src/share/vm/opto/library_call.cpp

changeset 0
f90c822e73f8
child 6876
710a3c8b516e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/share/vm/opto/library_call.cpp	Wed Apr 27 01:25:04 2016 +0800
     1.3 @@ -0,0 +1,6124 @@
     1.4 +/*
     1.5 + * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.
    1.11 + *
    1.12 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.13 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.14 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.15 + * version 2 for more details (a copy is included in the LICENSE file that
    1.16 + * accompanied this code).
    1.17 + *
    1.18 + * You should have received a copy of the GNU General Public License version
    1.19 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.20 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.21 + *
    1.22 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.23 + * or visit www.oracle.com if you need additional information or have any
    1.24 + * questions.
    1.25 + *
    1.26 + */
    1.27 +
    1.28 +#include "precompiled.hpp"
    1.29 +#include "classfile/systemDictionary.hpp"
    1.30 +#include "classfile/vmSymbols.hpp"
    1.31 +#include "compiler/compileBroker.hpp"
    1.32 +#include "compiler/compileLog.hpp"
    1.33 +#include "oops/objArrayKlass.hpp"
    1.34 +#include "opto/addnode.hpp"
    1.35 +#include "opto/callGenerator.hpp"
    1.36 +#include "opto/cfgnode.hpp"
    1.37 +#include "opto/idealKit.hpp"
    1.38 +#include "opto/mathexactnode.hpp"
    1.39 +#include "opto/mulnode.hpp"
    1.40 +#include "opto/parse.hpp"
    1.41 +#include "opto/runtime.hpp"
    1.42 +#include "opto/subnode.hpp"
    1.43 +#include "prims/nativeLookup.hpp"
    1.44 +#include "runtime/sharedRuntime.hpp"
    1.45 +#include "trace/traceMacros.hpp"
    1.46 +
    1.47 +class LibraryIntrinsic : public InlineCallGenerator {
    1.48 +  // Extend the set of intrinsics known to the runtime:
    1.49 + public:
    1.50 + private:
    1.51 +  bool             _is_virtual;
    1.52 +  bool             _is_predicted;
    1.53 +  bool             _does_virtual_dispatch;
    1.54 +  vmIntrinsics::ID _intrinsic_id;
    1.55 +
    1.56 + public:
    1.57 +  LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, bool does_virtual_dispatch, vmIntrinsics::ID id)
    1.58 +    : InlineCallGenerator(m),
    1.59 +      _is_virtual(is_virtual),
    1.60 +      _is_predicted(is_predicted),
    1.61 +      _does_virtual_dispatch(does_virtual_dispatch),
    1.62 +      _intrinsic_id(id)
    1.63 +  {
    1.64 +  }
    1.65 +  virtual bool is_intrinsic() const { return true; }
    1.66 +  virtual bool is_virtual()   const { return _is_virtual; }
    1.67 +  virtual bool is_predicted()   const { return _is_predicted; }
    1.68 +  virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
    1.69 +  virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);
    1.70 +  virtual Node* generate_predicate(JVMState* jvms);
    1.71 +  vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    1.72 +};
    1.73 +
    1.74 +
    1.75 +// Local helper class for LibraryIntrinsic:
    1.76 +class LibraryCallKit : public GraphKit {
    1.77 + private:
    1.78 +  LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
    1.79 +  Node*             _result;        // the result node, if any
    1.80 +  int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
    1.81 +
    1.82 +  const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
    1.83 +
    1.84 + public:
    1.85 +  LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
    1.86 +    : GraphKit(jvms),
    1.87 +      _intrinsic(intrinsic),
    1.88 +      _result(NULL)
    1.89 +  {
    1.90 +    // Check if this is a root compile.  In that case we don't have a caller.
    1.91 +    if (!jvms->has_method()) {
    1.92 +      _reexecute_sp = sp();
    1.93 +    } else {
    1.94 +      // Find out how many arguments the interpreter needs when deoptimizing
    1.95 +      // and save the stack pointer value so it can used by uncommon_trap.
    1.96 +      // We find the argument count by looking at the declared signature.
    1.97 +      bool ignored_will_link;
    1.98 +      ciSignature* declared_signature = NULL;
    1.99 +      ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
   1.100 +      const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
   1.101 +      _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
   1.102 +    }
   1.103 +  }
   1.104 +
   1.105 +  virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
   1.106 +
   1.107 +  ciMethod*         caller()    const    { return jvms()->method(); }
   1.108 +  int               bci()       const    { return jvms()->bci(); }
   1.109 +  LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
   1.110 +  vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
   1.111 +  ciMethod*         callee()    const    { return _intrinsic->method(); }
   1.112 +
   1.113 +  bool try_to_inline();
   1.114 +  Node* try_to_predicate();
   1.115 +
   1.116 +  void push_result() {
   1.117 +    // Push the result onto the stack.
   1.118 +    if (!stopped() && result() != NULL) {
   1.119 +      BasicType bt = result()->bottom_type()->basic_type();
   1.120 +      push_node(bt, result());
   1.121 +    }
   1.122 +  }
   1.123 +
   1.124 + private:
   1.125 +  void fatal_unexpected_iid(vmIntrinsics::ID iid) {
   1.126 +    fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
   1.127 +  }
   1.128 +
   1.129 +  void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
   1.130 +  void  set_result(RegionNode* region, PhiNode* value);
   1.131 +  Node*     result() { return _result; }
   1.132 +
   1.133 +  virtual int reexecute_sp() { return _reexecute_sp; }
   1.134 +
   1.135 +  // Helper functions to inline natives
   1.136 +  Node* generate_guard(Node* test, RegionNode* region, float true_prob);
   1.137 +  Node* generate_slow_guard(Node* test, RegionNode* region);
   1.138 +  Node* generate_fair_guard(Node* test, RegionNode* region);
   1.139 +  Node* generate_negative_guard(Node* index, RegionNode* region,
   1.140 +                                // resulting CastII of index:
   1.141 +                                Node* *pos_index = NULL);
   1.142 +  Node* generate_nonpositive_guard(Node* index, bool never_negative,
   1.143 +                                   // resulting CastII of index:
   1.144 +                                   Node* *pos_index = NULL);
   1.145 +  Node* generate_limit_guard(Node* offset, Node* subseq_length,
   1.146 +                             Node* array_length,
   1.147 +                             RegionNode* region);
   1.148 +  Node* generate_current_thread(Node* &tls_output);
   1.149 +  address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
   1.150 +                              bool disjoint_bases, const char* &name, bool dest_uninitialized);
   1.151 +  Node* load_mirror_from_klass(Node* klass);
   1.152 +  Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
   1.153 +                                      RegionNode* region, int null_path,
   1.154 +                                      int offset);
   1.155 +  Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
   1.156 +                               RegionNode* region, int null_path) {
   1.157 +    int offset = java_lang_Class::klass_offset_in_bytes();
   1.158 +    return load_klass_from_mirror_common(mirror, never_see_null,
   1.159 +                                         region, null_path,
   1.160 +                                         offset);
   1.161 +  }
   1.162 +  Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   1.163 +                                     RegionNode* region, int null_path) {
   1.164 +    int offset = java_lang_Class::array_klass_offset_in_bytes();
   1.165 +    return load_klass_from_mirror_common(mirror, never_see_null,
   1.166 +                                         region, null_path,
   1.167 +                                         offset);
   1.168 +  }
   1.169 +  Node* generate_access_flags_guard(Node* kls,
   1.170 +                                    int modifier_mask, int modifier_bits,
   1.171 +                                    RegionNode* region);
   1.172 +  Node* generate_interface_guard(Node* kls, RegionNode* region);
   1.173 +  Node* generate_array_guard(Node* kls, RegionNode* region) {
   1.174 +    return generate_array_guard_common(kls, region, false, false);
   1.175 +  }
   1.176 +  Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   1.177 +    return generate_array_guard_common(kls, region, false, true);
   1.178 +  }
   1.179 +  Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   1.180 +    return generate_array_guard_common(kls, region, true, false);
   1.181 +  }
   1.182 +  Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   1.183 +    return generate_array_guard_common(kls, region, true, true);
   1.184 +  }
   1.185 +  Node* generate_array_guard_common(Node* kls, RegionNode* region,
   1.186 +                                    bool obj_array, bool not_array);
   1.187 +  Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   1.188 +  CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   1.189 +                                     bool is_virtual = false, bool is_static = false);
   1.190 +  CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   1.191 +    return generate_method_call(method_id, false, true);
   1.192 +  }
   1.193 +  CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   1.194 +    return generate_method_call(method_id, true, false);
   1.195 +  }
   1.196 +  Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
   1.197 +
   1.198 +  Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
   1.199 +  Node* make_string_method_node(int opcode, Node* str1, Node* str2);
   1.200 +  bool inline_string_compareTo();
   1.201 +  bool inline_string_indexOf();
   1.202 +  Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   1.203 +  bool inline_string_equals();
   1.204 +  Node* round_double_node(Node* n);
   1.205 +  bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   1.206 +  bool inline_math_native(vmIntrinsics::ID id);
   1.207 +  bool inline_trig(vmIntrinsics::ID id);
   1.208 +  bool inline_math(vmIntrinsics::ID id);
   1.209 +  template <typename OverflowOp>
   1.210 +  bool inline_math_overflow(Node* arg1, Node* arg2);
   1.211 +  void inline_math_mathExact(Node* math, Node* test);
   1.212 +  bool inline_math_addExactI(bool is_increment);
   1.213 +  bool inline_math_addExactL(bool is_increment);
   1.214 +  bool inline_math_multiplyExactI();
   1.215 +  bool inline_math_multiplyExactL();
   1.216 +  bool inline_math_negateExactI();
   1.217 +  bool inline_math_negateExactL();
   1.218 +  bool inline_math_subtractExactI(bool is_decrement);
   1.219 +  bool inline_math_subtractExactL(bool is_decrement);
   1.220 +  bool inline_exp();
   1.221 +  bool inline_pow();
   1.222 +  Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
   1.223 +  bool inline_min_max(vmIntrinsics::ID id);
   1.224 +  Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   1.225 +  // This returns Type::AnyPtr, RawPtr, or OopPtr.
   1.226 +  int classify_unsafe_addr(Node* &base, Node* &offset);
   1.227 +  Node* make_unsafe_address(Node* base, Node* offset);
   1.228 +  // Helper for inline_unsafe_access.
   1.229 +  // Generates the guards that check whether the result of
   1.230 +  // Unsafe.getObject should be recorded in an SATB log buffer.
   1.231 +  void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
   1.232 +  bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   1.233 +  bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   1.234 +  static bool klass_needs_init_guard(Node* kls);
   1.235 +  bool inline_unsafe_allocate();
   1.236 +  bool inline_unsafe_copyMemory();
   1.237 +  bool inline_native_currentThread();
   1.238 +#ifdef TRACE_HAVE_INTRINSICS
   1.239 +  bool inline_native_classID();
   1.240 +  bool inline_native_threadID();
   1.241 +#endif
   1.242 +  bool inline_native_time_funcs(address method, const char* funcName);
   1.243 +  bool inline_native_isInterrupted();
   1.244 +  bool inline_native_Class_query(vmIntrinsics::ID id);
   1.245 +  bool inline_native_subtype_check();
   1.246 +
   1.247 +  bool inline_native_newArray();
   1.248 +  bool inline_native_getLength();
   1.249 +  bool inline_array_copyOf(bool is_copyOfRange);
   1.250 +  bool inline_array_equals();
   1.251 +  void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
   1.252 +  bool inline_native_clone(bool is_virtual);
   1.253 +  bool inline_native_Reflection_getCallerClass();
   1.254 +  // Helper function for inlining native object hash method
   1.255 +  bool inline_native_hashcode(bool is_virtual, bool is_static);
   1.256 +  bool inline_native_getClass();
   1.257 +
   1.258 +  // Helper functions for inlining arraycopy
   1.259 +  bool inline_arraycopy();
   1.260 +  void generate_arraycopy(const TypePtr* adr_type,
   1.261 +                          BasicType basic_elem_type,
   1.262 +                          Node* src,  Node* src_offset,
   1.263 +                          Node* dest, Node* dest_offset,
   1.264 +                          Node* copy_length,
   1.265 +                          bool disjoint_bases = false,
   1.266 +                          bool length_never_negative = false,
   1.267 +                          RegionNode* slow_region = NULL);
   1.268 +  AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   1.269 +                                                RegionNode* slow_region);
   1.270 +  void generate_clear_array(const TypePtr* adr_type,
   1.271 +                            Node* dest,
   1.272 +                            BasicType basic_elem_type,
   1.273 +                            Node* slice_off,
   1.274 +                            Node* slice_len,
   1.275 +                            Node* slice_end);
   1.276 +  bool generate_block_arraycopy(const TypePtr* adr_type,
   1.277 +                                BasicType basic_elem_type,
   1.278 +                                AllocateNode* alloc,
   1.279 +                                Node* src,  Node* src_offset,
   1.280 +                                Node* dest, Node* dest_offset,
   1.281 +                                Node* dest_size, bool dest_uninitialized);
   1.282 +  void generate_slow_arraycopy(const TypePtr* adr_type,
   1.283 +                               Node* src,  Node* src_offset,
   1.284 +                               Node* dest, Node* dest_offset,
   1.285 +                               Node* copy_length, bool dest_uninitialized);
   1.286 +  Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   1.287 +                                     Node* dest_elem_klass,
   1.288 +                                     Node* src,  Node* src_offset,
   1.289 +                                     Node* dest, Node* dest_offset,
   1.290 +                                     Node* copy_length, bool dest_uninitialized);
   1.291 +  Node* generate_generic_arraycopy(const TypePtr* adr_type,
   1.292 +                                   Node* src,  Node* src_offset,
   1.293 +                                   Node* dest, Node* dest_offset,
   1.294 +                                   Node* copy_length, bool dest_uninitialized);
   1.295 +  void generate_unchecked_arraycopy(const TypePtr* adr_type,
   1.296 +                                    BasicType basic_elem_type,
   1.297 +                                    bool disjoint_bases,
   1.298 +                                    Node* src,  Node* src_offset,
   1.299 +                                    Node* dest, Node* dest_offset,
   1.300 +                                    Node* copy_length, bool dest_uninitialized);
   1.301 +  typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
   1.302 +  bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
   1.303 +  bool inline_unsafe_ordered_store(BasicType type);
   1.304 +  bool inline_unsafe_fence(vmIntrinsics::ID id);
   1.305 +  bool inline_fp_conversions(vmIntrinsics::ID id);
   1.306 +  bool inline_number_methods(vmIntrinsics::ID id);
   1.307 +  bool inline_reference_get();
   1.308 +  bool inline_aescrypt_Block(vmIntrinsics::ID id);
   1.309 +  bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
   1.310 +  Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
   1.311 +  Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
   1.312 +  Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
   1.313 +  bool inline_encodeISOArray();
   1.314 +  bool inline_updateCRC32();
   1.315 +  bool inline_updateBytesCRC32();
   1.316 +  bool inline_updateByteBufferCRC32();
   1.317 +};
   1.318 +
   1.319 +
   1.320 +//---------------------------make_vm_intrinsic----------------------------
   1.321 +CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   1.322 +  vmIntrinsics::ID id = m->intrinsic_id();
   1.323 +  assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   1.324 +
   1.325 +  if (DisableIntrinsic[0] != '\0'
   1.326 +      && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
   1.327 +    // disabled by a user request on the command line:
   1.328 +    // example: -XX:DisableIntrinsic=_hashCode,_getClass
   1.329 +    return NULL;
   1.330 +  }
   1.331 +
   1.332 +  if (!m->is_loaded()) {
   1.333 +    // do not attempt to inline unloaded methods
   1.334 +    return NULL;
   1.335 +  }
   1.336 +
   1.337 +  // Only a few intrinsics implement a virtual dispatch.
   1.338 +  // They are expensive calls which are also frequently overridden.
   1.339 +  if (is_virtual) {
   1.340 +    switch (id) {
   1.341 +    case vmIntrinsics::_hashCode:
   1.342 +    case vmIntrinsics::_clone:
   1.343 +      // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   1.344 +      break;
   1.345 +    default:
   1.346 +      return NULL;
   1.347 +    }
   1.348 +  }
   1.349 +
   1.350 +  // -XX:-InlineNatives disables nearly all intrinsics:
   1.351 +  if (!InlineNatives) {
   1.352 +    switch (id) {
   1.353 +    case vmIntrinsics::_indexOf:
   1.354 +    case vmIntrinsics::_compareTo:
   1.355 +    case vmIntrinsics::_equals:
   1.356 +    case vmIntrinsics::_equalsC:
   1.357 +    case vmIntrinsics::_getAndAddInt:
   1.358 +    case vmIntrinsics::_getAndAddLong:
   1.359 +    case vmIntrinsics::_getAndSetInt:
   1.360 +    case vmIntrinsics::_getAndSetLong:
   1.361 +    case vmIntrinsics::_getAndSetObject:
   1.362 +    case vmIntrinsics::_loadFence:
   1.363 +    case vmIntrinsics::_storeFence:
   1.364 +    case vmIntrinsics::_fullFence:
   1.365 +      break;  // InlineNatives does not control String.compareTo
   1.366 +    case vmIntrinsics::_Reference_get:
   1.367 +      break;  // InlineNatives does not control Reference.get
   1.368 +    default:
   1.369 +      return NULL;
   1.370 +    }
   1.371 +  }
   1.372 +
   1.373 +  bool is_predicted = false;
   1.374 +  bool does_virtual_dispatch = false;
   1.375 +
   1.376 +  switch (id) {
   1.377 +  case vmIntrinsics::_compareTo:
   1.378 +    if (!SpecialStringCompareTo)  return NULL;
   1.379 +    if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
   1.380 +    break;
   1.381 +  case vmIntrinsics::_indexOf:
   1.382 +    if (!SpecialStringIndexOf)  return NULL;
   1.383 +    break;
   1.384 +  case vmIntrinsics::_equals:
   1.385 +    if (!SpecialStringEquals)  return NULL;
   1.386 +    if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
   1.387 +    break;
   1.388 +  case vmIntrinsics::_equalsC:
   1.389 +    if (!SpecialArraysEquals)  return NULL;
   1.390 +    if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
   1.391 +    break;
   1.392 +  case vmIntrinsics::_arraycopy:
   1.393 +    if (!InlineArrayCopy)  return NULL;
   1.394 +    break;
   1.395 +  case vmIntrinsics::_copyMemory:
   1.396 +    if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   1.397 +    if (!InlineArrayCopy)  return NULL;
   1.398 +    break;
   1.399 +  case vmIntrinsics::_hashCode:
   1.400 +    if (!InlineObjectHash)  return NULL;
   1.401 +    does_virtual_dispatch = true;
   1.402 +    break;
   1.403 +  case vmIntrinsics::_clone:
   1.404 +    does_virtual_dispatch = true;
   1.405 +  case vmIntrinsics::_copyOf:
   1.406 +  case vmIntrinsics::_copyOfRange:
   1.407 +    if (!InlineObjectCopy)  return NULL;
   1.408 +    // These also use the arraycopy intrinsic mechanism:
   1.409 +    if (!InlineArrayCopy)  return NULL;
   1.410 +    break;
   1.411 +  case vmIntrinsics::_encodeISOArray:
   1.412 +    if (!SpecialEncodeISOArray)  return NULL;
   1.413 +    if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
   1.414 +    break;
   1.415 +  case vmIntrinsics::_checkIndex:
   1.416 +    // We do not intrinsify this.  The optimizer does fine with it.
   1.417 +    return NULL;
   1.418 +
   1.419 +  case vmIntrinsics::_getCallerClass:
   1.420 +    if (!UseNewReflection)  return NULL;
   1.421 +    if (!InlineReflectionGetCallerClass)  return NULL;
   1.422 +    if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
   1.423 +    break;
   1.424 +
   1.425 +  case vmIntrinsics::_bitCount_i:
   1.426 +    if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
   1.427 +    break;
   1.428 +
   1.429 +  case vmIntrinsics::_bitCount_l:
   1.430 +    if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
   1.431 +    break;
   1.432 +
   1.433 +  case vmIntrinsics::_numberOfLeadingZeros_i:
   1.434 +    if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
   1.435 +    break;
   1.436 +
   1.437 +  case vmIntrinsics::_numberOfLeadingZeros_l:
   1.438 +    if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
   1.439 +    break;
   1.440 +
   1.441 +  case vmIntrinsics::_numberOfTrailingZeros_i:
   1.442 +    if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
   1.443 +    break;
   1.444 +
   1.445 +  case vmIntrinsics::_numberOfTrailingZeros_l:
   1.446 +    if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
   1.447 +    break;
   1.448 +
   1.449 +  case vmIntrinsics::_reverseBytes_c:
   1.450 +    if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
   1.451 +    break;
   1.452 +  case vmIntrinsics::_reverseBytes_s:
   1.453 +    if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
   1.454 +    break;
   1.455 +  case vmIntrinsics::_reverseBytes_i:
   1.456 +    if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
   1.457 +    break;
   1.458 +  case vmIntrinsics::_reverseBytes_l:
   1.459 +    if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
   1.460 +    break;
   1.461 +
   1.462 +  case vmIntrinsics::_Reference_get:
   1.463 +    // Use the intrinsic version of Reference.get() so that the value in
   1.464 +    // the referent field can be registered by the G1 pre-barrier code.
   1.465 +    // Also add memory barrier to prevent commoning reads from this field
   1.466 +    // across safepoint since GC can change it value.
   1.467 +    break;
   1.468 +
   1.469 +  case vmIntrinsics::_compareAndSwapObject:
   1.470 +#ifdef _LP64
   1.471 +    if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
   1.472 +#endif
   1.473 +    break;
   1.474 +
   1.475 +  case vmIntrinsics::_compareAndSwapLong:
   1.476 +    if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
   1.477 +    break;
   1.478 +
   1.479 +  case vmIntrinsics::_getAndAddInt:
   1.480 +    if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
   1.481 +    break;
   1.482 +
   1.483 +  case vmIntrinsics::_getAndAddLong:
   1.484 +    if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
   1.485 +    break;
   1.486 +
   1.487 +  case vmIntrinsics::_getAndSetInt:
   1.488 +    if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
   1.489 +    break;
   1.490 +
   1.491 +  case vmIntrinsics::_getAndSetLong:
   1.492 +    if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
   1.493 +    break;
   1.494 +
   1.495 +  case vmIntrinsics::_getAndSetObject:
   1.496 +#ifdef _LP64
   1.497 +    if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   1.498 +    if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
   1.499 +    break;
   1.500 +#else
   1.501 +    if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   1.502 +    break;
   1.503 +#endif
   1.504 +
   1.505 +  case vmIntrinsics::_aescrypt_encryptBlock:
   1.506 +  case vmIntrinsics::_aescrypt_decryptBlock:
   1.507 +    if (!UseAESIntrinsics) return NULL;
   1.508 +    break;
   1.509 +
   1.510 +  case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   1.511 +  case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   1.512 +    if (!UseAESIntrinsics) return NULL;
   1.513 +    // these two require the predicated logic
   1.514 +    is_predicted = true;
   1.515 +    break;
   1.516 +
   1.517 +  case vmIntrinsics::_updateCRC32:
   1.518 +  case vmIntrinsics::_updateBytesCRC32:
   1.519 +  case vmIntrinsics::_updateByteBufferCRC32:
   1.520 +    if (!UseCRC32Intrinsics) return NULL;
   1.521 +    break;
   1.522 +
   1.523 +  case vmIntrinsics::_incrementExactI:
   1.524 +  case vmIntrinsics::_addExactI:
   1.525 +    if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
   1.526 +    break;
   1.527 +  case vmIntrinsics::_incrementExactL:
   1.528 +  case vmIntrinsics::_addExactL:
   1.529 +    if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
   1.530 +    break;
   1.531 +  case vmIntrinsics::_decrementExactI:
   1.532 +  case vmIntrinsics::_subtractExactI:
   1.533 +    if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
   1.534 +    break;
   1.535 +  case vmIntrinsics::_decrementExactL:
   1.536 +  case vmIntrinsics::_subtractExactL:
   1.537 +    if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
   1.538 +    break;
   1.539 +  case vmIntrinsics::_negateExactI:
   1.540 +    if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
   1.541 +    break;
   1.542 +  case vmIntrinsics::_negateExactL:
   1.543 +    if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
   1.544 +    break;
   1.545 +  case vmIntrinsics::_multiplyExactI:
   1.546 +    if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
   1.547 +    break;
   1.548 +  case vmIntrinsics::_multiplyExactL:
   1.549 +    if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
   1.550 +    break;
   1.551 +
   1.552 + default:
   1.553 +    assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
   1.554 +    assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
   1.555 +    break;
   1.556 +  }
   1.557 +
   1.558 +  // -XX:-InlineClassNatives disables natives from the Class class.
   1.559 +  // The flag applies to all reflective calls, notably Array.newArray
   1.560 +  // (visible to Java programmers as Array.newInstance).
   1.561 +  if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   1.562 +      m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   1.563 +    if (!InlineClassNatives)  return NULL;
   1.564 +  }
   1.565 +
   1.566 +  // -XX:-InlineThreadNatives disables natives from the Thread class.
   1.567 +  if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   1.568 +    if (!InlineThreadNatives)  return NULL;
   1.569 +  }
   1.570 +
   1.571 +  // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   1.572 +  if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   1.573 +      m->holder()->name() == ciSymbol::java_lang_Float() ||
   1.574 +      m->holder()->name() == ciSymbol::java_lang_Double()) {
   1.575 +    if (!InlineMathNatives)  return NULL;
   1.576 +  }
   1.577 +
   1.578 +  // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   1.579 +  if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   1.580 +    if (!InlineUnsafeOps)  return NULL;
   1.581 +  }
   1.582 +
   1.583 +  return new LibraryIntrinsic(m, is_virtual, is_predicted, does_virtual_dispatch, (vmIntrinsics::ID) id);
   1.584 +}
   1.585 +
   1.586 +//----------------------register_library_intrinsics-----------------------
   1.587 +// Initialize this file's data structures, for each Compile instance.
   1.588 +void Compile::register_library_intrinsics() {
   1.589 +  // Nothing to do here.
   1.590 +}
   1.591 +
   1.592 +JVMState* LibraryIntrinsic::generate(JVMState* jvms, Parse* parent_parser) {
   1.593 +  LibraryCallKit kit(jvms, this);
   1.594 +  Compile* C = kit.C;
   1.595 +  int nodes = C->unique();
   1.596 +#ifndef PRODUCT
   1.597 +  if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
   1.598 +    char buf[1000];
   1.599 +    const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   1.600 +    tty->print_cr("Intrinsic %s", str);
   1.601 +  }
   1.602 +#endif
   1.603 +  ciMethod* callee = kit.callee();
   1.604 +  const int bci    = kit.bci();
   1.605 +
   1.606 +  // Try to inline the intrinsic.
   1.607 +  if (kit.try_to_inline()) {
   1.608 +    if (C->print_intrinsics() || C->print_inlining()) {
   1.609 +      C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   1.610 +    }
   1.611 +    C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   1.612 +    if (C->log()) {
   1.613 +      C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   1.614 +                     vmIntrinsics::name_at(intrinsic_id()),
   1.615 +                     (is_virtual() ? " virtual='1'" : ""),
   1.616 +                     C->unique() - nodes);
   1.617 +    }
   1.618 +    // Push the result from the inlined method onto the stack.
   1.619 +    kit.push_result();
   1.620 +    return kit.transfer_exceptions_into_jvms();
   1.621 +  }
   1.622 +
   1.623 +  // The intrinsic bailed out
   1.624 +  if (C->print_intrinsics() || C->print_inlining()) {
   1.625 +    if (jvms->has_method()) {
   1.626 +      // Not a root compile.
   1.627 +      const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
   1.628 +      C->print_inlining(callee, jvms->depth() - 1, bci, msg);
   1.629 +    } else {
   1.630 +      // Root compile
   1.631 +      tty->print("Did not generate intrinsic %s%s at bci:%d in",
   1.632 +               vmIntrinsics::name_at(intrinsic_id()),
   1.633 +               (is_virtual() ? " (virtual)" : ""), bci);
   1.634 +    }
   1.635 +  }
   1.636 +  C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   1.637 +  return NULL;
   1.638 +}
   1.639 +
   1.640 +Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
   1.641 +  LibraryCallKit kit(jvms, this);
   1.642 +  Compile* C = kit.C;
   1.643 +  int nodes = C->unique();
   1.644 +#ifndef PRODUCT
   1.645 +  assert(is_predicted(), "sanity");
   1.646 +  if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
   1.647 +    char buf[1000];
   1.648 +    const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   1.649 +    tty->print_cr("Predicate for intrinsic %s", str);
   1.650 +  }
   1.651 +#endif
   1.652 +  ciMethod* callee = kit.callee();
   1.653 +  const int bci    = kit.bci();
   1.654 +
   1.655 +  Node* slow_ctl = kit.try_to_predicate();
   1.656 +  if (!kit.failing()) {
   1.657 +    if (C->print_intrinsics() || C->print_inlining()) {
   1.658 +      C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   1.659 +    }
   1.660 +    C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   1.661 +    if (C->log()) {
   1.662 +      C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
   1.663 +                     vmIntrinsics::name_at(intrinsic_id()),
   1.664 +                     (is_virtual() ? " virtual='1'" : ""),
   1.665 +                     C->unique() - nodes);
   1.666 +    }
   1.667 +    return slow_ctl; // Could be NULL if the check folds.
   1.668 +  }
   1.669 +
   1.670 +  // The intrinsic bailed out
   1.671 +  if (C->print_intrinsics() || C->print_inlining()) {
   1.672 +    if (jvms->has_method()) {
   1.673 +      // Not a root compile.
   1.674 +      const char* msg = "failed to generate predicate for intrinsic";
   1.675 +      C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
   1.676 +    } else {
   1.677 +      // Root compile
   1.678 +      C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
   1.679 +                                        vmIntrinsics::name_at(intrinsic_id()),
   1.680 +                                        (is_virtual() ? " (virtual)" : ""), bci);
   1.681 +    }
   1.682 +  }
   1.683 +  C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   1.684 +  return NULL;
   1.685 +}
   1.686 +
   1.687 +bool LibraryCallKit::try_to_inline() {
   1.688 +  // Handle symbolic names for otherwise undistinguished boolean switches:
   1.689 +  const bool is_store       = true;
   1.690 +  const bool is_native_ptr  = true;
   1.691 +  const bool is_static      = true;
   1.692 +  const bool is_volatile    = true;
   1.693 +
   1.694 +  if (!jvms()->has_method()) {
   1.695 +    // Root JVMState has a null method.
   1.696 +    assert(map()->memory()->Opcode() == Op_Parm, "");
   1.697 +    // Insert the memory aliasing node
   1.698 +    set_all_memory(reset_memory());
   1.699 +  }
   1.700 +  assert(merged_memory(), "");
   1.701 +
   1.702 +
   1.703 +  switch (intrinsic_id()) {
   1.704 +  case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   1.705 +  case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
   1.706 +  case vmIntrinsics::_getClass:                 return inline_native_getClass();
   1.707 +
   1.708 +  case vmIntrinsics::_dsin:
   1.709 +  case vmIntrinsics::_dcos:
   1.710 +  case vmIntrinsics::_dtan:
   1.711 +  case vmIntrinsics::_dabs:
   1.712 +  case vmIntrinsics::_datan2:
   1.713 +  case vmIntrinsics::_dsqrt:
   1.714 +  case vmIntrinsics::_dexp:
   1.715 +  case vmIntrinsics::_dlog:
   1.716 +  case vmIntrinsics::_dlog10:
   1.717 +  case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
   1.718 +
   1.719 +  case vmIntrinsics::_min:
   1.720 +  case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
   1.721 +
   1.722 +  case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
   1.723 +  case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
   1.724 +  case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
   1.725 +  case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
   1.726 +  case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
   1.727 +  case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
   1.728 +  case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
   1.729 +  case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
   1.730 +  case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
   1.731 +  case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
   1.732 +  case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
   1.733 +  case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
   1.734 +
   1.735 +  case vmIntrinsics::_arraycopy:                return inline_arraycopy();
   1.736 +
   1.737 +  case vmIntrinsics::_compareTo:                return inline_string_compareTo();
   1.738 +  case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
   1.739 +  case vmIntrinsics::_equals:                   return inline_string_equals();
   1.740 +
   1.741 +  case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
   1.742 +  case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
   1.743 +  case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
   1.744 +  case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
   1.745 +  case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
   1.746 +  case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
   1.747 +  case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
   1.748 +  case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
   1.749 +  case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
   1.750 +
   1.751 +  case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
   1.752 +  case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
   1.753 +  case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
   1.754 +  case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
   1.755 +  case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
   1.756 +  case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
   1.757 +  case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
   1.758 +  case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
   1.759 +  case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
   1.760 +
   1.761 +  case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
   1.762 +  case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
   1.763 +  case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
   1.764 +  case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
   1.765 +  case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
   1.766 +  case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
   1.767 +  case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
   1.768 +  case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
   1.769 +
   1.770 +  case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
   1.771 +  case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
   1.772 +  case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
   1.773 +  case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
   1.774 +  case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
   1.775 +  case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
   1.776 +  case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
   1.777 +  case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
   1.778 +
   1.779 +  case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
   1.780 +  case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
   1.781 +  case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
   1.782 +  case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
   1.783 +  case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
   1.784 +  case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
   1.785 +  case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
   1.786 +  case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
   1.787 +  case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
   1.788 +
   1.789 +  case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
   1.790 +  case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
   1.791 +  case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
   1.792 +  case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
   1.793 +  case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
   1.794 +  case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
   1.795 +  case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
   1.796 +  case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
   1.797 +  case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
   1.798 +
   1.799 +  case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   1.800 +  case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
   1.801 +  case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
   1.802 +  case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
   1.803 +
   1.804 +  case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
   1.805 +  case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
   1.806 +  case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
   1.807 +
   1.808 +  case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
   1.809 +  case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
   1.810 +  case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
   1.811 +
   1.812 +  case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
   1.813 +  case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
   1.814 +  case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
   1.815 +  case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
   1.816 +  case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
   1.817 +
   1.818 +  case vmIntrinsics::_loadFence:
   1.819 +  case vmIntrinsics::_storeFence:
   1.820 +  case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
   1.821 +
   1.822 +  case vmIntrinsics::_currentThread:            return inline_native_currentThread();
   1.823 +  case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
   1.824 +
   1.825 +#ifdef TRACE_HAVE_INTRINSICS
   1.826 +  case vmIntrinsics::_classID:                  return inline_native_classID();
   1.827 +  case vmIntrinsics::_threadID:                 return inline_native_threadID();
   1.828 +  case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
   1.829 +#endif
   1.830 +  case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
   1.831 +  case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
   1.832 +  case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
   1.833 +  case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
   1.834 +  case vmIntrinsics::_newArray:                 return inline_native_newArray();
   1.835 +  case vmIntrinsics::_getLength:                return inline_native_getLength();
   1.836 +  case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
   1.837 +  case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
   1.838 +  case vmIntrinsics::_equalsC:                  return inline_array_equals();
   1.839 +  case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
   1.840 +
   1.841 +  case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
   1.842 +
   1.843 +  case vmIntrinsics::_isInstance:
   1.844 +  case vmIntrinsics::_getModifiers:
   1.845 +  case vmIntrinsics::_isInterface:
   1.846 +  case vmIntrinsics::_isArray:
   1.847 +  case vmIntrinsics::_isPrimitive:
   1.848 +  case vmIntrinsics::_getSuperclass:
   1.849 +  case vmIntrinsics::_getComponentType:
   1.850 +  case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
   1.851 +
   1.852 +  case vmIntrinsics::_floatToRawIntBits:
   1.853 +  case vmIntrinsics::_floatToIntBits:
   1.854 +  case vmIntrinsics::_intBitsToFloat:
   1.855 +  case vmIntrinsics::_doubleToRawLongBits:
   1.856 +  case vmIntrinsics::_doubleToLongBits:
   1.857 +  case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
   1.858 +
   1.859 +  case vmIntrinsics::_numberOfLeadingZeros_i:
   1.860 +  case vmIntrinsics::_numberOfLeadingZeros_l:
   1.861 +  case vmIntrinsics::_numberOfTrailingZeros_i:
   1.862 +  case vmIntrinsics::_numberOfTrailingZeros_l:
   1.863 +  case vmIntrinsics::_bitCount_i:
   1.864 +  case vmIntrinsics::_bitCount_l:
   1.865 +  case vmIntrinsics::_reverseBytes_i:
   1.866 +  case vmIntrinsics::_reverseBytes_l:
   1.867 +  case vmIntrinsics::_reverseBytes_s:
   1.868 +  case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
   1.869 +
   1.870 +  case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
   1.871 +
   1.872 +  case vmIntrinsics::_Reference_get:            return inline_reference_get();
   1.873 +
   1.874 +  case vmIntrinsics::_aescrypt_encryptBlock:
   1.875 +  case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
   1.876 +
   1.877 +  case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   1.878 +  case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   1.879 +    return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
   1.880 +
   1.881 +  case vmIntrinsics::_encodeISOArray:
   1.882 +    return inline_encodeISOArray();
   1.883 +
   1.884 +  case vmIntrinsics::_updateCRC32:
   1.885 +    return inline_updateCRC32();
   1.886 +  case vmIntrinsics::_updateBytesCRC32:
   1.887 +    return inline_updateBytesCRC32();
   1.888 +  case vmIntrinsics::_updateByteBufferCRC32:
   1.889 +    return inline_updateByteBufferCRC32();
   1.890 +
   1.891 +  default:
   1.892 +    // If you get here, it may be that someone has added a new intrinsic
   1.893 +    // to the list in vmSymbols.hpp without implementing it here.
