src/share/vm/opto/library_call.cpp

Wed, 27 Apr 2016 01:25:04 +0800

author
aoqi
date
Wed, 27 Apr 2016 01:25:04 +0800
changeset 0
f90c822e73f8
child 6876
710a3c8b516e
permissions
-rw-r--r--

Initial load
http://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/
changeset: 6782:28b50d07f6f8
tag: jdk8u25-b17

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "compiler/compileBroker.hpp"
    29 #include "compiler/compileLog.hpp"
    30 #include "oops/objArrayKlass.hpp"
    31 #include "opto/addnode.hpp"
    32 #include "opto/callGenerator.hpp"
    33 #include "opto/cfgnode.hpp"
    34 #include "opto/idealKit.hpp"
    35 #include "opto/mathexactnode.hpp"
    36 #include "opto/mulnode.hpp"
    37 #include "opto/parse.hpp"
    38 #include "opto/runtime.hpp"
    39 #include "opto/subnode.hpp"
    40 #include "prims/nativeLookup.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "trace/traceMacros.hpp"
    44 class LibraryIntrinsic : public InlineCallGenerator {
    45   // Extend the set of intrinsics known to the runtime:
    46  public:
    47  private:
    48   bool             _is_virtual;
    49   bool             _is_predicted;
    50   bool             _does_virtual_dispatch;
    51   vmIntrinsics::ID _intrinsic_id;
    53  public:
    54   LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, bool does_virtual_dispatch, vmIntrinsics::ID id)
    55     : InlineCallGenerator(m),
    56       _is_virtual(is_virtual),
    57       _is_predicted(is_predicted),
    58       _does_virtual_dispatch(does_virtual_dispatch),
    59       _intrinsic_id(id)
    60   {
    61   }
    62   virtual bool is_intrinsic() const { return true; }
    63   virtual bool is_virtual()   const { return _is_virtual; }
    64   virtual bool is_predicted()   const { return _is_predicted; }
    65   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
    66   virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);
    67   virtual Node* generate_predicate(JVMState* jvms);
    68   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    69 };
    72 // Local helper class for LibraryIntrinsic:
    73 class LibraryCallKit : public GraphKit {
    74  private:
    75   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
    76   Node*             _result;        // the result node, if any
    77   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
    79   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
    81  public:
    82   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
    83     : GraphKit(jvms),
    84       _intrinsic(intrinsic),
    85       _result(NULL)
    86   {
    87     // Check if this is a root compile.  In that case we don't have a caller.
    88     if (!jvms->has_method()) {
    89       _reexecute_sp = sp();
    90     } else {
    91       // Find out how many arguments the interpreter needs when deoptimizing
    92       // and save the stack pointer value so it can used by uncommon_trap.
    93       // We find the argument count by looking at the declared signature.
    94       bool ignored_will_link;
    95       ciSignature* declared_signature = NULL;
    96       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
    97       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
    98       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
    99     }
   100   }
   102   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
   104   ciMethod*         caller()    const    { return jvms()->method(); }
   105   int               bci()       const    { return jvms()->bci(); }
   106   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
   107   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
   108   ciMethod*         callee()    const    { return _intrinsic->method(); }
   110   bool try_to_inline();
   111   Node* try_to_predicate();
   113   void push_result() {
   114     // Push the result onto the stack.
   115     if (!stopped() && result() != NULL) {
   116       BasicType bt = result()->bottom_type()->basic_type();
   117       push_node(bt, result());
   118     }
   119   }
   121  private:
   122   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
   123     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
   124   }
   126   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
   127   void  set_result(RegionNode* region, PhiNode* value);
   128   Node*     result() { return _result; }
   130   virtual int reexecute_sp() { return _reexecute_sp; }
   132   // Helper functions to inline natives
   133   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
   134   Node* generate_slow_guard(Node* test, RegionNode* region);
   135   Node* generate_fair_guard(Node* test, RegionNode* region);
   136   Node* generate_negative_guard(Node* index, RegionNode* region,
   137                                 // resulting CastII of index:
   138                                 Node* *pos_index = NULL);
   139   Node* generate_nonpositive_guard(Node* index, bool never_negative,
   140                                    // resulting CastII of index:
   141                                    Node* *pos_index = NULL);
   142   Node* generate_limit_guard(Node* offset, Node* subseq_length,
   143                              Node* array_length,
   144                              RegionNode* region);
   145   Node* generate_current_thread(Node* &tls_output);
   146   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
   147                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
   148   Node* load_mirror_from_klass(Node* klass);
   149   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
   150                                       RegionNode* region, int null_path,
   151                                       int offset);
   152   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
   153                                RegionNode* region, int null_path) {
   154     int offset = java_lang_Class::klass_offset_in_bytes();
   155     return load_klass_from_mirror_common(mirror, never_see_null,
   156                                          region, null_path,
   157                                          offset);
   158   }
   159   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   160                                      RegionNode* region, int null_path) {
   161     int offset = java_lang_Class::array_klass_offset_in_bytes();
   162     return load_klass_from_mirror_common(mirror, never_see_null,
   163                                          region, null_path,
   164                                          offset);
   165   }
   166   Node* generate_access_flags_guard(Node* kls,
   167                                     int modifier_mask, int modifier_bits,
   168                                     RegionNode* region);
   169   Node* generate_interface_guard(Node* kls, RegionNode* region);
   170   Node* generate_array_guard(Node* kls, RegionNode* region) {
   171     return generate_array_guard_common(kls, region, false, false);
   172   }
   173   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   174     return generate_array_guard_common(kls, region, false, true);
   175   }
   176   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   177     return generate_array_guard_common(kls, region, true, false);
   178   }
   179   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   180     return generate_array_guard_common(kls, region, true, true);
   181   }
   182   Node* generate_array_guard_common(Node* kls, RegionNode* region,
   183                                     bool obj_array, bool not_array);
   184   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   185   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   186                                      bool is_virtual = false, bool is_static = false);
   187   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   188     return generate_method_call(method_id, false, true);
   189   }
   190   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   191     return generate_method_call(method_id, true, false);
   192   }
   193   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
   195   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
   196   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
   197   bool inline_string_compareTo();
   198   bool inline_string_indexOf();
   199   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   200   bool inline_string_equals();
   201   Node* round_double_node(Node* n);
   202   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   203   bool inline_math_native(vmIntrinsics::ID id);
   204   bool inline_trig(vmIntrinsics::ID id);
   205   bool inline_math(vmIntrinsics::ID id);
   206   template <typename OverflowOp>
   207   bool inline_math_overflow(Node* arg1, Node* arg2);
   208   void inline_math_mathExact(Node* math, Node* test);
   209   bool inline_math_addExactI(bool is_increment);
   210   bool inline_math_addExactL(bool is_increment);
   211   bool inline_math_multiplyExactI();
   212   bool inline_math_multiplyExactL();
   213   bool inline_math_negateExactI();
   214   bool inline_math_negateExactL();
   215   bool inline_math_subtractExactI(bool is_decrement);
   216   bool inline_math_subtractExactL(bool is_decrement);
   217   bool inline_exp();
   218   bool inline_pow();
   219   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
   220   bool inline_min_max(vmIntrinsics::ID id);
   221   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   222   // This returns Type::AnyPtr, RawPtr, or OopPtr.
   223   int classify_unsafe_addr(Node* &base, Node* &offset);
   224   Node* make_unsafe_address(Node* base, Node* offset);
   225   // Helper for inline_unsafe_access.
   226   // Generates the guards that check whether the result of
   227   // Unsafe.getObject should be recorded in an SATB log buffer.
   228   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
   229   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   230   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   231   static bool klass_needs_init_guard(Node* kls);
   232   bool inline_unsafe_allocate();
   233   bool inline_unsafe_copyMemory();
   234   bool inline_native_currentThread();
   235 #ifdef TRACE_HAVE_INTRINSICS
   236   bool inline_native_classID();
   237   bool inline_native_threadID();
   238 #endif
   239   bool inline_native_time_funcs(address method, const char* funcName);
   240   bool inline_native_isInterrupted();
   241   bool inline_native_Class_query(vmIntrinsics::ID id);
   242   bool inline_native_subtype_check();
   244   bool inline_native_newArray();
   245   bool inline_native_getLength();
   246   bool inline_array_copyOf(bool is_copyOfRange);
   247   bool inline_array_equals();
   248   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
   249   bool inline_native_clone(bool is_virtual);
   250   bool inline_native_Reflection_getCallerClass();
   251   // Helper function for inlining native object hash method
   252   bool inline_native_hashcode(bool is_virtual, bool is_static);
   253   bool inline_native_getClass();
   255   // Helper functions for inlining arraycopy
   256   bool inline_arraycopy();
   257   void generate_arraycopy(const TypePtr* adr_type,
   258                           BasicType basic_elem_type,
   259                           Node* src,  Node* src_offset,
   260                           Node* dest, Node* dest_offset,
   261                           Node* copy_length,
   262                           bool disjoint_bases = false,
   263                           bool length_never_negative = false,
   264                           RegionNode* slow_region = NULL);
   265   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   266                                                 RegionNode* slow_region);
   267   void generate_clear_array(const TypePtr* adr_type,
   268                             Node* dest,
   269                             BasicType basic_elem_type,
   270                             Node* slice_off,
   271                             Node* slice_len,
   272                             Node* slice_end);
   273   bool generate_block_arraycopy(const TypePtr* adr_type,
   274                                 BasicType basic_elem_type,
   275                                 AllocateNode* alloc,
   276                                 Node* src,  Node* src_offset,
   277                                 Node* dest, Node* dest_offset,
   278                                 Node* dest_size, bool dest_uninitialized);
   279   void generate_slow_arraycopy(const TypePtr* adr_type,
   280                                Node* src,  Node* src_offset,
   281                                Node* dest, Node* dest_offset,
   282                                Node* copy_length, bool dest_uninitialized);
   283   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   284                                      Node* dest_elem_klass,
   285                                      Node* src,  Node* src_offset,
   286                                      Node* dest, Node* dest_offset,
   287                                      Node* copy_length, bool dest_uninitialized);
   288   Node* generate_generic_arraycopy(const TypePtr* adr_type,
   289                                    Node* src,  Node* src_offset,
   290                                    Node* dest, Node* dest_offset,
   291                                    Node* copy_length, bool dest_uninitialized);
   292   void generate_unchecked_arraycopy(const TypePtr* adr_type,
   293                                     BasicType basic_elem_type,
   294                                     bool disjoint_bases,
   295                                     Node* src,  Node* src_offset,
   296                                     Node* dest, Node* dest_offset,
   297                                     Node* copy_length, bool dest_uninitialized);
   298   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
   299   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
   300   bool inline_unsafe_ordered_store(BasicType type);
   301   bool inline_unsafe_fence(vmIntrinsics::ID id);
   302   bool inline_fp_conversions(vmIntrinsics::ID id);
   303   bool inline_number_methods(vmIntrinsics::ID id);
   304   bool inline_reference_get();
   305   bool inline_aescrypt_Block(vmIntrinsics::ID id);
   306   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
   307   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
   308   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
   309   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
   310   bool inline_encodeISOArray();
   311   bool inline_updateCRC32();
   312   bool inline_updateBytesCRC32();
   313   bool inline_updateByteBufferCRC32();
   314 };
   317 //---------------------------make_vm_intrinsic----------------------------
   318 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   319   vmIntrinsics::ID id = m->intrinsic_id();
   320   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   322   if (DisableIntrinsic[0] != '\0'
   323       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
   324     // disabled by a user request on the command line:
   325     // example: -XX:DisableIntrinsic=_hashCode,_getClass
   326     return NULL;
   327   }
   329   if (!m->is_loaded()) {
   330     // do not attempt to inline unloaded methods
   331     return NULL;
   332   }
   334   // Only a few intrinsics implement a virtual dispatch.
   335   // They are expensive calls which are also frequently overridden.
   336   if (is_virtual) {
   337     switch (id) {
   338     case vmIntrinsics::_hashCode:
   339     case vmIntrinsics::_clone:
   340       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   341       break;
   342     default:
   343       return NULL;
   344     }
   345   }
   347   // -XX:-InlineNatives disables nearly all intrinsics:
   348   if (!InlineNatives) {
   349     switch (id) {
   350     case vmIntrinsics::_indexOf:
   351     case vmIntrinsics::_compareTo:
   352     case vmIntrinsics::_equals:
   353     case vmIntrinsics::_equalsC:
   354     case vmIntrinsics::_getAndAddInt:
   355     case vmIntrinsics::_getAndAddLong:
   356     case vmIntrinsics::_getAndSetInt:
   357     case vmIntrinsics::_getAndSetLong:
   358     case vmIntrinsics::_getAndSetObject:
   359     case vmIntrinsics::_loadFence:
   360     case vmIntrinsics::_storeFence:
   361     case vmIntrinsics::_fullFence:
   362       break;  // InlineNatives does not control String.compareTo
   363     case vmIntrinsics::_Reference_get:
   364       break;  // InlineNatives does not control Reference.get
   365     default:
   366       return NULL;
   367     }
   368   }
   370   bool is_predicted = false;
   371   bool does_virtual_dispatch = false;
   373   switch (id) {
   374   case vmIntrinsics::_compareTo:
   375     if (!SpecialStringCompareTo)  return NULL;
   376     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
   377     break;
   378   case vmIntrinsics::_indexOf:
   379     if (!SpecialStringIndexOf)  return NULL;
   380     break;
   381   case vmIntrinsics::_equals:
   382     if (!SpecialStringEquals)  return NULL;
   383     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
   384     break;
   385   case vmIntrinsics::_equalsC:
   386     if (!SpecialArraysEquals)  return NULL;
   387     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
   388     break;
   389   case vmIntrinsics::_arraycopy:
   390     if (!InlineArrayCopy)  return NULL;
   391     break;
   392   case vmIntrinsics::_copyMemory:
   393     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   394     if (!InlineArrayCopy)  return NULL;
   395     break;
   396   case vmIntrinsics::_hashCode:
   397     if (!InlineObjectHash)  return NULL;
   398     does_virtual_dispatch = true;
   399     break;
   400   case vmIntrinsics::_clone:
   401     does_virtual_dispatch = true;
   402   case vmIntrinsics::_copyOf:
   403   case vmIntrinsics::_copyOfRange:
   404     if (!InlineObjectCopy)  return NULL;
   405     // These also use the arraycopy intrinsic mechanism:
   406     if (!InlineArrayCopy)  return NULL;
   407     break;
   408   case vmIntrinsics::_encodeISOArray:
   409     if (!SpecialEncodeISOArray)  return NULL;
   410     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
   411     break;
   412   case vmIntrinsics::_checkIndex:
   413     // We do not intrinsify this.  The optimizer does fine with it.
   414     return NULL;
   416   case vmIntrinsics::_getCallerClass:
   417     if (!UseNewReflection)  return NULL;
   418     if (!InlineReflectionGetCallerClass)  return NULL;
   419     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
   420     break;
   422   case vmIntrinsics::_bitCount_i:
   423     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
   424     break;
   426   case vmIntrinsics::_bitCount_l:
   427     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
   428     break;
   430   case vmIntrinsics::_numberOfLeadingZeros_i:
   431     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
   432     break;
   434   case vmIntrinsics::_numberOfLeadingZeros_l:
   435     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
   436     break;
   438   case vmIntrinsics::_numberOfTrailingZeros_i:
   439     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
   440     break;
   442   case vmIntrinsics::_numberOfTrailingZeros_l:
   443     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
   444     break;
   446   case vmIntrinsics::_reverseBytes_c:
   447     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
   448     break;
   449   case vmIntrinsics::_reverseBytes_s:
   450     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
   451     break;
   452   case vmIntrinsics::_reverseBytes_i:
   453     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
   454     break;
   455   case vmIntrinsics::_reverseBytes_l:
   456     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
   457     break;
   459   case vmIntrinsics::_Reference_get:
   460     // Use the intrinsic version of Reference.get() so that the value in
   461     // the referent field can be registered by the G1 pre-barrier code.
   462     // Also add memory barrier to prevent commoning reads from this field
   463     // across safepoint since GC can change it value.
   464     break;
   466   case vmIntrinsics::_compareAndSwapObject:
   467 #ifdef _LP64
   468     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
   469 #endif
   470     break;
   472   case vmIntrinsics::_compareAndSwapLong:
   473     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
   474     break;
   476   case vmIntrinsics::_getAndAddInt:
   477     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
   478     break;
   480   case vmIntrinsics::_getAndAddLong:
   481     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
   482     break;
   484   case vmIntrinsics::_getAndSetInt:
   485     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
   486     break;
   488   case vmIntrinsics::_getAndSetLong:
   489     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
   490     break;
   492   case vmIntrinsics::_getAndSetObject:
   493 #ifdef _LP64
   494     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   495     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
   496     break;
   497 #else
   498     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   499     break;
   500 #endif
   502   case vmIntrinsics::_aescrypt_encryptBlock:
   503   case vmIntrinsics::_aescrypt_decryptBlock:
   504     if (!UseAESIntrinsics) return NULL;
   505     break;
   507   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   508   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   509     if (!UseAESIntrinsics) return NULL;
   510     // these two require the predicated logic
   511     is_predicted = true;
   512     break;
   514   case vmIntrinsics::_updateCRC32:
   515   case vmIntrinsics::_updateBytesCRC32:
   516   case vmIntrinsics::_updateByteBufferCRC32:
   517     if (!UseCRC32Intrinsics) return NULL;
   518     break;
   520   case vmIntrinsics::_incrementExactI:
   521   case vmIntrinsics::_addExactI:
   522     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
   523     break;
   524   case vmIntrinsics::_incrementExactL:
   525   case vmIntrinsics::_addExactL:
   526     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
   527     break;
   528   case vmIntrinsics::_decrementExactI:
   529   case vmIntrinsics::_subtractExactI:
   530     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
   531     break;
   532   case vmIntrinsics::_decrementExactL:
   533   case vmIntrinsics::_subtractExactL:
   534     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
   535     break;
   536   case vmIntrinsics::_negateExactI:
   537     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
   538     break;
   539   case vmIntrinsics::_negateExactL:
   540     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
   541     break;
   542   case vmIntrinsics::_multiplyExactI:
   543     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
   544     break;
   545   case vmIntrinsics::_multiplyExactL:
   546     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
   547     break;
   549  default:
   550     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
   551     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
   552     break;
   553   }
   555   // -XX:-InlineClassNatives disables natives from the Class class.
   556   // The flag applies to all reflective calls, notably Array.newArray
   557   // (visible to Java programmers as Array.newInstance).
   558   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   559       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   560     if (!InlineClassNatives)  return NULL;
   561   }
   563   // -XX:-InlineThreadNatives disables natives from the Thread class.
   564   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   565     if (!InlineThreadNatives)  return NULL;
   566   }
   568   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   569   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   570       m->holder()->name() == ciSymbol::java_lang_Float() ||
   571       m->holder()->name() == ciSymbol::java_lang_Double()) {
   572     if (!InlineMathNatives)  return NULL;
   573   }
   575   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   576   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   577     if (!InlineUnsafeOps)  return NULL;
   578   }
   580   return new LibraryIntrinsic(m, is_virtual, is_predicted, does_virtual_dispatch, (vmIntrinsics::ID) id);
   581 }
   583 //----------------------register_library_intrinsics-----------------------
   584 // Initialize this file's data structures, for each Compile instance.
   585 void Compile::register_library_intrinsics() {
   586   // Nothing to do here.
   587 }
   589 JVMState* LibraryIntrinsic::generate(JVMState* jvms, Parse* parent_parser) {
   590   LibraryCallKit kit(jvms, this);
   591   Compile* C = kit.C;
   592   int nodes = C->unique();
   593 #ifndef PRODUCT
   594   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
   595     char buf[1000];
   596     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   597     tty->print_cr("Intrinsic %s", str);
   598   }
   599 #endif
   600   ciMethod* callee = kit.callee();
   601   const int bci    = kit.bci();
   603   // Try to inline the intrinsic.
   604   if (kit.try_to_inline()) {
   605     if (C->print_intrinsics() || C->print_inlining()) {
   606       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   607     }
   608     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   609     if (C->log()) {
   610       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   611                      vmIntrinsics::name_at(intrinsic_id()),
   612                      (is_virtual() ? " virtual='1'" : ""),
   613                      C->unique() - nodes);
   614     }
   615     // Push the result from the inlined method onto the stack.
   616     kit.push_result();
   617     return kit.transfer_exceptions_into_jvms();
   618   }
   620   // The intrinsic bailed out
   621   if (C->print_intrinsics() || C->print_inlining()) {
   622     if (jvms->has_method()) {
   623       // Not a root compile.
   624       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
   625       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
   626     } else {
   627       // Root compile
   628       tty->print("Did not generate intrinsic %s%s at bci:%d in",
   629                vmIntrinsics::name_at(intrinsic_id()),
   630                (is_virtual() ? " (virtual)" : ""), bci);
   631     }
   632   }
   633   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   634   return NULL;
   635 }
   637 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
   638   LibraryCallKit kit(jvms, this);
   639   Compile* C = kit.C;
   640   int nodes = C->unique();
   641 #ifndef PRODUCT
   642   assert(is_predicted(), "sanity");
   643   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
   644     char buf[1000];
   645     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   646     tty->print_cr("Predicate for intrinsic %s", str);
   647   }
   648 #endif
   649   ciMethod* callee = kit.callee();
   650   const int bci    = kit.bci();
   652   Node* slow_ctl = kit.try_to_predicate();
   653   if (!kit.failing()) {
   654     if (C->print_intrinsics() || C->print_inlining()) {
   655       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   656     }
   657     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   658     if (C->log()) {
   659       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
   660                      vmIntrinsics::name_at(intrinsic_id()),
   661                      (is_virtual() ? " virtual='1'" : ""),
   662                      C->unique() - nodes);
   663     }
   664     return slow_ctl; // Could be NULL if the check folds.
   665   }
   667   // The intrinsic bailed out
   668   if (C->print_intrinsics() || C->print_inlining()) {
   669     if (jvms->has_method()) {
   670       // Not a root compile.
   671       const char* msg = "failed to generate predicate for intrinsic";
   672       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
   673     } else {
   674       // Root compile
   675       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
   676                                         vmIntrinsics::name_at(intrinsic_id()),
   677                                         (is_virtual() ? " (virtual)" : ""), bci);
   678     }
   679   }
   680   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   681   return NULL;
   682 }
   684 bool LibraryCallKit::try_to_inline() {
   685   // Handle symbolic names for otherwise undistinguished boolean switches:
   686   const bool is_store       = true;
   687   const bool is_native_ptr  = true;
   688   const bool is_static      = true;
   689   const bool is_volatile    = true;
   691   if (!jvms()->has_method()) {
   692     // Root JVMState has a null method.
   693     assert(map()->memory()->Opcode() == Op_Parm, "");
   694     // Insert the memory aliasing node
   695     set_all_memory(reset_memory());
   696   }
   697   assert(merged_memory(), "");
   700   switch (intrinsic_id()) {
   701   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   702   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
   703   case vmIntrinsics::_getClass:                 return inline_native_getClass();
   705   case vmIntrinsics::_dsin:
   706   case vmIntrinsics::_dcos:
   707   case vmIntrinsics::_dtan:
   708   case vmIntrinsics::_dabs:
   709   case vmIntrinsics::_datan2:
   710   case vmIntrinsics::_dsqrt:
   711   case vmIntrinsics::_dexp:
   712   case vmIntrinsics::_dlog:
   713   case vmIntrinsics::_dlog10:
   714   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
   716   case vmIntrinsics::_min:
   717   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
   719   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
   720   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
   721   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
   722   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
   723   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
   724   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
   725   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
   726   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
   727   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
   728   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
   729   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
   730   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
   732   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
   734   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
   735   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
   736   case vmIntrinsics::_equals:                   return inline_string_equals();
   738   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
   739   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
   740   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
   741   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
   742   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
   743   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
   744   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
   745   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
   746   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
   748   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
   749   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
   750   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
   751   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
   752   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
   753   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
   754   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
   755   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
   756   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
   758   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
   759   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
   760   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
   761   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
   762   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
   763   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
   764   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
   765   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
   767   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
   768   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
   769   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
   770   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
   771   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
   772   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
   773   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
   774   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
   776   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
   777   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
   778   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
   779   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
   780   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
   781   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
   782   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
   783   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
   784   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
   786   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
   787   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
   788   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
   789   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
   790   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
   791   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
   792   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
   793   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
   794   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
   796   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   797   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
   798   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
   799   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
   801   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
   802   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
   803   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
   805   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
   806   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
   807   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
   809   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
   810   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
   811   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
   812   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
   813   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
   815   case vmIntrinsics::_loadFence:
   816   case vmIntrinsics::_storeFence:
   817   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
   819   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
   820   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
   822 #ifdef TRACE_HAVE_INTRINSICS
   823   case vmIntrinsics::_classID:                  return inline_native_classID();
   824   case vmIntrinsics::_threadID:                 return inline_native_threadID();
   825   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
   826 #endif
   827   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
   828   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
   829   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
   830   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
   831   case vmIntrinsics::_newArray:                 return inline_native_newArray();
   832   case vmIntrinsics::_getLength:                return inline_native_getLength();
   833   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
   834   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
   835   case vmIntrinsics::_equalsC:                  return inline_array_equals();
   836   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
   838   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
   840   case vmIntrinsics::_isInstance:
   841   case vmIntrinsics::_getModifiers:
   842   case vmIntrinsics::_isInterface:
   843   case vmIntrinsics::_isArray:
   844   case vmIntrinsics::_isPrimitive:
   845   case vmIntrinsics::_getSuperclass:
   846   case vmIntrinsics::_getComponentType:
   847   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
   849   case vmIntrinsics::_floatToRawIntBits:
   850   case vmIntrinsics::_floatToIntBits:
   851   case vmIntrinsics::_intBitsToFloat:
   852   case vmIntrinsics::_doubleToRawLongBits:
   853   case vmIntrinsics::_doubleToLongBits:
   854   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
   856   case vmIntrinsics::_numberOfLeadingZeros_i:
   857   case vmIntrinsics::_numberOfLeadingZeros_l:
   858   case vmIntrinsics::_numberOfTrailingZeros_i:
   859   case vmIntrinsics::_numberOfTrailingZeros_l:
   860   case vmIntrinsics::_bitCount_i:
   861   case vmIntrinsics::_bitCount_l:
   862   case vmIntrinsics::_reverseBytes_i:
   863   case vmIntrinsics::_reverseBytes_l:
   864   case vmIntrinsics::_reverseBytes_s:
   865   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
   867   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
   869   case vmIntrinsics::_Reference_get:            return inline_reference_get();
   871   case vmIntrinsics::_aescrypt_encryptBlock:
   872   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
   874   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   875   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   876     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
   878   case vmIntrinsics::_encodeISOArray:
   879     return inline_encodeISOArray();
   881   case vmIntrinsics::_updateCRC32:
   882     return inline_updateCRC32();
   883   case vmIntrinsics::_updateBytesCRC32:
   884     return inline_updateBytesCRC32();
   885   case vmIntrinsics::_updateByteBufferCRC32:
   886     return inline_updateByteBufferCRC32();
   888   default:
   889     // If you get here, it may be that someone has added a new intrinsic
   890     // to the list in vmSymbols.hpp without implementing it here.
