src/share/vm/utilities/globalDefinitions.hpp

Wed, 03 Jul 2019 20:42:37 +0800

author
aoqi
date
Wed, 03 Jul 2019 20:42:37 +0800
changeset 9637
eef07cd490d4
parent 9448
73d689add964
parent 9619
71bd8f8ad1fb
child 9703
2fdf635bcf28
permissions
-rw-r--r--

Merge

duke@435 1 /*
kevinw@8368 2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
aoqi@1 25 /*
aoqi@1 26 * This file has been modified by Loongson Technology in 2015. These
aoqi@1 27 * modifications are Copyright (c) 2015 Loongson Technology, and are made
aoqi@1 28 * available on the same license terms set forth above.
aoqi@1 29 */
aoqi@1 30
stefank@2314 31 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
stefank@2314 32 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
stefank@2314 33
dcubed@3202 34 #ifndef __STDC_FORMAT_MACROS
never@3156 35 #define __STDC_FORMAT_MACROS
dcubed@3202 36 #endif
never@3156 37
stefank@2314 38 #ifdef TARGET_COMPILER_gcc
stefank@2314 39 # include "utilities/globalDefinitions_gcc.hpp"
stefank@2314 40 #endif
stefank@2314 41 #ifdef TARGET_COMPILER_visCPP
stefank@2314 42 # include "utilities/globalDefinitions_visCPP.hpp"
stefank@2314 43 #endif
stefank@2314 44 #ifdef TARGET_COMPILER_sparcWorks
stefank@2314 45 # include "utilities/globalDefinitions_sparcWorks.hpp"
stefank@2314 46 #endif
goetz@6461 47 #ifdef TARGET_COMPILER_xlc
goetz@6461 48 # include "utilities/globalDefinitions_xlc.hpp"
goetz@6461 49 #endif
stefank@2314 50
drchase@6680 51 #ifndef PRAGMA_DIAG_PUSH
drchase@6680 52 #define PRAGMA_DIAG_PUSH
drchase@6680 53 #endif
drchase@6680 54 #ifndef PRAGMA_DIAG_POP
drchase@6680 55 #define PRAGMA_DIAG_POP
drchase@6680 56 #endif
drchase@6680 57 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED
drchase@6680 58 #define PRAGMA_FORMAT_NONLITERAL_IGNORED
drchase@6680 59 #endif
drchase@6680 60 #ifndef PRAGMA_FORMAT_IGNORED
drchase@6680 61 #define PRAGMA_FORMAT_IGNORED
drchase@6680 62 #endif
drchase@6680 63 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
drchase@6680 64 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
drchase@6680 65 #endif
drchase@6680 66 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
drchase@6680 67 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
drchase@6680 68 #endif
drchase@6680 69 #ifndef PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
drchase@6680 70 #define PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
drchase@6680 71 #endif
drchase@6680 72 #ifndef ATTRIBUTE_PRINTF
drchase@6680 73 #define ATTRIBUTE_PRINTF(fmt, vargs)
drchase@6680 74 #endif
drchase@6680 75
drchase@6680 76
stefank@2314 77 #include "utilities/macros.hpp"
stefank@2314 78
duke@435 79 // This file holds all globally used constants & types, class (forward)
duke@435 80 // declarations and a few frequently used utility functions.