   1.894 +#ifndef PRODUCT
   1.895 +    if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   1.896 +      tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   1.897 +                    vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   1.898 +    }
   1.899 +#endif
   1.900 +    return false;
   1.901 +  }
   1.902 +}
   1.903 +
   1.904 +Node* LibraryCallKit::try_to_predicate() {
   1.905 +  if (!jvms()->has_method()) {
   1.906 +    // Root JVMState has a null method.
   1.907 +    assert(map()->memory()->Opcode() == Op_Parm, "");
   1.908 +    // Insert the memory aliasing node
   1.909 +    set_all_memory(reset_memory());
   1.910 +  }
   1.911 +  assert(merged_memory(), "");
   1.912 +
   1.913 +  switch (intrinsic_id()) {
   1.914 +  case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   1.915 +    return inline_cipherBlockChaining_AESCrypt_predicate(false);
   1.916 +  case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   1.917 +    return inline_cipherBlockChaining_AESCrypt_predicate(true);
   1.918 +
   1.919 +  default:
   1.920 +    // If you get here, it may be that someone has added a new intrinsic
   1.921 +    // to the list in vmSymbols.hpp without implementing it here.
   1.922 +#ifndef PRODUCT
   1.923 +    if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   1.924 +      tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
   1.925 +                    vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   1.926 +    }
   1.927 +#endif
   1.928 +    Node* slow_ctl = control();
   1.929 +    set_control(top()); // No fast path instrinsic
   1.930 +    return slow_ctl;
   1.931 +  }
   1.932 +}
   1.933 +
   1.934 +//------------------------------set_result-------------------------------
   1.935 +// Helper function for finishing intrinsics.
   1.936 +void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
   1.937 +  record_for_igvn(region);
   1.938 +  set_control(_gvn.transform(region));
   1.939 +  set_result( _gvn.transform(value));
   1.940 +  assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
   1.941 +}
   1.942 +
   1.943 +//------------------------------generate_guard---------------------------
   1.944 +// Helper function for generating guarded fast-slow graph structures.
   1.945 +// The given 'test', if true, guards a slow path.  If the test fails
   1.946 +// then a fast path can be taken.  (We generally hope it fails.)
   1.947 +// In all cases, GraphKit::control() is updated to the fast path.
   1.948 +// The returned value represents the control for the slow path.
   1.949 +// The return value is never 'top'; it is either a valid control
   1.950 +// or NULL if it is obvious that the slow path can never be taken.
   1.951 +// Also, if region and the slow control are not NULL, the slow edge
   1.952 +// is appended to the region.
   1.953 +Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
   1.954 +  if (stopped()) {
   1.955 +    // Already short circuited.
   1.956 +    return NULL;
   1.957 +  }
   1.958 +
   1.959 +  // Build an if node and its projections.
   1.960 +  // If test is true we take the slow path, which we assume is uncommon.
   1.961 +  if (_gvn.type(test) == TypeInt::ZERO) {
   1.962 +    // The slow branch is never taken.  No need to build this guard.
   1.963 +    return NULL;
   1.964 +  }
   1.965 +
   1.966 +  IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
   1.967 +
   1.968 +  Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
   1.969 +  if (if_slow == top()) {
   1.970 +    // The slow branch is never taken.  No need to build this guard.
   1.971 +    return NULL;
   1.972 +  }
   1.973 +
   1.974 +  if (region != NULL)
   1.975 +    region->add_req(if_slow);
   1.976 +
   1.977 +  Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
   1.978 +  set_control(if_fast);
   1.979 +
   1.980 +  return if_slow;
   1.981 +}
   1.982 +
   1.983 +inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
   1.984 +  return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
   1.985 +}
   1.986 +inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
   1.987 +  return generate_guard(test, region, PROB_FAIR);
   1.988 +}
   1.989 +
   1.990 +inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
   1.991 +                                                     Node* *pos_index) {
   1.992 +  if (stopped())
   1.993 +    return NULL;                // already stopped
   1.994 +  if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
   1.995 +    return NULL;                // index is already adequately typed
   1.996 +  Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
   1.997 +  Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
   1.998 +  Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
   1.999 +  if (is_neg != NULL && pos_index != NULL) {
  1.1000 +    // Emulate effect of Parse::adjust_map_after_if.
  1.1001 +    Node* ccast = new (C) CastIINode(index, TypeInt::POS);
  1.1002 +    ccast->set_req(0, control());
  1.1003 +    (*pos_index) = _gvn.transform(ccast);
  1.1004 +  }
  1.1005 +  return is_neg;
  1.1006 +}
  1.1007 +
  1.1008 +inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
  1.1009 +                                                        Node* *pos_index) {
  1.1010 +  if (stopped())
  1.1011 +    return NULL;                // already stopped
  1.1012 +  if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
  1.1013 +    return NULL;                // index is already adequately typed
  1.1014 +  Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
  1.1015 +  BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
  1.1016 +  Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
  1.1017 +  Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
  1.1018 +  if (is_notp != NULL && pos_index != NULL) {
  1.1019 +    // Emulate effect of Parse::adjust_map_after_if.
  1.1020 +    Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
  1.1021 +    ccast->set_req(0, control());
  1.1022 +    (*pos_index) = _gvn.transform(ccast);
  1.1023 +  }
  1.1024 +  return is_notp;
  1.1025 +}
  1.1026 +
  1.1027 +// Make sure that 'position' is a valid limit index, in [0..length].
  1.1028 +// There are two equivalent plans for checking this:
  1.1029 +//   A. (offset + copyLength)  unsigned<=  arrayLength
  1.1030 +//   B. offset  <=  (arrayLength - copyLength)
  1.1031 +// We require that all of the values above, except for the sum and
  1.1032 +// difference, are already known to be non-negative.
  1.1033 +// Plan A is robust in the face of overflow, if offset and copyLength
  1.1034 +// are both hugely positive.
  1.1035 +//
  1.1036 +// Plan B is less direct and intuitive, but it does not overflow at
  1.1037 +// all, since the difference of two non-negatives is always
  1.1038 +// representable.  Whenever Java methods must perform the equivalent
  1.1039 +// check they generally use Plan B instead of Plan A.
  1.1040 +// For the moment we use Plan A.
  1.1041 +inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
  1.1042 +                                                  Node* subseq_length,
  1.1043 +                                                  Node* array_length,
  1.1044 +                                                  RegionNode* region) {
  1.1045 +  if (stopped())
  1.1046 +    return NULL;                // already stopped
  1.1047 +  bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
  1.1048 +  if (zero_offset && subseq_length->eqv_uncast(array_length))
  1.1049 +    return NULL;                // common case of whole-array copy
  1.1050 +  Node* last = subseq_length;
  1.1051 +  if (!zero_offset)             // last += offset
  1.1052 +    last = _gvn.transform(new (C) AddINode(last, offset));
  1.1053 +  Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
  1.1054 +  Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
  1.1055 +  Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
  1.1056 +  return is_over;
  1.1057 +}
  1.1058 +
  1.1059 +
  1.1060 +//--------------------------generate_current_thread--------------------
  1.1061 +Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
  1.1062 +  ciKlass*    thread_klass = env()->Thread_klass();
  1.1063 +  const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
  1.1064 +  Node* thread = _gvn.transform(new (C) ThreadLocalNode());
  1.1065 +  Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
  1.1066 +  Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
  1.1067 +  tls_output = thread;
  1.1068 +  return threadObj;
  1.1069 +}
  1.1070 +
  1.1071 +
  1.1072 +//------------------------------make_string_method_node------------------------
  1.1073 +// Helper method for String intrinsic functions. This version is called
  1.1074 +// with str1 and str2 pointing to String object nodes.
  1.1075 +//
  1.1076 +Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
  1.1077 +  Node* no_ctrl = NULL;
  1.1078 +
  1.1079 +  // Get start addr of string
  1.1080 +  Node* str1_value   = load_String_value(no_ctrl, str1);
  1.1081 +  Node* str1_offset  = load_String_offset(no_ctrl, str1);
  1.1082 +  Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
  1.1083 +
  1.1084 +  // Get length of string 1
  1.1085 +  Node* str1_len  = load_String_length(no_ctrl, str1);
  1.1086 +
  1.1087 +  Node* str2_value   = load_String_value(no_ctrl, str2);
  1.1088 +  Node* str2_offset  = load_String_offset(no_ctrl, str2);
  1.1089 +  Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
  1.1090 +
  1.1091 +  Node* str2_len = NULL;
  1.1092 +  Node* result = NULL;
  1.1093 +
  1.1094 +  switch (opcode) {
  1.1095 +  case Op_StrIndexOf:
  1.1096 +    // Get length of string 2
  1.1097 +    str2_len = load_String_length(no_ctrl, str2);
  1.1098 +
  1.1099 +    result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1.1100 +                                 str1_start, str1_len, str2_start, str2_len);
  1.1101 +    break;
  1.1102 +  case Op_StrComp:
  1.1103 +    // Get length of string 2
  1.1104 +    str2_len = load_String_length(no_ctrl, str2);
  1.1105 +
  1.1106 +    result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1.1107 +                                 str1_start, str1_len, str2_start, str2_len);
  1.1108 +    break;
  1.1109 +  case Op_StrEquals:
  1.1110 +    result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1.1111 +                               str1_start, str2_start, str1_len);
  1.1112 +    break;
  1.1113 +  default:
  1.1114 +    ShouldNotReachHere();
  1.1115 +    return NULL;
  1.1116 +  }
  1.1117 +
  1.1118 +  // All these intrinsics have checks.
  1.1119 +  C->set_has_split_ifs(true); // Has chance for split-if optimization
  1.1120 +
  1.1121 +  return _gvn.transform(result);
  1.1122 +}
  1.1123 +
  1.1124 +// Helper method for String intrinsic functions. This version is called
  1.1125 +// with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
  1.1126 +// to Int nodes containing the lenghts of str1 and str2.
  1.1127 +//
  1.1128 +Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
  1.1129 +  Node* result = NULL;
  1.1130 +  switch (opcode) {
  1.1131 +  case Op_StrIndexOf:
  1.1132 +    result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1.1133 +                                 str1_start, cnt1, str2_start, cnt2);
  1.1134 +    break;
  1.1135 +  case Op_StrComp:
  1.1136 +    result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1.1137 +                                 str1_start, cnt1, str2_start, cnt2);
  1.1138 +    break;
  1.1139 +  case Op_StrEquals:
  1.1140 +    result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1.1141 +                                 str1_start, str2_start, cnt1);
  1.1142 +    break;
  1.1143 +  default:
  1.1144 +    ShouldNotReachHere();
  1.1145 +    return NULL;
  1.1146 +  }
  1.1147 +
  1.1148 +  // All these intrinsics have checks.
  1.1149 +  C->set_has_split_ifs(true); // Has chance for split-if optimization
  1.1150 +
  1.1151 +  return _gvn.transform(result);
  1.1152 +}
  1.1153 +
  1.1154 +//------------------------------inline_string_compareTo------------------------
  1.1155 +// public int java.lang.String.compareTo(String anotherString);
  1.1156 +bool LibraryCallKit::inline_string_compareTo() {
  1.1157 +  Node* receiver = null_check(argument(0));
  1.1158 +  Node* arg      = null_check(argument(1));
  1.1159 +  if (stopped()) {
  1.1160 +    return true;
  1.1161 +  }
  1.1162 +  set_result(make_string_method_node(Op_StrComp, receiver, arg));
  1.1163 +  return true;
  1.1164 +}
  1.1165 +
  1.1166 +//------------------------------inline_string_equals------------------------
  1.1167 +bool LibraryCallKit::inline_string_equals() {
  1.1168 +  Node* receiver = null_check_receiver();
  1.1169 +  // NOTE: Do not null check argument for String.equals() because spec
  1.1170 +  // allows to specify NULL as argument.
  1.1171 +  Node* argument = this->argument(1);
  1.1172 +  if (stopped()) {
  1.1173 +    return true;
  1.1174 +  }
  1.1175 +
  1.1176 +  // paths (plus control) merge
  1.1177 +  RegionNode* region = new (C) RegionNode(5);
  1.1178 +  Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
  1.1179 +
  1.1180 +  // does source == target string?
  1.1181 +  Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
  1.1182 +  Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
  1.1183 +
  1.1184 +  Node* if_eq = generate_slow_guard(bol, NULL);
  1.1185 +  if (if_eq != NULL) {
  1.1186 +    // receiver == argument
  1.1187 +    phi->init_req(2, intcon(1));
  1.1188 +    region->init_req(2, if_eq);
  1.1189 +  }
  1.1190 +
  1.1191 +  // get String klass for instanceOf
  1.1192 +  ciInstanceKlass* klass = env()->String_klass();
  1.1193 +
  1.1194 +  if (!stopped()) {
  1.1195 +    Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
  1.1196 +    Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
  1.1197 +    Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
  1.1198 +
  1.1199 +    Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
  1.1200 +    //instanceOf == true, fallthrough
  1.1201 +
  1.1202 +    if (inst_false != NULL) {
  1.1203 +      phi->init_req(3, intcon(0));
  1.1204 +      region->init_req(3, inst_false);
  1.1205 +    }
  1.1206 +  }
  1.1207 +
  1.1208 +  if (!stopped()) {
  1.1209 +    const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  1.1210 +
  1.1211 +    // Properly cast the argument to String
  1.1212 +    argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
  1.1213 +    // This path is taken only when argument's type is String:NotNull.
  1.1214 +    argument = cast_not_null(argument, false);
  1.1215 +
  1.1216 +    Node* no_ctrl = NULL;
  1.1217 +
  1.1218 +    // Get start addr of receiver
  1.1219 +    Node* receiver_val    = load_String_value(no_ctrl, receiver);
  1.1220 +    Node* receiver_offset = load_String_offset(no_ctrl, receiver);
  1.1221 +    Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
  1.1222 +
  1.1223 +    // Get length of receiver
  1.1224 +    Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
  1.1225 +
  1.1226 +    // Get start addr of argument
  1.1227 +    Node* argument_val    = load_String_value(no_ctrl, argument);
  1.1228 +    Node* argument_offset = load_String_offset(no_ctrl, argument);
  1.1229 +    Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
  1.1230 +
  1.1231 +    // Get length of argument
  1.1232 +    Node* argument_cnt  = load_String_length(no_ctrl, argument);
  1.1233 +
  1.1234 +    // Check for receiver count != argument count
  1.1235 +    Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
  1.1236 +    Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
  1.1237 +    Node* if_ne = generate_slow_guard(bol, NULL);
  1.1238 +    if (if_ne != NULL) {
  1.1239 +      phi->init_req(4, intcon(0));
  1.1240 +      region->init_req(4, if_ne);
  1.1241 +    }
  1.1242 +
  1.1243 +    // Check for count == 0 is done by assembler code for StrEquals.
  1.1244 +
  1.1245 +    if (!stopped()) {
  1.1246 +      Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
  1.1247 +      phi->init_req(1, equals);
  1.1248 +      region->init_req(1, control());
  1.1249 +    }
  1.1250 +  }
  1.1251 +
  1.1252 +  // post merge
  1.1253 +  set_control(_gvn.transform(region));
  1.1254 +  record_for_igvn(region);
  1.1255 +
  1.1256 +  set_result(_gvn.transform(phi));
  1.1257 +  return true;
  1.1258 +}
  1.1259 +
  1.1260 +//------------------------------inline_array_equals----------------------------
  1.1261 +bool LibraryCallKit::inline_array_equals() {
  1.1262 +  Node* arg1 = argument(0);
  1.1263 +  Node* arg2 = argument(1);
  1.1264 +  set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
  1.1265 +  return true;
  1.1266 +}
  1.1267 +
  1.1268 +// Java version of String.indexOf(constant string)
  1.1269 +// class StringDecl {
  1.1270 +//   StringDecl(char[] ca) {
  1.1271 +//     offset = 0;
  1.1272 +//     count = ca.length;
  1.1273 +//     value = ca;
  1.1274 +//   }
  1.1275 +//   int offset;
  1.1276 +//   int count;
  1.1277 +//   char[] value;
  1.1278 +// }
  1.1279 +//
  1.1280 +// static int string_indexOf_J(StringDecl string_object, char[] target_object,
  1.1281 +//                             int targetOffset, int cache_i, int md2) {
  1.1282 +//   int cache = cache_i;
  1.1283 +//   int sourceOffset = string_object.offset;
  1.1284 +//   int sourceCount = string_object.count;
  1.1285 +//   int targetCount = target_object.length;
  1.1286 +//
  1.1287 +//   int targetCountLess1 = targetCount - 1;
  1.1288 +//   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
  1.1289 +//
  1.1290 +//   char[] source = string_object.value;
  1.1291 +//   char[] target = target_object;
  1.1292 +//   int lastChar = target[targetCountLess1];
  1.1293 +//
  1.1294 +//  outer_loop:
  1.1295 +//   for (int i = sourceOffset; i < sourceEnd; ) {
  1.1296 +//     int src = source[i + targetCountLess1];
  1.1297 +//     if (src == lastChar) {
  1.1298 +//       // With random strings and a 4-character alphabet,
  1.1299 +//       // reverse matching at this point sets up 0.8% fewer
  1.1300 +//       // frames, but (paradoxically) makes 0.3% more probes.
  1.1301 +//       // Since those probes are nearer the lastChar probe,
  1.1302 +//       // there is may be a net D$ win with reverse matching.
  1.1303 +//       // But, reversing loop inhibits unroll of inner loop
  1.1304 +//       // for unknown reason.  So, does running outer loop from
  1.1305 +//       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
  1.1306 +//       for (int j = 0; j < targetCountLess1; j++) {
  1.1307 +//         if (target[targetOffset + j] != source[i+j]) {
  1.1308 +//           if ((cache & (1 << source[i+j])) == 0) {
  1.1309 +//             if (md2 < j+1) {
  1.1310 +//               i += j+1;
  1.1311 +//               continue outer_loop;
  1.1312 +//             }
  1.1313 +//           }
  1.1314 +//           i += md2;
  1.1315 +//           continue outer_loop;
  1.1316 +//         }
  1.1317 +//       }
  1.1318 +//       return i - sourceOffset;
  1.1319 +//     }
  1.1320 +//     if ((cache & (1 << src)) == 0) {
  1.1321 +//       i += targetCountLess1;
  1.1322 +//     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
  1.1323 +//     i++;
  1.1324 +//   }
  1.1325 +//   return -1;
  1.1326 +// }
  1.1327 +
  1.1328 +//------------------------------string_indexOf------------------------
  1.1329 +Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
  1.1330 +                                     jint cache_i, jint md2_i) {
  1.1331 +
  1.1332 +  Node* no_ctrl  = NULL;
  1.1333 +  float likely   = PROB_LIKELY(0.9);
  1.1334 +  float unlikely = PROB_UNLIKELY(0.9);
  1.1335 +
  1.1336 +  const int nargs = 0; // no arguments to push back for uncommon trap in predicate
  1.1337 +
  1.1338 +  Node* source        = load_String_value(no_ctrl, string_object);
  1.1339 +  Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
  1.1340 +  Node* sourceCount   = load_String_length(no_ctrl, string_object);
  1.1341 +
  1.1342 +  Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
  1.1343 +  jint target_length = target_array->length();
  1.1344 +  const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
  1.1345 +  const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
  1.1346 +
  1.1347 +  // String.value field is known to be @Stable.
  1.1348 +  if (UseImplicitStableValues) {
  1.1349 +    target = cast_array_to_stable(target, target_type);
  1.1350 +  }
  1.1351 +
  1.1352 +  IdealKit kit(this, false, true);
  1.1353 +#define __ kit.
  1.1354 +  Node* zero             = __ ConI(0);
  1.1355 +  Node* one              = __ ConI(1);
  1.1356 +  Node* cache            = __ ConI(cache_i);
  1.1357 +  Node* md2              = __ ConI(md2_i);
  1.1358 +  Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
  1.1359 +  Node* targetCount      = __ ConI(target_length);
  1.1360 +  Node* targetCountLess1 = __ ConI(target_length - 1);
  1.1361 +  Node* targetOffset     = __ ConI(targetOffset_i);
  1.1362 +  Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
  1.1363 +
  1.1364 +  IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
  1.1365 +  Node* outer_loop = __ make_label(2 /* goto */);
  1.1366 +  Node* return_    = __ make_label(1);
  1.1367 +
  1.1368 +  __ set(rtn,__ ConI(-1));
  1.1369 +  __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
  1.1370 +       Node* i2  = __ AddI(__ value(i), targetCountLess1);
  1.1371 +       // pin to prohibit loading of "next iteration" value which may SEGV (rare)
  1.1372 +       Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
  1.1373 +       __ if_then(src, BoolTest::eq, lastChar, unlikely); {
  1.1374 +         __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
  1.1375 +              Node* tpj = __ AddI(targetOffset, __ value(j));
  1.1376 +              Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
  1.1377 +              Node* ipj  = __ AddI(__ value(i), __ value(j));
  1.1378 +              Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
  1.1379 +              __ if_then(targ, BoolTest::ne, src2); {
  1.1380 +                __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
  1.1381 +                  __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
  1.1382 +                    __ increment(i, __ AddI(__ value(j), one));
  1.1383 +                    __ goto_(outer_loop);
  1.1384 +                  } __ end_if(); __ dead(j);
  1.1385 +                }__ end_if(); __ dead(j);
  1.1386 +                __ increment(i, md2);
  1.1387 +                __ goto_(outer_loop);
  1.1388 +              }__ end_if();
  1.1389 +              __ increment(j, one);
  1.1390 +         }__ end_loop(); __ dead(j);
  1.1391 +         __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
  1.1392 +         __ goto_(return_);
  1.1393 +       }__ end_if();
  1.1394 +       __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
  1.1395 +         __ increment(i, targetCountLess1);
  1.1396 +       }__ end_if();
  1.1397 +       __ increment(i, one);
  1.1398 +       __ bind(outer_loop);
  1.1399 +  }__ end_loop(); __ dead(i);
  1.1400 +  __ bind(return_);
  1.1401 +
  1.1402 +  // Final sync IdealKit and GraphKit.
  1.1403 +  final_sync(kit);
  1.1404 +  Node* result = __ value(rtn);
  1.1405 +#undef __
  1.1406 +  C->set_has_loops(true);
  1.1407 +  return result;
  1.1408 +}
  1.1409 +
  1.1410 +//------------------------------inline_string_indexOf------------------------
  1.1411 +bool LibraryCallKit::inline_string_indexOf() {
  1.1412 +  Node* receiver = argument(0);
  1.1413 +  Node* arg      = argument(1);
  1.1414 +
  1.1415 +  Node* result;
  1.1416 +  // Disable the use of pcmpestri until it can be guaranteed that
  1.1417 +  // the load doesn't cross into the uncommited space.
  1.1418 +  if (Matcher::has_match_rule(Op_StrIndexOf) &&
  1.1419 +      UseSSE42Intrinsics) {
  1.1420 +    // Generate SSE4.2 version of indexOf
  1.1421 +    // We currently only have match rules that use SSE4.2
  1.1422 +
  1.1423 +    receiver = null_check(receiver);
  1.1424 +    arg      = null_check(arg);
  1.1425 +    if (stopped()) {
  1.1426 +      return true;
  1.1427 +    }
  1.1428 +
  1.1429 +    ciInstanceKlass* str_klass = env()->String_klass();
  1.1430 +    const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
  1.1431 +
  1.1432 +    // Make the merge point
  1.1433 +    RegionNode* result_rgn = new (C) RegionNode(4);
  1.1434 +    Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
  1.1435 +    Node* no_ctrl  = NULL;
  1.1436 +
  1.1437 +    // Get start addr of source string
  1.1438 +    Node* source = load_String_value(no_ctrl, receiver);
  1.1439 +    Node* source_offset = load_String_offset(no_ctrl, receiver);
  1.1440 +    Node* source_start = array_element_address(source, source_offset, T_CHAR);
  1.1441 +
  1.1442 +    // Get length of source string
  1.1443 +    Node* source_cnt  = load_String_length(no_ctrl, receiver);
  1.1444 +
  1.1445 +    // Get start addr of substring
  1.1446 +    Node* substr = load_String_value(no_ctrl, arg);
  1.1447 +    Node* substr_offset = load_String_offset(no_ctrl, arg);
  1.1448 +    Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
  1.1449 +
  1.1450 +    // Get length of source string
  1.1451 +    Node* substr_cnt  = load_String_length(no_ctrl, arg);
  1.1452 +
  1.1453 +    // Check for substr count > string count
  1.1454 +    Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
  1.1455 +    Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
  1.1456 +    Node* if_gt = generate_slow_guard(bol, NULL);
  1.1457 +    if (if_gt != NULL) {
  1.1458 +      result_phi->init_req(2, intcon(-1));
  1.1459 +      result_rgn->init_req(2, if_gt);
  1.1460 +    }
  1.1461 +
  1.1462 +    if (!stopped()) {
  1.1463 +      // Check for substr count == 0
  1.1464 +      cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
  1.1465 +      bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
  1.1466 +      Node* if_zero = generate_slow_guard(bol, NULL);
  1.1467 +      if (if_zero != NULL) {
  1.1468 +        result_phi->init_req(3, intcon(0));
  1.1469 +        result_rgn->init_req(3, if_zero);
  1.1470 +      }
  1.1471 +    }
  1.1472 +
  1.1473 +    if (!stopped()) {
  1.1474 +      result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
  1.1475 +      result_phi->init_req(1, result);
  1.1476 +      result_rgn->init_req(1, control());
  1.1477 +    }
  1.1478 +    set_control(_gvn.transform(result_rgn));
  1.1479 +    record_for_igvn(result_rgn);
  1.1480 +    result = _gvn.transform(result_phi);
  1.1481 +
  1.1482 +  } else { // Use LibraryCallKit::string_indexOf
  1.1483 +    // don't intrinsify if argument isn't a constant string.
  1.1484 +    if (!arg->is_Con()) {
  1.1485 +     return false;
  1.1486 +    }
  1.1487 +    const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
  1.1488 +    if (str_type == NULL) {
  1.1489 +      return false;
  1.1490 +    }
  1.1491 +    ciInstanceKlass* klass = env()->String_klass();
  1.1492 +    ciObject* str_const = str_type->const_oop();
  1.1493 +    if (str_const == NULL || str_const->klass() != klass) {
  1.1494 +      return false;
  1.1495 +    }
  1.1496 +    ciInstance* str = str_const->as_instance();
  1.1497 +    assert(str != NULL, "must be instance");
  1.1498 +
  1.1499 +    ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
  1.1500 +    ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
  1.1501 +
  1.1502 +    int o;
  1.1503 +    int c;
  1.1504 +    if (java_lang_String::has_offset_field()) {
  1.1505 +      o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
  1.1506 +      c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
  1.1507 +    } else {
  1.1508 +      o = 0;
  1.1509 +      c = pat->length();
  1.1510 +    }
  1.1511 +
  1.1512 +    // constant strings have no offset and count == length which
  1.1513 +    // simplifies the resulting code somewhat so lets optimize for that.
  1.1514 +    if (o != 0 || c != pat->length()) {
  1.1515 +     return false;
  1.1516 +    }
  1.1517 +
  1.1518 +    receiver = null_check(receiver, T_OBJECT);
  1.1519 +    // NOTE: No null check on the argument is needed since it's a constant String oop.
  1.1520 +    if (stopped()) {
  1.1521 +      return true;
  1.1522 +    }
  1.1523 +
  1.1524 +    // The null string as a pattern always returns 0 (match at beginning of string)
  1.1525 +    if (c == 0) {
  1.1526 +      set_result(intcon(0));
  1.1527 +      return true;
  1.1528 +    }
  1.1529 +
  1.1530 +    // Generate default indexOf
  1.1531 +    jchar lastChar = pat->char_at(o + (c - 1));
  1.1532 +    int cache = 0;
  1.1533 +    int i;
  1.1534 +    for (i = 0; i < c - 1; i++) {
  1.1535 +      assert(i < pat->length(), "out of range");
  1.1536 +      cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1.1537 +    }
  1.1538 +
  1.1539 +    int md2 = c;
  1.1540 +    for (i = 0; i < c - 1; i++) {
  1.1541 +      assert(i < pat->length(), "out of range");
  1.1542 +      if (pat->char_at(o + i) == lastChar) {
  1.1543 +        md2 = (c - 1) - i;
  1.1544 +      }
  1.1545 +    }
  1.1546 +
  1.1547 +    result = string_indexOf(receiver, pat, o, cache, md2);
  1.1548 +  }
  1.1549 +  set_result(result);
  1.1550 +  return true;
  1.1551 +}
  1.1552 +
  1.1553 +//--------------------------round_double_node--------------------------------
  1.1554 +// Round a double node if necessary.
  1.1555 +Node* LibraryCallKit::round_double_node(Node* n) {
  1.1556 +  if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
  1.1557 +    n = _gvn.transform(new (C) RoundDoubleNode(0, n));
  1.1558 +  return n;
  1.1559 +}
  1.1560 +
  1.1561 +//------------------------------inline_math-----------------------------------
  1.1562 +// public static double Math.abs(double)
  1.1563 +// public static double Math.sqrt(double)
  1.1564 +// public static double Math.log(double)
  1.1565 +// public static double Math.log10(double)
  1.1566 +bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
  1.1567 +  Node* arg = round_double_node(argument(0));
  1.1568 +  Node* n;
  1.1569 +  switch (id) {
  1.1570 +  case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
  1.1571 +  case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
  1.1572 +  case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
  1.1573 +  case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
  1.1574 +  default:  fatal_unexpected_iid(id);  break;
  1.1575 +  }
  1.1576 +  set_result(_gvn.transform(n));
  1.1577 +  return true;
  1.1578 +}
  1.1579 +
  1.1580 +//------------------------------inline_trig----------------------------------
  1.1581 +// Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1.1582 +// argument reduction which will turn into a fast/slow diamond.
  1.1583 +bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1.1584 +  Node* arg = round_double_node(argument(0));
  1.1585 +  Node* n = NULL;
  1.1586 +
  1.1587 +  switch (id) {
  1.1588 +  case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
  1.1589 +  case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
  1.1590 +  case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
  1.1591 +  default:  fatal_unexpected_iid(id);  break;
  1.1592 +  }
  1.1593 +  n = _gvn.transform(n);
  1.1594 +
  1.1595 +  // Rounding required?  Check for argument reduction!
  1.1596 +  if (Matcher::strict_fp_requires_explicit_rounding) {
  1.1597 +    static const double     pi_4 =  0.7853981633974483;
  1.1598 +    static const double neg_pi_4 = -0.7853981633974483;
  1.1599 +    // pi/2 in 80-bit extended precision
  1.1600 +    // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1.1601 +    // -pi/2 in 80-bit extended precision
  1.1602 +    // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1.1603 +    // Cutoff value for using this argument reduction technique
  1.1604 +    //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1.1605 +    //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1.1606 +
  1.1607 +    // Pseudocode for sin:
  1.1608 +    // if (x <= Math.PI / 4.0) {
  1.1609 +    //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1.1610 +    //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1.1611 +    // } else {
  1.1612 +    //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1.1613 +    // }
  1.1614 +    // return StrictMath.sin(x);
  1.1615 +
  1.1616 +    // Pseudocode for cos:
  1.1617 +    // if (x <= Math.PI / 4.0) {
  1.1618 +    //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1.1619 +    //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1.1620 +    // } else {
  1.1621 +    //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1.1622 +    // }
  1.1623 +    // return StrictMath.cos(x);
  1.1624 +
  1.1625 +    // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1.1626 +    // requires a special machine instruction to load it.  Instead we'll try
  1.1627 +    // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1.1628 +    // probably do the math inside the SIN encoding.