   891 #ifndef PRODUCT
   892     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   893       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   894                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   895     }
   896 #endif
   897     return false;
   898   }
   899 }
   901 Node* LibraryCallKit::try_to_predicate() {
   902   if (!jvms()->has_method()) {
   903     // Root JVMState has a null method.
   904     assert(map()->memory()->Opcode() == Op_Parm, "");
   905     // Insert the memory aliasing node
   906     set_all_memory(reset_memory());
   907   }
   908   assert(merged_memory(), "");
   910   switch (intrinsic_id()) {
   911   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   912     return inline_cipherBlockChaining_AESCrypt_predicate(false);
   913   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   914     return inline_cipherBlockChaining_AESCrypt_predicate(true);
   916   default:
   917     // If you get here, it may be that someone has added a new intrinsic
   918     // to the list in vmSymbols.hpp without implementing it here.
   919 #ifndef PRODUCT
   920     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   921       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
   922                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   923     }
   924 #endif
   925     Node* slow_ctl = control();
   926     set_control(top()); // No fast path instrinsic
   927     return slow_ctl;
   928   }
   929 }
   931 //------------------------------set_result-------------------------------
   932 // Helper function for finishing intrinsics.
   933 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
   934   record_for_igvn(region);
   935   set_control(_gvn.transform(region));
   936   set_result( _gvn.transform(value));
   937   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
   938 }
   940 //------------------------------generate_guard---------------------------
   941 // Helper function for generating guarded fast-slow graph structures.
   942 // The given 'test', if true, guards a slow path.  If the test fails
   943 // then a fast path can be taken.  (We generally hope it fails.)
   944 // In all cases, GraphKit::control() is updated to the fast path.
   945 // The returned value represents the control for the slow path.
   946 // The return value is never 'top'; it is either a valid control
   947 // or NULL if it is obvious that the slow path can never be taken.
   948 // Also, if region and the slow control are not NULL, the slow edge
   949 // is appended to the region.
   950 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
   951   if (stopped()) {
   952     // Already short circuited.
   953     return NULL;
   954   }
   956   // Build an if node and its projections.
   957   // If test is true we take the slow path, which we assume is uncommon.
   958   if (_gvn.type(test) == TypeInt::ZERO) {
   959     // The slow branch is never taken.  No need to build this guard.
   960     return NULL;
   961   }
   963   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
   965   Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
   966   if (if_slow == top()) {
   967     // The slow branch is never taken.  No need to build this guard.
   968     return NULL;
   969   }
   971   if (region != NULL)
   972     region->add_req(if_slow);
   974   Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
   975   set_control(if_fast);
   977   return if_slow;
   978 }
   980 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
   981   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
   982 }
   983 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
   984   return generate_guard(test, region, PROB_FAIR);
   985 }
   987 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
   988                                                      Node* *pos_index) {
   989   if (stopped())
   990     return NULL;                // already stopped
   991   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
   992     return NULL;                // index is already adequately typed
   993   Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
   994   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
   995   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
   996   if (is_neg != NULL && pos_index != NULL) {
   997     // Emulate effect of Parse::adjust_map_after_if.
   998     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
   999     ccast->set_req(0, control());
  1000     (*pos_index) = _gvn.transform(ccast);
  1002   return is_neg;
  1005 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
  1006                                                         Node* *pos_index) {
  1007   if (stopped())
  1008     return NULL;                // already stopped
  1009   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
  1010     return NULL;                // index is already adequately typed
  1011   Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
  1012   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
  1013   Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
  1014   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
  1015   if (is_notp != NULL && pos_index != NULL) {
  1016     // Emulate effect of Parse::adjust_map_after_if.
  1017     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
  1018     ccast->set_req(0, control());
  1019     (*pos_index) = _gvn.transform(ccast);
  1021   return is_notp;
  1024 // Make sure that 'position' is a valid limit index, in [0..length].
  1025 // There are two equivalent plans for checking this:
  1026 //   A. (offset + copyLength)  unsigned<=  arrayLength
  1027 //   B. offset  <=  (arrayLength - copyLength)
  1028 // We require that all of the values above, except for the sum and
  1029 // difference, are already known to be non-negative.
  1030 // Plan A is robust in the face of overflow, if offset and copyLength
  1031 // are both hugely positive.
  1032 //
  1033 // Plan B is less direct and intuitive, but it does not overflow at
  1034 // all, since the difference of two non-negatives is always
  1035 // representable.  Whenever Java methods must perform the equivalent
  1036 // check they generally use Plan B instead of Plan A.
  1037 // For the moment we use Plan A.
  1038 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
  1039                                                   Node* subseq_length,
  1040                                                   Node* array_length,
  1041                                                   RegionNode* region) {
  1042   if (stopped())
  1043     return NULL;                // already stopped
  1044   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
  1045   if (zero_offset && subseq_length->eqv_uncast(array_length))
  1046     return NULL;                // common case of whole-array copy
  1047   Node* last = subseq_length;
  1048   if (!zero_offset)             // last += offset
  1049     last = _gvn.transform(new (C) AddINode(last, offset));
  1050   Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
  1051   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
  1052   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
  1053   return is_over;
  1057 //--------------------------generate_current_thread--------------------
  1058 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
  1059   ciKlass*    thread_klass = env()->Thread_klass();
  1060   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
  1061   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
  1062   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
  1063   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
  1064   tls_output = thread;
  1065   return threadObj;
  1069 //------------------------------make_string_method_node------------------------
  1070 // Helper method for String intrinsic functions. This version is called
  1071 // with str1 and str2 pointing to String object nodes.
  1072 //
  1073 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
  1074   Node* no_ctrl = NULL;
  1076   // Get start addr of string
  1077   Node* str1_value   = load_String_value(no_ctrl, str1);
  1078   Node* str1_offset  = load_String_offset(no_ctrl, str1);
  1079   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
  1081   // Get length of string 1
  1082   Node* str1_len  = load_String_length(no_ctrl, str1);
  1084   Node* str2_value   = load_String_value(no_ctrl, str2);
  1085   Node* str2_offset  = load_String_offset(no_ctrl, str2);
  1086   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
  1088   Node* str2_len = NULL;
  1089   Node* result = NULL;
  1091   switch (opcode) {
  1092   case Op_StrIndexOf:
  1093     // Get length of string 2
  1094     str2_len = load_String_length(no_ctrl, str2);
  1096     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1097                                  str1_start, str1_len, str2_start, str2_len);
  1098     break;
  1099   case Op_StrComp:
  1100     // Get length of string 2
  1101     str2_len = load_String_length(no_ctrl, str2);
  1103     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1104                                  str1_start, str1_len, str2_start, str2_len);
  1105     break;
  1106   case Op_StrEquals:
  1107     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1108                                str1_start, str2_start, str1_len);
  1109     break;
  1110   default:
  1111     ShouldNotReachHere();
  1112     return NULL;
  1115   // All these intrinsics have checks.
  1116   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1118   return _gvn.transform(result);
  1121 // Helper method for String intrinsic functions. This version is called
  1122 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
  1123 // to Int nodes containing the lenghts of str1 and str2.
  1124 //
  1125 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
  1126   Node* result = NULL;
  1127   switch (opcode) {
  1128   case Op_StrIndexOf:
  1129     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1130                                  str1_start, cnt1, str2_start, cnt2);
  1131     break;
  1132   case Op_StrComp:
  1133     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1134                                  str1_start, cnt1, str2_start, cnt2);
  1135     break;
  1136   case Op_StrEquals:
  1137     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1138                                  str1_start, str2_start, cnt1);
  1139     break;
  1140   default:
  1141     ShouldNotReachHere();
  1142     return NULL;
  1145   // All these intrinsics have checks.
  1146   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1148   return _gvn.transform(result);
  1151 //------------------------------inline_string_compareTo------------------------
  1152 // public int java.lang.String.compareTo(String anotherString);
  1153 bool LibraryCallKit::inline_string_compareTo() {
  1154   Node* receiver = null_check(argument(0));
  1155   Node* arg      = null_check(argument(1));
  1156   if (stopped()) {
  1157     return true;
  1159   set_result(make_string_method_node(Op_StrComp, receiver, arg));
  1160   return true;
  1163 //------------------------------inline_string_equals------------------------
  1164 bool LibraryCallKit::inline_string_equals() {
  1165   Node* receiver = null_check_receiver();
  1166   // NOTE: Do not null check argument for String.equals() because spec
  1167   // allows to specify NULL as argument.
  1168   Node* argument = this->argument(1);
  1169   if (stopped()) {
  1170     return true;
  1173   // paths (plus control) merge
  1174   RegionNode* region = new (C) RegionNode(5);
  1175   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
  1177   // does source == target string?
  1178   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
  1179   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
  1181   Node* if_eq = generate_slow_guard(bol, NULL);
  1182   if (if_eq != NULL) {
  1183     // receiver == argument
  1184     phi->init_req(2, intcon(1));
  1185     region->init_req(2, if_eq);
  1188   // get String klass for instanceOf
  1189   ciInstanceKlass* klass = env()->String_klass();
  1191   if (!stopped()) {
  1192     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
  1193     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
  1194     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
  1196     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
  1197     //instanceOf == true, fallthrough
  1199     if (inst_false != NULL) {
  1200       phi->init_req(3, intcon(0));
  1201       region->init_req(3, inst_false);
  1205   if (!stopped()) {
  1206     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  1208     // Properly cast the argument to String
  1209     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
  1210     // This path is taken only when argument's type is String:NotNull.
  1211     argument = cast_not_null(argument, false);
  1213     Node* no_ctrl = NULL;
  1215     // Get start addr of receiver
  1216     Node* receiver_val    = load_String_value(no_ctrl, receiver);
  1217     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
  1218     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
  1220     // Get length of receiver
  1221     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
  1223     // Get start addr of argument
  1224     Node* argument_val    = load_String_value(no_ctrl, argument);
  1225     Node* argument_offset = load_String_offset(no_ctrl, argument);
  1226     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
  1228     // Get length of argument
  1229     Node* argument_cnt  = load_String_length(no_ctrl, argument);
  1231     // Check for receiver count != argument count
  1232     Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
  1233     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
  1234     Node* if_ne = generate_slow_guard(bol, NULL);
  1235     if (if_ne != NULL) {
  1236       phi->init_req(4, intcon(0));
  1237       region->init_req(4, if_ne);
  1240     // Check for count == 0 is done by assembler code for StrEquals.
  1242     if (!stopped()) {
  1243       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
  1244       phi->init_req(1, equals);
  1245       region->init_req(1, control());
  1249   // post merge
  1250   set_control(_gvn.transform(region));
  1251   record_for_igvn(region);
  1253   set_result(_gvn.transform(phi));
  1254   return true;
  1257 //------------------------------inline_array_equals----------------------------
  1258 bool LibraryCallKit::inline_array_equals() {
  1259   Node* arg1 = argument(0);
  1260   Node* arg2 = argument(1);
  1261   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
  1262   return true;
  1265 // Java version of String.indexOf(constant string)
  1266 // class StringDecl {
  1267 //   StringDecl(char[] ca) {
  1268 //     offset = 0;
  1269 //     count = ca.length;
  1270 //     value = ca;
  1271 //   }
  1272 //   int offset;
  1273 //   int count;
  1274 //   char[] value;
  1275 // }
  1276 //
  1277 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
  1278 //                             int targetOffset, int cache_i, int md2) {
  1279 //   int cache = cache_i;
  1280 //   int sourceOffset = string_object.offset;
  1281 //   int sourceCount = string_object.count;
  1282 //   int targetCount = target_object.length;
  1283 //
  1284 //   int targetCountLess1 = targetCount - 1;
  1285 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
  1286 //
  1287 //   char[] source = string_object.value;
  1288 //   char[] target = target_object;
  1289 //   int lastChar = target[targetCountLess1];
  1290 //
  1291 //  outer_loop:
  1292 //   for (int i = sourceOffset; i < sourceEnd; ) {
  1293 //     int src = source[i + targetCountLess1];
  1294 //     if (src == lastChar) {
  1295 //       // With random strings and a 4-character alphabet,
  1296 //       // reverse matching at this point sets up 0.8% fewer
  1297 //       // frames, but (paradoxically) makes 0.3% more probes.
  1298 //       // Since those probes are nearer the lastChar probe,
  1299 //       // there is may be a net D$ win with reverse matching.
  1300 //       // But, reversing loop inhibits unroll of inner loop
  1301 //       // for unknown reason.  So, does running outer loop from
  1302 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
  1303 //       for (int j = 0; j < targetCountLess1; j++) {
  1304 //         if (target[targetOffset + j] != source[i+j]) {
  1305 //           if ((cache & (1 << source[i+j])) == 0) {
  1306 //             if (md2 < j+1) {
  1307 //               i += j+1;
  1308 //               continue outer_loop;
  1309 //             }
  1310 //           }
  1311 //           i += md2;
  1312 //           continue outer_loop;
  1313 //         }
  1314 //       }
  1315 //       return i - sourceOffset;
  1316 //     }
  1317 //     if ((cache & (1 << src)) == 0) {
  1318 //       i += targetCountLess1;
  1319 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
  1320 //     i++;
  1321 //   }
  1322 //   return -1;
  1323 // }
  1325 //------------------------------string_indexOf------------------------
  1326 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
  1327                                      jint cache_i, jint md2_i) {
  1329   Node* no_ctrl  = NULL;
  1330   float likely   = PROB_LIKELY(0.9);
  1331   float unlikely = PROB_UNLIKELY(0.9);
  1333   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
  1335   Node* source        = load_String_value(no_ctrl, string_object);
  1336   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
  1337   Node* sourceCount   = load_String_length(no_ctrl, string_object);
  1339   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
  1340   jint target_length = target_array->length();
  1341   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
  1342   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
  1344   // String.value field is known to be @Stable.
  1345   if (UseImplicitStableValues) {
  1346     target = cast_array_to_stable(target, target_type);
  1349   IdealKit kit(this, false, true);
  1350 #define __ kit.
  1351   Node* zero             = __ ConI(0);
  1352   Node* one              = __ ConI(1);
  1353   Node* cache            = __ ConI(cache_i);
  1354   Node* md2              = __ ConI(md2_i);
  1355   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
  1356   Node* targetCount      = __ ConI(target_length);
  1357   Node* targetCountLess1 = __ ConI(target_length - 1);
  1358   Node* targetOffset     = __ ConI(targetOffset_i);
  1359   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
  1361   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
  1362   Node* outer_loop = __ make_label(2 /* goto */);
  1363   Node* return_    = __ make_label(1);
  1365   __ set(rtn,__ ConI(-1));
  1366   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
  1367        Node* i2  = __ AddI(__ value(i), targetCountLess1);
  1368        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
  1369        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
  1370        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
  1371          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
  1372               Node* tpj = __ AddI(targetOffset, __ value(j));
  1373               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
  1374               Node* ipj  = __ AddI(__ value(i), __ value(j));
  1375               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
  1376               __ if_then(targ, BoolTest::ne, src2); {
  1377                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
  1378                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
  1379                     __ increment(i, __ AddI(__ value(j), one));
  1380                     __ goto_(outer_loop);
  1381                   } __ end_if(); __ dead(j);
  1382                 }__ end_if(); __ dead(j);
  1383                 __ increment(i, md2);
  1384                 __ goto_(outer_loop);
  1385               }__ end_if();
  1386               __ increment(j, one);
  1387          }__ end_loop(); __ dead(j);
  1388          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
  1389          __ goto_(return_);
  1390        }__ end_if();
  1391        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
  1392          __ increment(i, targetCountLess1);
  1393        }__ end_if();
  1394        __ increment(i, one);
  1395        __ bind(outer_loop);
  1396   }__ end_loop(); __ dead(i);
  1397   __ bind(return_);
  1399   // Final sync IdealKit and GraphKit.
  1400   final_sync(kit);
  1401   Node* result = __ value(rtn);
  1402 #undef __
  1403   C->set_has_loops(true);
  1404   return result;
  1407 //------------------------------inline_string_indexOf------------------------
  1408 bool LibraryCallKit::inline_string_indexOf() {
  1409   Node* receiver = argument(0);
  1410   Node* arg      = argument(1);
  1412   Node* result;
  1413   // Disable the use of pcmpestri until it can be guaranteed that
  1414   // the load doesn't cross into the uncommited space.
  1415   if (Matcher::has_match_rule(Op_StrIndexOf) &&
  1416       UseSSE42Intrinsics) {
  1417     // Generate SSE4.2 version of indexOf
  1418     // We currently only have match rules that use SSE4.2
  1420     receiver = null_check(receiver);
  1421     arg      = null_check(arg);
  1422     if (stopped()) {
  1423       return true;
  1426     ciInstanceKlass* str_klass = env()->String_klass();
  1427     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
  1429     // Make the merge point
  1430     RegionNode* result_rgn = new (C) RegionNode(4);
  1431     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
  1432     Node* no_ctrl  = NULL;
  1434     // Get start addr of source string
  1435     Node* source = load_String_value(no_ctrl, receiver);
  1436     Node* source_offset = load_String_offset(no_ctrl, receiver);
  1437     Node* source_start = array_element_address(source, source_offset, T_CHAR);
  1439     // Get length of source string
  1440     Node* source_cnt  = load_String_length(no_ctrl, receiver);
  1442     // Get start addr of substring
  1443     Node* substr = load_String_value(no_ctrl, arg);
  1444     Node* substr_offset = load_String_offset(no_ctrl, arg);
  1445     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
  1447     // Get length of source string
  1448     Node* substr_cnt  = load_String_length(no_ctrl, arg);
  1450     // Check for substr count > string count
  1451     Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
  1452     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
  1453     Node* if_gt = generate_slow_guard(bol, NULL);
  1454     if (if_gt != NULL) {
  1455       result_phi->init_req(2, intcon(-1));
  1456       result_rgn->init_req(2, if_gt);
  1459     if (!stopped()) {
  1460       // Check for substr count == 0
  1461       cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
  1462       bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
  1463       Node* if_zero = generate_slow_guard(bol, NULL);
  1464       if (if_zero != NULL) {
  1465         result_phi->init_req(3, intcon(0));
  1466         result_rgn->init_req(3, if_zero);
  1470     if (!stopped()) {
  1471       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
  1472       result_phi->init_req(1, result);
  1473       result_rgn->init_req(1, control());
  1475     set_control(_gvn.transform(result_rgn));
  1476     record_for_igvn(result_rgn);
  1477     result = _gvn.transform(result_phi);
  1479   } else { // Use LibraryCallKit::string_indexOf
  1480     // don't intrinsify if argument isn't a constant string.
  1481     if (!arg->is_Con()) {
  1482      return false;
  1484     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
  1485     if (str_type == NULL) {
  1486       return false;
  1488     ciInstanceKlass* klass = env()->String_klass();
  1489     ciObject* str_const = str_type->const_oop();
  1490     if (str_const == NULL || str_const->klass() != klass) {
  1491       return false;
  1493     ciInstance* str = str_const->as_instance();
  1494     assert(str != NULL, "must be instance");
  1496     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
  1497     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
  1499     int o;
  1500     int c;
  1501     if (java_lang_String::has_offset_field()) {
  1502       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
  1503       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
  1504     } else {
  1505       o = 0;
  1506       c = pat->length();
  1509     // constant strings have no offset and count == length which
  1510     // simplifies the resulting code somewhat so lets optimize for that.
  1511     if (o != 0 || c != pat->length()) {
  1512      return false;
  1515     receiver = null_check(receiver, T_OBJECT);
  1516     // NOTE: No null check on the argument is needed since it's a constant String oop.
  1517     if (stopped()) {
  1518       return true;
  1521     // The null string as a pattern always returns 0 (match at beginning of string)
  1522     if (c == 0) {
  1523       set_result(intcon(0));
  1524       return true;
  1527     // Generate default indexOf
  1528     jchar lastChar = pat->char_at(o + (c - 1));
  1529     int cache = 0;
  1530     int i;
  1531     for (i = 0; i < c - 1; i++) {
  1532       assert(i < pat->length(), "out of range");
  1533       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1536     int md2 = c;
  1537     for (i = 0; i < c - 1; i++) {
  1538       assert(i < pat->length(), "out of range");
  1539       if (pat->char_at(o + i) == lastChar) {
  1540         md2 = (c - 1) - i;
  1544     result = string_indexOf(receiver, pat, o, cache, md2);
  1546   set_result(result);
  1547   return true;
  1550 //--------------------------round_double_node--------------------------------
  1551 // Round a double node if necessary.
  1552 Node* LibraryCallKit::round_double_node(Node* n) {
  1553   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
  1554     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
  1555   return n;
  1558 //------------------------------inline_math-----------------------------------
  1559 // public static double Math.abs(double)
  1560 // public static double Math.sqrt(double)
  1561 // public static double Math.log(double)
  1562 // public static double Math.log10(double)
  1563 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
  1564   Node* arg = round_double_node(argument(0));
  1565   Node* n;
  1566   switch (id) {
  1567   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
  1568   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
  1569   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
  1570   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
  1571   default:  fatal_unexpected_iid(id);  break;
  1573   set_result(_gvn.transform(n));
  1574   return true;
  1577 //------------------------------inline_trig----------------------------------
  1578 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1579 // argument reduction which will turn into a fast/slow diamond.
  1580 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1581   Node* arg = round_double_node(argument(0));
  1582   Node* n = NULL;
  1584   switch (id) {
  1585   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
  1586   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
  1587   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
  1588   default:  fatal_unexpected_iid(id);  break;
  1590   n = _gvn.transform(n);
  1592   // Rounding required?  Check for argument reduction!
  1593   if (Matcher::strict_fp_requires_explicit_rounding) {
  1594     static const double     pi_4 =  0.7853981633974483;
  1595     static const double neg_pi_4 = -0.7853981633974483;
  1596     // pi/2 in 80-bit extended precision
  1597     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1598     // -pi/2 in 80-bit extended precision
  1599     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1600     // Cutoff value for using this argument reduction technique
  1601     //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1602     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1604     // Pseudocode for sin:
  1605     // if (x <= Math.PI / 4.0) {
  1606     //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1607     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1608     // } else {
  1609     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1610     // }
  1611     // return StrictMath.sin(x);
  1613     // Pseudocode for cos:
  1614     // if (x <= Math.PI / 4.0) {
  1615     //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1616     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1617     // } else {
  1618     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1619     // }
  1620     // return StrictMath.cos(x);
  1622     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1623     // requires a special machine instruction to load it.  Instead we'll try
  1624     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1625     // probably do the math inside the SIN encoding.
