src/share/vm/runtime/deoptimization.cpp

Wed, 24 Sep 2014 12:19:07 -0700

author
simonis
date
Wed, 24 Sep 2014 12:19:07 -0700
changeset 7553
f43fad8786fc
parent 7420
793204f5528a
child 7535
7ae4e26cb1e0
child 7598
ddce0b7cee93
permissions
-rw-r--r--

8058345: Refactor native stack printing from vmError.cpp to debug.cpp to make it available in gdb as well
Summary: Also fix stack trace on x86 to enable walking of runtime stubs and native wrappers
Reviewed-by: kvn

duke@435 1 /*
drchase@6680 2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "code/debugInfoRec.hpp"
stefank@2314 28 #include "code/nmethod.hpp"
stefank@2314 29 #include "code/pcDesc.hpp"
stefank@2314 30 #include "code/scopeDesc.hpp"
stefank@2314 31 #include "interpreter/bytecode.hpp"
stefank@2314 32 #include "interpreter/interpreter.hpp"
stefank@2314 33 #include "interpreter/oopMapCache.hpp"
stefank@2314 34 #include "memory/allocation.inline.hpp"
stefank@2314 35 #include "memory/oopFactory.hpp"
stefank@2314 36 #include "memory/resourceArea.hpp"
coleenp@4037 37 #include "oops/method.hpp"
stefank@2314 38 #include "oops/oop.inline.hpp"
stefank@2314 39 #include "prims/jvmtiThreadState.hpp"
stefank@2314 40 #include "runtime/biasedLocking.hpp"
stefank@2314 41 #include "runtime/compilationPolicy.hpp"
stefank@2314 42 #include "runtime/deoptimization.hpp"
stefank@2314 43 #include "runtime/interfaceSupport.hpp"
stefank@2314 44 #include "runtime/sharedRuntime.hpp"
stefank@2314 45 #include "runtime/signature.hpp"
stefank@2314 46 #include "runtime/stubRoutines.hpp"
stefank@2314 47 #include "runtime/thread.hpp"
stefank@2314 48 #include "runtime/vframe.hpp"
stefank@2314 49 #include "runtime/vframeArray.hpp"
stefank@2314 50 #include "runtime/vframe_hp.hpp"
stefank@2314 51 #include "utilities/events.hpp"
stefank@2314 52 #include "utilities/xmlstream.hpp"
stefank@2314 53 #ifdef TARGET_ARCH_x86
stefank@2314 54 # include "vmreg_x86.inline.hpp"
stefank@2314 55 #endif
stefank@2314 56 #ifdef TARGET_ARCH_sparc
stefank@2314 57 # include "vmreg_sparc.inline.hpp"
stefank@2314 58 #endif
stefank@2314 59 #ifdef TARGET_ARCH_zero
stefank@2314 60 # include "vmreg_zero.inline.hpp"
stefank@2314 61 #endif
bobv@2508 62 #ifdef TARGET_ARCH_arm
bobv@2508 63 # include "vmreg_arm.inline.hpp"
bobv@2508 64 #endif
bobv@2508 65 #ifdef TARGET_ARCH_ppc
bobv@2508 66 # include "vmreg_ppc.inline.hpp"
bobv@2508 67 #endif
stefank@2314 68 #ifdef COMPILER2
stefank@2314 69 #ifdef TARGET_ARCH_MODEL_x86_32
stefank@2314 70 # include "adfiles/ad_x86_32.hpp"
stefank@2314 71 #endif
stefank@2314 72 #ifdef TARGET_ARCH_MODEL_x86_64
stefank@2314 73 # include "adfiles/ad_x86_64.hpp"
stefank@2314 74 #endif
stefank@2314 75 #ifdef TARGET_ARCH_MODEL_sparc
stefank@2314 76 # include "adfiles/ad_sparc.hpp"
stefank@2314 77 #endif
stefank@2314 78 #ifdef TARGET_ARCH_MODEL_zero
stefank@2314 79 # include "adfiles/ad_zero.hpp"
stefank@2314 80 #endif
bobv@2508 81 #ifdef TARGET_ARCH_MODEL_arm
bobv@2508 82 # include "adfiles/ad_arm.hpp"
bobv@2508 83 #endif
goetz@6441 84 #ifdef TARGET_ARCH_MODEL_ppc_32
goetz@6441 85 # include "adfiles/ad_ppc_32.hpp"
bobv@2508 86 #endif
goetz@6441 87 #ifdef TARGET_ARCH_MODEL_ppc_64
goetz@6441 88 # include "adfiles/ad_ppc_64.hpp"
stefank@2314 89 #endif
goetz@6441 90 #endif // COMPILER2
duke@435 91
drchase@6680 92 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
drchase@6680 93
duke@435 94 bool DeoptimizationMarker::_is_active = false;
duke@435 95
duke@435 96 Deoptimization::UnrollBlock::UnrollBlock(int size_of_deoptimized_frame,
duke@435 97 int caller_adjustment,
never@2901 98 int caller_actual_parameters,
duke@435 99 int number_of_frames,
duke@435 100 intptr_t* frame_sizes,
duke@435 101 address* frame_pcs,
duke@435 102 BasicType return_type) {
duke@435 103 _size_of_deoptimized_frame = size_of_deoptimized_frame;
duke@435 104 _caller_adjustment = caller_adjustment;
never@2901 105 _caller_actual_parameters = caller_actual_parameters;
duke@435 106 _number_of_frames = number_of_frames;
duke@435 107 _frame_sizes = frame_sizes;
duke@435 108 _frame_pcs = frame_pcs;
zgu@3900 109 _register_block = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
duke@435 110 _return_type = return_type;
bdelsart@3130 111 _initial_info = 0;
duke@435 112 // PD (x86 only)
duke@435 113 _counter_temp = 0;
duke@435 114 _unpack_kind = 0;
duke@435 115 _sender_sp_temp = 0;
duke@435 116
duke@435 117 _total_frame_sizes = size_of_frames();
duke@435 118 }
duke@435 119
duke@435 120
duke@435 121 Deoptimization::UnrollBlock::~UnrollBlock() {
zgu@3900 122 FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes, mtCompiler);
zgu@3900 123 FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs, mtCompiler);
zgu@3900 124 FREE_C_HEAP_ARRAY(intptr_t, _register_block, mtCompiler);
duke@435 125 }
duke@435 126
duke@435 127
duke@435 128 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
duke@435 129 assert(register_number < RegisterMap::reg_count, "checking register number");
duke@435 130 return &_register_block[register_number * 2];
duke@435 131 }
duke@435 132
duke@435 133
duke@435 134
duke@435 135 int Deoptimization::UnrollBlock::size_of_frames() const {
duke@435 136 // Acount first for the adjustment of the initial frame
duke@435 137 int result = _caller_adjustment;
duke@435 138 for (int index = 0; index < number_of_frames(); index++) {
duke@435 139 result += frame_sizes()[index];
duke@435 140 }
duke@435 141 return result;
duke@435 142 }
duke@435 143
duke@435 144
duke@435 145 void Deoptimization::UnrollBlock::print() {
duke@435 146 ttyLocker ttyl;
duke@435 147 tty->print_cr("UnrollBlock");
duke@435 148 tty->print_cr(" size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
duke@435 149 tty->print( " frame_sizes: ");
duke@435 150 for (int index = 0; index < number_of_frames(); index++) {
duke@435 151 tty->print("%d ", frame_sizes()[index]);
duke@435 152 }
duke@435 153 tty->cr();
duke@435 154 }
duke@435 155
duke@435 156
duke@435 157 // In order to make fetch_unroll_info work properly with escape
duke@435 158 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
duke@435 159 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
duke@435 160 // of previously eliminated objects occurs in realloc_objects, which is
duke@435 161 // called from the method fetch_unroll_info_helper below.
duke@435 162 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
duke@435 163 // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
duke@435 164 // but makes the entry a little slower. There is however a little dance we have to
duke@435 165 // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
duke@435 166
duke@435 167 // fetch_unroll_info() is called at the beginning of the deoptimization
duke@435 168 // handler. Note this fact before we start generating temporary frames
duke@435 169 // that can confuse an asynchronous stack walker. This counter is
duke@435 170 // decremented at the end of unpack_frames().
duke@435 171 thread->inc_in_deopt_handler();
duke@435 172
duke@435 173 return fetch_unroll_info_helper(thread);
duke@435 174 JRT_END
duke@435 175
duke@435 176
duke@435 177 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
duke@435 178 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
duke@435 179
duke@435 180 // Note: there is a safepoint safety issue here. No matter whether we enter
duke@435 181 // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
duke@435 182 // the vframeArray is created.
duke@435 183 //
duke@435 184
duke@435 185 // Allocate our special deoptimization ResourceMark
duke@435 186 DeoptResourceMark* dmark = new DeoptResourceMark(thread);
duke@435 187 assert(thread->deopt_mark() == NULL, "Pending deopt!");
duke@435 188 thread->set_deopt_mark(dmark);
duke@435 189
duke@435 190 frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
duke@435 191 RegisterMap map(thread, true);
duke@435 192 RegisterMap dummy_map(thread, false);
duke@435 193 // Now get the deoptee with a valid map
duke@435 194 frame deoptee = stub_frame.sender(&map);
iveresov@2169 195 // Set the deoptee nmethod
iveresov@2169 196 assert(thread->deopt_nmethod() == NULL, "Pending deopt!");
iveresov@2169 197 thread->set_deopt_nmethod(deoptee.cb()->as_nmethod_or_null());
duke@435 198
never@2868 199 if (VerifyStack) {
never@2868 200 thread->validate_frame_layout();
never@2868 201 }
never@2868 202
duke@435 203 // Create a growable array of VFrames where each VFrame represents an inlined
duke@435 204 // Java frame. This storage is allocated with the usual system arena.
duke@435 205 assert(deoptee.is_compiled_frame(), "Wrong frame type");
duke@435 206 GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
duke@435 207 vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
duke@435 208 while (!vf->is_top()) {
duke@435 209 assert(vf->is_compiled_frame(), "Wrong frame type");
duke@435 210 chunk->push(compiledVFrame::cast(vf));
duke@435 211 vf = vf->sender();
duke@435 212 }
duke@435 213 assert(vf->is_compiled_frame(), "Wrong frame type");
duke@435 214 chunk->push(compiledVFrame::cast(vf));
duke@435 215
roland@7419 216 bool realloc_failures = false;
roland@7419 217
duke@435 218 #ifdef COMPILER2
duke@435 219 // Reallocate the non-escaping objects and restore their fields. Then
duke@435 220 // relock objects if synchronization on them was eliminated.
kvn@3406 221 if (DoEscapeAnalysis || EliminateNestedLocks) {
kvn@479 222 if (EliminateAllocations) {
kvn@518 223 assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
kvn@479 224 GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
kvn@1688 225
kvn@1688 226 // The flag return_oop() indicates call sites which return oop
kvn@1688 227 // in compiled code. Such sites include java method calls,
kvn@1688 228 // runtime calls (for example, used to allocate new objects/arrays
kvn@1688 229 // on slow code path) and any other calls generated in compiled code.
kvn@1688 230 // It is not guaranteed that we can get such information here only
kvn@1688 231 // by analyzing bytecode in deoptimized frames. This is why this flag
kvn@1688 232 // is set during method compilation (see Compile::Process_OopMap_Node()).
roland@7168 233 // If the previous frame was popped, we don't have a result.
roland@7168 234 bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution();
kvn@1688 235 Handle return_value;
kvn@1688 236 if (save_oop_result) {
kvn@1688 237 // Reallocation may trigger GC. If deoptimization happened on return from
kvn@1688 238 // call which returns oop we need to save it since it is not in oopmap.
kvn@1688 239 oop result = deoptee.saved_oop_result(&map);
kvn@1688 240 assert(result == NULL || result->is_oop(), "must be oop");
kvn@1688 241 return_value = Handle(thread, result);
kvn@1688 242 assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
kvn@1688 243 if (TraceDeoptimization) {
vlivanov@4154 244 ttyLocker ttyl;
hseigel@5784 245 tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, (void *)result, thread);
kvn@1688 246 }
kvn@1688 247 }
kvn@479 248 if (objects != NULL) {
kvn@479 249 JRT_BLOCK
roland@7419 250 realloc_failures = realloc_objects(thread, &deoptee, objects, THREAD);
kvn@479 251 JRT_END
roland@7419 252 reassign_fields(&deoptee, &map, objects, realloc_failures);
roland@7420 253 #ifndef PRODUCT
roland@7420 254 if (TraceDeoptimization) {
roland@7420 255 ttyLocker ttyl;
roland@7420 256 tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
roland@7420 257 print_objects(objects, realloc_failures);
roland@7420 258 }
roland@7420 259 #endif
duke@435 260 }
kvn@1688 261 if (save_oop_result) {
kvn@1688 262 // Restore result.