  1.1629 +
  1.1630 +    // Make the merge point
  1.1631 +    RegionNode* r = new (C) RegionNode(3);
  1.1632 +    Node* phi = new (C) PhiNode(r, Type::DOUBLE);
  1.1633 +
  1.1634 +    // Flatten arg so we need only 1 test
  1.1635 +    Node *abs = _gvn.transform(new (C) AbsDNode(arg));
  1.1636 +    // Node for PI/4 constant
  1.1637 +    Node *pi4 = makecon(TypeD::make(pi_4));
  1.1638 +    // Check PI/4 : abs(arg)
  1.1639 +    Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
  1.1640 +    // Check: If PI/4 < abs(arg) then go slow
  1.1641 +    Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
  1.1642 +    // Branch either way
  1.1643 +    IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1.1644 +    set_control(opt_iff(r,iff));
  1.1645 +
  1.1646 +    // Set fast path result
  1.1647 +    phi->init_req(2, n);
  1.1648 +
  1.1649 +    // Slow path - non-blocking leaf call
  1.1650 +    Node* call = NULL;
  1.1651 +    switch (id) {
  1.1652 +    case vmIntrinsics::_dsin:
  1.1653 +      call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1.1654 +                               CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1.1655 +                               "Sin", NULL, arg, top());
  1.1656 +      break;
  1.1657 +    case vmIntrinsics::_dcos:
  1.1658 +      call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1.1659 +                               CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1.1660 +                               "Cos", NULL, arg, top());
  1.1661 +      break;
  1.1662 +    case vmIntrinsics::_dtan:
  1.1663 +      call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1.1664 +                               CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1.1665 +                               "Tan", NULL, arg, top());
  1.1666 +      break;
  1.1667 +    }
  1.1668 +    assert(control()->in(0) == call, "");
  1.1669 +    Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  1.1670 +    r->init_req(1, control());
  1.1671 +    phi->init_req(1, slow_result);
  1.1672 +
  1.1673 +    // Post-merge
  1.1674 +    set_control(_gvn.transform(r));
  1.1675 +    record_for_igvn(r);
  1.1676 +    n = _gvn.transform(phi);
  1.1677 +
  1.1678 +    C->set_has_split_ifs(true); // Has chance for split-if optimization
  1.1679 +  }
  1.1680 +  set_result(n);
  1.1681 +  return true;
  1.1682 +}
  1.1683 +
  1.1684 +Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1.1685 +  //-------------------
  1.1686 +  //result=(result.isNaN())? funcAddr():result;
  1.1687 +  // Check: If isNaN() by checking result!=result? then either trap
  1.1688 +  // or go to runtime
  1.1689 +  Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
  1.1690 +  // Build the boolean node
  1.1691 +  Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
  1.1692 +
  1.1693 +  if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1.1694 +    { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1.1695 +      // The pow or exp intrinsic returned a NaN, which requires a call
  1.1696 +      // to the runtime.  Recompile with the runtime call.
  1.1697 +      uncommon_trap(Deoptimization::Reason_intrinsic,
  1.1698 +                    Deoptimization::Action_make_not_entrant);
  1.1699 +    }
  1.1700 +    return result;
  1.1701 +  } else {
  1.1702 +    // If this inlining ever returned NaN in the past, we compile a call
  1.1703 +    // to the runtime to properly handle corner cases
  1.1704 +
  1.1705 +    IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1.1706 +    Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
  1.1707 +    Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
  1.1708 +
  1.1709 +    if (!if_slow->is_top()) {
  1.1710 +      RegionNode* result_region = new (C) RegionNode(3);
  1.1711 +      PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
  1.1712 +
  1.1713 +      result_region->init_req(1, if_fast);
  1.1714 +      result_val->init_req(1, result);
  1.1715 +
  1.1716 +      set_control(if_slow);
  1.1717 +
  1.1718 +      const TypePtr* no_memory_effects = NULL;
  1.1719 +      Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1.1720 +                                   no_memory_effects,
  1.1721 +                                   x, top(), y, y ? top() : NULL);
  1.1722 +      Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
  1.1723 +#ifdef ASSERT
  1.1724 +      Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
  1.1725 +      assert(value_top == top(), "second value must be top");
  1.1726 +#endif
  1.1727 +
  1.1728 +      result_region->init_req(2, control());
  1.1729 +      result_val->init_req(2, value);
  1.1730 +      set_control(_gvn.transform(result_region));
  1.1731 +      return _gvn.transform(result_val);
  1.1732 +    } else {
  1.1733 +      return result;
  1.1734 +    }
  1.1735 +  }
  1.1736 +}
  1.1737 +
  1.1738 +//------------------------------inline_exp-------------------------------------
  1.1739 +// Inline exp instructions, if possible.  The Intel hardware only misses
  1.1740 +// really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1.1741 +bool LibraryCallKit::inline_exp() {
  1.1742 +  Node* arg = round_double_node(argument(0));
  1.1743 +  Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
  1.1744 +
  1.1745 +  n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1.1746 +  set_result(n);
  1.1747 +
  1.1748 +  C->set_has_split_ifs(true); // Has chance for split-if optimization
  1.1749 +  return true;
  1.1750 +}
  1.1751 +
  1.1752 +//------------------------------inline_pow-------------------------------------
  1.1753 +// Inline power instructions, if possible.
  1.1754 +bool LibraryCallKit::inline_pow() {
  1.1755 +  // Pseudocode for pow
  1.1756 +  // if (y == 2) {
  1.1757 +  //   return x * x;
  1.1758 +  // } else {
  1.1759 +  //   if (x <= 0.0) {
  1.1760 +  //     long longy = (long)y;
  1.1761 +  //     if ((double)longy == y) { // if y is long
  1.1762 +  //       if (y + 1 == y) longy = 0; // huge number: even
  1.1763 +  //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
  1.1764 +  //     } else {
  1.1765 +  //       result = NaN;
  1.1766 +  //     }
  1.1767 +  //   } else {
  1.1768 +  //     result = DPow(x,y);
  1.1769 +  //   }
  1.1770 +  //   if (result != result)?  {
  1.1771 +  //     result = uncommon_trap() or runtime_call();
  1.1772 +  //   }
  1.1773 +  //   return result;
  1.1774 +  // }
  1.1775 +
  1.1776 +  Node* x = round_double_node(argument(0));
  1.1777 +  Node* y = round_double_node(argument(2));
  1.1778 +
  1.1779 +  Node* result = NULL;
  1.1780 +
  1.1781 +  Node*   const_two_node = makecon(TypeD::make(2.0));
  1.1782 +  Node*   cmp_node       = _gvn.transform(new (C) CmpDNode(y, const_two_node));
  1.1783 +  Node*   bool_node      = _gvn.transform(new (C) BoolNode(cmp_node, BoolTest::eq));
  1.1784 +  IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1.1785 +  Node*   if_true        = _gvn.transform(new (C) IfTrueNode(if_node));
  1.1786 +  Node*   if_false       = _gvn.transform(new (C) IfFalseNode(if_node));
  1.1787 +
  1.1788 +  RegionNode* region_node = new (C) RegionNode(3);
  1.1789 +  region_node->init_req(1, if_true);
  1.1790 +
  1.1791 +  Node* phi_node = new (C) PhiNode(region_node, Type::DOUBLE);
  1.1792 +  // special case for x^y where y == 2, we can convert it to x * x
  1.1793 +  phi_node->init_req(1, _gvn.transform(new (C) MulDNode(x, x)));
  1.1794 +
  1.1795 +  // set control to if_false since we will now process the false branch
  1.1796 +  set_control(if_false);
  1.1797 +
  1.1798 +  if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1.1799 +    // Short form: skip the fancy tests and just check for NaN result.
  1.1800 +    result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
  1.1801 +  } else {
  1.1802 +    // If this inlining ever returned NaN in the past, include all
  1.1803 +    // checks + call to the runtime.
  1.1804 +
  1.1805 +    // Set the merge point for If node with condition of (x <= 0.0)
  1.1806 +    // There are four possible paths to region node and phi node
  1.1807 +    RegionNode *r = new (C) RegionNode(4);
  1.1808 +    Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1.1809 +
  1.1810 +    // Build the first if node: if (x <= 0.0)
  1.1811 +    // Node for 0 constant
  1.1812 +    Node *zeronode = makecon(TypeD::ZERO);
  1.1813 +    // Check x:0
  1.1814 +    Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
  1.1815 +    // Check: If (x<=0) then go complex path
  1.1816 +    Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
  1.1817 +    // Branch either way
  1.1818 +    IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1.1819 +    // Fast path taken; set region slot 3
  1.1820 +    Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
  1.1821 +    r->init_req(3,fast_taken); // Capture fast-control
  1.1822 +
  1.1823 +    // Fast path not-taken, i.e. slow path
  1.1824 +    Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
  1.1825 +
  1.1826 +    // Set fast path result
  1.1827 +    Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
  1.1828 +    phi->init_req(3, fast_result);
  1.1829 +
  1.1830 +    // Complex path
  1.1831 +    // Build the second if node (if y is long)
  1.1832 +    // Node for (long)y
  1.1833 +    Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
  1.1834 +    // Node for (double)((long) y)
  1.1835 +    Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
  1.1836 +    // Check (double)((long) y) : y
  1.1837 +    Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
  1.1838 +    // Check if (y isn't long) then go to slow path
  1.1839 +
  1.1840 +    Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
  1.1841 +    // Branch either way
  1.1842 +    IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1.1843 +    Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
  1.1844 +
  1.1845 +    Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
  1.1846 +
  1.1847 +    // Calculate DPow(abs(x), y)*(1 & (long)y)
  1.1848 +    // Node for constant 1
  1.1849 +    Node *conone = longcon(1);
  1.1850 +    // 1& (long)y
  1.1851 +    Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
  1.1852 +
  1.1853 +    // A huge number is always even. Detect a huge number by checking
  1.1854 +    // if y + 1 == y and set integer to be tested for parity to 0.
  1.1855 +    // Required for corner case:
  1.1856 +    // (long)9.223372036854776E18 = max_jlong
  1.1857 +    // (double)(long)9.223372036854776E18 = 9.223372036854776E18
  1.1858 +    // max_jlong is odd but 9.223372036854776E18 is even
  1.1859 +    Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
  1.1860 +    Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
  1.1861 +    Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
  1.1862 +    Node* correctedsign = NULL;
  1.1863 +    if (ConditionalMoveLimit != 0) {
  1.1864 +      correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
  1.1865 +    } else {
  1.1866 +      IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
  1.1867 +      RegionNode *r = new (C) RegionNode(3);
  1.1868 +      Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  1.1869 +      r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
  1.1870 +      r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
  1.1871 +      phi->init_req(1, signnode);
  1.1872 +      phi->init_req(2, longcon(0));
  1.1873 +      correctedsign = _gvn.transform(phi);
  1.1874 +      ylong_path = _gvn.transform(r);
  1.1875 +      record_for_igvn(r);
  1.1876 +    }
  1.1877 +
  1.1878 +    // zero node
  1.1879 +    Node *conzero = longcon(0);
  1.1880 +    // Check (1&(long)y)==0?
  1.1881 +    Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
  1.1882 +    // Check if (1&(long)y)!=0?, if so the result is negative
  1.1883 +    Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
  1.1884 +    // abs(x)
  1.1885 +    Node *absx=_gvn.transform(new (C) AbsDNode(x));
  1.1886 +    // abs(x)^y
  1.1887 +    Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
  1.1888 +    // -abs(x)^y
  1.1889 +    Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
  1.1890 +    // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1.1891 +    Node *signresult = NULL;
  1.1892 +    if (ConditionalMoveLimit != 0) {
  1.1893 +      signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1.1894 +    } else {
  1.1895 +      IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
  1.1896 +      RegionNode *r = new (C) RegionNode(3);
  1.1897 +      Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1.1898 +      r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
  1.1899 +      r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
  1.1900 +      phi->init_req(1, absxpowy);
  1.1901 +      phi->init_req(2, negabsxpowy);
  1.1902 +      signresult = _gvn.transform(phi);
  1.1903 +      ylong_path = _gvn.transform(r);
  1.1904 +      record_for_igvn(r);
  1.1905 +    }
  1.1906 +    // Set complex path fast result
  1.1907 +    r->init_req(2, ylong_path);
  1.1908 +    phi->init_req(2, signresult);
  1.1909 +
  1.1910 +    static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1.1911 +    Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1.1912 +    r->init_req(1,slow_path);
  1.1913 +    phi->init_req(1,slow_result);
  1.1914 +
  1.1915 +    // Post merge
  1.1916 +    set_control(_gvn.transform(r));
  1.1917 +    record_for_igvn(r);
  1.1918 +    result = _gvn.transform(phi);
  1.1919 +  }
  1.1920 +
  1.1921 +  result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1.1922 +
  1.1923 +  // control from finish_pow_exp is now input to the region node
  1.1924 +  region_node->set_req(2, control());
  1.1925 +  // the result from finish_pow_exp is now input to the phi node
  1.1926 +  phi_node->init_req(2, result);
  1.1927 +  set_control(_gvn.transform(region_node));
  1.1928 +  record_for_igvn(region_node);
  1.1929 +  set_result(_gvn.transform(phi_node));
  1.1930 +
  1.1931 +  C->set_has_split_ifs(true); // Has chance for split-if optimization
  1.1932 +  return true;
  1.1933 +}
  1.1934 +
  1.1935 +//------------------------------runtime_math-----------------------------
  1.1936 +bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1.1937 +  assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  1.1938 +         "must be (DD)D or (D)D type");
  1.1939 +
  1.1940 +  // Inputs
  1.1941 +  Node* a = round_double_node(argument(0));
  1.1942 +  Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
  1.1943 +
  1.1944 +  const TypePtr* no_memory_effects = NULL;
  1.1945 +  Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1.1946 +                                 no_memory_effects,
  1.1947 +                                 a, top(), b, b ? top() : NULL);
  1.1948 +  Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
  1.1949 +#ifdef ASSERT
  1.1950 +  Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
  1.1951 +  assert(value_top == top(), "second value must be top");
  1.1952 +#endif
  1.1953 +
  1.1954 +  set_result(value);
  1.1955 +  return true;
  1.1956 +}
  1.1957 +
  1.1958 +//------------------------------inline_math_native-----------------------------
  1.1959 +bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  1.1960 +#define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
  1.1961 +  switch (id) {
  1.1962 +    // These intrinsics are not properly supported on all hardware
  1.1963 +  case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
  1.1964 +    runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
  1.1965 +  case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
  1.1966 +    runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
  1.1967 +  case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
  1.1968 +    runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
  1.1969 +
  1.1970 +  case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
  1.1971 +    runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
  1.1972 +  case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
  1.1973 +    runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
  1.1974 +
  1.1975 +    // These intrinsics are supported on all hardware
  1.1976 +  case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
  1.1977 +  case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
  1.1978 +
  1.1979 +  case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
  1.1980 +    runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
  1.1981 +  case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
  1.1982 +    runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
  1.1983 +#undef FN_PTR
  1.1984 +
  1.1985 +   // These intrinsics are not yet correctly implemented
  1.1986 +  case vmIntrinsics::_datan2:
  1.1987 +    return false;
  1.1988 +
  1.1989 +  default:
  1.1990 +    fatal_unexpected_iid(id);
  1.1991 +    return false;
  1.1992 +  }
  1.1993 +}
  1.1994 +
  1.1995 +static bool is_simple_name(Node* n) {
  1.1996 +  return (n->req() == 1         // constant
  1.1997 +          || (n->is_Type() && n->as_Type()->type()->singleton())
  1.1998 +          || n->is_Proj()       // parameter or return value
  1.1999 +          || n->is_Phi()        // local of some sort
  1.2000 +          );
  1.2001 +}
  1.2002 +
  1.2003 +//----------------------------inline_min_max-----------------------------------
  1.2004 +bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  1.2005 +  set_result(generate_min_max(id, argument(0), argument(1)));
  1.2006 +  return true;
  1.2007 +}
  1.2008 +
  1.2009 +void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
  1.2010 +  Node* bol = _gvn.transform( new (C) BoolNode(test, BoolTest::overflow) );
  1.2011 +  IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  1.2012 +  Node* fast_path = _gvn.transform( new (C) IfFalseNode(check));
  1.2013 +  Node* slow_path = _gvn.transform( new (C) IfTrueNode(check) );
  1.2014 +
  1.2015 +  {
  1.2016 +    PreserveJVMState pjvms(this);
  1.2017 +    PreserveReexecuteState preexecs(this);
  1.2018 +    jvms()->set_should_reexecute(true);
  1.2019 +
  1.2020 +    set_control(slow_path);
  1.2021 +    set_i_o(i_o());
  1.2022 +
  1.2023 +    uncommon_trap(Deoptimization::Reason_intrinsic,
  1.2024 +                  Deoptimization::Action_none);
  1.2025 +  }
  1.2026 +
  1.2027 +  set_control(fast_path);
  1.2028 +  set_result(math);
  1.2029 +}
  1.2030 +
  1.2031 +template <typename OverflowOp>
  1.2032 +bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
  1.2033 +  typedef typename OverflowOp::MathOp MathOp;
  1.2034 +
  1.2035 +  MathOp* mathOp = new(C) MathOp(arg1, arg2);
  1.2036 +  Node* operation = _gvn.transform( mathOp );
  1.2037 +  Node* ofcheck = _gvn.transform( new(C) OverflowOp(arg1, arg2) );
  1.2038 +  inline_math_mathExact(operation, ofcheck);
  1.2039 +  return true;
  1.2040 +}
  1.2041 +
  1.2042 +bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
  1.2043 +  return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
  1.2044 +}
  1.2045 +
  1.2046 +bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
  1.2047 +  return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
  1.2048 +}
  1.2049 +
  1.2050 +bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
  1.2051 +  return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
  1.2052 +}
  1.2053 +
  1.2054 +bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
  1.2055 +  return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
  1.2056 +}
  1.2057 +
  1.2058 +bool LibraryCallKit::inline_math_negateExactI() {
  1.2059 +  return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
  1.2060 +}
  1.2061 +
  1.2062 +bool LibraryCallKit::inline_math_negateExactL() {
  1.2063 +  return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
  1.2064 +}
  1.2065 +
  1.2066 +bool LibraryCallKit::inline_math_multiplyExactI() {
  1.2067 +  return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
  1.2068 +}
  1.2069 +
  1.2070 +bool LibraryCallKit::inline_math_multiplyExactL() {
  1.2071 +  return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
  1.2072 +}
  1.2073 +
  1.2074 +Node*
  1.2075 +LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  1.2076 +  // These are the candidate return value:
  1.2077 +  Node* xvalue = x0;
  1.2078 +  Node* yvalue = y0;
  1.2079 +
  1.2080 +  if (xvalue == yvalue) {
  1.2081 +    return xvalue;
  1.2082 +  }
  1.2083 +
  1.2084 +  bool want_max = (id == vmIntrinsics::_max);
  1.2085 +
  1.2086 +  const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  1.2087 +  const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  1.2088 +  if (txvalue == NULL || tyvalue == NULL)  return top();
  1.2089 +  // This is not really necessary, but it is consistent with a
  1.2090 +  // hypothetical MaxINode::Value method:
  1.2091 +  int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  1.2092 +
  1.2093 +  // %%% This folding logic should (ideally) be in a different place.
  1.2094 +  // Some should be inside IfNode, and there to be a more reliable
  1.2095 +  // transformation of ?: style patterns into cmoves.  We also want
  1.2096 +  // more powerful optimizations around cmove and min/max.
  1.2097 +
  1.2098 +  // Try to find a dominating comparison of these guys.
  1.2099 +  // It can simplify the index computation for Arrays.copyOf
  1.2100 +  // and similar uses of System.arraycopy.
  1.2101 +  // First, compute the normalized version of CmpI(x, y).
  1.2102 +  int   cmp_op = Op_CmpI;
  1.2103 +  Node* xkey = xvalue;
  1.2104 +  Node* ykey = yvalue;
  1.2105 +  Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
  1.2106 +  if (ideal_cmpxy->is_Cmp()) {
  1.2107 +    // E.g., if we have CmpI(length - offset, count),
  1.2108 +    // it might idealize to CmpI(length, count + offset)
  1.2109 +    cmp_op = ideal_cmpxy->Opcode();
  1.2110 +    xkey = ideal_cmpxy->in(1);
  1.2111 +    ykey = ideal_cmpxy->in(2);
  1.2112 +  }
  1.2113 +
  1.2114 +  // Start by locating any relevant comparisons.
  1.2115 +  Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  1.2116 +  Node* cmpxy = NULL;
  1.2117 +  Node* cmpyx = NULL;
  1.2118 +  for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  1.2119 +    Node* cmp = start_from->fast_out(k);
  1.2120 +    if (cmp->outcnt() > 0 &&            // must have prior uses
  1.2121 +        cmp->in(0) == NULL &&           // must be context-independent
  1.2122 +        cmp->Opcode() == cmp_op) {      // right kind of compare
  1.2123 +      if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  1.2124 +      if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  1.2125 +    }
  1.2126 +  }
  1.2127 +
  1.2128 +  const int NCMPS = 2;
  1.2129 +  Node* cmps[NCMPS] = { cmpxy, cmpyx };
  1.2130 +  int cmpn;
  1.2131 +  for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1.2132 +    if (cmps[cmpn] != NULL)  break;     // find a result
  1.2133 +  }
  1.2134 +  if (cmpn < NCMPS) {
  1.2135 +    // Look for a dominating test that tells us the min and max.
  1.2136 +    int depth = 0;                // Limit search depth for speed
  1.2137 +    Node* dom = control();
  1.2138 +    for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  1.2139 +      if (++depth >= 100)  break;
  1.2140 +      Node* ifproj = dom;
  1.2141 +      if (!ifproj->is_Proj())  continue;
  1.2142 +      Node* iff = ifproj->in(0);
  1.2143 +      if (!iff->is_If())  continue;
  1.2144 +      Node* bol = iff->in(1);
  1.2145 +      if (!bol->is_Bool())  continue;
  1.2146 +      Node* cmp = bol->in(1);
  1.2147 +      if (cmp == NULL)  continue;
  1.2148 +      for (cmpn = 0; cmpn < NCMPS; cmpn++)
  1.2149 +        if (cmps[cmpn] == cmp)  break;
  1.2150 +      if (cmpn == NCMPS)  continue;
  1.2151 +      BoolTest::mask btest = bol->as_Bool()->_test._test;
  1.2152 +      if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  1.2153 +      if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  1.2154 +      // At this point, we know that 'x btest y' is true.
  1.2155 +      switch (btest) {
  1.2156 +      case BoolTest::eq:
  1.2157 +        // They are proven equal, so we can collapse the min/max.
  1.2158 +        // Either value is the answer.  Choose the simpler.
  1.2159 +        if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  1.2160 +          return yvalue;
  1.2161 +        return xvalue;
  1.2162 +      case BoolTest::lt:          // x < y
  1.2163 +      case BoolTest::le:          // x <= y
  1.2164 +        return (want_max ? yvalue : xvalue);
  1.2165 +      case BoolTest::gt:          // x > y
  1.2166 +      case BoolTest::ge:          // x >= y
  1.2167 +        return (want_max ? xvalue : yvalue);
  1.2168 +      }
  1.2169 +    }
  1.2170 +  }
  1.2171 +
  1.2172 +  // We failed to find a dominating test.
  1.2173 +  // Let's pick a test that might GVN with prior tests.
  1.2174 +  Node*          best_bol   = NULL;
  1.2175 +  BoolTest::mask best_btest = BoolTest::illegal;
  1.2176 +  for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1.2177 +    Node* cmp = cmps[cmpn];
  1.2178 +    if (cmp == NULL)  continue;
  1.2179 +    for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  1.2180 +      Node* bol = cmp->fast_out(j);
  1.2181 +      if (!bol->is_Bool())  continue;
  1.2182 +      BoolTest::mask btest = bol->as_Bool()->_test._test;
  1.2183 +      if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  1.2184 +      if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  1.2185 +      if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  1.2186 +        best_bol   = bol->as_Bool();
  1.2187 +        best_btest = btest;
  1.2188 +      }
  1.2189 +    }
  1.2190 +  }
  1.2191 +
  1.2192 +  Node* answer_if_true  = NULL;
  1.2193 +  Node* answer_if_false = NULL;
  1.2194 +  switch (best_btest) {
  1.2195 +  default:
  1.2196 +    if (cmpxy == NULL)
  1.2197 +      cmpxy = ideal_cmpxy;
  1.2198 +    best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
  1.2199 +    // and fall through:
  1.2200 +  case BoolTest::lt:          // x < y
  1.2201 +  case BoolTest::le:          // x <= y
  1.2202 +    answer_if_true  = (want_max ? yvalue : xvalue);
  1.2203 +    answer_if_false = (want_max ? xvalue : yvalue);
  1.2204 +    break;
  1.2205 +  case BoolTest::gt:          // x > y
  1.2206 +  case BoolTest::ge:          // x >= y
  1.2207 +    answer_if_true  = (want_max ? xvalue : yvalue);
  1.2208 +    answer_if_false = (want_max ? yvalue : xvalue);
  1.2209 +    break;
  1.2210 +  }
  1.2211 +
  1.2212 +  jint hi, lo;
  1.2213 +  if (want_max) {
  1.2214 +    // We can sharpen the minimum.
  1.2215 +    hi = MAX2(txvalue->_hi, tyvalue->_hi);
  1.2216 +    lo = MAX2(txvalue->_lo, tyvalue->_lo);
  1.2217 +  } else {
  1.2218 +    // We can sharpen the maximum.
  1.2219 +    hi = MIN2(txvalue->_hi, tyvalue->_hi);
  1.2220 +    lo = MIN2(txvalue->_lo, tyvalue->_lo);
  1.2221 +  }
  1.2222 +
  1.2223 +  // Use a flow-free graph structure, to avoid creating excess control edges
  1.2224 +  // which could hinder other optimizations.
  1.2225 +  // Since Math.min/max is often used with arraycopy, we want
  1.2226 +  // tightly_coupled_allocation to be able to see beyond min/max expressions.
  1.2227 +  Node* cmov = CMoveNode::make(C, NULL, best_bol,
  1.2228 +                               answer_if_false, answer_if_true,
  1.2229 +                               TypeInt::make(lo, hi, widen));
  1.2230 +
  1.2231 +  return _gvn.transform(cmov);
  1.2232 +
  1.2233 +  /*
  1.2234 +  // This is not as desirable as it may seem, since Min and Max
  1.2235 +  // nodes do not have a full set of optimizations.
  1.2236 +  // And they would interfere, anyway, with 'if' optimizations
  1.2237 +  // and with CMoveI canonical forms.
  1.2238 +  switch (id) {
  1.2239 +  case vmIntrinsics::_min:
  1.2240 +    result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  1.2241 +  case vmIntrinsics::_max:
  1.2242 +    result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  1.2243 +  default:
  1.2244 +    ShouldNotReachHere();
  1.2245 +  }
  1.2246 +  */
  1.2247 +}
  1.2248 +
  1.2249 +inline int
  1.2250 +LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  1.2251 +  const TypePtr* base_type = TypePtr::NULL_PTR;
  1.2252 +  if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  1.2253 +  if (base_type == NULL) {
  1.2254 +    // Unknown type.
  1.2255 +    return Type::AnyPtr;
  1.2256 +  } else if (base_type == TypePtr::NULL_PTR) {
  1.2257 +    // Since this is a NULL+long form, we have to switch to a rawptr.
  1.2258 +    base   = _gvn.transform(new (C) CastX2PNode(offset));
  1.2259 +    offset = MakeConX(0);
  1.2260 +    return Type::RawPtr;
  1.2261 +  } else if (base_type->base() == Type::RawPtr) {
  1.2262 +    return Type::RawPtr;
  1.2263 +  } else if (base_type->isa_oopptr()) {
  1.2264 +    // Base is never null => always a heap address.
  1.2265 +    if (base_type->ptr() == TypePtr::NotNull) {
  1.2266 +      return Type::OopPtr;
  1.2267 +    }
  1.2268 +    // Offset is small => always a heap address.
  1.2269 +    const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  1.2270 +    if (offset_type != NULL &&
  1.2271 +        base_type->offset() == 0 &&     // (should always be?)
  1.2272 +        offset_type->_lo >= 0 &&
  1.2273 +        !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  1.2274 +      return Type::OopPtr;
  1.2275 +    }
  1.2276 +    // Otherwise, it might either be oop+off or NULL+addr.
  1.2277 +    return Type::AnyPtr;
  1.2278 +  } else {
  1.2279 +    // No information:
  1.2280 +    return Type::AnyPtr;
  1.2281 +  }
  1.2282 +}
  1.2283 +
  1.2284 +inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  1.2285 +  int kind = classify_unsafe_addr(base, offset);
  1.2286 +  if (kind == Type::RawPtr) {
  1.2287 +    return basic_plus_adr(top(), base, offset);
  1.2288 +  } else {
  1.2289 +    return basic_plus_adr(base, offset);
  1.2290 +  }
  1.2291 +}
  1.2292 +
  1.2293 +//--------------------------inline_number_methods-----------------------------
  1.2294 +// inline int     Integer.numberOfLeadingZeros(int)
  1.2295 +// inline int        Long.numberOfLeadingZeros(long)
  1.2296 +//
  1.2297 +// inline int     Integer.numberOfTrailingZeros(int)
  1.2298 +// inline int        Long.numberOfTrailingZeros(long)
  1.2299 +//
  1.2300 +// inline int     Integer.bitCount(int)
  1.2301 +// inline int        Long.bitCount(long)
  1.2302 +//
  1.2303 +// inline char  Character.reverseBytes(char)
  1.2304 +// inline short     Short.reverseBytes(short)
  1.2305 +// inline int     Integer.reverseBytes(int)
  1.2306 +// inline long       Long.reverseBytes(long)
  1.2307 +bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
  1.2308 +  Node* arg = argument(0);
  1.2309 +  Node* n;
  1.2310 +  switch (id) {
  1.2311 +  case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
  1.2312 +  case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
  1.2313 +  case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
  1.2314 +  case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
  1.2315 +  case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
  1.2316 +  case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
  1.2317 +  case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
  1.2318 +  case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
  1.2319 +  case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
  1.2320 +  case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
  1.2321 +  default:  fatal_unexpected_iid(id);  break;
  1.2322 +  }
  1.2323 +  set_result(_gvn.transform(n));
  1.2324 +  return true;
  1.2325 +}
  1.2326 +
  1.2327 +//----------------------------inline_unsafe_access----------------------------
  1.2328 +
  1.2329 +const static BasicType T_ADDRESS_HOLDER = T_LONG;
  1.2330 +
  1.2331 +// Helper that guards and inserts a pre-barrier.
  1.2332 +void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
  1.2333 +                                        Node* pre_val, bool need_mem_bar) {
  1.2334 +  // We could be accessing the referent field of a reference object. If so, when G1
  1.2335 +  // is enabled, we need to log the value in the referent field in an SATB buffer.
  1.2336 +  // This routine performs some compile time filters and generates suitable
  1.2337 +  // runtime filters that guard the pre-barrier code.
  1.2338 +  // Also add memory barrier for non volatile load from the referent field
  1.2339 +  // to prevent commoning of loads across safepoint.
  1.2340 +  if (!UseG1GC && !need_mem_bar)
  1.2341 +    return;
  1.2342 +
  1.2343 +  // Some compile time checks.
  1.2344 +
  1.2345 +  // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
  1.2346 +  const TypeX* otype = offset->find_intptr_t_type();
  1.2347 +  if (otype != NULL && otype->is_con() &&
  1.2348 +      otype->get_con() != java_lang_ref_Reference::referent_offset) {
  1.2349 +    // Constant offset but not the reference_offset so just return
  1.2350 +    return;
  1.2351 +  }
  1.2352 +
  1.2353 +  // We only need to generate the runtime guards for instances.
  1.2354 +  const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
  1.2355 +  if (btype != NULL) {
  1.2356 +    if (btype->isa_aryptr()) {
  1.2357 +      // Array type so nothing to do
  1.2358 +      return;
  1.2359 +    }
  1.2360 +
  1.2361 +    const TypeInstPtr* itype = btype->isa_instptr();
  1.2362 +    if (itype != NULL) {
  1.2363 +      // Can the klass of base_oop be statically determined to be
  1.2364 +      // _not_ a sub-class of Reference and _not_ Object?
  1.2365 +      ciKlass* klass = itype->klass();
  1.2366 +      if ( klass->is_loaded() &&
  1.2367 +          !klass->is_subtype_of(env()->Reference_klass()) &&
  1.2368 +          !env()->Object_klass()->is_subtype_of(klass)) {
  1.2369 +        return;
  1.2370 +      }
  1.2371 +    }
  1.2372 +  }
  1.2373 +
  1.2374 +  // The compile time filters did not reject base_oop/offset so
  1.2375 +  // we need to generate the following runtime filters
  1.2376 +  //
  1.2377 +  // if (offset == java_lang_ref_Reference::_reference_offset) {
  1.2378 +  //   if (instance_of(base, java.lang.ref.Reference)) {
  1.2379 +  //     pre_barrier(_, pre_val, ...);
  1.2380 +  //   }
  1.2381 +  // }
  1.2382 +
  1.2383 +  float likely   = PROB_LIKELY(  0.999);
  1.2384 +  float unlikely = PROB_UNLIKELY(0.999);
  1.2385 +
  1.2386 +  IdealKit ideal(this);
  1.2387 +#define __ ideal.
  1.2388 +
  1.2389 +  Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
  1.2390 +
  1.2391 +  __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
  1.2392 +      // Update graphKit memory and control from IdealKit.
  1.2393 +      sync_kit(ideal);
  1.2394 +
  1.2395 +      Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
  1.2396 +      Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
  1.2397 +
  1.2398 +      // Update IdealKit memory and control from graphKit.
  1.2399 +      __ sync_kit(this);
  1.2400 +
  1.2401 +      Node* one = __ ConI(1);
  1.2402 +      // is_instof == 0 if base_oop == NULL
  1.2403 +      __ if_then(is_instof, BoolTest::eq, one, unlikely); {
  1.2404 +
  1.2405 +        // Update graphKit from IdeakKit.
  1.2406 +        sync_kit(ideal);
  1.2407 +
  1.2408 +        // Use the pre-barrier to record the value in the referent field
  1.2409 +        pre_barrier(false /* do_load */,
  1.2410 +                    __ ctrl(),
  1.2411 +                    NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  1.2412 +                    pre_val /* pre_val */,
  1.2413 +                    T_OBJECT);
  1.2414 +        if (need_mem_bar) {
  1.2415 +          // Add memory barrier to prevent commoning reads from this field
  1.2416 +          // across safepoint since GC can change its value.
  1.2417 +          insert_mem_bar(Op_MemBarCPUOrder);
  1.2418 +        }
  1.2419 +        // Update IdealKit from graphKit.
