4920 InitializeNode* init = alloc->initialization();
aoqi@0 4921 assert(init->is_complete(), "we just did this");
aoqi@0 4922 init->set_complete_with_arraycopy();
aoqi@0 4923 assert(dest->is_CheckCastPP(), "sanity");
aoqi@0 4924 assert(dest->in(0)->in(0) == init, "dest pinned");
aoqi@0 4925 adr_type = TypeRawPtr::BOTTOM; // all initializations are into raw memory
aoqi@0 4926 // From this point on, every exit path is responsible for
aoqi@0 4927 // initializing any non-copied parts of the object to zero.
aoqi@0 4928 // Also, if this flag is set we make sure that arraycopy interacts properly
aoqi@0 4929 // with G1, eliding pre-barriers. See CR 6627983.
aoqi@0 4930 dest_uninitialized = true;
aoqi@0 4931 } else {
aoqi@0 4932 // No zeroing elimination here.
aoqi@0 4933 alloc = NULL;
aoqi@0 4934 //original_dest = dest;
aoqi@0 4935 //dest_uninitialized = false;
aoqi@0 4936 }
aoqi@0 4937
aoqi@0 4938 // Results are placed here:
aoqi@0 4939 enum { fast_path = 1, // normal void-returning assembly stub
aoqi@0 4940 checked_path = 2, // special assembly stub with cleanup
aoqi@0 4941 slow_call_path = 3, // something went wrong; call the VM
aoqi@0 4942 zero_path = 4, // bypass when length of copy is zero
aoqi@0 4943 bcopy_path = 5, // copy primitive array by 64-bit blocks
aoqi@0 4944 PATH_LIMIT = 6
aoqi@0 4945 };
aoqi@0 4946 RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
aoqi@0 4947 PhiNode* result_i_o = new(C) PhiNode(result_region, Type::ABIO);
aoqi@0 4948 PhiNode* result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
aoqi@0 4949 record_for_igvn(result_region);
aoqi@0 4950 _gvn.set_type_bottom(result_i_o);
aoqi@0 4951 _gvn.set_type_bottom(result_memory);
aoqi@0 4952 assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
aoqi@0 4953
aoqi@0 4954 // The slow_control path:
aoqi@0 4955 Node* slow_control;
aoqi@0 4956 Node* slow_i_o = i_o();
aoqi@0 4957 Node* slow_mem = memory(adr_type);
aoqi@0 4958 debug_only(slow_control = (Node*) badAddress);
aoqi@0 4959
aoqi@0 4960 // Checked control path:
aoqi@0 4961 Node* checked_control = top();
aoqi@0 4962 Node* checked_mem = NULL;
aoqi@0 4963 Node* checked_i_o = NULL;
aoqi@0 4964 Node* checked_value = NULL;
aoqi@0 4965
aoqi@0 4966 if (basic_elem_type == T_CONFLICT) {
aoqi@0 4967 assert(!dest_uninitialized, "");
aoqi@0 4968 Node* cv = generate_generic_arraycopy(adr_type,
aoqi@0 4969 src, src_offset, dest, dest_offset,
aoqi@0 4970 copy_length, dest_uninitialized);
aoqi@0 4971 if (cv == NULL) cv = intcon(-1); // failure (no stub available)
aoqi@0 4972 checked_control = control();
aoqi@0 4973 checked_i_o = i_o();
aoqi@0 4974 checked_mem = memory(adr_type);
aoqi@0 4975 checked_value = cv;
aoqi@0 4976 set_control(top()); // no fast path
aoqi@0 4977 }
aoqi@0 4978
aoqi@0 4979 Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
aoqi@0 4980 if (not_pos != NULL) {
aoqi@0 4981 PreserveJVMState pjvms(this);
aoqi@0 4982 set_control(not_pos);
aoqi@0 4983
aoqi@0 4984 // (6) length must not be negative.
aoqi@0 4985 if (!length_never_negative) {
aoqi@0 4986 generate_negative_guard(copy_length, slow_region);
aoqi@0 4987 }
aoqi@0 4988
aoqi@0 4989 // copy_length is 0.
aoqi@0 4990 if (!stopped() && dest_uninitialized) {
aoqi@0 4991 Node* dest_length = alloc->in(AllocateNode::ALength);
aoqi@0 4992 if (copy_length->eqv_uncast(dest_length)
aoqi@0 4993 || _gvn.find_int_con(dest_length, 1) <= 0) {
aoqi@0 4994 // There is no zeroing to do. No need for a secondary raw memory barrier.
aoqi@0 4995 } else {
aoqi@0 4996 // Clear the whole thing since there are no source elements to copy.
aoqi@0 4997 generate_clear_array(adr_type, dest, basic_elem_type,
aoqi@0 4998 intcon(0), NULL,
aoqi@0 4999 alloc->in(AllocateNode::AllocSize));
aoqi@0 5000 // Use a secondary InitializeNode as raw memory barrier.
aoqi@0 5001 // Currently it is needed only on this path since other
aoqi@0 5002 // paths have stub or runtime calls as raw memory barriers.
aoqi@0 5003 InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
aoqi@0 5004 Compile::AliasIdxRaw,
aoqi@0 5005 top())->as_Initialize();
aoqi@0 5006 init->set_complete(&_gvn); // (there is no corresponding AllocateNode)
aoqi@0 5007 }
aoqi@0 5008 }
aoqi@0 5009
aoqi@0 5010 // Present the results of the fast call.
aoqi@0 5011 result_region->init_req(zero_path, control());
aoqi@0 5012 result_i_o ->init_req(zero_path, i_o());
aoqi@0 5013 result_memory->init_req(zero_path, memory(adr_type));
aoqi@0 5014 }
aoqi@0 5015
aoqi@0 5016 if (!stopped() && dest_uninitialized) {
aoqi@0 5017 // We have to initialize the *uncopied* part of the array to zero.
aoqi@0 5018 // The copy destination is the slice dest[off..off+len]. The other slices
aoqi@0 5019 // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
aoqi@0 5020 Node* dest_size = alloc->in(AllocateNode::AllocSize);
aoqi@0 5021 Node* dest_length = alloc->in(AllocateNode::ALength);
aoqi@0 5022 Node* dest_tail = _gvn.transform(new(C) AddINode(dest_offset,
aoqi@0 5023 copy_length));
aoqi@0 5024
aoqi@0 5025 // If there is a head section that needs zeroing, do it now.
aoqi@0 5026 if (find_int_con(dest_offset, -1) != 0) {
aoqi@0 5027 generate_clear_array(adr_type, dest, basic_elem_type,
aoqi@0 5028 intcon(0), dest_offset,
aoqi@0 5029 NULL);
aoqi@0 5030 }
aoqi@0 5031
aoqi@0 5032 // Next, perform a dynamic check on the tail length.
aoqi@0 5033 // It is often zero, and we can win big if we prove this.
aoqi@0 5034 // There are two wins: Avoid generating the ClearArray
aoqi@0 5035 // with its attendant messy index arithmetic, and upgrade
aoqi@0 5036 // the copy to a more hardware-friendly word size of 64 bits.
aoqi@0 5037 Node* tail_ctl = NULL;
aoqi@0 5038 if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
aoqi@0 5039 Node* cmp_lt = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
aoqi@0 5040 Node* bol_lt = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
aoqi@0 5041 tail_ctl = generate_slow_guard(bol_lt, NULL);
aoqi@0 5042 assert(tail_ctl != NULL || !stopped(), "must be an outcome");
aoqi@0 5043 }
aoqi@0 5044
aoqi@0 5045 // At this point, let's assume there is no tail.
aoqi@0 5046 if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
aoqi@0 5047 // There is no tail. Try an upgrade to a 64-bit copy.
aoqi@0 5048 bool didit = false;
aoqi@0 5049 { PreserveJVMState pjvms(this);
aoqi@0 5050 didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
aoqi@0 5051 src, src_offset, dest, dest_offset,
aoqi@0 5052 dest_size, dest_uninitialized);
aoqi@0 5053 if (didit) {
aoqi@0 5054 // Present the results of the block-copying fast call.