  1627     // Make the merge point
  1628     RegionNode* r = new (C) RegionNode(3);
  1629     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
  1631     // Flatten arg so we need only 1 test
  1632     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
  1633     // Node for PI/4 constant
  1634     Node *pi4 = makecon(TypeD::make(pi_4));
  1635     // Check PI/4 : abs(arg)
  1636     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
  1637     // Check: If PI/4 < abs(arg) then go slow
  1638     Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
  1639     // Branch either way
  1640     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1641     set_control(opt_iff(r,iff));
  1643     // Set fast path result
  1644     phi->init_req(2, n);
  1646     // Slow path - non-blocking leaf call
  1647     Node* call = NULL;
  1648     switch (id) {
  1649     case vmIntrinsics::_dsin:
  1650       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1651                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1652                                "Sin", NULL, arg, top());
  1653       break;
  1654     case vmIntrinsics::_dcos:
  1655       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1656                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1657                                "Cos", NULL, arg, top());
  1658       break;
  1659     case vmIntrinsics::_dtan:
  1660       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1661                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1662                                "Tan", NULL, arg, top());
  1663       break;
  1665     assert(control()->in(0) == call, "");
  1666     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  1667     r->init_req(1, control());
  1668     phi->init_req(1, slow_result);
  1670     // Post-merge
  1671     set_control(_gvn.transform(r));
  1672     record_for_igvn(r);
  1673     n = _gvn.transform(phi);
  1675     C->set_has_split_ifs(true); // Has chance for split-if optimization
  1677   set_result(n);
  1678   return true;
  1681 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1682   //-------------------
  1683   //result=(result.isNaN())? funcAddr():result;
  1684   // Check: If isNaN() by checking result!=result? then either trap
  1685   // or go to runtime
  1686   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
  1687   // Build the boolean node
  1688   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
  1690   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1691     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1692       // The pow or exp intrinsic returned a NaN, which requires a call
  1693       // to the runtime.  Recompile with the runtime call.
  1694       uncommon_trap(Deoptimization::Reason_intrinsic,
  1695                     Deoptimization::Action_make_not_entrant);
  1697     return result;
  1698   } else {
  1699     // If this inlining ever returned NaN in the past, we compile a call
  1700     // to the runtime to properly handle corner cases
  1702     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1703     Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
  1704     Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
  1706     if (!if_slow->is_top()) {
  1707       RegionNode* result_region = new (C) RegionNode(3);
  1708       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
  1710       result_region->init_req(1, if_fast);
  1711       result_val->init_req(1, result);
  1713       set_control(if_slow);
  1715       const TypePtr* no_memory_effects = NULL;
  1716       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1717                                    no_memory_effects,
  1718                                    x, top(), y, y ? top() : NULL);
  1719       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
  1720 #ifdef ASSERT
  1721       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
  1722       assert(value_top == top(), "second value must be top");
  1723 #endif
  1725       result_region->init_req(2, control());
  1726       result_val->init_req(2, value);
  1727       set_control(_gvn.transform(result_region));
  1728       return _gvn.transform(result_val);
  1729     } else {
  1730       return result;
  1735 //------------------------------inline_exp-------------------------------------
  1736 // Inline exp instructions, if possible.  The Intel hardware only misses
  1737 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1738 bool LibraryCallKit::inline_exp() {
  1739   Node* arg = round_double_node(argument(0));
  1740   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
  1742   n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1743   set_result(n);
  1745   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1746   return true;
  1749 //------------------------------inline_pow-------------------------------------
  1750 // Inline power instructions, if possible.
  1751 bool LibraryCallKit::inline_pow() {
  1752   // Pseudocode for pow
  1753   // if (y == 2) {
  1754   //   return x * x;
  1755   // } else {
  1756   //   if (x <= 0.0) {
  1757   //     long longy = (long)y;
  1758   //     if ((double)longy == y) { // if y is long
  1759   //       if (y + 1 == y) longy = 0; // huge number: even
  1760   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
  1761   //     } else {
  1762   //       result = NaN;
  1763   //     }
  1764   //   } else {
  1765   //     result = DPow(x,y);
  1766   //   }
  1767   //   if (result != result)?  {
  1768   //     result = uncommon_trap() or runtime_call();
  1769   //   }
  1770   //   return result;
  1771   // }
  1773   Node* x = round_double_node(argument(0));
  1774   Node* y = round_double_node(argument(2));
  1776   Node* result = NULL;
  1778   Node*   const_two_node = makecon(TypeD::make(2.0));
  1779   Node*   cmp_node       = _gvn.transform(new (C) CmpDNode(y, const_two_node));
  1780   Node*   bool_node      = _gvn.transform(new (C) BoolNode(cmp_node, BoolTest::eq));
  1781   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1782   Node*   if_true        = _gvn.transform(new (C) IfTrueNode(if_node));
  1783   Node*   if_false       = _gvn.transform(new (C) IfFalseNode(if_node));
  1785   RegionNode* region_node = new (C) RegionNode(3);
  1786   region_node->init_req(1, if_true);
  1788   Node* phi_node = new (C) PhiNode(region_node, Type::DOUBLE);
  1789   // special case for x^y where y == 2, we can convert it to x * x
  1790   phi_node->init_req(1, _gvn.transform(new (C) MulDNode(x, x)));
  1792   // set control to if_false since we will now process the false branch
  1793   set_control(if_false);
  1795   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1796     // Short form: skip the fancy tests and just check for NaN result.
  1797     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
  1798   } else {
  1799     // If this inlining ever returned NaN in the past, include all
  1800     // checks + call to the runtime.
  1802     // Set the merge point for If node with condition of (x <= 0.0)
  1803     // There are four possible paths to region node and phi node
  1804     RegionNode *r = new (C) RegionNode(4);
  1805     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1807     // Build the first if node: if (x <= 0.0)
  1808     // Node for 0 constant
  1809     Node *zeronode = makecon(TypeD::ZERO);
  1810     // Check x:0
  1811     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
  1812     // Check: If (x<=0) then go complex path
  1813     Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
  1814     // Branch either way
  1815     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1816     // Fast path taken; set region slot 3
  1817     Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
  1818     r->init_req(3,fast_taken); // Capture fast-control
  1820     // Fast path not-taken, i.e. slow path
  1821     Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
  1823     // Set fast path result
  1824     Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
  1825     phi->init_req(3, fast_result);
  1827     // Complex path
  1828     // Build the second if node (if y is long)
  1829     // Node for (long)y
  1830     Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
  1831     // Node for (double)((long) y)
  1832     Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
  1833     // Check (double)((long) y) : y
  1834     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
  1835     // Check if (y isn't long) then go to slow path
  1837     Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
  1838     // Branch either way
  1839     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1840     Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
  1842     Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
  1844     // Calculate DPow(abs(x), y)*(1 & (long)y)
  1845     // Node for constant 1
  1846     Node *conone = longcon(1);
  1847     // 1& (long)y
  1848     Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
  1850     // A huge number is always even. Detect a huge number by checking
  1851     // if y + 1 == y and set integer to be tested for parity to 0.
  1852     // Required for corner case:
  1853     // (long)9.223372036854776E18 = max_jlong
  1854     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
  1855     // max_jlong is odd but 9.223372036854776E18 is even
  1856     Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
  1857     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
  1858     Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
  1859     Node* correctedsign = NULL;
  1860     if (ConditionalMoveLimit != 0) {
  1861       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
  1862     } else {
  1863       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
  1864       RegionNode *r = new (C) RegionNode(3);
  1865       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  1866       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
  1867       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
  1868       phi->init_req(1, signnode);
  1869       phi->init_req(2, longcon(0));
  1870       correctedsign = _gvn.transform(phi);
  1871       ylong_path = _gvn.transform(r);
  1872       record_for_igvn(r);
  1875     // zero node
  1876     Node *conzero = longcon(0);
  1877     // Check (1&(long)y)==0?
  1878     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
  1879     // Check if (1&(long)y)!=0?, if so the result is negative
  1880     Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
  1881     // abs(x)
  1882     Node *absx=_gvn.transform(new (C) AbsDNode(x));
  1883     // abs(x)^y
  1884     Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
  1885     // -abs(x)^y
  1886     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
  1887     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1888     Node *signresult = NULL;
  1889     if (ConditionalMoveLimit != 0) {
  1890       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1891     } else {
  1892       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
  1893       RegionNode *r = new (C) RegionNode(3);
  1894       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1895       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
  1896       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
  1897       phi->init_req(1, absxpowy);
  1898       phi->init_req(2, negabsxpowy);
  1899       signresult = _gvn.transform(phi);
  1900       ylong_path = _gvn.transform(r);
  1901       record_for_igvn(r);
  1903     // Set complex path fast result
  1904     r->init_req(2, ylong_path);
  1905     phi->init_req(2, signresult);
  1907     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1908     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1909     r->init_req(1,slow_path);
  1910     phi->init_req(1,slow_result);
  1912     // Post merge
  1913     set_control(_gvn.transform(r));
  1914     record_for_igvn(r);
  1915     result = _gvn.transform(phi);
  1918   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1920   // control from finish_pow_exp is now input to the region node
  1921   region_node->set_req(2, control());
  1922   // the result from finish_pow_exp is now input to the phi node
  1923   phi_node->init_req(2, result);
  1924   set_control(_gvn.transform(region_node));
  1925   record_for_igvn(region_node);
  1926   set_result(_gvn.transform(phi_node));
  1928   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1929   return true;
  1932 //------------------------------runtime_math-----------------------------
  1933 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1934   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  1935          "must be (DD)D or (D)D type");
  1937   // Inputs
  1938   Node* a = round_double_node(argument(0));
  1939   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
  1941   const TypePtr* no_memory_effects = NULL;
  1942   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1943                                  no_memory_effects,
  1944                                  a, top(), b, b ? top() : NULL);
  1945   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
  1946 #ifdef ASSERT
  1947   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
  1948   assert(value_top == top(), "second value must be top");
  1949 #endif
  1951   set_result(value);
  1952   return true;
  1955 //------------------------------inline_math_native-----------------------------
  1956 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  1957 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
  1958   switch (id) {
  1959     // These intrinsics are not properly supported on all hardware
  1960   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
  1961     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
  1962   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
  1963     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
  1964   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
  1965     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
  1967   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
  1968     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
  1969   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
  1970     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
  1972     // These intrinsics are supported on all hardware
  1973   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
  1974   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
  1976   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
  1977     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
  1978   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
  1979     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
  1980 #undef FN_PTR
  1982    // These intrinsics are not yet correctly implemented
  1983   case vmIntrinsics::_datan2:
  1984     return false;
  1986   default:
  1987     fatal_unexpected_iid(id);
  1988     return false;
  1992 static bool is_simple_name(Node* n) {
  1993   return (n->req() == 1         // constant
  1994           || (n->is_Type() && n->as_Type()->type()->singleton())
  1995           || n->is_Proj()       // parameter or return value
  1996           || n->is_Phi()        // local of some sort
  1997           );
  2000 //----------------------------inline_min_max-----------------------------------
  2001 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  2002   set_result(generate_min_max(id, argument(0), argument(1)));
  2003   return true;
  2006 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
  2007   Node* bol = _gvn.transform( new (C) BoolNode(test, BoolTest::overflow) );
  2008   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  2009   Node* fast_path = _gvn.transform( new (C) IfFalseNode(check));
  2010   Node* slow_path = _gvn.transform( new (C) IfTrueNode(check) );
  2013     PreserveJVMState pjvms(this);
  2014     PreserveReexecuteState preexecs(this);
  2015     jvms()->set_should_reexecute(true);
  2017     set_control(slow_path);
  2018     set_i_o(i_o());
  2020     uncommon_trap(Deoptimization::Reason_intrinsic,
  2021                   Deoptimization::Action_none);
  2024   set_control(fast_path);
  2025   set_result(math);
  2028 template <typename OverflowOp>
  2029 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
  2030   typedef typename OverflowOp::MathOp MathOp;
  2032   MathOp* mathOp = new(C) MathOp(arg1, arg2);
  2033   Node* operation = _gvn.transform( mathOp );
  2034   Node* ofcheck = _gvn.transform( new(C) OverflowOp(arg1, arg2) );
  2035   inline_math_mathExact(operation, ofcheck);
  2036   return true;
  2039 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
  2040   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
  2043 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
  2044   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
  2047 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
  2048   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
  2051 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
  2052   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
  2055 bool LibraryCallKit::inline_math_negateExactI() {
  2056   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
  2059 bool LibraryCallKit::inline_math_negateExactL() {
  2060   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
  2063 bool LibraryCallKit::inline_math_multiplyExactI() {
  2064   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
  2067 bool LibraryCallKit::inline_math_multiplyExactL() {
  2068   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
  2071 Node*
  2072 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  2073   // These are the candidate return value:
  2074   Node* xvalue = x0;
  2075   Node* yvalue = y0;
  2077   if (xvalue == yvalue) {
  2078     return xvalue;
  2081   bool want_max = (id == vmIntrinsics::_max);
  2083   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  2084   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  2085   if (txvalue == NULL || tyvalue == NULL)  return top();
  2086   // This is not really necessary, but it is consistent with a
  2087   // hypothetical MaxINode::Value method:
  2088   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  2090   // %%% This folding logic should (ideally) be in a different place.
  2091   // Some should be inside IfNode, and there to be a more reliable
  2092   // transformation of ?: style patterns into cmoves.  We also want
  2093   // more powerful optimizations around cmove and min/max.
  2095   // Try to find a dominating comparison of these guys.
  2096   // It can simplify the index computation for Arrays.copyOf
  2097   // and similar uses of System.arraycopy.
  2098   // First, compute the normalized version of CmpI(x, y).
  2099   int   cmp_op = Op_CmpI;
  2100   Node* xkey = xvalue;
  2101   Node* ykey = yvalue;
  2102   Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
  2103   if (ideal_cmpxy->is_Cmp()) {
  2104     // E.g., if we have CmpI(length - offset, count),
  2105     // it might idealize to CmpI(length, count + offset)
  2106     cmp_op = ideal_cmpxy->Opcode();
  2107     xkey = ideal_cmpxy->in(1);
  2108     ykey = ideal_cmpxy->in(2);
  2111   // Start by locating any relevant comparisons.
  2112   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  2113   Node* cmpxy = NULL;
  2114   Node* cmpyx = NULL;
  2115   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  2116     Node* cmp = start_from->fast_out(k);
  2117     if (cmp->outcnt() > 0 &&            // must have prior uses
  2118         cmp->in(0) == NULL &&           // must be context-independent
  2119         cmp->Opcode() == cmp_op) {      // right kind of compare
  2120       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  2121       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  2125   const int NCMPS = 2;
  2126   Node* cmps[NCMPS] = { cmpxy, cmpyx };
  2127   int cmpn;
  2128   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  2129     if (cmps[cmpn] != NULL)  break;     // find a result
  2131   if (cmpn < NCMPS) {
  2132     // Look for a dominating test that tells us the min and max.
  2133     int depth = 0;                // Limit search depth for speed
  2134     Node* dom = control();
  2135     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  2136       if (++depth >= 100)  break;
  2137       Node* ifproj = dom;
  2138       if (!ifproj->is_Proj())  continue;
  2139       Node* iff = ifproj->in(0);
  2140       if (!iff->is_If())  continue;
  2141       Node* bol = iff->in(1);
  2142       if (!bol->is_Bool())  continue;
  2143       Node* cmp = bol->in(1);
  2144       if (cmp == NULL)  continue;
  2145       for (cmpn = 0; cmpn < NCMPS; cmpn++)
  2146         if (cmps[cmpn] == cmp)  break;
  2147       if (cmpn == NCMPS)  continue;
  2148       BoolTest::mask btest = bol->as_Bool()->_test._test;
  2149       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  2150       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  2151       // At this point, we know that 'x btest y' is true.
  2152       switch (btest) {
  2153       case BoolTest::eq:
  2154         // They are proven equal, so we can collapse the min/max.
  2155         // Either value is the answer.  Choose the simpler.
  2156         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  2157           return yvalue;
  2158         return xvalue;
  2159       case BoolTest::lt:          // x < y
  2160       case BoolTest::le:          // x <= y
  2161         return (want_max ? yvalue : xvalue);
  2162       case BoolTest::gt:          // x > y
  2163       case BoolTest::ge:          // x >= y
  2164         return (want_max ? xvalue : yvalue);
  2169   // We failed to find a dominating test.
  2170   // Let's pick a test that might GVN with prior tests.
  2171   Node*          best_bol   = NULL;
  2172   BoolTest::mask best_btest = BoolTest::illegal;
  2173   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  2174     Node* cmp = cmps[cmpn];
  2175     if (cmp == NULL)  continue;
  2176     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  2177       Node* bol = cmp->fast_out(j);
  2178       if (!bol->is_Bool())  continue;
  2179       BoolTest::mask btest = bol->as_Bool()->_test._test;
  2180       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  2181       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  2182       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  2183         best_bol   = bol->as_Bool();
  2184         best_btest = btest;
  2189   Node* answer_if_true  = NULL;
  2190   Node* answer_if_false = NULL;
  2191   switch (best_btest) {
  2192   default:
  2193     if (cmpxy == NULL)
  2194       cmpxy = ideal_cmpxy;
  2195     best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
  2196     // and fall through:
  2197   case BoolTest::lt:          // x < y
  2198   case BoolTest::le:          // x <= y
  2199     answer_if_true  = (want_max ? yvalue : xvalue);
  2200     answer_if_false = (want_max ? xvalue : yvalue);
  2201     break;
  2202   case BoolTest::gt:          // x > y
  2203   case BoolTest::ge:          // x >= y
  2204     answer_if_true  = (want_max ? xvalue : yvalue);
  2205     answer_if_false = (want_max ? yvalue : xvalue);
  2206     break;
  2209   jint hi, lo;
  2210   if (want_max) {
  2211     // We can sharpen the minimum.
  2212     hi = MAX2(txvalue->_hi, tyvalue->_hi);
  2213     lo = MAX2(txvalue->_lo, tyvalue->_lo);
  2214   } else {
  2215     // We can sharpen the maximum.
  2216     hi = MIN2(txvalue->_hi, tyvalue->_hi);
  2217     lo = MIN2(txvalue->_lo, tyvalue->_lo);
  2220   // Use a flow-free graph structure, to avoid creating excess control edges
  2221   // which could hinder other optimizations.
  2222   // Since Math.min/max is often used with arraycopy, we want
  2223   // tightly_coupled_allocation to be able to see beyond min/max expressions.
  2224   Node* cmov = CMoveNode::make(C, NULL, best_bol,
  2225                                answer_if_false, answer_if_true,
  2226                                TypeInt::make(lo, hi, widen));
  2228   return _gvn.transform(cmov);
  2230   /*
  2231   // This is not as desirable as it may seem, since Min and Max
  2232   // nodes do not have a full set of optimizations.
  2233   // And they would interfere, anyway, with 'if' optimizations
  2234   // and with CMoveI canonical forms.
  2235   switch (id) {
  2236   case vmIntrinsics::_min:
  2237     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  2238   case vmIntrinsics::_max:
  2239     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  2240   default:
  2241     ShouldNotReachHere();
  2243   */
  2246 inline int
  2247 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  2248   const TypePtr* base_type = TypePtr::NULL_PTR;
  2249   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  2250   if (base_type == NULL) {
  2251     // Unknown type.
  2252     return Type::AnyPtr;
  2253   } else if (base_type == TypePtr::NULL_PTR) {
  2254     // Since this is a NULL+long form, we have to switch to a rawptr.
  2255     base   = _gvn.transform(new (C) CastX2PNode(offset));
  2256     offset = MakeConX(0);
  2257     return Type::RawPtr;
  2258   } else if (base_type->base() == Type::RawPtr) {
  2259     return Type::RawPtr;
  2260   } else if (base_type->isa_oopptr()) {
  2261     // Base is never null => always a heap address.
  2262     if (base_type->ptr() == TypePtr::NotNull) {
  2263       return Type::OopPtr;
  2265     // Offset is small => always a heap address.
  2266     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  2267     if (offset_type != NULL &&
  2268         base_type->offset() == 0 &&     // (should always be?)
  2269         offset_type->_lo >= 0 &&
  2270         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  2271       return Type::OopPtr;
  2273     // Otherwise, it might either be oop+off or NULL+addr.
  2274     return Type::AnyPtr;
  2275   } else {
  2276     // No information:
  2277     return Type::AnyPtr;
  2281 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  2282   int kind = classify_unsafe_addr(base, offset);
  2283   if (kind == Type::RawPtr) {
  2284     return basic_plus_adr(top(), base, offset);
  2285   } else {
  2286     return basic_plus_adr(base, offset);
  2290 //--------------------------inline_number_methods-----------------------------
  2291 // inline int     Integer.numberOfLeadingZeros(int)
  2292 // inline int        Long.numberOfLeadingZeros(long)
  2293 //
  2294 // inline int     Integer.numberOfTrailingZeros(int)
  2295 // inline int        Long.numberOfTrailingZeros(long)
  2296 //
  2297 // inline int     Integer.bitCount(int)
  2298 // inline int        Long.bitCount(long)
  2299 //
  2300 // inline char  Character.reverseBytes(char)
  2301 // inline short     Short.reverseBytes(short)
  2302 // inline int     Integer.reverseBytes(int)
  2303 // inline long       Long.reverseBytes(long)
  2304 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
  2305   Node* arg = argument(0);
  2306   Node* n;
  2307   switch (id) {
  2308   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
  2309   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
  2310   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
  2311   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
  2312   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
  2313   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
  2314   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
  2315   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
  2316   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
  2317   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
  2318   default:  fatal_unexpected_iid(id);  break;
  2320   set_result(_gvn.transform(n));
  2321   return true;
  2324 //----------------------------inline_unsafe_access----------------------------
  2326 const static BasicType T_ADDRESS_HOLDER = T_LONG;
  2328 // Helper that guards and inserts a pre-barrier.
  2329 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
  2330                                         Node* pre_val, bool need_mem_bar) {
  2331   // We could be accessing the referent field of a reference object. If so, when G1
  2332   // is enabled, we need to log the value in the referent field in an SATB buffer.
  2333   // This routine performs some compile time filters and generates suitable
  2334   // runtime filters that guard the pre-barrier code.
  2335   // Also add memory barrier for non volatile load from the referent field
  2336   // to prevent commoning of loads across safepoint.
  2337   if (!UseG1GC && !need_mem_bar)
  2338     return;
  2340   // Some compile time checks.
  2342   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
  2343   const TypeX* otype = offset->find_intptr_t_type();
  2344   if (otype != NULL && otype->is_con() &&
  2345       otype->get_con() != java_lang_ref_Reference::referent_offset) {
  2346     // Constant offset but not the reference_offset so just return
  2347     return;
  2350   // We only need to generate the runtime guards for instances.
  2351   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
  2352   if (btype != NULL) {
  2353     if (btype->isa_aryptr()) {
  2354       // Array type so nothing to do
  2355       return;
  2358     const TypeInstPtr* itype = btype->isa_instptr();
  2359     if (itype != NULL) {
  2360       // Can the klass of base_oop be statically determined to be
  2361       // _not_ a sub-class of Reference and _not_ Object?
  2362       ciKlass* klass = itype->klass();
  2363       if ( klass->is_loaded() &&
  2364           !klass->is_subtype_of(env()->Reference_klass()) &&
  2365           !env()->Object_klass()->is_subtype_of(klass)) {
  2366         return;
  2371   // The compile time filters did not reject base_oop/offset so
  2372   // we need to generate the following runtime filters
  2373   //
  2374   // if (offset == java_lang_ref_Reference::_reference_offset) {
  2375   //   if (instance_of(base, java.lang.ref.Reference)) {
  2376   //     pre_barrier(_, pre_val, ...);
  2377   //   }
  2378   // }
  2380   float likely   = PROB_LIKELY(  0.999);
  2381   float unlikely = PROB_UNLIKELY(0.999);
  2383   IdealKit ideal(this);
  2384 #define __ ideal.
  2386   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
  2388   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
  2389       // Update graphKit memory and control from IdealKit.
  2390       sync_kit(ideal);
  2392       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
  2393       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
  2395       // Update IdealKit memory and control from graphKit.
  2396       __ sync_kit(this);
  2398       Node* one = __ ConI(1);
  2399       // is_instof == 0 if base_oop == NULL
  2400       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
  2402         // Update graphKit from IdeakKit.
  2403         sync_kit(ideal);
  2405         // Use the pre-barrier to record the value in the referent field
  2406         pre_barrier(false /* do_load */,
  2407                     __ ctrl(),
  2408                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  2409                     pre_val /* pre_val */,
  2410                     T_OBJECT);
  2411         if (need_mem_bar) {
  2412           // Add memory barrier to prevent commoning reads from this field
  2413           // across safepoint since GC can change its value.
  2414           insert_mem_bar(Op_MemBarCPUOrder);
  2416         // Update IdealKit from graphKit.
  2417         __ sync_kit(this);
  2419       } __ end_if(); // _ref_type != ref_none
  2420   } __ end_if(); // offset == referent_offset
  2422   // Final sync IdealKit and GraphKit.
  2423   final_sync(ideal);
  2424 #undef __
  2428 // Interpret Unsafe.fieldOffset cookies correctly:
  2429 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  2431 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
  2432   // Attempt to infer a sharper value type from the offset and base type.
  2433   ciKlass* sharpened_klass = NULL;
  2435   // See if it is an instance field, with an object type.