  1.2420 +        __ sync_kit(this);
  1.2421 +
  1.2422 +      } __ end_if(); // _ref_type != ref_none
  1.2423 +  } __ end_if(); // offset == referent_offset
  1.2424 +
  1.2425 +  // Final sync IdealKit and GraphKit.
  1.2426 +  final_sync(ideal);
  1.2427 +#undef __
  1.2428 +}
  1.2429 +
  1.2430 +
  1.2431 +// Interpret Unsafe.fieldOffset cookies correctly:
  1.2432 +extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  1.2433 +
  1.2434 +const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
  1.2435 +  // Attempt to infer a sharper value type from the offset and base type.
  1.2436 +  ciKlass* sharpened_klass = NULL;
  1.2437 +
  1.2438 +  // See if it is an instance field, with an object type.
  1.2439 +  if (alias_type->field() != NULL) {
  1.2440 +    assert(!is_native_ptr, "native pointer op cannot use a java address");
  1.2441 +    if (alias_type->field()->type()->is_klass()) {
  1.2442 +      sharpened_klass = alias_type->field()->type()->as_klass();
  1.2443 +    }
  1.2444 +  }
  1.2445 +
  1.2446 +  // See if it is a narrow oop array.
  1.2447 +  if (adr_type->isa_aryptr()) {
  1.2448 +    if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
  1.2449 +      const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  1.2450 +      if (elem_type != NULL) {
  1.2451 +        sharpened_klass = elem_type->klass();
  1.2452 +      }
  1.2453 +    }
  1.2454 +  }
  1.2455 +
  1.2456 +  // The sharpened class might be unloaded if there is no class loader
  1.2457 +  // contraint in place.
  1.2458 +  if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
  1.2459 +    const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  1.2460 +
  1.2461 +#ifndef PRODUCT
  1.2462 +    if (C->print_intrinsics() || C->print_inlining()) {
  1.2463 +      tty->print("  from base type: ");  adr_type->dump();
  1.2464 +      tty->print("  sharpened value: ");  tjp->dump();
  1.2465 +    }
  1.2466 +#endif
  1.2467 +    // Sharpen the value type.
  1.2468 +    return tjp;
  1.2469 +  }
  1.2470 +  return NULL;
  1.2471 +}
  1.2472 +
  1.2473 +bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  1.2474 +  if (callee()->is_static())  return false;  // caller must have the capability!
  1.2475 +
  1.2476 +#ifndef PRODUCT
  1.2477 +  {
  1.2478 +    ResourceMark rm;
  1.2479 +    // Check the signatures.
  1.2480 +    ciSignature* sig = callee()->signature();
  1.2481 +#ifdef ASSERT
  1.2482 +    if (!is_store) {
  1.2483 +      // Object getObject(Object base, int/long offset), etc.
  1.2484 +      BasicType rtype = sig->return_type()->basic_type();
  1.2485 +      if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  1.2486 +          rtype = T_ADDRESS;  // it is really a C void*
  1.2487 +      assert(rtype == type, "getter must return the expected value");
  1.2488 +      if (!is_native_ptr) {
  1.2489 +        assert(sig->count() == 2, "oop getter has 2 arguments");
  1.2490 +        assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  1.2491 +        assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  1.2492 +      } else {
  1.2493 +        assert(sig->count() == 1, "native getter has 1 argument");
  1.2494 +        assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  1.2495 +      }
  1.2496 +    } else {
  1.2497 +      // void putObject(Object base, int/long offset, Object x), etc.
  1.2498 +      assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  1.2499 +      if (!is_native_ptr) {
  1.2500 +        assert(sig->count() == 3, "oop putter has 3 arguments");
  1.2501 +        assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  1.2502 +        assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  1.2503 +      } else {
  1.2504 +        assert(sig->count() == 2, "native putter has 2 arguments");
  1.2505 +        assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  1.2506 +      }
  1.2507 +      BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  1.2508 +      if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  1.2509 +        vtype = T_ADDRESS;  // it is really a C void*
  1.2510 +      assert(vtype == type, "putter must accept the expected value");
  1.2511 +    }
  1.2512 +#endif // ASSERT
  1.2513 + }
  1.2514 +#endif //PRODUCT
  1.2515 +
  1.2516 +  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  1.2517 +
  1.2518 +  Node* receiver = argument(0);  // type: oop
  1.2519 +
  1.2520 +  // Build address expression.  See the code in inline_unsafe_prefetch.
  1.2521 +  Node* adr;
  1.2522 +  Node* heap_base_oop = top();
  1.2523 +  Node* offset = top();
  1.2524 +  Node* val;
  1.2525 +
  1.2526 +  if (!is_native_ptr) {
  1.2527 +    // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  1.2528 +    Node* base = argument(1);  // type: oop
  1.2529 +    // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  1.2530 +    offset = argument(2);  // type: long
  1.2531 +    // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  1.2532 +    // to be plain byte offsets, which are also the same as those accepted
  1.2533 +    // by oopDesc::field_base.
  1.2534 +    assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  1.2535 +           "fieldOffset must be byte-scaled");
  1.2536 +    // 32-bit machines ignore the high half!
  1.2537 +    offset = ConvL2X(offset);
  1.2538 +    adr = make_unsafe_address(base, offset);
  1.2539 +    heap_base_oop = base;
  1.2540 +    val = is_store ? argument(4) : NULL;
  1.2541 +  } else {
  1.2542 +    Node* ptr = argument(1);  // type: long
  1.2543 +    ptr = ConvL2X(ptr);  // adjust Java long to machine word
  1.2544 +    adr = make_unsafe_address(NULL, ptr);
  1.2545 +    val = is_store ? argument(3) : NULL;
  1.2546 +  }
  1.2547 +
  1.2548 +  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  1.2549 +
  1.2550 +  // First guess at the value type.
  1.2551 +  const Type *value_type = Type::get_const_basic_type(type);
  1.2552 +
  1.2553 +  // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  1.2554 +  // there was not enough information to nail it down.
  1.2555 +  Compile::AliasType* alias_type = C->alias_type(adr_type);
  1.2556 +  assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  1.2557 +
  1.2558 +  // We will need memory barriers unless we can determine a unique
  1.2559 +  // alias category for this reference.  (Note:  If for some reason
  1.2560 +  // the barriers get omitted and the unsafe reference begins to "pollute"
  1.2561 +  // the alias analysis of the rest of the graph, either Compile::can_alias
  1.2562 +  // or Compile::must_alias will throw a diagnostic assert.)
  1.2563 +  bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  1.2564 +
  1.2565 +  // If we are reading the value of the referent field of a Reference
  1.2566 +  // object (either by using Unsafe directly or through reflection)
  1.2567 +  // then, if G1 is enabled, we need to record the referent in an
  1.2568 +  // SATB log buffer using the pre-barrier mechanism.
  1.2569 +  // Also we need to add memory barrier to prevent commoning reads
  1.2570 +  // from this field across safepoint since GC can change its value.
  1.2571 +  bool need_read_barrier = !is_native_ptr && !is_store &&
  1.2572 +                           offset != top() && heap_base_oop != top();
  1.2573 +
  1.2574 +  if (!is_store && type == T_OBJECT) {
  1.2575 +    const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
  1.2576 +    if (tjp != NULL) {
  1.2577 +      value_type = tjp;
  1.2578 +    }
  1.2579 +  }
  1.2580 +
  1.2581 +  receiver = null_check(receiver);
  1.2582 +  if (stopped()) {
  1.2583 +    return true;
  1.2584 +  }
  1.2585 +  // Heap pointers get a null-check from the interpreter,
  1.2586 +  // as a courtesy.  However, this is not guaranteed by Unsafe,
  1.2587 +  // and it is not possible to fully distinguish unintended nulls
  1.2588 +  // from intended ones in this API.
  1.2589 +
  1.2590 +  if (is_volatile) {
  1.2591 +    // We need to emit leading and trailing CPU membars (see below) in
  1.2592 +    // addition to memory membars when is_volatile. This is a little
  1.2593 +    // too strong, but avoids the need to insert per-alias-type
  1.2594 +    // volatile membars (for stores; compare Parse::do_put_xxx), which
  1.2595 +    // we cannot do effectively here because we probably only have a
  1.2596 +    // rough approximation of type.
  1.2597 +    need_mem_bar = true;
  1.2598 +    // For Stores, place a memory ordering barrier now.
  1.2599 +    if (is_store) {
  1.2600 +      insert_mem_bar(Op_MemBarRelease);
  1.2601 +    } else {
  1.2602 +      if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
  1.2603 +        insert_mem_bar(Op_MemBarVolatile);
  1.2604 +      }
  1.2605 +    }
  1.2606 +  }
  1.2607 +
  1.2608 +  // Memory barrier to prevent normal and 'unsafe' accesses from
  1.2609 +  // bypassing each other.  Happens after null checks, so the
  1.2610 +  // exception paths do not take memory state from the memory barrier,
  1.2611 +  // so there's no problems making a strong assert about mixing users
  1.2612 +  // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  1.2613 +  // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  1.2614 +  if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  1.2615 +
  1.2616 +  if (!is_store) {
  1.2617 +    Node* p = make_load(control(), adr, value_type, type, adr_type, MemNode::unordered, is_volatile);
  1.2618 +    // load value
  1.2619 +    switch (type) {
  1.2620 +    case T_BOOLEAN:
  1.2621 +    case T_CHAR:
  1.2622 +    case T_BYTE:
  1.2623 +    case T_SHORT:
  1.2624 +    case T_INT:
  1.2625 +    case T_LONG:
  1.2626 +    case T_FLOAT:
  1.2627 +    case T_DOUBLE:
  1.2628 +      break;
  1.2629 +    case T_OBJECT:
  1.2630 +      if (need_read_barrier) {
  1.2631 +        insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
  1.2632 +      }
  1.2633 +      break;
  1.2634 +    case T_ADDRESS:
  1.2635 +      // Cast to an int type.
  1.2636 +      p = _gvn.transform(new (C) CastP2XNode(NULL, p));
  1.2637 +      p = ConvX2UL(p);
  1.2638 +      break;
  1.2639 +    default:
  1.2640 +      fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
  1.2641 +      break;
  1.2642 +    }
  1.2643 +    // The load node has the control of the preceding MemBarCPUOrder.  All
  1.2644 +    // following nodes will have the control of the MemBarCPUOrder inserted at
  1.2645 +    // the end of this method.  So, pushing the load onto the stack at a later
  1.2646 +    // point is fine.
  1.2647 +    set_result(p);
  1.2648 +  } else {
  1.2649 +    // place effect of store into memory
  1.2650 +    switch (type) {
  1.2651 +    case T_DOUBLE:
  1.2652 +      val = dstore_rounding(val);
  1.2653 +      break;
  1.2654 +    case T_ADDRESS:
  1.2655 +      // Repackage the long as a pointer.
  1.2656 +      val = ConvL2X(val);
  1.2657 +      val = _gvn.transform(new (C) CastX2PNode(val));
  1.2658 +      break;
  1.2659 +    }
  1.2660 +
  1.2661 +    MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
  1.2662 +    if (type != T_OBJECT ) {
  1.2663 +      (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
  1.2664 +    } else {
  1.2665 +      // Possibly an oop being stored to Java heap or native memory
  1.2666 +      if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  1.2667 +        // oop to Java heap.
  1.2668 +        (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
  1.2669 +      } else {
  1.2670 +        // We can't tell at compile time if we are storing in the Java heap or outside
  1.2671 +        // of it. So we need to emit code to conditionally do the proper type of
  1.2672 +        // store.
  1.2673 +
  1.2674 +        IdealKit ideal(this);
  1.2675 +#define __ ideal.
  1.2676 +        // QQQ who knows what probability is here??
  1.2677 +        __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  1.2678 +          // Sync IdealKit and graphKit.
  1.2679 +          sync_kit(ideal);
  1.2680 +          Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
  1.2681 +          // Update IdealKit memory.
  1.2682 +          __ sync_kit(this);
  1.2683 +        } __ else_(); {
  1.2684 +          __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
  1.2685 +        } __ end_if();
  1.2686 +        // Final sync IdealKit and GraphKit.
  1.2687 +        final_sync(ideal);
  1.2688 +#undef __
  1.2689 +      }
  1.2690 +    }
  1.2691 +  }
  1.2692 +
  1.2693 +  if (is_volatile) {
  1.2694 +    if (!is_store) {
  1.2695 +      insert_mem_bar(Op_MemBarAcquire);
  1.2696 +    } else {
  1.2697 +      if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
  1.2698 +        insert_mem_bar(Op_MemBarVolatile);
  1.2699 +      }
  1.2700 +    }
  1.2701 +  }
  1.2702 +
  1.2703 +  if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  1.2704 +
  1.2705 +  return true;
  1.2706 +}
  1.2707 +
  1.2708 +//----------------------------inline_unsafe_prefetch----------------------------
  1.2709 +
  1.2710 +bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  1.2711 +#ifndef PRODUCT
  1.2712 +  {
  1.2713 +    ResourceMark rm;
  1.2714 +    // Check the signatures.
  1.2715 +    ciSignature* sig = callee()->signature();
  1.2716 +#ifdef ASSERT
  1.2717 +    // Object getObject(Object base, int/long offset), etc.
  1.2718 +    BasicType rtype = sig->return_type()->basic_type();
  1.2719 +    if (!is_native_ptr) {
  1.2720 +      assert(sig->count() == 2, "oop prefetch has 2 arguments");
  1.2721 +      assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  1.2722 +      assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  1.2723 +    } else {
  1.2724 +      assert(sig->count() == 1, "native prefetch has 1 argument");
  1.2725 +      assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  1.2726 +    }
  1.2727 +#endif // ASSERT
  1.2728 +  }
  1.2729 +#endif // !PRODUCT
  1.2730 +
  1.2731 +  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  1.2732 +
  1.2733 +  const int idx = is_static ? 0 : 1;
  1.2734 +  if (!is_static) {
  1.2735 +    null_check_receiver();
  1.2736 +    if (stopped()) {
  1.2737 +      return true;
  1.2738 +    }
  1.2739 +  }
  1.2740 +
  1.2741 +  // Build address expression.  See the code in inline_unsafe_access.
  1.2742 +  Node *adr;
  1.2743 +  if (!is_native_ptr) {
  1.2744 +    // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  1.2745 +    Node* base   = argument(idx + 0);  // type: oop
  1.2746 +    // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  1.2747 +    Node* offset = argument(idx + 1);  // type: long
  1.2748 +    // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  1.2749 +    // to be plain byte offsets, which are also the same as those accepted
  1.2750 +    // by oopDesc::field_base.
  1.2751 +    assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  1.2752 +           "fieldOffset must be byte-scaled");
  1.2753 +    // 32-bit machines ignore the high half!
  1.2754 +    offset = ConvL2X(offset);
  1.2755 +    adr = make_unsafe_address(base, offset);
  1.2756 +  } else {
  1.2757 +    Node* ptr = argument(idx + 0);  // type: long
  1.2758 +    ptr = ConvL2X(ptr);  // adjust Java long to machine word
  1.2759 +    adr = make_unsafe_address(NULL, ptr);
  1.2760 +  }
  1.2761 +
  1.2762 +  // Generate the read or write prefetch
  1.2763 +  Node *prefetch;
  1.2764 +  if (is_store) {
  1.2765 +    prefetch = new (C) PrefetchWriteNode(i_o(), adr);
  1.2766 +  } else {
  1.2767 +    prefetch = new (C) PrefetchReadNode(i_o(), adr);
  1.2768 +  }
  1.2769 +  prefetch->init_req(0, control());
  1.2770 +  set_i_o(_gvn.transform(prefetch));
  1.2771 +
  1.2772 +  return true;
  1.2773 +}
  1.2774 +
  1.2775 +//----------------------------inline_unsafe_load_store----------------------------
  1.2776 +// This method serves a couple of different customers (depending on LoadStoreKind):
  1.2777 +//
  1.2778 +// LS_cmpxchg:
  1.2779 +//   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
  1.2780 +//   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
  1.2781 +//   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
  1.2782 +//
  1.2783 +// LS_xadd:
  1.2784 +//   public int  getAndAddInt( Object o, long offset, int  delta)
  1.2785 +//   public long getAndAddLong(Object o, long offset, long delta)
  1.2786 +//
  1.2787 +// LS_xchg:
  1.2788 +//   int    getAndSet(Object o, long offset, int    newValue)
  1.2789 +//   long   getAndSet(Object o, long offset, long   newValue)
  1.2790 +//   Object getAndSet(Object o, long offset, Object newValue)
  1.2791 +//
  1.2792 +bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
  1.2793 +  // This basic scheme here is the same as inline_unsafe_access, but
  1.2794 +  // differs in enough details that combining them would make the code
  1.2795 +  // overly confusing.  (This is a true fact! I originally combined
  1.2796 +  // them, but even I was confused by it!) As much code/comments as
  1.2797 +  // possible are retained from inline_unsafe_access though to make
  1.2798 +  // the correspondences clearer. - dl
  1.2799 +
  1.2800 +  if (callee()->is_static())  return false;  // caller must have the capability!
  1.2801 +
  1.2802 +#ifndef PRODUCT
  1.2803 +  BasicType rtype;
  1.2804 +  {
  1.2805 +    ResourceMark rm;
  1.2806 +    // Check the signatures.
  1.2807 +    ciSignature* sig = callee()->signature();
  1.2808 +    rtype = sig->return_type()->basic_type();
  1.2809 +    if (kind == LS_xadd || kind == LS_xchg) {
  1.2810 +      // Check the signatures.
  1.2811 +#ifdef ASSERT
  1.2812 +      assert(rtype == type, "get and set must return the expected type");
  1.2813 +      assert(sig->count() == 3, "get and set has 3 arguments");
  1.2814 +      assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
  1.2815 +      assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
  1.2816 +      assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
  1.2817 +#endif // ASSERT
  1.2818 +    } else if (kind == LS_cmpxchg) {
  1.2819 +      // Check the signatures.
  1.2820 +#ifdef ASSERT
  1.2821 +      assert(rtype == T_BOOLEAN, "CAS must return boolean");
  1.2822 +      assert(sig->count() == 4, "CAS has 4 arguments");
  1.2823 +      assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  1.2824 +      assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  1.2825 +#endif // ASSERT
  1.2826 +    } else {
  1.2827 +      ShouldNotReachHere();
  1.2828 +    }
  1.2829 +  }
  1.2830 +#endif //PRODUCT
  1.2831 +
  1.2832 +  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  1.2833 +
  1.2834 +  // Get arguments:
  1.2835 +  Node* receiver = NULL;
  1.2836 +  Node* base     = NULL;
  1.2837 +  Node* offset   = NULL;
  1.2838 +  Node* oldval   = NULL;
  1.2839 +  Node* newval   = NULL;
  1.2840 +  if (kind == LS_cmpxchg) {
  1.2841 +    const bool two_slot_type = type2size[type] == 2;
  1.2842 +    receiver = argument(0);  // type: oop
  1.2843 +    base     = argument(1);  // type: oop
  1.2844 +    offset   = argument(2);  // type: long
  1.2845 +    oldval   = argument(4);  // type: oop, int, or long
  1.2846 +    newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
  1.2847 +  } else if (kind == LS_xadd || kind == LS_xchg){
  1.2848 +    receiver = argument(0);  // type: oop
  1.2849 +    base     = argument(1);  // type: oop
  1.2850 +    offset   = argument(2);  // type: long
  1.2851 +    oldval   = NULL;
  1.2852 +    newval   = argument(4);  // type: oop, int, or long
  1.2853 +  }
  1.2854 +
  1.2855 +  // Null check receiver.
  1.2856 +  receiver = null_check(receiver);
  1.2857 +  if (stopped()) {
  1.2858 +    return true;
  1.2859 +  }
  1.2860 +
  1.2861 +  // Build field offset expression.
  1.2862 +  // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  1.2863 +  // to be plain byte offsets, which are also the same as those accepted
  1.2864 +  // by oopDesc::field_base.
  1.2865 +  assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  1.2866 +  // 32-bit machines ignore the high half of long offsets
  1.2867 +  offset = ConvL2X(offset);
  1.2868 +  Node* adr = make_unsafe_address(base, offset);
  1.2869 +  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  1.2870 +
  1.2871 +  // For CAS, unlike inline_unsafe_access, there seems no point in
  1.2872 +  // trying to refine types. Just use the coarse types here.
  1.2873 +  const Type *value_type = Type::get_const_basic_type(type);
  1.2874 +  Compile::AliasType* alias_type = C->alias_type(adr_type);
  1.2875 +  assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  1.2876 +
  1.2877 +  if (kind == LS_xchg && type == T_OBJECT) {
  1.2878 +    const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
  1.2879 +    if (tjp != NULL) {
  1.2880 +      value_type = tjp;
  1.2881 +    }
  1.2882 +  }
  1.2883 +
  1.2884 +  int alias_idx = C->get_alias_index(adr_type);
  1.2885 +
  1.2886 +  // Memory-model-wise, a LoadStore acts like a little synchronized
  1.2887 +  // block, so needs barriers on each side.  These don't translate
  1.2888 +  // into actual barriers on most machines, but we still need rest of
  1.2889 +  // compiler to respect ordering.
  1.2890 +
  1.2891 +  insert_mem_bar(Op_MemBarRelease);
  1.2892 +  insert_mem_bar(Op_MemBarCPUOrder);
  1.2893 +
  1.2894 +  // 4984716: MemBars must be inserted before this
  1.2895 +  //          memory node in order to avoid a false
  1.2896 +  //          dependency which will confuse the scheduler.
  1.2897 +  Node *mem = memory(alias_idx);
  1.2898 +
  1.2899 +  // For now, we handle only those cases that actually exist: ints,
  1.2900 +  // longs, and Object. Adding others should be straightforward.
  1.2901 +  Node* load_store;
  1.2902 +  switch(type) {
  1.2903 +  case T_INT:
  1.2904 +    if (kind == LS_xadd) {
  1.2905 +      load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
  1.2906 +    } else if (kind == LS_xchg) {
  1.2907 +      load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
  1.2908 +    } else if (kind == LS_cmpxchg) {
  1.2909 +      load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  1.2910 +    } else {
  1.2911 +      ShouldNotReachHere();
  1.2912 +    }
  1.2913 +    break;
  1.2914 +  case T_LONG:
  1.2915 +    if (kind == LS_xadd) {
  1.2916 +      load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
  1.2917 +    } else if (kind == LS_xchg) {
  1.2918 +      load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
  1.2919 +    } else if (kind == LS_cmpxchg) {
  1.2920 +      load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  1.2921 +    } else {
  1.2922 +      ShouldNotReachHere();
  1.2923 +    }
  1.2924 +    break;
  1.2925 +  case T_OBJECT:
  1.2926 +    // Transformation of a value which could be NULL pointer (CastPP #NULL)
  1.2927 +    // could be delayed during Parse (for example, in adjust_map_after_if()).
  1.2928 +    // Execute transformation here to avoid barrier generation in such case.
  1.2929 +    if (_gvn.type(newval) == TypePtr::NULL_PTR)
  1.2930 +      newval = _gvn.makecon(TypePtr::NULL_PTR);
  1.2931 +
  1.2932 +    // Reference stores need a store barrier.
  1.2933 +    if (kind == LS_xchg) {
  1.2934 +      // If pre-barrier must execute before the oop store, old value will require do_load here.
  1.2935 +      if (!can_move_pre_barrier()) {
  1.2936 +        pre_barrier(true /* do_load*/,
  1.2937 +                    control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
  1.2938 +                    NULL /* pre_val*/,
  1.2939 +                    T_OBJECT);
  1.2940 +      } // Else move pre_barrier to use load_store value, see below.
  1.2941 +    } else if (kind == LS_cmpxchg) {
  1.2942 +      // Same as for newval above:
  1.2943 +      if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
  1.2944 +        oldval = _gvn.makecon(TypePtr::NULL_PTR);
  1.2945 +      }
  1.2946 +      // The only known value which might get overwritten is oldval.
  1.2947 +      pre_barrier(false /* do_load */,
  1.2948 +                  control(), NULL, NULL, max_juint, NULL, NULL,
  1.2949 +                  oldval /* pre_val */,
  1.2950 +                  T_OBJECT);
  1.2951 +    } else {
  1.2952 +      ShouldNotReachHere();
  1.2953 +    }
  1.2954 +
  1.2955 +#ifdef _LP64
  1.2956 +    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  1.2957 +      Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
  1.2958 +      if (kind == LS_xchg) {
  1.2959 +        load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
  1.2960 +                                                           newval_enc, adr_type, value_type->make_narrowoop()));
  1.2961 +      } else {
  1.2962 +        assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  1.2963 +        Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
  1.2964 +        load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
  1.2965 +                                                                newval_enc, oldval_enc));
  1.2966 +      }
  1.2967 +    } else
  1.2968 +#endif
  1.2969 +    {
  1.2970 +      if (kind == LS_xchg) {
  1.2971 +        load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
  1.2972 +      } else {
  1.2973 +        assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  1.2974 +        load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  1.2975 +      }
  1.2976 +    }
  1.2977 +    post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
  1.2978 +    break;
  1.2979 +  default:
  1.2980 +    fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
  1.2981 +    break;
  1.2982 +  }
  1.2983 +
  1.2984 +  // SCMemProjNodes represent the memory state of a LoadStore. Their
  1.2985 +  // main role is to prevent LoadStore nodes from being optimized away
  1.2986 +  // when their results aren't used.
  1.2987 +  Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
  1.2988 +  set_memory(proj, alias_idx);
  1.2989 +
  1.2990 +  if (type == T_OBJECT && kind == LS_xchg) {
  1.2991 +#ifdef _LP64
  1.2992 +    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  1.2993 +      load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
  1.2994 +    }
  1.2995 +#endif
  1.2996 +    if (can_move_pre_barrier()) {
  1.2997 +      // Don't need to load pre_val. The old value is returned by load_store.
  1.2998 +      // The pre_barrier can execute after the xchg as long as no safepoint
  1.2999 +      // gets inserted between them.
  1.3000 +      pre_barrier(false /* do_load */,
  1.3001 +                  control(), NULL, NULL, max_juint, NULL, NULL,
  1.3002 +                  load_store /* pre_val */,
  1.3003 +                  T_OBJECT);
  1.3004 +    }
  1.3005 +  }
  1.3006 +
  1.3007 +  // Add the trailing membar surrounding the access
  1.3008 +  insert_mem_bar(Op_MemBarCPUOrder);
  1.3009 +  insert_mem_bar(Op_MemBarAcquire);
  1.3010 +
  1.3011 +  assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
  1.3012 +  set_result(load_store);
  1.3013 +  return true;
  1.3014 +}
  1.3015 +
  1.3016 +//----------------------------inline_unsafe_ordered_store----------------------
  1.3017 +// public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
  1.3018 +// public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
  1.3019 +// public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
  1.3020 +bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  1.3021 +  // This is another variant of inline_unsafe_access, differing in
  1.3022 +  // that it always issues store-store ("release") barrier and ensures
  1.3023 +  // store-atomicity (which only matters for "long").
  1.3024 +
  1.3025 +  if (callee()->is_static())  return false;  // caller must have the capability!
  1.3026 +
  1.3027 +#ifndef PRODUCT
  1.3028 +  {
  1.3029 +    ResourceMark rm;
  1.3030 +    // Check the signatures.
  1.3031 +    ciSignature* sig = callee()->signature();
  1.3032 +#ifdef ASSERT
  1.3033 +    BasicType rtype = sig->return_type()->basic_type();
  1.3034 +    assert(rtype == T_VOID, "must return void");
  1.3035 +    assert(sig->count() == 3, "has 3 arguments");
  1.3036 +    assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  1.3037 +    assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  1.3038 +#endif // ASSERT
  1.3039 +  }
  1.3040 +#endif //PRODUCT
  1.3041 +
  1.3042 +  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  1.3043 +
  1.3044 +  // Get arguments:
  1.3045 +  Node* receiver = argument(0);  // type: oop
  1.3046 +  Node* base     = argument(1);  // type: oop
  1.3047 +  Node* offset   = argument(2);  // type: long
  1.3048 +  Node* val      = argument(4);  // type: oop, int, or long
  1.3049 +
  1.3050 +  // Null check receiver.
  1.3051 +  receiver = null_check(receiver);
  1.3052 +  if (stopped()) {
  1.3053 +    return true;
  1.3054 +  }
  1.3055 +
  1.3056 +  // Build field offset expression.
  1.3057 +  assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  1.3058 +  // 32-bit machines ignore the high half of long offsets
  1.3059 +  offset = ConvL2X(offset);
  1.3060 +  Node* adr = make_unsafe_address(base, offset);
  1.3061 +  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  1.3062 +  const Type *value_type = Type::get_const_basic_type(type);
  1.3063 +  Compile::AliasType* alias_type = C->alias_type(adr_type);
  1.3064 +
  1.3065 +  insert_mem_bar(Op_MemBarRelease);
  1.3066 +  insert_mem_bar(Op_MemBarCPUOrder);
  1.3067 +  // Ensure that the store is atomic for longs:
  1.3068 +  const bool require_atomic_access = true;
  1.3069 +  Node* store;
  1.3070 +  if (type == T_OBJECT) // reference stores need a store barrier.
  1.3071 +    store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
  1.3072 +  else {
  1.3073 +    store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
  1.3074 +  }
  1.3075 +  insert_mem_bar(Op_MemBarCPUOrder);
  1.3076 +  return true;
  1.3077 +}
  1.3078 +
  1.3079 +bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
  1.3080 +  // Regardless of form, don't allow previous ld/st to move down,
  1.3081 +  // then issue acquire, release, or volatile mem_bar.
  1.3082 +  insert_mem_bar(Op_MemBarCPUOrder);
  1.3083 +  switch(id) {
  1.3084 +    case vmIntrinsics::_loadFence:
  1.3085 +      insert_mem_bar(Op_LoadFence);
  1.3086 +      return true;
  1.3087 +    case vmIntrinsics::_storeFence:
  1.3088 +      insert_mem_bar(Op_StoreFence);
  1.3089 +      return true;
  1.3090 +    case vmIntrinsics::_fullFence:
  1.3091 +      insert_mem_bar(Op_MemBarVolatile);
  1.3092 +      return true;
  1.3093 +    default:
  1.3094 +      fatal_unexpected_iid(id);
  1.3095 +      return false;
  1.3096 +  }
  1.3097 +}
  1.3098 +
  1.3099 +bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
  1.3100 +  if (!kls->is_Con()) {
  1.3101 +    return true;
  1.3102 +  }
  1.3103 +  const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
  1.3104 +  if (klsptr == NULL) {
  1.3105 +    return true;
  1.3106 +  }
  1.3107 +  ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
  1.3108 +  // don't need a guard for a klass that is already initialized
  1.3109 +  return !ik->is_initialized();
  1.3110 +}
  1.3111 +
  1.3112 +//----------------------------inline_unsafe_allocate---------------------------
  1.3113 +// public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
  1.3114 +bool LibraryCallKit::inline_unsafe_allocate() {
  1.3115 +  if (callee()->is_static())  return false;  // caller must have the capability!
  1.3116 +
  1.3117 +  null_check_receiver();  // null-check, then ignore
  1.3118 +  Node* cls = null_check(argument(1));
  1.3119 +  if (stopped())  return true;
  1.3120 +
  1.3121 +  Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
  1.3122 +  kls = null_check(kls);
  1.3123 +  if (stopped())  return true;  // argument was like int.class
  1.3124 +
  1.3125 +  Node* test = NULL;
  1.3126 +  if (LibraryCallKit::klass_needs_init_guard(kls)) {
  1.3127 +    // Note:  The argument might still be an illegal value like
  1.3128 +    // Serializable.class or Object[].class.   The runtime will handle it.
  1.3129 +    // But we must make an explicit check for initialization.
  1.3130 +    Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
  1.3131 +    // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
  1.3132 +    // can generate code to load it as unsigned byte.
  1.3133 +    Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
  1.3134 +    Node* bits = intcon(InstanceKlass::fully_initialized);
  1.3135 +    test = _gvn.transform(new (C) SubINode(inst, bits));
  1.3136 +    // The 'test' is non-zero if we need to take a slow path.
  1.3137 +  }
  1.3138 +
  1.3139 +  Node* obj = new_instance(kls, test);
  1.3140 +  set_result(obj);
  1.3141 +  return true;
  1.3142 +}
  1.3143 +
  1.3144 +#ifdef TRACE_HAVE_INTRINSICS
  1.3145 +/*
  1.3146 + * oop -> myklass
  1.3147 + * myklass->trace_id |= USED
  1.3148 + * return myklass->trace_id & ~0x3
  1.3149 + */
  1.3150 +bool LibraryCallKit::inline_native_classID() {
  1.3151 +  null_check_receiver();  // null-check, then ignore
  1.3152 +  Node* cls = null_check(argument(1), T_OBJECT);
  1.3153 +  Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
  1.3154 +  kls = null_check(kls, T_OBJECT);
  1.3155 +  ByteSize offset = TRACE_ID_OFFSET;
  1.3156 +  Node* insp = basic_plus_adr(kls, in_bytes(offset));
  1.3157 +  Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
  1.3158 +  Node* bits = longcon(~0x03l); // ignore bit 0 & 1
  1.3159 +  Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
  1.3160 +  Node* clsused = longcon(0x01l); // set the class bit
  1.3161 +  Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
  1.3162 +
  1.3163 +  const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
  1.3164 +  store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
  1.3165 +  set_result(andl);
  1.3166 +  return true;
  1.3167 +}
  1.3168 +
  1.3169 +bool LibraryCallKit::inline_native_threadID() {
  1.3170 +  Node* tls_ptr = NULL;
  1.3171 +  Node* cur_thr = generate_current_thread(tls_ptr);
  1.3172 +  Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  1.3173 +  Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
  1.3174 +  p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
  1.3175 +
  1.3176 +  Node* threadid = NULL;
  1.3177 +  size_t thread_id_size = OSThread::thread_id_size();
  1.3178 +  if (thread_id_size == (size_t) BytesPerLong) {
  1.3179 +    threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
  1.3180 +  } else if (thread_id_size == (size_t) BytesPerInt) {
  1.3181 +    threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
  1.3182 +  } else {
  1.3183 +    ShouldNotReachHere();
  1.3184 +  }
  1.3185 +  set_result(threadid);
  1.3186 +  return true;
  1.3187 +}
  1.3188 +#endif
  1.3189 +
  1.3190 +//------------------------inline_native_time_funcs--------------
  1.3191 +// inline code for System.currentTimeMillis() and System.nanoTime()
  1.3192 +// these have the same type and signature
  1.3193 +bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
  1.3194 +  const TypeFunc* tf = OptoRuntime::void_long_Type();
  1.3195 +  const TypePtr* no_memory_effects = NULL;
  1.3196 +  Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  1.3197 +  Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
  1.3198 +#ifdef ASSERT
  1.3199 +  Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
  1.3200 +  assert(value_top == top(), "second value must be top");
  1.3201 +#endif
  1.3202 +  set_result(value);
  1.3203 +  return true;
  1.3204 +}
  1.3205 +
  1.3206 +//------------------------inline_native_currentThread------------------
  1.3207 +bool LibraryCallKit::inline_native_currentThread() {
  1.3208 +  Node* junk = NULL;
  1.3209 +  set_result(generate_current_thread(junk));
  1.3210 +  return true;
  1.3211 +}
  1.3212 +
  1.3213 +//------------------------inline_native_isInterrupted------------------
  1.3214 +// private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
  1.3215 +bool LibraryCallKit::inline_native_isInterrupted() {
  1.3216 +  // Add a fast path to t.isInterrupted(clear_int):
  1.3217 +  //   (t == Thread.current() &&
  1.3218 +  //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
  1.3219 +  //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  1.3220 +  // So, in the common case that the interrupt bit is false,
  1.3221 +  // we avoid making a call into the VM.  Even if the interrupt bit
  1.3222 +  // is true, if the clear_int argument is false, we avoid the VM call.