aoqi@0 5055 result_region->init_req(bcopy_path, control());
aoqi@0 5056 result_i_o ->init_req(bcopy_path, i_o());
aoqi@0 5057 result_memory->init_req(bcopy_path, memory(adr_type));
aoqi@0 5058 }
aoqi@0 5059 }
aoqi@0 5060 if (didit)
aoqi@0 5061 set_control(top()); // no regular fast path
aoqi@0 5062 }
aoqi@0 5063
aoqi@0 5064 // Clear the tail, if any.
aoqi@0 5065 if (tail_ctl != NULL) {
aoqi@0 5066 Node* notail_ctl = stopped() ? NULL : control();
aoqi@0 5067 set_control(tail_ctl);
aoqi@0 5068 if (notail_ctl == NULL) {
aoqi@0 5069 generate_clear_array(adr_type, dest, basic_elem_type,
aoqi@0 5070 dest_tail, NULL,
aoqi@0 5071 dest_size);
aoqi@0 5072 } else {
aoqi@0 5073 // Make a local merge.
aoqi@0 5074 Node* done_ctl = new(C) RegionNode(3);
aoqi@0 5075 Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
aoqi@0 5076 done_ctl->init_req(1, notail_ctl);
aoqi@0 5077 done_mem->init_req(1, memory(adr_type));
aoqi@0 5078 generate_clear_array(adr_type, dest, basic_elem_type,
aoqi@0 5079 dest_tail, NULL,
aoqi@0 5080 dest_size);
aoqi@0 5081 done_ctl->init_req(2, control());
aoqi@0 5082 done_mem->init_req(2, memory(adr_type));
aoqi@0 5083 set_control( _gvn.transform(done_ctl));
aoqi@0 5084 set_memory( _gvn.transform(done_mem), adr_type );
aoqi@0 5085 }
aoqi@0 5086 }
aoqi@0 5087 }
aoqi@0 5088
aoqi@0 5089 BasicType copy_type = basic_elem_type;
aoqi@0 5090 assert(basic_elem_type != T_ARRAY, "caller must fix this");
aoqi@0 5091 if (!stopped() && copy_type == T_OBJECT) {
aoqi@0 5092 // If src and dest have compatible element types, we can copy bits.
aoqi@0 5093 // Types S[] and D[] are compatible if D is a supertype of S.
aoqi@0 5094 //
aoqi@0 5095 // If they are not, we will use checked_oop_disjoint_arraycopy,
aoqi@0 5096 // which performs a fast optimistic per-oop check, and backs off
aoqi@0 5097 // further to JVM_ArrayCopy on the first per-oop check that fails.
aoqi@0 5098 // (Actually, we don't move raw bits only; the GC requires card marks.)
aoqi@0 5099
aoqi@0 5100 // Get the Klass* for both src and dest
aoqi@0 5101 Node* src_klass = load_object_klass(src);
aoqi@0 5102 Node* dest_klass = load_object_klass(dest);
aoqi@0 5103
aoqi@0 5104 // Generate the subtype check.
aoqi@0 5105 // This might fold up statically, or then again it might not.
aoqi@0 5106 //
aoqi@0 5107 // Non-static example: Copying List<String>.elements to a new String[].
aoqi@0 5108 // The backing store for a List<String> is always an Object[],
aoqi@0 5109 // but its elements are always type String, if the generic types
aoqi@0 5110 // are correct at the source level.
aoqi@0 5111 //
aoqi@0 5112 // Test S[] against D[], not S against D, because (probably)
aoqi@0 5113 // the secondary supertype cache is less busy for S[] than S.
aoqi@0 5114 // This usually only matters when D is an interface.
aoqi@0 5115 Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
aoqi@0 5116 // Plug failing path into checked_oop_disjoint_arraycopy
aoqi@0 5117 if (not_subtype_ctrl != top()) {
aoqi@0 5118 PreserveJVMState pjvms(this);
aoqi@0 5119 set_control(not_subtype_ctrl);
aoqi@0 5120 // (At this point we can assume disjoint_bases, since types differ.)
aoqi@0 5121 int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
aoqi@0 5122 Node* p1 = basic_plus_adr(dest_klass, ek_offset);
aoqi@0 5123 Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
aoqi@0 5124 Node* dest_elem_klass = _gvn.transform(n1);
aoqi@0 5125 Node* cv = generate_checkcast_arraycopy(adr_type,
aoqi@0 5126 dest_elem_klass,
aoqi@0 5127 src, src_offset, dest, dest_offset,
aoqi@0 5128 ConvI2X(copy_length), dest_uninitialized);
aoqi@0 5129 if (cv == NULL) cv = intcon(-1); // failure (no stub available)
aoqi@0 5130 checked_control = control();
aoqi@0 5131 checked_i_o = i_o();
aoqi@0 5132 checked_mem = memory(adr_type);
aoqi@0 5133 checked_value = cv;
aoqi@0 5134 }
aoqi@0 5135 // At this point we know we do not need type checks on oop stores.
aoqi@0 5136
aoqi@0 5137 // Let's see if we need card marks:
aoqi@0 5138 if (alloc != NULL && use_ReduceInitialCardMarks()) {
aoqi@0 5139 // If we do not need card marks, copy using the jint or jlong stub.
aoqi@0 5140 copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
aoqi@0 5141 assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
aoqi@0 5142 "sizes agree");
aoqi@0 5143 }
aoqi@0 5144 }
aoqi@0 5145
aoqi@0 5146 if (!stopped()) {
aoqi@0 5147 // Generate the fast path, if possible.
aoqi@0 5148 PreserveJVMState pjvms(this);
aoqi@0 5149 generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
aoqi@0 5150 src, src_offset, dest, dest_offset,
aoqi@0 5151 ConvI2X(copy_length), dest_uninitialized);
aoqi@0 5152
aoqi@0 5153 // Present the results of the fast call.
aoqi@0 5154 result_region->init_req(fast_path, control());
aoqi@0 5155 result_i_o ->init_req(fast_path, i_o());
aoqi@0 5156 result_memory->init_req(fast_path, memory(adr_type));
aoqi@0 5157 }
aoqi@0 5158
aoqi@0 5159 // Here are all the slow paths up to this point, in one bundle:
aoqi@0 5160 slow_control = top();
aoqi@0 5161 if (slow_region != NULL)
aoqi@0 5162 slow_control = _gvn.transform(slow_region);
aoqi@0 5163 DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
aoqi@0 5164
aoqi@0 5165 set_control(checked_control);
aoqi@0 5166 if (!stopped()) {
aoqi@0 5167 // Clean up after the checked call.
aoqi@0 5168 // The returned value is either 0 or -1^K,
aoqi@0 5169 // where K = number of partially transferred array elements.
aoqi@0 5170 Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
aoqi@0 5171 Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
aoqi@0 5172 IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
aoqi@0 5173
aoqi@0 5174 // If it is 0, we are done, so transfer to the end.
aoqi@0 5175 Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
aoqi@0 5176 result_region->init_req(checked_path, checks_done);
aoqi@0 5177 result_i_o ->init_req(checked_path, checked_i_o);
aoqi@0 5178 result_memory->init_req(checked_path, checked_mem);
aoqi@0 5179
aoqi@0 5180 // If it is not zero, merge into the slow call.
aoqi@0 5181 set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
aoqi@0 5182 RegionNode* slow_reg2 = new(C) RegionNode(3);
aoqi@0 5183 PhiNode* slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
aoqi@0 5184 PhiNode* slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
aoqi@0 5185 record_for_igvn(slow_reg2);
aoqi@0 5186 slow_reg2 ->init_req(1, slow_control);
aoqi@0 5187 slow_i_o2 ->init_req(1, slow_i_o);
aoqi@0 5188 slow_mem2 ->init_req(1, slow_mem);
aoqi@0 5189 slow_reg2 ->init_req(2, control());
aoqi@0 5190 slow_i_o2 ->init_req(2, checked_i_o);
aoqi@0 5191 slow_mem2 ->init_req(2, checked_mem);
aoqi@0 5192
aoqi@0 5193 slow_control = _gvn.transform(slow_reg2);
aoqi@0 5194 slow_i_o = _gvn.transform(slow_i_o2);
aoqi@0 5195 slow_mem = _gvn.transform(slow_mem2);
aoqi@0 5196
aoqi@0 5197 if (alloc != NULL) {
aoqi@0 5198 // We'll restart from the very beginning, after zeroing the whole thing.