  2436   if (alias_type->field() != NULL) {
  2437     assert(!is_native_ptr, "native pointer op cannot use a java address");
  2438     if (alias_type->field()->type()->is_klass()) {
  2439       sharpened_klass = alias_type->field()->type()->as_klass();
  2443   // See if it is a narrow oop array.
  2444   if (adr_type->isa_aryptr()) {
  2445     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
  2446       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  2447       if (elem_type != NULL) {
  2448         sharpened_klass = elem_type->klass();
  2453   // The sharpened class might be unloaded if there is no class loader
  2454   // contraint in place.
  2455   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
  2456     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  2458 #ifndef PRODUCT
  2459     if (C->print_intrinsics() || C->print_inlining()) {
  2460       tty->print("  from base type: ");  adr_type->dump();
  2461       tty->print("  sharpened value: ");  tjp->dump();
  2463 #endif
  2464     // Sharpen the value type.
  2465     return tjp;
  2467   return NULL;
  2470 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  2471   if (callee()->is_static())  return false;  // caller must have the capability!
  2473 #ifndef PRODUCT
  2475     ResourceMark rm;
  2476     // Check the signatures.
  2477     ciSignature* sig = callee()->signature();
  2478 #ifdef ASSERT
  2479     if (!is_store) {
  2480       // Object getObject(Object base, int/long offset), etc.
  2481       BasicType rtype = sig->return_type()->basic_type();
  2482       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  2483           rtype = T_ADDRESS;  // it is really a C void*
  2484       assert(rtype == type, "getter must return the expected value");
  2485       if (!is_native_ptr) {
  2486         assert(sig->count() == 2, "oop getter has 2 arguments");
  2487         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  2488         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  2489       } else {
  2490         assert(sig->count() == 1, "native getter has 1 argument");
  2491         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  2493     } else {
  2494       // void putObject(Object base, int/long offset, Object x), etc.
  2495       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  2496       if (!is_native_ptr) {
  2497         assert(sig->count() == 3, "oop putter has 3 arguments");
  2498         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  2499         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  2500       } else {
  2501         assert(sig->count() == 2, "native putter has 2 arguments");
  2502         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  2504       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  2505       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  2506         vtype = T_ADDRESS;  // it is really a C void*
  2507       assert(vtype == type, "putter must accept the expected value");
  2509 #endif // ASSERT
  2511 #endif //PRODUCT
  2513   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2515   Node* receiver = argument(0);  // type: oop
  2517   // Build address expression.  See the code in inline_unsafe_prefetch.
  2518   Node* adr;
  2519   Node* heap_base_oop = top();
  2520   Node* offset = top();
  2521   Node* val;
  2523   if (!is_native_ptr) {
  2524     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2525     Node* base = argument(1);  // type: oop
  2526     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2527     offset = argument(2);  // type: long
  2528     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2529     // to be plain byte offsets, which are also the same as those accepted
  2530     // by oopDesc::field_base.
  2531     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2532            "fieldOffset must be byte-scaled");
  2533     // 32-bit machines ignore the high half!
  2534     offset = ConvL2X(offset);
  2535     adr = make_unsafe_address(base, offset);
  2536     heap_base_oop = base;
  2537     val = is_store ? argument(4) : NULL;
  2538   } else {
  2539     Node* ptr = argument(1);  // type: long
  2540     ptr = ConvL2X(ptr);  // adjust Java long to machine word
  2541     adr = make_unsafe_address(NULL, ptr);
  2542     val = is_store ? argument(3) : NULL;
  2545   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2547   // First guess at the value type.
  2548   const Type *value_type = Type::get_const_basic_type(type);
  2550   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  2551   // there was not enough information to nail it down.
  2552   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2553   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2555   // We will need memory barriers unless we can determine a unique
  2556   // alias category for this reference.  (Note:  If for some reason
  2557   // the barriers get omitted and the unsafe reference begins to "pollute"
  2558   // the alias analysis of the rest of the graph, either Compile::can_alias
  2559   // or Compile::must_alias will throw a diagnostic assert.)
  2560   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  2562   // If we are reading the value of the referent field of a Reference
  2563   // object (either by using Unsafe directly or through reflection)
  2564   // then, if G1 is enabled, we need to record the referent in an
  2565   // SATB log buffer using the pre-barrier mechanism.
  2566   // Also we need to add memory barrier to prevent commoning reads
  2567   // from this field across safepoint since GC can change its value.
  2568   bool need_read_barrier = !is_native_ptr && !is_store &&
  2569                            offset != top() && heap_base_oop != top();
  2571   if (!is_store && type == T_OBJECT) {
  2572     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
  2573     if (tjp != NULL) {
  2574       value_type = tjp;
  2578   receiver = null_check(receiver);
  2579   if (stopped()) {
  2580     return true;
  2582   // Heap pointers get a null-check from the interpreter,
  2583   // as a courtesy.  However, this is not guaranteed by Unsafe,
  2584   // and it is not possible to fully distinguish unintended nulls
  2585   // from intended ones in this API.
  2587   if (is_volatile) {
  2588     // We need to emit leading and trailing CPU membars (see below) in
  2589     // addition to memory membars when is_volatile. This is a little
  2590     // too strong, but avoids the need to insert per-alias-type
  2591     // volatile membars (for stores; compare Parse::do_put_xxx), which
  2592     // we cannot do effectively here because we probably only have a
  2593     // rough approximation of type.
  2594     need_mem_bar = true;
  2595     // For Stores, place a memory ordering barrier now.
  2596     if (is_store) {
  2597       insert_mem_bar(Op_MemBarRelease);
  2598     } else {
  2599       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
  2600         insert_mem_bar(Op_MemBarVolatile);
  2605   // Memory barrier to prevent normal and 'unsafe' accesses from
  2606   // bypassing each other.  Happens after null checks, so the
  2607   // exception paths do not take memory state from the memory barrier,
  2608   // so there's no problems making a strong assert about mixing users
  2609   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  2610   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  2611   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2613   if (!is_store) {
  2614     Node* p = make_load(control(), adr, value_type, type, adr_type, MemNode::unordered, is_volatile);
  2615     // load value
  2616     switch (type) {
  2617     case T_BOOLEAN:
  2618     case T_CHAR:
  2619     case T_BYTE:
  2620     case T_SHORT:
  2621     case T_INT:
  2622     case T_LONG:
  2623     case T_FLOAT:
  2624     case T_DOUBLE:
  2625       break;
  2626     case T_OBJECT:
  2627       if (need_read_barrier) {
  2628         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
  2630       break;
  2631     case T_ADDRESS:
  2632       // Cast to an int type.
  2633       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
  2634       p = ConvX2UL(p);
  2635       break;
  2636     default:
  2637       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
  2638       break;
  2640     // The load node has the control of the preceding MemBarCPUOrder.  All
  2641     // following nodes will have the control of the MemBarCPUOrder inserted at
  2642     // the end of this method.  So, pushing the load onto the stack at a later
  2643     // point is fine.
  2644     set_result(p);
  2645   } else {
  2646     // place effect of store into memory
  2647     switch (type) {
  2648     case T_DOUBLE:
  2649       val = dstore_rounding(val);
  2650       break;
  2651     case T_ADDRESS:
  2652       // Repackage the long as a pointer.
  2653       val = ConvL2X(val);
  2654       val = _gvn.transform(new (C) CastX2PNode(val));
  2655       break;
  2658     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
  2659     if (type != T_OBJECT ) {
  2660       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
  2661     } else {
  2662       // Possibly an oop being stored to Java heap or native memory
  2663       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  2664         // oop to Java heap.
  2665         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
  2666       } else {
  2667         // We can't tell at compile time if we are storing in the Java heap or outside
  2668         // of it. So we need to emit code to conditionally do the proper type of
  2669         // store.
  2671         IdealKit ideal(this);
  2672 #define __ ideal.
  2673         // QQQ who knows what probability is here??
  2674         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  2675           // Sync IdealKit and graphKit.
  2676           sync_kit(ideal);
  2677           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
  2678           // Update IdealKit memory.
  2679           __ sync_kit(this);
  2680         } __ else_(); {
  2681           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
  2682         } __ end_if();
  2683         // Final sync IdealKit and GraphKit.
  2684         final_sync(ideal);
  2685 #undef __
  2690   if (is_volatile) {
  2691     if (!is_store) {
  2692       insert_mem_bar(Op_MemBarAcquire);
  2693     } else {
  2694       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
  2695         insert_mem_bar(Op_MemBarVolatile);
  2700   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2702   return true;
  2705 //----------------------------inline_unsafe_prefetch----------------------------
  2707 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  2708 #ifndef PRODUCT
  2710     ResourceMark rm;
  2711     // Check the signatures.
  2712     ciSignature* sig = callee()->signature();
  2713 #ifdef ASSERT
  2714     // Object getObject(Object base, int/long offset), etc.
  2715     BasicType rtype = sig->return_type()->basic_type();
  2716     if (!is_native_ptr) {
  2717       assert(sig->count() == 2, "oop prefetch has 2 arguments");
  2718       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  2719       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  2720     } else {
  2721       assert(sig->count() == 1, "native prefetch has 1 argument");
  2722       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  2724 #endif // ASSERT
  2726 #endif // !PRODUCT
  2728   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2730   const int idx = is_static ? 0 : 1;
  2731   if (!is_static) {
  2732     null_check_receiver();
  2733     if (stopped()) {
  2734       return true;
  2738   // Build address expression.  See the code in inline_unsafe_access.
  2739   Node *adr;
  2740   if (!is_native_ptr) {
  2741     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2742     Node* base   = argument(idx + 0);  // type: oop
  2743     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2744     Node* offset = argument(idx + 1);  // type: long
  2745     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2746     // to be plain byte offsets, which are also the same as those accepted
  2747     // by oopDesc::field_base.
  2748     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2749            "fieldOffset must be byte-scaled");
  2750     // 32-bit machines ignore the high half!
  2751     offset = ConvL2X(offset);
  2752     adr = make_unsafe_address(base, offset);
  2753   } else {
  2754     Node* ptr = argument(idx + 0);  // type: long
  2755     ptr = ConvL2X(ptr);  // adjust Java long to machine word
  2756     adr = make_unsafe_address(NULL, ptr);
  2759   // Generate the read or write prefetch
  2760   Node *prefetch;
  2761   if (is_store) {
  2762     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
  2763   } else {
  2764     prefetch = new (C) PrefetchReadNode(i_o(), adr);
  2766   prefetch->init_req(0, control());
  2767   set_i_o(_gvn.transform(prefetch));
  2769   return true;
  2772 //----------------------------inline_unsafe_load_store----------------------------
  2773 // This method serves a couple of different customers (depending on LoadStoreKind):
  2774 //
  2775 // LS_cmpxchg:
  2776 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
  2777 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
  2778 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
  2779 //
  2780 // LS_xadd:
  2781 //   public int  getAndAddInt( Object o, long offset, int  delta)
  2782 //   public long getAndAddLong(Object o, long offset, long delta)
  2783 //
  2784 // LS_xchg:
  2785 //   int    getAndSet(Object o, long offset, int    newValue)
  2786 //   long   getAndSet(Object o, long offset, long   newValue)
  2787 //   Object getAndSet(Object o, long offset, Object newValue)
  2788 //
  2789 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
  2790   // This basic scheme here is the same as inline_unsafe_access, but
  2791   // differs in enough details that combining them would make the code
  2792   // overly confusing.  (This is a true fact! I originally combined
  2793   // them, but even I was confused by it!) As much code/comments as
  2794   // possible are retained from inline_unsafe_access though to make
  2795   // the correspondences clearer. - dl
  2797   if (callee()->is_static())  return false;  // caller must have the capability!
  2799 #ifndef PRODUCT
  2800   BasicType rtype;
  2802     ResourceMark rm;
  2803     // Check the signatures.
  2804     ciSignature* sig = callee()->signature();
  2805     rtype = sig->return_type()->basic_type();
  2806     if (kind == LS_xadd || kind == LS_xchg) {
  2807       // Check the signatures.
  2808 #ifdef ASSERT
  2809       assert(rtype == type, "get and set must return the expected type");
  2810       assert(sig->count() == 3, "get and set has 3 arguments");
  2811       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
  2812       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
  2813       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
  2814 #endif // ASSERT
  2815     } else if (kind == LS_cmpxchg) {
  2816       // Check the signatures.
  2817 #ifdef ASSERT
  2818       assert(rtype == T_BOOLEAN, "CAS must return boolean");
  2819       assert(sig->count() == 4, "CAS has 4 arguments");
  2820       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  2821       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  2822 #endif // ASSERT
  2823     } else {
  2824       ShouldNotReachHere();
  2827 #endif //PRODUCT
  2829   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2831   // Get arguments:
  2832   Node* receiver = NULL;
  2833   Node* base     = NULL;
  2834   Node* offset   = NULL;
  2835   Node* oldval   = NULL;
  2836   Node* newval   = NULL;
  2837   if (kind == LS_cmpxchg) {
  2838     const bool two_slot_type = type2size[type] == 2;
  2839     receiver = argument(0);  // type: oop
  2840     base     = argument(1);  // type: oop
  2841     offset   = argument(2);  // type: long
  2842     oldval   = argument(4);  // type: oop, int, or long
  2843     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
  2844   } else if (kind == LS_xadd || kind == LS_xchg){
  2845     receiver = argument(0);  // type: oop
  2846     base     = argument(1);  // type: oop
  2847     offset   = argument(2);  // type: long
  2848     oldval   = NULL;
  2849     newval   = argument(4);  // type: oop, int, or long
  2852   // Null check receiver.
  2853   receiver = null_check(receiver);
  2854   if (stopped()) {
  2855     return true;
  2858   // Build field offset expression.
  2859   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2860   // to be plain byte offsets, which are also the same as those accepted
  2861   // by oopDesc::field_base.
  2862   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2863   // 32-bit machines ignore the high half of long offsets
  2864   offset = ConvL2X(offset);
  2865   Node* adr = make_unsafe_address(base, offset);
  2866   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2868   // For CAS, unlike inline_unsafe_access, there seems no point in
  2869   // trying to refine types. Just use the coarse types here.
  2870   const Type *value_type = Type::get_const_basic_type(type);
  2871   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2872   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2874   if (kind == LS_xchg && type == T_OBJECT) {
  2875     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
  2876     if (tjp != NULL) {
  2877       value_type = tjp;
  2881   int alias_idx = C->get_alias_index(adr_type);
  2883   // Memory-model-wise, a LoadStore acts like a little synchronized
  2884   // block, so needs barriers on each side.  These don't translate
  2885   // into actual barriers on most machines, but we still need rest of
  2886   // compiler to respect ordering.
  2888   insert_mem_bar(Op_MemBarRelease);
  2889   insert_mem_bar(Op_MemBarCPUOrder);
  2891   // 4984716: MemBars must be inserted before this
  2892   //          memory node in order to avoid a false
  2893   //          dependency which will confuse the scheduler.
  2894   Node *mem = memory(alias_idx);
  2896   // For now, we handle only those cases that actually exist: ints,
  2897   // longs, and Object. Adding others should be straightforward.
  2898   Node* load_store;
  2899   switch(type) {
  2900   case T_INT:
  2901     if (kind == LS_xadd) {
  2902       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
  2903     } else if (kind == LS_xchg) {
  2904       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
  2905     } else if (kind == LS_cmpxchg) {
  2906       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  2907     } else {
  2908       ShouldNotReachHere();
  2910     break;
  2911   case T_LONG:
  2912     if (kind == LS_xadd) {
  2913       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
  2914     } else if (kind == LS_xchg) {
  2915       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
  2916     } else if (kind == LS_cmpxchg) {
  2917       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  2918     } else {
  2919       ShouldNotReachHere();
  2921     break;
  2922   case T_OBJECT:
  2923     // Transformation of a value which could be NULL pointer (CastPP #NULL)
  2924     // could be delayed during Parse (for example, in adjust_map_after_if()).
  2925     // Execute transformation here to avoid barrier generation in such case.
  2926     if (_gvn.type(newval) == TypePtr::NULL_PTR)
  2927       newval = _gvn.makecon(TypePtr::NULL_PTR);
  2929     // Reference stores need a store barrier.
  2930     if (kind == LS_xchg) {
  2931       // If pre-barrier must execute before the oop store, old value will require do_load here.
  2932       if (!can_move_pre_barrier()) {
  2933         pre_barrier(true /* do_load*/,
  2934                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
  2935                     NULL /* pre_val*/,
  2936                     T_OBJECT);
  2937       } // Else move pre_barrier to use load_store value, see below.
  2938     } else if (kind == LS_cmpxchg) {
  2939       // Same as for newval above:
  2940       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
  2941         oldval = _gvn.makecon(TypePtr::NULL_PTR);
  2943       // The only known value which might get overwritten is oldval.
  2944       pre_barrier(false /* do_load */,
  2945                   control(), NULL, NULL, max_juint, NULL, NULL,
  2946                   oldval /* pre_val */,
  2947                   T_OBJECT);
  2948     } else {
  2949       ShouldNotReachHere();
  2952 #ifdef _LP64
  2953     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2954       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
  2955       if (kind == LS_xchg) {
  2956         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
  2957                                                            newval_enc, adr_type, value_type->make_narrowoop()));
  2958       } else {
  2959         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  2960         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
  2961         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
  2962                                                                 newval_enc, oldval_enc));
  2964     } else
  2965 #endif
  2967       if (kind == LS_xchg) {
  2968         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
  2969       } else {
  2970         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  2971         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  2974     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
  2975     break;
  2976   default:
  2977     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
  2978     break;
  2981   // SCMemProjNodes represent the memory state of a LoadStore. Their
  2982   // main role is to prevent LoadStore nodes from being optimized away
  2983   // when their results aren't used.
  2984   Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
  2985   set_memory(proj, alias_idx);
  2987   if (type == T_OBJECT && kind == LS_xchg) {
  2988 #ifdef _LP64
  2989     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2990       load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
  2992 #endif
  2993     if (can_move_pre_barrier()) {
  2994       // Don't need to load pre_val. The old value is returned by load_store.
  2995       // The pre_barrier can execute after the xchg as long as no safepoint
  2996       // gets inserted between them.
  2997       pre_barrier(false /* do_load */,
  2998                   control(), NULL, NULL, max_juint, NULL, NULL,
  2999                   load_store /* pre_val */,
  3000                   T_OBJECT);
  3004   // Add the trailing membar surrounding the access
  3005   insert_mem_bar(Op_MemBarCPUOrder);
  3006   insert_mem_bar(Op_MemBarAcquire);
  3008   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
  3009   set_result(load_store);
  3010   return true;
  3013 //----------------------------inline_unsafe_ordered_store----------------------
  3014 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
  3015 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
  3016 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
  3017 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  3018   // This is another variant of inline_unsafe_access, differing in
  3019   // that it always issues store-store ("release") barrier and ensures
  3020   // store-atomicity (which only matters for "long").
  3022   if (callee()->is_static())  return false;  // caller must have the capability!
  3024 #ifndef PRODUCT
  3026     ResourceMark rm;
  3027     // Check the signatures.
  3028     ciSignature* sig = callee()->signature();
  3029 #ifdef ASSERT
  3030     BasicType rtype = sig->return_type()->basic_type();
  3031     assert(rtype == T_VOID, "must return void");
  3032     assert(sig->count() == 3, "has 3 arguments");
  3033     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  3034     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  3035 #endif // ASSERT
  3037 #endif //PRODUCT
  3039   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  3041   // Get arguments:
  3042   Node* receiver = argument(0);  // type: oop
  3043   Node* base     = argument(1);  // type: oop
  3044   Node* offset   = argument(2);  // type: long
  3045   Node* val      = argument(4);  // type: oop, int, or long
  3047   // Null check receiver.
  3048   receiver = null_check(receiver);
  3049   if (stopped()) {
  3050     return true;
  3053   // Build field offset expression.
  3054   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  3055   // 32-bit machines ignore the high half of long offsets
  3056   offset = ConvL2X(offset);
  3057   Node* adr = make_unsafe_address(base, offset);
  3058   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  3059   const Type *value_type = Type::get_const_basic_type(type);
  3060   Compile::AliasType* alias_type = C->alias_type(adr_type);
  3062   insert_mem_bar(Op_MemBarRelease);
  3063   insert_mem_bar(Op_MemBarCPUOrder);
  3064   // Ensure that the store is atomic for longs:
  3065   const bool require_atomic_access = true;
  3066   Node* store;
  3067   if (type == T_OBJECT) // reference stores need a store barrier.
  3068     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
  3069   else {
  3070     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
  3072   insert_mem_bar(Op_MemBarCPUOrder);
  3073   return true;
  3076 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
  3077   // Regardless of form, don't allow previous ld/st to move down,
  3078   // then issue acquire, release, or volatile mem_bar.
  3079   insert_mem_bar(Op_MemBarCPUOrder);
  3080   switch(id) {
  3081     case vmIntrinsics::_loadFence:
  3082       insert_mem_bar(Op_LoadFence);
  3083       return true;
  3084     case vmIntrinsics::_storeFence:
  3085       insert_mem_bar(Op_StoreFence);
  3086       return true;
  3087     case vmIntrinsics::_fullFence:
  3088       insert_mem_bar(Op_MemBarVolatile);
  3089       return true;
  3090     default:
  3091       fatal_unexpected_iid(id);
  3092       return false;
  3096 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
  3097   if (!kls->is_Con()) {
  3098     return true;
  3100   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
  3101   if (klsptr == NULL) {
  3102     return true;
  3104   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
  3105   // don't need a guard for a klass that is already initialized
  3106   return !ik->is_initialized();
  3109 //----------------------------inline_unsafe_allocate---------------------------
  3110 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
  3111 bool LibraryCallKit::inline_unsafe_allocate() {
  3112   if (callee()->is_static())  return false;  // caller must have the capability!
  3114   null_check_receiver();  // null-check, then ignore
  3115   Node* cls = null_check(argument(1));
  3116   if (stopped())  return true;
  3118   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
  3119   kls = null_check(kls);
  3120   if (stopped())  return true;  // argument was like int.class
  3122   Node* test = NULL;
  3123   if (LibraryCallKit::klass_needs_init_guard(kls)) {
  3124     // Note:  The argument might still be an illegal value like
  3125     // Serializable.class or Object[].class.   The runtime will handle it.
  3126     // But we must make an explicit check for initialization.
  3127     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
  3128     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
  3129     // can generate code to load it as unsigned byte.
  3130     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
  3131     Node* bits = intcon(InstanceKlass::fully_initialized);
  3132     test = _gvn.transform(new (C) SubINode(inst, bits));
  3133     // The 'test' is non-zero if we need to take a slow path.
  3136   Node* obj = new_instance(kls, test);
  3137   set_result(obj);
  3138   return true;
  3141 #ifdef TRACE_HAVE_INTRINSICS
  3142 /*
  3143  * oop -> myklass
  3144  * myklass->trace_id |= USED
  3145  * return myklass->trace_id & ~0x3
  3146  */
  3147 bool LibraryCallKit::inline_native_classID() {
  3148   null_check_receiver();  // null-check, then ignore
  3149   Node* cls = null_check(argument(1), T_OBJECT);
  3150   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
  3151   kls = null_check(kls, T_OBJECT);
  3152   ByteSize offset = TRACE_ID_OFFSET;
  3153   Node* insp = basic_plus_adr(kls, in_bytes(offset));
  3154   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
  3155   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
  3156   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
  3157   Node* clsused = longcon(0x01l); // set the class bit
  3158   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
  3160   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
  3161   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
  3162   set_result(andl);
  3163   return true;
  3166 bool LibraryCallKit::inline_native_threadID() {
  3167   Node* tls_ptr = NULL;
  3168   Node* cur_thr = generate_current_thread(tls_ptr);
  3169   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  3170   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
  3171   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
  3173   Node* threadid = NULL;
  3174   size_t thread_id_size = OSThread::thread_id_size();
  3175   if (thread_id_size == (size_t) BytesPerLong) {
  3176     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
  3177   } else if (thread_id_size == (size_t) BytesPerInt) {
  3178     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
  3179   } else {
  3180     ShouldNotReachHere();
  3182   set_result(threadid);
  3183   return true;
  3185 #endif
  3187 //------------------------inline_native_time_funcs--------------
  3188 // inline code for System.currentTimeMillis() and System.nanoTime()
  3189 // these have the same type and signature
  3190 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
  3191   const TypeFunc* tf = OptoRuntime::void_long_Type();
  3192   const TypePtr* no_memory_effects = NULL;
  3193   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  3194   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
  3195 #ifdef ASSERT
  3196   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
  3197   assert(value_top == top(), "second value must be top");
  3198 #endif
  3199   set_result(value);
  3200   return true;
  3203 //------------------------inline_native_currentThread------------------
  3204 bool LibraryCallKit::inline_native_currentThread() {
  3205   Node* junk = NULL;
  3206   set_result(generate_current_thread(junk));
  3207   return true;
  3210 //------------------------inline_native_isInterrupted------------------
  3211 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
  3212 bool LibraryCallKit::inline_native_isInterrupted() {
  3213   // Add a fast path to t.isInterrupted(clear_int):
  3214   //   (t == Thread.current() &&
  3215   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
  3216   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  3217   // So, in the common case that the interrupt bit is false,
  3218   // we avoid making a call into the VM.  Even if the interrupt bit
  3219   // is true, if the clear_int argument is false, we avoid the VM call.