  1.3223 +  // However, if the receiver is not currentThread, we must call the VM,
  1.3224 +  // because there must be some locking done around the operation.
  1.3225 +
  1.3226 +  // We only go to the fast case code if we pass two guards.
  1.3227 +  // Paths which do not pass are accumulated in the slow_region.
  1.3228 +
  1.3229 +  enum {
  1.3230 +    no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
  1.3231 +    no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
  1.3232 +    slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
  1.3233 +    PATH_LIMIT
  1.3234 +  };
  1.3235 +
  1.3236 +  // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
  1.3237 +  // out of the function.
  1.3238 +  insert_mem_bar(Op_MemBarCPUOrder);
  1.3239 +
  1.3240 +  RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
  1.3241 +  PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
  1.3242 +
  1.3243 +  RegionNode* slow_region = new (C) RegionNode(1);
  1.3244 +  record_for_igvn(slow_region);
  1.3245 +
  1.3246 +  // (a) Receiving thread must be the current thread.
  1.3247 +  Node* rec_thr = argument(0);
  1.3248 +  Node* tls_ptr = NULL;
  1.3249 +  Node* cur_thr = generate_current_thread(tls_ptr);
  1.3250 +  Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
  1.3251 +  Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
  1.3252 +
  1.3253 +  generate_slow_guard(bol_thr, slow_region);
  1.3254 +
  1.3255 +  // (b) Interrupt bit on TLS must be false.
  1.3256 +  Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  1.3257 +  Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
  1.3258 +  p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  1.3259 +
  1.3260 +  // Set the control input on the field _interrupted read to prevent it floating up.
  1.3261 +  Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
  1.3262 +  Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
  1.3263 +  Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
  1.3264 +
  1.3265 +  IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  1.3266 +
  1.3267 +  // First fast path:  if (!TLS._interrupted) return false;
  1.3268 +  Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
  1.3269 +  result_rgn->init_req(no_int_result_path, false_bit);
  1.3270 +  result_val->init_req(no_int_result_path, intcon(0));
  1.3271 +
  1.3272 +  // drop through to next case
  1.3273 +  set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
  1.3274 +
  1.3275 +#ifndef TARGET_OS_FAMILY_windows
  1.3276 +  // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  1.3277 +  Node* clr_arg = argument(1);
  1.3278 +  Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
  1.3279 +  Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
  1.3280 +  IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  1.3281 +
  1.3282 +  // Second fast path:  ... else if (!clear_int) return true;
  1.3283 +  Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
  1.3284 +  result_rgn->init_req(no_clear_result_path, false_arg);
  1.3285 +  result_val->init_req(no_clear_result_path, intcon(1));
  1.3286 +
  1.3287 +  // drop through to next case
  1.3288 +  set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
  1.3289 +#else
  1.3290 +  // To return true on Windows you must read the _interrupted field
  1.3291 +  // and check the the event state i.e. take the slow path.
  1.3292 +#endif // TARGET_OS_FAMILY_windows
  1.3293 +
  1.3294 +  // (d) Otherwise, go to the slow path.
  1.3295 +  slow_region->add_req(control());
  1.3296 +  set_control( _gvn.transform(slow_region));
  1.3297 +
  1.3298 +  if (stopped()) {
  1.3299 +    // There is no slow path.
  1.3300 +    result_rgn->init_req(slow_result_path, top());
  1.3301 +    result_val->init_req(slow_result_path, top());
  1.3302 +  } else {
  1.3303 +    // non-virtual because it is a private non-static
  1.3304 +    CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  1.3305 +
  1.3306 +    Node* slow_val = set_results_for_java_call(slow_call);
  1.3307 +    // this->control() comes from set_results_for_java_call
  1.3308 +
  1.3309 +    Node* fast_io  = slow_call->in(TypeFunc::I_O);
  1.3310 +    Node* fast_mem = slow_call->in(TypeFunc::Memory);
  1.3311 +
  1.3312 +    // These two phis are pre-filled with copies of of the fast IO and Memory
  1.3313 +    PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  1.3314 +    PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  1.3315 +
  1.3316 +    result_rgn->init_req(slow_result_path, control());
  1.3317 +    result_io ->init_req(slow_result_path, i_o());
  1.3318 +    result_mem->init_req(slow_result_path, reset_memory());
  1.3319 +    result_val->init_req(slow_result_path, slow_val);
  1.3320 +
  1.3321 +    set_all_memory(_gvn.transform(result_mem));
  1.3322 +    set_i_o(       _gvn.transform(result_io));
  1.3323 +  }
  1.3324 +
  1.3325 +  C->set_has_split_ifs(true); // Has chance for split-if optimization
  1.3326 +  set_result(result_rgn, result_val);
  1.3327 +  return true;
  1.3328 +}
  1.3329 +
  1.3330 +//---------------------------load_mirror_from_klass----------------------------
  1.3331 +// Given a klass oop, load its java mirror (a java.lang.Class oop).
  1.3332 +Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  1.3333 +  Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
  1.3334 +  return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
  1.3335 +}
  1.3336 +
  1.3337 +//-----------------------load_klass_from_mirror_common-------------------------
  1.3338 +// Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  1.3339 +// Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  1.3340 +// and branch to the given path on the region.
  1.3341 +// If never_see_null, take an uncommon trap on null, so we can optimistically
  1.3342 +// compile for the non-null case.
  1.3343 +// If the region is NULL, force never_see_null = true.
  1.3344 +Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  1.3345 +                                                    bool never_see_null,
  1.3346 +                                                    RegionNode* region,
  1.3347 +                                                    int null_path,
  1.3348 +                                                    int offset) {
  1.3349 +  if (region == NULL)  never_see_null = true;
  1.3350 +  Node* p = basic_plus_adr(mirror, offset);
  1.3351 +  const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  1.3352 +  Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
  1.3353 +  Node* null_ctl = top();
  1.3354 +  kls = null_check_oop(kls, &null_ctl, never_see_null);
  1.3355 +  if (region != NULL) {
  1.3356 +    // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  1.3357 +    region->init_req(null_path, null_ctl);
  1.3358 +  } else {
  1.3359 +    assert(null_ctl == top(), "no loose ends");
  1.3360 +  }
  1.3361 +  return kls;
  1.3362 +}
  1.3363 +
  1.3364 +//--------------------(inline_native_Class_query helpers)---------------------
  1.3365 +// Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  1.3366 +// Fall through if (mods & mask) == bits, take the guard otherwise.
  1.3367 +Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  1.3368 +  // Branch around if the given klass has the given modifier bit set.
  1.3369 +  // Like generate_guard, adds a new path onto the region.
  1.3370 +  Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  1.3371 +  Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
  1.3372 +  Node* mask = intcon(modifier_mask);
  1.3373 +  Node* bits = intcon(modifier_bits);
  1.3374 +  Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
  1.3375 +  Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
  1.3376 +  Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
  1.3377 +  return generate_fair_guard(bol, region);
  1.3378 +}
  1.3379 +Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  1.3380 +  return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  1.3381 +}
  1.3382 +
  1.3383 +//-------------------------inline_native_Class_query-------------------
  1.3384 +bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  1.3385 +  const Type* return_type = TypeInt::BOOL;
  1.3386 +  Node* prim_return_value = top();  // what happens if it's a primitive class?
  1.3387 +  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  1.3388 +  bool expect_prim = false;     // most of these guys expect to work on refs
  1.3389 +
  1.3390 +  enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  1.3391 +
  1.3392 +  Node* mirror = argument(0);
  1.3393 +  Node* obj    = top();
  1.3394 +
  1.3395 +  switch (id) {
  1.3396 +  case vmIntrinsics::_isInstance:
  1.3397 +    // nothing is an instance of a primitive type
  1.3398 +    prim_return_value = intcon(0);
  1.3399 +    obj = argument(1);
  1.3400 +    break;
  1.3401 +  case vmIntrinsics::_getModifiers:
  1.3402 +    prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  1.3403 +    assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  1.3404 +    return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  1.3405 +    break;
  1.3406 +  case vmIntrinsics::_isInterface:
  1.3407 +    prim_return_value = intcon(0);
  1.3408 +    break;
  1.3409 +  case vmIntrinsics::_isArray:
  1.3410 +    prim_return_value = intcon(0);
  1.3411 +    expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  1.3412 +    break;
  1.3413 +  case vmIntrinsics::_isPrimitive:
  1.3414 +    prim_return_value = intcon(1);
  1.3415 +    expect_prim = true;  // obviously
  1.3416 +    break;
  1.3417 +  case vmIntrinsics::_getSuperclass:
  1.3418 +    prim_return_value = null();
  1.3419 +    return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  1.3420 +    break;
  1.3421 +  case vmIntrinsics::_getComponentType:
  1.3422 +    prim_return_value = null();
  1.3423 +    return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  1.3424 +    break;
  1.3425 +  case vmIntrinsics::_getClassAccessFlags:
  1.3426 +    prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  1.3427 +    return_type = TypeInt::INT;  // not bool!  6297094
  1.3428 +    break;
  1.3429 +  default:
  1.3430 +    fatal_unexpected_iid(id);
  1.3431 +    break;
  1.3432 +  }
  1.3433 +
  1.3434 +  const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  1.3435 +  if (mirror_con == NULL)  return false;  // cannot happen?
  1.3436 +
  1.3437 +#ifndef PRODUCT
  1.3438 +  if (C->print_intrinsics() || C->print_inlining()) {
  1.3439 +    ciType* k = mirror_con->java_mirror_type();
  1.3440 +    if (k) {
  1.3441 +      tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  1.3442 +      k->print_name();
  1.3443 +      tty->cr();
  1.3444 +    }
  1.3445 +  }
  1.3446 +#endif
  1.3447 +
  1.3448 +  // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  1.3449 +  RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  1.3450 +  record_for_igvn(region);
  1.3451 +  PhiNode* phi = new (C) PhiNode(region, return_type);
  1.3452 +
  1.3453 +  // The mirror will never be null of Reflection.getClassAccessFlags, however
  1.3454 +  // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  1.3455 +  // if it is. See bug 4774291.
  1.3456 +
  1.3457 +  // For Reflection.getClassAccessFlags(), the null check occurs in
  1.3458 +  // the wrong place; see inline_unsafe_access(), above, for a similar
  1.3459 +  // situation.
  1.3460 +  mirror = null_check(mirror);
  1.3461 +  // If mirror or obj is dead, only null-path is taken.
  1.3462 +  if (stopped())  return true;
  1.3463 +
  1.3464 +  if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  1.3465 +
  1.3466 +  // Now load the mirror's klass metaobject, and null-check it.
  1.3467 +  // Side-effects region with the control path if the klass is null.
  1.3468 +  Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
  1.3469 +  // If kls is null, we have a primitive mirror.
  1.3470 +  phi->init_req(_prim_path, prim_return_value);
  1.3471 +  if (stopped()) { set_result(region, phi); return true; }
  1.3472 +  bool safe_for_replace = (region->in(_prim_path) == top());
  1.3473 +
  1.3474 +  Node* p;  // handy temp
  1.3475 +  Node* null_ctl;
  1.3476 +
  1.3477 +  // Now that we have the non-null klass, we can perform the real query.
  1.3478 +  // For constant classes, the query will constant-fold in LoadNode::Value.
  1.3479 +  Node* query_value = top();
  1.3480 +  switch (id) {
  1.3481 +  case vmIntrinsics::_isInstance:
  1.3482 +    // nothing is an instance of a primitive type
  1.3483 +    query_value = gen_instanceof(obj, kls, safe_for_replace);
  1.3484 +    break;
  1.3485 +
  1.3486 +  case vmIntrinsics::_getModifiers:
  1.3487 +    p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
  1.3488 +    query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
  1.3489 +    break;
  1.3490 +
  1.3491 +  case vmIntrinsics::_isInterface:
  1.3492 +    // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  1.3493 +    if (generate_interface_guard(kls, region) != NULL)
  1.3494 +      // A guard was added.  If the guard is taken, it was an interface.
  1.3495 +      phi->add_req(intcon(1));
  1.3496 +    // If we fall through, it's a plain class.
  1.3497 +    query_value = intcon(0);
  1.3498 +    break;
  1.3499 +
  1.3500 +  case vmIntrinsics::_isArray:
  1.3501 +    // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  1.3502 +    if (generate_array_guard(kls, region) != NULL)
  1.3503 +      // A guard was added.  If the guard is taken, it was an array.
  1.3504 +      phi->add_req(intcon(1));
  1.3505 +    // If we fall through, it's a plain class.
  1.3506 +    query_value = intcon(0);
  1.3507 +    break;
  1.3508 +
  1.3509 +  case vmIntrinsics::_isPrimitive:
  1.3510 +    query_value = intcon(0); // "normal" path produces false
  1.3511 +    break;
  1.3512 +
  1.3513 +  case vmIntrinsics::_getSuperclass:
  1.3514 +    // The rules here are somewhat unfortunate, but we can still do better
  1.3515 +    // with random logic than with a JNI call.
  1.3516 +    // Interfaces store null or Object as _super, but must report null.
  1.3517 +    // Arrays store an intermediate super as _super, but must report Object.
  1.3518 +    // Other types can report the actual _super.
  1.3519 +    // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  1.3520 +    if (generate_interface_guard(kls, region) != NULL)
  1.3521 +      // A guard was added.  If the guard is taken, it was an interface.
  1.3522 +      phi->add_req(null());
  1.3523 +    if (generate_array_guard(kls, region) != NULL)
  1.3524 +      // A guard was added.  If the guard is taken, it was an array.
  1.3525 +      phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  1.3526 +    // If we fall through, it's a plain class.  Get its _super.
  1.3527 +    p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
  1.3528 +    kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
  1.3529 +    null_ctl = top();
  1.3530 +    kls = null_check_oop(kls, &null_ctl);
  1.3531 +    if (null_ctl != top()) {
  1.3532 +      // If the guard is taken, Object.superClass is null (both klass and mirror).
  1.3533 +      region->add_req(null_ctl);
  1.3534 +      phi   ->add_req(null());
  1.3535 +    }
  1.3536 +    if (!stopped()) {
  1.3537 +      query_value = load_mirror_from_klass(kls);
  1.3538 +    }
  1.3539 +    break;
  1.3540 +
  1.3541 +  case vmIntrinsics::_getComponentType:
  1.3542 +    if (generate_array_guard(kls, region) != NULL) {
  1.3543 +      // Be sure to pin the oop load to the guard edge just created:
  1.3544 +      Node* is_array_ctrl = region->in(region->req()-1);
  1.3545 +      Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
  1.3546 +      Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
  1.3547 +      phi->add_req(cmo);
  1.3548 +    }
  1.3549 +    query_value = null();  // non-array case is null
  1.3550 +    break;
  1.3551 +
  1.3552 +  case vmIntrinsics::_getClassAccessFlags:
  1.3553 +    p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  1.3554 +    query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
  1.3555 +    break;
  1.3556 +
  1.3557 +  default:
  1.3558 +    fatal_unexpected_iid(id);
  1.3559 +    break;
  1.3560 +  }
  1.3561 +
  1.3562 +  // Fall-through is the normal case of a query to a real class.
  1.3563 +  phi->init_req(1, query_value);
  1.3564 +  region->init_req(1, control());
  1.3565 +
  1.3566 +  C->set_has_split_ifs(true); // Has chance for split-if optimization
  1.3567 +  set_result(region, phi);
  1.3568 +  return true;
  1.3569 +}
  1.3570 +
  1.3571 +//--------------------------inline_native_subtype_check------------------------
  1.3572 +// This intrinsic takes the JNI calls out of the heart of
  1.3573 +// UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  1.3574 +bool LibraryCallKit::inline_native_subtype_check() {
  1.3575 +  // Pull both arguments off the stack.
  1.3576 +  Node* args[2];                // two java.lang.Class mirrors: superc, subc
  1.3577 +  args[0] = argument(0);
  1.3578 +  args[1] = argument(1);
  1.3579 +  Node* klasses[2];             // corresponding Klasses: superk, subk
  1.3580 +  klasses[0] = klasses[1] = top();
  1.3581 +
  1.3582 +  enum {
  1.3583 +    // A full decision tree on {superc is prim, subc is prim}:
  1.3584 +    _prim_0_path = 1,           // {P,N} => false
  1.3585 +                                // {P,P} & superc!=subc => false
  1.3586 +    _prim_same_path,            // {P,P} & superc==subc => true
  1.3587 +    _prim_1_path,               // {N,P} => false
  1.3588 +    _ref_subtype_path,          // {N,N} & subtype check wins => true
  1.3589 +    _both_ref_path,             // {N,N} & subtype check loses => false
  1.3590 +    PATH_LIMIT
  1.3591 +  };
  1.3592 +
  1.3593 +  RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  1.3594 +  Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
  1.3595 +  record_for_igvn(region);
  1.3596 +
  1.3597 +  const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  1.3598 +  const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  1.3599 +  int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  1.3600 +
  1.3601 +  // First null-check both mirrors and load each mirror's klass metaobject.
  1.3602 +  int which_arg;
  1.3603 +  for (which_arg = 0; which_arg <= 1; which_arg++) {
  1.3604 +    Node* arg = args[which_arg];
  1.3605 +    arg = null_check(arg);
  1.3606 +    if (stopped())  break;
  1.3607 +    args[which_arg] = arg;
  1.3608 +
  1.3609 +    Node* p = basic_plus_adr(arg, class_klass_offset);
  1.3610 +    Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
  1.3611 +    klasses[which_arg] = _gvn.transform(kls);
  1.3612 +  }
  1.3613 +
  1.3614 +  // Having loaded both klasses, test each for null.
  1.3615 +  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  1.3616 +  for (which_arg = 0; which_arg <= 1; which_arg++) {
  1.3617 +    Node* kls = klasses[which_arg];
  1.3618 +    Node* null_ctl = top();
  1.3619 +    kls = null_check_oop(kls, &null_ctl, never_see_null);
  1.3620 +    int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  1.3621 +    region->init_req(prim_path, null_ctl);
  1.3622 +    if (stopped())  break;
  1.3623 +    klasses[which_arg] = kls;
  1.3624 +  }
  1.3625 +
  1.3626 +  if (!stopped()) {
  1.3627 +    // now we have two reference types, in klasses[0..1]
  1.3628 +    Node* subk   = klasses[1];  // the argument to isAssignableFrom
  1.3629 +    Node* superk = klasses[0];  // the receiver
  1.3630 +    region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  1.3631 +    // now we have a successful reference subtype check
  1.3632 +    region->set_req(_ref_subtype_path, control());
  1.3633 +  }
  1.3634 +
  1.3635 +  // If both operands are primitive (both klasses null), then
  1.3636 +  // we must return true when they are identical primitives.
  1.3637 +  // It is convenient to test this after the first null klass check.
  1.3638 +  set_control(region->in(_prim_0_path)); // go back to first null check
  1.3639 +  if (!stopped()) {
  1.3640 +    // Since superc is primitive, make a guard for the superc==subc case.
  1.3641 +    Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
  1.3642 +    Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
  1.3643 +    generate_guard(bol_eq, region, PROB_FAIR);
  1.3644 +    if (region->req() == PATH_LIMIT+1) {
  1.3645 +      // A guard was added.  If the added guard is taken, superc==subc.
  1.3646 +      region->swap_edges(PATH_LIMIT, _prim_same_path);
  1.3647 +      region->del_req(PATH_LIMIT);
  1.3648 +    }
  1.3649 +    region->set_req(_prim_0_path, control()); // Not equal after all.
  1.3650 +  }
  1.3651 +
  1.3652 +  // these are the only paths that produce 'true':
  1.3653 +  phi->set_req(_prim_same_path,   intcon(1));
  1.3654 +  phi->set_req(_ref_subtype_path, intcon(1));
  1.3655 +
  1.3656 +  // pull together the cases:
  1.3657 +  assert(region->req() == PATH_LIMIT, "sane region");
  1.3658 +  for (uint i = 1; i < region->req(); i++) {
  1.3659 +    Node* ctl = region->in(i);
  1.3660 +    if (ctl == NULL || ctl == top()) {
  1.3661 +      region->set_req(i, top());
  1.3662 +      phi   ->set_req(i, top());
  1.3663 +    } else if (phi->in(i) == NULL) {
  1.3664 +      phi->set_req(i, intcon(0)); // all other paths produce 'false'
  1.3665 +    }
  1.3666 +  }
  1.3667 +
  1.3668 +  set_control(_gvn.transform(region));
  1.3669 +  set_result(_gvn.transform(phi));
  1.3670 +  return true;
  1.3671 +}
  1.3672 +
  1.3673 +//---------------------generate_array_guard_common------------------------
  1.3674 +Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  1.3675 +                                                  bool obj_array, bool not_array) {
  1.3676 +  // If obj_array/non_array==false/false:
  1.3677 +  // Branch around if the given klass is in fact an array (either obj or prim).
  1.3678 +  // If obj_array/non_array==false/true:
  1.3679 +  // Branch around if the given klass is not an array klass of any kind.
  1.3680 +  // If obj_array/non_array==true/true:
  1.3681 +  // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  1.3682 +  // If obj_array/non_array==true/false:
  1.3683 +  // Branch around if the kls is an oop array (Object[] or subtype)
  1.3684 +  //
  1.3685 +  // Like generate_guard, adds a new path onto the region.
  1.3686 +  jint  layout_con = 0;
  1.3687 +  Node* layout_val = get_layout_helper(kls, layout_con);
  1.3688 +  if (layout_val == NULL) {
  1.3689 +    bool query = (obj_array
  1.3690 +                  ? Klass::layout_helper_is_objArray(layout_con)
  1.3691 +                  : Klass::layout_helper_is_array(layout_con));
  1.3692 +    if (query == not_array) {
  1.3693 +      return NULL;                       // never a branch
  1.3694 +    } else {                             // always a branch
  1.3695 +      Node* always_branch = control();
  1.3696 +      if (region != NULL)
  1.3697 +        region->add_req(always_branch);
  1.3698 +      set_control(top());
  1.3699 +      return always_branch;
  1.3700 +    }
  1.3701 +  }
  1.3702 +  // Now test the correct condition.
  1.3703 +  jint  nval = (obj_array
  1.3704 +                ? ((jint)Klass::_lh_array_tag_type_value
  1.3705 +                   <<    Klass::_lh_array_tag_shift)
  1.3706 +                : Klass::_lh_neutral_value);
  1.3707 +  Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
  1.3708 +  BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  1.3709 +  // invert the test if we are looking for a non-array
  1.3710 +  if (not_array)  btest = BoolTest(btest).negate();
  1.3711 +  Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
  1.3712 +  return generate_fair_guard(bol, region);
  1.3713 +}
  1.3714 +
  1.3715 +
  1.3716 +//-----------------------inline_native_newArray--------------------------
  1.3717 +// private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
  1.3718 +bool LibraryCallKit::inline_native_newArray() {
  1.3719 +  Node* mirror    = argument(0);
  1.3720 +  Node* count_val = argument(1);
  1.3721 +
  1.3722 +  mirror = null_check(mirror);
  1.3723 +  // If mirror or obj is dead, only null-path is taken.
  1.3724 +  if (stopped())  return true;
  1.3725 +
  1.3726 +  enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  1.3727 +  RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  1.3728 +  PhiNode*    result_val = new(C) PhiNode(result_reg,
  1.3729 +                                          TypeInstPtr::NOTNULL);
  1.3730 +  PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  1.3731 +  PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  1.3732 +                                          TypePtr::BOTTOM);
  1.3733 +
  1.3734 +  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  1.3735 +  Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  1.3736 +                                                  result_reg, _slow_path);
  1.3737 +  Node* normal_ctl   = control();
  1.3738 +  Node* no_array_ctl = result_reg->in(_slow_path);
  1.3739 +
  1.3740 +  // Generate code for the slow case.  We make a call to newArray().
  1.3741 +  set_control(no_array_ctl);
  1.3742 +  if (!stopped()) {
  1.3743 +    // Either the input type is void.class, or else the
  1.3744 +    // array klass has not yet been cached.  Either the
  1.3745 +    // ensuing call will throw an exception, or else it
  1.3746 +    // will cache the array klass for next time.
  1.3747 +    PreserveJVMState pjvms(this);
  1.3748 +    CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  1.3749 +    Node* slow_result = set_results_for_java_call(slow_call);
  1.3750 +    // this->control() comes from set_results_for_java_call
  1.3751 +    result_reg->set_req(_slow_path, control());
  1.3752 +    result_val->set_req(_slow_path, slow_result);
  1.3753 +    result_io ->set_req(_slow_path, i_o());
  1.3754 +    result_mem->set_req(_slow_path, reset_memory());
  1.3755 +  }
  1.3756 +
  1.3757 +  set_control(normal_ctl);
  1.3758 +  if (!stopped()) {
  1.3759 +    // Normal case:  The array type has been cached in the java.lang.Class.
  1.3760 +    // The following call works fine even if the array type is polymorphic.
  1.3761 +    // It could be a dynamic mix of int[], boolean[], Object[], etc.
  1.3762 +    Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
  1.3763 +    result_reg->init_req(_normal_path, control());
  1.3764 +    result_val->init_req(_normal_path, obj);
  1.3765 +    result_io ->init_req(_normal_path, i_o());
  1.3766 +    result_mem->init_req(_normal_path, reset_memory());
  1.3767 +  }
  1.3768 +
  1.3769 +  // Return the combined state.
  1.3770 +  set_i_o(        _gvn.transform(result_io)  );
  1.3771 +  set_all_memory( _gvn.transform(result_mem));
  1.3772 +
  1.3773 +  C->set_has_split_ifs(true); // Has chance for split-if optimization
  1.3774 +  set_result(result_reg, result_val);
  1.3775 +  return true;
  1.3776 +}
  1.3777 +
  1.3778 +//----------------------inline_native_getLength--------------------------
  1.3779 +// public static native int java.lang.reflect.Array.getLength(Object array);
  1.3780 +bool LibraryCallKit::inline_native_getLength() {
  1.3781 +  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1.3782 +
  1.3783 +  Node* array = null_check(argument(0));
  1.3784 +  // If array is dead, only null-path is taken.
  1.3785 +  if (stopped())  return true;
  1.3786 +
  1.3787 +  // Deoptimize if it is a non-array.
  1.3788 +  Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  1.3789 +
  1.3790 +  if (non_array != NULL) {
  1.3791 +    PreserveJVMState pjvms(this);
  1.3792 +    set_control(non_array);
  1.3793 +    uncommon_trap(Deoptimization::Reason_intrinsic,
  1.3794 +                  Deoptimization::Action_maybe_recompile);
  1.3795 +  }
  1.3796 +
  1.3797 +  // If control is dead, only non-array-path is taken.
  1.3798 +  if (stopped())  return true;
  1.3799 +
  1.3800 +  // The works fine even if the array type is polymorphic.
  1.3801 +  // It could be a dynamic mix of int[], boolean[], Object[], etc.
  1.3802 +  Node* result = load_array_length(array);
  1.3803 +
  1.3804 +  C->set_has_split_ifs(true);  // Has chance for split-if optimization
  1.3805 +  set_result(result);
  1.3806 +  return true;
  1.3807 +}
  1.3808 +
  1.3809 +//------------------------inline_array_copyOf----------------------------
  1.3810 +// public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
  1.3811 +// public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
  1.3812 +bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  1.3813 +  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1.3814 +
  1.3815 +  // Get the arguments.
  1.3816 +  Node* original          = argument(0);
  1.3817 +  Node* start             = is_copyOfRange? argument(1): intcon(0);
  1.3818 +  Node* end               = is_copyOfRange? argument(2): argument(1);
  1.3819 +  Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  1.3820 +
  1.3821 +  Node* newcopy;
  1.3822 +
  1.3823 +  // Set the original stack and the reexecute bit for the interpreter to reexecute
  1.3824 +  // the bytecode that invokes Arrays.copyOf if deoptimization happens.
  1.3825 +  { PreserveReexecuteState preexecs(this);
  1.3826 +    jvms()->set_should_reexecute(true);
  1.3827 +
  1.3828 +    array_type_mirror = null_check(array_type_mirror);
  1.3829 +    original          = null_check(original);
  1.3830 +
  1.3831 +    // Check if a null path was taken unconditionally.
  1.3832 +    if (stopped())  return true;
  1.3833 +
  1.3834 +    Node* orig_length = load_array_length(original);
  1.3835 +
  1.3836 +    Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
  1.3837 +    klass_node = null_check(klass_node);
  1.3838 +
  1.3839 +    RegionNode* bailout = new (C) RegionNode(1);
  1.3840 +    record_for_igvn(bailout);
  1.3841 +
  1.3842 +    // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  1.3843 +    // Bail out if that is so.
  1.3844 +    Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  1.3845 +    if (not_objArray != NULL) {
  1.3846 +      // Improve the klass node's type from the new optimistic assumption:
  1.3847 +      ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  1.3848 +      const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  1.3849 +      Node* cast = new (C) CastPPNode(klass_node, akls);
  1.3850 +      cast->init_req(0, control());
  1.3851 +      klass_node = _gvn.transform(cast);
  1.3852 +    }
  1.3853 +
  1.3854 +    // Bail out if either start or end is negative.
  1.3855 +    generate_negative_guard(start, bailout, &start);
  1.3856 +    generate_negative_guard(end,   bailout, &end);
  1.3857 +
  1.3858 +    Node* length = end;
  1.3859 +    if (_gvn.type(start) != TypeInt::ZERO) {
  1.3860 +      length = _gvn.transform(new (C) SubINode(end, start));
  1.3861 +    }
  1.3862 +
  1.3863 +    // Bail out if length is negative.
  1.3864 +    // Without this the new_array would throw
  1.3865 +    // NegativeArraySizeException but IllegalArgumentException is what
  1.3866 +    // should be thrown
  1.3867 +    generate_negative_guard(length, bailout, &length);
  1.3868 +
  1.3869 +    if (bailout->req() > 1) {
  1.3870 +      PreserveJVMState pjvms(this);
  1.3871 +      set_control(_gvn.transform(bailout));
  1.3872 +      uncommon_trap(Deoptimization::Reason_intrinsic,
  1.3873 +                    Deoptimization::Action_maybe_recompile);
  1.3874 +    }
  1.3875 +
  1.3876 +    if (!stopped()) {
  1.3877 +      // How many elements will we copy from the original?
  1.3878 +      // The answer is MinI(orig_length - start, length).
  1.3879 +      Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
  1.3880 +      Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  1.3881 +
  1.3882 +      newcopy = new_array(klass_node, length, 0);  // no argments to push
  1.3883 +
  1.3884 +      // Generate a direct call to the right arraycopy function(s).
  1.3885 +      // We know the copy is disjoint but we might not know if the
  1.3886 +      // oop stores need checking.
  1.3887 +      // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  1.3888 +      // This will fail a store-check if x contains any non-nulls.
  1.3889 +      bool disjoint_bases = true;
  1.3890 +      // if start > orig_length then the length of the copy may be
  1.3891 +      // negative.
  1.3892 +      bool length_never_negative = !is_copyOfRange;
  1.3893 +      generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  1.3894 +                         original, start, newcopy, intcon(0), moved,
  1.3895 +                         disjoint_bases, length_never_negative);
  1.3896 +    }
  1.3897 +  } // original reexecute is set back here
  1.3898 +
  1.3899 +  C->set_has_split_ifs(true); // Has chance for split-if optimization
  1.3900 +  if (!stopped()) {
  1.3901 +    set_result(newcopy);
  1.3902 +  }
  1.3903 +  return true;
  1.3904 +}
  1.3905 +
  1.3906 +
  1.3907 +//----------------------generate_virtual_guard---------------------------
  1.3908 +// Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  1.3909 +Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  1.3910 +                                             RegionNode* slow_region) {
  1.3911 +  ciMethod* method = callee();
  1.3912 +  int vtable_index = method->vtable_index();
  1.3913 +  assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
  1.3914 +         err_msg_res("bad index %d", vtable_index));
  1.3915 +  // Get the Method* out of the appropriate vtable entry.
  1.3916 +  int entry_offset  = (InstanceKlass::vtable_start_offset() +
  1.3917 +                     vtable_index*vtableEntry::size()) * wordSize +
  1.3918 +                     vtableEntry::method_offset_in_bytes();
  1.3919 +  Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  1.3920 +  Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
  1.3921 +
  1.3922 +  // Compare the target method with the expected method (e.g., Object.hashCode).
  1.3923 +  const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
  1.3924 +
  1.3925 +  Node* native_call = makecon(native_call_addr);
  1.3926 +  Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
  1.3927 +  Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
  1.3928 +
  1.3929 +  return generate_slow_guard(test_native, slow_region);
  1.3930 +}
  1.3931 +
  1.3932 +//-----------------------generate_method_call----------------------------
  1.3933 +// Use generate_method_call to make a slow-call to the real
  1.3934 +// method if the fast path fails.  An alternative would be to
  1.3935 +// use a stub like OptoRuntime::slow_arraycopy_Java.
  1.3936 +// This only works for expanding the current library call,
  1.3937 +// not another intrinsic.  (E.g., don't use this for making an
  1.3938 +// arraycopy call inside of the copyOf intrinsic.)
  1.3939 +CallJavaNode*
  1.3940 +LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  1.3941 +  // When compiling the intrinsic method itself, do not use this technique.