duke@435 81
duke@435 82 //----------------------------------------------------------------------------------------------------
duke@435 83 // Constants
duke@435 84
duke@435 85 const int LogBytesPerShort = 1;
duke@435 86 const int LogBytesPerInt = 2;
duke@435 87 #ifdef _LP64
duke@435 88 const int LogBytesPerWord = 3;
duke@435 89 #else
duke@435 90 const int LogBytesPerWord = 2;
duke@435 91 #endif
duke@435 92 const int LogBytesPerLong = 3;
duke@435 93
duke@435 94 const int BytesPerShort = 1 << LogBytesPerShort;
duke@435 95 const int BytesPerInt = 1 << LogBytesPerInt;
duke@435 96 const int BytesPerWord = 1 << LogBytesPerWord;
duke@435 97 const int BytesPerLong = 1 << LogBytesPerLong;
duke@435 98
duke@435 99 const int LogBitsPerByte = 3;
duke@435 100 const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort;
duke@435 101 const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt;
duke@435 102 const int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord;
duke@435 103 const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong;
duke@435 104
duke@435 105 const int BitsPerByte = 1 << LogBitsPerByte;
duke@435 106 const int BitsPerShort = 1 << LogBitsPerShort;
duke@435 107 const int BitsPerInt = 1 << LogBitsPerInt;
duke@435 108 const int BitsPerWord = 1 << LogBitsPerWord;
duke@435 109 const int BitsPerLong = 1 << LogBitsPerLong;
duke@435 110
duke@435 111 const int WordAlignmentMask = (1 << LogBytesPerWord) - 1;
duke@435 112 const int LongAlignmentMask = (1 << LogBytesPerLong) - 1;
duke@435 113
duke@435 114 const int WordsPerLong = 2; // Number of stack entries for longs
duke@435 115
coleenp@548 116 const int oopSize = sizeof(char*); // Full-width oop
coleenp@548 117 extern int heapOopSize; // Oop within a java object
duke@435 118 const int wordSize = sizeof(char*);
duke@435 119 const int longSize = sizeof(jlong);
duke@435 120 const int jintSize = sizeof(jint);
duke@435 121 const int size_tSize = sizeof(size_t);
duke@435 122
coleenp@548 123 const int BytesPerOop = BytesPerWord; // Full-width oop
duke@435 124
coleenp@548 125 extern int LogBytesPerHeapOop; // Oop within a java object
coleenp@548 126 extern int LogBitsPerHeapOop;
coleenp@548 127 extern int BytesPerHeapOop;
coleenp@548 128 extern int BitsPerHeapOop;
duke@435 129
kvn@1926 130 // Oop encoding heap max
kvn@1926 131 extern uint64_t OopEncodingHeapMax;
kvn@1926 132
duke@435 133 const int BitsPerJavaInteger = 32;
twisti@994 134 const int BitsPerJavaLong = 64;
duke@435 135 const int BitsPerSize_t = size_tSize * BitsPerByte;
duke@435 136
coleenp@548 137 // Size of a char[] needed to represent a jint as a string in decimal.
coleenp@548 138 const int jintAsStringSize = 12;
coleenp@548 139
duke@435 140 // In fact this should be
duke@435 141 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
duke@435 142 // see os::set_memory_serialize_page()
duke@435 143 #ifdef _LP64
duke@435 144 const int SerializePageShiftCount = 4;
duke@435 145 #else
duke@435 146 const int SerializePageShiftCount = 3;
duke@435 147 #endif
duke@435 148
duke@435 149 // An opaque struct of heap-word width, so that HeapWord* can be a generic
duke@435 150 // pointer into the heap. We require that object sizes be measured in
duke@435 151 // units of heap words, so that that
duke@435 152 // HeapWord* hw;
duke@435 153 // hw += oop(hw)->foo();
duke@435 154 // works, where foo is a method (like size or scavenge) that returns the
duke@435 155 // object size.
duke@435 156 class HeapWord {
duke@435 157 friend class VMStructs;
jmasa@698 158 private:
duke@435 159 char* i;
jmasa@796 160 #ifndef PRODUCT
jmasa@698 161 public:
jmasa@698 162 char* value() { return i; }
jmasa@698 163 #endif
duke@435 164 };
duke@435 165
coleenp@4037 166 // Analogous opaque struct for metadata allocated from
coleenp@4037 167 // metaspaces.
coleenp@4037 168 class MetaWord {
coleenp@4037 169 friend class VMStructs;
coleenp@4037 170 private:
coleenp@4037 171 char* i;
coleenp@4037 172 };
coleenp@4037 173
duke@435 174 // HeapWordSize must be 2^LogHeapWordSize.