  3220   // However, if the receiver is not currentThread, we must call the VM,
  3221   // because there must be some locking done around the operation.
  3223   // We only go to the fast case code if we pass two guards.
  3224   // Paths which do not pass are accumulated in the slow_region.
  3226   enum {
  3227     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
  3228     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
  3229     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
  3230     PATH_LIMIT
  3231   };
  3233   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
  3234   // out of the function.
  3235   insert_mem_bar(Op_MemBarCPUOrder);
  3237   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
  3238   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
  3240   RegionNode* slow_region = new (C) RegionNode(1);
  3241   record_for_igvn(slow_region);
  3243   // (a) Receiving thread must be the current thread.
  3244   Node* rec_thr = argument(0);
  3245   Node* tls_ptr = NULL;
  3246   Node* cur_thr = generate_current_thread(tls_ptr);
  3247   Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
  3248   Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
  3250   generate_slow_guard(bol_thr, slow_region);
  3252   // (b) Interrupt bit on TLS must be false.
  3253   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  3254   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
  3255   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  3257   // Set the control input on the field _interrupted read to prevent it floating up.
  3258   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
  3259   Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
  3260   Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
  3262   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  3264   // First fast path:  if (!TLS._interrupted) return false;
  3265   Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
  3266   result_rgn->init_req(no_int_result_path, false_bit);
  3267   result_val->init_req(no_int_result_path, intcon(0));
  3269   // drop through to next case
  3270   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
  3272 #ifndef TARGET_OS_FAMILY_windows
  3273   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  3274   Node* clr_arg = argument(1);
  3275   Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
  3276   Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
  3277   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  3279   // Second fast path:  ... else if (!clear_int) return true;
  3280   Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
  3281   result_rgn->init_req(no_clear_result_path, false_arg);
  3282   result_val->init_req(no_clear_result_path, intcon(1));
  3284   // drop through to next case
  3285   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
  3286 #else
  3287   // To return true on Windows you must read the _interrupted field
  3288   // and check the the event state i.e. take the slow path.
  3289 #endif // TARGET_OS_FAMILY_windows
  3291   // (d) Otherwise, go to the slow path.
  3292   slow_region->add_req(control());
  3293   set_control( _gvn.transform(slow_region));
  3295   if (stopped()) {
  3296     // There is no slow path.
  3297     result_rgn->init_req(slow_result_path, top());
  3298     result_val->init_req(slow_result_path, top());
  3299   } else {
  3300     // non-virtual because it is a private non-static
  3301     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  3303     Node* slow_val = set_results_for_java_call(slow_call);
  3304     // this->control() comes from set_results_for_java_call
  3306     Node* fast_io  = slow_call->in(TypeFunc::I_O);
  3307     Node* fast_mem = slow_call->in(TypeFunc::Memory);
  3309     // These two phis are pre-filled with copies of of the fast IO and Memory
  3310     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  3311     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  3313     result_rgn->init_req(slow_result_path, control());
  3314     result_io ->init_req(slow_result_path, i_o());
  3315     result_mem->init_req(slow_result_path, reset_memory());
  3316     result_val->init_req(slow_result_path, slow_val);
  3318     set_all_memory(_gvn.transform(result_mem));
  3319     set_i_o(       _gvn.transform(result_io));
  3322   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3323   set_result(result_rgn, result_val);
  3324   return true;
  3327 //---------------------------load_mirror_from_klass----------------------------
  3328 // Given a klass oop, load its java mirror (a java.lang.Class oop).
  3329 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  3330   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
  3331   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
  3334 //-----------------------load_klass_from_mirror_common-------------------------
  3335 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  3336 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  3337 // and branch to the given path on the region.
  3338 // If never_see_null, take an uncommon trap on null, so we can optimistically
  3339 // compile for the non-null case.
  3340 // If the region is NULL, force never_see_null = true.
  3341 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  3342                                                     bool never_see_null,
  3343                                                     RegionNode* region,
  3344                                                     int null_path,
  3345                                                     int offset) {
  3346   if (region == NULL)  never_see_null = true;
  3347   Node* p = basic_plus_adr(mirror, offset);
  3348   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3349   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
  3350   Node* null_ctl = top();
  3351   kls = null_check_oop(kls, &null_ctl, never_see_null);
  3352   if (region != NULL) {
  3353     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  3354     region->init_req(null_path, null_ctl);
  3355   } else {
  3356     assert(null_ctl == top(), "no loose ends");
  3358   return kls;
  3361 //--------------------(inline_native_Class_query helpers)---------------------
  3362 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  3363 // Fall through if (mods & mask) == bits, take the guard otherwise.
  3364 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  3365   // Branch around if the given klass has the given modifier bit set.
  3366   // Like generate_guard, adds a new path onto the region.
  3367   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3368   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
  3369   Node* mask = intcon(modifier_mask);
  3370   Node* bits = intcon(modifier_bits);
  3371   Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
  3372   Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
  3373   Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
  3374   return generate_fair_guard(bol, region);
  3376 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  3377   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  3380 //-------------------------inline_native_Class_query-------------------
  3381 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  3382   const Type* return_type = TypeInt::BOOL;
  3383   Node* prim_return_value = top();  // what happens if it's a primitive class?
  3384   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3385   bool expect_prim = false;     // most of these guys expect to work on refs
  3387   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  3389   Node* mirror = argument(0);
  3390   Node* obj    = top();
  3392   switch (id) {
  3393   case vmIntrinsics::_isInstance:
  3394     // nothing is an instance of a primitive type
  3395     prim_return_value = intcon(0);
  3396     obj = argument(1);
  3397     break;
  3398   case vmIntrinsics::_getModifiers:
  3399     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3400     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  3401     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  3402     break;
  3403   case vmIntrinsics::_isInterface:
  3404     prim_return_value = intcon(0);
  3405     break;
  3406   case vmIntrinsics::_isArray:
  3407     prim_return_value = intcon(0);
  3408     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  3409     break;
  3410   case vmIntrinsics::_isPrimitive:
  3411     prim_return_value = intcon(1);
  3412     expect_prim = true;  // obviously
  3413     break;
  3414   case vmIntrinsics::_getSuperclass:
  3415     prim_return_value = null();
  3416     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3417     break;
  3418   case vmIntrinsics::_getComponentType:
  3419     prim_return_value = null();
  3420     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3421     break;
  3422   case vmIntrinsics::_getClassAccessFlags:
  3423     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3424     return_type = TypeInt::INT;  // not bool!  6297094
  3425     break;
  3426   default:
  3427     fatal_unexpected_iid(id);
  3428     break;
  3431   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  3432   if (mirror_con == NULL)  return false;  // cannot happen?
  3434 #ifndef PRODUCT
  3435   if (C->print_intrinsics() || C->print_inlining()) {
  3436     ciType* k = mirror_con->java_mirror_type();
  3437     if (k) {
  3438       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  3439       k->print_name();
  3440       tty->cr();
  3443 #endif
  3445   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  3446   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3447   record_for_igvn(region);
  3448   PhiNode* phi = new (C) PhiNode(region, return_type);
  3450   // The mirror will never be null of Reflection.getClassAccessFlags, however
  3451   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  3452   // if it is. See bug 4774291.
  3454   // For Reflection.getClassAccessFlags(), the null check occurs in
  3455   // the wrong place; see inline_unsafe_access(), above, for a similar
  3456   // situation.
  3457   mirror = null_check(mirror);
  3458   // If mirror or obj is dead, only null-path is taken.
  3459   if (stopped())  return true;
  3461   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  3463   // Now load the mirror's klass metaobject, and null-check it.
  3464   // Side-effects region with the control path if the klass is null.
  3465   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
  3466   // If kls is null, we have a primitive mirror.
  3467   phi->init_req(_prim_path, prim_return_value);
  3468   if (stopped()) { set_result(region, phi); return true; }
  3469   bool safe_for_replace = (region->in(_prim_path) == top());
  3471   Node* p;  // handy temp
  3472   Node* null_ctl;
  3474   // Now that we have the non-null klass, we can perform the real query.
  3475   // For constant classes, the query will constant-fold in LoadNode::Value.
  3476   Node* query_value = top();
  3477   switch (id) {
  3478   case vmIntrinsics::_isInstance:
  3479     // nothing is an instance of a primitive type
  3480     query_value = gen_instanceof(obj, kls, safe_for_replace);
  3481     break;
  3483   case vmIntrinsics::_getModifiers:
  3484     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
  3485     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
  3486     break;
  3488   case vmIntrinsics::_isInterface:
  3489     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3490     if (generate_interface_guard(kls, region) != NULL)
  3491       // A guard was added.  If the guard is taken, it was an interface.
  3492       phi->add_req(intcon(1));
  3493     // If we fall through, it's a plain class.
  3494     query_value = intcon(0);
  3495     break;
  3497   case vmIntrinsics::_isArray:
  3498     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  3499     if (generate_array_guard(kls, region) != NULL)
  3500       // A guard was added.  If the guard is taken, it was an array.
  3501       phi->add_req(intcon(1));
  3502     // If we fall through, it's a plain class.
  3503     query_value = intcon(0);
  3504     break;
  3506   case vmIntrinsics::_isPrimitive:
  3507     query_value = intcon(0); // "normal" path produces false
  3508     break;
  3510   case vmIntrinsics::_getSuperclass:
  3511     // The rules here are somewhat unfortunate, but we can still do better
  3512     // with random logic than with a JNI call.
  3513     // Interfaces store null or Object as _super, but must report null.
  3514     // Arrays store an intermediate super as _super, but must report Object.
  3515     // Other types can report the actual _super.
  3516     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3517     if (generate_interface_guard(kls, region) != NULL)
  3518       // A guard was added.  If the guard is taken, it was an interface.
  3519       phi->add_req(null());
  3520     if (generate_array_guard(kls, region) != NULL)
  3521       // A guard was added.  If the guard is taken, it was an array.
  3522       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  3523     // If we fall through, it's a plain class.  Get its _super.
  3524     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
  3525     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
  3526     null_ctl = top();
  3527     kls = null_check_oop(kls, &null_ctl);
  3528     if (null_ctl != top()) {
  3529       // If the guard is taken, Object.superClass is null (both klass and mirror).
  3530       region->add_req(null_ctl);
  3531       phi   ->add_req(null());
  3533     if (!stopped()) {
  3534       query_value = load_mirror_from_klass(kls);
  3536     break;
  3538   case vmIntrinsics::_getComponentType:
  3539     if (generate_array_guard(kls, region) != NULL) {
  3540       // Be sure to pin the oop load to the guard edge just created:
  3541       Node* is_array_ctrl = region->in(region->req()-1);
  3542       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
  3543       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
  3544       phi->add_req(cmo);
  3546     query_value = null();  // non-array case is null
  3547     break;
  3549   case vmIntrinsics::_getClassAccessFlags:
  3550     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3551     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
  3552     break;
  3554   default:
  3555     fatal_unexpected_iid(id);
  3556     break;
  3559   // Fall-through is the normal case of a query to a real class.
  3560   phi->init_req(1, query_value);
  3561   region->init_req(1, control());
  3563   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3564   set_result(region, phi);
  3565   return true;
  3568 //--------------------------inline_native_subtype_check------------------------
  3569 // This intrinsic takes the JNI calls out of the heart of
  3570 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  3571 bool LibraryCallKit::inline_native_subtype_check() {
  3572   // Pull both arguments off the stack.
  3573   Node* args[2];                // two java.lang.Class mirrors: superc, subc
  3574   args[0] = argument(0);
  3575   args[1] = argument(1);
  3576   Node* klasses[2];             // corresponding Klasses: superk, subk
  3577   klasses[0] = klasses[1] = top();
  3579   enum {
  3580     // A full decision tree on {superc is prim, subc is prim}:
  3581     _prim_0_path = 1,           // {P,N} => false
  3582                                 // {P,P} & superc!=subc => false
  3583     _prim_same_path,            // {P,P} & superc==subc => true
  3584     _prim_1_path,               // {N,P} => false
  3585     _ref_subtype_path,          // {N,N} & subtype check wins => true
  3586     _both_ref_path,             // {N,N} & subtype check loses => false
  3587     PATH_LIMIT
  3588   };
  3590   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3591   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
  3592   record_for_igvn(region);
  3594   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  3595   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3596   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  3598   // First null-check both mirrors and load each mirror's klass metaobject.
  3599   int which_arg;
  3600   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3601     Node* arg = args[which_arg];
  3602     arg = null_check(arg);
  3603     if (stopped())  break;
  3604     args[which_arg] = arg;
  3606     Node* p = basic_plus_adr(arg, class_klass_offset);
  3607     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
  3608     klasses[which_arg] = _gvn.transform(kls);
  3611   // Having loaded both klasses, test each for null.
  3612   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3613   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3614     Node* kls = klasses[which_arg];
  3615     Node* null_ctl = top();
  3616     kls = null_check_oop(kls, &null_ctl, never_see_null);
  3617     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  3618     region->init_req(prim_path, null_ctl);
  3619     if (stopped())  break;
  3620     klasses[which_arg] = kls;
  3623   if (!stopped()) {
  3624     // now we have two reference types, in klasses[0..1]
  3625     Node* subk   = klasses[1];  // the argument to isAssignableFrom
  3626     Node* superk = klasses[0];  // the receiver
  3627     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  3628     // now we have a successful reference subtype check
  3629     region->set_req(_ref_subtype_path, control());
  3632   // If both operands are primitive (both klasses null), then
  3633   // we must return true when they are identical primitives.
  3634   // It is convenient to test this after the first null klass check.
  3635   set_control(region->in(_prim_0_path)); // go back to first null check
  3636   if (!stopped()) {
  3637     // Since superc is primitive, make a guard for the superc==subc case.
  3638     Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
  3639     Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
  3640     generate_guard(bol_eq, region, PROB_FAIR);
  3641     if (region->req() == PATH_LIMIT+1) {
  3642       // A guard was added.  If the added guard is taken, superc==subc.
  3643       region->swap_edges(PATH_LIMIT, _prim_same_path);
  3644       region->del_req(PATH_LIMIT);
  3646     region->set_req(_prim_0_path, control()); // Not equal after all.
  3649   // these are the only paths that produce 'true':
  3650   phi->set_req(_prim_same_path,   intcon(1));
  3651   phi->set_req(_ref_subtype_path, intcon(1));
  3653   // pull together the cases:
  3654   assert(region->req() == PATH_LIMIT, "sane region");
  3655   for (uint i = 1; i < region->req(); i++) {
  3656     Node* ctl = region->in(i);
  3657     if (ctl == NULL || ctl == top()) {
  3658       region->set_req(i, top());
  3659       phi   ->set_req(i, top());
  3660     } else if (phi->in(i) == NULL) {
  3661       phi->set_req(i, intcon(0)); // all other paths produce 'false'
  3665   set_control(_gvn.transform(region));
  3666   set_result(_gvn.transform(phi));
  3667   return true;
  3670 //---------------------generate_array_guard_common------------------------
  3671 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  3672                                                   bool obj_array, bool not_array) {
  3673   // If obj_array/non_array==false/false:
  3674   // Branch around if the given klass is in fact an array (either obj or prim).
  3675   // If obj_array/non_array==false/true:
  3676   // Branch around if the given klass is not an array klass of any kind.
  3677   // If obj_array/non_array==true/true:
  3678   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  3679   // If obj_array/non_array==true/false:
  3680   // Branch around if the kls is an oop array (Object[] or subtype)
  3681   //
  3682   // Like generate_guard, adds a new path onto the region.
  3683   jint  layout_con = 0;
  3684   Node* layout_val = get_layout_helper(kls, layout_con);
  3685   if (layout_val == NULL) {
  3686     bool query = (obj_array
  3687                   ? Klass::layout_helper_is_objArray(layout_con)
  3688                   : Klass::layout_helper_is_array(layout_con));
  3689     if (query == not_array) {
  3690       return NULL;                       // never a branch
  3691     } else {                             // always a branch
  3692       Node* always_branch = control();
  3693       if (region != NULL)
  3694         region->add_req(always_branch);
  3695       set_control(top());
  3696       return always_branch;
  3699   // Now test the correct condition.
  3700   jint  nval = (obj_array
  3701                 ? ((jint)Klass::_lh_array_tag_type_value
  3702                    <<    Klass::_lh_array_tag_shift)
  3703                 : Klass::_lh_neutral_value);
  3704   Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
  3705   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  3706   // invert the test if we are looking for a non-array
  3707   if (not_array)  btest = BoolTest(btest).negate();
  3708   Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
  3709   return generate_fair_guard(bol, region);
  3713 //-----------------------inline_native_newArray--------------------------
  3714 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
  3715 bool LibraryCallKit::inline_native_newArray() {
  3716   Node* mirror    = argument(0);
  3717   Node* count_val = argument(1);
  3719   mirror = null_check(mirror);
  3720   // If mirror or obj is dead, only null-path is taken.
  3721   if (stopped())  return true;
  3723   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  3724   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  3725   PhiNode*    result_val = new(C) PhiNode(result_reg,
  3726                                           TypeInstPtr::NOTNULL);
  3727   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  3728   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  3729                                           TypePtr::BOTTOM);
  3731   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3732   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  3733                                                   result_reg, _slow_path);
  3734   Node* normal_ctl   = control();
  3735   Node* no_array_ctl = result_reg->in(_slow_path);
  3737   // Generate code for the slow case.  We make a call to newArray().
  3738   set_control(no_array_ctl);
  3739   if (!stopped()) {
  3740     // Either the input type is void.class, or else the
  3741     // array klass has not yet been cached.  Either the
  3742     // ensuing call will throw an exception, or else it
  3743     // will cache the array klass for next time.
  3744     PreserveJVMState pjvms(this);
  3745     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  3746     Node* slow_result = set_results_for_java_call(slow_call);
  3747     // this->control() comes from set_results_for_java_call
  3748     result_reg->set_req(_slow_path, control());
  3749     result_val->set_req(_slow_path, slow_result);
  3750     result_io ->set_req(_slow_path, i_o());
  3751     result_mem->set_req(_slow_path, reset_memory());
  3754   set_control(normal_ctl);
  3755   if (!stopped()) {
  3756     // Normal case:  The array type has been cached in the java.lang.Class.
  3757     // The following call works fine even if the array type is polymorphic.
  3758     // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3759     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
  3760     result_reg->init_req(_normal_path, control());
  3761     result_val->init_req(_normal_path, obj);
  3762     result_io ->init_req(_normal_path, i_o());
  3763     result_mem->init_req(_normal_path, reset_memory());
  3766   // Return the combined state.
  3767   set_i_o(        _gvn.transform(result_io)  );
  3768   set_all_memory( _gvn.transform(result_mem));
  3770   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3771   set_result(result_reg, result_val);
  3772   return true;
  3775 //----------------------inline_native_getLength--------------------------
  3776 // public static native int java.lang.reflect.Array.getLength(Object array);
  3777 bool LibraryCallKit::inline_native_getLength() {
  3778   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3780   Node* array = null_check(argument(0));
  3781   // If array is dead, only null-path is taken.
  3782   if (stopped())  return true;
  3784   // Deoptimize if it is a non-array.
  3785   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  3787   if (non_array != NULL) {
  3788     PreserveJVMState pjvms(this);
  3789     set_control(non_array);
  3790     uncommon_trap(Deoptimization::Reason_intrinsic,
  3791                   Deoptimization::Action_maybe_recompile);
  3794   // If control is dead, only non-array-path is taken.
  3795   if (stopped())  return true;
  3797   // The works fine even if the array type is polymorphic.
  3798   // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3799   Node* result = load_array_length(array);
  3801   C->set_has_split_ifs(true);  // Has chance for split-if optimization
  3802   set_result(result);
  3803   return true;
  3806 //------------------------inline_array_copyOf----------------------------
  3807 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
  3808 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
  3809 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  3810   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3812   // Get the arguments.
  3813   Node* original          = argument(0);
  3814   Node* start             = is_copyOfRange? argument(1): intcon(0);
  3815   Node* end               = is_copyOfRange? argument(2): argument(1);
  3816   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  3818   Node* newcopy;
  3820   // Set the original stack and the reexecute bit for the interpreter to reexecute
  3821   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
  3822   { PreserveReexecuteState preexecs(this);
  3823     jvms()->set_should_reexecute(true);
  3825     array_type_mirror = null_check(array_type_mirror);
  3826     original          = null_check(original);
  3828     // Check if a null path was taken unconditionally.
  3829     if (stopped())  return true;
  3831     Node* orig_length = load_array_length(original);
  3833     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
  3834     klass_node = null_check(klass_node);
  3836     RegionNode* bailout = new (C) RegionNode(1);
  3837     record_for_igvn(bailout);
  3839     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  3840     // Bail out if that is so.
  3841     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  3842     if (not_objArray != NULL) {
  3843       // Improve the klass node's type from the new optimistic assumption:
  3844       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  3845       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  3846       Node* cast = new (C) CastPPNode(klass_node, akls);
  3847       cast->init_req(0, control());
  3848       klass_node = _gvn.transform(cast);
  3851     // Bail out if either start or end is negative.
  3852     generate_negative_guard(start, bailout, &start);
  3853     generate_negative_guard(end,   bailout, &end);
  3855     Node* length = end;
  3856     if (_gvn.type(start) != TypeInt::ZERO) {
  3857       length = _gvn.transform(new (C) SubINode(end, start));
  3860     // Bail out if length is negative.
  3861     // Without this the new_array would throw
  3862     // NegativeArraySizeException but IllegalArgumentException is what
  3863     // should be thrown
  3864     generate_negative_guard(length, bailout, &length);
  3866     if (bailout->req() > 1) {
  3867       PreserveJVMState pjvms(this);
  3868       set_control(_gvn.transform(bailout));
  3869       uncommon_trap(Deoptimization::Reason_intrinsic,
  3870                     Deoptimization::Action_maybe_recompile);
  3873     if (!stopped()) {
  3874       // How many elements will we copy from the original?
  3875       // The answer is MinI(orig_length - start, length).
  3876       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
  3877       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  3879       newcopy = new_array(klass_node, length, 0);  // no argments to push
  3881       // Generate a direct call to the right arraycopy function(s).
  3882       // We know the copy is disjoint but we might not know if the
  3883       // oop stores need checking.
  3884       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  3885       // This will fail a store-check if x contains any non-nulls.
  3886       bool disjoint_bases = true;
  3887       // if start > orig_length then the length of the copy may be
  3888       // negative.
  3889       bool length_never_negative = !is_copyOfRange;
  3890       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3891                          original, start, newcopy, intcon(0), moved,
  3892                          disjoint_bases, length_never_negative);
  3894   } // original reexecute is set back here
  3896   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3897   if (!stopped()) {
  3898     set_result(newcopy);
  3900   return true;
  3904 //----------------------generate_virtual_guard---------------------------
  3905 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  3906 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  3907                                              RegionNode* slow_region) {
  3908   ciMethod* method = callee();
  3909   int vtable_index = method->vtable_index();
  3910   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
  3911          err_msg_res("bad index %d", vtable_index));
  3912   // Get the Method* out of the appropriate vtable entry.
  3913   int entry_offset  = (InstanceKlass::vtable_start_offset() +
  3914                      vtable_index*vtableEntry::size()) * wordSize +
  3915                      vtableEntry::method_offset_in_bytes();
  3916   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  3917   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
  3919   // Compare the target method with the expected method (e.g., Object.hashCode).
  3920   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
  3922   Node* native_call = makecon(native_call_addr);
  3923   Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
  3924   Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
  3926   return generate_slow_guard(test_native, slow_region);
  3929 //-----------------------generate_method_call----------------------------
  3930 // Use generate_method_call to make a slow-call to the real
  3931 // method if the fast path fails.  An alternative would be to
  3932 // use a stub like OptoRuntime::slow_arraycopy_Java.
  3933 // This only works for expanding the current library call,
  3934 // not another intrinsic.  (E.g., don't use this for making an
  3935 // arraycopy call inside of the copyOf intrinsic.)
  3936 CallJavaNode*
  3937 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  3938   // When compiling the intrinsic method itself, do not use this technique.
  3939   guarantee(callee() != C->method(), "cannot make slow-call to self");
  3941   ciMethod* method = callee();
  3942   // ensure the JVMS we have will be correct for this call
  3943   guarantee(method_id == method->intrinsic_id(), "must match");
  3945   const TypeFunc* tf = TypeFunc::make(method);
  3946   CallJavaNode* slow_call;
  3947   if (is_static) {
  3948     assert(!is_virtual, "");
  3949     slow_call = new(C) CallStaticJavaNode(C, tf,
  3950                            SharedRuntime::get_resolve_static_call_stub(),
  3951                            method, bci());
  3952   } else if (is_virtual) {
  3953     null_check_receiver();
  3954     int vtable_index = Method::invalid_vtable_index;
  3955     if (UseInlineCaches) {
  3956       // Suppress the vtable call
  3957     } else {
  3958       // hashCode and clone are not a miranda methods,
  3959       // so the vtable index is fixed.
  3960       // No need to use the linkResolver to get it.