aoqi@0 5199 // This can cause double writes, but that's OK since dest is brand new.
aoqi@0 5200 // So we ignore the low 31 bits of the value returned from the stub.
aoqi@0 5201 } else {
aoqi@0 5202 // We must continue the copy exactly where it failed, or else
aoqi@0 5203 // another thread might see the wrong number of writes to dest.
aoqi@0 5204 Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
aoqi@0 5205 Node* slow_offset = new(C) PhiNode(slow_reg2, TypeInt::INT);
aoqi@0 5206 slow_offset->init_req(1, intcon(0));
aoqi@0 5207 slow_offset->init_req(2, checked_offset);
aoqi@0 5208 slow_offset = _gvn.transform(slow_offset);
aoqi@0 5209
aoqi@0 5210 // Adjust the arguments by the conditionally incoming offset.
aoqi@0 5211 Node* src_off_plus = _gvn.transform(new(C) AddINode(src_offset, slow_offset));
aoqi@0 5212 Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
aoqi@0 5213 Node* length_minus = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
aoqi@0 5214
aoqi@0 5215 // Tweak the node variables to adjust the code produced below:
aoqi@0 5216 src_offset = src_off_plus;
aoqi@0 5217 dest_offset = dest_off_plus;
aoqi@0 5218 copy_length = length_minus;
aoqi@0 5219 }
aoqi@0 5220 }
aoqi@0 5221
aoqi@0 5222 set_control(slow_control);
aoqi@0 5223 if (!stopped()) {
aoqi@0 5224 // Generate the slow path, if needed.
aoqi@0 5225 PreserveJVMState pjvms(this); // replace_in_map may trash the map
aoqi@0 5226
aoqi@0 5227 set_memory(slow_mem, adr_type);
aoqi@0 5228 set_i_o(slow_i_o);
aoqi@0 5229
aoqi@0 5230 if (dest_uninitialized) {
aoqi@0 5231 generate_clear_array(adr_type, dest, basic_elem_type,
aoqi@0 5232 intcon(0), NULL,
aoqi@0 5233 alloc->in(AllocateNode::AllocSize));
aoqi@0 5234 }
aoqi@0 5235
aoqi@0 5236 generate_slow_arraycopy(adr_type,
aoqi@0 5237 src, src_offset, dest, dest_offset,
aoqi@0 5238 copy_length, /*dest_uninitialized*/false);
aoqi@0 5239
aoqi@0 5240 result_region->init_req(slow_call_path, control());
aoqi@0 5241 result_i_o ->init_req(slow_call_path, i_o());
aoqi@0 5242 result_memory->init_req(slow_call_path, memory(adr_type));
aoqi@0 5243 }
aoqi@0 5244
aoqi@0 5245 // Remove unused edges.
aoqi@0 5246 for (uint i = 1; i < result_region->req(); i++) {
aoqi@0 5247 if (result_region->in(i) == NULL)
aoqi@0 5248 result_region->init_req(i, top());
aoqi@0 5249 }
aoqi@0 5250
aoqi@0 5251 // Finished; return the combined state.
aoqi@0 5252 set_control( _gvn.transform(result_region));
aoqi@0 5253 set_i_o( _gvn.transform(result_i_o) );
aoqi@0 5254 set_memory( _gvn.transform(result_memory), adr_type );
aoqi@0 5255
aoqi@0 5256 // The memory edges above are precise in order to model effects around
aoqi@0 5257 // array copies accurately to allow value numbering of field loads around
aoqi@0 5258 // arraycopy. Such field loads, both before and after, are common in Java
aoqi@0 5259 // collections and similar classes involving header/array data structures.
aoqi@0 5260 //
aoqi@0 5261 // But with low number of register or when some registers are used or killed
aoqi@0 5262 // by arraycopy calls it causes registers spilling on stack. See 6544710.
aoqi@0 5263 // The next memory barrier is added to avoid it. If the arraycopy can be
aoqi@0 5264 // optimized away (which it can, sometimes) then we can manually remove
aoqi@0 5265 // the membar also.
aoqi@0 5266 //
aoqi@0 5267 // Do not let reads from the cloned object float above the arraycopy.
aoqi@0 5268 if (alloc != NULL) {
aoqi@0 5269 // Do not let stores that initialize this object be reordered with
aoqi@0 5270 // a subsequent store that would make this object accessible by
aoqi@0 5271 // other threads.
aoqi@0 5272 // Record what AllocateNode this StoreStore protects so that
aoqi@0 5273 // escape analysis can go from the MemBarStoreStoreNode to the
aoqi@0 5274 // AllocateNode and eliminate the MemBarStoreStoreNode if possible
aoqi@0 5275 // based on the escape status of the AllocateNode.
aoqi@0 5276 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
aoqi@0 5277 } else if (InsertMemBarAfterArraycopy)
aoqi@0 5278 insert_mem_bar(Op_MemBarCPUOrder);
aoqi@0 5279 }
aoqi@0 5280
aoqi@0 5281
aoqi@0 5282 // Helper function which determines if an arraycopy immediately follows
aoqi@0 5283 // an allocation, with no intervening tests or other escapes for the object.
aoqi@0 5284 AllocateArrayNode*
aoqi@0 5285 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
aoqi@0 5286 RegionNode* slow_region) {
aoqi@0 5287 if (stopped()) return NULL; // no fast path
aoqi@0 5288 if (C->AliasLevel() == 0) return NULL; // no MergeMems around
aoqi@0 5289
aoqi@0 5290 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
aoqi@0 5291 if (alloc == NULL) return NULL;
aoqi@0 5292
aoqi@0 5293 Node* rawmem = memory(Compile::AliasIdxRaw);
aoqi@0 5294 // Is the allocation's memory state untouched?
aoqi@0 5295 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
aoqi@0 5296 // Bail out if there have been raw-memory effects since the allocation.
aoqi@0 5297 // (Example: There might have been a call or safepoint.)
aoqi@0 5298 return NULL;
aoqi@0 5299 }
aoqi@0 5300 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
aoqi@0 5301 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
aoqi@0 5302 return NULL;
aoqi@0 5303 }
aoqi@0 5304
aoqi@0 5305 // There must be no unexpected observers of this allocation.
aoqi@0 5306 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
aoqi@0 5307 Node* obs = ptr->fast_out(i);
aoqi@0 5308 if (obs != this->map()) {
aoqi@0 5309 return NULL;
aoqi@0 5310 }
aoqi@0 5311 }
aoqi@0 5312
aoqi@0 5313 // This arraycopy must unconditionally follow the allocation of the ptr.
aoqi@0 5314 Node* alloc_ctl = ptr->in(0);
aoqi@0 5315 assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
aoqi@0 5316
aoqi@0 5317 Node* ctl = control();
aoqi@0 5318 while (ctl != alloc_ctl) {
aoqi@0 5319 // There may be guards which feed into the slow_region.
aoqi@0 5320 // Any other control flow means that we might not get a chance
aoqi@0 5321 // to finish initializing the allocated object.
aoqi@0 5322 if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
aoqi@0 5323 IfNode* iff = ctl->in(0)->as_If();
aoqi@0 5324 Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
aoqi@0 5325 assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
aoqi@0 5326 if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
aoqi@0 5327 ctl = iff->in(0); // This test feeds the known slow_region.
aoqi@0 5328 continue;
aoqi@0 5329 }
aoqi@0 5330 // One more try: Various low-level checks bottom out in
aoqi@0 5331 // uncommon traps. If the debug-info of the trap omits
aoqi@0 5332 // any reference to the allocation, as we've already
aoqi@0 5333 // observed, then there can be no objection to the trap.
aoqi@0 5334 bool found_trap = false;
aoqi@0 5335 for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
aoqi@0 5336 Node* obs = not_ctl->fast_out(j);
aoqi@0 5337 if (obs->in(0) == not_ctl && obs->is_Call() &&
aoqi@0 5338 (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
aoqi@0 5339 found_trap = true; break;
aoqi@0 5340 }
aoqi@0 5341 }
aoqi@0 5342 if (found_trap) {
aoqi@0 5343 ctl = iff->in(0); // This test feeds a harmless uncommon trap.