coleenp@548 175 const int HeapWordSize = sizeof(HeapWord);
duke@435 176 #ifdef _LP64
coleenp@548 177 const int LogHeapWordSize = 3;
duke@435 178 #else
coleenp@548 179 const int LogHeapWordSize = 2;
duke@435 180 #endif
coleenp@548 181 const int HeapWordsPerLong = BytesPerLong / HeapWordSize;
coleenp@548 182 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
duke@435 183
duke@435 184 // The larger HeapWordSize for 64bit requires larger heaps
duke@435 185 // for the same application running in 64bit. See bug 4967770.
duke@435 186 // The minimum alignment to a heap word size is done. Other
duke@435 187 // parts of the memory system may required additional alignment
duke@435 188 // and are responsible for those alignments.
duke@435 189 #ifdef _LP64
duke@435 190 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
duke@435 191 #else
duke@435 192 #define ScaleForWordSize(x) (x)
duke@435 193 #endif
duke@435 194
duke@435 195 // The minimum number of native machine words necessary to contain "byte_size"
duke@435 196 // bytes.
duke@435 197 inline size_t heap_word_size(size_t byte_size) {
duke@435 198 return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
duke@435 199 }
duke@435 200
duke@435 201
duke@435 202 const size_t K = 1024;
duke@435 203 const size_t M = K*K;
duke@435 204 const size_t G = M*K;
duke@435 205 const size_t HWperKB = K / sizeof(HeapWord);
duke@435 206
duke@435 207 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
duke@435 208 const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint
duke@435 209
duke@435 210 // Constants for converting from a base unit to milli-base units. For
duke@435 211 // example from seconds to milliseconds and microseconds
duke@435 212
duke@435 213 const int MILLIUNITS = 1000; // milli units per base unit
duke@435 214 const int MICROUNITS = 1000000; // micro units per base unit
duke@435 215 const int NANOUNITS = 1000000000; // nano units per base unit
duke@435 216
johnc@3339 217 const jlong NANOSECS_PER_SEC = CONST64(1000000000);
johnc@3339 218 const jint NANOSECS_PER_MILLISEC = 1000000;
johnc@3339 219
duke@435 220 inline const char* proper_unit_for_byte_size(size_t s) {
brutisso@3766 221 #ifdef _LP64
brutisso@3766 222 if (s >= 10*G) {
brutisso@3766 223 return "G";
brutisso@3766 224 }
brutisso@3766 225 #endif
duke@435 226 if (s >= 10*M) {
duke@435 227 return "M";
duke@435 228 } else if (s >= 10*K) {
duke@435 229 return "K";
duke@435 230 } else {
duke@435 231 return "B";
duke@435 232 }
duke@435 233 }
duke@435 234
brutisso@3762 235 template <class T>
brutisso@3762 236 inline T byte_size_in_proper_unit(T s) {
brutisso@3766 237 #ifdef _LP64
brutisso@3766 238 if (s >= 10*G) {
brutisso@3766 239 return (T)(s/G);
brutisso@3766 240 }
brutisso@3766 241 #endif
duke@435 242 if (s >= 10*M) {
brutisso@3762 243 return (T)(s/M);
duke@435 244 } else if (s >= 10*K) {
brutisso@3762 245 return (T)(s/K);
duke@435 246 } else {
duke@435 247 return s;
duke@435 248 }
duke@435 249 }
duke@435 250
duke@435 251 //----------------------------------------------------------------------------------------------------
duke@435 252 // VM type definitions
duke@435 253
duke@435 254 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
duke@435 255 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
duke@435 256
duke@435 257 typedef intptr_t intx;
duke@435 258 typedef uintptr_t uintx;
duke@435 259
duke@435 260 const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1);
duke@435 261 const intx max_intx = (uintx)min_intx - 1;
duke@435 262 const uintx max_uintx = (uintx)-1;
duke@435 263
duke@435 264 // Table of values:
duke@435 265 // sizeof intx 4 8
duke@435 266 // min_intx 0x80000000 0x8000000000000000
duke@435 267 // max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF
duke@435 268 // max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF
duke@435 269
duke@435 270 typedef unsigned int uint; NEEDS_CLEANUP
duke@435 271
duke@435 272
duke@435 273 //----------------------------------------------------------------------------------------------------
duke@435 274 // Java type definitions
duke@435 275
duke@435 276 // All kinds of 'plain' byte addresses
duke@435 277 typedef signed char s_char;
duke@435 278 typedef unsigned char u_char;
duke@435 279 typedef u_char* address;
duke@435 280 typedef uintptr_t address_word; // unsigned integer which will hold a pointer
duke@435 281 // except for some implementations of a C++
duke@435 282 // linkage pointer to function. Should never
duke@435 283 // need one of those to be placed in this
duke@435 284 // type anyway.