  3961        vtable_index = method->vtable_index();
  3962        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
  3963               err_msg_res("bad index %d", vtable_index));
  3965     slow_call = new(C) CallDynamicJavaNode(tf,
  3966                           SharedRuntime::get_resolve_virtual_call_stub(),
  3967                           method, vtable_index, bci());
  3968   } else {  // neither virtual nor static:  opt_virtual
  3969     null_check_receiver();
  3970     slow_call = new(C) CallStaticJavaNode(C, tf,
  3971                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
  3972                                 method, bci());
  3973     slow_call->set_optimized_virtual(true);
  3975   set_arguments_for_java_call(slow_call);
  3976   set_edges_for_java_call(slow_call);
  3977   return slow_call;
  3981 /**
  3982  * Build special case code for calls to hashCode on an object. This call may
  3983  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
  3984  * slightly different code.
  3985  */
  3986 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  3987   assert(is_static == callee()->is_static(), "correct intrinsic selection");
  3988   assert(!(is_virtual && is_static), "either virtual, special, or static");
  3990   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  3992   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  3993   PhiNode*    result_val = new(C) PhiNode(result_reg, TypeInt::INT);
  3994   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  3995   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
  3996   Node* obj = NULL;
  3997   if (!is_static) {
  3998     // Check for hashing null object
  3999     obj = null_check_receiver();
  4000     if (stopped())  return true;        // unconditionally null
  4001     result_reg->init_req(_null_path, top());
  4002     result_val->init_req(_null_path, top());
  4003   } else {
  4004     // Do a null check, and return zero if null.
  4005     // System.identityHashCode(null) == 0
  4006     obj = argument(0);
  4007     Node* null_ctl = top();
  4008     obj = null_check_oop(obj, &null_ctl);
  4009     result_reg->init_req(_null_path, null_ctl);
  4010     result_val->init_req(_null_path, _gvn.intcon(0));
  4013   // Unconditionally null?  Then return right away.
  4014   if (stopped()) {
  4015     set_control( result_reg->in(_null_path));
  4016     if (!stopped())
  4017       set_result(result_val->in(_null_path));
  4018     return true;
  4021   // We only go to the fast case code if we pass a number of guards.  The
  4022   // paths which do not pass are accumulated in the slow_region.
  4023   RegionNode* slow_region = new (C) RegionNode(1);
  4024   record_for_igvn(slow_region);
  4026   // If this is a virtual call, we generate a funny guard.  We pull out
  4027   // the vtable entry corresponding to hashCode() from the target object.
  4028   // If the target method which we are calling happens to be the native
  4029   // Object hashCode() method, we pass the guard.  We do not need this
  4030   // guard for non-virtual calls -- the caller is known to be the native
  4031   // Object hashCode().
  4032   if (is_virtual) {
  4033     // After null check, get the object's klass.
  4034     Node* obj_klass = load_object_klass(obj);
  4035     generate_virtual_guard(obj_klass, slow_region);
  4038   // Get the header out of the object, use LoadMarkNode when available
  4039   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  4040   // The control of the load must be NULL. Otherwise, the load can move before
  4041   // the null check after castPP removal.
  4042   Node* no_ctrl = NULL;
  4043   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
  4045   // Test the header to see if it is unlocked.
  4046   Node* lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  4047   Node* lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
  4048   Node* unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  4049   Node* chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
  4050   Node* test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
  4052   generate_slow_guard(test_unlocked, slow_region);
  4054   // Get the hash value and check to see that it has been properly assigned.
  4055   // We depend on hash_mask being at most 32 bits and avoid the use of
  4056   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  4057   // vm: see markOop.hpp.
  4058   Node* hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  4059   Node* hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  4060   Node* hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
  4061   // This hack lets the hash bits live anywhere in the mark object now, as long
  4062   // as the shift drops the relevant bits into the low 32 bits.  Note that
  4063   // Java spec says that HashCode is an int so there's no point in capturing
  4064   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  4065   hshifted_header      = ConvX2I(hshifted_header);
  4066   Node* hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
  4068   Node* no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  4069   Node* chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
  4070   Node* test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
  4072   generate_slow_guard(test_assigned, slow_region);
  4074   Node* init_mem = reset_memory();
  4075   // fill in the rest of the null path:
  4076   result_io ->init_req(_null_path, i_o());
  4077   result_mem->init_req(_null_path, init_mem);
  4079   result_val->init_req(_fast_path, hash_val);
  4080   result_reg->init_req(_fast_path, control());
  4081   result_io ->init_req(_fast_path, i_o());
  4082   result_mem->init_req(_fast_path, init_mem);
  4084   // Generate code for the slow case.  We make a call to hashCode().
  4085   set_control(_gvn.transform(slow_region));
  4086   if (!stopped()) {
  4087     // No need for PreserveJVMState, because we're using up the present state.
  4088     set_all_memory(init_mem);
  4089     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
  4090     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  4091     Node* slow_result = set_results_for_java_call(slow_call);
  4092     // this->control() comes from set_results_for_java_call
  4093     result_reg->init_req(_slow_path, control());
  4094     result_val->init_req(_slow_path, slow_result);
  4095     result_io  ->set_req(_slow_path, i_o());
  4096     result_mem ->set_req(_slow_path, reset_memory());
  4099   // Return the combined state.
  4100   set_i_o(        _gvn.transform(result_io)  );
  4101   set_all_memory( _gvn.transform(result_mem));
  4103   set_result(result_reg, result_val);
  4104   return true;
  4107 //---------------------------inline_native_getClass----------------------------
  4108 // public final native Class<?> java.lang.Object.getClass();
  4109 //
  4110 // Build special case code for calls to getClass on an object.
  4111 bool LibraryCallKit::inline_native_getClass() {
  4112   Node* obj = null_check_receiver();
  4113   if (stopped())  return true;
  4114   set_result(load_mirror_from_klass(load_object_klass(obj)));
  4115   return true;
  4118 //-----------------inline_native_Reflection_getCallerClass---------------------
  4119 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
  4120 //
  4121 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  4122 //
  4123 // NOTE: This code must perform the same logic as JVM_GetCallerClass
  4124 // in that it must skip particular security frames and checks for
  4125 // caller sensitive methods.
  4126 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  4127 #ifndef PRODUCT
  4128   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4129     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  4131 #endif
  4133   if (!jvms()->has_method()) {
  4134 #ifndef PRODUCT
  4135     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4136       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  4138 #endif
  4139     return false;
  4142   // Walk back up the JVM state to find the caller at the required
  4143   // depth.
  4144   JVMState* caller_jvms = jvms();
  4146   // Cf. JVM_GetCallerClass
  4147   // NOTE: Start the loop at depth 1 because the current JVM state does
  4148   // not include the Reflection.getCallerClass() frame.
  4149   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
  4150     ciMethod* m = caller_jvms->method();
  4151     switch (n) {
  4152     case 0:
  4153       fatal("current JVM state does not include the Reflection.getCallerClass frame");
  4154       break;
  4155     case 1:
  4156       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
  4157       if (!m->caller_sensitive()) {
  4158 #ifndef PRODUCT
  4159         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4160           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
  4162 #endif
  4163         return false;  // bail-out; let JVM_GetCallerClass do the work
  4165       break;
  4166     default:
  4167       if (!m->is_ignored_by_security_stack_walk()) {
  4168         // We have reached the desired frame; return the holder class.
  4169         // Acquire method holder as java.lang.Class and push as constant.
  4170         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
  4171         ciInstance* caller_mirror = caller_klass->java_mirror();
  4172         set_result(makecon(TypeInstPtr::make(caller_mirror)));
  4174 #ifndef PRODUCT
  4175         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4176           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
  4177           tty->print_cr("  JVM state at this point:");
  4178           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
  4179             ciMethod* m = jvms()->of_depth(i)->method();
  4180             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
  4183 #endif
  4184         return true;
  4186       break;
  4190 #ifndef PRODUCT
  4191   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4192     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
  4193     tty->print_cr("  JVM state at this point:");
  4194     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
  4195       ciMethod* m = jvms()->of_depth(i)->method();
  4196       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
  4199 #endif
  4201   return false;  // bail-out; let JVM_GetCallerClass do the work
  4204 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  4205   Node* arg = argument(0);
  4206   Node* result;
  4208   switch (id) {
  4209   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
  4210   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
  4211   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
  4212   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
  4214   case vmIntrinsics::_doubleToLongBits: {
  4215     // two paths (plus control) merge in a wood
  4216     RegionNode *r = new (C) RegionNode(3);
  4217     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  4219     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
  4220     // Build the boolean node
  4221     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
  4223     // Branch either way.
  4224     // NaN case is less traveled, which makes all the difference.
  4225     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4226     Node *opt_isnan = _gvn.transform(ifisnan);
  4227     assert( opt_isnan->is_If(), "Expect an IfNode");
  4228     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4229     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
  4231     set_control(iftrue);
  4233     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  4234     Node *slow_result = longcon(nan_bits); // return NaN
  4235     phi->init_req(1, _gvn.transform( slow_result ));
  4236     r->init_req(1, iftrue);
  4238     // Else fall through
  4239     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
  4240     set_control(iffalse);
  4242     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
  4243     r->init_req(2, iffalse);
  4245     // Post merge
  4246     set_control(_gvn.transform(r));
  4247     record_for_igvn(r);
  4249     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4250     result = phi;
  4251     assert(result->bottom_type()->isa_long(), "must be");
  4252     break;
  4255   case vmIntrinsics::_floatToIntBits: {
  4256     // two paths (plus control) merge in a wood
  4257     RegionNode *r = new (C) RegionNode(3);
  4258     Node *phi = new (C) PhiNode(r, TypeInt::INT);
  4260     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
  4261     // Build the boolean node
  4262     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
  4264     // Branch either way.
  4265     // NaN case is less traveled, which makes all the difference.
  4266     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4267     Node *opt_isnan = _gvn.transform(ifisnan);
  4268     assert( opt_isnan->is_If(), "Expect an IfNode");
  4269     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4270     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
  4272     set_control(iftrue);
  4274     static const jint nan_bits = 0x7fc00000;
  4275     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  4276     phi->init_req(1, _gvn.transform( slow_result ));
  4277     r->init_req(1, iftrue);
  4279     // Else fall through
  4280     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
  4281     set_control(iffalse);
  4283     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
  4284     r->init_req(2, iffalse);
  4286     // Post merge
  4287     set_control(_gvn.transform(r));
  4288     record_for_igvn(r);
  4290     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4291     result = phi;
  4292     assert(result->bottom_type()->isa_int(), "must be");
  4293     break;
  4296   default:
  4297     fatal_unexpected_iid(id);
  4298     break;
  4300   set_result(_gvn.transform(result));
  4301   return true;
  4304 #ifdef _LP64
  4305 #define XTOP ,top() /*additional argument*/
  4306 #else  //_LP64
  4307 #define XTOP        /*no additional argument*/
  4308 #endif //_LP64
  4310 //----------------------inline_unsafe_copyMemory-------------------------
  4311 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
  4312 bool LibraryCallKit::inline_unsafe_copyMemory() {
  4313   if (callee()->is_static())  return false;  // caller must have the capability!
  4314   null_check_receiver();  // null-check receiver
  4315   if (stopped())  return true;
  4317   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  4319   Node* src_ptr =         argument(1);   // type: oop
  4320   Node* src_off = ConvL2X(argument(2));  // type: long
  4321   Node* dst_ptr =         argument(4);   // type: oop
  4322   Node* dst_off = ConvL2X(argument(5));  // type: long
  4323   Node* size    = ConvL2X(argument(7));  // type: long
  4325   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  4326          "fieldOffset must be byte-scaled");
  4328   Node* src = make_unsafe_address(src_ptr, src_off);
  4329   Node* dst = make_unsafe_address(dst_ptr, dst_off);
  4331   // Conservatively insert a memory barrier on all memory slices.
  4332   // Do not let writes of the copy source or destination float below the copy.
  4333   insert_mem_bar(Op_MemBarCPUOrder);
  4335   // Call it.  Note that the length argument is not scaled.
  4336   make_runtime_call(RC_LEAF|RC_NO_FP,
  4337                     OptoRuntime::fast_arraycopy_Type(),
  4338                     StubRoutines::unsafe_arraycopy(),
  4339                     "unsafe_arraycopy",
  4340                     TypeRawPtr::BOTTOM,
  4341                     src, dst, size XTOP);
  4343   // Do not let reads of the copy destination float above the copy.
  4344   insert_mem_bar(Op_MemBarCPUOrder);
  4346   return true;
  4349 //------------------------clone_coping-----------------------------------
  4350 // Helper function for inline_native_clone.
  4351 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
  4352   assert(obj_size != NULL, "");
  4353   Node* raw_obj = alloc_obj->in(1);
  4354   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  4356   AllocateNode* alloc = NULL;
  4357   if (ReduceBulkZeroing) {
  4358     // We will be completely responsible for initializing this object -
  4359     // mark Initialize node as complete.
  4360     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  4361     // The object was just allocated - there should be no any stores!
  4362     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
  4363     // Mark as complete_with_arraycopy so that on AllocateNode
  4364     // expansion, we know this AllocateNode is initialized by an array
  4365     // copy and a StoreStore barrier exists after the array copy.
  4366     alloc->initialization()->set_complete_with_arraycopy();
  4369   // Copy the fastest available way.
  4370   // TODO: generate fields copies for small objects instead.
  4371   Node* src  = obj;
  4372   Node* dest = alloc_obj;
  4373   Node* size = _gvn.transform(obj_size);
  4375   // Exclude the header but include array length to copy by 8 bytes words.
  4376   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
  4377   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
  4378                             instanceOopDesc::base_offset_in_bytes();
  4379   // base_off:
  4380   // 8  - 32-bit VM
  4381   // 12 - 64-bit VM, compressed klass
  4382   // 16 - 64-bit VM, normal klass
  4383   if (base_off % BytesPerLong != 0) {
  4384     assert(UseCompressedClassPointers, "");
  4385     if (is_array) {
  4386       // Exclude length to copy by 8 bytes words.
  4387       base_off += sizeof(int);
  4388     } else {
  4389       // Include klass to copy by 8 bytes words.
  4390       base_off = instanceOopDesc::klass_offset_in_bytes();
  4392     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
  4394   src  = basic_plus_adr(src,  base_off);
  4395   dest = basic_plus_adr(dest, base_off);
  4397   // Compute the length also, if needed:
  4398   Node* countx = size;
  4399   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
  4400   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  4402   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4403   bool disjoint_bases = true;
  4404   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  4405                                src, NULL, dest, NULL, countx,
  4406                                /*dest_uninitialized*/true);
  4408   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  4409   if (card_mark) {
  4410     assert(!is_array, "");
  4411     // Put in store barrier for any and all oops we are sticking
  4412     // into this object.  (We could avoid this if we could prove
  4413     // that the object type contains no oop fields at all.)
  4414     Node* no_particular_value = NULL;
  4415     Node* no_particular_field = NULL;
  4416     int raw_adr_idx = Compile::AliasIdxRaw;
  4417     post_barrier(control(),
  4418                  memory(raw_adr_type),
  4419                  alloc_obj,
  4420                  no_particular_field,
  4421                  raw_adr_idx,
  4422                  no_particular_value,
  4423                  T_OBJECT,
  4424                  false);
  4427   // Do not let reads from the cloned object float above the arraycopy.
  4428   if (alloc != NULL) {
  4429     // Do not let stores that initialize this object be reordered with
  4430     // a subsequent store that would make this object accessible by
  4431     // other threads.
  4432     // Record what AllocateNode this StoreStore protects so that
  4433     // escape analysis can go from the MemBarStoreStoreNode to the
  4434     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  4435     // based on the escape status of the AllocateNode.
  4436     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  4437   } else {
  4438     insert_mem_bar(Op_MemBarCPUOrder);
  4442 //------------------------inline_native_clone----------------------------
  4443 // protected native Object java.lang.Object.clone();
  4444 //
  4445 // Here are the simple edge cases:
  4446 //  null receiver => normal trap
  4447 //  virtual and clone was overridden => slow path to out-of-line clone
  4448 //  not cloneable or finalizer => slow path to out-of-line Object.clone
  4449 //
  4450 // The general case has two steps, allocation and copying.
  4451 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
  4452 //
  4453 // Copying also has two cases, oop arrays and everything else.
  4454 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  4455 // Everything else uses the tight inline loop supplied by CopyArrayNode.
  4456 //
  4457 // These steps fold up nicely if and when the cloned object's klass
  4458 // can be sharply typed as an object array, a type array, or an instance.
  4459 //
  4460 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  4461   PhiNode* result_val;
  4463   // Set the reexecute bit for the interpreter to reexecute
  4464   // the bytecode that invokes Object.clone if deoptimization happens.
  4465   { PreserveReexecuteState preexecs(this);
  4466     jvms()->set_should_reexecute(true);
  4468     Node* obj = null_check_receiver();
  4469     if (stopped())  return true;
  4471     Node* obj_klass = load_object_klass(obj);
  4472     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  4473     const TypeOopPtr*   toop   = ((tklass != NULL)
  4474                                 ? tklass->as_instance_type()
  4475                                 : TypeInstPtr::NOTNULL);
  4477     // Conservatively insert a memory barrier on all memory slices.
  4478     // Do not let writes into the original float below the clone.
  4479     insert_mem_bar(Op_MemBarCPUOrder);
  4481     // paths into result_reg:
  4482     enum {
  4483       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  4484       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
  4485       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
  4486       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
  4487       PATH_LIMIT
  4488     };
  4489     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  4490     result_val             = new(C) PhiNode(result_reg,
  4491                                             TypeInstPtr::NOTNULL);
  4492     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
  4493     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  4494                                             TypePtr::BOTTOM);
  4495     record_for_igvn(result_reg);
  4497     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4498     int raw_adr_idx = Compile::AliasIdxRaw;
  4500     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  4501     if (array_ctl != NULL) {
  4502       // It's an array.
  4503       PreserveJVMState pjvms(this);
  4504       set_control(array_ctl);
  4505       Node* obj_length = load_array_length(obj);
  4506       Node* obj_size  = NULL;
  4507       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
  4509       if (!use_ReduceInitialCardMarks()) {
  4510         // If it is an oop array, it requires very special treatment,
  4511         // because card marking is required on each card of the array.
  4512         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  4513         if (is_obja != NULL) {
  4514           PreserveJVMState pjvms2(this);
  4515           set_control(is_obja);
  4516           // Generate a direct call to the right arraycopy function(s).
  4517           bool disjoint_bases = true;
  4518           bool length_never_negative = true;
  4519           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  4520                              obj, intcon(0), alloc_obj, intcon(0),
  4521                              obj_length,
  4522                              disjoint_bases, length_never_negative);
  4523           result_reg->init_req(_objArray_path, control());
  4524           result_val->init_req(_objArray_path, alloc_obj);
  4525           result_i_o ->set_req(_objArray_path, i_o());
  4526           result_mem ->set_req(_objArray_path, reset_memory());
  4529       // Otherwise, there are no card marks to worry about.
  4530       // (We can dispense with card marks if we know the allocation
  4531       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  4532       //  causes the non-eden paths to take compensating steps to
  4533       //  simulate a fresh allocation, so that no further
  4534       //  card marks are required in compiled code to initialize
  4535       //  the object.)
  4537       if (!stopped()) {
  4538         copy_to_clone(obj, alloc_obj, obj_size, true, false);
  4540         // Present the results of the copy.
  4541         result_reg->init_req(_array_path, control());
  4542         result_val->init_req(_array_path, alloc_obj);
  4543         result_i_o ->set_req(_array_path, i_o());
  4544         result_mem ->set_req(_array_path, reset_memory());
  4548     // We only go to the instance fast case code if we pass a number of guards.
  4549     // The paths which do not pass are accumulated in the slow_region.
  4550     RegionNode* slow_region = new (C) RegionNode(1);
  4551     record_for_igvn(slow_region);
  4552     if (!stopped()) {
  4553       // It's an instance (we did array above).  Make the slow-path tests.
  4554       // If this is a virtual call, we generate a funny guard.  We grab
  4555       // the vtable entry corresponding to clone() from the target object.
  4556       // If the target method which we are calling happens to be the
  4557       // Object clone() method, we pass the guard.  We do not need this
  4558       // guard for non-virtual calls; the caller is known to be the native
  4559       // Object clone().
  4560       if (is_virtual) {
  4561         generate_virtual_guard(obj_klass, slow_region);
  4564       // The object must be cloneable and must not have a finalizer.
  4565       // Both of these conditions may be checked in a single test.
  4566       // We could optimize the cloneable test further, but we don't care.
  4567       generate_access_flags_guard(obj_klass,
  4568                                   // Test both conditions:
  4569                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  4570                                   // Must be cloneable but not finalizer:
  4571                                   JVM_ACC_IS_CLONEABLE,
  4572                                   slow_region);
  4575     if (!stopped()) {
  4576       // It's an instance, and it passed the slow-path tests.
  4577       PreserveJVMState pjvms(this);
  4578       Node* obj_size  = NULL;
  4579       // Need to deoptimize on exception from allocation since Object.clone intrinsic
  4580       // is reexecuted if deoptimization occurs and there could be problems when merging
  4581       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
  4582       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
  4584       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
  4586       // Present the results of the slow call.
  4587       result_reg->init_req(_instance_path, control());
  4588       result_val->init_req(_instance_path, alloc_obj);
  4589       result_i_o ->set_req(_instance_path, i_o());
  4590       result_mem ->set_req(_instance_path, reset_memory());
  4593     // Generate code for the slow case.  We make a call to clone().
  4594     set_control(_gvn.transform(slow_region));
  4595     if (!stopped()) {
  4596       PreserveJVMState pjvms(this);
  4597       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  4598       Node* slow_result = set_results_for_java_call(slow_call);
  4599       // this->control() comes from set_results_for_java_call
  4600       result_reg->init_req(_slow_path, control());
  4601       result_val->init_req(_slow_path, slow_result);
  4602       result_i_o ->set_req(_slow_path, i_o());
  4603       result_mem ->set_req(_slow_path, reset_memory());
  4606     // Return the combined state.
  4607     set_control(    _gvn.transform(result_reg));
  4608     set_i_o(        _gvn.transform(result_i_o));
  4609     set_all_memory( _gvn.transform(result_mem));
  4610   } // original reexecute is set back here
  4612   set_result(_gvn.transform(result_val));
  4613   return true;
  4616 //------------------------------basictype2arraycopy----------------------------
  4617 address LibraryCallKit::basictype2arraycopy(BasicType t,
  4618                                             Node* src_offset,
  4619                                             Node* dest_offset,
  4620                                             bool disjoint_bases,
  4621                                             const char* &name,
  4622                                             bool dest_uninitialized) {
  4623   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  4624   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  4626   bool aligned = false;
  4627   bool disjoint = disjoint_bases;
  4629   // if the offsets are the same, we can treat the memory regions as
  4630   // disjoint, because either the memory regions are in different arrays,
  4631   // or they are identical (which we can treat as disjoint.)  We can also
  4632   // treat a copy with a destination index  less that the source index
  4633   // as disjoint since a low->high copy will work correctly in this case.
  4634   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  4635       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  4636     // both indices are constants
  4637     int s_offs = src_offset_inttype->get_con();
  4638     int d_offs = dest_offset_inttype->get_con();
  4639     int element_size = type2aelembytes(t);
  4640     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  4641               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  4642     if (s_offs >= d_offs)  disjoint = true;
  4643   } else if (src_offset == dest_offset && src_offset != NULL) {
  4644     // This can occur if the offsets are identical non-constants.
  4645     disjoint = true;
  4648   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
  4652 //------------------------------inline_arraycopy-----------------------
  4653 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
  4654 //                                                      Object dest, int destPos,
  4655 //                                                      int length);
  4656 bool LibraryCallKit::inline_arraycopy() {
  4657   // Get the arguments.
  4658   Node* src         = argument(0);  // type: oop
  4659   Node* src_offset  = argument(1);  // type: int
  4660   Node* dest        = argument(2);  // type: oop
  4661   Node* dest_offset = argument(3);  // type: int
  4662   Node* length      = argument(4);  // type: int
  4664   // Compile time checks.  If any of these checks cannot be verified at compile time,
  4665   // we do not make a fast path for this call.  Instead, we let the call remain as it
  4666   // is.  The checks we choose to mandate at compile time are:
  4667   //
  4668   // (1) src and dest are arrays.
  4669   const Type* src_type  = src->Value(&_gvn);
  4670   const Type* dest_type = dest->Value(&_gvn);
  4671   const TypeAryPtr* top_src  = src_type->isa_aryptr();
  4672   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  4674   // Do we have the type of src?
  4675   bool has_src = (top_src != NULL && top_src->klass() != NULL);
  4676   // Do we have the type of dest?
  4677   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
  4678   // Is the type for src from speculation?
  4679   bool src_spec = false;
  4680   // Is the type for dest from speculation?
  4681   bool dest_spec = false;
  4683   if (!has_src || !has_dest) {
  4684     // We don't have sufficient type information, let's see if
  4685     // speculative types can help. We need to have types for both src
  4686     // and dest so that it pays off.