  1.3942 +  guarantee(callee() != C->method(), "cannot make slow-call to self");
  1.3943 +
  1.3944 +  ciMethod* method = callee();
  1.3945 +  // ensure the JVMS we have will be correct for this call
  1.3946 +  guarantee(method_id == method->intrinsic_id(), "must match");
  1.3947 +
  1.3948 +  const TypeFunc* tf = TypeFunc::make(method);
  1.3949 +  CallJavaNode* slow_call;
  1.3950 +  if (is_static) {
  1.3951 +    assert(!is_virtual, "");
  1.3952 +    slow_call = new(C) CallStaticJavaNode(C, tf,
  1.3953 +                           SharedRuntime::get_resolve_static_call_stub(),
  1.3954 +                           method, bci());
  1.3955 +  } else if (is_virtual) {
  1.3956 +    null_check_receiver();
  1.3957 +    int vtable_index = Method::invalid_vtable_index;
  1.3958 +    if (UseInlineCaches) {
  1.3959 +      // Suppress the vtable call
  1.3960 +    } else {
  1.3961 +      // hashCode and clone are not a miranda methods,
  1.3962 +      // so the vtable index is fixed.
  1.3963 +      // No need to use the linkResolver to get it.
  1.3964 +       vtable_index = method->vtable_index();
  1.3965 +       assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
  1.3966 +              err_msg_res("bad index %d", vtable_index));
  1.3967 +    }
  1.3968 +    slow_call = new(C) CallDynamicJavaNode(tf,
  1.3969 +                          SharedRuntime::get_resolve_virtual_call_stub(),
  1.3970 +                          method, vtable_index, bci());
  1.3971 +  } else {  // neither virtual nor static:  opt_virtual
  1.3972 +    null_check_receiver();
  1.3973 +    slow_call = new(C) CallStaticJavaNode(C, tf,
  1.3974 +                                SharedRuntime::get_resolve_opt_virtual_call_stub(),
  1.3975 +                                method, bci());
  1.3976 +    slow_call->set_optimized_virtual(true);
  1.3977 +  }
  1.3978 +  set_arguments_for_java_call(slow_call);
  1.3979 +  set_edges_for_java_call(slow_call);
  1.3980 +  return slow_call;
  1.3981 +}
  1.3982 +
  1.3983 +
  1.3984 +/**
  1.3985 + * Build special case code for calls to hashCode on an object. This call may
  1.3986 + * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
  1.3987 + * slightly different code.
  1.3988 + */
  1.3989 +bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  1.3990 +  assert(is_static == callee()->is_static(), "correct intrinsic selection");
  1.3991 +  assert(!(is_virtual && is_static), "either virtual, special, or static");
  1.3992 +
  1.3993 +  enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  1.3994 +
  1.3995 +  RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  1.3996 +  PhiNode*    result_val = new(C) PhiNode(result_reg, TypeInt::INT);
  1.3997 +  PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  1.3998 +  PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
  1.3999 +  Node* obj = NULL;
  1.4000 +  if (!is_static) {
  1.4001 +    // Check for hashing null object
  1.4002 +    obj = null_check_receiver();
  1.4003 +    if (stopped())  return true;        // unconditionally null
  1.4004 +    result_reg->init_req(_null_path, top());
  1.4005 +    result_val->init_req(_null_path, top());
  1.4006 +  } else {
  1.4007 +    // Do a null check, and return zero if null.
  1.4008 +    // System.identityHashCode(null) == 0
  1.4009 +    obj = argument(0);
  1.4010 +    Node* null_ctl = top();
  1.4011 +    obj = null_check_oop(obj, &null_ctl);
  1.4012 +    result_reg->init_req(_null_path, null_ctl);
  1.4013 +    result_val->init_req(_null_path, _gvn.intcon(0));
  1.4014 +  }
  1.4015 +
  1.4016 +  // Unconditionally null?  Then return right away.
  1.4017 +  if (stopped()) {
  1.4018 +    set_control( result_reg->in(_null_path));
  1.4019 +    if (!stopped())
  1.4020 +      set_result(result_val->in(_null_path));
  1.4021 +    return true;
  1.4022 +  }
  1.4023 +
  1.4024 +  // We only go to the fast case code if we pass a number of guards.  The
  1.4025 +  // paths which do not pass are accumulated in the slow_region.
  1.4026 +  RegionNode* slow_region = new (C) RegionNode(1);
  1.4027 +  record_for_igvn(slow_region);
  1.4028 +
  1.4029 +  // If this is a virtual call, we generate a funny guard.  We pull out
  1.4030 +  // the vtable entry corresponding to hashCode() from the target object.
  1.4031 +  // If the target method which we are calling happens to be the native
  1.4032 +  // Object hashCode() method, we pass the guard.  We do not need this
  1.4033 +  // guard for non-virtual calls -- the caller is known to be the native
  1.4034 +  // Object hashCode().
  1.4035 +  if (is_virtual) {
  1.4036 +    // After null check, get the object's klass.
  1.4037 +    Node* obj_klass = load_object_klass(obj);
  1.4038 +    generate_virtual_guard(obj_klass, slow_region);
  1.4039 +  }
  1.4040 +
  1.4041 +  // Get the header out of the object, use LoadMarkNode when available
  1.4042 +  Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  1.4043 +  // The control of the load must be NULL. Otherwise, the load can move before
  1.4044 +  // the null check after castPP removal.
  1.4045 +  Node* no_ctrl = NULL;
  1.4046 +  Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
  1.4047 +
  1.4048 +  // Test the header to see if it is unlocked.
  1.4049 +  Node* lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  1.4050 +  Node* lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
  1.4051 +  Node* unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  1.4052 +  Node* chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
  1.4053 +  Node* test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
  1.4054 +
  1.4055 +  generate_slow_guard(test_unlocked, slow_region);
  1.4056 +
  1.4057 +  // Get the hash value and check to see that it has been properly assigned.
  1.4058 +  // We depend on hash_mask being at most 32 bits and avoid the use of
  1.4059 +  // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  1.4060 +  // vm: see markOop.hpp.
  1.4061 +  Node* hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  1.4062 +  Node* hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  1.4063 +  Node* hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
  1.4064 +  // This hack lets the hash bits live anywhere in the mark object now, as long
  1.4065 +  // as the shift drops the relevant bits into the low 32 bits.  Note that
  1.4066 +  // Java spec says that HashCode is an int so there's no point in capturing
  1.4067 +  // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  1.4068 +  hshifted_header      = ConvX2I(hshifted_header);
  1.4069 +  Node* hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
  1.4070 +
  1.4071 +  Node* no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  1.4072 +  Node* chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
  1.4073 +  Node* test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
  1.4074 +
  1.4075 +  generate_slow_guard(test_assigned, slow_region);
  1.4076 +
  1.4077 +  Node* init_mem = reset_memory();
  1.4078 +  // fill in the rest of the null path:
  1.4079 +  result_io ->init_req(_null_path, i_o());
  1.4080 +  result_mem->init_req(_null_path, init_mem);
  1.4081 +
  1.4082 +  result_val->init_req(_fast_path, hash_val);
  1.4083 +  result_reg->init_req(_fast_path, control());
  1.4084 +  result_io ->init_req(_fast_path, i_o());
  1.4085 +  result_mem->init_req(_fast_path, init_mem);
  1.4086 +
  1.4087 +  // Generate code for the slow case.  We make a call to hashCode().
  1.4088 +  set_control(_gvn.transform(slow_region));
  1.4089 +  if (!stopped()) {
  1.4090 +    // No need for PreserveJVMState, because we're using up the present state.
  1.4091 +    set_all_memory(init_mem);
  1.4092 +    vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
  1.4093 +    CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  1.4094 +    Node* slow_result = set_results_for_java_call(slow_call);
  1.4095 +    // this->control() comes from set_results_for_java_call
  1.4096 +    result_reg->init_req(_slow_path, control());
  1.4097 +    result_val->init_req(_slow_path, slow_result);
  1.4098 +    result_io  ->set_req(_slow_path, i_o());
  1.4099 +    result_mem ->set_req(_slow_path, reset_memory());
  1.4100 +  }
  1.4101 +
  1.4102 +  // Return the combined state.
  1.4103 +  set_i_o(        _gvn.transform(result_io)  );
  1.4104 +  set_all_memory( _gvn.transform(result_mem));
  1.4105 +
  1.4106 +  set_result(result_reg, result_val);
  1.4107 +  return true;
  1.4108 +}
  1.4109 +
  1.4110 +//---------------------------inline_native_getClass----------------------------
  1.4111 +// public final native Class<?> java.lang.Object.getClass();
  1.4112 +//
  1.4113 +// Build special case code for calls to getClass on an object.
  1.4114 +bool LibraryCallKit::inline_native_getClass() {
  1.4115 +  Node* obj = null_check_receiver();
  1.4116 +  if (stopped())  return true;
  1.4117 +  set_result(load_mirror_from_klass(load_object_klass(obj)));
  1.4118 +  return true;
  1.4119 +}
  1.4120 +
  1.4121 +//-----------------inline_native_Reflection_getCallerClass---------------------
  1.4122 +// public static native Class<?> sun.reflect.Reflection.getCallerClass();
  1.4123 +//
  1.4124 +// In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  1.4125 +//
  1.4126 +// NOTE: This code must perform the same logic as JVM_GetCallerClass
  1.4127 +// in that it must skip particular security frames and checks for
  1.4128 +// caller sensitive methods.
  1.4129 +bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  1.4130 +#ifndef PRODUCT
  1.4131 +  if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  1.4132 +    tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  1.4133 +  }
  1.4134 +#endif
  1.4135 +
  1.4136 +  if (!jvms()->has_method()) {
  1.4137 +#ifndef PRODUCT
  1.4138 +    if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  1.4139 +      tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  1.4140 +    }
  1.4141 +#endif
  1.4142 +    return false;
  1.4143 +  }
  1.4144 +
  1.4145 +  // Walk back up the JVM state to find the caller at the required
  1.4146 +  // depth.
  1.4147 +  JVMState* caller_jvms = jvms();
  1.4148 +
  1.4149 +  // Cf. JVM_GetCallerClass
  1.4150 +  // NOTE: Start the loop at depth 1 because the current JVM state does
  1.4151 +  // not include the Reflection.getCallerClass() frame.
  1.4152 +  for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
  1.4153 +    ciMethod* m = caller_jvms->method();
  1.4154 +    switch (n) {
  1.4155 +    case 0:
  1.4156 +      fatal("current JVM state does not include the Reflection.getCallerClass frame");
  1.4157 +      break;
  1.4158 +    case 1:
  1.4159 +      // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
  1.4160 +      if (!m->caller_sensitive()) {
  1.4161 +#ifndef PRODUCT
  1.4162 +        if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  1.4163 +          tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
  1.4164 +        }
  1.4165 +#endif
  1.4166 +        return false;  // bail-out; let JVM_GetCallerClass do the work
  1.4167 +      }
  1.4168 +      break;
  1.4169 +    default:
  1.4170 +      if (!m->is_ignored_by_security_stack_walk()) {
  1.4171 +        // We have reached the desired frame; return the holder class.
  1.4172 +        // Acquire method holder as java.lang.Class and push as constant.
  1.4173 +        ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
  1.4174 +        ciInstance* caller_mirror = caller_klass->java_mirror();
  1.4175 +        set_result(makecon(TypeInstPtr::make(caller_mirror)));
  1.4176 +
  1.4177 +#ifndef PRODUCT
  1.4178 +        if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  1.4179 +          tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
  1.4180 +          tty->print_cr("  JVM state at this point:");
  1.4181 +          for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
  1.4182 +            ciMethod* m = jvms()->of_depth(i)->method();
  1.4183 +            tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
  1.4184 +          }
  1.4185 +        }
  1.4186 +#endif
  1.4187 +        return true;
  1.4188 +      }
  1.4189 +      break;
  1.4190 +    }
  1.4191 +  }
  1.4192 +
  1.4193 +#ifndef PRODUCT
  1.4194 +  if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  1.4195 +    tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
  1.4196 +    tty->print_cr("  JVM state at this point:");
  1.4197 +    for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
  1.4198 +      ciMethod* m = jvms()->of_depth(i)->method();
  1.4199 +      tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
  1.4200 +    }
  1.4201 +  }
  1.4202 +#endif
  1.4203 +
  1.4204 +  return false;  // bail-out; let JVM_GetCallerClass do the work
  1.4205 +}
  1.4206 +
  1.4207 +bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  1.4208 +  Node* arg = argument(0);
  1.4209 +  Node* result;
  1.4210 +
  1.4211 +  switch (id) {
  1.4212 +  case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
  1.4213 +  case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
  1.4214 +  case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
  1.4215 +  case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
  1.4216 +
  1.4217 +  case vmIntrinsics::_doubleToLongBits: {
  1.4218 +    // two paths (plus control) merge in a wood
  1.4219 +    RegionNode *r = new (C) RegionNode(3);
  1.4220 +    Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  1.4221 +
  1.4222 +    Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
  1.4223 +    // Build the boolean node
  1.4224 +    Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
  1.4225 +
  1.4226 +    // Branch either way.
  1.4227 +    // NaN case is less traveled, which makes all the difference.
  1.4228 +    IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1.4229 +    Node *opt_isnan = _gvn.transform(ifisnan);
  1.4230 +    assert( opt_isnan->is_If(), "Expect an IfNode");
  1.4231 +    IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  1.4232 +    Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
  1.4233 +
  1.4234 +    set_control(iftrue);
  1.4235 +
  1.4236 +    static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1.4237 +    Node *slow_result = longcon(nan_bits); // return NaN
  1.4238 +    phi->init_req(1, _gvn.transform( slow_result ));
  1.4239 +    r->init_req(1, iftrue);
  1.4240 +
  1.4241 +    // Else fall through
  1.4242 +    Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
  1.4243 +    set_control(iffalse);
  1.4244 +
  1.4245 +    phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
  1.4246 +    r->init_req(2, iffalse);
  1.4247 +
  1.4248 +    // Post merge
  1.4249 +    set_control(_gvn.transform(r));
  1.4250 +    record_for_igvn(r);
  1.4251 +
  1.4252 +    C->set_has_split_ifs(true); // Has chance for split-if optimization
  1.4253 +    result = phi;
  1.4254 +    assert(result->bottom_type()->isa_long(), "must be");
  1.4255 +    break;
  1.4256 +  }
  1.4257 +
  1.4258 +  case vmIntrinsics::_floatToIntBits: {
  1.4259 +    // two paths (plus control) merge in a wood
  1.4260 +    RegionNode *r = new (C) RegionNode(3);
  1.4261 +    Node *phi = new (C) PhiNode(r, TypeInt::INT);
  1.4262 +
  1.4263 +    Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
  1.4264 +    // Build the boolean node
  1.4265 +    Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
  1.4266 +
  1.4267 +    // Branch either way.
  1.4268 +    // NaN case is less traveled, which makes all the difference.
  1.4269 +    IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1.4270 +    Node *opt_isnan = _gvn.transform(ifisnan);
  1.4271 +    assert( opt_isnan->is_If(), "Expect an IfNode");
  1.4272 +    IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  1.4273 +    Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
  1.4274 +
  1.4275 +    set_control(iftrue);
  1.4276 +
  1.4277 +    static const jint nan_bits = 0x7fc00000;
  1.4278 +    Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  1.4279 +    phi->init_req(1, _gvn.transform( slow_result ));
  1.4280 +    r->init_req(1, iftrue);
  1.4281 +
  1.4282 +    // Else fall through
  1.4283 +    Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
  1.4284 +    set_control(iffalse);
  1.4285 +
  1.4286 +    phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
  1.4287 +    r->init_req(2, iffalse);
  1.4288 +
  1.4289 +    // Post merge
  1.4290 +    set_control(_gvn.transform(r));
  1.4291 +    record_for_igvn(r);
  1.4292 +
  1.4293 +    C->set_has_split_ifs(true); // Has chance for split-if optimization
  1.4294 +    result = phi;
  1.4295 +    assert(result->bottom_type()->isa_int(), "must be");
  1.4296 +    break;
  1.4297 +  }
  1.4298 +
  1.4299 +  default:
  1.4300 +    fatal_unexpected_iid(id);
  1.4301 +    break;
  1.4302 +  }
  1.4303 +  set_result(_gvn.transform(result));
  1.4304 +  return true;
  1.4305 +}
  1.4306 +
  1.4307 +#ifdef _LP64
  1.4308 +#define XTOP ,top() /*additional argument*/
  1.4309 +#else  //_LP64
  1.4310 +#define XTOP        /*no additional argument*/
  1.4311 +#endif //_LP64
  1.4312 +
  1.4313 +//----------------------inline_unsafe_copyMemory-------------------------
  1.4314 +// public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
  1.4315 +bool LibraryCallKit::inline_unsafe_copyMemory() {
  1.4316 +  if (callee()->is_static())  return false;  // caller must have the capability!
  1.4317 +  null_check_receiver();  // null-check receiver
  1.4318 +  if (stopped())  return true;
  1.4319 +
  1.4320 +  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  1.4321 +
  1.4322 +  Node* src_ptr =         argument(1);   // type: oop
  1.4323 +  Node* src_off = ConvL2X(argument(2));  // type: long
  1.4324 +  Node* dst_ptr =         argument(4);   // type: oop
  1.4325 +  Node* dst_off = ConvL2X(argument(5));  // type: long
  1.4326 +  Node* size    = ConvL2X(argument(7));  // type: long
  1.4327 +
  1.4328 +  assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  1.4329 +         "fieldOffset must be byte-scaled");
  1.4330 +
  1.4331 +  Node* src = make_unsafe_address(src_ptr, src_off);
  1.4332 +  Node* dst = make_unsafe_address(dst_ptr, dst_off);
  1.4333 +
  1.4334 +  // Conservatively insert a memory barrier on all memory slices.
  1.4335 +  // Do not let writes of the copy source or destination float below the copy.
  1.4336 +  insert_mem_bar(Op_MemBarCPUOrder);
  1.4337 +
  1.4338 +  // Call it.  Note that the length argument is not scaled.
  1.4339 +  make_runtime_call(RC_LEAF|RC_NO_FP,
  1.4340 +                    OptoRuntime::fast_arraycopy_Type(),
  1.4341 +                    StubRoutines::unsafe_arraycopy(),
  1.4342 +                    "unsafe_arraycopy",
  1.4343 +                    TypeRawPtr::BOTTOM,
  1.4344 +                    src, dst, size XTOP);
  1.4345 +
  1.4346 +  // Do not let reads of the copy destination float above the copy.
  1.4347 +  insert_mem_bar(Op_MemBarCPUOrder);
  1.4348 +
  1.4349 +  return true;
  1.4350 +}
  1.4351 +
  1.4352 +//------------------------clone_coping-----------------------------------
  1.4353 +// Helper function for inline_native_clone.
  1.4354 +void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
  1.4355 +  assert(obj_size != NULL, "");
  1.4356 +  Node* raw_obj = alloc_obj->in(1);
  1.4357 +  assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  1.4358 +
  1.4359 +  AllocateNode* alloc = NULL;
  1.4360 +  if (ReduceBulkZeroing) {
  1.4361 +    // We will be completely responsible for initializing this object -
  1.4362 +    // mark Initialize node as complete.
  1.4363 +    alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  1.4364 +    // The object was just allocated - there should be no any stores!
  1.4365 +    guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
  1.4366 +    // Mark as complete_with_arraycopy so that on AllocateNode
  1.4367 +    // expansion, we know this AllocateNode is initialized by an array
  1.4368 +    // copy and a StoreStore barrier exists after the array copy.
  1.4369 +    alloc->initialization()->set_complete_with_arraycopy();
  1.4370 +  }
  1.4371 +
  1.4372 +  // Copy the fastest available way.
  1.4373 +  // TODO: generate fields copies for small objects instead.
  1.4374 +  Node* src  = obj;
  1.4375 +  Node* dest = alloc_obj;
  1.4376 +  Node* size = _gvn.transform(obj_size);
  1.4377 +
  1.4378 +  // Exclude the header but include array length to copy by 8 bytes words.
  1.4379 +  // Can't use base_offset_in_bytes(bt) since basic type is unknown.
  1.4380 +  int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
  1.4381 +                            instanceOopDesc::base_offset_in_bytes();
  1.4382 +  // base_off:
  1.4383 +  // 8  - 32-bit VM
  1.4384 +  // 12 - 64-bit VM, compressed klass
  1.4385 +  // 16 - 64-bit VM, normal klass
  1.4386 +  if (base_off % BytesPerLong != 0) {
  1.4387 +    assert(UseCompressedClassPointers, "");
  1.4388 +    if (is_array) {
  1.4389 +      // Exclude length to copy by 8 bytes words.
  1.4390 +      base_off += sizeof(int);
  1.4391 +    } else {
  1.4392 +      // Include klass to copy by 8 bytes words.
  1.4393 +      base_off = instanceOopDesc::klass_offset_in_bytes();
  1.4394 +    }
  1.4395 +    assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
  1.4396 +  }
  1.4397 +  src  = basic_plus_adr(src,  base_off);
  1.4398 +  dest = basic_plus_adr(dest, base_off);
  1.4399 +
  1.4400 +  // Compute the length also, if needed:
  1.4401 +  Node* countx = size;
  1.4402 +  countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
  1.4403 +  countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  1.4404 +
  1.4405 +  const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  1.4406 +  bool disjoint_bases = true;
  1.4407 +  generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  1.4408 +                               src, NULL, dest, NULL, countx,
  1.4409 +                               /*dest_uninitialized*/true);
  1.4410 +
  1.4411 +  // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  1.4412 +  if (card_mark) {
  1.4413 +    assert(!is_array, "");
  1.4414 +    // Put in store barrier for any and all oops we are sticking
  1.4415 +    // into this object.  (We could avoid this if we could prove
  1.4416 +    // that the object type contains no oop fields at all.)
  1.4417 +    Node* no_particular_value = NULL;
  1.4418 +    Node* no_particular_field = NULL;
  1.4419 +    int raw_adr_idx = Compile::AliasIdxRaw;
  1.4420 +    post_barrier(control(),
  1.4421 +                 memory(raw_adr_type),
  1.4422 +                 alloc_obj,
  1.4423 +                 no_particular_field,
  1.4424 +                 raw_adr_idx,
  1.4425 +                 no_particular_value,
  1.4426 +                 T_OBJECT,
  1.4427 +                 false);
  1.4428 +  }
  1.4429 +
  1.4430 +  // Do not let reads from the cloned object float above the arraycopy.
  1.4431 +  if (alloc != NULL) {
  1.4432 +    // Do not let stores that initialize this object be reordered with
  1.4433 +    // a subsequent store that would make this object accessible by
  1.4434 +    // other threads.
  1.4435 +    // Record what AllocateNode this StoreStore protects so that
  1.4436 +    // escape analysis can go from the MemBarStoreStoreNode to the
  1.4437 +    // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  1.4438 +    // based on the escape status of the AllocateNode.
  1.4439 +    insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  1.4440 +  } else {
  1.4441 +    insert_mem_bar(Op_MemBarCPUOrder);
  1.4442 +  }
  1.4443 +}
  1.4444 +
  1.4445 +//------------------------inline_native_clone----------------------------
  1.4446 +// protected native Object java.lang.Object.clone();
  1.4447 +//
  1.4448 +// Here are the simple edge cases:
  1.4449 +//  null receiver => normal trap
  1.4450 +//  virtual and clone was overridden => slow path to out-of-line clone
  1.4451 +//  not cloneable or finalizer => slow path to out-of-line Object.clone
  1.4452 +//
  1.4453 +// The general case has two steps, allocation and copying.
  1.4454 +// Allocation has two cases, and uses GraphKit::new_instance or new_array.
  1.4455 +//
  1.4456 +// Copying also has two cases, oop arrays and everything else.
  1.4457 +// Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  1.4458 +// Everything else uses the tight inline loop supplied by CopyArrayNode.
  1.4459 +//
  1.4460 +// These steps fold up nicely if and when the cloned object's klass
  1.4461 +// can be sharply typed as an object array, a type array, or an instance.
  1.4462 +//
  1.4463 +bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  1.4464 +  PhiNode* result_val;
  1.4465 +
  1.4466 +  // Set the reexecute bit for the interpreter to reexecute
  1.4467 +  // the bytecode that invokes Object.clone if deoptimization happens.
  1.4468 +  { PreserveReexecuteState preexecs(this);
  1.4469 +    jvms()->set_should_reexecute(true);
  1.4470 +
  1.4471 +    Node* obj = null_check_receiver();
  1.4472 +    if (stopped())  return true;
  1.4473 +
  1.4474 +    Node* obj_klass = load_object_klass(obj);
  1.4475 +    const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  1.4476 +    const TypeOopPtr*   toop   = ((tklass != NULL)
  1.4477 +                                ? tklass->as_instance_type()
  1.4478 +                                : TypeInstPtr::NOTNULL);
  1.4479 +
  1.4480 +    // Conservatively insert a memory barrier on all memory slices.
  1.4481 +    // Do not let writes into the original float below the clone.
  1.4482 +    insert_mem_bar(Op_MemBarCPUOrder);
  1.4483 +
  1.4484 +    // paths into result_reg:
  1.4485 +    enum {
  1.4486 +      _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  1.4487 +      _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
  1.4488 +      _array_path,        // plain array allocation, plus arrayof_long_arraycopy
  1.4489 +      _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
  1.4490 +      PATH_LIMIT
  1.4491 +    };
  1.4492 +    RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  1.4493 +    result_val             = new(C) PhiNode(result_reg,
  1.4494 +                                            TypeInstPtr::NOTNULL);
  1.4495 +    PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
  1.4496 +    PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  1.4497 +                                            TypePtr::BOTTOM);
  1.4498 +    record_for_igvn(result_reg);
  1.4499 +
  1.4500 +    const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  1.4501 +    int raw_adr_idx = Compile::AliasIdxRaw;
  1.4502 +
  1.4503 +    Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  1.4504 +    if (array_ctl != NULL) {
  1.4505 +      // It's an array.
  1.4506 +      PreserveJVMState pjvms(this);
  1.4507 +      set_control(array_ctl);
  1.4508 +      Node* obj_length = load_array_length(obj);
  1.4509 +      Node* obj_size  = NULL;
  1.4510 +      Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
  1.4511 +
  1.4512 +      if (!use_ReduceInitialCardMarks()) {
  1.4513 +        // If it is an oop array, it requires very special treatment,
  1.4514 +        // because card marking is required on each card of the array.
  1.4515 +        Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  1.4516 +        if (is_obja != NULL) {
  1.4517 +          PreserveJVMState pjvms2(this);
  1.4518 +          set_control(is_obja);
  1.4519 +          // Generate a direct call to the right arraycopy function(s).
  1.4520 +          bool disjoint_bases = true;
  1.4521 +          bool length_never_negative = true;
  1.4522 +          generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  1.4523 +                             obj, intcon(0), alloc_obj, intcon(0),
  1.4524 +                             obj_length,
  1.4525 +                             disjoint_bases, length_never_negative);
  1.4526 +          result_reg->init_req(_objArray_path, control());
  1.4527 +          result_val->init_req(_objArray_path, alloc_obj);
  1.4528 +          result_i_o ->set_req(_objArray_path, i_o());
  1.4529 +          result_mem ->set_req(_objArray_path, reset_memory());
  1.4530 +        }
  1.4531 +      }
  1.4532 +      // Otherwise, there are no card marks to worry about.
  1.4533 +      // (We can dispense with card marks if we know the allocation
  1.4534 +      //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  1.4535 +      //  causes the non-eden paths to take compensating steps to
  1.4536 +      //  simulate a fresh allocation, so that no further
  1.4537 +      //  card marks are required in compiled code to initialize
  1.4538 +      //  the object.)
  1.4539 +
  1.4540 +      if (!stopped()) {
  1.4541 +        copy_to_clone(obj, alloc_obj, obj_size, true, false);
  1.4542 +
  1.4543 +        // Present the results of the copy.
  1.4544 +        result_reg->init_req(_array_path, control());
  1.4545 +        result_val->init_req(_array_path, alloc_obj);
  1.4546 +        result_i_o ->set_req(_array_path, i_o());
  1.4547 +        result_mem ->set_req(_array_path, reset_memory());
  1.4548 +      }
  1.4549 +    }
  1.4550 +
  1.4551 +    // We only go to the instance fast case code if we pass a number of guards.
  1.4552 +    // The paths which do not pass are accumulated in the slow_region.
  1.4553 +    RegionNode* slow_region = new (C) RegionNode(1);
  1.4554 +    record_for_igvn(slow_region);
  1.4555 +    if (!stopped()) {
  1.4556 +      // It's an instance (we did array above).  Make the slow-path tests.
  1.4557 +      // If this is a virtual call, we generate a funny guard.  We grab
  1.4558 +      // the vtable entry corresponding to clone() from the target object.
  1.4559 +      // If the target method which we are calling happens to be the
  1.4560 +      // Object clone() method, we pass the guard.  We do not need this
  1.4561 +      // guard for non-virtual calls; the caller is known to be the native
  1.4562 +      // Object clone().
  1.4563 +      if (is_virtual) {
  1.4564 +        generate_virtual_guard(obj_klass, slow_region);
  1.4565 +      }
  1.4566 +
  1.4567 +      // The object must be cloneable and must not have a finalizer.
  1.4568 +      // Both of these conditions may be checked in a single test.
  1.4569 +      // We could optimize the cloneable test further, but we don't care.
  1.4570 +      generate_access_flags_guard(obj_klass,
  1.4571 +                                  // Test both conditions:
  1.4572 +                                  JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  1.4573 +                                  // Must be cloneable but not finalizer:
  1.4574 +                                  JVM_ACC_IS_CLONEABLE,
  1.4575 +                                  slow_region);
  1.4576 +    }
  1.4577 +
  1.4578 +    if (!stopped()) {
  1.4579 +      // It's an instance, and it passed the slow-path tests.
  1.4580 +      PreserveJVMState pjvms(this);
  1.4581 +      Node* obj_size  = NULL;
  1.4582 +      // Need to deoptimize on exception from allocation since Object.clone intrinsic
  1.4583 +      // is reexecuted if deoptimization occurs and there could be problems when merging
  1.4584 +      // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
  1.4585 +      Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
  1.4586 +
  1.4587 +      copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
  1.4588 +
  1.4589 +      // Present the results of the slow call.
  1.4590 +      result_reg->init_req(_instance_path, control());
  1.4591 +      result_val->init_req(_instance_path, alloc_obj);
  1.4592 +      result_i_o ->set_req(_instance_path, i_o());
  1.4593 +      result_mem ->set_req(_instance_path, reset_memory());
  1.4594 +    }
  1.4595 +
  1.4596 +    // Generate code for the slow case.  We make a call to clone().
  1.4597 +    set_control(_gvn.transform(slow_region));
  1.4598 +    if (!stopped()) {
  1.4599 +      PreserveJVMState pjvms(this);
  1.4600 +      CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  1.4601 +      Node* slow_result = set_results_for_java_call(slow_call);
  1.4602 +      // this->control() comes from set_results_for_java_call
  1.4603 +      result_reg->init_req(_slow_path, control());
  1.4604 +      result_val->init_req(_slow_path, slow_result);
  1.4605 +      result_i_o ->set_req(_slow_path, i_o());
  1.4606 +      result_mem ->set_req(_slow_path, reset_memory());
  1.4607 +    }
  1.4608 +
  1.4609 +    // Return the combined state.
  1.4610 +    set_control(    _gvn.transform(result_reg));
  1.4611 +    set_i_o(        _gvn.transform(result_i_o));
  1.4612 +    set_all_memory( _gvn.transform(result_mem));
  1.4613 +  } // original reexecute is set back here
  1.4614 +
  1.4615 +  set_result(_gvn.transform(result_val));
  1.4616 +  return true;
  1.4617 +}
  1.4618 +
  1.4619 +//------------------------------basictype2arraycopy----------------------------
  1.4620 +address LibraryCallKit::basictype2arraycopy(BasicType t,
  1.4621 +                                            Node* src_offset,
  1.4622 +                                            Node* dest_offset,
  1.4623 +                                            bool disjoint_bases,
  1.4624 +                                            const char* &name,
  1.4625 +                                            bool dest_uninitialized) {
  1.4626 +  const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  1.4627 +  const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  1.4628 +
  1.4629 +  bool aligned = false;
  1.4630 +  bool disjoint = disjoint_bases;
  1.4631 +
  1.4632 +  // if the offsets are the same, we can treat the memory regions as
  1.4633 +  // disjoint, because either the memory regions are in different arrays,
  1.4634 +  // or they are identical (which we can treat as disjoint.)  We can also
  1.4635 +  // treat a copy with a destination index  less that the source index
  1.4636 +  // as disjoint since a low->high copy will work correctly in this case.
  1.4637 +  if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  1.4638 +      dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  1.4639 +    // both indices are constants
  1.4640 +    int s_offs = src_offset_inttype->get_con();
  1.4641 +    int d_offs = dest_offset_inttype->get_con();
  1.4642 +    int element_size = type2aelembytes(t);
  1.4643 +    aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  1.4644 +              ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  1.4645 +    if (s_offs >= d_offs)  disjoint = true;
  1.4646 +  } else if (src_offset == dest_offset && src_offset != NULL) {
  1.4647 +    // This can occur if the offsets are identical non-constants.
  1.4648 +    disjoint = true;
  1.4649 +  }
  1.4650 +
  1.4651 +  return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
  1.4652 +}
  1.4653 +
  1.4654 +
  1.4655 +//------------------------------inline_arraycopy-----------------------
  1.4656 +// public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
  1.4657 +//                                                      Object dest, int destPos,
  1.4658 +//                                                      int length);
  1.4659 +bool LibraryCallKit::inline_arraycopy() {
  1.4660 +  // Get the arguments.
  1.4661 +  Node* src         = argument(0);  // type: oop
  1.4662 +  Node* src_offset  = argument(1);  // type: int
  1.4663 +  Node* dest        = argument(2);  // type: oop
  1.4664 +  Node* dest_offset = argument(3);  // type: int
  1.4665 +  Node* length      = argument(4);  // type: int
  1.4666 +
  1.4667 +  // Compile time checks.  If any of these checks cannot be verified at compile time,
  1.4668 +  // we do not make a fast path for this call.  Instead, we let the call remain as it
  1.4669 +  // is.  The checks we choose to mandate at compile time are:
  1.4670 +  //
  1.4671 +  // (1) src and dest are arrays.
  1.4672 +  const Type* src_type  = src->Value(&_gvn);
  1.4673 +  const Type* dest_type = dest->Value(&_gvn);
  1.4674 +  const TypeAryPtr* top_src  = src_type->isa_aryptr();
  1.4675 +  const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  1.4676 +
  1.4677 +  // Do we have the type of src?