kvn@1688 263 deoptee.set_saved_oop_result(&map, return_value());
kvn@479 264 }
kvn@479 265 }
kvn@479 266 if (EliminateLocks) {
kvn@518 267 #ifndef PRODUCT
kvn@518 268 bool first = true;
kvn@518 269 #endif
kvn@479 270 for (int i = 0; i < chunk->length(); i++) {
kvn@518 271 compiledVFrame* cvf = chunk->at(i);
kvn@518 272 assert (cvf->scope() != NULL,"expect only compiled java frames");
kvn@518 273 GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
kvn@518 274 if (monitors->is_nonempty()) {
roland@7419 275 relock_objects(monitors, thread, realloc_failures);
kvn@479 276 #ifndef PRODUCT
kvn@479 277 if (TraceDeoptimization) {
kvn@479 278 ttyLocker ttyl;
kvn@479 279 for (int j = 0; j < monitors->length(); j++) {
kvn@518 280 MonitorInfo* mi = monitors->at(j);
kvn@518 281 if (mi->eliminated()) {
kvn@518 282 if (first) {
kvn@518 283 first = false;
kvn@518 284 tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
kvn@518 285 }
roland@7419 286 if (mi->owner_is_scalar_replaced()) {
roland@7419 287 Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
roland@7419 288 tty->print_cr(" failed reallocation for klass %s", k->external_name());
roland@7419 289 } else {
roland@7419 290 tty->print_cr(" object <" INTPTR_FORMAT "> locked", (void *)mi->owner());
roland@7419 291 }
kvn@479 292 }
duke@435 293 }
duke@435 294 }
kvn@479 295 #endif
duke@435 296 }
duke@435 297 }
duke@435 298 }
duke@435 299 }
duke@435 300 #endif // COMPILER2
duke@435 301 // Ensure that no safepoint is taken after pointers have been stored
duke@435 302 // in fields of rematerialized objects. If a safepoint occurs from here on
duke@435 303 // out the java state residing in the vframeArray will be missed.
duke@435 304 No_Safepoint_Verifier no_safepoint;
duke@435 305
roland@7419 306 vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk, realloc_failures);
roland@7419 307 #ifdef COMPILER2
roland@7419 308 if (realloc_failures) {
roland@7419 309 pop_frames_failed_reallocs(thread, array);
roland@7419 310 }
roland@7419 311 #endif
duke@435 312
roland@7419 313 assert(thread->vframe_array_head() == NULL, "Pending deopt!");
duke@435 314 thread->set_vframe_array_head(array);
duke@435 315
duke@435 316 // Now that the vframeArray has been created if we have any deferred local writes
duke@435 317 // added by jvmti then we can free up that structure as the data is now in the
duke@435 318 // vframeArray
duke@435 319
duke@435 320 if (thread->deferred_locals() != NULL) {
duke@435 321 GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
duke@435 322 int i = 0;
duke@435 323 do {
duke@435 324 // Because of inlining we could have multiple vframes for a single frame
duke@435 325 // and several of the vframes could have deferred writes. Find them all.
duke@435 326 if (list->at(i)->id() == array->original().id()) {
duke@435 327 jvmtiDeferredLocalVariableSet* dlv = list->at(i);
duke@435 328 list->remove_at(i);
duke@435 329 // individual jvmtiDeferredLocalVariableSet are CHeapObj's
duke@435 330 delete dlv;
duke@435 331 } else {
duke@435 332 i++;
duke@435 333 }
duke@435 334 } while ( i < list->length() );
duke@435 335 if (list->length() == 0) {
duke@435 336 thread->set_deferred_locals(NULL);
duke@435 337 // free the list and elements back to C heap.
duke@435 338 delete list;
duke@435 339 }
duke@435 340
duke@435 341 }
duke@435 342
twisti@2047 343 #ifndef SHARK
duke@435 344 // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
duke@435 345 CodeBlob* cb = stub_frame.cb();
duke@435 346 // Verify we have the right vframeArray
duke@435 347 assert(cb->frame_size() >= 0, "Unexpected frame size");
duke@435 348 intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
duke@435 349
twisti@1639 350 // If the deopt call site is a MethodHandle invoke call site we have
twisti@1639 351 // to adjust the unpack_sp.
twisti@1639 352 nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
twisti@1639 353 if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
twisti@1639 354 unpack_sp = deoptee.unextended_sp();
twisti@1639 355
duke@435 356 #ifdef ASSERT
duke@435 357 assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
duke@435 358 #endif
twisti@2047 359 #else
twisti@2047 360 intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
twisti@2047 361 #endif // !SHARK
twisti@2047 362
duke@435 363 // This is a guarantee instead of an assert because if vframe doesn't match
duke@435 364 // we will unpack the wrong deoptimized frame and wind up in strange places
duke@435 365 // where it will be very difficult to figure out what went wrong. Better
duke@435 366 // to die an early death here than some very obscure death later when the
duke@435 367 // trail is cold.
duke@435 368 // Note: on ia64 this guarantee can be fooled by frames with no memory stack
duke@435 369 // in that it will fail to detect a problem when there is one. This needs
duke@435 370 // more work in tiger timeframe.
duke@435 371 guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
duke@435 372
duke@435 373 int number_of_frames = array->frames();
duke@435 374
duke@435 375 // Compute the vframes' sizes. Note that frame_sizes[] entries are ordered from outermost to innermost
duke@435 376 // virtual activation, which is the reverse of the elements in the vframes array.
zgu@3900 377 intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
duke@435 378 // +1 because we always have an interpreter return address for the final slot.
zgu@3900 379 address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
duke@435 380 int popframe_extra_args = 0;
duke@435 381 // Create an interpreter return address for the stub to use as its return
duke@435 382 // address so the skeletal frames are perfectly walkable
duke@435 383 frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
duke@435 384
duke@435 385 // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
duke@435 386 // activation be put back on the expression stack of the caller for reexecution
duke@435 387 if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
duke@435 388 popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
duke@435 389 }
duke@435 390
never@2901 391 // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
never@2901 392 // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
never@2901 393 // than simply use array->sender.pc(). This requires us to walk the current set of frames
never@2901 394 //
never@2901 395 frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
never@2901 396 deopt_sender = deopt_sender.sender(&dummy_map); // Now deoptee caller
never@2901 397
never@2901 398 // It's possible that the number of paramters at the call site is
never@2901 399 // different than number of arguments in the callee when method
never@2901 400 // handles are used. If the caller is interpreted get the real
never@2901 401 // value so that the proper amount of space can be added to it's
never@2901 402 // frame.
twisti@3238 403 bool caller_was_method_handle = false;
never@2901 404 if (deopt_sender.is_interpreted_frame()) {
never@2901 405 methodHandle method = deopt_sender.interpreter_frame_method();
twisti@3251 406 Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
twisti@3969 407 if (cur.is_invokedynamic() || cur.is_invokehandle()) {
twisti@3238 408 // Method handle invokes may involve fairly arbitrary chains of
twisti@3238 409 // calls so it's impossible to know how much actual space the
twisti@3238 410 // caller has for locals.
twisti@3238 411 caller_was_method_handle = true;
twisti@3238 412 }
never@2901 413 }
never@2901 414
duke@435 415 //
duke@435 416 // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
duke@435 417 // frame_sizes/frame_pcs[1] next oldest frame (int)
duke@435 418 // frame_sizes/frame_pcs[n] youngest frame (int)
duke@435 419 //
duke@435 420 // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
duke@435 421 // owns the space for the return address to it's caller). Confusing ain't it.
duke@435 422 //
duke@435 423 // The vframe array can address vframes with indices running from
duke@435 424 // 0.._frames-1. Index 0 is the youngest frame and _frame - 1 is the oldest (root) frame.
duke@435 425 // When we create the skeletal frames we need the oldest frame to be in the zero slot
duke@435 426 // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
duke@435 427 // so things look a little strange in this loop.
duke@435 428 //
twisti@3238 429 int callee_parameters = 0;
twisti@3238 430 int callee_locals = 0;
duke@435 431 for (int index = 0; index < array->frames(); index++ ) {
duke@435 432 // frame[number_of_frames - 1 ] = on_stack_size(youngest)
duke@435 433 // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
duke@435 434 // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
roland@6723 435 frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
duke@435 436 callee_locals,
duke@435 437 index == 0,
duke@435 438 popframe_extra_args);
duke@435 439 // This pc doesn't have to be perfect just good enough to identify the frame
duke@435 440 // as interpreted so the skeleton frame will be walkable
duke@435 441 // The correct pc will be set when the skeleton frame is completely filled out
duke@435 442 // The final pc we store in the loop is wrong and will be overwritten below
duke@435 443 frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
duke@435 444
duke@435 445 callee_parameters = array->element(index)->method()->size_of_parameters();
duke@435 446 callee_locals = array->element(index)->method()->max_locals();
duke@435 447 popframe_extra_args = 0;
duke@435 448 }
duke@435 449
duke@435 450 // Compute whether the root vframe returns a float or double value.
duke@435 451 BasicType return_type;
duke@435 452 {
duke@435 453 HandleMark hm;
duke@435 454 methodHandle method(thread, array->element(0)->method());
never@2462 455 Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
coleenp@2497 456 return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
duke@435 457 }
duke@435 458
duke@435 459 // Compute information for handling adapters and adjusting the frame size of the caller.
duke@435 460 int caller_adjustment = 0;
duke@435 461
duke@435 462 // Compute the amount the oldest interpreter frame will have to adjust
duke@435 463 // its caller's stack by. If the caller is a compiled frame then
duke@435 464 // we pretend that the callee has no parameters so that the
duke@435 465 // extension counts for the full amount of locals and not just
duke@435 466 // locals-parms. This is because without a c2i adapter the parm
duke@435 467 // area as created by the compiled frame will not be usable by
duke@435 468 // the interpreter. (Depending on the calling convention there
duke@435 469 // may not even be enough space).
duke@435 470
duke@435 471 // QQQ I'd rather see this pushed down into last_frame_adjust
duke@435 472 // and have it take the sender (aka caller).
duke@435 473
twisti@3238 474 if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
duke@435 475 caller_adjustment = last_frame_adjust(0, callee_locals);
twisti@3238 476 } else if (callee_locals > callee_parameters) {
duke@435 477 // The caller frame may need extending to accommodate
duke@435 478 // non-parameter locals of the first unpacked interpreted frame.
duke@435 479 // Compute that adjustment.
twisti@3238 480 caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
duke@435 481 }
duke@435 482
duke@435 483 // If the sender is deoptimized the we must retrieve the address of the handler
duke@435 484 // since the frame will "magically" show the original pc before the deopt
duke@435 485 // and we'd undo the deopt.
duke@435 486
duke@435 487 frame_pcs[0] = deopt_sender.raw_pc();
duke@435 488
twisti@2047 489 #ifndef SHARK
duke@435 490 assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
twisti@2047 491 #endif // SHARK
duke@435 492
duke@435 493 UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
duke@435 494 caller_adjustment * BytesPerWord,
twisti@3238 495 caller_was_method_handle ? 0 : callee_parameters,
duke@435 496 number_of_frames,
duke@435 497 frame_sizes,
duke@435 498 frame_pcs,
duke@435 499 return_type);
bdelsart@3130 500 // On some platforms, we need a way to pass some platform dependent
bdelsart@3130 501 // information to the unpacking code so the skeletal frames come out
bdelsart@3130 502 // correct (initial fp value, unextended sp, ...)