  4688     // Do we already have or could we have type information for src
  4689     bool could_have_src = has_src;
  4690     // Do we already have or could we have type information for dest
  4691     bool could_have_dest = has_dest;
  4693     ciKlass* src_k = NULL;
  4694     if (!has_src) {
  4695       src_k = src_type->speculative_type();
  4696       if (src_k != NULL && src_k->is_array_klass()) {
  4697         could_have_src = true;
  4701     ciKlass* dest_k = NULL;
  4702     if (!has_dest) {
  4703       dest_k = dest_type->speculative_type();
  4704       if (dest_k != NULL && dest_k->is_array_klass()) {
  4705         could_have_dest = true;
  4709     if (could_have_src && could_have_dest) {
  4710       // This is going to pay off so emit the required guards
  4711       if (!has_src) {
  4712         src = maybe_cast_profiled_obj(src, src_k);
  4713         src_type  = _gvn.type(src);
  4714         top_src  = src_type->isa_aryptr();
  4715         has_src = (top_src != NULL && top_src->klass() != NULL);
  4716         src_spec = true;
  4718       if (!has_dest) {
  4719         dest = maybe_cast_profiled_obj(dest, dest_k);
  4720         dest_type  = _gvn.type(dest);
  4721         top_dest  = dest_type->isa_aryptr();
  4722         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
  4723         dest_spec = true;
  4728   if (!has_src || !has_dest) {
  4729     // Conservatively insert a memory barrier on all memory slices.
  4730     // Do not let writes into the source float below the arraycopy.
  4731     insert_mem_bar(Op_MemBarCPUOrder);
  4733     // Call StubRoutines::generic_arraycopy stub.
  4734     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  4735                        src, src_offset, dest, dest_offset, length);
  4737     // Do not let reads from the destination float above the arraycopy.
  4738     // Since we cannot type the arrays, we don't know which slices
  4739     // might be affected.  We could restrict this barrier only to those
  4740     // memory slices which pertain to array elements--but don't bother.
  4741     if (!InsertMemBarAfterArraycopy)
  4742       // (If InsertMemBarAfterArraycopy, there is already one in place.)
  4743       insert_mem_bar(Op_MemBarCPUOrder);
  4744     return true;
  4747   // (2) src and dest arrays must have elements of the same BasicType
  4748   // Figure out the size and type of the elements we will be copying.
  4749   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  4750   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  4751   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  4752   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  4754   if (src_elem != dest_elem || dest_elem == T_VOID) {
  4755     // The component types are not the same or are not recognized.  Punt.
  4756     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  4757     generate_slow_arraycopy(TypePtr::BOTTOM,
  4758                             src, src_offset, dest, dest_offset, length,
  4759                             /*dest_uninitialized*/false);
  4760     return true;
  4763   if (src_elem == T_OBJECT) {
  4764     // If both arrays are object arrays then having the exact types
  4765     // for both will remove the need for a subtype check at runtime
  4766     // before the call and may make it possible to pick a faster copy
  4767     // routine (without a subtype check on every element)
  4768     // Do we have the exact type of src?
  4769     bool could_have_src = src_spec;
  4770     // Do we have the exact type of dest?
  4771     bool could_have_dest = dest_spec;
  4772     ciKlass* src_k = top_src->klass();
  4773     ciKlass* dest_k = top_dest->klass();
  4774     if (!src_spec) {
  4775       src_k = src_type->speculative_type();
  4776       if (src_k != NULL && src_k->is_array_klass()) {
  4777           could_have_src = true;
  4780     if (!dest_spec) {
  4781       dest_k = dest_type->speculative_type();
  4782       if (dest_k != NULL && dest_k->is_array_klass()) {
  4783         could_have_dest = true;
  4786     if (could_have_src && could_have_dest) {
  4787       // If we can have both exact types, emit the missing guards
  4788       if (could_have_src && !src_spec) {
  4789         src = maybe_cast_profiled_obj(src, src_k);
  4791       if (could_have_dest && !dest_spec) {
  4792         dest = maybe_cast_profiled_obj(dest, dest_k);
  4797   //---------------------------------------------------------------------------
  4798   // We will make a fast path for this call to arraycopy.
  4800   // We have the following tests left to perform:
  4801   //
  4802   // (3) src and dest must not be null.
  4803   // (4) src_offset must not be negative.
  4804   // (5) dest_offset must not be negative.
  4805   // (6) length must not be negative.
  4806   // (7) src_offset + length must not exceed length of src.
  4807   // (8) dest_offset + length must not exceed length of dest.
  4808   // (9) each element of an oop array must be assignable
  4810   RegionNode* slow_region = new (C) RegionNode(1);
  4811   record_for_igvn(slow_region);
  4813   // (3) operands must not be null
  4814   // We currently perform our null checks with the null_check routine.
  4815   // This means that the null exceptions will be reported in the caller
  4816   // rather than (correctly) reported inside of the native arraycopy call.
  4817   // This should be corrected, given time.  We do our null check with the
  4818   // stack pointer restored.
  4819   src  = null_check(src,  T_ARRAY);
  4820   dest = null_check(dest, T_ARRAY);
  4822   // (4) src_offset must not be negative.
  4823   generate_negative_guard(src_offset, slow_region);
  4825   // (5) dest_offset must not be negative.
  4826   generate_negative_guard(dest_offset, slow_region);
  4828   // (6) length must not be negative (moved to generate_arraycopy()).
  4829   // generate_negative_guard(length, slow_region);
  4831   // (7) src_offset + length must not exceed length of src.
  4832   generate_limit_guard(src_offset, length,
  4833                        load_array_length(src),
  4834                        slow_region);
  4836   // (8) dest_offset + length must not exceed length of dest.
  4837   generate_limit_guard(dest_offset, length,
  4838                        load_array_length(dest),
  4839                        slow_region);
  4841   // (9) each element of an oop array must be assignable
  4842   // The generate_arraycopy subroutine checks this.
  4844   // This is where the memory effects are placed:
  4845   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  4846   generate_arraycopy(adr_type, dest_elem,
  4847                      src, src_offset, dest, dest_offset, length,
  4848                      false, false, slow_region);
  4850   return true;
  4853 //-----------------------------generate_arraycopy----------------------
  4854 // Generate an optimized call to arraycopy.
  4855 // Caller must guard against non-arrays.
  4856 // Caller must determine a common array basic-type for both arrays.
  4857 // Caller must validate offsets against array bounds.
  4858 // The slow_region has already collected guard failure paths
  4859 // (such as out of bounds length or non-conformable array types).
  4860 // The generated code has this shape, in general:
  4861 //
  4862 //     if (length == 0)  return   // via zero_path
  4863 //     slowval = -1
  4864 //     if (types unknown) {
  4865 //       slowval = call generic copy loop
  4866 //       if (slowval == 0)  return  // via checked_path
  4867 //     } else if (indexes in bounds) {
  4868 //       if ((is object array) && !(array type check)) {
  4869 //         slowval = call checked copy loop
  4870 //         if (slowval == 0)  return  // via checked_path
  4871 //       } else {
  4872 //         call bulk copy loop
  4873 //         return  // via fast_path
  4874 //       }
  4875 //     }
  4876 //     // adjust params for remaining work:
  4877 //     if (slowval != -1) {
  4878 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  4879 //     }
  4880 //   slow_region:
  4881 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  4882 //     return  // via slow_call_path
  4883 //
  4884 // This routine is used from several intrinsics:  System.arraycopy,
  4885 // Object.clone (the array subcase), and Arrays.copyOf[Range].
  4886 //
  4887 void
  4888 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  4889                                    BasicType basic_elem_type,
  4890                                    Node* src,  Node* src_offset,
  4891                                    Node* dest, Node* dest_offset,
  4892                                    Node* copy_length,
  4893                                    bool disjoint_bases,
  4894                                    bool length_never_negative,
  4895                                    RegionNode* slow_region) {
  4897   if (slow_region == NULL) {
  4898     slow_region = new(C) RegionNode(1);
  4899     record_for_igvn(slow_region);
  4902   Node* original_dest      = dest;
  4903   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  4904   bool  dest_uninitialized = false;
  4906   // See if this is the initialization of a newly-allocated array.
  4907   // If so, we will take responsibility here for initializing it to zero.
  4908   // (Note:  Because tightly_coupled_allocation performs checks on the
  4909   // out-edges of the dest, we need to avoid making derived pointers
  4910   // from it until we have checked its uses.)
  4911   if (ReduceBulkZeroing
  4912       && !ZeroTLAB              // pointless if already zeroed
  4913       && basic_elem_type != T_CONFLICT // avoid corner case
  4914       && !src->eqv_uncast(dest)
  4915       && ((alloc = tightly_coupled_allocation(dest, slow_region))
  4916           != NULL)
  4917       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
  4918       && alloc->maybe_set_complete(&_gvn)) {
  4919     // "You break it, you buy it."
  4920     InitializeNode* init = alloc->initialization();
  4921     assert(init->is_complete(), "we just did this");
  4922     init->set_complete_with_arraycopy();
  4923     assert(dest->is_CheckCastPP(), "sanity");
  4924     assert(dest->in(0)->in(0) == init, "dest pinned");
  4925     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  4926     // From this point on, every exit path is responsible for
  4927     // initializing any non-copied parts of the object to zero.
  4928     // Also, if this flag is set we make sure that arraycopy interacts properly
  4929     // with G1, eliding pre-barriers. See CR 6627983.
  4930     dest_uninitialized = true;
  4931   } else {
  4932     // No zeroing elimination here.
  4933     alloc             = NULL;
  4934     //original_dest   = dest;
  4935     //dest_uninitialized = false;
  4938   // Results are placed here:
  4939   enum { fast_path        = 1,  // normal void-returning assembly stub
  4940          checked_path     = 2,  // special assembly stub with cleanup
  4941          slow_call_path   = 3,  // something went wrong; call the VM
  4942          zero_path        = 4,  // bypass when length of copy is zero
  4943          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  4944          PATH_LIMIT       = 6
  4945   };
  4946   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
  4947   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
  4948   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
  4949   record_for_igvn(result_region);
  4950   _gvn.set_type_bottom(result_i_o);
  4951   _gvn.set_type_bottom(result_memory);
  4952   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  4954   // The slow_control path:
  4955   Node* slow_control;
  4956   Node* slow_i_o = i_o();
  4957   Node* slow_mem = memory(adr_type);
  4958   debug_only(slow_control = (Node*) badAddress);
  4960   // Checked control path:
  4961   Node* checked_control = top();
  4962   Node* checked_mem     = NULL;
  4963   Node* checked_i_o     = NULL;
  4964   Node* checked_value   = NULL;
  4966   if (basic_elem_type == T_CONFLICT) {
  4967     assert(!dest_uninitialized, "");
  4968     Node* cv = generate_generic_arraycopy(adr_type,
  4969                                           src, src_offset, dest, dest_offset,
  4970                                           copy_length, dest_uninitialized);
  4971     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4972     checked_control = control();
  4973     checked_i_o     = i_o();
  4974     checked_mem     = memory(adr_type);
  4975     checked_value   = cv;
  4976     set_control(top());         // no fast path
  4979   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  4980   if (not_pos != NULL) {
  4981     PreserveJVMState pjvms(this);
  4982     set_control(not_pos);
  4984     // (6) length must not be negative.
  4985     if (!length_never_negative) {
  4986       generate_negative_guard(copy_length, slow_region);
  4989     // copy_length is 0.
  4990     if (!stopped() && dest_uninitialized) {
  4991       Node* dest_length = alloc->in(AllocateNode::ALength);
  4992       if (copy_length->eqv_uncast(dest_length)
  4993           || _gvn.find_int_con(dest_length, 1) <= 0) {
  4994         // There is no zeroing to do. No need for a secondary raw memory barrier.
  4995       } else {
  4996         // Clear the whole thing since there are no source elements to copy.
  4997         generate_clear_array(adr_type, dest, basic_elem_type,
  4998                              intcon(0), NULL,
  4999                              alloc->in(AllocateNode::AllocSize));
  5000         // Use a secondary InitializeNode as raw memory barrier.
  5001         // Currently it is needed only on this path since other
  5002         // paths have stub or runtime calls as raw memory barriers.
  5003         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  5004                                                        Compile::AliasIdxRaw,
  5005                                                        top())->as_Initialize();
  5006         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  5010     // Present the results of the fast call.
  5011     result_region->init_req(zero_path, control());
  5012     result_i_o   ->init_req(zero_path, i_o());
  5013     result_memory->init_req(zero_path, memory(adr_type));
  5016   if (!stopped() && dest_uninitialized) {
  5017     // We have to initialize the *uncopied* part of the array to zero.
  5018     // The copy destination is the slice dest[off..off+len].  The other slices
  5019     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  5020     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  5021     Node* dest_length = alloc->in(AllocateNode::ALength);
  5022     Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
  5023                                                           copy_length));
  5025     // If there is a head section that needs zeroing, do it now.
  5026     if (find_int_con(dest_offset, -1) != 0) {
  5027       generate_clear_array(adr_type, dest, basic_elem_type,
  5028                            intcon(0), dest_offset,
  5029                            NULL);
  5032     // Next, perform a dynamic check on the tail length.
  5033     // It is often zero, and we can win big if we prove this.
  5034     // There are two wins:  Avoid generating the ClearArray
  5035     // with its attendant messy index arithmetic, and upgrade
  5036     // the copy to a more hardware-friendly word size of 64 bits.
  5037     Node* tail_ctl = NULL;
  5038     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
  5039       Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
  5040       Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
  5041       tail_ctl = generate_slow_guard(bol_lt, NULL);
  5042       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  5045     // At this point, let's assume there is no tail.
  5046     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  5047       // There is no tail.  Try an upgrade to a 64-bit copy.
  5048       bool didit = false;
  5049       { PreserveJVMState pjvms(this);
  5050         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  5051                                          src, src_offset, dest, dest_offset,
  5052                                          dest_size, dest_uninitialized);
  5053         if (didit) {
  5054           // Present the results of the block-copying fast call.
  5055           result_region->init_req(bcopy_path, control());
  5056           result_i_o   ->init_req(bcopy_path, i_o());
  5057           result_memory->init_req(bcopy_path, memory(adr_type));
  5060       if (didit)
  5061         set_control(top());     // no regular fast path
  5064     // Clear the tail, if any.
  5065     if (tail_ctl != NULL) {
  5066       Node* notail_ctl = stopped() ? NULL : control();
  5067       set_control(tail_ctl);
  5068       if (notail_ctl == NULL) {
  5069         generate_clear_array(adr_type, dest, basic_elem_type,
  5070                              dest_tail, NULL,
  5071                              dest_size);
  5072       } else {
  5073         // Make a local merge.
  5074         Node* done_ctl = new(C) RegionNode(3);
  5075         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
  5076         done_ctl->init_req(1, notail_ctl);
  5077         done_mem->init_req(1, memory(adr_type));
  5078         generate_clear_array(adr_type, dest, basic_elem_type,
  5079                              dest_tail, NULL,
  5080                              dest_size);
  5081         done_ctl->init_req(2, control());
  5082         done_mem->init_req(2, memory(adr_type));
  5083         set_control( _gvn.transform(done_ctl));
  5084         set_memory(  _gvn.transform(done_mem), adr_type );
  5089   BasicType copy_type = basic_elem_type;
  5090   assert(basic_elem_type != T_ARRAY, "caller must fix this");
  5091   if (!stopped() && copy_type == T_OBJECT) {
  5092     // If src and dest have compatible element types, we can copy bits.
  5093     // Types S[] and D[] are compatible if D is a supertype of S.
  5094     //
  5095     // If they are not, we will use checked_oop_disjoint_arraycopy,
  5096     // which performs a fast optimistic per-oop check, and backs off
  5097     // further to JVM_ArrayCopy on the first per-oop check that fails.
  5098     // (Actually, we don't move raw bits only; the GC requires card marks.)
  5100     // Get the Klass* for both src and dest
  5101     Node* src_klass  = load_object_klass(src);
  5102     Node* dest_klass = load_object_klass(dest);
  5104     // Generate the subtype check.
  5105     // This might fold up statically, or then again it might not.
  5106     //
  5107     // Non-static example:  Copying List<String>.elements to a new String[].
  5108     // The backing store for a List<String> is always an Object[],
  5109     // but its elements are always type String, if the generic types
  5110     // are correct at the source level.
  5111     //
  5112     // Test S[] against D[], not S against D, because (probably)
  5113     // the secondary supertype cache is less busy for S[] than S.
  5114     // This usually only matters when D is an interface.
  5115     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  5116     // Plug failing path into checked_oop_disjoint_arraycopy
  5117     if (not_subtype_ctrl != top()) {
  5118       PreserveJVMState pjvms(this);
  5119       set_control(not_subtype_ctrl);
  5120       // (At this point we can assume disjoint_bases, since types differ.)
  5121       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
  5122       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  5123       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  5124       Node* dest_elem_klass = _gvn.transform(n1);
  5125       Node* cv = generate_checkcast_arraycopy(adr_type,
  5126                                               dest_elem_klass,
  5127                                               src, src_offset, dest, dest_offset,
  5128                                               ConvI2X(copy_length), dest_uninitialized);
  5129       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  5130       checked_control = control();
  5131       checked_i_o     = i_o();
  5132       checked_mem     = memory(adr_type);
  5133       checked_value   = cv;
  5135     // At this point we know we do not need type checks on oop stores.
  5137     // Let's see if we need card marks:
  5138     if (alloc != NULL && use_ReduceInitialCardMarks()) {
  5139       // If we do not need card marks, copy using the jint or jlong stub.
  5140       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
  5141       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
  5142              "sizes agree");
  5146   if (!stopped()) {
  5147     // Generate the fast path, if possible.
  5148     PreserveJVMState pjvms(this);
  5149     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  5150                                  src, src_offset, dest, dest_offset,
  5151                                  ConvI2X(copy_length), dest_uninitialized);
  5153     // Present the results of the fast call.
  5154     result_region->init_req(fast_path, control());
  5155     result_i_o   ->init_req(fast_path, i_o());
  5156     result_memory->init_req(fast_path, memory(adr_type));
  5159   // Here are all the slow paths up to this point, in one bundle:
  5160   slow_control = top();
  5161   if (slow_region != NULL)
  5162     slow_control = _gvn.transform(slow_region);
  5163   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
  5165   set_control(checked_control);
  5166   if (!stopped()) {
  5167     // Clean up after the checked call.
  5168     // The returned value is either 0 or -1^K,
  5169     // where K = number of partially transferred array elements.
  5170     Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
  5171     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
  5172     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  5174     // If it is 0, we are done, so transfer to the end.
  5175     Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
  5176     result_region->init_req(checked_path, checks_done);
  5177     result_i_o   ->init_req(checked_path, checked_i_o);
  5178     result_memory->init_req(checked_path, checked_mem);
  5180     // If it is not zero, merge into the slow call.
  5181     set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
  5182     RegionNode* slow_reg2 = new(C) RegionNode(3);
  5183     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
  5184     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  5185     record_for_igvn(slow_reg2);
  5186     slow_reg2  ->init_req(1, slow_control);
  5187     slow_i_o2  ->init_req(1, slow_i_o);
  5188     slow_mem2  ->init_req(1, slow_mem);
  5189     slow_reg2  ->init_req(2, control());
  5190     slow_i_o2  ->init_req(2, checked_i_o);
  5191     slow_mem2  ->init_req(2, checked_mem);
  5193     slow_control = _gvn.transform(slow_reg2);
  5194     slow_i_o     = _gvn.transform(slow_i_o2);
  5195     slow_mem     = _gvn.transform(slow_mem2);
  5197     if (alloc != NULL) {
  5198       // We'll restart from the very beginning, after zeroing the whole thing.
  5199       // This can cause double writes, but that's OK since dest is brand new.
  5200       // So we ignore the low 31 bits of the value returned from the stub.
  5201     } else {
  5202       // We must continue the copy exactly where it failed, or else
  5203       // another thread might see the wrong number of writes to dest.
  5204       Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
  5205       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
  5206       slow_offset->init_req(1, intcon(0));
  5207       slow_offset->init_req(2, checked_offset);
  5208       slow_offset  = _gvn.transform(slow_offset);
  5210       // Adjust the arguments by the conditionally incoming offset.
  5211       Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
  5212       Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
  5213       Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
  5215       // Tweak the node variables to adjust the code produced below:
  5216       src_offset  = src_off_plus;
  5217       dest_offset = dest_off_plus;
  5218       copy_length = length_minus;
  5222   set_control(slow_control);
  5223   if (!stopped()) {
  5224     // Generate the slow path, if needed.
  5225     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  5227     set_memory(slow_mem, adr_type);
  5228     set_i_o(slow_i_o);
  5230     if (dest_uninitialized) {
  5231       generate_clear_array(adr_type, dest, basic_elem_type,
  5232                            intcon(0), NULL,
  5233                            alloc->in(AllocateNode::AllocSize));
  5236     generate_slow_arraycopy(adr_type,
  5237                             src, src_offset, dest, dest_offset,
  5238                             copy_length, /*dest_uninitialized*/false);
  5240     result_region->init_req(slow_call_path, control());
  5241     result_i_o   ->init_req(slow_call_path, i_o());
  5242     result_memory->init_req(slow_call_path, memory(adr_type));
  5245   // Remove unused edges.
  5246   for (uint i = 1; i < result_region->req(); i++) {
  5247     if (result_region->in(i) == NULL)
  5248       result_region->init_req(i, top());
  5251   // Finished; return the combined state.
  5252   set_control( _gvn.transform(result_region));
  5253   set_i_o(     _gvn.transform(result_i_o)    );
  5254   set_memory(  _gvn.transform(result_memory), adr_type );
  5256   // The memory edges above are precise in order to model effects around
  5257   // array copies accurately to allow value numbering of field loads around
  5258   // arraycopy.  Such field loads, both before and after, are common in Java
  5259   // collections and similar classes involving header/array data structures.
  5260   //
  5261   // But with low number of register or when some registers are used or killed
  5262   // by arraycopy calls it causes registers spilling on stack. See 6544710.
  5263   // The next memory barrier is added to avoid it. If the arraycopy can be
  5264   // optimized away (which it can, sometimes) then we can manually remove
  5265   // the membar also.
  5266   //
  5267   // Do not let reads from the cloned object float above the arraycopy.
  5268   if (alloc != NULL) {
  5269     // Do not let stores that initialize this object be reordered with
  5270     // a subsequent store that would make this object accessible by
  5271     // other threads.
  5272     // Record what AllocateNode this StoreStore protects so that
  5273     // escape analysis can go from the MemBarStoreStoreNode to the
  5274     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  5275     // based on the escape status of the AllocateNode.
  5276     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  5277   } else if (InsertMemBarAfterArraycopy)
  5278     insert_mem_bar(Op_MemBarCPUOrder);
  5282 // Helper function which determines if an arraycopy immediately follows
  5283 // an allocation, with no intervening tests or other escapes for the object.
  5284 AllocateArrayNode*
  5285 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  5286                                            RegionNode* slow_region) {
  5287   if (stopped())             return NULL;  // no fast path
  5288   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  5290   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  5291   if (alloc == NULL)  return NULL;
  5293   Node* rawmem = memory(Compile::AliasIdxRaw);
  5294   // Is the allocation's memory state untouched?
  5295   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  5296     // Bail out if there have been raw-memory effects since the allocation.
  5297     // (Example:  There might have been a call or safepoint.)
  5298     return NULL;
  5300   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  5301   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  5302     return NULL;
  5305   // There must be no unexpected observers of this allocation.
  5306   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  5307     Node* obs = ptr->fast_out(i);
  5308     if (obs != this->map()) {
  5309       return NULL;
  5313   // This arraycopy must unconditionally follow the allocation of the ptr.
  5314   Node* alloc_ctl = ptr->in(0);
  5315   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  5317   Node* ctl = control();
  5318   while (ctl != alloc_ctl) {
  5319     // There may be guards which feed into the slow_region.
  5320     // Any other control flow means that we might not get a chance
  5321     // to finish initializing the allocated object.
  5322     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  5323       IfNode* iff = ctl->in(0)->as_If();
  5324       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  5325       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  5326       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  5327         ctl = iff->in(0);       // This test feeds the known slow_region.
  5328         continue;
  5330       // One more try:  Various low-level checks bottom out in
  5331       // uncommon traps.  If the debug-info of the trap omits
  5332       // any reference to the allocation, as we've already
  5333       // observed, then there can be no objection to the trap.
  5334       bool found_trap = false;
  5335       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  5336         Node* obs = not_ctl->fast_out(j);
  5337         if (obs->in(0) == not_ctl && obs->is_Call() &&
  5338             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
  5339           found_trap = true; break;
  5342       if (found_trap) {
  5343         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  5344         continue;
  5347     return NULL;
  5350   // If we get this far, we have an allocation which immediately
  5351   // precedes the arraycopy, and we can take over zeroing the new object.
  5352   // The arraycopy will finish the initialization, and provide
  5353   // a new control state to which we will anchor the destination pointer.
  5355   return alloc;
  5358 // Helper for initialization of arrays, creating a ClearArray.
  5359 // It writes zero bits in [start..end), within the body of an array object.