  1.4678 +  bool has_src = (top_src != NULL && top_src->klass() != NULL);
  1.4679 +  // Do we have the type of dest?
  1.4680 +  bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
  1.4681 +  // Is the type for src from speculation?
  1.4682 +  bool src_spec = false;
  1.4683 +  // Is the type for dest from speculation?
  1.4684 +  bool dest_spec = false;
  1.4685 +
  1.4686 +  if (!has_src || !has_dest) {
  1.4687 +    // We don't have sufficient type information, let's see if
  1.4688 +    // speculative types can help. We need to have types for both src
  1.4689 +    // and dest so that it pays off.
  1.4690 +
  1.4691 +    // Do we already have or could we have type information for src
  1.4692 +    bool could_have_src = has_src;
  1.4693 +    // Do we already have or could we have type information for dest
  1.4694 +    bool could_have_dest = has_dest;
  1.4695 +
  1.4696 +    ciKlass* src_k = NULL;
  1.4697 +    if (!has_src) {
  1.4698 +      src_k = src_type->speculative_type();
  1.4699 +      if (src_k != NULL && src_k->is_array_klass()) {
  1.4700 +        could_have_src = true;
  1.4701 +      }
  1.4702 +    }
  1.4703 +
  1.4704 +    ciKlass* dest_k = NULL;
  1.4705 +    if (!has_dest) {
  1.4706 +      dest_k = dest_type->speculative_type();
  1.4707 +      if (dest_k != NULL && dest_k->is_array_klass()) {
  1.4708 +        could_have_dest = true;
  1.4709 +      }
  1.4710 +    }
  1.4711 +
  1.4712 +    if (could_have_src && could_have_dest) {
  1.4713 +      // This is going to pay off so emit the required guards
  1.4714 +      if (!has_src) {
  1.4715 +        src = maybe_cast_profiled_obj(src, src_k);
  1.4716 +        src_type  = _gvn.type(src);
  1.4717 +        top_src  = src_type->isa_aryptr();
  1.4718 +        has_src = (top_src != NULL && top_src->klass() != NULL);
  1.4719 +        src_spec = true;
  1.4720 +      }
  1.4721 +      if (!has_dest) {
  1.4722 +        dest = maybe_cast_profiled_obj(dest, dest_k);
  1.4723 +        dest_type  = _gvn.type(dest);
  1.4724 +        top_dest  = dest_type->isa_aryptr();
  1.4725 +        has_dest = (top_dest != NULL && top_dest->klass() != NULL);
  1.4726 +        dest_spec = true;
  1.4727 +      }
  1.4728 +    }
  1.4729 +  }
  1.4730 +
  1.4731 +  if (!has_src || !has_dest) {
  1.4732 +    // Conservatively insert a memory barrier on all memory slices.
  1.4733 +    // Do not let writes into the source float below the arraycopy.
  1.4734 +    insert_mem_bar(Op_MemBarCPUOrder);
  1.4735 +
  1.4736 +    // Call StubRoutines::generic_arraycopy stub.
  1.4737 +    generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  1.4738 +                       src, src_offset, dest, dest_offset, length);
  1.4739 +
  1.4740 +    // Do not let reads from the destination float above the arraycopy.
  1.4741 +    // Since we cannot type the arrays, we don't know which slices
  1.4742 +    // might be affected.  We could restrict this barrier only to those
  1.4743 +    // memory slices which pertain to array elements--but don't bother.
  1.4744 +    if (!InsertMemBarAfterArraycopy)
  1.4745 +      // (If InsertMemBarAfterArraycopy, there is already one in place.)
  1.4746 +      insert_mem_bar(Op_MemBarCPUOrder);
  1.4747 +    return true;
  1.4748 +  }
  1.4749 +
  1.4750 +  // (2) src and dest arrays must have elements of the same BasicType
  1.4751 +  // Figure out the size and type of the elements we will be copying.
  1.4752 +  BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  1.4753 +  BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  1.4754 +  if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  1.4755 +  if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  1.4756 +
  1.4757 +  if (src_elem != dest_elem || dest_elem == T_VOID) {
  1.4758 +    // The component types are not the same or are not recognized.  Punt.
  1.4759 +    // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  1.4760 +    generate_slow_arraycopy(TypePtr::BOTTOM,
  1.4761 +                            src, src_offset, dest, dest_offset, length,
  1.4762 +                            /*dest_uninitialized*/false);
  1.4763 +    return true;
  1.4764 +  }
  1.4765 +
  1.4766 +  if (src_elem == T_OBJECT) {
  1.4767 +    // If both arrays are object arrays then having the exact types
  1.4768 +    // for both will remove the need for a subtype check at runtime
  1.4769 +    // before the call and may make it possible to pick a faster copy
  1.4770 +    // routine (without a subtype check on every element)
  1.4771 +    // Do we have the exact type of src?
  1.4772 +    bool could_have_src = src_spec;
  1.4773 +    // Do we have the exact type of dest?
  1.4774 +    bool could_have_dest = dest_spec;
  1.4775 +    ciKlass* src_k = top_src->klass();
  1.4776 +    ciKlass* dest_k = top_dest->klass();
  1.4777 +    if (!src_spec) {
  1.4778 +      src_k = src_type->speculative_type();
  1.4779 +      if (src_k != NULL && src_k->is_array_klass()) {
  1.4780 +          could_have_src = true;
  1.4781 +      }
  1.4782 +    }
  1.4783 +    if (!dest_spec) {
  1.4784 +      dest_k = dest_type->speculative_type();
  1.4785 +      if (dest_k != NULL && dest_k->is_array_klass()) {
  1.4786 +        could_have_dest = true;
  1.4787 +      }
  1.4788 +    }
  1.4789 +    if (could_have_src && could_have_dest) {
  1.4790 +      // If we can have both exact types, emit the missing guards
  1.4791 +      if (could_have_src && !src_spec) {
  1.4792 +        src = maybe_cast_profiled_obj(src, src_k);
  1.4793 +      }
  1.4794 +      if (could_have_dest && !dest_spec) {
  1.4795 +        dest = maybe_cast_profiled_obj(dest, dest_k);
  1.4796 +      }
  1.4797 +    }
  1.4798 +  }
  1.4799 +
  1.4800 +  //---------------------------------------------------------------------------
  1.4801 +  // We will make a fast path for this call to arraycopy.
  1.4802 +
  1.4803 +  // We have the following tests left to perform:
  1.4804 +  //
  1.4805 +  // (3) src and dest must not be null.
  1.4806 +  // (4) src_offset must not be negative.
  1.4807 +  // (5) dest_offset must not be negative.
  1.4808 +  // (6) length must not be negative.
  1.4809 +  // (7) src_offset + length must not exceed length of src.
  1.4810 +  // (8) dest_offset + length must not exceed length of dest.
  1.4811 +  // (9) each element of an oop array must be assignable
  1.4812 +
  1.4813 +  RegionNode* slow_region = new (C) RegionNode(1);
  1.4814 +  record_for_igvn(slow_region);
  1.4815 +
  1.4816 +  // (3) operands must not be null
  1.4817 +  // We currently perform our null checks with the null_check routine.
  1.4818 +  // This means that the null exceptions will be reported in the caller
  1.4819 +  // rather than (correctly) reported inside of the native arraycopy call.
  1.4820 +  // This should be corrected, given time.  We do our null check with the
  1.4821 +  // stack pointer restored.
  1.4822 +  src  = null_check(src,  T_ARRAY);
  1.4823 +  dest = null_check(dest, T_ARRAY);
  1.4824 +
  1.4825 +  // (4) src_offset must not be negative.
  1.4826 +  generate_negative_guard(src_offset, slow_region);
  1.4827 +
  1.4828 +  // (5) dest_offset must not be negative.
  1.4829 +  generate_negative_guard(dest_offset, slow_region);
  1.4830 +
  1.4831 +  // (6) length must not be negative (moved to generate_arraycopy()).
  1.4832 +  // generate_negative_guard(length, slow_region);
  1.4833 +
  1.4834 +  // (7) src_offset + length must not exceed length of src.
  1.4835 +  generate_limit_guard(src_offset, length,
  1.4836 +                       load_array_length(src),
  1.4837 +                       slow_region);
  1.4838 +
  1.4839 +  // (8) dest_offset + length must not exceed length of dest.
  1.4840 +  generate_limit_guard(dest_offset, length,
  1.4841 +                       load_array_length(dest),
  1.4842 +                       slow_region);
  1.4843 +
  1.4844 +  // (9) each element of an oop array must be assignable
  1.4845 +  // The generate_arraycopy subroutine checks this.
  1.4846 +
  1.4847 +  // This is where the memory effects are placed:
  1.4848 +  const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  1.4849 +  generate_arraycopy(adr_type, dest_elem,
  1.4850 +                     src, src_offset, dest, dest_offset, length,
  1.4851 +                     false, false, slow_region);
  1.4852 +
  1.4853 +  return true;
  1.4854 +}
  1.4855 +
  1.4856 +//-----------------------------generate_arraycopy----------------------
  1.4857 +// Generate an optimized call to arraycopy.
  1.4858 +// Caller must guard against non-arrays.
  1.4859 +// Caller must determine a common array basic-type for both arrays.
  1.4860 +// Caller must validate offsets against array bounds.
  1.4861 +// The slow_region has already collected guard failure paths
  1.4862 +// (such as out of bounds length or non-conformable array types).
  1.4863 +// The generated code has this shape, in general:
  1.4864 +//
  1.4865 +//     if (length == 0)  return   // via zero_path
  1.4866 +//     slowval = -1
  1.4867 +//     if (types unknown) {
  1.4868 +//       slowval = call generic copy loop
  1.4869 +//       if (slowval == 0)  return  // via checked_path
  1.4870 +//     } else if (indexes in bounds) {
  1.4871 +//       if ((is object array) && !(array type check)) {
  1.4872 +//         slowval = call checked copy loop
  1.4873 +//         if (slowval == 0)  return  // via checked_path
  1.4874 +//       } else {
  1.4875 +//         call bulk copy loop
  1.4876 +//         return  // via fast_path
  1.4877 +//       }
  1.4878 +//     }
  1.4879 +//     // adjust params for remaining work:
  1.4880 +//     if (slowval != -1) {
  1.4881 +//       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  1.4882 +//     }
  1.4883 +//   slow_region:
  1.4884 +//     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  1.4885 +//     return  // via slow_call_path
  1.4886 +//
  1.4887 +// This routine is used from several intrinsics:  System.arraycopy,
  1.4888 +// Object.clone (the array subcase), and Arrays.copyOf[Range].
  1.4889 +//
  1.4890 +void
  1.4891 +LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  1.4892 +                                   BasicType basic_elem_type,
  1.4893 +                                   Node* src,  Node* src_offset,
  1.4894 +                                   Node* dest, Node* dest_offset,
  1.4895 +                                   Node* copy_length,
  1.4896 +                                   bool disjoint_bases,
  1.4897 +                                   bool length_never_negative,
  1.4898 +                                   RegionNode* slow_region) {
  1.4899 +
  1.4900 +  if (slow_region == NULL) {
  1.4901 +    slow_region = new(C) RegionNode(1);
  1.4902 +    record_for_igvn(slow_region);
  1.4903 +  }
  1.4904 +
  1.4905 +  Node* original_dest      = dest;
  1.4906 +  AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  1.4907 +  bool  dest_uninitialized = false;
  1.4908 +
  1.4909 +  // See if this is the initialization of a newly-allocated array.
  1.4910 +  // If so, we will take responsibility here for initializing it to zero.
  1.4911 +  // (Note:  Because tightly_coupled_allocation performs checks on the
  1.4912 +  // out-edges of the dest, we need to avoid making derived pointers
  1.4913 +  // from it until we have checked its uses.)
  1.4914 +  if (ReduceBulkZeroing
  1.4915 +      && !ZeroTLAB              // pointless if already zeroed
  1.4916 +      && basic_elem_type != T_CONFLICT // avoid corner case
  1.4917 +      && !src->eqv_uncast(dest)
  1.4918 +      && ((alloc = tightly_coupled_allocation(dest, slow_region))
  1.4919 +          != NULL)
  1.4920 +      && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
  1.4921 +      && alloc->maybe_set_complete(&_gvn)) {
  1.4922 +    // "You break it, you buy it."
  1.4923 +    InitializeNode* init = alloc->initialization();
  1.4924 +    assert(init->is_complete(), "we just did this");
  1.4925 +    init->set_complete_with_arraycopy();
  1.4926 +    assert(dest->is_CheckCastPP(), "sanity");
  1.4927 +    assert(dest->in(0)->in(0) == init, "dest pinned");
  1.4928 +    adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  1.4929 +    // From this point on, every exit path is responsible for
  1.4930 +    // initializing any non-copied parts of the object to zero.
  1.4931 +    // Also, if this flag is set we make sure that arraycopy interacts properly
  1.4932 +    // with G1, eliding pre-barriers. See CR 6627983.
  1.4933 +    dest_uninitialized = true;
  1.4934 +  } else {
  1.4935 +    // No zeroing elimination here.
  1.4936 +    alloc             = NULL;
  1.4937 +    //original_dest   = dest;
  1.4938 +    //dest_uninitialized = false;
  1.4939 +  }
  1.4940 +
  1.4941 +  // Results are placed here:
  1.4942 +  enum { fast_path        = 1,  // normal void-returning assembly stub
  1.4943 +         checked_path     = 2,  // special assembly stub with cleanup
  1.4944 +         slow_call_path   = 3,  // something went wrong; call the VM
  1.4945 +         zero_path        = 4,  // bypass when length of copy is zero
  1.4946 +         bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  1.4947 +         PATH_LIMIT       = 6
  1.4948 +  };
  1.4949 +  RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
  1.4950 +  PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
  1.4951 +  PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
  1.4952 +  record_for_igvn(result_region);
  1.4953 +  _gvn.set_type_bottom(result_i_o);
  1.4954 +  _gvn.set_type_bottom(result_memory);
  1.4955 +  assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  1.4956 +
  1.4957 +  // The slow_control path:
  1.4958 +  Node* slow_control;
  1.4959 +  Node* slow_i_o = i_o();
  1.4960 +  Node* slow_mem = memory(adr_type);
  1.4961 +  debug_only(slow_control = (Node*) badAddress);
  1.4962 +
  1.4963 +  // Checked control path:
  1.4964 +  Node* checked_control = top();
  1.4965 +  Node* checked_mem     = NULL;
  1.4966 +  Node* checked_i_o     = NULL;
  1.4967 +  Node* checked_value   = NULL;
  1.4968 +
  1.4969 +  if (basic_elem_type == T_CONFLICT) {
  1.4970 +    assert(!dest_uninitialized, "");
  1.4971 +    Node* cv = generate_generic_arraycopy(adr_type,
  1.4972 +                                          src, src_offset, dest, dest_offset,
  1.4973 +                                          copy_length, dest_uninitialized);
  1.4974 +    if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  1.4975 +    checked_control = control();
  1.4976 +    checked_i_o     = i_o();
  1.4977 +    checked_mem     = memory(adr_type);
  1.4978 +    checked_value   = cv;
  1.4979 +    set_control(top());         // no fast path
  1.4980 +  }
  1.4981 +
  1.4982 +  Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  1.4983 +  if (not_pos != NULL) {
  1.4984 +    PreserveJVMState pjvms(this);
  1.4985 +    set_control(not_pos);
  1.4986 +
  1.4987 +    // (6) length must not be negative.
  1.4988 +    if (!length_never_negative) {
  1.4989 +      generate_negative_guard(copy_length, slow_region);
  1.4990 +    }
  1.4991 +
  1.4992 +    // copy_length is 0.
  1.4993 +    if (!stopped() && dest_uninitialized) {
  1.4994 +      Node* dest_length = alloc->in(AllocateNode::ALength);
  1.4995 +      if (copy_length->eqv_uncast(dest_length)
  1.4996 +          || _gvn.find_int_con(dest_length, 1) <= 0) {
  1.4997 +        // There is no zeroing to do. No need for a secondary raw memory barrier.
  1.4998 +      } else {
  1.4999 +        // Clear the whole thing since there are no source elements to copy.
  1.5000 +        generate_clear_array(adr_type, dest, basic_elem_type,
  1.5001 +                             intcon(0), NULL,
  1.5002 +                             alloc->in(AllocateNode::AllocSize));
  1.5003 +        // Use a secondary InitializeNode as raw memory barrier.
  1.5004 +        // Currently it is needed only on this path since other
  1.5005 +        // paths have stub or runtime calls as raw memory barriers.
  1.5006 +        InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  1.5007 +                                                       Compile::AliasIdxRaw,
  1.5008 +                                                       top())->as_Initialize();
  1.5009 +        init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  1.5010 +      }
  1.5011 +    }
  1.5012 +
  1.5013 +    // Present the results of the fast call.
  1.5014 +    result_region->init_req(zero_path, control());
  1.5015 +    result_i_o   ->init_req(zero_path, i_o());
  1.5016 +    result_memory->init_req(zero_path, memory(adr_type));
  1.5017 +  }
  1.5018 +
  1.5019 +  if (!stopped() && dest_uninitialized) {
  1.5020 +    // We have to initialize the *uncopied* part of the array to zero.
  1.5021 +    // The copy destination is the slice dest[off..off+len].  The other slices
  1.5022 +    // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  1.5023 +    Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  1.5024 +    Node* dest_length = alloc->in(AllocateNode::ALength);
  1.5025 +    Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
  1.5026 +                                                          copy_length));
  1.5027 +
  1.5028 +    // If there is a head section that needs zeroing, do it now.
  1.5029 +    if (find_int_con(dest_offset, -1) != 0) {
  1.5030 +      generate_clear_array(adr_type, dest, basic_elem_type,
  1.5031 +                           intcon(0), dest_offset,
  1.5032 +                           NULL);
  1.5033 +    }
  1.5034 +
  1.5035 +    // Next, perform a dynamic check on the tail length.
  1.5036 +    // It is often zero, and we can win big if we prove this.
  1.5037 +    // There are two wins:  Avoid generating the ClearArray
  1.5038 +    // with its attendant messy index arithmetic, and upgrade
  1.5039 +    // the copy to a more hardware-friendly word size of 64 bits.
  1.5040 +    Node* tail_ctl = NULL;
  1.5041 +    if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
  1.5042 +      Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
  1.5043 +      Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
  1.5044 +      tail_ctl = generate_slow_guard(bol_lt, NULL);
  1.5045 +      assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  1.5046 +    }
  1.5047 +
  1.5048 +    // At this point, let's assume there is no tail.
  1.5049 +    if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  1.5050 +      // There is no tail.  Try an upgrade to a 64-bit copy.
  1.5051 +      bool didit = false;
  1.5052 +      { PreserveJVMState pjvms(this);
  1.5053 +        didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  1.5054 +                                         src, src_offset, dest, dest_offset,
  1.5055 +                                         dest_size, dest_uninitialized);
  1.5056 +        if (didit) {
  1.5057 +          // Present the results of the block-copying fast call.
  1.5058 +          result_region->init_req(bcopy_path, control());
  1.5059 +          result_i_o   ->init_req(bcopy_path, i_o());
  1.5060 +          result_memory->init_req(bcopy_path, memory(adr_type));
  1.5061 +        }
  1.5062 +      }
  1.5063 +      if (didit)
  1.5064 +        set_control(top());     // no regular fast path
  1.5065 +    }
  1.5066 +
  1.5067 +    // Clear the tail, if any.
  1.5068 +    if (tail_ctl != NULL) {
  1.5069 +      Node* notail_ctl = stopped() ? NULL : control();
  1.5070 +      set_control(tail_ctl);
  1.5071 +      if (notail_ctl == NULL) {
  1.5072 +        generate_clear_array(adr_type, dest, basic_elem_type,
  1.5073 +                             dest_tail, NULL,
  1.5074 +                             dest_size);
  1.5075 +      } else {
  1.5076 +        // Make a local merge.
  1.5077 +        Node* done_ctl = new(C) RegionNode(3);
  1.5078 +        Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
  1.5079 +        done_ctl->init_req(1, notail_ctl);
  1.5080 +        done_mem->init_req(1, memory(adr_type));
  1.5081 +        generate_clear_array(adr_type, dest, basic_elem_type,
  1.5082 +                             dest_tail, NULL,
  1.5083 +                             dest_size);
  1.5084 +        done_ctl->init_req(2, control());
  1.5085 +        done_mem->init_req(2, memory(adr_type));
  1.5086 +        set_control( _gvn.transform(done_ctl));
  1.5087 +        set_memory(  _gvn.transform(done_mem), adr_type );
  1.5088 +      }
  1.5089 +    }
  1.5090 +  }
  1.5091 +
  1.5092 +  BasicType copy_type = basic_elem_type;
  1.5093 +  assert(basic_elem_type != T_ARRAY, "caller must fix this");
  1.5094 +  if (!stopped() && copy_type == T_OBJECT) {
  1.5095 +    // If src and dest have compatible element types, we can copy bits.
  1.5096 +    // Types S[] and D[] are compatible if D is a supertype of S.
  1.5097 +    //
  1.5098 +    // If they are not, we will use checked_oop_disjoint_arraycopy,
  1.5099 +    // which performs a fast optimistic per-oop check, and backs off
  1.5100 +    // further to JVM_ArrayCopy on the first per-oop check that fails.
  1.5101 +    // (Actually, we don't move raw bits only; the GC requires card marks.)
  1.5102 +
  1.5103 +    // Get the Klass* for both src and dest
  1.5104 +    Node* src_klass  = load_object_klass(src);
  1.5105 +    Node* dest_klass = load_object_klass(dest);
  1.5106 +
  1.5107 +    // Generate the subtype check.
  1.5108 +    // This might fold up statically, or then again it might not.
  1.5109 +    //
  1.5110 +    // Non-static example:  Copying List<String>.elements to a new String[].
  1.5111 +    // The backing store for a List<String> is always an Object[],
  1.5112 +    // but its elements are always type String, if the generic types
  1.5113 +    // are correct at the source level.
  1.5114 +    //
  1.5115 +    // Test S[] against D[], not S against D, because (probably)
  1.5116 +    // the secondary supertype cache is less busy for S[] than S.
  1.5117 +    // This usually only matters when D is an interface.
  1.5118 +    Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  1.5119 +    // Plug failing path into checked_oop_disjoint_arraycopy
  1.5120 +    if (not_subtype_ctrl != top()) {
  1.5121 +      PreserveJVMState pjvms(this);
  1.5122 +      set_control(not_subtype_ctrl);
  1.5123 +      // (At this point we can assume disjoint_bases, since types differ.)
  1.5124 +      int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
  1.5125 +      Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  1.5126 +      Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  1.5127 +      Node* dest_elem_klass = _gvn.transform(n1);
  1.5128 +      Node* cv = generate_checkcast_arraycopy(adr_type,
  1.5129 +                                              dest_elem_klass,
  1.5130 +                                              src, src_offset, dest, dest_offset,
  1.5131 +                                              ConvI2X(copy_length), dest_uninitialized);
  1.5132 +      if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  1.5133 +      checked_control = control();
  1.5134 +      checked_i_o     = i_o();
  1.5135 +      checked_mem     = memory(adr_type);
  1.5136 +      checked_value   = cv;
  1.5137 +    }
  1.5138 +    // At this point we know we do not need type checks on oop stores.
  1.5139 +
  1.5140 +    // Let's see if we need card marks:
  1.5141 +    if (alloc != NULL && use_ReduceInitialCardMarks()) {
  1.5142 +      // If we do not need card marks, copy using the jint or jlong stub.
  1.5143 +      copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
  1.5144 +      assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
  1.5145 +             "sizes agree");
  1.5146 +    }
  1.5147 +  }
  1.5148 +
  1.5149 +  if (!stopped()) {
  1.5150 +    // Generate the fast path, if possible.
  1.5151 +    PreserveJVMState pjvms(this);
  1.5152 +    generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  1.5153 +                                 src, src_offset, dest, dest_offset,
  1.5154 +                                 ConvI2X(copy_length), dest_uninitialized);
  1.5155 +
  1.5156 +    // Present the results of the fast call.
  1.5157 +    result_region->init_req(fast_path, control());
  1.5158 +    result_i_o   ->init_req(fast_path, i_o());
  1.5159 +    result_memory->init_req(fast_path, memory(adr_type));
  1.5160 +  }
  1.5161 +
  1.5162 +  // Here are all the slow paths up to this point, in one bundle:
  1.5163 +  slow_control = top();
  1.5164 +  if (slow_region != NULL)
  1.5165 +    slow_control = _gvn.transform(slow_region);
  1.5166 +  DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
  1.5167 +
  1.5168 +  set_control(checked_control);
  1.5169 +  if (!stopped()) {
  1.5170 +    // Clean up after the checked call.
  1.5171 +    // The returned value is either 0 or -1^K,
  1.5172 +    // where K = number of partially transferred array elements.
  1.5173 +    Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
  1.5174 +    Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
  1.5175 +    IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  1.5176 +
  1.5177 +    // If it is 0, we are done, so transfer to the end.
  1.5178 +    Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
  1.5179 +    result_region->init_req(checked_path, checks_done);
  1.5180 +    result_i_o   ->init_req(checked_path, checked_i_o);
  1.5181 +    result_memory->init_req(checked_path, checked_mem);
  1.5182 +
  1.5183 +    // If it is not zero, merge into the slow call.
  1.5184 +    set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
  1.5185 +    RegionNode* slow_reg2 = new(C) RegionNode(3);
  1.5186 +    PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
  1.5187 +    PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  1.5188 +    record_for_igvn(slow_reg2);
  1.5189 +    slow_reg2  ->init_req(1, slow_control);
  1.5190 +    slow_i_o2  ->init_req(1, slow_i_o);
  1.5191 +    slow_mem2  ->init_req(1, slow_mem);
  1.5192 +    slow_reg2  ->init_req(2, control());
  1.5193 +    slow_i_o2  ->init_req(2, checked_i_o);
  1.5194 +    slow_mem2  ->init_req(2, checked_mem);
  1.5195 +
  1.5196 +    slow_control = _gvn.transform(slow_reg2);
  1.5197 +    slow_i_o     = _gvn.transform(slow_i_o2);
  1.5198 +    slow_mem     = _gvn.transform(slow_mem2);
  1.5199 +
  1.5200 +    if (alloc != NULL) {
  1.5201 +      // We'll restart from the very beginning, after zeroing the whole thing.
  1.5202 +      // This can cause double writes, but that's OK since dest is brand new.
  1.5203 +      // So we ignore the low 31 bits of the value returned from the stub.
  1.5204 +    } else {
  1.5205 +      // We must continue the copy exactly where it failed, or else
  1.5206 +      // another thread might see the wrong number of writes to dest.
  1.5207 +      Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
  1.5208 +      Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
  1.5209 +      slow_offset->init_req(1, intcon(0));
  1.5210 +      slow_offset->init_req(2, checked_offset);
  1.5211 +      slow_offset  = _gvn.transform(slow_offset);
  1.5212 +
  1.5213 +      // Adjust the arguments by the conditionally incoming offset.
  1.5214 +      Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
  1.5215 +      Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
  1.5216 +      Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
  1.5217 +
  1.5218 +      // Tweak the node variables to adjust the code produced below:
  1.5219 +      src_offset  = src_off_plus;
  1.5220 +      dest_offset = dest_off_plus;
  1.5221 +      copy_length = length_minus;
  1.5222 +    }
  1.5223 +  }
  1.5224 +
  1.5225 +  set_control(slow_control);
  1.5226 +  if (!stopped()) {
  1.5227 +    // Generate the slow path, if needed.
  1.5228 +    PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  1.5229 +
  1.5230 +    set_memory(slow_mem, adr_type);
  1.5231 +    set_i_o(slow_i_o);
  1.5232 +
  1.5233 +    if (dest_uninitialized) {
  1.5234 +      generate_clear_array(adr_type, dest, basic_elem_type,
  1.5235 +                           intcon(0), NULL,
  1.5236 +                           alloc->in(AllocateNode::AllocSize));
  1.5237 +    }
  1.5238 +
  1.5239 +    generate_slow_arraycopy(adr_type,
  1.5240 +                            src, src_offset, dest, dest_offset,
  1.5241 +                            copy_length, /*dest_uninitialized*/false);
  1.5242 +
  1.5243 +    result_region->init_req(slow_call_path, control());
  1.5244 +    result_i_o   ->init_req(slow_call_path, i_o());
  1.5245 +    result_memory->init_req(slow_call_path, memory(adr_type));
  1.5246 +  }
  1.5247 +
  1.5248 +  // Remove unused edges.
  1.5249 +  for (uint i = 1; i < result_region->req(); i++) {
  1.5250 +    if (result_region->in(i) == NULL)
  1.5251 +      result_region->init_req(i, top());
  1.5252 +  }
  1.5253 +
  1.5254 +  // Finished; return the combined state.
  1.5255 +  set_control( _gvn.transform(result_region));
  1.5256 +  set_i_o(     _gvn.transform(result_i_o)    );
  1.5257 +  set_memory(  _gvn.transform(result_memory), adr_type );
  1.5258 +
  1.5259 +  // The memory edges above are precise in order to model effects around
  1.5260 +  // array copies accurately to allow value numbering of field loads around
  1.5261 +  // arraycopy.  Such field loads, both before and after, are common in Java
  1.5262 +  // collections and similar classes involving header/array data structures.
  1.5263 +  //
  1.5264 +  // But with low number of register or when some registers are used or killed
  1.5265 +  // by arraycopy calls it causes registers spilling on stack. See 6544710.
  1.5266 +  // The next memory barrier is added to avoid it. If the arraycopy can be
  1.5267 +  // optimized away (which it can, sometimes) then we can manually remove
  1.5268 +  // the membar also.
  1.5269 +  //
  1.5270 +  // Do not let reads from the cloned object float above the arraycopy.
  1.5271 +  if (alloc != NULL) {
  1.5272 +    // Do not let stores that initialize this object be reordered with
  1.5273 +    // a subsequent store that would make this object accessible by
  1.5274 +    // other threads.
  1.5275 +    // Record what AllocateNode this StoreStore protects so that
  1.5276 +    // escape analysis can go from the MemBarStoreStoreNode to the
  1.5277 +    // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  1.5278 +    // based on the escape status of the AllocateNode.
  1.5279 +    insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  1.5280 +  } else if (InsertMemBarAfterArraycopy)
  1.5281 +    insert_mem_bar(Op_MemBarCPUOrder);
  1.5282 +}
  1.5283 +
  1.5284 +
  1.5285 +// Helper function which determines if an arraycopy immediately follows
  1.5286 +// an allocation, with no intervening tests or other escapes for the object.
  1.5287 +AllocateArrayNode*
  1.5288 +LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  1.5289 +                                           RegionNode* slow_region) {
  1.5290 +  if (stopped())             return NULL;  // no fast path
  1.5291 +  if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  1.5292 +
  1.5293 +  AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  1.5294 +  if (alloc == NULL)  return NULL;
  1.5295 +
  1.5296 +  Node* rawmem = memory(Compile::AliasIdxRaw);
  1.5297 +  // Is the allocation's memory state untouched?
  1.5298 +  if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  1.5299 +    // Bail out if there have been raw-memory effects since the allocation.
  1.5300 +    // (Example:  There might have been a call or safepoint.)
  1.5301 +    return NULL;
  1.5302 +  }
  1.5303 +  rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  1.5304 +  if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  1.5305 +    return NULL;
  1.5306 +  }
  1.5307 +
  1.5308 +  // There must be no unexpected observers of this allocation.
  1.5309 +  for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  1.5310 +    Node* obs = ptr->fast_out(i);
  1.5311 +    if (obs != this->map()) {
  1.5312 +      return NULL;
  1.5313 +    }
  1.5314 +  }
  1.5315 +
  1.5316 +  // This arraycopy must unconditionally follow the allocation of the ptr.
  1.5317 +  Node* alloc_ctl = ptr->in(0);
  1.5318 +  assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  1.5319 +
  1.5320 +  Node* ctl = control();
  1.5321 +  while (ctl != alloc_ctl) {
  1.5322 +    // There may be guards which feed into the slow_region.
  1.5323 +    // Any other control flow means that we might not get a chance
  1.5324 +    // to finish initializing the allocated object.
  1.5325 +    if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  1.5326 +      IfNode* iff = ctl->in(0)->as_If();
  1.5327 +      Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  1.5328 +      assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  1.5329 +      if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  1.5330 +        ctl = iff->in(0);       // This test feeds the known slow_region.
  1.5331 +        continue;
  1.5332 +      }
  1.5333 +      // One more try:  Various low-level checks bottom out in
  1.5334 +      // uncommon traps.  If the debug-info of the trap omits
  1.5335 +      // any reference to the allocation, as we've already
  1.5336 +      // observed, then there can be no objection to the trap.
  1.5337 +      bool found_trap = false;
  1.5338 +      for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  1.5339 +        Node* obs = not_ctl->fast_out(j);
  1.5340 +        if (obs->in(0) == not_ctl && obs->is_Call() &&
  1.5341 +            (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
  1.5342 +          found_trap = true; break;
  1.5343 +        }
  1.5344 +      }
  1.5345 +      if (found_trap) {
  1.5346 +        ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  1.5347 +        continue;
  1.5348 +      }
  1.5349 +    }
  1.5350 +    return NULL;
  1.5351 +  }
  1.5352 +
  1.5353 +  // If we get this far, we have an allocation which immediately
  1.5354 +  // precedes the arraycopy, and we can take over zeroing the new object.
  1.5355 +  // The arraycopy will finish the initialization, and provide
  1.5356 +  // a new control state to which we will anchor the destination pointer.
  1.5357 +
  1.5358 +  return alloc;
  1.5359 +}
  1.5360 +
  1.5361 +// Helper for initialization of arrays, creating a ClearArray.
  1.5362 +// It writes zero bits in [start..end), within the body of an array object.
  1.5363 +// The memory effects are all chained onto the 'adr_type' alias category.
  1.5364 +//
  1.5365 +// Since the object is otherwise uninitialized, we are free
  1.5366 +// to put a little "slop" around the edges of the cleared area,
  1.5367 +// as long as it does not go back into the array's header,
  1.5368 +// or beyond the array end within the heap.
  1.5369 +//
  1.5370 +// The lower edge can be rounded down to the nearest jint and the
  1.5371 +// upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  1.5372 +//
  1.5373 +// Arguments:
  1.5374 +//   adr_type           memory slice where writes are generated
  1.5375 +//   dest               oop of the destination array
  1.5376 +//   basic_elem_type    element type of the destination
  1.5377 +//   slice_idx          array index of first element to store
  1.5378 +//   slice_len          number of elements to store (or NULL)
  1.5379 +//   dest_size          total size in bytes of the array object
  1.5380 +//
  1.5381 +// Exactly one of slice_len or dest_size must be non-NULL.