bdelsart@3130 503 info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
duke@435 504
duke@435 505 if (array->frames() > 1) {
duke@435 506 if (VerifyStack && TraceDeoptimization) {
vlivanov@4154 507 ttyLocker ttyl;
duke@435 508 tty->print_cr("Deoptimizing method containing inlining");
duke@435 509 }
duke@435 510 }
duke@435 511
duke@435 512 array->set_unroll_block(info);
duke@435 513 return info;
duke@435 514 }
duke@435 515
duke@435 516 // Called to cleanup deoptimization data structures in normal case
duke@435 517 // after unpacking to stack and when stack overflow error occurs
duke@435 518 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
duke@435 519 vframeArray *array) {
duke@435 520
duke@435 521 // Get array if coming from exception
duke@435 522 if (array == NULL) {
duke@435 523 array = thread->vframe_array_head();
duke@435 524 }
duke@435 525 thread->set_vframe_array_head(NULL);
duke@435 526
duke@435 527 // Free the previous UnrollBlock
duke@435 528 vframeArray* old_array = thread->vframe_array_last();
duke@435 529 thread->set_vframe_array_last(array);
duke@435 530
duke@435 531 if (old_array != NULL) {
duke@435 532 UnrollBlock* old_info = old_array->unroll_block();
duke@435 533 old_array->set_unroll_block(NULL);
duke@435 534 delete old_info;
duke@435 535 delete old_array;
duke@435 536 }
duke@435 537
duke@435 538 // Deallocate any resource creating in this routine and any ResourceObjs allocated
duke@435 539 // inside the vframeArray (StackValueCollections)
duke@435 540
duke@435 541 delete thread->deopt_mark();
duke@435 542 thread->set_deopt_mark(NULL);
iveresov@2169 543 thread->set_deopt_nmethod(NULL);
duke@435 544
duke@435 545
duke@435 546 if (JvmtiExport::can_pop_frame()) {
duke@435 547 #ifndef CC_INTERP
duke@435 548 // Regardless of whether we entered this routine with the pending
duke@435 549 // popframe condition bit set, we should always clear it now
duke@435 550 thread->clear_popframe_condition();
duke@435 551 #else
duke@435 552 // C++ interpeter will clear has_pending_popframe when it enters
duke@435 553 // with method_resume. For deopt_resume2 we clear it now.
duke@435 554 if (thread->popframe_forcing_deopt_reexecution())
duke@435 555 thread->clear_popframe_condition();
duke@435 556 #endif /* CC_INTERP */
duke@435 557 }
duke@435 558
duke@435 559 // unpack_frames() is called at the end of the deoptimization handler
duke@435 560 // and (in C2) at the end of the uncommon trap handler. Note this fact
duke@435 561 // so that an asynchronous stack walker can work again. This counter is
duke@435 562 // incremented at the beginning of fetch_unroll_info() and (in C2) at
duke@435 563 // the beginning of uncommon_trap().
duke@435 564 thread->dec_in_deopt_handler();
duke@435 565 }
duke@435 566
duke@435 567
duke@435 568 // Return BasicType of value being returned
duke@435 569 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
duke@435 570
duke@435 571 // We are already active int he special DeoptResourceMark any ResourceObj's we
duke@435 572 // allocate will be freed at the end of the routine.
duke@435 573
duke@435 574 // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
duke@435 575 // but makes the entry a little slower. There is however a little dance we have to
duke@435 576 // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
duke@435 577 ResetNoHandleMark rnhm; // No-op in release/product versions
duke@435 578 HandleMark hm;
duke@435 579
duke@435 580 frame stub_frame = thread->last_frame();
duke@435 581
duke@435 582 // Since the frame to unpack is the top frame of this thread, the vframe_array_head
duke@435 583 // must point to the vframeArray for the unpack frame.
duke@435 584 vframeArray* array = thread->vframe_array_head();
duke@435 585
duke@435 586 #ifndef PRODUCT
duke@435 587 if (TraceDeoptimization) {
vlivanov@4154 588 ttyLocker ttyl;
duke@435 589 tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
duke@435 590 }
duke@435 591 #endif
never@3499 592 Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
never@3499 593 stub_frame.pc(), stub_frame.sp(), exec_mode);
duke@435 594
duke@435 595 UnrollBlock* info = array->unroll_block();
duke@435 596
duke@435 597 // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
never@2901 598 array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
duke@435 599
duke@435 600 BasicType bt = info->return_type();
duke@435 601
duke@435 602 // If we have an exception pending, claim that the return type is an oop
duke@435 603 // so the deopt_blob does not overwrite the exception_oop.
duke@435 604
duke@435 605 if (exec_mode == Unpack_exception)
duke@435 606 bt = T_OBJECT;
duke@435 607
duke@435 608 // Cleanup thread deopt data
duke@435 609 cleanup_deopt_info(thread, array);
duke@435 610
duke@435 611 #ifndef PRODUCT
duke@435 612 if (VerifyStack) {
duke@435 613 ResourceMark res_mark;
duke@435 614
never@2868 615 thread->validate_frame_layout();
never@2868 616
duke@435 617 // Verify that the just-unpacked frames match the interpreter's
duke@435 618 // notions of expression stack and locals
duke@435 619 vframeArray* cur_array = thread->vframe_array_last();
duke@435 620 RegisterMap rm(thread, false);
duke@435 621 rm.set_include_argument_oops(false);
duke@435 622 bool is_top_frame = true;
duke@435 623 int callee_size_of_parameters = 0;
duke@435 624 int callee_max_locals = 0;
duke@435 625 for (int i = 0; i < cur_array->frames(); i++) {
duke@435 626 vframeArrayElement* el = cur_array->element(i);
duke@435 627 frame* iframe = el->iframe();
duke@435 628 guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
duke@435 629
duke@435 630 // Get the oop map for this bci
duke@435 631 InterpreterOopMap mask;
duke@435 632 int cur_invoke_parameter_size = 0;
duke@435 633 bool try_next_mask = false;
duke@435 634 int next_mask_expression_stack_size = -1;
duke@435 635 int top_frame_expression_stack_adjustment = 0;
duke@435 636 methodHandle mh(thread, iframe->interpreter_frame_method());
duke@435 637 OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
duke@435 638 BytecodeStream str(mh);
duke@435 639 str.set_start(iframe->interpreter_frame_bci());
duke@435 640 int max_bci = mh->code_size();
duke@435 641 // Get to the next bytecode if possible
duke@435 642 assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
duke@435 643 // Check to see if we can grab the number of outgoing arguments
duke@435 644 // at an uncommon trap for an invoke (where the compiler
duke@435 645 // generates debug info before the invoke has executed)
duke@435 646 Bytecodes::Code cur_code = str.next();
roland@5222 647 if (cur_code == Bytecodes::_invokevirtual ||
roland@5222 648 cur_code == Bytecodes::_invokespecial ||
roland@5222 649 cur_code == Bytecodes::_invokestatic ||
roland@5222 650 cur_code == Bytecodes::_invokeinterface ||
roland@5222 651 cur_code == Bytecodes::_invokedynamic) {
never@2462 652 Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
coleenp@2497 653 Symbol* signature = invoke.signature();
duke@435 654 ArgumentSizeComputer asc(signature);
duke@435 655 cur_invoke_parameter_size = asc.size();
roland@5222 656 if (invoke.has_receiver()) {
duke@435 657 // Add in receiver
duke@435 658 ++cur_invoke_parameter_size;
duke@435 659 }
roland@5222 660 if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
roland@5222 661 callee_size_of_parameters++;
roland@5222 662 }
duke@435 663 }
duke@435 664 if (str.bci() < max_bci) {
duke@435 665 Bytecodes::Code bc = str.next();
duke@435 666 if (bc >= 0) {
duke@435 667 // The interpreter oop map generator reports results before
duke@435 668 // the current bytecode has executed except in the case of
duke@435 669 // calls. It seems to be hard to tell whether the compiler
duke@435 670 // has emitted debug information matching the "state before"
duke@435 671 // a given bytecode or the state after, so we try both
duke@435 672 switch (cur_code) {
duke@435 673 case Bytecodes::_invokevirtual:
duke@435 674 case Bytecodes::_invokespecial:
duke@435 675 case Bytecodes::_invokestatic:
duke@435 676 case Bytecodes::_invokeinterface:
roland@5222 677 case Bytecodes::_invokedynamic:
duke@435 678 case Bytecodes::_athrow:
duke@435 679 break;
duke@435 680 default: {
duke@435 681 InterpreterOopMap next_mask;
duke@435 682 OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
duke@435 683 next_mask_expression_stack_size = next_mask.expression_stack_size();
duke@435 684 // Need to subtract off the size of the result type of
duke@435 685 // the bytecode because this is not described in the
duke@435 686 // debug info but returned to the interpreter in the TOS
duke@435 687 // caching register
duke@435 688 BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
duke@435 689 if (bytecode_result_type != T_ILLEGAL) {
duke@435 690 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
duke@435 691 }
duke@435 692 assert(top_frame_expression_stack_adjustment >= 0, "");
duke@435 693 try_next_mask = true;
duke@435 694 break;
duke@435 695 }
duke@435 696 }
duke@435 697 }
duke@435 698 }
duke@435 699
duke@435 700 // Verify stack depth and oops in frame
duke@435 701 // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
duke@435 702 if (!(
duke@435 703 /* SPARC */
duke@435 704 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
duke@435 705 /* x86 */
duke@435 706 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
duke@435 707 (try_next_mask &&
duke@435 708 (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
duke@435 709 top_frame_expression_stack_adjustment))) ||
duke@435 710 (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
kvn@6957 711 (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
duke@435 712 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
duke@435 713 )) {
duke@435 714 ttyLocker ttyl;
duke@435 715
duke@435 716 // Print out some information that will help us debug the problem
duke@435 717 tty->print_cr("Wrong number of expression stack elements during deoptimization");
duke@435 718 tty->print_cr(" Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
duke@435 719 tty->print_cr(" Fabricated interpreter frame had %d expression stack elements",
duke@435 720 iframe->interpreter_frame_expression_stack_size());
duke@435 721 tty->print_cr(" Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
duke@435 722 tty->print_cr(" try_next_mask = %d", try_next_mask);
duke@435 723 tty->print_cr(" next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
duke@435 724 tty->print_cr(" callee_size_of_parameters = %d", callee_size_of_parameters);
duke@435 725 tty->print_cr(" callee_max_locals = %d", callee_max_locals);
duke@435 726 tty->print_cr(" top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
duke@435 727 tty->print_cr(" exec_mode = %d", exec_mode);
duke@435 728 tty->print_cr(" cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
duke@435 729 tty->print_cr(" Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
duke@435 730 tty->print_cr(" Interpreted frames:");
duke@435 731 for (int k = 0; k < cur_array->frames(); k++) {
duke@435 732 vframeArrayElement* el = cur_array->element(k);
duke@435 733 tty->print_cr(" %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
duke@435 734 }
duke@435 735 cur_array->print_on_2(tty);
duke@435 736 guarantee(false, "wrong number of expression stack elements during deopt");
duke@435 737 }
duke@435 738 VerifyOopClosure verify;
stefank@4298 739 iframe->oops_interpreted_do(&verify, NULL, &rm, false);
duke@435 740 callee_size_of_parameters = mh->size_of_parameters();
duke@435 741 callee_max_locals = mh->max_locals();
duke@435 742 is_top_frame = false;
duke@435 743 }
duke@435 744 }
duke@435 745 #endif /* !PRODUCT */
duke@435 746
duke@435 747
duke@435 748 return bt;
duke@435 749 JRT_END
duke@435 750
duke@435 751
duke@435 752 int Deoptimization::deoptimize_dependents() {
duke@435 753 Threads::deoptimized_wrt_marked_nmethods();
duke@435 754 return 0;
duke@435 755 }
duke@435 756
duke@435 757
duke@435 758 #ifdef COMPILER2
duke@435 759 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
duke@435 760 Handle pending_exception(thread->pending_exception());
duke@435 761 const char* exception_file = thread->exception_file();
duke@435 762 int exception_line = thread->exception_line();
duke@435 763 thread->clear_pending_exception();
duke@435 764
roland@7419 765 bool failures = false;
roland@7419 766
duke@435 767 for (int i = 0; i < objects->length(); i++) {
duke@435 768 assert(objects->at(i)->is_object(), "invalid debug information");
duke@435 769 ObjectValue* sv = (ObjectValue*) objects->at(i);
duke@435 770
coleenp@4037 771 KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
duke@435 772 oop obj = NULL;
duke@435 773
duke@435 774 if (k->oop_is_instance()) {
coleenp@4037 775 InstanceKlass* ik = InstanceKlass::cast(k());
roland@7419 776 obj = ik->allocate_instance(THREAD);
duke@435 777 } else if (k->oop_is_typeArray()) {
coleenp@4142 778 TypeArrayKlass* ak = TypeArrayKlass::cast(k());
duke@435 779 assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
duke@435 780 int len = sv->field_size() / type2size[ak->element_type()];
roland@7419 781 obj = ak->allocate(len, THREAD);
duke@435 782 } else if (k->oop_is_objArray()) {
coleenp@4142 783 ObjArrayKlass* ak = ObjArrayKlass::cast(k());
roland@7419 784 obj = ak->allocate(sv->field_size(), THREAD);
duke@435 785 }
duke@435 786
roland@7419 787 if (obj == NULL) {
roland@7419 788 failures = true;
roland@7419 789 }
roland@7419 790
duke@435 791 assert(sv->value().is_null(), "redundant reallocation");
roland@7419 792 assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception");
roland@7419 793 CLEAR_PENDING_EXCEPTION;
duke@435 794 sv->set_value(obj);
duke@435 795 }
duke@435 796
roland@7419 797 if (failures) {
roland@7419 798 THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
roland@7419 799 } else if (pending_exception.not_null()) {
duke@435 800 thread->set_pending_exception(pending_exception(), exception_file, exception_line);
duke@435 801 }
duke@435 802
roland@7419 803 return failures;
duke@435 804 }
duke@435 805
duke@435 806 // This assumes that the fields are stored in ObjectValue in the same order
duke@435 807 // they are yielded by do_nonstatic_fields.