duke@435 285
duke@435 286 // Utility functions to "portably" (?) bit twiddle pointers
duke@435 287 // Where portable means keep ANSI C++ compilers quiet
duke@435 288
duke@435 289 inline address set_address_bits(address x, int m) { return address(intptr_t(x) | m); }
duke@435 290 inline address clear_address_bits(address x, int m) { return address(intptr_t(x) & ~m); }
duke@435 291
duke@435 292 // Utility functions to "portably" make cast to/from function pointers.
duke@435 293
duke@435 294 inline address_word mask_address_bits(address x, int m) { return address_word(x) & m; }
duke@435 295 inline address_word castable_address(address x) { return address_word(x) ; }
duke@435 296 inline address_word castable_address(void* x) { return address_word(x) ; }
duke@435 297
duke@435 298 // Pointer subtraction.
duke@435 299 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
duke@435 300 // the range we might need to find differences from one end of the heap
duke@435 301 // to the other.
duke@435 302 // A typical use might be:
duke@435 303 // if (pointer_delta(end(), top()) >= size) {
duke@435 304 // // enough room for an object of size
duke@435 305 // ...
duke@435 306 // and then additions like
duke@435 307 // ... top() + size ...
duke@435 308 // are safe because we know that top() is at least size below end().
duke@435 309 inline size_t pointer_delta(const void* left,
duke@435 310 const void* right,
duke@435 311 size_t element_size) {
duke@435 312 return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
duke@435 313 }
duke@435 314 // A version specialized for HeapWord*'s.
duke@435 315 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
duke@435 316 return pointer_delta(left, right, sizeof(HeapWord));
duke@435 317 }
coleenp@4037 318 // A version specialized for MetaWord*'s.
coleenp@4037 319 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
coleenp@4037 320 return pointer_delta(left, right, sizeof(MetaWord));
coleenp@4037 321 }
duke@435 322
duke@435 323 //
duke@435 324 // ANSI C++ does not allow casting from one pointer type to a function pointer
duke@435 325 // directly without at best a warning. This macro accomplishes it silently
duke@435 326 // In every case that is present at this point the value be cast is a pointer
duke@435 327 // to a C linkage function. In somecase the type used for the cast reflects
duke@435 328 // that linkage and a picky compiler would not complain. In other cases because
duke@435 329 // there is no convenient place to place a typedef with extern C linkage (i.e
duke@435 330 // a platform dependent header file) it doesn't. At this point no compiler seems
duke@435 331 // picky enough to catch these instances (which are few). It is possible that
duke@435 332 // using templates could fix these for all cases. This use of templates is likely
duke@435 333 // so far from the middle of the road that it is likely to be problematic in
duke@435 334 // many C++ compilers.
duke@435 335 //
duke@435 336 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
duke@435 337 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
duke@435 338
duke@435 339 // Unsigned byte types for os and stream.hpp
duke@435 340
duke@435 341 // Unsigned one, two, four and eigth byte quantities used for describing
duke@435 342 // the .class file format. See JVM book chapter 4.