aoqi@0 5344 continue;
aoqi@0 5345 }
aoqi@0 5346 }
aoqi@0 5347 return NULL;
aoqi@0 5348 }
aoqi@0 5349
aoqi@0 5350 // If we get this far, we have an allocation which immediately
aoqi@0 5351 // precedes the arraycopy, and we can take over zeroing the new object.
aoqi@0 5352 // The arraycopy will finish the initialization, and provide
aoqi@0 5353 // a new control state to which we will anchor the destination pointer.
aoqi@0 5354
aoqi@0 5355 return alloc;
aoqi@0 5356 }
aoqi@0 5357
aoqi@0 5358 // Helper for initialization of arrays, creating a ClearArray.
aoqi@0 5359 // It writes zero bits in [start..end), within the body of an array object.
aoqi@0 5360 // The memory effects are all chained onto the 'adr_type' alias category.
aoqi@0 5361 //
aoqi@0 5362 // Since the object is otherwise uninitialized, we are free
aoqi@0 5363 // to put a little "slop" around the edges of the cleared area,
aoqi@0 5364 // as long as it does not go back into the array's header,
aoqi@0 5365 // or beyond the array end within the heap.
aoqi@0 5366 //
aoqi@0 5367 // The lower edge can be rounded down to the nearest jint and the
aoqi@0 5368 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
aoqi@0 5369 //
aoqi@0 5370 // Arguments:
aoqi@0 5371 // adr_type memory slice where writes are generated
aoqi@0 5372 // dest oop of the destination array
aoqi@0 5373 // basic_elem_type element type of the destination
aoqi@0 5374 // slice_idx array index of first element to store
aoqi@0 5375 // slice_len number of elements to store (or NULL)
aoqi@0 5376 // dest_size total size in bytes of the array object
aoqi@0 5377 //
aoqi@0 5378 // Exactly one of slice_len or dest_size must be non-NULL.
aoqi@0 5379 // If dest_size is non-NULL, zeroing extends to the end of the object.
aoqi@0 5380 // If slice_len is non-NULL, the slice_idx value must be a constant.
aoqi@0 5381 void
aoqi@0 5382 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
aoqi@0 5383 Node* dest,
aoqi@0 5384 BasicType basic_elem_type,
aoqi@0 5385 Node* slice_idx,
aoqi@0 5386 Node* slice_len,
aoqi@0 5387 Node* dest_size) {
aoqi@0 5388 // one or the other but not both of slice_len and dest_size:
aoqi@0 5389 assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
aoqi@0 5390 if (slice_len == NULL) slice_len = top();
aoqi@0 5391 if (dest_size == NULL) dest_size = top();
aoqi@0 5392
aoqi@0 5393 // operate on this memory slice:
aoqi@0 5394 Node* mem = memory(adr_type); // memory slice to operate on
aoqi@0 5395
aoqi@0 5396 // scaling and rounding of indexes:
aoqi@0 5397 int scale = exact_log2(type2aelembytes(basic_elem_type));
aoqi@0 5398 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
aoqi@0 5399 int clear_low = (-1 << scale) & (BytesPerInt - 1);
aoqi@0 5400 int bump_bit = (-1 << scale) & BytesPerInt;
aoqi@0 5401
aoqi@0 5402 // determine constant starts and ends
aoqi@0 5403 const intptr_t BIG_NEG = -128;
aoqi@0 5404 assert(BIG_NEG + 2*abase < 0, "neg enough");
aoqi@0 5405 intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
aoqi@0 5406 intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
aoqi@0 5407 if (slice_len_con == 0) {
aoqi@0 5408 return; // nothing to do here
aoqi@0 5409 }
aoqi@0 5410 intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
aoqi@0 5411 intptr_t end_con = find_intptr_t_con(dest_size, -1);
aoqi@0 5412 if (slice_idx_con >= 0 && slice_len_con >= 0) {
aoqi@0 5413 assert(end_con < 0, "not two cons");
aoqi@0 5414 end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
aoqi@0 5415 BytesPerLong);
aoqi@0 5416 }
aoqi@0 5417
aoqi@0 5418 if (start_con >= 0 && end_con >= 0) {
aoqi@0 5419 // Constant start and end. Simple.
aoqi@0 5420 mem = ClearArrayNode::clear_memory(control(), mem, dest,
aoqi@0 5421 start_con, end_con, &_gvn);
aoqi@0 5422 } else if (start_con >= 0 && dest_size != top()) {
aoqi@0 5423 // Constant start, pre-rounded end after the tail of the array.
aoqi@0 5424 Node* end = dest_size;
aoqi@0 5425 mem = ClearArrayNode::clear_memory(control(), mem, dest,
aoqi@0 5426 start_con, end, &_gvn);
aoqi@0 5427 } else if (start_con >= 0 && slice_len != top()) {
aoqi@0 5428 // Constant start, non-constant end. End needs rounding up.
aoqi@0 5429 // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
aoqi@0 5430 intptr_t end_base = abase + (slice_idx_con << scale);
aoqi@0 5431 int end_round = (-1 << scale) & (BytesPerLong - 1);
aoqi@0 5432 Node* end = ConvI2X(slice_len);
aoqi@0 5433 if (scale != 0)
aoqi@0 5434 end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
aoqi@0 5435 end_base += end_round;
aoqi@0 5436 end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
aoqi@0 5437 end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
aoqi@0 5438 mem = ClearArrayNode::clear_memory(control(), mem, dest,
aoqi@0 5439 start_con, end, &_gvn);
aoqi@0 5440 } else if (start_con < 0 && dest_size != top()) {
aoqi@0 5441 // Non-constant start, pre-rounded end after the tail of the array.
aoqi@0 5442 // This is almost certainly a "round-to-end" operation.
aoqi@0 5443 Node* start = slice_idx;
aoqi@0 5444 start = ConvI2X(start);
aoqi@0 5445 if (scale != 0)
aoqi@0 5446 start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
aoqi@0 5447 start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
aoqi@0 5448 if ((bump_bit | clear_low) != 0) {
aoqi@0 5449 int to_clear = (bump_bit | clear_low);
aoqi@0 5450 // Align up mod 8, then store a jint zero unconditionally
aoqi@0 5451 // just before the mod-8 boundary.
aoqi@0 5452 if (((abase + bump_bit) & ~to_clear) - bump_bit
aoqi@0 5453 < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
aoqi@0 5454 bump_bit = 0;
aoqi@0 5455 assert((abase & to_clear) == 0, "array base must be long-aligned");
aoqi@0 5456 } else {
aoqi@0 5457 // Bump 'start' up to (or past) the next jint boundary:
aoqi@0 5458 start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
aoqi@0 5459 assert((abase & clear_low) == 0, "array base must be int-aligned");
aoqi@0 5460 }
aoqi@0 5461 // Round bumped 'start' down to jlong boundary in body of array.
aoqi@0 5462 start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
aoqi@0 5463 if (bump_bit != 0) {
aoqi@0 5464 // Store a zero to the immediately preceding jint:
aoqi@0 5465 Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
aoqi@0 5466 Node* p1 = basic_plus_adr(dest, x1);
aoqi@0 5467 mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
aoqi@0 5468 mem = _gvn.transform(mem);
aoqi@0 5469 }
aoqi@0 5470 }
aoqi@0 5471 Node* end = dest_size; // pre-rounded
aoqi@0 5472 mem = ClearArrayNode::clear_memory(control(), mem, dest,
aoqi@0 5473 start, end, &_gvn);
aoqi@0 5474 } else {
aoqi@0 5475 // Non-constant start, unrounded non-constant end.
aoqi@0 5476 // (Nobody zeroes a random midsection of an array using this routine.)
aoqi@0 5477 ShouldNotReachHere(); // fix caller
aoqi@0 5478 }
aoqi@0 5479
aoqi@0 5480 // Done.
aoqi@0 5481 set_memory(mem, adr_type);
aoqi@0 5482 }
aoqi@0 5483
aoqi@0 5484
aoqi@0 5485 bool
aoqi@0 5486 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
aoqi@0 5487 BasicType basic_elem_type,
aoqi@0 5488 AllocateNode* alloc,
aoqi@0 5489 Node* src, Node* src_offset,
aoqi@0 5490 Node* dest, Node* dest_offset,
aoqi@0 5491 Node* dest_size, bool dest_uninitialized) {
aoqi@0 5492 // See if there is an advantage from block transfer.