duke@435 808 class FieldReassigner: public FieldClosure {
duke@435 809 frame* _fr;
duke@435 810 RegisterMap* _reg_map;
duke@435 811 ObjectValue* _sv;
coleenp@4037 812 InstanceKlass* _ik;
duke@435 813 oop _obj;
duke@435 814
duke@435 815 int _i;
duke@435 816 public:
duke@435 817 FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
duke@435 818 _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
duke@435 819
duke@435 820 int i() const { return _i; }
duke@435 821
duke@435 822
duke@435 823 void do_field(fieldDescriptor* fd) {
kvn@479 824 intptr_t val;
duke@435 825 StackValue* value =
duke@435 826 StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
duke@435 827 int offset = fd->offset();
duke@435 828 switch (fd->field_type()) {
duke@435 829 case T_OBJECT: case T_ARRAY:
duke@435 830 assert(value->type() == T_OBJECT, "Agreement.");
duke@435 831 _obj->obj_field_put(offset, value->get_obj()());
duke@435 832 break;
duke@435 833
duke@435 834 case T_LONG: case T_DOUBLE: {
duke@435 835 assert(value->type() == T_INT, "Agreement.");
duke@435 836 StackValue* low =
duke@435 837 StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
kvn@479 838 #ifdef _LP64
kvn@479 839 jlong res = (jlong)low->get_int();
kvn@479 840 #else
kvn@479 841 #ifdef SPARC
kvn@479 842 // For SPARC we have to swap high and low words.
kvn@479 843 jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
kvn@479 844 #else
duke@435 845 jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
kvn@479 846 #endif //SPARC
kvn@479 847 #endif
duke@435 848 _obj->long_field_put(offset, res);
duke@435 849 break;
duke@435 850 }
kvn@479 851 // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
duke@435 852 case T_INT: case T_FLOAT: // 4 bytes.
duke@435 853 assert(value->type() == T_INT, "Agreement.");
kvn@479 854 val = value->get_int();
kvn@479 855 _obj->int_field_put(offset, (jint)*((jint*)&val));
duke@435 856 break;
duke@435 857
duke@435 858 case T_SHORT: case T_CHAR: // 2 bytes
duke@435 859 assert(value->type() == T_INT, "Agreement.");
kvn@479 860 val = value->get_int();
kvn@479 861 _obj->short_field_put(offset, (jshort)*((jint*)&val));
duke@435 862 break;
duke@435 863
kvn@479 864 case T_BOOLEAN: case T_BYTE: // 1 byte
duke@435 865 assert(value->type() == T_INT, "Agreement.");
kvn@479 866 val = value->get_int();
kvn@479 867 _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
duke@435 868 break;
duke@435 869
duke@435 870 default:
duke@435 871 ShouldNotReachHere();
duke@435 872 }
duke@435 873 _i++;
duke@435 874 }
duke@435 875 };
duke@435 876
duke@435 877 // restore elements of an eliminated type array
duke@435 878 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
duke@435 879 int index = 0;
kvn@479 880 intptr_t val;
duke@435 881
duke@435 882 for (int i = 0; i < sv->field_size(); i++) {
duke@435 883 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
duke@435 884 switch(type) {
kvn@479 885 case T_LONG: case T_DOUBLE: {
kvn@479 886 assert(value->type() == T_INT, "Agreement.");
kvn@479 887 StackValue* low =
kvn@479 888 StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
kvn@479 889 #ifdef _LP64
kvn@479 890 jlong res = (jlong)low->get_int();
kvn@479 891 #else
kvn@479 892 #ifdef SPARC
kvn@479 893 // For SPARC we have to swap high and low words.
kvn@479 894 jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
kvn@479 895 #else
kvn@479 896 jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
kvn@479 897 #endif //SPARC
kvn@479 898 #endif
kvn@479 899 obj->long_at_put(index, res);
kvn@479 900 break;
kvn@479 901 }
kvn@479 902
kvn@479 903 // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
kvn@479 904 case T_INT: case T_FLOAT: // 4 bytes.
kvn@479 905 assert(value->type() == T_INT, "Agreement.");
kvn@479 906 val = value->get_int();
kvn@479 907 obj->int_at_put(index, (jint)*((jint*)&val));
kvn@479 908 break;
kvn@479 909
kvn@479 910 case T_SHORT: case T_CHAR: // 2 bytes
kvn@479 911 assert(value->type() == T_INT, "Agreement.");
kvn@479 912 val = value->get_int();
kvn@479 913 obj->short_at_put(index, (jshort)*((jint*)&val));
kvn@479 914 break;
kvn@479 915
kvn@479 916 case T_BOOLEAN: case T_BYTE: // 1 byte
kvn@479 917 assert(value->type() == T_INT, "Agreement.");
kvn@479 918 val = value->get_int();
kvn@479 919 obj->bool_at_put(index, (jboolean)*((jint*)&val));
kvn@479 920 break;
kvn@479 921
duke@435 922 default:
duke@435 923 ShouldNotReachHere();
duke@435 924 }
duke@435 925 index++;
duke@435 926 }
duke@435 927 }
duke@435 928
duke@435 929
duke@435 930 // restore fields of an eliminated object array
duke@435 931 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
duke@435 932 for (int i = 0; i < sv->field_size(); i++) {
duke@435 933 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
duke@435 934 assert(value->type() == T_OBJECT, "object element expected");
duke@435 935 obj->obj_at_put(i, value->get_obj()());
duke@435 936 }
duke@435 937 }
duke@435 938
duke@435 939
duke@435 940 // restore fields of all eliminated objects and arrays
roland@7419 941 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
duke@435 942 for (int i = 0; i < objects->length(); i++) {
duke@435 943 ObjectValue* sv = (ObjectValue*) objects->at(i);
coleenp@4037 944 KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
duke@435 945 Handle obj = sv->value();
roland@7419 946 assert(obj.not_null() || realloc_failures, "reallocation was missed");
roland@7419 947 if (obj.is_null()) {
roland@7419 948 continue;
roland@7419 949 }
duke@435 950
duke@435 951 if (k->oop_is_instance()) {
coleenp@4037 952 InstanceKlass* ik = InstanceKlass::cast(k());
duke@435 953 FieldReassigner reassign(fr, reg_map, sv, obj());
duke@435 954 ik->do_nonstatic_fields(&reassign);
duke@435 955 } else if (k->oop_is_typeArray()) {
coleenp@4142 956 TypeArrayKlass* ak = TypeArrayKlass::cast(k());
duke@435 957 reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
duke@435 958 } else if (k->oop_is_objArray()) {
duke@435 959 reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
duke@435 960 }
duke@435 961 }
duke@435 962 }
duke@435 963
duke@435 964
duke@435 965 // relock objects for which synchronization was eliminated
roland@7419 966 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures) {
duke@435 967 for (int i = 0; i < monitors->length(); i++) {
kvn@518 968 MonitorInfo* mon_info = monitors->at(i);
kvn@518 969 if (mon_info->eliminated()) {
roland@7419 970 assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
roland@7419 971 if (!mon_info->owner_is_scalar_replaced()) {
roland@7419 972 Handle obj = Handle(mon_info->owner());
roland@7419 973 markOop mark = obj->mark();
roland@7419 974 if (UseBiasedLocking && mark->has_bias_pattern()) {
roland@7419 975 // New allocated objects may have the mark set to anonymously biased.
roland@7419 976 // Also the deoptimized method may called methods with synchronization
roland@7419 977 // where the thread-local object is bias locked to the current thread.
roland@7419 978 assert(mark->is_biased_anonymously() ||
roland@7419 979 mark->biased_locker() == thread, "should be locked to current thread");
roland@7419 980 // Reset mark word to unbiased prototype.
roland@7419 981 markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
roland@7419 982 obj->set_mark(unbiased_prototype);
roland@7419 983 }
roland@7419 984 BasicLock* lock = mon_info->lock();
roland@7419 985 ObjectSynchronizer::slow_enter(obj, lock, thread);
roland@7419 986 assert(mon_info->owner()->is_locked(), "object must be locked now");
kvn@518 987 }
duke@435 988 }
duke@435 989 }
duke@435 990 }
duke@435 991
duke@435 992
duke@435 993 #ifndef PRODUCT
duke@435 994 // print information about reallocated objects
roland@7419 995 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
duke@435 996 fieldDescriptor fd;
duke@435 997
duke@435 998 for (int i = 0; i < objects->length(); i++) {
duke@435 999 ObjectValue* sv = (ObjectValue*) objects->at(i);
coleenp@4037 1000 KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
duke@435 1001 Handle obj = sv->value();
duke@435 1002
hseigel@5784 1003 tty->print(" object <" INTPTR_FORMAT "> of type ", (void *)sv->value()());
coleenp@4037 1004 k->print_value();
roland@7419 1005 assert(obj.not_null() || realloc_failures, "reallocation was missed");
roland@7419 1006 if (obj.is_null()) {
roland@7419 1007 tty->print(" allocation failed");
roland@7419 1008 } else {
roland@7419 1009 tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
roland@7419 1010 }
duke@435 1011 tty->cr();
duke@435 1012
roland@7419 1013 if (Verbose && !obj.is_null()) {
duke@435 1014 k->oop_print_on(obj(), tty);
duke@435 1015 }
duke@435 1016 }
duke@435 1017 }
duke@435 1018 #endif
duke@435 1019 #endif // COMPILER2
duke@435 1020
roland@7419 1021 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
never@3499 1022 Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, fr.pc(), fr.sp());
duke@435 1023
duke@435 1024 #ifndef PRODUCT
duke@435 1025 if (TraceDeoptimization) {
duke@435 1026 ttyLocker ttyl;
duke@435 1027 tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
duke@435 1028 fr.print_on(tty);
duke@435 1029 tty->print_cr(" Virtual frames (innermost first):");
duke@435 1030 for (int index = 0; index < chunk->length(); index++) {
duke@435 1031 compiledVFrame* vf = chunk->at(index);
duke@435 1032 tty->print(" %2d - ", index);
duke@435 1033 vf->print_value();
duke@435 1034 int bci = chunk->at(index)->raw_bci();
duke@435 1035 const char* code_name;
duke@435 1036 if (bci == SynchronizationEntryBCI) {
duke@435 1037 code_name = "sync entry";
duke@435 1038 } else {
never@2462 1039 Bytecodes::Code code = vf->method()->code_at(bci);
duke@435 1040 code_name = Bytecodes::name(code);
duke@435 1041 }
duke@435 1042 tty->print(" - %s", code_name);
duke@435 1043 tty->print_cr(" @ bci %d ", bci);
duke@435 1044 if (Verbose) {
duke@435 1045 vf->print();
duke@435 1046 tty->cr();
duke@435 1047 }
duke@435 1048 }
duke@435 1049 }
duke@435 1050 #endif
duke@435 1051
duke@435 1052 // Register map for next frame (used for stack crawl). We capture
duke@435 1053 // the state of the deopt'ing frame's caller. Thus if we need to
duke@435 1054 // stuff a C2I adapter we can properly fill in the callee-save
duke@435 1055 // register locations.