duke@435 343
duke@435 344 typedef jubyte u1;
duke@435 345 typedef jushort u2;
duke@435 346 typedef juint u4;
duke@435 347 typedef julong u8;
duke@435 348
duke@435 349 const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte
duke@435 350 const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort
duke@435 351 const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint
duke@435 352 const julong max_julong = (julong)-1; // 0xFF....FF largest julong
duke@435 353
phh@3427 354 typedef jbyte s1;
phh@3427 355 typedef jshort s2;
phh@3427 356 typedef jint s4;
phh@3427 357 typedef jlong s8;
phh@3427 358
duke@435 359 //----------------------------------------------------------------------------------------------------
duke@435 360 // JVM spec restrictions
duke@435 361
duke@435 362 const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134)
duke@435 363
tschatzl@5862 364 // Default ProtectionDomainCacheSize values
tschatzl@5862 365
tschatzl@5862 366 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
duke@435 367
duke@435 368 //----------------------------------------------------------------------------------------------------
hseigel@4958 369 // Default and minimum StringTableSize values
hseigel@4277 370
hseigel@4958 371 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
tschatzl@5862 372 const int minimumStringTableSize = 1009;
hseigel@4277 373
kevinw@5850 374 const int defaultSymbolTableSize = 20011;
kevinw@5850 375 const int minimumSymbolTableSize = 1009;
kevinw@5850 376
hseigel@4277 377
hseigel@4277 378 //----------------------------------------------------------------------------------------------------
duke@435 379 // HotSwap - for JVMTI aka Class File Replacement and PopFrame
duke@435 380 //
duke@435 381 // Determines whether on-the-fly class replacement and frame popping are enabled.
duke@435 382
duke@435 383 #define HOTSWAP
duke@435 384
duke@435 385 //----------------------------------------------------------------------------------------------------
duke@435 386 // Object alignment, in units of HeapWords.
duke@435 387 //
duke@435 388 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
duke@435 389 // reference fields can be naturally aligned.
duke@435 390
kvn@1926 391 extern int MinObjAlignment;
kvn@1926 392 extern int MinObjAlignmentInBytes;
kvn@1926 393 extern int MinObjAlignmentInBytesMask;
duke@435 394
kvn@1926 395 extern int LogMinObjAlignment;
kvn@1926 396 extern int LogMinObjAlignmentInBytes;
coleenp@548 397
roland@4159 398 const int LogKlassAlignmentInBytes = 3;
roland@4159 399 const int LogKlassAlignment = LogKlassAlignmentInBytes - LogHeapWordSize;
roland@4159 400 const int KlassAlignmentInBytes = 1 << LogKlassAlignmentInBytes;
roland@4159 401 const int KlassAlignment = KlassAlignmentInBytes / HeapWordSize;
roland@4159 402
roland@4159 403 // Klass encoding metaspace max size
roland@4159 404 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
roland@4159 405
duke@435 406 // Machine dependent stuff
duke@435 407
kvn@6429 408 #if defined(X86) && defined(COMPILER2) && !defined(JAVASE_EMBEDDED)
kvn@6429 409 // Include Restricted Transactional Memory lock eliding optimization
kvn@6429 410 #define INCLUDE_RTM_OPT 1
kvn@6429 411 #define RTM_OPT_ONLY(code) code
kvn@6429 412 #else
kvn@6429 413 #define INCLUDE_RTM_OPT 0
kvn@6429 414 #define RTM_OPT_ONLY(code)
kvn@6429 415 #endif
kvn@6429 416 // States of Restricted Transactional Memory usage.