  5360 // The memory effects are all chained onto the 'adr_type' alias category.
  5361 //
  5362 // Since the object is otherwise uninitialized, we are free
  5363 // to put a little "slop" around the edges of the cleared area,
  5364 // as long as it does not go back into the array's header,
  5365 // or beyond the array end within the heap.
  5366 //
  5367 // The lower edge can be rounded down to the nearest jint and the
  5368 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  5369 //
  5370 // Arguments:
  5371 //   adr_type           memory slice where writes are generated
  5372 //   dest               oop of the destination array
  5373 //   basic_elem_type    element type of the destination
  5374 //   slice_idx          array index of first element to store
  5375 //   slice_len          number of elements to store (or NULL)
  5376 //   dest_size          total size in bytes of the array object
  5377 //
  5378 // Exactly one of slice_len or dest_size must be non-NULL.
  5379 // If dest_size is non-NULL, zeroing extends to the end of the object.
  5380 // If slice_len is non-NULL, the slice_idx value must be a constant.
  5381 void
  5382 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  5383                                      Node* dest,
  5384                                      BasicType basic_elem_type,
  5385                                      Node* slice_idx,
  5386                                      Node* slice_len,
  5387                                      Node* dest_size) {
  5388   // one or the other but not both of slice_len and dest_size:
  5389   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  5390   if (slice_len == NULL)  slice_len = top();
  5391   if (dest_size == NULL)  dest_size = top();
  5393   // operate on this memory slice:
  5394   Node* mem = memory(adr_type); // memory slice to operate on
  5396   // scaling and rounding of indexes:
  5397   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5398   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5399   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  5400   int bump_bit  = (-1 << scale) & BytesPerInt;
  5402   // determine constant starts and ends
  5403   const intptr_t BIG_NEG = -128;
  5404   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5405   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  5406   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  5407   if (slice_len_con == 0) {
  5408     return;                     // nothing to do here
  5410   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  5411   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  5412   if (slice_idx_con >= 0 && slice_len_con >= 0) {
  5413     assert(end_con < 0, "not two cons");
  5414     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  5415                        BytesPerLong);
  5418   if (start_con >= 0 && end_con >= 0) {
  5419     // Constant start and end.  Simple.
  5420     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5421                                        start_con, end_con, &_gvn);
  5422   } else if (start_con >= 0 && dest_size != top()) {
  5423     // Constant start, pre-rounded end after the tail of the array.
  5424     Node* end = dest_size;
  5425     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5426                                        start_con, end, &_gvn);
  5427   } else if (start_con >= 0 && slice_len != top()) {
  5428     // Constant start, non-constant end.  End needs rounding up.
  5429     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  5430     intptr_t end_base  = abase + (slice_idx_con << scale);
  5431     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  5432     Node*    end       = ConvI2X(slice_len);
  5433     if (scale != 0)
  5434       end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
  5435     end_base += end_round;
  5436     end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
  5437     end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
  5438     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5439                                        start_con, end, &_gvn);
  5440   } else if (start_con < 0 && dest_size != top()) {
  5441     // Non-constant start, pre-rounded end after the tail of the array.
  5442     // This is almost certainly a "round-to-end" operation.
  5443     Node* start = slice_idx;
  5444     start = ConvI2X(start);
  5445     if (scale != 0)
  5446       start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
  5447     start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
  5448     if ((bump_bit | clear_low) != 0) {
  5449       int to_clear = (bump_bit | clear_low);
  5450       // Align up mod 8, then store a jint zero unconditionally
  5451       // just before the mod-8 boundary.
  5452       if (((abase + bump_bit) & ~to_clear) - bump_bit
  5453           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
  5454         bump_bit = 0;
  5455         assert((abase & to_clear) == 0, "array base must be long-aligned");
  5456       } else {
  5457         // Bump 'start' up to (or past) the next jint boundary:
  5458         start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
  5459         assert((abase & clear_low) == 0, "array base must be int-aligned");
  5461       // Round bumped 'start' down to jlong boundary in body of array.
  5462       start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
  5463       if (bump_bit != 0) {
  5464         // Store a zero to the immediately preceding jint:
  5465         Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
  5466         Node* p1 = basic_plus_adr(dest, x1);
  5467         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
  5468         mem = _gvn.transform(mem);
  5471     Node* end = dest_size; // pre-rounded
  5472     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5473                                        start, end, &_gvn);
  5474   } else {
  5475     // Non-constant start, unrounded non-constant end.
  5476     // (Nobody zeroes a random midsection of an array using this routine.)
  5477     ShouldNotReachHere();       // fix caller
  5480   // Done.
  5481   set_memory(mem, adr_type);
  5485 bool
  5486 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  5487                                          BasicType basic_elem_type,
  5488                                          AllocateNode* alloc,
  5489                                          Node* src,  Node* src_offset,
  5490                                          Node* dest, Node* dest_offset,
  5491                                          Node* dest_size, bool dest_uninitialized) {
  5492   // See if there is an advantage from block transfer.
  5493   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5494   if (scale >= LogBytesPerLong)
  5495     return false;               // it is already a block transfer
  5497   // Look at the alignment of the starting offsets.
  5498   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5500   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
  5501   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
  5502   if (src_off_con < 0 || dest_off_con < 0)
  5503     // At present, we can only understand constants.
  5504     return false;
  5506   intptr_t src_off  = abase + (src_off_con  << scale);
  5507   intptr_t dest_off = abase + (dest_off_con << scale);
  5509   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  5510     // Non-aligned; too bad.
  5511     // One more chance:  Pick off an initial 32-bit word.
  5512     // This is a common case, since abase can be odd mod 8.
  5513     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  5514         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  5515       Node* sptr = basic_plus_adr(src,  src_off);
  5516       Node* dptr = basic_plus_adr(dest, dest_off);
  5517       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
  5518       store_to_memory(control(), dptr, sval, T_INT, adr_type, MemNode::unordered);
  5519       src_off += BytesPerInt;
  5520       dest_off += BytesPerInt;
  5521     } else {
  5522       return false;
  5525   assert(src_off % BytesPerLong == 0, "");
  5526   assert(dest_off % BytesPerLong == 0, "");
  5528   // Do this copy by giant steps.
  5529   Node* sptr  = basic_plus_adr(src,  src_off);
  5530   Node* dptr  = basic_plus_adr(dest, dest_off);
  5531   Node* countx = dest_size;
  5532   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
  5533   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
  5535   bool disjoint_bases = true;   // since alloc != NULL
  5536   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  5537                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
  5539   return true;
  5543 // Helper function; generates code for the slow case.
  5544 // We make a call to a runtime method which emulates the native method,
  5545 // but without the native wrapper overhead.
  5546 void
  5547 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  5548                                         Node* src,  Node* src_offset,
  5549                                         Node* dest, Node* dest_offset,
  5550                                         Node* copy_length, bool dest_uninitialized) {
  5551   assert(!dest_uninitialized, "Invariant");
  5552   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  5553                                  OptoRuntime::slow_arraycopy_Type(),
  5554                                  OptoRuntime::slow_arraycopy_Java(),
  5555                                  "slow_arraycopy", adr_type,
  5556                                  src, src_offset, dest, dest_offset,
  5557                                  copy_length);
  5559   // Handle exceptions thrown by this fellow:
  5560   make_slow_call_ex(call, env()->Throwable_klass(), false);
  5563 // Helper function; generates code for cases requiring runtime checks.
  5564 Node*
  5565 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  5566                                              Node* dest_elem_klass,
  5567                                              Node* src,  Node* src_offset,
  5568                                              Node* dest, Node* dest_offset,
  5569                                              Node* copy_length, bool dest_uninitialized) {
  5570   if (stopped())  return NULL;
  5572   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
  5573   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5574     return NULL;
  5577   // Pick out the parameters required to perform a store-check
  5578   // for the target array.  This is an optimistic check.  It will
  5579   // look in each non-null element's class, at the desired klass's
  5580   // super_check_offset, for the desired klass.
  5581   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  5582   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  5583   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered);
  5584   Node* check_offset = ConvI2X(_gvn.transform(n3));
  5585   Node* check_value  = dest_elem_klass;
  5587   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  5588   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  5590   // (We know the arrays are never conjoint, because their types differ.)
  5591   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5592                                  OptoRuntime::checkcast_arraycopy_Type(),
  5593                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
  5594                                  // five arguments, of which two are
  5595                                  // intptr_t (jlong in LP64)
  5596                                  src_start, dest_start,
  5597                                  copy_length XTOP,
  5598                                  check_offset XTOP,
  5599                                  check_value);
  5601   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5605 // Helper function; generates code for cases requiring runtime checks.
  5606 Node*
  5607 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  5608                                            Node* src,  Node* src_offset,
  5609                                            Node* dest, Node* dest_offset,
  5610                                            Node* copy_length, bool dest_uninitialized) {
  5611   assert(!dest_uninitialized, "Invariant");
  5612   if (stopped())  return NULL;
  5613   address copyfunc_addr = StubRoutines::generic_arraycopy();
  5614   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5615     return NULL;
  5618   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5619                     OptoRuntime::generic_arraycopy_Type(),
  5620                     copyfunc_addr, "generic_arraycopy", adr_type,
  5621                     src, src_offset, dest, dest_offset, copy_length);
  5623   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5626 // Helper function; generates the fast out-of-line call to an arraycopy stub.
  5627 void
  5628 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  5629                                              BasicType basic_elem_type,
  5630                                              bool disjoint_bases,
  5631                                              Node* src,  Node* src_offset,
  5632                                              Node* dest, Node* dest_offset,
  5633                                              Node* copy_length, bool dest_uninitialized) {
  5634   if (stopped())  return;               // nothing to do
  5636   Node* src_start  = src;
  5637   Node* dest_start = dest;
  5638   if (src_offset != NULL || dest_offset != NULL) {
  5639     assert(src_offset != NULL && dest_offset != NULL, "");
  5640     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  5641     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  5644   // Figure out which arraycopy runtime method to call.
  5645   const char* copyfunc_name = "arraycopy";
  5646   address     copyfunc_addr =
  5647       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  5648                           disjoint_bases, copyfunc_name, dest_uninitialized);
  5650   // Call it.  Note that the count_ix value is not scaled to a byte-size.
  5651   make_runtime_call(RC_LEAF|RC_NO_FP,
  5652                     OptoRuntime::fast_arraycopy_Type(),
  5653                     copyfunc_addr, copyfunc_name, adr_type,
  5654                     src_start, dest_start, copy_length XTOP);
  5657 //-------------inline_encodeISOArray-----------------------------------
  5658 // encode char[] to byte[] in ISO_8859_1
  5659 bool LibraryCallKit::inline_encodeISOArray() {
  5660   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
  5661   // no receiver since it is static method
  5662   Node *src         = argument(0);
  5663   Node *src_offset  = argument(1);
  5664   Node *dst         = argument(2);
  5665   Node *dst_offset  = argument(3);
  5666   Node *length      = argument(4);
  5668   const Type* src_type = src->Value(&_gvn);
  5669   const Type* dst_type = dst->Value(&_gvn);
  5670   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5671   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
  5672   if (top_src  == NULL || top_src->klass()  == NULL ||
  5673       top_dest == NULL || top_dest->klass() == NULL) {
  5674     // failed array check
  5675     return false;
  5678   // Figure out the size and type of the elements we will be copying.
  5679   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5680   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5681   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
  5682     return false;
  5684   Node* src_start = array_element_address(src, src_offset, src_elem);
  5685   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
  5686   // 'src_start' points to src array + scaled offset
  5687   // 'dst_start' points to dst array + scaled offset
  5689   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
  5690   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
  5691   enc = _gvn.transform(enc);
  5692   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
  5693   set_memory(res_mem, mtype);
  5694   set_result(enc);
  5695   return true;
  5698 /**
  5699  * Calculate CRC32 for byte.
  5700  * int java.util.zip.CRC32.update(int crc, int b)
  5701  */
  5702 bool LibraryCallKit::inline_updateCRC32() {
  5703   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  5704   assert(callee()->signature()->size() == 2, "update has 2 parameters");
  5705   // no receiver since it is static method
  5706   Node* crc  = argument(0); // type: int
  5707   Node* b    = argument(1); // type: int
  5709   /*
  5710    *    int c = ~ crc;
  5711    *    b = timesXtoThe32[(b ^ c) & 0xFF];
  5712    *    b = b ^ (c >>> 8);
  5713    *    crc = ~b;
  5714    */
  5716   Node* M1 = intcon(-1);
  5717   crc = _gvn.transform(new (C) XorINode(crc, M1));
  5718   Node* result = _gvn.transform(new (C) XorINode(crc, b));
  5719   result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
  5721   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
  5722   Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
  5723   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
  5724   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
  5726   crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
  5727   result = _gvn.transform(new (C) XorINode(crc, result));
  5728   result = _gvn.transform(new (C) XorINode(result, M1));
  5729   set_result(result);
  5730   return true;
  5733 /**
  5734  * Calculate CRC32 for byte[] array.
  5735  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
  5736  */
  5737 bool LibraryCallKit::inline_updateBytesCRC32() {
  5738   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  5739   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
  5740   // no receiver since it is static method
  5741   Node* crc     = argument(0); // type: int
  5742   Node* src     = argument(1); // type: oop
  5743   Node* offset  = argument(2); // type: int
  5744   Node* length  = argument(3); // type: int
  5746   const Type* src_type = src->Value(&_gvn);
  5747   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5748   if (top_src  == NULL || top_src->klass()  == NULL) {
  5749     // failed array check
  5750     return false;
  5753   // Figure out the size and type of the elements we will be copying.
  5754   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5755   if (src_elem != T_BYTE) {
  5756     return false;
  5759   // 'src_start' points to src array + scaled offset
  5760   Node* src_start = array_element_address(src, offset, src_elem);
  5762   // We assume that range check is done by caller.
  5763   // TODO: generate range check (offset+length < src.length) in debug VM.
  5765   // Call the stub.
  5766   address stubAddr = StubRoutines::updateBytesCRC32();
  5767   const char *stubName = "updateBytesCRC32";
  5769   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
  5770                                  stubAddr, stubName, TypePtr::BOTTOM,
  5771                                  crc, src_start, length);
  5772   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5773   set_result(result);
  5774   return true;
  5777 /**
  5778  * Calculate CRC32 for ByteBuffer.
  5779  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
  5780  */
  5781 bool LibraryCallKit::inline_updateByteBufferCRC32() {
  5782   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  5783   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
  5784   // no receiver since it is static method
  5785   Node* crc     = argument(0); // type: int
  5786   Node* src     = argument(1); // type: long
  5787   Node* offset  = argument(3); // type: int
  5788   Node* length  = argument(4); // type: int
  5790   src = ConvL2X(src);  // adjust Java long to machine word
  5791   Node* base = _gvn.transform(new (C) CastX2PNode(src));
  5792   offset = ConvI2X(offset);
  5794   // 'src_start' points to src array + scaled offset
  5795   Node* src_start = basic_plus_adr(top(), base, offset);
  5797   // Call the stub.
  5798   address stubAddr = StubRoutines::updateBytesCRC32();
  5799   const char *stubName = "updateBytesCRC32";
  5801   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
  5802                                  stubAddr, stubName, TypePtr::BOTTOM,
  5803                                  crc, src_start, length);
  5804   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5805   set_result(result);
  5806   return true;
  5809 //----------------------------inline_reference_get----------------------------
  5810 // public T java.lang.ref.Reference.get();
  5811 bool LibraryCallKit::inline_reference_get() {
  5812   const int referent_offset = java_lang_ref_Reference::referent_offset;
  5813   guarantee(referent_offset > 0, "should have already been set");
  5815   // Get the argument:
  5816   Node* reference_obj = null_check_receiver();
  5817   if (stopped()) return true;
  5819   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
  5821   ciInstanceKlass* klass = env()->Object_klass();
  5822   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
  5824   Node* no_ctrl = NULL;
  5825   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
  5827   // Use the pre-barrier to record the value in the referent field
  5828   pre_barrier(false /* do_load */,
  5829               control(),
  5830               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  5831               result /* pre_val */,
  5832               T_OBJECT);
  5834   // Add memory barrier to prevent commoning reads from this field
  5835   // across safepoint since GC can change its value.
  5836   insert_mem_bar(Op_MemBarCPUOrder);
  5838   set_result(result);
  5839   return true;
  5843 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
  5844                                               bool is_exact=true, bool is_static=false) {
  5846   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
  5847   assert(tinst != NULL, "obj is null");
  5848   assert(tinst->klass()->is_loaded(), "obj is not loaded");
  5849   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
  5851   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
  5852                                                                           ciSymbol::make(fieldTypeString),
  5853                                                                           is_static);
  5854   if (field == NULL) return (Node *) NULL;
  5855   assert (field != NULL, "undefined field");
  5857   // Next code  copied from Parse::do_get_xxx():
  5859   // Compute address and memory type.
  5860   int offset  = field->offset_in_bytes();
  5861   bool is_vol = field->is_volatile();
  5862   ciType* field_klass = field->type();
  5863   assert(field_klass->is_loaded(), "should be loaded");
  5864   const TypePtr* adr_type = C->alias_type(field)->adr_type();
  5865   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
  5866   BasicType bt = field->layout_type();
  5868   // Build the resultant type of the load
  5869   const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
  5871   // Build the load.
  5872   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, MemNode::unordered, is_vol);
  5873   return loadedField;
  5877 //------------------------------inline_aescrypt_Block-----------------------
  5878 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
  5879   address stubAddr;
  5880   const char *stubName;
  5881   assert(UseAES, "need AES instruction support");
  5883   switch(id) {
  5884   case vmIntrinsics::_aescrypt_encryptBlock:
  5885     stubAddr = StubRoutines::aescrypt_encryptBlock();
  5886     stubName = "aescrypt_encryptBlock";
  5887     break;
  5888   case vmIntrinsics::_aescrypt_decryptBlock:
  5889     stubAddr = StubRoutines::aescrypt_decryptBlock();
  5890     stubName = "aescrypt_decryptBlock";
  5891     break;
  5893   if (stubAddr == NULL) return false;
  5895   Node* aescrypt_object = argument(0);
  5896   Node* src             = argument(1);
  5897   Node* src_offset      = argument(2);
  5898   Node* dest            = argument(3);
  5899   Node* dest_offset     = argument(4);
  5901   // (1) src and dest are arrays.
  5902   const Type* src_type = src->Value(&_gvn);
  5903   const Type* dest_type = dest->Value(&_gvn);
  5904   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5905   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  5906   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  5908   // for the quick and dirty code we will skip all the checks.
  5909   // we are just trying to get the call to be generated.
  5910   Node* src_start  = src;
  5911   Node* dest_start = dest;
  5912   if (src_offset != NULL || dest_offset != NULL) {
  5913     assert(src_offset != NULL && dest_offset != NULL, "");
  5914     src_start  = array_element_address(src,  src_offset,  T_BYTE);
  5915     dest_start = array_element_address(dest, dest_offset, T_BYTE);
  5918   // now need to get the start of its expanded key array
  5919   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  5920   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  5921   if (k_start == NULL) return false;
  5923   if (Matcher::pass_original_key_for_aes()) {
  5924     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
  5925     // compatibility issues between Java key expansion and SPARC crypto instructions
  5926     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
  5927     if (original_k_start == NULL) return false;
  5929     // Call the stub.
  5930     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
  5931                       stubAddr, stubName, TypePtr::BOTTOM,
  5932                       src_start, dest_start, k_start, original_k_start);
  5933   } else {
  5934     // Call the stub.
  5935     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
  5936                       stubAddr, stubName, TypePtr::BOTTOM,
  5937                       src_start, dest_start, k_start);
  5940   return true;
  5943 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
  5944 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
  5945   address stubAddr;
  5946   const char *stubName;
  5948   assert(UseAES, "need AES instruction support");
  5950   switch(id) {
  5951   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
  5952     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
  5953     stubName = "cipherBlockChaining_encryptAESCrypt";
  5954     break;
  5955   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
  5956     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
  5957     stubName = "cipherBlockChaining_decryptAESCrypt";
  5958     break;
  5960   if (stubAddr == NULL) return false;
  5962   Node* cipherBlockChaining_object = argument(0);
  5963   Node* src                        = argument(1);
  5964   Node* src_offset                 = argument(2);
  5965   Node* len                        = argument(3);
  5966   Node* dest                       = argument(4);
  5967   Node* dest_offset                = argument(5);
  5969   // (1) src and dest are arrays.
  5970   const Type* src_type = src->Value(&_gvn);
  5971   const Type* dest_type = dest->Value(&_gvn);
  5972   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5973   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  5974   assert (top_src  != NULL && top_src->klass()  != NULL
  5975           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  5977   // checks are the responsibility of the caller
  5978   Node* src_start  = src;
  5979   Node* dest_start = dest;
  5980   if (src_offset != NULL || dest_offset != NULL) {
  5981     assert(src_offset != NULL && dest_offset != NULL, "");
  5982     src_start  = array_element_address(src,  src_offset,  T_BYTE);
  5983     dest_start = array_element_address(dest, dest_offset, T_BYTE);
  5986   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
  5987   // (because of the predicated logic executed earlier).
  5988   // so we cast it here safely.
  5989   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  5991   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  5992   if (embeddedCipherObj == NULL) return false;
  5994   // cast it to what we know it will be at runtime
  5995   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
  5996   assert(tinst != NULL, "CBC obj is null");
  5997   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
  5998   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  5999   if (!klass_AESCrypt->is_loaded()) return false;
  6001   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  6002   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
  6003   const TypeOopPtr* xtype = aklass->as_instance_type();
  6004   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
  6005   aescrypt_object = _gvn.transform(aescrypt_object);
  6007   // we need to get the start of the aescrypt_object's expanded key array
  6008   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  6009   if (k_start == NULL) return false;
  6011   // similarly, get the start address of the r vector
  6012   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
  6013   if (objRvec == NULL) return false;
  6014   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
  6016   Node* cbcCrypt;
  6017   if (Matcher::pass_original_key_for_aes()) {
  6018     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
  6019     // compatibility issues between Java key expansion and SPARC crypto instructions
  6020     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
  6021     if (original_k_start == NULL) return false;
  6023     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
  6024     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
  6025                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
  6026                                  stubAddr, stubName, TypePtr::BOTTOM,
  6027                                  src_start, dest_start, k_start, r_start, len, original_k_start);
  6028   } else {
  6029     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
  6030     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
  6031                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
  6032                                  stubAddr, stubName, TypePtr::BOTTOM,
  6033                                  src_start, dest_start, k_start, r_start, len);
  6036   // return cipher length (int)
  6037   Node* retvalue = _gvn.transform(new (C) ProjNode(cbcCrypt, TypeFunc::Parms));
  6038   set_result(retvalue);
  6039   return true;
  6042 //------------------------------get_key_start_from_aescrypt_object-----------------------
  6043 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
  6044   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
  6045   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
  6046   if (objAESCryptKey == NULL) return (Node *) NULL;
  6048   // now have the array, need to get the start address of the K array
  6049   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
  6050   return k_start;
  6053 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
  6054 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
  6055   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
  6056   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
  6057   if (objAESCryptKey == NULL) return (Node *) NULL;
  6059   // now have the array, need to get the start address of the lastKey array
  6060   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
  6061   return original_k_start;
  6064 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
  6065 // Return node representing slow path of predicate check.
  6066 // the pseudo code we want to emulate with this predicate is:
  6067 // for encryption:
  6068 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
  6069 // for decryption:
  6070 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
  6071 //    note cipher==plain is more conservative than the original java code but that's OK
  6072 //
  6073 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
  6074   // First, check receiver for NULL since it is virtual method.
  6075   Node* objCBC = argument(0);
  6076   objCBC = null_check(objCBC);
  6078   if (stopped()) return NULL; // Always NULL
  6080   // Load embeddedCipher field of CipherBlockChaining object.
  6081   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  6083   // get AESCrypt klass for instanceOf check
  6084   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
  6085   // will have same classloader as CipherBlockChaining object
  6086   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
  6087   assert(tinst != NULL, "CBCobj is null");
  6088   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
  6090   // we want to do an instanceof comparison against the AESCrypt class
  6091   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  6092   if (!klass_AESCrypt->is_loaded()) {
  6093     // if AESCrypt is not even loaded, we never take the intrinsic fast path
  6094     Node* ctrl = control();
  6095     set_control(top()); // no regular fast path
  6096     return ctrl;
  6098   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  6100   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
  6101   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
  6102   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
  6104   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
  6106   // for encryption, we are done
  6107   if (!decrypting)
  6108     return instof_false;  // even if it is NULL
  6110   // for decryption, we need to add a further check to avoid
  6111   // taking the intrinsic path when cipher and plain are the same
  6112   // see the original java code for why.
  6113   RegionNode* region = new(C) RegionNode(3);
  6114   region->init_req(1, instof_false);
  6115   Node* src = argument(1);
  6116   Node* dest = argument(4);
  6117   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
  6118   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
  6119   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
  6120   region->init_req(2, src_dest_conjoint);
  6122   record_for_igvn(region);
  6123   return _gvn.transform(region);

mercurial