aoqi@0 5493 int scale = exact_log2(type2aelembytes(basic_elem_type));
aoqi@0 5494 if (scale >= LogBytesPerLong)
aoqi@0 5495 return false; // it is already a block transfer
aoqi@0 5496
aoqi@0 5497 // Look at the alignment of the starting offsets.
aoqi@0 5498 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
aoqi@0 5499
aoqi@0 5500 intptr_t src_off_con = (intptr_t) find_int_con(src_offset, -1);
aoqi@0 5501 intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
aoqi@0 5502 if (src_off_con < 0 || dest_off_con < 0)
aoqi@0 5503 // At present, we can only understand constants.
aoqi@0 5504 return false;
aoqi@0 5505
aoqi@0 5506 intptr_t src_off = abase + (src_off_con << scale);
aoqi@0 5507 intptr_t dest_off = abase + (dest_off_con << scale);
aoqi@0 5508
aoqi@0 5509 if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
aoqi@0 5510 // Non-aligned; too bad.
aoqi@0 5511 // One more chance: Pick off an initial 32-bit word.
aoqi@0 5512 // This is a common case, since abase can be odd mod 8.
aoqi@0 5513 if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
aoqi@0 5514 ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
aoqi@0 5515 Node* sptr = basic_plus_adr(src, src_off);
aoqi@0 5516 Node* dptr = basic_plus_adr(dest, dest_off);
aoqi@0 5517 Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
aoqi@0 5518 store_to_memory(control(), dptr, sval, T_INT, adr_type, MemNode::unordered);
aoqi@0 5519 src_off += BytesPerInt;
aoqi@0 5520 dest_off += BytesPerInt;
aoqi@0 5521 } else {
aoqi@0 5522 return false;
aoqi@0 5523 }
aoqi@0 5524 }
aoqi@0 5525 assert(src_off % BytesPerLong == 0, "");
aoqi@0 5526 assert(dest_off % BytesPerLong == 0, "");
aoqi@0 5527
aoqi@0 5528 // Do this copy by giant steps.
aoqi@0 5529 Node* sptr = basic_plus_adr(src, src_off);
aoqi@0 5530 Node* dptr = basic_plus_adr(dest, dest_off);
aoqi@0 5531 Node* countx = dest_size;
aoqi@0 5532 countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
aoqi@0 5533 countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
aoqi@0 5534
aoqi@0 5535 bool disjoint_bases = true; // since alloc != NULL
aoqi@0 5536 generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
aoqi@0 5537 sptr, NULL, dptr, NULL, countx, dest_uninitialized);
aoqi@0 5538
aoqi@0 5539 return true;
aoqi@0 5540 }
aoqi@0 5541
aoqi@0 5542
aoqi@0 5543 // Helper function; generates code for the slow case.
aoqi@0 5544 // We make a call to a runtime method which emulates the native method,
aoqi@0 5545 // but without the native wrapper overhead.
aoqi@0 5546 void
aoqi@0 5547 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
aoqi@0 5548 Node* src, Node* src_offset,
aoqi@0 5549 Node* dest, Node* dest_offset,
aoqi@0 5550 Node* copy_length, bool dest_uninitialized) {
aoqi@0 5551 assert(!dest_uninitialized, "Invariant");
aoqi@0 5552 Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
aoqi@0 5553 OptoRuntime::slow_arraycopy_Type(),
aoqi@0 5554 OptoRuntime::slow_arraycopy_Java(),
aoqi@0 5555 "slow_arraycopy", adr_type,
aoqi@0 5556 src, src_offset, dest, dest_offset,
aoqi@0 5557 copy_length);
aoqi@0 5558
aoqi@0 5559 // Handle exceptions thrown by this fellow:
aoqi@0 5560 make_slow_call_ex(call, env()->Throwable_klass(), false);
aoqi@0 5561 }
aoqi@0 5562
aoqi@0 5563 // Helper function; generates code for cases requiring runtime checks.
aoqi@0 5564 Node*
aoqi@0 5565 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
aoqi@0 5566 Node* dest_elem_klass,
aoqi@0 5567 Node* src, Node* src_offset,
aoqi@0 5568 Node* dest, Node* dest_offset,
aoqi@0 5569 Node* copy_length, bool dest_uninitialized) {
aoqi@0 5570 if (stopped()) return NULL;
aoqi@0 5571
aoqi@0 5572 address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
aoqi@0 5573 if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
aoqi@0 5574 return NULL;
aoqi@0 5575 }
aoqi@0 5576
aoqi@0 5577 // Pick out the parameters required to perform a store-check
aoqi@0 5578 // for the target array. This is an optimistic check. It will
aoqi@0 5579 // look in each non-null element's class, at the desired klass's
aoqi@0 5580 // super_check_offset, for the desired klass.
aoqi@0 5581 int sco_offset = in_bytes(Klass::super_check_offset_offset());
aoqi@0 5582 Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
aoqi@0 5583 Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered);
aoqi@0 5584 Node* check_offset = ConvI2X(_gvn.transform(n3));
aoqi@0 5585 Node* check_value = dest_elem_klass;
aoqi@0 5586
aoqi@0 5587 Node* src_start = array_element_address(src, src_offset, T_OBJECT);
aoqi@0 5588 Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
aoqi@0 5589
aoqi@0 5590 // (We know the arrays are never conjoint, because their types differ.)
aoqi@0 5591 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
aoqi@0 5592 OptoRuntime::checkcast_arraycopy_Type(),
aoqi@0 5593 copyfunc_addr, "checkcast_arraycopy", adr_type,
aoqi@0 5594 // five arguments, of which two are
aoqi@0 5595 // intptr_t (jlong in LP64)
aoqi@0 5596 src_start, dest_start,
aoqi@0 5597 copy_length XTOP,
aoqi@0 5598 check_offset XTOP,
aoqi@0 5599 check_value);
aoqi@0 5600
aoqi@0 5601 return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
aoqi@0 5602 }
aoqi@0 5603
aoqi@0 5604
aoqi@0 5605 // Helper function; generates code for cases requiring runtime checks.
aoqi@0 5606 Node*
aoqi@0 5607 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
aoqi@0 5608 Node* src, Node* src_offset,
aoqi@0 5609 Node* dest, Node* dest_offset,
aoqi@0 5610 Node* copy_length, bool dest_uninitialized) {
aoqi@0 5611 assert(!dest_uninitialized, "Invariant");
aoqi@0 5612 if (stopped()) return NULL;
aoqi@0 5613 address copyfunc_addr = StubRoutines::generic_arraycopy();
aoqi@0 5614 if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
aoqi@0 5615 return NULL;
aoqi@0 5616 }
aoqi@0 5617
aoqi@0 5618 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
aoqi@0 5619 OptoRuntime::generic_arraycopy_Type(),
aoqi@0 5620 copyfunc_addr, "generic_arraycopy", adr_type,
aoqi@0 5621 src, src_offset, dest, dest_offset, copy_length);
aoqi@0 5622
aoqi@0 5623 return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
aoqi@0 5624 }
aoqi@0 5625
aoqi@0 5626 // Helper function; generates the fast out-of-line call to an arraycopy stub.
aoqi@0 5627 void
aoqi@0 5628 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
aoqi@0 5629 BasicType basic_elem_type,
aoqi@0 5630 bool disjoint_bases,
aoqi@0 5631 Node* src, Node* src_offset,
aoqi@0 5632 Node* dest, Node* dest_offset,
aoqi@0 5633 Node* copy_length, bool dest_uninitialized) {
aoqi@0 5634 if (stopped()) return; // nothing to do
aoqi@0 5635
aoqi@0 5636 Node* src_start = src;
aoqi@0 5637 Node* dest_start = dest;
aoqi@0 5638 if (src_offset != NULL || dest_offset != NULL) {
aoqi@0 5639 assert(src_offset != NULL && dest_offset != NULL, "");
aoqi@0 5640 src_start = array_element_address(src, src_offset, basic_elem_type);
aoqi@0 5641 dest_start = array_element_address(dest, dest_offset, basic_elem_type);
aoqi@0 5642 }
aoqi@0 5643
aoqi@0 5644 // Figure out which arraycopy runtime method to call.