duke@435 1056 frame caller = fr.sender(reg_map);
duke@435 1057 int frame_size = caller.sp() - fr.sp();
duke@435 1058
duke@435 1059 frame sender = caller;
duke@435 1060
duke@435 1061 // Since the Java thread being deoptimized will eventually adjust it's own stack,
duke@435 1062 // the vframeArray containing the unpacking information is allocated in the C heap.
duke@435 1063 // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
roland@7419 1064 vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
duke@435 1065
duke@435 1066 // Compare the vframeArray to the collected vframes
duke@435 1067 assert(array->structural_compare(thread, chunk), "just checking");
duke@435 1068
duke@435 1069 #ifndef PRODUCT
duke@435 1070 if (TraceDeoptimization) {
duke@435 1071 ttyLocker ttyl;
duke@435 1072 tty->print_cr(" Created vframeArray " INTPTR_FORMAT, array);
duke@435 1073 }
duke@435 1074 #endif // PRODUCT
duke@435 1075
duke@435 1076 return array;
duke@435 1077 }
duke@435 1078
roland@7419 1079 #ifdef COMPILER2
roland@7419 1080 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
roland@7419 1081 // Reallocation of some scalar replaced objects failed. Record
roland@7419 1082 // that we need to pop all the interpreter frames for the
roland@7419 1083 // deoptimized compiled frame.
roland@7419 1084 assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
roland@7419 1085 thread->set_frames_to_pop_failed_realloc(array->frames());
roland@7419 1086 // Unlock all monitors here otherwise the interpreter will see a
roland@7419 1087 // mix of locked and unlocked monitors (because of failed
roland@7419 1088 // reallocations of synchronized objects) and be confused.
roland@7419 1089 for (int i = 0; i < array->frames(); i++) {
roland@7419 1090 MonitorChunk* monitors = array->element(i)->monitors();
roland@7419 1091 if (monitors != NULL) {
roland@7419 1092 for (int j = 0; j < monitors->number_of_monitors(); j++) {
roland@7419 1093 BasicObjectLock* src = monitors->at(j);
roland@7419 1094 if (src->obj() != NULL) {
roland@7419 1095 ObjectSynchronizer::fast_exit(src->obj(), src->lock(), thread);
roland@7419 1096 }
roland@7419 1097 }
roland@7419 1098 array->element(i)->free_monitors(thread);
roland@7419 1099 #ifdef ASSERT
roland@7419 1100 array->element(i)->set_removed_monitors();
roland@7419 1101 #endif
roland@7419 1102 }
roland@7419 1103 }
roland@7419 1104 }
roland@7419 1105 #endif
duke@435 1106
duke@435 1107 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
duke@435 1108 GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
duke@435 1109 for (int i = 0; i < monitors->length(); i++) {
duke@435 1110 MonitorInfo* mon_info = monitors->at(i);
kvn@1253 1111 if (!mon_info->eliminated() && mon_info->owner() != NULL) {
duke@435 1112 objects_to_revoke->append(Handle(mon_info->owner()));
duke@435 1113 }
duke@435 1114 }
duke@435 1115 }
duke@435 1116
duke@435 1117
duke@435 1118 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
duke@435 1119 if (!UseBiasedLocking) {
duke@435 1120 return;
duke@435 1121 }
duke@435 1122
duke@435 1123 GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
duke@435 1124
duke@435 1125 // Unfortunately we don't have a RegisterMap available in most of
duke@435 1126 // the places we want to call this routine so we need to walk the
duke@435 1127 // stack again to update the register map.
duke@435 1128 if (map == NULL || !map->update_map()) {
duke@435 1129 StackFrameStream sfs(thread, true);
duke@435 1130 bool found = false;
duke@435 1131 while (!found && !sfs.is_done()) {
duke@435 1132 frame* cur = sfs.current();
duke@435 1133 sfs.next();
duke@435 1134 found = cur->id() == fr.id();
duke@435 1135 }
duke@435 1136 assert(found, "frame to be deoptimized not found on target thread's stack");
duke@435 1137 map = sfs.register_map();
duke@435 1138 }
duke@435 1139
duke@435 1140 vframe* vf = vframe::new_vframe(&fr, map, thread);
duke@435 1141 compiledVFrame* cvf = compiledVFrame::cast(vf);
duke@435 1142 // Revoke monitors' biases in all scopes
duke@435 1143 while (!cvf->is_top()) {
duke@435 1144 collect_monitors(cvf, objects_to_revoke);
duke@435 1145 cvf = compiledVFrame::cast(cvf->sender());
duke@435 1146 }
duke@435 1147 collect_monitors(cvf, objects_to_revoke);
duke@435 1148
duke@435 1149 if (SafepointSynchronize::is_at_safepoint()) {
duke@435 1150 BiasedLocking::revoke_at_safepoint(objects_to_revoke);
duke@435 1151 } else {
duke@435 1152 BiasedLocking::revoke(objects_to_revoke);
duke@435 1153 }
duke@435 1154 }
duke@435 1155
duke@435 1156
duke@435 1157 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
duke@435 1158 if (!UseBiasedLocking) {
duke@435 1159 return;
duke@435 1160 }
duke@435 1161
duke@435 1162 assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
duke@435 1163 GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
duke@435 1164 for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
duke@435 1165 if (jt->has_last_Java_frame()) {
duke@435 1166 StackFrameStream sfs(jt, true);
duke@435 1167 while (!sfs.is_done()) {
duke@435 1168 frame* cur = sfs.current();
duke@435 1169 if (cb->contains(cur->pc())) {
duke@435 1170 vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
duke@435 1171 compiledVFrame* cvf = compiledVFrame::cast(vf);
duke@435 1172 // Revoke monitors' biases in all scopes
duke@435 1173 while (!cvf->is_top()) {
duke@435 1174 collect_monitors(cvf, objects_to_revoke);
duke@435 1175 cvf = compiledVFrame::cast(cvf->sender());
duke@435 1176 }
duke@435 1177 collect_monitors(cvf, objects_to_revoke);
duke@435 1178 }
duke@435 1179 sfs.next();
duke@435 1180 }
duke@435 1181 }
duke@435 1182 }
duke@435 1183 BiasedLocking::revoke_at_safepoint(objects_to_revoke);
duke@435 1184 }
duke@435 1185
duke@435 1186
duke@435 1187 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
duke@435 1188 assert(fr.can_be_deoptimized(), "checking frame type");
duke@435 1189
duke@435 1190 gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
duke@435 1191
duke@435 1192 // Patch the nmethod so that when execution returns to it we will
duke@435 1193 // deopt the execution state and return to the interpreter.
duke@435 1194 fr.deoptimize(thread);
duke@435 1195 }
duke@435 1196
duke@435 1197 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
duke@435 1198 // Deoptimize only if the frame comes from compile code.
duke@435 1199 // Do not deoptimize the frame which is already patched
duke@435 1200 // during the execution of the loops below.
duke@435 1201 if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
duke@435 1202 return;
duke@435 1203 }
duke@435 1204 ResourceMark rm;
duke@435 1205 DeoptimizationMarker dm;
duke@435 1206 if (UseBiasedLocking) {
duke@435 1207 revoke_biases_of_monitors(thread, fr, map);
duke@435 1208 }
duke@435 1209 deoptimize_single_frame(thread, fr);
duke@435 1210
duke@435 1211 }
duke@435 1212
duke@435 1213
never@2260 1214 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id) {
never@2260 1215 assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
never@2260 1216 "can only deoptimize other thread at a safepoint");
duke@435 1217 // Compute frame and register map based on thread and sp.
duke@435 1218 RegisterMap reg_map(thread, UseBiasedLocking);
duke@435 1219 frame fr = thread->last_frame();
duke@435 1220 while (fr.id() != id) {
duke@435 1221 fr = fr.sender(&reg_map);
duke@435 1222 }
duke@435 1223 deoptimize(thread, fr, &reg_map);
duke@435 1224 }
duke@435 1225
duke@435 1226
never@2260 1227 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
never@2260 1228 if (thread == Thread::current()) {
never@2260 1229 Deoptimization::deoptimize_frame_internal(thread, id);
never@2260 1230 } else {
never@2260 1231 VM_DeoptimizeFrame deopt(thread, id);
never@2260 1232 VMThread::execute(&deopt);
never@2260 1233 }
never@2260 1234 }
never@2260 1235
never@2260 1236
duke@435 1237 // JVMTI PopFrame support
duke@435 1238 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
duke@435 1239 {
duke@435 1240 thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
duke@435 1241 }
duke@435 1242 JRT_END
duke@435 1243
duke@435 1244
twisti@2047 1245 #if defined(COMPILER2) || defined(SHARK)
duke@435 1246 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
duke@435 1247 // in case of an unresolved klass entry, load the class.
duke@435 1248 if (constant_pool->tag_at(index).is_unresolved_klass()) {
coleenp@4037 1249 Klass* tk = constant_pool->klass_at(index, CHECK);
duke@435 1250 return;
duke@435 1251 }
duke@435 1252
duke@435 1253 if (!constant_pool->tag_at(index).is_symbol()) return;
duke@435 1254
coleenp@4251 1255 Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
coleenp@2497 1256 Symbol* symbol = constant_pool->symbol_at(index);
duke@435 1257
duke@435 1258 // class name?
duke@435 1259 if (symbol->byte_at(0) != '(') {
coleenp@4251 1260 Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
duke@435 1261 SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
duke@435 1262 return;
duke@435 1263 }
duke@435 1264
duke@435 1265 // then it must be a signature!
coleenp@2497 1266 ResourceMark rm(THREAD);
duke@435 1267 for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
duke@435 1268 if (ss.is_object()) {
coleenp@2497 1269 Symbol* class_name = ss.as_symbol(CHECK);
coleenp@4251 1270 Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
duke@435 1271 SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
duke@435 1272 }
duke@435 1273 }
duke@435 1274 }
duke@435 1275
duke@435 1276
duke@435 1277 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
duke@435 1278 EXCEPTION_MARK;
duke@435 1279 load_class_by_index(constant_pool, index, THREAD);
duke@435 1280 if (HAS_PENDING_EXCEPTION) {
duke@435 1281 // Exception happened during classloading. We ignore the exception here, since it
roland@6215 1282 // is going to be rethrown since the current activation is going to be deoptimized and
duke@435 1283 // the interpreter will re-execute the bytecode.
duke@435 1284 CLEAR_PENDING_EXCEPTION;
roland@6215 1285 // Class loading called java code which may have caused a stack
roland@6215 1286 // overflow. If the exception was thrown right before the return
roland@6215 1287 // to the runtime the stack is no longer guarded. Reguard the
roland@6215 1288 // stack otherwise if we return to the uncommon trap blob and the
roland@6215 1289 // stack bang causes a stack overflow we crash.
roland@6215 1290 assert(THREAD->is_Java_thread(), "only a java thread can be here");
roland@6215 1291 JavaThread* thread = (JavaThread*)THREAD;
roland@6215 1292 bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
roland@6215 1293 if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
roland@6215 1294 assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
duke@435 1295 }
duke@435 1296 }
duke@435 1297
duke@435 1298 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
duke@435 1299 HandleMark hm;
duke@435 1300
duke@435 1301 // uncommon_trap() is called at the beginning of the uncommon trap
duke@435 1302 // handler. Note this fact before we start generating temporary frames
duke@435 1303 // that can confuse an asynchronous stack walker. This counter is
duke@435 1304 // decremented at the end of unpack_frames().
duke@435 1305 thread->inc_in_deopt_handler();
duke@435 1306
duke@435 1307 // We need to update the map if we have biased locking.
duke@435 1308 RegisterMap reg_map(thread, UseBiasedLocking);
duke@435 1309 frame stub_frame = thread->last_frame();
duke@435 1310 frame fr = stub_frame.sender(&reg_map);
duke@435 1311 // Make sure the calling nmethod is not getting deoptimized and removed
duke@435 1312 // before we are done with it.