kvn@6429 417 enum RTMState {
kvn@6429 418 NoRTM = 0x2, // Don't use RTM
kvn@6429 419 UseRTM = 0x1, // Use RTM
kvn@6429 420 ProfileRTM = 0x0 // Use RTM with abort ratio calculation
kvn@6429 421 };
kvn@6429 422
stefank@2314 423 #ifdef TARGET_ARCH_x86
stefank@2314 424 # include "globalDefinitions_x86.hpp"
stefank@2314 425 #endif
stefank@2314 426 #ifdef TARGET_ARCH_sparc
stefank@2314 427 # include "globalDefinitions_sparc.hpp"
stefank@2314 428 #endif
stefank@2314 429 #ifdef TARGET_ARCH_zero
stefank@2314 430 # include "globalDefinitions_zero.hpp"
stefank@2314 431 #endif
bobv@2508 432 #ifdef TARGET_ARCH_arm
bobv@2508 433 # include "globalDefinitions_arm.hpp"
bobv@2508 434 #endif
bobv@2508 435 #ifdef TARGET_ARCH_ppc
bobv@2508 436 # include "globalDefinitions_ppc.hpp"
bobv@2508 437 #endif
aoqi@1 438 #ifdef TARGET_ARCH_mips
aoqi@1 439 # include "globalDefinitions_mips.hpp"
aoqi@1 440 #endif
stefank@2314 441
jprovino@5188 442 /*
jprovino@5402 443 * If a platform does not support native stack walking
jprovino@5188 444 * the platform specific globalDefinitions (above)
jprovino@5402 445 * can set PLATFORM_NATIVE_STACK_WALKING_SUPPORTED to 0
jprovino@5188 446 */
jprovino@5402 447 #ifndef PLATFORM_NATIVE_STACK_WALKING_SUPPORTED
jprovino@5402 448 #define PLATFORM_NATIVE_STACK_WALKING_SUPPORTED 1
jprovino@5188 449 #endif
duke@435 450
goetz@6502 451 // To assure the IRIW property on processors that are not multiple copy
goetz@6502 452 // atomic, sync instructions must be issued between volatile reads to
goetz@6502 453 // assure their ordering, instead of after volatile stores.
goetz@6502 454 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
goetz@6502 455 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
goetz@6502 456 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
goetz@6502 457 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
goetz@6502 458 #else
goetz@6502 459 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
goetz@6502 460 #endif
goetz@6502 461
duke@435 462 // The byte alignment to be used by Arena::Amalloc. See bugid 4169348.
duke@435 463 // Note: this value must be a power of 2
duke@435 464
duke@435 465 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
duke@435 466
duke@435 467 // Signed variants of alignment helpers. There are two versions of each, a macro
duke@435 468 // for use in places like enum definitions that require compile-time constant
duke@435 469 // expressions and a function for all other places so as to get type checking.
duke@435 470
duke@435 471 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
duke@435 472
stefank@5578 473 inline bool is_size_aligned(size_t size, size_t alignment) {
stefank@5578 474 return align_size_up_(size, alignment) == size;
stefank@5578 475 }
stefank@5578 476
stefank@5578 477 inline bool is_ptr_aligned(void* ptr, size_t alignment) {
stefank@5578 478 return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
stefank@5578 479 }
stefank@5578 480
duke@435 481 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
duke@435 482 return align_size_up_(size, alignment);
duke@435 483 }
duke@435 484
duke@435 485 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
duke@435 486
duke@435 487 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
duke@435 488 return align_size_down_(size, alignment);
duke@435 489 }
duke@435 490
stefank@5515 491 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
stefank@5515 492
stefank@5578 493 inline void* align_ptr_up(void* ptr, size_t alignment) {
stefank@5578 494 return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
stefank@5578 495 }
stefank@5578 496
stefank@5578 497 inline void* align_ptr_down(void* ptr, size_t alignment) {
stefank@5578 498 return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
stefank@5578 499 }
stefank@5578 500
duke@435 501 // Align objects by rounding up their size, in HeapWord units.
duke@435 502
duke@435 503 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
duke@435 504
duke@435 505 inline intptr_t align_object_size(intptr_t size) {
duke@435 506 return align_size_up(size, MinObjAlignment);
duke@435 507 }
duke@435 508
kvn@1926 509 inline bool is_object_aligned(intptr_t addr) {
kvn@1926 510 return addr == align_object_size(addr);
kvn@1926 511 }
kvn@1926 512
duke@435 513 // Pad out certain offsets to jlong alignment, in HeapWord units.
duke@435 514
duke@435 515 inline intptr_t align_object_offset(intptr_t offset) {
duke@435 516 return align_size_up(offset, HeapWordsPerLong);
duke@435 517 }
duke@435 518
stefank@5515 519 inline void* align_pointer_up(const void* addr, size_t size) {
stefank@5515 520 return (void*) align_size_up_((uintptr_t)addr, size);
stefank@5515 521 }
stefank@5515 522
jwilhelm@6083 523 // Align down with a lower bound. If the aligning results in 0, return 'alignment'.