aoqi@0 5645 const char* copyfunc_name = "arraycopy";
aoqi@0 5646 address copyfunc_addr =
aoqi@0 5647 basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
aoqi@0 5648 disjoint_bases, copyfunc_name, dest_uninitialized);
aoqi@0 5649
aoqi@0 5650 // Call it. Note that the count_ix value is not scaled to a byte-size.
aoqi@0 5651 make_runtime_call(RC_LEAF|RC_NO_FP,
aoqi@0 5652 OptoRuntime::fast_arraycopy_Type(),
aoqi@0 5653 copyfunc_addr, copyfunc_name, adr_type,
aoqi@0 5654 src_start, dest_start, copy_length XTOP);
aoqi@0 5655 }
aoqi@0 5656
aoqi@0 5657 //-------------inline_encodeISOArray-----------------------------------
aoqi@0 5658 // encode char[] to byte[] in ISO_8859_1
aoqi@0 5659 bool LibraryCallKit::inline_encodeISOArray() {
aoqi@0 5660 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
aoqi@0 5661 // no receiver since it is static method
aoqi@0 5662 Node *src = argument(0);
aoqi@0 5663 Node *src_offset = argument(1);
aoqi@0 5664 Node *dst = argument(2);
aoqi@0 5665 Node *dst_offset = argument(3);
aoqi@0 5666 Node *length = argument(4);
aoqi@0 5667
aoqi@0 5668 const Type* src_type = src->Value(&_gvn);
aoqi@0 5669 const Type* dst_type = dst->Value(&_gvn);
aoqi@0 5670 const TypeAryPtr* top_src = src_type->isa_aryptr();
aoqi@0 5671 const TypeAryPtr* top_dest = dst_type->isa_aryptr();
aoqi@0 5672 if (top_src == NULL || top_src->klass() == NULL ||
aoqi@0 5673 top_dest == NULL || top_dest->klass() == NULL) {
aoqi@0 5674 // failed array check
aoqi@0 5675 return false;
aoqi@0 5676 }
aoqi@0 5677
aoqi@0 5678 // Figure out the size and type of the elements we will be copying.
aoqi@0 5679 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
aoqi@0 5680 BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
aoqi@0 5681 if (src_elem != T_CHAR || dst_elem != T_BYTE) {
aoqi@0 5682 return false;
aoqi@0 5683 }
aoqi@0 5684 Node* src_start = array_element_address(src, src_offset, src_elem);
aoqi@0 5685 Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
aoqi@0 5686 // 'src_start' points to src array + scaled offset
aoqi@0 5687 // 'dst_start' points to dst array + scaled offset
aoqi@0 5688
aoqi@0 5689 const TypeAryPtr* mtype = TypeAryPtr::BYTES;
aoqi@0 5690 Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
aoqi@0 5691 enc = _gvn.transform(enc);
aoqi@0 5692 Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
aoqi@0 5693 set_memory(res_mem, mtype);
aoqi@0 5694 set_result(enc);
aoqi@0 5695 return true;
aoqi@0 5696 }
aoqi@0 5697
aoqi@0 5698 /**
aoqi@0 5699 * Calculate CRC32 for byte.
aoqi@0 5700 * int java.util.zip.CRC32.update(int crc, int b)
aoqi@0 5701 */
aoqi@0 5702 bool LibraryCallKit::inline_updateCRC32() {
aoqi@0 5703 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
aoqi@0 5704 assert(callee()->signature()->size() == 2, "update has 2 parameters");
aoqi@0 5705 // no receiver since it is static method
aoqi@0 5706 Node* crc = argument(0); // type: int
aoqi@0 5707 Node* b = argument(1); // type: int
aoqi@0 5708
aoqi@0 5709 /*
aoqi@0 5710 * int c = ~ crc;
aoqi@0 5711 * b = timesXtoThe32[(b ^ c) & 0xFF];
aoqi@0 5712 * b = b ^ (c >>> 8);
aoqi@0 5713 * crc = ~b;
aoqi@0 5714 */
aoqi@0 5715
aoqi@0 5716 Node* M1 = intcon(-1);
aoqi@0 5717 crc = _gvn.transform(new (C) XorINode(crc, M1));
aoqi@0 5718 Node* result = _gvn.transform(new (C) XorINode(crc, b));
aoqi@0 5719 result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
aoqi@0 5720
aoqi@0 5721 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
aoqi@0 5722 Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
aoqi@0 5723 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
aoqi@0 5724 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
aoqi@0 5725
aoqi@0 5726 crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
aoqi@0 5727 result = _gvn.transform(new (C) XorINode(crc, result));
aoqi@0 5728 result = _gvn.transform(new (C) XorINode(result, M1));
aoqi@0 5729 set_result(result);
aoqi@0 5730 return true;
aoqi@0 5731 }
aoqi@0 5732
aoqi@0 5733 /**
aoqi@0 5734 * Calculate CRC32 for byte[] array.
aoqi@0 5735 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
aoqi@0 5736 */
aoqi@0 5737 bool LibraryCallKit::inline_updateBytesCRC32() {
aoqi@0 5738 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
aoqi@0 5739 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
aoqi@0 5740 // no receiver since it is static method
aoqi@0 5741 Node* crc = argument(0); // type: int
aoqi@0 5742 Node* src = argument(1); // type: oop
aoqi@0 5743 Node* offset = argument(2); // type: int
aoqi@0 5744 Node* length = argument(3); // type: int
aoqi@0 5745
aoqi@0 5746 const Type* src_type = src->Value(&_gvn);
aoqi@0 5747 const TypeAryPtr* top_src = src_type->isa_aryptr();
aoqi@0 5748 if (top_src == NULL || top_src->klass() == NULL) {
aoqi@0 5749 // failed array check
aoqi@0 5750 return false;
aoqi@0 5751 }
aoqi@0 5752
aoqi@0 5753 // Figure out the size and type of the elements we will be copying.
aoqi@0 5754 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
aoqi@0 5755 if (src_elem != T_BYTE) {
aoqi@0 5756 return false;
aoqi@0 5757 }
aoqi@0 5758
aoqi@0 5759 // 'src_start' points to src array + scaled offset
aoqi@0 5760 Node* src_start = array_element_address(src, offset, src_elem);
aoqi@0 5761
aoqi@0 5762 // We assume that range check is done by caller.
aoqi@0 5763 // TODO: generate range check (offset+length < src.length) in debug VM.
aoqi@0 5764
aoqi@0 5765 // Call the stub.
aoqi@0 5766 address stubAddr = StubRoutines::updateBytesCRC32();
aoqi@0 5767 const char *stubName = "updateBytesCRC32";
aoqi@0 5768
aoqi@0 5769 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
aoqi@0 5770 stubAddr, stubName, TypePtr::BOTTOM,
aoqi@0 5771 crc, src_start, length);
aoqi@0 5772 Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
aoqi@0 5773 set_result(result);
aoqi@0 5774 return true;
aoqi@0 5775 }
aoqi@0 5776
aoqi@0 5777 /**
aoqi@0 5778 * Calculate CRC32 for ByteBuffer.
aoqi@0 5779 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
aoqi@0 5780 */
aoqi@0 5781 bool LibraryCallKit::inline_updateByteBufferCRC32() {
aoqi@0 5782 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
aoqi@0 5783 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
aoqi@0 5784 // no receiver since it is static method
aoqi@0 5785 Node* crc = argument(0); // type: int
aoqi@0 5786 Node* src = argument(1); // type: long
aoqi@0 5787 Node* offset = argument(3); // type: int
aoqi@0 5788 Node* length = argument(4); // type: int
aoqi@0 5789
aoqi@0 5790 src = ConvL2X(src); // adjust Java long to machine word
aoqi@0 5791 Node* base = _gvn.transform(new (C) CastX2PNode(src));
aoqi@0 5792 offset = ConvI2X(offset);
aoqi@0 5793
aoqi@0 5794 // 'src_start' points to src array + scaled offset
aoqi@0 5795 Node* src_start = basic_plus_adr(top(), base, offset);
aoqi@0 5796
aoqi@0 5797 // Call the stub.