duke@435 1313 nmethodLocker nl(fr.pc());
duke@435 1314
never@3499 1315 // Log a message
vlivanov@4312 1316 Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT,
vlivanov@4312 1317 trap_request, fr.pc());
never@3499 1318
duke@435 1319 {
duke@435 1320 ResourceMark rm;
duke@435 1321
duke@435 1322 // Revoke biases of any monitors in the frame to ensure we can migrate them
duke@435 1323 revoke_biases_of_monitors(thread, fr, &reg_map);
duke@435 1324
duke@435 1325 DeoptReason reason = trap_request_reason(trap_request);
duke@435 1326 DeoptAction action = trap_request_action(trap_request);
duke@435 1327 jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
duke@435 1328
duke@435 1329 vframe* vf = vframe::new_vframe(&fr, &reg_map, thread);
duke@435 1330 compiledVFrame* cvf = compiledVFrame::cast(vf);
duke@435 1331
duke@435 1332 nmethod* nm = cvf->code();
duke@435 1333
duke@435 1334 ScopeDesc* trap_scope = cvf->scope();
duke@435 1335 methodHandle trap_method = trap_scope->method();
duke@435 1336 int trap_bci = trap_scope->bci();
never@2462 1337 Bytecodes::Code trap_bc = trap_method->java_code_at(trap_bci);
duke@435 1338
duke@435 1339 // Record this event in the histogram.
duke@435 1340 gather_statistics(reason, action, trap_bc);
duke@435 1341
duke@435 1342 // Ensure that we can record deopt. history:
kvn@6429 1343 // Need MDO to record RTM code generation state.
kvn@6429 1344 bool create_if_missing = ProfileTraps RTM_OPT_ONLY( || UseRTMLocking );
duke@435 1345
coleenp@4037 1346 MethodData* trap_mdo =
coleenp@4037 1347 get_method_data(thread, trap_method, create_if_missing);
duke@435 1348
vlivanov@4312 1349 // Log a message
vlivanov@4312 1350 Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d",
vlivanov@4312 1351 trap_reason_name(reason), trap_action_name(action), fr.pc(),
vlivanov@4312 1352 trap_method->name_and_sig_as_C_string(), trap_bci);
vlivanov@4312 1353
duke@435 1354 // Print a bunch of diagnostics, if requested.
duke@435 1355 if (TraceDeoptimization || LogCompilation) {
duke@435 1356 ResourceMark rm;
duke@435 1357 ttyLocker ttyl;
duke@435 1358 char buf[100];
duke@435 1359 if (xtty != NULL) {
duke@435 1360 xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
duke@435 1361 os::current_thread_id(),
duke@435 1362 format_trap_request(buf, sizeof(buf), trap_request));
duke@435 1363 nm->log_identity(xtty);
duke@435 1364 }
coleenp@2497 1365 Symbol* class_name = NULL;
duke@435 1366 bool unresolved = false;
duke@435 1367 if (unloaded_class_index >= 0) {
duke@435 1368 constantPoolHandle constants (THREAD, trap_method->constants());
duke@435 1369 if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
coleenp@2497 1370 class_name = constants->klass_name_at(unloaded_class_index);
duke@435 1371 unresolved = true;
duke@435 1372 if (xtty != NULL)
duke@435 1373 xtty->print(" unresolved='1'");
duke@435 1374 } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
coleenp@2497 1375 class_name = constants->symbol_at(unloaded_class_index);
duke@435 1376 }
duke@435 1377 if (xtty != NULL)
duke@435 1378 xtty->name(class_name);
duke@435 1379 }
coleenp@4037 1380 if (xtty != NULL && trap_mdo != NULL) {
duke@435 1381 // Dump the relevant MDO state.
duke@435 1382 // This is the deopt count for the current reason, any previous
duke@435 1383 // reasons or recompiles seen at this point.
duke@435 1384 int dcnt = trap_mdo->trap_count(reason);
duke@435 1385 if (dcnt != 0)
duke@435 1386 xtty->print(" count='%d'", dcnt);
duke@435 1387 ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
duke@435 1388 int dos = (pdata == NULL)? 0: pdata->trap_state();
duke@435 1389 if (dos != 0) {
duke@435 1390 xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
duke@435 1391 if (trap_state_is_recompiled(dos)) {
duke@435 1392 int recnt2 = trap_mdo->overflow_recompile_count();
duke@435 1393 if (recnt2 != 0)
duke@435 1394 xtty->print(" recompiles2='%d'", recnt2);
duke@435 1395 }
duke@435 1396 }
duke@435 1397 }
duke@435 1398 if (xtty != NULL) {
duke@435 1399 xtty->stamp();
duke@435 1400 xtty->end_head();
duke@435 1401 }
duke@435 1402 if (TraceDeoptimization) { // make noise on the tty
duke@435 1403 tty->print("Uncommon trap occurred in");
duke@435 1404 nm->method()->print_short_name(tty);
vlivanov@4154 1405 tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d",
duke@435 1406 fr.pc(),
vlivanov@4154 1407 os::current_thread_id(),
duke@435 1408 trap_reason_name(reason),
duke@435 1409 trap_action_name(action),
duke@435 1410 unloaded_class_index);
coleenp@2497 1411 if (class_name != NULL) {
duke@435 1412 tty->print(unresolved ? " unresolved class: " : " symbol: ");
duke@435 1413 class_name->print_symbol_on(tty);
duke@435 1414 }
duke@435 1415 tty->cr();
duke@435 1416 }
duke@435 1417 if (xtty != NULL) {
duke@435 1418 // Log the precise location of the trap.
duke@435 1419 for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
duke@435 1420 xtty->begin_elem("jvms bci='%d'", sd->bci());
duke@435 1421 xtty->method(sd->method());
duke@435 1422 xtty->end_elem();
duke@435 1423 if (sd->is_top()) break;
duke@435 1424 }
duke@435 1425 xtty->tail("uncommon_trap");
duke@435 1426 }
duke@435 1427 }
duke@435 1428 // (End diagnostic printout.)
duke@435 1429
duke@435 1430 // Load class if necessary
duke@435 1431 if (unloaded_class_index >= 0) {
duke@435 1432 constantPoolHandle constants(THREAD, trap_method->constants());
duke@435 1433 load_class_by_index(constants, unloaded_class_index);
duke@435 1434 }
duke@435 1435
duke@435 1436 // Flush the nmethod if necessary and desirable.
duke@435 1437 //
duke@435 1438 // We need to avoid situations where we are re-flushing the nmethod
duke@435 1439 // because of a hot deoptimization site. Repeated flushes at the same
duke@435 1440 // point need to be detected by the compiler and avoided. If the compiler
duke@435 1441 // cannot avoid them (or has a bug and "refuses" to avoid them), this
duke@435 1442 // module must take measures to avoid an infinite cycle of recompilation
duke@435 1443 // and deoptimization. There are several such measures:
duke@435 1444 //
duke@435 1445 // 1. If a recompilation is ordered a second time at some site X
duke@435 1446 // and for the same reason R, the action is adjusted to 'reinterpret',
duke@435 1447 // to give the interpreter time to exercise the method more thoroughly.
duke@435 1448 // If this happens, the method's overflow_recompile_count is incremented.
duke@435 1449 //
duke@435 1450 // 2. If the compiler fails to reduce the deoptimization rate, then
duke@435 1451 // the method's overflow_recompile_count will begin to exceed the set
duke@435 1452 // limit PerBytecodeRecompilationCutoff. If this happens, the action
duke@435 1453 // is adjusted to 'make_not_compilable', and the method is abandoned
duke@435 1454 // to the interpreter. This is a performance hit for hot methods,
duke@435 1455 // but is better than a disastrous infinite cycle of recompilations.
duke@435 1456 // (Actually, only the method containing the site X is abandoned.)
duke@435 1457 //
duke@435 1458 // 3. In parallel with the previous measures, if the total number of
duke@435 1459 // recompilations of a method exceeds the much larger set limit
duke@435 1460 // PerMethodRecompilationCutoff, the method is abandoned.
duke@435 1461 // This should only happen if the method is very large and has
duke@435 1462 // many "lukewarm" deoptimizations. The code which enforces this
coleenp@4037 1463 // limit is elsewhere (class nmethod, class Method).
duke@435 1464 //
duke@435 1465 // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
duke@435 1466 // to recompile at each bytecode independently of the per-BCI cutoff.
duke@435 1467 //
duke@435 1468 // The decision to update code is up to the compiler, and is encoded
duke@435 1469 // in the Action_xxx code. If the compiler requests Action_none
duke@435 1470 // no trap state is changed, no compiled code is changed, and the
duke@435 1471 // computation suffers along in the interpreter.
duke@435 1472 //
duke@435 1473 // The other action codes specify various tactics for decompilation
duke@435 1474 // and recompilation. Action_maybe_recompile is the loosest, and
duke@435 1475 // allows the compiled code to stay around until enough traps are seen,
duke@435 1476 // and until the compiler gets around to recompiling the trapping method.
duke@435 1477 //
duke@435 1478 // The other actions cause immediate removal of the present code.
duke@435 1479
duke@435 1480 bool update_trap_state = true;
duke@435 1481 bool make_not_entrant = false;
duke@435 1482 bool make_not_compilable = false;
iveresov@2138 1483 bool reprofile = false;
duke@435 1484 switch (action) {
duke@435 1485 case Action_none:
duke@435 1486 // Keep the old code.
duke@435 1487 update_trap_state = false;
duke@435 1488 break;
duke@435 1489 case Action_maybe_recompile:
duke@435 1490 // Do not need to invalidate the present code, but we can
duke@435 1491 // initiate another
duke@435 1492 // Start compiler without (necessarily) invalidating the nmethod.
duke@435 1493 // The system will tolerate the old code, but new code should be
duke@435 1494 // generated when possible.
duke@435 1495 break;
duke@435 1496 case Action_reinterpret:
duke@435 1497 // Go back into the interpreter for a while, and then consider
duke@435 1498 // recompiling form scratch.
duke@435 1499 make_not_entrant = true;
duke@435 1500 // Reset invocation counter for outer most method.
duke@435 1501 // This will allow the interpreter to exercise the bytecodes
duke@435 1502 // for a while before recompiling.
duke@435 1503 // By contrast, Action_make_not_entrant is immediate.
duke@435 1504 //
duke@435 1505 // Note that the compiler will track null_check, null_assert,
duke@435 1506 // range_check, and class_check events and log them as if they
duke@435 1507 // had been traps taken from compiled code. This will update
duke@435 1508 // the MDO trap history so that the next compilation will
duke@435 1509 // properly detect hot trap sites.
iveresov@2138 1510 reprofile = true;
duke@435 1511 break;
duke@435 1512 case Action_make_not_entrant:
duke@435 1513 // Request immediate recompilation, and get rid of the old code.
duke@435 1514 // Make them not entrant, so next time they are called they get
duke@435 1515 // recompiled. Unloaded classes are loaded now so recompile before next
duke@435 1516 // time they are called. Same for uninitialized. The interpreter will
duke@435 1517 // link the missing class, if any.
duke@435 1518 make_not_entrant = true;
duke@435 1519 break;
duke@435 1520 case Action_make_not_compilable:
duke@435 1521 // Give up on compiling this method at all.
duke@435 1522 make_not_entrant = true;
duke@435 1523 make_not_compilable = true;
duke@435 1524 break;
duke@435 1525 default:
duke@435 1526 ShouldNotReachHere();
duke@435 1527 }
duke@435 1528
duke@435 1529 // Setting +ProfileTraps fixes the following, on all platforms:
duke@435 1530 // 4852688: ProfileInterpreter is off by default for ia64. The result is
duke@435 1531 // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
coleenp@4037 1532 // recompile relies on a MethodData* to record heroic opt failures.
duke@435 1533
duke@435 1534 // Whether the interpreter is producing MDO data or not, we also need
duke@435 1535 // to use the MDO to detect hot deoptimization points and control
duke@435 1536 // aggressive optimization.
kvn@1641 1537 bool inc_recompile_count = false;
kvn@1641 1538 ProfileData* pdata = NULL;
coleenp@4037 1539 if (ProfileTraps && update_trap_state && trap_mdo != NULL) {
coleenp@4037 1540 assert(trap_mdo == get_method_data(thread, trap_method, false), "sanity");
duke@435 1541 uint this_trap_count = 0;
duke@435 1542 bool maybe_prior_trap = false;
duke@435 1543 bool maybe_prior_recompile = false;
kvn@1641 1544 pdata = query_update_method_data(trap_mdo, trap_bci, reason,
roland@6377 1545 nm->method(),
duke@435 1546 //outputs:
duke@435 1547 this_trap_count,
duke@435 1548 maybe_prior_trap,
duke@435 1549 maybe_prior_recompile);
duke@435 1550 // Because the interpreter also counts null, div0, range, and class
duke@435 1551 // checks, these traps from compiled code are double-counted.
duke@435 1552 // This is harmless; it just means that the PerXTrapLimit values
duke@435 1553 // are in effect a little smaller than they look.