jwilhelm@6083 524
jwilhelm@6083 525 inline size_t align_size_down_bounded(size_t size, size_t alignment) {
jwilhelm@6083 526 size_t aligned_size = align_size_down_(size, alignment);
jwilhelm@6083 527 return aligned_size > 0 ? aligned_size : alignment;
jwilhelm@6083 528 }
jwilhelm@6083 529
mikael@4889 530 // Clamp an address to be within a specific page
mikael@4889 531 // 1. If addr is on the page it is returned as is
mikael@4889 532 // 2. If addr is above the page_address the start of the *next* page will be returned
mikael@4889 533 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
mikael@4889 534 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
mikael@4889 535 if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
mikael@4889 536 // address is in the specified page, just return it as is
mikael@4889 537 return addr;
mikael@4889 538 } else if (addr > page_address) {
mikael@4889 539 // address is above specified page, return start of next page
mikael@4889 540 return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
mikael@4889 541 } else {
mikael@4889 542 // address is below specified page, return start of page
mikael@4889 543 return (address)align_size_down(intptr_t(page_address), page_size);
mikael@4889 544 }
mikael@4889 545 }
mikael@4889 546
mikael@4889 547
jcoomes@2020 548 // The expected size in bytes of a cache line, used to pad data structures.
jcoomes@2020 549 #define DEFAULT_CACHE_LINE_SIZE 64
jcoomes@2020 550
duke@435 551
duke@435 552 //----------------------------------------------------------------------------------------------------
duke@435 553 // Utility macros for compilers
duke@435 554 // used to silence compiler warnings
duke@435 555
duke@435 556 #define Unused_Variable(var) var
duke@435 557
duke@435 558
duke@435 559 //----------------------------------------------------------------------------------------------------
duke@435 560 // Miscellaneous
duke@435 561
duke@435 562 // 6302670 Eliminate Hotspot __fabsf dependency
duke@435 563 // All fabs() callers should call this function instead, which will implicitly
duke@435 564 // convert the operand to double, avoiding a dependency on __fabsf which
duke@435 565 // doesn't exist in early versions of Solaris 8.
duke@435 566 inline double fabsd(double value) {
duke@435 567 return fabs(value);
duke@435 568 }
duke@435 569
thartmann@7001 570 //----------------------------------------------------------------------------------------------------
thartmann@7001 571 // Special casts
thartmann@7001 572 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
thartmann@7001 573 typedef union {
thartmann@7001 574 jfloat f;
thartmann@7001 575 jint i;
thartmann@7001 576 } FloatIntConv;
thartmann@7001 577
thartmann@7001 578 typedef union {
thartmann@7001 579 jdouble d;
thartmann@7001 580 jlong l;
thartmann@7001 581 julong ul;
thartmann@7001 582 } DoubleLongConv;
thartmann@7001 583
thartmann@7001 584 inline jint jint_cast (jfloat x) { return ((FloatIntConv*)&x)->i; }
thartmann@7001 585 inline jfloat jfloat_cast (jint x) { return ((FloatIntConv*)&x)->f; }
thartmann@7001 586
thartmann@7001 587 inline jlong jlong_cast (jdouble x) { return ((DoubleLongConv*)&x)->l; }
thartmann@7001 588 inline julong julong_cast (jdouble x) { return ((DoubleLongConv*)&x)->ul; }
thartmann@7001 589 inline jdouble jdouble_cast (jlong x) { return ((DoubleLongConv*)&x)->d; }
thartmann@7001 590
duke@435 591 inline jint low (jlong value) { return jint(value); }
duke@435 592 inline jint high(jlong value) { return jint(value >> 32); }
duke@435 593
duke@435 594 // the fancy casts are a hopefully portable way
duke@435 595 // to do unsigned 32 to 64 bit type conversion
duke@435 596 inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32;