  1.5382 +// If dest_size is non-NULL, zeroing extends to the end of the object.
  1.5383 +// If slice_len is non-NULL, the slice_idx value must be a constant.
  1.5384 +void
  1.5385 +LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  1.5386 +                                     Node* dest,
  1.5387 +                                     BasicType basic_elem_type,
  1.5388 +                                     Node* slice_idx,
  1.5389 +                                     Node* slice_len,
  1.5390 +                                     Node* dest_size) {
  1.5391 +  // one or the other but not both of slice_len and dest_size:
  1.5392 +  assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  1.5393 +  if (slice_len == NULL)  slice_len = top();
  1.5394 +  if (dest_size == NULL)  dest_size = top();
  1.5395 +
  1.5396 +  // operate on this memory slice:
  1.5397 +  Node* mem = memory(adr_type); // memory slice to operate on
  1.5398 +
  1.5399 +  // scaling and rounding of indexes:
  1.5400 +  int scale = exact_log2(type2aelembytes(basic_elem_type));
  1.5401 +  int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  1.5402 +  int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  1.5403 +  int bump_bit  = (-1 << scale) & BytesPerInt;
  1.5404 +
  1.5405 +  // determine constant starts and ends
  1.5406 +  const intptr_t BIG_NEG = -128;
  1.5407 +  assert(BIG_NEG + 2*abase < 0, "neg enough");
  1.5408 +  intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  1.5409 +  intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  1.5410 +  if (slice_len_con == 0) {
  1.5411 +    return;                     // nothing to do here
  1.5412 +  }
  1.5413 +  intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  1.5414 +  intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  1.5415 +  if (slice_idx_con >= 0 && slice_len_con >= 0) {
  1.5416 +    assert(end_con < 0, "not two cons");
  1.5417 +    end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  1.5418 +                       BytesPerLong);
  1.5419 +  }
  1.5420 +
  1.5421 +  if (start_con >= 0 && end_con >= 0) {
  1.5422 +    // Constant start and end.  Simple.
  1.5423 +    mem = ClearArrayNode::clear_memory(control(), mem, dest,
  1.5424 +                                       start_con, end_con, &_gvn);
  1.5425 +  } else if (start_con >= 0 && dest_size != top()) {
  1.5426 +    // Constant start, pre-rounded end after the tail of the array.
  1.5427 +    Node* end = dest_size;
  1.5428 +    mem = ClearArrayNode::clear_memory(control(), mem, dest,
  1.5429 +                                       start_con, end, &_gvn);
  1.5430 +  } else if (start_con >= 0 && slice_len != top()) {
  1.5431 +    // Constant start, non-constant end.  End needs rounding up.
  1.5432 +    // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  1.5433 +    intptr_t end_base  = abase + (slice_idx_con << scale);
  1.5434 +    int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  1.5435 +    Node*    end       = ConvI2X(slice_len);
  1.5436 +    if (scale != 0)
  1.5437 +      end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
  1.5438 +    end_base += end_round;
  1.5439 +    end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
  1.5440 +    end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
  1.5441 +    mem = ClearArrayNode::clear_memory(control(), mem, dest,
  1.5442 +                                       start_con, end, &_gvn);
  1.5443 +  } else if (start_con < 0 && dest_size != top()) {
  1.5444 +    // Non-constant start, pre-rounded end after the tail of the array.
  1.5445 +    // This is almost certainly a "round-to-end" operation.
  1.5446 +    Node* start = slice_idx;
  1.5447 +    start = ConvI2X(start);
  1.5448 +    if (scale != 0)
  1.5449 +      start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
  1.5450 +    start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
  1.5451 +    if ((bump_bit | clear_low) != 0) {
  1.5452 +      int to_clear = (bump_bit | clear_low);
  1.5453 +      // Align up mod 8, then store a jint zero unconditionally
  1.5454 +      // just before the mod-8 boundary.
  1.5455 +      if (((abase + bump_bit) & ~to_clear) - bump_bit
  1.5456 +          < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
  1.5457 +        bump_bit = 0;
  1.5458 +        assert((abase & to_clear) == 0, "array base must be long-aligned");
  1.5459 +      } else {
  1.5460 +        // Bump 'start' up to (or past) the next jint boundary:
  1.5461 +        start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
  1.5462 +        assert((abase & clear_low) == 0, "array base must be int-aligned");
  1.5463 +      }
  1.5464 +      // Round bumped 'start' down to jlong boundary in body of array.
  1.5465 +      start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
  1.5466 +      if (bump_bit != 0) {
  1.5467 +        // Store a zero to the immediately preceding jint:
  1.5468 +        Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
  1.5469 +        Node* p1 = basic_plus_adr(dest, x1);
  1.5470 +        mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
  1.5471 +        mem = _gvn.transform(mem);
  1.5472 +      }
  1.5473 +    }
  1.5474 +    Node* end = dest_size; // pre-rounded
  1.5475 +    mem = ClearArrayNode::clear_memory(control(), mem, dest,
  1.5476 +                                       start, end, &_gvn);
  1.5477 +  } else {
  1.5478 +    // Non-constant start, unrounded non-constant end.
  1.5479 +    // (Nobody zeroes a random midsection of an array using this routine.)
  1.5480 +    ShouldNotReachHere();       // fix caller
  1.5481 +  }
  1.5482 +
  1.5483 +  // Done.
  1.5484 +  set_memory(mem, adr_type);
  1.5485 +}
  1.5486 +
  1.5487 +
  1.5488 +bool
  1.5489 +LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  1.5490 +                                         BasicType basic_elem_type,
  1.5491 +                                         AllocateNode* alloc,
  1.5492 +                                         Node* src,  Node* src_offset,
  1.5493 +                                         Node* dest, Node* dest_offset,
  1.5494 +                                         Node* dest_size, bool dest_uninitialized) {
  1.5495 +  // See if there is an advantage from block transfer.
  1.5496 +  int scale = exact_log2(type2aelembytes(basic_elem_type));
  1.5497 +  if (scale >= LogBytesPerLong)
  1.5498 +    return false;               // it is already a block transfer
  1.5499 +
  1.5500 +  // Look at the alignment of the starting offsets.
  1.5501 +  int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  1.5502 +
  1.5503 +  intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
  1.5504 +  intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
  1.5505 +  if (src_off_con < 0 || dest_off_con < 0)
  1.5506 +    // At present, we can only understand constants.
  1.5507 +    return false;
  1.5508 +
  1.5509 +  intptr_t src_off  = abase + (src_off_con  << scale);
  1.5510 +  intptr_t dest_off = abase + (dest_off_con << scale);
  1.5511 +
  1.5512 +  if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  1.5513 +    // Non-aligned; too bad.
  1.5514 +    // One more chance:  Pick off an initial 32-bit word.
  1.5515 +    // This is a common case, since abase can be odd mod 8.
  1.5516 +    if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  1.5517 +        ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  1.5518 +      Node* sptr = basic_plus_adr(src,  src_off);
  1.5519 +      Node* dptr = basic_plus_adr(dest, dest_off);
  1.5520 +      Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
  1.5521 +      store_to_memory(control(), dptr, sval, T_INT, adr_type, MemNode::unordered);
  1.5522 +      src_off += BytesPerInt;
  1.5523 +      dest_off += BytesPerInt;
  1.5524 +    } else {
  1.5525 +      return false;
  1.5526 +    }
  1.5527 +  }
  1.5528 +  assert(src_off % BytesPerLong == 0, "");
  1.5529 +  assert(dest_off % BytesPerLong == 0, "");
  1.5530 +
  1.5531 +  // Do this copy by giant steps.
  1.5532 +  Node* sptr  = basic_plus_adr(src,  src_off);
  1.5533 +  Node* dptr  = basic_plus_adr(dest, dest_off);
  1.5534 +  Node* countx = dest_size;
  1.5535 +  countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
  1.5536 +  countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
  1.5537 +
  1.5538 +  bool disjoint_bases = true;   // since alloc != NULL
  1.5539 +  generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  1.5540 +                               sptr, NULL, dptr, NULL, countx, dest_uninitialized);
  1.5541 +
  1.5542 +  return true;
  1.5543 +}
  1.5544 +
  1.5545 +
  1.5546 +// Helper function; generates code for the slow case.
  1.5547 +// We make a call to a runtime method which emulates the native method,
  1.5548 +// but without the native wrapper overhead.
  1.5549 +void
  1.5550 +LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  1.5551 +                                        Node* src,  Node* src_offset,
  1.5552 +                                        Node* dest, Node* dest_offset,
  1.5553 +                                        Node* copy_length, bool dest_uninitialized) {
  1.5554 +  assert(!dest_uninitialized, "Invariant");
  1.5555 +  Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  1.5556 +                                 OptoRuntime::slow_arraycopy_Type(),
  1.5557 +                                 OptoRuntime::slow_arraycopy_Java(),
  1.5558 +                                 "slow_arraycopy", adr_type,
  1.5559 +                                 src, src_offset, dest, dest_offset,
  1.5560 +                                 copy_length);
  1.5561 +
  1.5562 +  // Handle exceptions thrown by this fellow:
  1.5563 +  make_slow_call_ex(call, env()->Throwable_klass(), false);
  1.5564 +}
  1.5565 +
  1.5566 +// Helper function; generates code for cases requiring runtime checks.
  1.5567 +Node*
  1.5568 +LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  1.5569 +                                             Node* dest_elem_klass,
  1.5570 +                                             Node* src,  Node* src_offset,
  1.5571 +                                             Node* dest, Node* dest_offset,
  1.5572 +                                             Node* copy_length, bool dest_uninitialized) {
  1.5573 +  if (stopped())  return NULL;
  1.5574 +
  1.5575 +  address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
  1.5576 +  if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  1.5577 +    return NULL;
  1.5578 +  }
  1.5579 +
  1.5580 +  // Pick out the parameters required to perform a store-check
  1.5581 +  // for the target array.  This is an optimistic check.  It will
  1.5582 +  // look in each non-null element's class, at the desired klass's
  1.5583 +  // super_check_offset, for the desired klass.
  1.5584 +  int sco_offset = in_bytes(Klass::super_check_offset_offset());
  1.5585 +  Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  1.5586 +  Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered);
  1.5587 +  Node* check_offset = ConvI2X(_gvn.transform(n3));
  1.5588 +  Node* check_value  = dest_elem_klass;
  1.5589 +
  1.5590 +  Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  1.5591 +  Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  1.5592 +
  1.5593 +  // (We know the arrays are never conjoint, because their types differ.)
  1.5594 +  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  1.5595 +                                 OptoRuntime::checkcast_arraycopy_Type(),
  1.5596 +                                 copyfunc_addr, "checkcast_arraycopy", adr_type,
  1.5597 +                                 // five arguments, of which two are
  1.5598 +                                 // intptr_t (jlong in LP64)
  1.5599 +                                 src_start, dest_start,
  1.5600 +                                 copy_length XTOP,
  1.5601 +                                 check_offset XTOP,
  1.5602 +                                 check_value);
  1.5603 +
  1.5604 +  return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  1.5605 +}
  1.5606 +
  1.5607 +
  1.5608 +// Helper function; generates code for cases requiring runtime checks.
  1.5609 +Node*
  1.5610 +LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  1.5611 +                                           Node* src,  Node* src_offset,
  1.5612 +                                           Node* dest, Node* dest_offset,
  1.5613 +                                           Node* copy_length, bool dest_uninitialized) {
  1.5614 +  assert(!dest_uninitialized, "Invariant");
  1.5615 +  if (stopped())  return NULL;
  1.5616 +  address copyfunc_addr = StubRoutines::generic_arraycopy();
  1.5617 +  if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  1.5618 +    return NULL;
  1.5619 +  }
  1.5620 +
  1.5621 +  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  1.5622 +                    OptoRuntime::generic_arraycopy_Type(),
  1.5623 +                    copyfunc_addr, "generic_arraycopy", adr_type,
  1.5624 +                    src, src_offset, dest, dest_offset, copy_length);
  1.5625 +
  1.5626 +  return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  1.5627 +}
  1.5628 +
  1.5629 +// Helper function; generates the fast out-of-line call to an arraycopy stub.
  1.5630 +void
  1.5631 +LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  1.5632 +                                             BasicType basic_elem_type,
  1.5633 +                                             bool disjoint_bases,
  1.5634 +                                             Node* src,  Node* src_offset,
  1.5635 +                                             Node* dest, Node* dest_offset,
  1.5636 +                                             Node* copy_length, bool dest_uninitialized) {
  1.5637 +  if (stopped())  return;               // nothing to do
  1.5638 +
  1.5639 +  Node* src_start  = src;
  1.5640 +  Node* dest_start = dest;
  1.5641 +  if (src_offset != NULL || dest_offset != NULL) {
  1.5642 +    assert(src_offset != NULL && dest_offset != NULL, "");
  1.5643 +    src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  1.5644 +    dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  1.5645 +  }
  1.5646 +
  1.5647 +  // Figure out which arraycopy runtime method to call.
  1.5648 +  const char* copyfunc_name = "arraycopy";
  1.5649 +  address     copyfunc_addr =
  1.5650 +      basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  1.5651 +                          disjoint_bases, copyfunc_name, dest_uninitialized);
  1.5652 +
  1.5653 +  // Call it.  Note that the count_ix value is not scaled to a byte-size.
  1.5654 +  make_runtime_call(RC_LEAF|RC_NO_FP,
  1.5655 +                    OptoRuntime::fast_arraycopy_Type(),
  1.5656 +                    copyfunc_addr, copyfunc_name, adr_type,
  1.5657 +                    src_start, dest_start, copy_length XTOP);
  1.5658 +}
  1.5659 +
  1.5660 +//-------------inline_encodeISOArray-----------------------------------
  1.5661 +// encode char[] to byte[] in ISO_8859_1
  1.5662 +bool LibraryCallKit::inline_encodeISOArray() {
  1.5663 +  assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
  1.5664 +  // no receiver since it is static method
  1.5665 +  Node *src         = argument(0);
  1.5666 +  Node *src_offset  = argument(1);
  1.5667 +  Node *dst         = argument(2);
  1.5668 +  Node *dst_offset  = argument(3);
  1.5669 +  Node *length      = argument(4);
  1.5670 +
  1.5671 +  const Type* src_type = src->Value(&_gvn);
  1.5672 +  const Type* dst_type = dst->Value(&_gvn);
  1.5673 +  const TypeAryPtr* top_src = src_type->isa_aryptr();
  1.5674 +  const TypeAryPtr* top_dest = dst_type->isa_aryptr();
  1.5675 +  if (top_src  == NULL || top_src->klass()  == NULL ||
  1.5676 +      top_dest == NULL || top_dest->klass() == NULL) {
  1.5677 +    // failed array check
  1.5678 +    return false;
  1.5679 +  }
  1.5680 +
  1.5681 +  // Figure out the size and type of the elements we will be copying.
  1.5682 +  BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  1.5683 +  BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  1.5684 +  if (src_elem != T_CHAR || dst_elem != T_BYTE) {
  1.5685 +    return false;
  1.5686 +  }
  1.5687 +  Node* src_start = array_element_address(src, src_offset, src_elem);
  1.5688 +  Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
  1.5689 +  // 'src_start' points to src array + scaled offset
  1.5690 +  // 'dst_start' points to dst array + scaled offset
  1.5691 +
  1.5692 +  const TypeAryPtr* mtype = TypeAryPtr::BYTES;
  1.5693 +  Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
  1.5694 +  enc = _gvn.transform(enc);
  1.5695 +  Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
  1.5696 +  set_memory(res_mem, mtype);
  1.5697 +  set_result(enc);
  1.5698 +  return true;
  1.5699 +}
  1.5700 +
  1.5701 +/**
  1.5702 + * Calculate CRC32 for byte.
  1.5703 + * int java.util.zip.CRC32.update(int crc, int b)
  1.5704 + */
  1.5705 +bool LibraryCallKit::inline_updateCRC32() {
  1.5706 +  assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  1.5707 +  assert(callee()->signature()->size() == 2, "update has 2 parameters");
  1.5708 +  // no receiver since it is static method
  1.5709 +  Node* crc  = argument(0); // type: int
  1.5710 +  Node* b    = argument(1); // type: int
  1.5711 +
  1.5712 +  /*
  1.5713 +   *    int c = ~ crc;
  1.5714 +   *    b = timesXtoThe32[(b ^ c) & 0xFF];
  1.5715 +   *    b = b ^ (c >>> 8);
  1.5716 +   *    crc = ~b;
  1.5717 +   */
  1.5718 +
  1.5719 +  Node* M1 = intcon(-1);
  1.5720 +  crc = _gvn.transform(new (C) XorINode(crc, M1));
  1.5721 +  Node* result = _gvn.transform(new (C) XorINode(crc, b));
  1.5722 +  result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
  1.5723 +
  1.5724 +  Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
  1.5725 +  Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
  1.5726 +  Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
  1.5727 +  result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
  1.5728 +
  1.5729 +  crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
  1.5730 +  result = _gvn.transform(new (C) XorINode(crc, result));
  1.5731 +  result = _gvn.transform(new (C) XorINode(result, M1));
  1.5732 +  set_result(result);
  1.5733 +  return true;
  1.5734 +}
  1.5735 +
  1.5736 +/**
  1.5737 + * Calculate CRC32 for byte[] array.
  1.5738 + * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
  1.5739 + */
  1.5740 +bool LibraryCallKit::inline_updateBytesCRC32() {
  1.5741 +  assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  1.5742 +  assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
  1.5743 +  // no receiver since it is static method
  1.5744 +  Node* crc     = argument(0); // type: int
  1.5745 +  Node* src     = argument(1); // type: oop
  1.5746 +  Node* offset  = argument(2); // type: int
  1.5747 +  Node* length  = argument(3); // type: int
  1.5748 +
  1.5749 +  const Type* src_type = src->Value(&_gvn);
  1.5750 +  const TypeAryPtr* top_src = src_type->isa_aryptr();
  1.5751 +  if (top_src  == NULL || top_src->klass()  == NULL) {
  1.5752 +    // failed array check
  1.5753 +    return false;
  1.5754 +  }
  1.5755 +
  1.5756 +  // Figure out the size and type of the elements we will be copying.
  1.5757 +  BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  1.5758 +  if (src_elem != T_BYTE) {
  1.5759 +    return false;
  1.5760 +  }
  1.5761 +
  1.5762 +  // 'src_start' points to src array + scaled offset
  1.5763 +  Node* src_start = array_element_address(src, offset, src_elem);
  1.5764 +
  1.5765 +  // We assume that range check is done by caller.
  1.5766 +  // TODO: generate range check (offset+length < src.length) in debug VM.
  1.5767 +
  1.5768 +  // Call the stub.
  1.5769 +  address stubAddr = StubRoutines::updateBytesCRC32();
  1.5770 +  const char *stubName = "updateBytesCRC32";
  1.5771 +
  1.5772 +  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
  1.5773 +                                 stubAddr, stubName, TypePtr::BOTTOM,
  1.5774 +                                 crc, src_start, length);
  1.5775 +  Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  1.5776 +  set_result(result);
  1.5777 +  return true;
  1.5778 +}
  1.5779 +
  1.5780 +/**
  1.5781 + * Calculate CRC32 for ByteBuffer.
  1.5782 + * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
  1.5783 + */
  1.5784 +bool LibraryCallKit::inline_updateByteBufferCRC32() {
  1.5785 +  assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  1.5786 +  assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
  1.5787 +  // no receiver since it is static method
  1.5788 +  Node* crc     = argument(0); // type: int
  1.5789 +  Node* src     = argument(1); // type: long
  1.5790 +  Node* offset  = argument(3); // type: int
  1.5791 +  Node* length  = argument(4); // type: int
  1.5792 +
  1.5793 +  src = ConvL2X(src);  // adjust Java long to machine word
  1.5794 +  Node* base = _gvn.transform(new (C) CastX2PNode(src));
  1.5795 +  offset = ConvI2X(offset);
  1.5796 +
  1.5797 +  // 'src_start' points to src array + scaled offset
  1.5798 +  Node* src_start = basic_plus_adr(top(), base, offset);
  1.5799 +
  1.5800 +  // Call the stub.
  1.5801 +  address stubAddr = StubRoutines::updateBytesCRC32();
  1.5802 +  const char *stubName = "updateBytesCRC32";
  1.5803 +
  1.5804 +  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
  1.5805 +                                 stubAddr, stubName, TypePtr::BOTTOM,
  1.5806 +                                 crc, src_start, length);
  1.5807 +  Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  1.5808 +  set_result(result);
  1.5809 +  return true;
  1.5810 +}
  1.5811 +
  1.5812 +//----------------------------inline_reference_get----------------------------
  1.5813 +// public T java.lang.ref.Reference.get();
  1.5814 +bool LibraryCallKit::inline_reference_get() {
  1.5815 +  const int referent_offset = java_lang_ref_Reference::referent_offset;
  1.5816 +  guarantee(referent_offset > 0, "should have already been set");
  1.5817 +
  1.5818 +  // Get the argument:
  1.5819 +  Node* reference_obj = null_check_receiver();
  1.5820 +  if (stopped()) return true;
  1.5821 +
  1.5822 +  Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
  1.5823 +
  1.5824 +  ciInstanceKlass* klass = env()->Object_klass();
  1.5825 +  const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
  1.5826 +
  1.5827 +  Node* no_ctrl = NULL;
  1.5828 +  Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
  1.5829 +
  1.5830 +  // Use the pre-barrier to record the value in the referent field
  1.5831 +  pre_barrier(false /* do_load */,
  1.5832 +              control(),
  1.5833 +              NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  1.5834 +              result /* pre_val */,
  1.5835 +              T_OBJECT);
  1.5836 +
  1.5837 +  // Add memory barrier to prevent commoning reads from this field
  1.5838 +  // across safepoint since GC can change its value.
  1.5839 +  insert_mem_bar(Op_MemBarCPUOrder);
  1.5840 +
  1.5841 +  set_result(result);
  1.5842 +  return true;
  1.5843 +}
  1.5844 +
  1.5845 +
  1.5846 +Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
  1.5847 +                                              bool is_exact=true, bool is_static=false) {
  1.5848 +
  1.5849 +  const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
  1.5850 +  assert(tinst != NULL, "obj is null");
  1.5851 +  assert(tinst->klass()->is_loaded(), "obj is not loaded");
  1.5852 +  assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
  1.5853 +
  1.5854 +  ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
  1.5855 +                                                                          ciSymbol::make(fieldTypeString),
  1.5856 +                                                                          is_static);
  1.5857 +  if (field == NULL) return (Node *) NULL;
  1.5858 +  assert (field != NULL, "undefined field");
  1.5859 +
  1.5860 +  // Next code  copied from Parse::do_get_xxx():
  1.5861 +
  1.5862 +  // Compute address and memory type.
  1.5863 +  int offset  = field->offset_in_bytes();
  1.5864 +  bool is_vol = field->is_volatile();
  1.5865 +  ciType* field_klass = field->type();
  1.5866 +  assert(field_klass->is_loaded(), "should be loaded");
  1.5867 +  const TypePtr* adr_type = C->alias_type(field)->adr_type();
  1.5868 +  Node *adr = basic_plus_adr(fromObj, fromObj, offset);
  1.5869 +  BasicType bt = field->layout_type();
  1.5870 +
  1.5871 +  // Build the resultant type of the load
  1.5872 +  const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
  1.5873 +
  1.5874 +  // Build the load.
  1.5875 +  Node* loadedField = make_load(NULL, adr, type, bt, adr_type, MemNode::unordered, is_vol);
  1.5876 +  return loadedField;
  1.5877 +}
  1.5878 +
  1.5879 +
  1.5880 +//------------------------------inline_aescrypt_Block-----------------------
  1.5881 +bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
  1.5882 +  address stubAddr;
  1.5883 +  const char *stubName;
  1.5884 +  assert(UseAES, "need AES instruction support");
  1.5885 +
  1.5886 +  switch(id) {
  1.5887 +  case vmIntrinsics::_aescrypt_encryptBlock:
  1.5888 +    stubAddr = StubRoutines::aescrypt_encryptBlock();
  1.5889 +    stubName = "aescrypt_encryptBlock";
  1.5890 +    break;
  1.5891 +  case vmIntrinsics::_aescrypt_decryptBlock:
  1.5892 +    stubAddr = StubRoutines::aescrypt_decryptBlock();
  1.5893 +    stubName = "aescrypt_decryptBlock";
  1.5894 +    break;
  1.5895 +  }
  1.5896 +  if (stubAddr == NULL) return false;
  1.5897 +
  1.5898 +  Node* aescrypt_object = argument(0);
  1.5899 +  Node* src             = argument(1);
  1.5900 +  Node* src_offset      = argument(2);
  1.5901 +  Node* dest            = argument(3);
  1.5902 +  Node* dest_offset     = argument(4);
  1.5903 +
  1.5904 +  // (1) src and dest are arrays.
  1.5905 +  const Type* src_type = src->Value(&_gvn);
  1.5906 +  const Type* dest_type = dest->Value(&_gvn);
  1.5907 +  const TypeAryPtr* top_src = src_type->isa_aryptr();
  1.5908 +  const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  1.5909 +  assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  1.5910 +
  1.5911 +  // for the quick and dirty code we will skip all the checks.
  1.5912 +  // we are just trying to get the call to be generated.
  1.5913 +  Node* src_start  = src;
  1.5914 +  Node* dest_start = dest;
  1.5915 +  if (src_offset != NULL || dest_offset != NULL) {
  1.5916 +    assert(src_offset != NULL && dest_offset != NULL, "");
  1.5917 +    src_start  = array_element_address(src,  src_offset,  T_BYTE);
  1.5918 +    dest_start = array_element_address(dest, dest_offset, T_BYTE);
  1.5919 +  }
  1.5920 +
  1.5921 +  // now need to get the start of its expanded key array
  1.5922 +  // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  1.5923 +  Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  1.5924 +  if (k_start == NULL) return false;
  1.5925 +
  1.5926 +  if (Matcher::pass_original_key_for_aes()) {
  1.5927 +    // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
  1.5928 +    // compatibility issues between Java key expansion and SPARC crypto instructions
  1.5929 +    Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
  1.5930 +    if (original_k_start == NULL) return false;
  1.5931 +
  1.5932 +    // Call the stub.
  1.5933 +    make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
  1.5934 +                      stubAddr, stubName, TypePtr::BOTTOM,
  1.5935 +                      src_start, dest_start, k_start, original_k_start);
  1.5936 +  } else {
  1.5937 +    // Call the stub.
  1.5938 +    make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
  1.5939 +                      stubAddr, stubName, TypePtr::BOTTOM,
  1.5940 +                      src_start, dest_start, k_start);
  1.5941 +  }
  1.5942 +
  1.5943 +  return true;
  1.5944 +}
  1.5945 +
  1.5946 +//------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
  1.5947 +bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
  1.5948 +  address stubAddr;
  1.5949 +  const char *stubName;
  1.5950 +
  1.5951 +  assert(UseAES, "need AES instruction support");
  1.5952 +
  1.5953 +  switch(id) {
  1.5954 +  case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
  1.5955 +    stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
  1.5956 +    stubName = "cipherBlockChaining_encryptAESCrypt";
  1.5957 +    break;
  1.5958 +  case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
  1.5959 +    stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
  1.5960 +    stubName = "cipherBlockChaining_decryptAESCrypt";
  1.5961 +    break;
  1.5962 +  }
  1.5963 +  if (stubAddr == NULL) return false;
  1.5964 +
  1.5965 +  Node* cipherBlockChaining_object = argument(0);
  1.5966 +  Node* src                        = argument(1);
  1.5967 +  Node* src_offset                 = argument(2);
  1.5968 +  Node* len                        = argument(3);
  1.5969 +  Node* dest                       = argument(4);
  1.5970 +  Node* dest_offset                = argument(5);
  1.5971 +
  1.5972 +  // (1) src and dest are arrays.
  1.5973 +  const Type* src_type = src->Value(&_gvn);
  1.5974 +  const Type* dest_type = dest->Value(&_gvn);
  1.5975 +  const TypeAryPtr* top_src = src_type->isa_aryptr();
  1.5976 +  const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  1.5977 +  assert (top_src  != NULL && top_src->klass()  != NULL
  1.5978 +          &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  1.5979 +
  1.5980 +  // checks are the responsibility of the caller
  1.5981 +  Node* src_start  = src;
  1.5982 +  Node* dest_start = dest;
  1.5983 +  if (src_offset != NULL || dest_offset != NULL) {
  1.5984 +    assert(src_offset != NULL && dest_offset != NULL, "");
  1.5985 +    src_start  = array_element_address(src,  src_offset,  T_BYTE);
  1.5986 +    dest_start = array_element_address(dest, dest_offset, T_BYTE);
  1.5987 +  }
  1.5988 +
  1.5989 +  // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
  1.5990 +  // (because of the predicated logic executed earlier).
  1.5991 +  // so we cast it here safely.
  1.5992 +  // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  1.5993 +
  1.5994 +  Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  1.5995 +  if (embeddedCipherObj == NULL) return false;
  1.5996 +
  1.5997 +  // cast it to what we know it will be at runtime
  1.5998 +  const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
  1.5999 +  assert(tinst != NULL, "CBC obj is null");
  1.6000 +  assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
  1.6001 +  ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  1.6002 +  if (!klass_AESCrypt->is_loaded()) return false;
  1.6003 +
  1.6004 +  ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  1.6005 +  const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
  1.6006 +  const TypeOopPtr* xtype = aklass->as_instance_type();
  1.6007 +  Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
  1.6008 +  aescrypt_object = _gvn.transform(aescrypt_object);
  1.6009 +
  1.6010 +  // we need to get the start of the aescrypt_object's expanded key array
  1.6011 +  Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  1.6012 +  if (k_start == NULL) return false;
  1.6013 +
  1.6014 +  // similarly, get the start address of the r vector
  1.6015 +  Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
  1.6016 +  if (objRvec == NULL) return false;
  1.6017 +  Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
  1.6018 +
  1.6019 +  Node* cbcCrypt;
  1.6020 +  if (Matcher::pass_original_key_for_aes()) {
  1.6021 +    // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
  1.6022 +    // compatibility issues between Java key expansion and SPARC crypto instructions
  1.6023 +    Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
  1.6024 +    if (original_k_start == NULL) return false;
  1.6025 +
  1.6026 +    // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
  1.6027 +    cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
  1.6028 +                                 OptoRuntime::cipherBlockChaining_aescrypt_Type(),
  1.6029 +                                 stubAddr, stubName, TypePtr::BOTTOM,
  1.6030 +                                 src_start, dest_start, k_start, r_start, len, original_k_start);
  1.6031 +  } else {
  1.6032 +    // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
  1.6033 +    cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
  1.6034 +                                 OptoRuntime::cipherBlockChaining_aescrypt_Type(),
  1.6035 +                                 stubAddr, stubName, TypePtr::BOTTOM,
  1.6036 +                                 src_start, dest_start, k_start, r_start, len);
  1.6037 +  }
  1.6038 +
  1.6039 +  // return cipher length (int)
  1.6040 +  Node* retvalue = _gvn.transform(new (C) ProjNode(cbcCrypt, TypeFunc::Parms));
  1.6041 +  set_result(retvalue);
  1.6042 +  return true;
  1.6043 +}
  1.6044 +
  1.6045 +//------------------------------get_key_start_from_aescrypt_object-----------------------
  1.6046 +Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
  1.6047 +  Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
  1.6048 +  assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
  1.6049 +  if (objAESCryptKey == NULL) return (Node *) NULL;
  1.6050 +
  1.6051 +  // now have the array, need to get the start address of the K array
  1.6052 +  Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
  1.6053 +  return k_start;
  1.6054 +}
  1.6055 +
  1.6056 +//------------------------------get_original_key_start_from_aescrypt_object-----------------------
  1.6057 +Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
  1.6058 +  Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
  1.6059 +  assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
  1.6060 +  if (objAESCryptKey == NULL) return (Node *) NULL;
  1.6061 +
  1.6062 +  // now have the array, need to get the start address of the lastKey array
  1.6063 +  Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
  1.6064 +  return original_k_start;
  1.6065 +}
  1.6066 +
  1.6067 +//----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
  1.6068 +// Return node representing slow path of predicate check.
  1.6069 +// the pseudo code we want to emulate with this predicate is:
  1.6070 +// for encryption:
  1.6071 +//    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
  1.6072 +// for decryption:
  1.6073 +//    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
  1.6074 +//    note cipher==plain is more conservative than the original java code but that's OK
  1.6075 +//
  1.6076 +Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
  1.6077 +  // First, check receiver for NULL since it is virtual method.
  1.6078 +  Node* objCBC = argument(0);
  1.6079 +  objCBC = null_check(objCBC);
  1.6080 +
  1.6081 +  if (stopped()) return NULL; // Always NULL
  1.6082 +
  1.6083 +  // Load embeddedCipher field of CipherBlockChaining object.
  1.6084 +  Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  1.6085 +
  1.6086 +  // get AESCrypt klass for instanceOf check
  1.6087 +  // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
  1.6088 +  // will have same classloader as CipherBlockChaining object
  1.6089 +  const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
  1.6090 +  assert(tinst != NULL, "CBCobj is null");
  1.6091 +  assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
  1.6092 +
  1.6093 +  // we want to do an instanceof comparison against the AESCrypt class
  1.6094 +  ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  1.6095 +  if (!klass_AESCrypt->is_loaded()) {
  1.6096 +    // if AESCrypt is not even loaded, we never take the intrinsic fast path
  1.6097 +    Node* ctrl = control();
  1.6098 +    set_control(top()); // no regular fast path
  1.6099 +    return ctrl;
  1.6100 +  }
  1.6101 +  ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  1.6102 +
  1.6103 +  Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
  1.6104 +  Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
  1.6105 +  Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
  1.6106 +
  1.6107 +  Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
  1.6108 +
  1.6109 +  // for encryption, we are done
  1.6110 +  if (!decrypting)
  1.6111 +    return instof_false;  // even if it is NULL
  1.6112 +
  1.6113 +  // for decryption, we need to add a further check to avoid
  1.6114 +  // taking the intrinsic path when cipher and plain are the same
  1.6115 +  // see the original java code for why.
  1.6116 +  RegionNode* region = new(C) RegionNode(3);
  1.6117 +  region->init_req(1, instof_false);
  1.6118 +  Node* src = argument(1);
  1.6119 +  Node* dest = argument(4);
  1.6120 +  Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
  1.6121 +  Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
  1.6122 +  Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
  1.6123 +  region->init_req(2, src_dest_conjoint);
  1.6124 +
  1.6125 +  record_for_igvn(region);
  1.6126 +  return _gvn.transform(region);
  1.6127 +}

mercurial