duke@435 1554
duke@435 1555 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
duke@435 1556 if (per_bc_reason != Reason_none) {
duke@435 1557 // Now take action based on the partially known per-BCI history.
duke@435 1558 if (maybe_prior_trap
duke@435 1559 && this_trap_count >= (uint)PerBytecodeTrapLimit) {
duke@435 1560 // If there are too many traps at this BCI, force a recompile.
duke@435 1561 // This will allow the compiler to see the limit overflow, and
duke@435 1562 // take corrective action, if possible. The compiler generally
duke@435 1563 // does not use the exact PerBytecodeTrapLimit value, but instead
duke@435 1564 // changes its tactics if it sees any traps at all. This provides
duke@435 1565 // a little hysteresis, delaying a recompile until a trap happens
duke@435 1566 // several times.
duke@435 1567 //
duke@435 1568 // Actually, since there is only one bit of counter per BCI,
duke@435 1569 // the possible per-BCI counts are {0,1,(per-method count)}.
duke@435 1570 // This produces accurate results if in fact there is only
duke@435 1571 // one hot trap site, but begins to get fuzzy if there are
duke@435 1572 // many sites. For example, if there are ten sites each
duke@435 1573 // trapping two or more times, they each get the blame for
duke@435 1574 // all of their traps.
duke@435 1575 make_not_entrant = true;
duke@435 1576 }
duke@435 1577
duke@435 1578 // Detect repeated recompilation at the same BCI, and enforce a limit.
duke@435 1579 if (make_not_entrant && maybe_prior_recompile) {
duke@435 1580 // More than one recompile at this point.
kvn@1641 1581 inc_recompile_count = maybe_prior_trap;
duke@435 1582 }
duke@435 1583 } else {
duke@435 1584 // For reasons which are not recorded per-bytecode, we simply
duke@435 1585 // force recompiles unconditionally.
duke@435 1586 // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
duke@435 1587 make_not_entrant = true;
duke@435 1588 }
duke@435 1589
duke@435 1590 // Go back to the compiler if there are too many traps in this method.
roland@6377 1591 if (this_trap_count >= per_method_trap_limit(reason)) {
duke@435 1592 // If there are too many traps in this method, force a recompile.
duke@435 1593 // This will allow the compiler to see the limit overflow, and
duke@435 1594 // take corrective action, if possible.
duke@435 1595 // (This condition is an unlikely backstop only, because the
duke@435 1596 // PerBytecodeTrapLimit is more likely to take effect first,
duke@435 1597 // if it is applicable.)
duke@435 1598 make_not_entrant = true;
duke@435 1599 }
duke@435 1600
duke@435 1601 // Here's more hysteresis: If there has been a recompile at
duke@435 1602 // this trap point already, run the method in the interpreter
duke@435 1603 // for a while to exercise it more thoroughly.
duke@435 1604 if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
iveresov@2138 1605 reprofile = true;
duke@435 1606 }
duke@435 1607
kvn@1641 1608 }
kvn@1641 1609
kvn@1641 1610 // Take requested actions on the method:
kvn@1641 1611
kvn@1641 1612 // Recompile
kvn@1641 1613 if (make_not_entrant) {
kvn@1641 1614 if (!nm->make_not_entrant()) {
kvn@1641 1615 return; // the call did not change nmethod's state
kvn@1641 1616 }
kvn@1641 1617
kvn@1641 1618 if (pdata != NULL) {
duke@435 1619 // Record the recompilation event, if any.
duke@435 1620 int tstate0 = pdata->trap_state();
duke@435 1621 int tstate1 = trap_state_set_recompiled(tstate0, true);
duke@435 1622 if (tstate1 != tstate0)
duke@435 1623 pdata->set_trap_state(tstate1);
duke@435 1624 }
kvn@6429 1625
kvn@6429 1626 #if INCLUDE_RTM_OPT
kvn@6429 1627 // Restart collecting RTM locking abort statistic if the method
kvn@6429 1628 // is recompiled for a reason other than RTM state change.
kvn@6429 1629 // Assume that in new recompiled code the statistic could be different,
kvn@6429 1630 // for example, due to different inlining.
kvn@6429 1631 if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
kvn@6429 1632 UseRTMDeopt && (nm->rtm_state() != ProfileRTM)) {
kvn@6429 1633 trap_mdo->atomic_set_rtm_state(ProfileRTM);
kvn@6429 1634 }
kvn@6429 1635 #endif
duke@435 1636 }
duke@435 1637
kvn@1641 1638 if (inc_recompile_count) {
kvn@1641 1639 trap_mdo->inc_overflow_recompile_count();
kvn@1641 1640 if ((uint)trap_mdo->overflow_recompile_count() >
kvn@1641 1641 (uint)PerBytecodeRecompilationCutoff) {
kvn@1641 1642 // Give up on the method containing the bad BCI.
kvn@1641 1643 if (trap_method() == nm->method()) {
kvn@1641 1644 make_not_compilable = true;
kvn@1641 1645 } else {
vlivanov@4539 1646 trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
kvn@1641 1647 // But give grace to the enclosing nm->method().
kvn@1641 1648 }
kvn@1641 1649 }
kvn@1641 1650 }
duke@435 1651
iveresov@2138 1652 // Reprofile
iveresov@2138 1653 if (reprofile) {
iveresov@2138 1654 CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
duke@435 1655 }
duke@435 1656
duke@435 1657 // Give up compiling
iveresov@2138 1658 if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
duke@435 1659 assert(make_not_entrant, "consistent");
iveresov@2138 1660 nm->method()->set_not_compilable(CompLevel_full_optimization);
duke@435 1661 }
duke@435 1662
duke@435 1663 } // Free marked resources
duke@435 1664
duke@435 1665 }
duke@435 1666 JRT_END
duke@435 1667
coleenp@4037 1668 MethodData*
duke@435 1669 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
duke@435 1670 bool create_if_missing) {
duke@435 1671 Thread* THREAD = thread;
coleenp@4037 1672 MethodData* mdo = m()->method_data();
duke@435 1673 if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
duke@435 1674 // Build an MDO. Ignore errors like OutOfMemory;
duke@435 1675 // that simply means we won't have an MDO to update.
coleenp@4037 1676 Method::build_interpreter_method_data(m, THREAD);
duke@435 1677 if (HAS_PENDING_EXCEPTION) {
duke@435 1678 assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
duke@435 1679 CLEAR_PENDING_EXCEPTION;
duke@435 1680 }
duke@435 1681 mdo = m()->method_data();
duke@435 1682 }
duke@435 1683 return mdo;
duke@435 1684 }
duke@435 1685
duke@435 1686 ProfileData*
coleenp@4037 1687 Deoptimization::query_update_method_data(MethodData* trap_mdo,
duke@435 1688 int trap_bci,
duke@435 1689 Deoptimization::DeoptReason reason,
roland@6377 1690 Method* compiled_method,
duke@435 1691 //outputs:
duke@435 1692 uint& ret_this_trap_count,
duke@435 1693 bool& ret_maybe_prior_trap,
duke@435 1694 bool& ret_maybe_prior_recompile) {
duke@435 1695 uint prior_trap_count = trap_mdo->trap_count(reason);
duke@435 1696 uint this_trap_count = trap_mdo->inc_trap_count(reason);
duke@435 1697
duke@435 1698 // If the runtime cannot find a place to store trap history,
duke@435 1699 // it is estimated based on the general condition of the method.
duke@435 1700 // If the method has ever been recompiled, or has ever incurred
duke@435 1701 // a trap with the present reason , then this BCI is assumed
duke@435 1702 // (pessimistically) to be the culprit.
duke@435 1703 bool maybe_prior_trap = (prior_trap_count != 0);
duke@435 1704 bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
duke@435 1705 ProfileData* pdata = NULL;
duke@435 1706
duke@435 1707
duke@435 1708 // For reasons which are recorded per bytecode, we check per-BCI data.
duke@435 1709 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
duke@435 1710 if (per_bc_reason != Reason_none) {
duke@435 1711 // Find the profile data for this BCI. If there isn't one,
duke@435 1712 // try to allocate one from the MDO's set of spares.
duke@435 1713 // This will let us detect a repeated trap at this point.
roland@6377 1714 pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
duke@435 1715
duke@435 1716 if (pdata != NULL) {
roland@6377 1717 if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
roland@6377 1718 if (LogCompilation && xtty != NULL) {
roland@6377 1719 ttyLocker ttyl;
roland@6377 1720 // no more room for speculative traps in this MDO
roland@6377 1721 xtty->elem("speculative_traps_oom");
roland@6377 1722 }
roland@6377 1723 }
duke@435 1724 // Query the trap state of this profile datum.
duke@435 1725 int tstate0 = pdata->trap_state();
duke@435 1726 if (!trap_state_has_reason(tstate0, per_bc_reason))
duke@435 1727 maybe_prior_trap = false;
duke@435 1728 if (!trap_state_is_recompiled(tstate0))
duke@435 1729 maybe_prior_recompile = false;
duke@435 1730
duke@435 1731 // Update the trap state of this profile datum.
duke@435 1732 int tstate1 = tstate0;
duke@435 1733 // Record the reason.
duke@435 1734 tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
duke@435 1735 // Store the updated state on the MDO, for next time.
duke@435 1736 if (tstate1 != tstate0)
duke@435 1737 pdata->set_trap_state(tstate1);
duke@435 1738 } else {
kvn@1641 1739 if (LogCompilation && xtty != NULL) {
kvn@1641 1740 ttyLocker ttyl;
duke@435 1741 // Missing MDP? Leave a small complaint in the log.
duke@435 1742 xtty->elem("missing_mdp bci='%d'", trap_bci);
kvn@1641 1743 }
duke@435 1744 }
duke@435 1745 }
duke@435 1746
duke@435 1747 // Return results:
duke@435 1748 ret_this_trap_count = this_trap_count;
duke@435 1749 ret_maybe_prior_trap = maybe_prior_trap;
duke@435 1750 ret_maybe_prior_recompile = maybe_prior_recompile;
duke@435 1751 return pdata;
duke@435 1752 }
duke@435 1753
duke@435 1754 void
coleenp@4037 1755 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
duke@435 1756 ResourceMark rm;
duke@435 1757 // Ignored outputs:
duke@435 1758 uint ignore_this_trap_count;
duke@435 1759 bool ignore_maybe_prior_trap;
duke@435 1760 bool ignore_maybe_prior_recompile;
roland@6377 1761 assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
duke@435 1762 query_update_method_data(trap_mdo, trap_bci,
duke@435 1763 (DeoptReason)reason,
roland@6377 1764 NULL,
duke@435 1765 ignore_this_trap_count,
duke@435 1766 ignore_maybe_prior_trap,
duke@435 1767 ignore_maybe_prior_recompile);
duke@435 1768 }
duke@435 1769
duke@435 1770 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
duke@435 1771
duke@435 1772 // Still in Java no safepoints
duke@435 1773 {
duke@435 1774 // This enters VM and may safepoint
duke@435 1775 uncommon_trap_inner(thread, trap_request);
duke@435 1776 }
duke@435 1777 return fetch_unroll_info_helper(thread);
duke@435 1778 }
duke@435 1779
duke@435 1780 // Local derived constants.
duke@435 1781 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
duke@435 1782 const int DS_REASON_MASK = DataLayout::trap_mask >> 1;
duke@435 1783 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
duke@435 1784
duke@435 1785 //---------------------------trap_state_reason---------------------------------
duke@435 1786 Deoptimization::DeoptReason
duke@435 1787 Deoptimization::trap_state_reason(int trap_state) {
duke@435 1788 // This assert provides the link between the width of DataLayout::trap_bits
duke@435 1789 // and the encoding of "recorded" reasons. It ensures there are enough
duke@435 1790 // bits to store all needed reasons in the per-BCI MDO profile.