aoqi@0 5798 address stubAddr = StubRoutines::updateBytesCRC32();
aoqi@0 5799 const char *stubName = "updateBytesCRC32";
aoqi@0 5800
aoqi@0 5801 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
aoqi@0 5802 stubAddr, stubName, TypePtr::BOTTOM,
aoqi@0 5803 crc, src_start, length);
aoqi@0 5804 Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
aoqi@0 5805 set_result(result);
aoqi@0 5806 return true;
aoqi@0 5807 }
aoqi@0 5808
aoqi@0 5809 //----------------------------inline_reference_get----------------------------
aoqi@0 5810 // public T java.lang.ref.Reference.get();
aoqi@0 5811 bool LibraryCallKit::inline_reference_get() {
aoqi@0 5812 const int referent_offset = java_lang_ref_Reference::referent_offset;
aoqi@0 5813 guarantee(referent_offset > 0, "should have already been set");
aoqi@0 5814
aoqi@0 5815 // Get the argument:
aoqi@0 5816 Node* reference_obj = null_check_receiver();
aoqi@0 5817 if (stopped()) return true;
aoqi@0 5818
aoqi@0 5819 Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
aoqi@0 5820
aoqi@0 5821 ciInstanceKlass* klass = env()->Object_klass();
aoqi@0 5822 const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
aoqi@0 5823
aoqi@0 5824 Node* no_ctrl = NULL;
aoqi@0 5825 Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
aoqi@0 5826
aoqi@0 5827 // Use the pre-barrier to record the value in the referent field
aoqi@0 5828 pre_barrier(false /* do_load */,
aoqi@0 5829 control(),
aoqi@0 5830 NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
aoqi@0 5831 result /* pre_val */,
aoqi@0 5832 T_OBJECT);
aoqi@0 5833
aoqi@0 5834 // Add memory barrier to prevent commoning reads from this field
aoqi@0 5835 // across safepoint since GC can change its value.
aoqi@0 5836 insert_mem_bar(Op_MemBarCPUOrder);
aoqi@0 5837
aoqi@0 5838 set_result(result);
aoqi@0 5839 return true;
aoqi@0 5840 }
aoqi@0 5841
aoqi@0 5842
aoqi@0 5843 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
aoqi@0 5844 bool is_exact=true, bool is_static=false) {
aoqi@0 5845
aoqi@0 5846 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
aoqi@0 5847 assert(tinst != NULL, "obj is null");
aoqi@0 5848 assert(tinst->klass()->is_loaded(), "obj is not loaded");
aoqi@0 5849 assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
aoqi@0 5850
aoqi@0 5851 ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
aoqi@0 5852 ciSymbol::make(fieldTypeString),
aoqi@0 5853 is_static);
aoqi@0 5854 if (field == NULL) return (Node *) NULL;
aoqi@0 5855 assert (field != NULL, "undefined field");
aoqi@0 5856
aoqi@0 5857 // Next code copied from Parse::do_get_xxx():
aoqi@0 5858
aoqi@0 5859 // Compute address and memory type.
aoqi@0 5860 int offset = field->offset_in_bytes();
aoqi@0 5861 bool is_vol = field->is_volatile();
aoqi@0 5862 ciType* field_klass = field->type();
aoqi@0 5863 assert(field_klass->is_loaded(), "should be loaded");
aoqi@0 5864 const TypePtr* adr_type = C->alias_type(field)->adr_type();
aoqi@0 5865 Node *adr = basic_plus_adr(fromObj, fromObj, offset);
aoqi@0 5866 BasicType bt = field->layout_type();
aoqi@0 5867
aoqi@0 5868 // Build the resultant type of the load
aoqi@0 5869 const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
aoqi@0 5870
aoqi@0 5871 // Build the load.
aoqi@0 5872 Node* loadedField = make_load(NULL, adr, type, bt, adr_type, MemNode::unordered, is_vol);
aoqi@0 5873 return loadedField;
aoqi@0 5874 }
aoqi@0 5875
aoqi@0 5876
aoqi@0 5877 //------------------------------inline_aescrypt_Block-----------------------
aoqi@0 5878 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
aoqi@0 5879 address stubAddr;
aoqi@0 5880 const char *stubName;
aoqi@0 5881 assert(UseAES, "need AES instruction support");
aoqi@0 5882
aoqi@0 5883 switch(id) {
aoqi@0 5884 case vmIntrinsics::_aescrypt_encryptBlock:
aoqi@0 5885 stubAddr = StubRoutines::aescrypt_encryptBlock();
aoqi@0 5886 stubName = "aescrypt_encryptBlock";
aoqi@0 5887 break;
aoqi@0 5888 case vmIntrinsics::_aescrypt_decryptBlock:
aoqi@0 5889 stubAddr = StubRoutines::aescrypt_decryptBlock();
aoqi@0 5890 stubName = "aescrypt_decryptBlock";
aoqi@0 5891 break;
aoqi@0 5892 }
aoqi@0 5893 if (stubAddr == NULL) return false;
aoqi@0 5894
aoqi@0 5895 Node* aescrypt_object = argument(0);
aoqi@0 5896 Node* src = argument(1);
aoqi@0 5897 Node* src_offset = argument(2);
aoqi@0 5898 Node* dest = argument(3);
aoqi@0 5899 Node* dest_offset = argument(4);
aoqi@0 5900
aoqi@0 5901 // (1) src and dest are arrays.
aoqi@0 5902 const Type* src_type = src->Value(&_gvn);
aoqi@0 5903 const Type* dest_type = dest->Value(&_gvn);
aoqi@0 5904 const TypeAryPtr* top_src = src_type->isa_aryptr();
aoqi@0 5905 const TypeAryPtr* top_dest = dest_type->isa_aryptr();
aoqi@0 5906 assert (top_src != NULL && top_src->klass() != NULL && top_dest != NULL && top_dest->klass() != NULL, "args are strange");
aoqi@0 5907
aoqi@0 5908 // for the quick and dirty code we will skip all the checks.
aoqi@0 5909 // we are just trying to get the call to be generated.
aoqi@0 5910 Node* src_start = src;
aoqi@0 5911 Node* dest_start = dest;
aoqi@0 5912 if (src_offset != NULL || dest_offset != NULL) {
aoqi@0 5913 assert(src_offset != NULL && dest_offset != NULL, "");
aoqi@0 5914 src_start = array_element_address(src, src_offset, T_BYTE);
aoqi@0 5915 dest_start = array_element_address(dest, dest_offset, T_BYTE);
aoqi@0 5916 }
aoqi@0 5917
aoqi@0 5918 // now need to get the start of its expanded key array
aoqi@0 5919 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
aoqi@0 5920 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
aoqi@0 5921 if (k_start == NULL) return false;
aoqi@0 5922
aoqi@0 5923 if (Matcher::pass_original_key_for_aes()) {
aoqi@0 5924 // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
aoqi@0 5925 // compatibility issues between Java key expansion and SPARC crypto instructions
aoqi@0 5926 Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
aoqi@0 5927 if (original_k_start == NULL) return false;
aoqi@0 5928
aoqi@0 5929 // Call the stub.
aoqi@0 5930 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
aoqi@0 5931 stubAddr, stubName, TypePtr::BOTTOM,
aoqi@0 5932 src_start, dest_start, k_start, original_k_start);
aoqi@0 5933 } else {
aoqi@0 5934 // Call the stub.
aoqi@0 5935 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
aoqi@0 5936 stubAddr, stubName, TypePtr::BOTTOM,
aoqi@0 5937 src_start, dest_start, k_start);
aoqi@0 5938 }
aoqi@0 5939
aoqi@0 5940 return true;
aoqi@0 5941 }
aoqi@0 5942
aoqi@0 5943 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
aoqi@0 5944 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
aoqi@0 5945 address stubAddr;
aoqi@0 5946 const char *stubName;
aoqi@0 5947
aoqi@0 5948 assert(UseAES, "need AES instruction support");
aoqi@0 5949
aoqi@0 5950 switch(id) {
aoqi@0 5951 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
aoqi@0 5952 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
aoqi@0 5953 stubName = "cipherBlockChaining_encryptAESCrypt";
aoqi@0 5954 break;
aoqi@0 5955 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
aoqi@0 5956 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
aoqi@0 5957 stubName = "cipherBlockChaining_decryptAESCrypt";
aoqi@0 5958 break;
aoqi@0 5959 }
aoqi@0 5960 if (stubAddr == NULL) return false;
aoqi@0 5961
aoqi@0 5962 Node* cipherBlockChaining_object = argument(0);
aoqi@0 5963 Node* src = argument(1);
aoqi@0 5964 Node* src_offset = argument(2);
aoqi@0 5965 Node* len = argument(3);
aoqi@0 5966 Node* dest = argument(4);
aoqi@0 5967 Node* dest_offset = argument(5);
aoqi@0 5968
aoqi@0 5969 // (1) src and dest are arrays.