duke@435 1791 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
duke@435 1792 int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
duke@435 1793 trap_state -= recompile_bit;
duke@435 1794 if (trap_state == DS_REASON_MASK) {
duke@435 1795 return Reason_many;
duke@435 1796 } else {
duke@435 1797 assert((int)Reason_none == 0, "state=0 => Reason_none");
duke@435 1798 return (DeoptReason)trap_state;
duke@435 1799 }
duke@435 1800 }
duke@435 1801 //-------------------------trap_state_has_reason-------------------------------
duke@435 1802 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
duke@435 1803 assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
duke@435 1804 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
duke@435 1805 int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
duke@435 1806 trap_state -= recompile_bit;
duke@435 1807 if (trap_state == DS_REASON_MASK) {
duke@435 1808 return -1; // true, unspecifically (bottom of state lattice)
duke@435 1809 } else if (trap_state == reason) {
duke@435 1810 return 1; // true, definitely
duke@435 1811 } else if (trap_state == 0) {
duke@435 1812 return 0; // false, definitely (top of state lattice)
duke@435 1813 } else {
duke@435 1814 return 0; // false, definitely
duke@435 1815 }
duke@435 1816 }
duke@435 1817 //-------------------------trap_state_add_reason-------------------------------
duke@435 1818 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
duke@435 1819 assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
duke@435 1820 int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
duke@435 1821 trap_state -= recompile_bit;
duke@435 1822 if (trap_state == DS_REASON_MASK) {
duke@435 1823 return trap_state + recompile_bit; // already at state lattice bottom
duke@435 1824 } else if (trap_state == reason) {
duke@435 1825 return trap_state + recompile_bit; // the condition is already true
duke@435 1826 } else if (trap_state == 0) {
duke@435 1827 return reason + recompile_bit; // no condition has yet been true
duke@435 1828 } else {
duke@435 1829 return DS_REASON_MASK + recompile_bit; // fall to state lattice bottom
duke@435 1830 }
duke@435 1831 }
duke@435 1832 //-----------------------trap_state_is_recompiled------------------------------
duke@435 1833 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
duke@435 1834 return (trap_state & DS_RECOMPILE_BIT) != 0;
duke@435 1835 }
duke@435 1836 //-----------------------trap_state_set_recompiled-----------------------------
duke@435 1837 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
duke@435 1838 if (z) return trap_state | DS_RECOMPILE_BIT;
duke@435 1839 else return trap_state & ~DS_RECOMPILE_BIT;
duke@435 1840 }
duke@435 1841 //---------------------------format_trap_state---------------------------------
vlivanov@5725 1842 // This is used for debugging and diagnostics, including LogFile output.
duke@435 1843 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
duke@435 1844 int trap_state) {
duke@435 1845 DeoptReason reason = trap_state_reason(trap_state);
duke@435 1846 bool recomp_flag = trap_state_is_recompiled(trap_state);
duke@435 1847 // Re-encode the state from its decoded components.
duke@435 1848 int decoded_state = 0;
duke@435 1849 if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
duke@435 1850 decoded_state = trap_state_add_reason(decoded_state, reason);
duke@435 1851 if (recomp_flag)
duke@435 1852 decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
duke@435 1853 // If the state re-encodes properly, format it symbolically.
duke@435 1854 // Because this routine is used for debugging and diagnostics,
duke@435 1855 // be robust even if the state is a strange value.
duke@435 1856 size_t len;
duke@435 1857 if (decoded_state != trap_state) {
duke@435 1858 // Random buggy state that doesn't decode??
duke@435 1859 len = jio_snprintf(buf, buflen, "#%d", trap_state);
duke@435 1860 } else {
duke@435 1861 len = jio_snprintf(buf, buflen, "%s%s",
duke@435 1862 trap_reason_name(reason),
duke@435 1863 recomp_flag ? " recompiled" : "");
duke@435 1864 }
duke@435 1865 if (len >= buflen)
duke@435 1866 buf[buflen-1] = '\0';
duke@435 1867 return buf;
duke@435 1868 }
duke@435 1869
duke@435 1870
duke@435 1871 //--------------------------------statics--------------------------------------
duke@435 1872 Deoptimization::DeoptAction Deoptimization::_unloaded_action
duke@435 1873 = Deoptimization::Action_reinterpret;
duke@435 1874 const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
duke@435 1875 // Note: Keep this in sync. with enum DeoptReason.
duke@435 1876 "none",
duke@435 1877 "null_check",
duke@435 1878 "null_assert",
duke@435 1879 "range_check",
duke@435 1880 "class_check",
duke@435 1881 "array_check",
duke@435 1882 "intrinsic",
kvn@1641 1883 "bimorphic",
duke@435 1884 "unloaded",
duke@435 1885 "uninitialized",
duke@435 1886 "unreached",
duke@435 1887 "unhandled",
duke@435 1888 "constraint",
duke@435 1889 "div0_check",
cfang@1607 1890 "age",
kvn@2877 1891 "predicate",
roland@6377 1892 "loop_limit_check",
kvn@6429 1893 "speculate_class_check",
rbackman@7153 1894 "rtm_state_change",
rbackman@7153 1895 "unstable_if"
duke@435 1896 };
duke@435 1897 const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
duke@435 1898 // Note: Keep this in sync. with enum DeoptAction.
duke@435 1899 "none",
duke@435 1900 "maybe_recompile",
duke@435 1901 "reinterpret",
duke@435 1902 "make_not_entrant",
duke@435 1903 "make_not_compilable"
duke@435 1904 };
duke@435 1905
duke@435 1906 const char* Deoptimization::trap_reason_name(int reason) {
duke@435 1907 if (reason == Reason_many) return "many";
duke@435 1908 if ((uint)reason < Reason_LIMIT)
duke@435 1909 return _trap_reason_name[reason];
duke@435 1910 static char buf[20];
duke@435 1911 sprintf(buf, "reason%d", reason);
duke@435 1912 return buf;
duke@435 1913 }
duke@435 1914 const char* Deoptimization::trap_action_name(int action) {
duke@435 1915 if ((uint)action < Action_LIMIT)
duke@435 1916 return _trap_action_name[action];
duke@435 1917 static char buf[20];
duke@435 1918 sprintf(buf, "action%d", action);
duke@435 1919 return buf;
duke@435 1920 }
duke@435 1921
vlivanov@5725 1922 // This is used for debugging and diagnostics, including LogFile output.
duke@435 1923 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
duke@435 1924 int trap_request) {
duke@435 1925 jint unloaded_class_index = trap_request_index(trap_request);
duke@435 1926 const char* reason = trap_reason_name(trap_request_reason(trap_request));
duke@435 1927 const char* action = trap_action_name(trap_request_action(trap_request));
duke@435 1928 size_t len;
duke@435 1929 if (unloaded_class_index < 0) {
duke@435 1930 len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
duke@435 1931 reason, action);
duke@435 1932 } else {
duke@435 1933 len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
duke@435 1934 reason, action, unloaded_class_index);
duke@435 1935 }
duke@435 1936 if (len >= buflen)
duke@435 1937 buf[buflen-1] = '\0';
duke@435 1938 return buf;
duke@435 1939 }
duke@435 1940
duke@435 1941 juint Deoptimization::_deoptimization_hist
duke@435 1942 [Deoptimization::Reason_LIMIT]
duke@435 1943 [1 + Deoptimization::Action_LIMIT]
duke@435 1944 [Deoptimization::BC_CASE_LIMIT]
duke@435 1945 = {0};
duke@435 1946
duke@435 1947 enum {
duke@435 1948 LSB_BITS = 8,
duke@435 1949 LSB_MASK = right_n_bits(LSB_BITS)
duke@435 1950 };
duke@435 1951
duke@435 1952 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
duke@435 1953 Bytecodes::Code bc) {
duke@435 1954 assert(reason >= 0 && reason < Reason_LIMIT, "oob");
duke@435 1955 assert(action >= 0 && action < Action_LIMIT, "oob");
duke@435 1956 _deoptimization_hist[Reason_none][0][0] += 1; // total
duke@435 1957 _deoptimization_hist[reason][0][0] += 1; // per-reason total
duke@435 1958 juint* cases = _deoptimization_hist[reason][1+action];
duke@435 1959 juint* bc_counter_addr = NULL;
duke@435 1960 juint bc_counter = 0;
duke@435 1961 // Look for an unused counter, or an exact match to this BC.
duke@435 1962 if (bc != Bytecodes::_illegal) {
duke@435 1963 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
duke@435 1964 juint* counter_addr = &cases[bc_case];
duke@435 1965 juint counter = *counter_addr;
duke@435 1966 if ((counter == 0 && bc_counter_addr == NULL)
duke@435 1967 || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
duke@435 1968 // this counter is either free or is already devoted to this BC
duke@435 1969 bc_counter_addr = counter_addr;
duke@435 1970 bc_counter = counter | bc;
duke@435 1971 }
duke@435 1972 }
duke@435 1973 }
duke@435 1974 if (bc_counter_addr == NULL) {
duke@435 1975 // Overflow, or no given bytecode.
duke@435 1976 bc_counter_addr = &cases[BC_CASE_LIMIT-1];
duke@435 1977 bc_counter = (*bc_counter_addr & ~LSB_MASK); // clear LSB
duke@435 1978 }
duke@435 1979 *bc_counter_addr = bc_counter + (1 << LSB_BITS);
duke@435 1980 }
duke@435 1981
duke@435 1982 jint Deoptimization::total_deoptimization_count() {
duke@435 1983 return _deoptimization_hist[Reason_none][0][0];
duke@435 1984 }
duke@435 1985
duke@435 1986 jint Deoptimization::deoptimization_count(DeoptReason reason) {
duke@435 1987 assert(reason >= 0 && reason < Reason_LIMIT, "oob");
duke@435 1988 return _deoptimization_hist[reason][0][0];
duke@435 1989 }
duke@435 1990
duke@435 1991 void Deoptimization::print_statistics() {
duke@435 1992 juint total = total_deoptimization_count();
duke@435 1993 juint account = total;
duke@435 1994 if (total != 0) {
duke@435 1995 ttyLocker ttyl;
duke@435 1996 if (xtty != NULL) xtty->head("statistics type='deoptimization'");
duke@435 1997 tty->print_cr("Deoptimization traps recorded:");
duke@435 1998 #define PRINT_STAT_LINE(name, r) \
duke@435 1999 tty->print_cr(" %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
duke@435 2000 PRINT_STAT_LINE("total", total);
duke@435 2001 // For each non-zero entry in the histogram, print the reason,
duke@435 2002 // the action, and (if specifically known) the type of bytecode.
duke@435 2003 for (int reason = 0; reason < Reason_LIMIT; reason++) {
duke@435 2004 for (int action = 0; action < Action_LIMIT; action++) {
duke@435 2005 juint* cases = _deoptimization_hist[reason][1+action];
duke@435 2006 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
duke@435 2007 juint counter = cases[bc_case];
duke@435 2008 if (counter != 0) {
duke@435 2009 char name[1*K];
duke@435 2010 Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
duke@435 2011 if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
duke@435 2012 bc = Bytecodes::_illegal;
duke@435 2013 sprintf(name, "%s/%s/%s",
duke@435 2014 trap_reason_name(reason),
duke@435 2015 trap_action_name(action),
duke@435 2016 Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
duke@435 2017 juint r = counter >> LSB_BITS;
duke@435 2018 tty->print_cr(" %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
duke@435 2019 account -= r;
duke@435 2020 }
duke@435 2021 }
duke@435 2022 }
duke@435 2023 }
duke@435 2024 if (account != 0) {
duke@435 2025 PRINT_STAT_LINE("unaccounted", account);
duke@435 2026 }
duke@435 2027 #undef PRINT_STAT_LINE
duke@435 2028 if (xtty != NULL) xtty->tail("statistics");
duke@435 2029 }
duke@435 2030 }
twisti@2047 2031 #else // COMPILER2 || SHARK
duke@435 2032
duke@435 2033
duke@435 2034 // Stubs for C1 only system.
duke@435 2035 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
duke@435 2036 return false;
duke@435 2037 }
duke@435 2038
duke@435 2039 const char* Deoptimization::trap_reason_name(int reason) {
duke@435 2040 return "unknown";
duke@435 2041 }
duke@435 2042
duke@435 2043 void Deoptimization::print_statistics() {
duke@435 2044 // no output
duke@435 2045 }
duke@435 2046
duke@435 2047 void
coleenp@4037 2048 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
duke@435 2049 // no udpate
duke@435 2050 }
duke@435 2051
duke@435 2052 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
duke@435 2053 return 0;
duke@435 2054 }
duke@435 2055
duke@435 2056 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
duke@435 2057 Bytecodes::Code bc) {
duke@435 2058 // no update
duke@435 2059 }
duke@435 2060
duke@435 2061 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
duke@435 2062 int trap_state) {
duke@435 2063 jio_snprintf(buf, buflen, "#%d", trap_state);
duke@435 2064 return buf;
duke@435 2065 }
duke@435 2066
twisti@2047 2067 #endif // COMPILER2 || SHARK

mercurial