aoqi@0 5970 const Type* src_type = src->Value(&_gvn);
aoqi@0 5971 const Type* dest_type = dest->Value(&_gvn);
aoqi@0 5972 const TypeAryPtr* top_src = src_type->isa_aryptr();
aoqi@0 5973 const TypeAryPtr* top_dest = dest_type->isa_aryptr();
aoqi@0 5974 assert (top_src != NULL && top_src->klass() != NULL
aoqi@0 5975 && top_dest != NULL && top_dest->klass() != NULL, "args are strange");
aoqi@0 5976
aoqi@0 5977 // checks are the responsibility of the caller
aoqi@0 5978 Node* src_start = src;
aoqi@0 5979 Node* dest_start = dest;
aoqi@0 5980 if (src_offset != NULL || dest_offset != NULL) {
aoqi@0 5981 assert(src_offset != NULL && dest_offset != NULL, "");
aoqi@0 5982 src_start = array_element_address(src, src_offset, T_BYTE);
aoqi@0 5983 dest_start = array_element_address(dest, dest_offset, T_BYTE);
aoqi@0 5984 }
aoqi@0 5985
aoqi@0 5986 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
aoqi@0 5987 // (because of the predicated logic executed earlier).
aoqi@0 5988 // so we cast it here safely.
aoqi@0 5989 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
aoqi@0 5990
aoqi@0 5991 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
aoqi@0 5992 if (embeddedCipherObj == NULL) return false;
aoqi@0 5993
aoqi@0 5994 // cast it to what we know it will be at runtime
aoqi@0 5995 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
aoqi@0 5996 assert(tinst != NULL, "CBC obj is null");
aoqi@0 5997 assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
aoqi@0 5998 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
aoqi@0 5999 if (!klass_AESCrypt->is_loaded()) return false;
aoqi@0 6000
aoqi@0 6001 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
aoqi@0 6002 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
aoqi@0 6003 const TypeOopPtr* xtype = aklass->as_instance_type();
aoqi@0 6004 Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
aoqi@0 6005 aescrypt_object = _gvn.transform(aescrypt_object);
aoqi@0 6006
aoqi@0 6007 // we need to get the start of the aescrypt_object's expanded key array
aoqi@0 6008 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
aoqi@0 6009 if (k_start == NULL) return false;
aoqi@0 6010
aoqi@0 6011 // similarly, get the start address of the r vector
aoqi@0 6012 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
aoqi@0 6013 if (objRvec == NULL) return false;
aoqi@0 6014 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
aoqi@0 6015
aoqi@0 6016 Node* cbcCrypt;
aoqi@0 6017 if (Matcher::pass_original_key_for_aes()) {
aoqi@0 6018 // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
aoqi@0 6019 // compatibility issues between Java key expansion and SPARC crypto instructions
aoqi@0 6020 Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
aoqi@0 6021 if (original_k_start == NULL) return false;
aoqi@0 6022
aoqi@0 6023 // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
aoqi@0 6024 cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
aoqi@0 6025 OptoRuntime::cipherBlockChaining_aescrypt_Type(),
aoqi@0 6026 stubAddr, stubName, TypePtr::BOTTOM,
aoqi@0 6027 src_start, dest_start, k_start, r_start, len, original_k_start);
aoqi@0 6028 } else {
aoqi@0 6029 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
aoqi@0 6030 cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
aoqi@0 6031 OptoRuntime::cipherBlockChaining_aescrypt_Type(),
aoqi@0 6032 stubAddr, stubName, TypePtr::BOTTOM,
aoqi@0 6033 src_start, dest_start, k_start, r_start, len);
aoqi@0 6034 }
aoqi@0 6035
aoqi@0 6036 // return cipher length (int)
aoqi@0 6037 Node* retvalue = _gvn.transform(new (C) ProjNode(cbcCrypt, TypeFunc::Parms));
aoqi@0 6038 set_result(retvalue);
aoqi@0 6039 return true;
aoqi@0 6040 }
aoqi@0 6041
aoqi@0 6042 //------------------------------get_key_start_from_aescrypt_object-----------------------
aoqi@0 6043 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
aoqi@0 6044 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
aoqi@0 6045 assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
aoqi@0 6046 if (objAESCryptKey == NULL) return (Node *) NULL;
aoqi@0 6047
aoqi@0 6048 // now have the array, need to get the start address of the K array
aoqi@0 6049 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
aoqi@0 6050 return k_start;
aoqi@0 6051 }
aoqi@0 6052
aoqi@0 6053 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
aoqi@0 6054 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
aoqi@0 6055 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
aoqi@0 6056 assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
aoqi@0 6057 if (objAESCryptKey == NULL) return (Node *) NULL;
aoqi@0 6058
aoqi@0 6059 // now have the array, need to get the start address of the lastKey array
aoqi@0 6060 Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
aoqi@0 6061 return original_k_start;
aoqi@0 6062 }
aoqi@0 6063
aoqi@0 6064 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
aoqi@0 6065 // Return node representing slow path of predicate check.
aoqi@0 6066 // the pseudo code we want to emulate with this predicate is:
aoqi@0 6067 // for encryption:
aoqi@0 6068 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
aoqi@0 6069 // for decryption:
aoqi@0 6070 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
aoqi@0 6071 // note cipher==plain is more conservative than the original java code but that's OK
aoqi@0 6072 //
aoqi@0 6073 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
aoqi@0 6074 // First, check receiver for NULL since it is virtual method.
aoqi@0 6075 Node* objCBC = argument(0);
aoqi@0 6076 objCBC = null_check(objCBC);
aoqi@0 6077
aoqi@0 6078 if (stopped()) return NULL; // Always NULL
aoqi@0 6079
aoqi@0 6080 // Load embeddedCipher field of CipherBlockChaining object.
aoqi@0 6081 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
aoqi@0 6082
aoqi@0 6083 // get AESCrypt klass for instanceOf check
aoqi@0 6084 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
aoqi@0 6085 // will have same classloader as CipherBlockChaining object
aoqi@0 6086 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
aoqi@0 6087 assert(tinst != NULL, "CBCobj is null");
aoqi@0 6088 assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
aoqi@0 6089
aoqi@0 6090 // we want to do an instanceof comparison against the AESCrypt class
aoqi@0 6091 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
aoqi@0 6092 if (!klass_AESCrypt->is_loaded()) {
aoqi@0 6093 // if AESCrypt is not even loaded, we never take the intrinsic fast path
aoqi@0 6094 Node* ctrl = control();
aoqi@0 6095 set_control(top()); // no regular fast path
aoqi@0 6096 return ctrl;
aoqi@0 6097 }
aoqi@0 6098 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
aoqi@0 6099
aoqi@0 6100 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
aoqi@0 6101 Node* cmp_instof = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
aoqi@0 6102 Node* bool_instof = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
aoqi@0 6103
aoqi@0 6104 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
aoqi@0 6105
aoqi@0 6106 // for encryption, we are done
aoqi@0 6107 if (!decrypting)
aoqi@0 6108 return instof_false; // even if it is NULL
aoqi@0 6109
aoqi@0 6110 // for decryption, we need to add a further check to avoid
aoqi@0 6111 // taking the intrinsic path when cipher and plain are the same
aoqi@0 6112 // see the original java code for why.
aoqi@0 6113 RegionNode* region = new(C) RegionNode(3);
aoqi@0 6114 region->init_req(1, instof_false);
aoqi@0 6115 Node* src = argument(1);
aoqi@0 6116 Node* dest = argument(4);
aoqi@0 6117 Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
aoqi@0 6118 Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
aoqi@0 6119 Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
aoqi@0 6120 region->init_req(2, src_dest_conjoint);
aoqi@0 6121
aoqi@0 6122 record_for_igvn(region);
aoqi@0 6123 return _gvn.transform(region);
aoqi@0 6124 }

mercurial