duke@435 597 *value |= (jlong)(julong)(juint)low; }
duke@435 598
duke@435 599 inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff;
duke@435 600 *value |= (jlong)high << 32; }
duke@435 601
duke@435 602 inline jlong jlong_from(jint h, jint l) {
duke@435 603 jlong result = 0; // initialization to avoid warning
duke@435 604 set_high(&result, h);
duke@435 605 set_low(&result, l);
duke@435 606 return result;
duke@435 607 }
duke@435 608
duke@435 609 union jlong_accessor {
duke@435 610 jint words[2];
duke@435 611 jlong long_value;
duke@435 612 };
duke@435 613
coleenp@548 614 void basic_types_init(); // cannot define here; uses assert
duke@435 615
duke@435 616
duke@435 617 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
duke@435 618 enum BasicType {
roland@4159 619 T_BOOLEAN = 4,
roland@4159 620 T_CHAR = 5,
roland@4159 621 T_FLOAT = 6,
roland@4159 622 T_DOUBLE = 7,
roland@4159 623 T_BYTE = 8,
roland@4159 624 T_SHORT = 9,
roland@4159 625 T_INT = 10,
roland@4159 626 T_LONG = 11,
roland@4159 627 T_OBJECT = 12,
roland@4159 628 T_ARRAY = 13,
roland@4159 629 T_VOID = 14,
roland@4159 630 T_ADDRESS = 15,
roland@4159 631 T_NARROWOOP = 16,
roland@4159 632 T_METADATA = 17,
roland@4159 633 T_NARROWKLASS = 18,
roland@4159 634 T_CONFLICT = 19, // for stack value type with conflicting contents
roland@4159 635 T_ILLEGAL = 99
duke@435 636 };
duke@435 637
kvn@464 638 inline bool is_java_primitive(BasicType t) {
kvn@464 639 return T_BOOLEAN <= t && t <= T_LONG;
kvn@464 640 }
kvn@464 641
jrose@1145 642 inline bool is_subword_type(BasicType t) {
jrose@1145 643 // these guys are processed exactly like T_INT in calling sequences:
jrose@1145 644 return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
jrose@1145 645 }
jrose@1145 646
jrose@1145 647 inline bool is_signed_subword_type(BasicType t) {
jrose@1145 648 return (t == T_BYTE || t == T_SHORT);
jrose@1145 649 }
jrose@1145 650
duke@435 651 // Convert a char from a classfile signature to a BasicType
duke@435 652 inline BasicType char2type(char c) {
duke@435 653 switch( c ) {
duke@435 654 case 'B': return T_BYTE;
duke@435 655 case 'C': return T_CHAR;
duke@435 656 case 'D': return T_DOUBLE;
duke@435 657 case 'F': return T_FLOAT;
duke@435 658 case 'I': return T_INT;
duke@435 659 case 'J': return T_LONG;
duke@435 660 case 'S': return T_SHORT;
duke@435 661 case 'Z': return T_BOOLEAN;
duke@435 662 case 'V': return T_VOID;
duke@435 663 case 'L': return T_OBJECT;
duke@435 664 case '[': return T_ARRAY;
duke@435 665 }
duke@435 666 return T_ILLEGAL;
duke@435 667 }
duke@435 668
duke@435 669 extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
duke@435 670 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
duke@435 671 extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements
duke@435 672 extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
duke@435 673 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
duke@435 674 extern BasicType name2type(const char* name);
duke@435 675
duke@435 676 // Auxilary math routines
duke@435 677 // least common multiple
duke@435 678 extern size_t lcm(size_t a, size_t b);
duke@435 679
duke@435 680
duke@435 681 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
duke@435 682 enum BasicTypeSize {
roland@4159 683 T_BOOLEAN_size = 1,
roland@4159 684 T_CHAR_size = 1,
roland@4159 685 T_FLOAT_size = 1,
roland@4159 686 T_DOUBLE_size = 2,
roland@4159 687 T_BYTE_size = 1,
roland@4159 688 T_SHORT_size = 1,
roland@4159 689 T_INT_size = 1,
roland@4159 690 T_LONG_size = 2,
roland@4159 691 T_OBJECT_size = 1,
roland@4159 692 T_ARRAY_size = 1,
roland@4159 693 T_NARROWOOP_size = 1,
roland@4159 694 T_NARROWKLASS_size = 1,
roland@4159 695 T_VOID_size = 0
duke@435 696 };
duke@435 697
duke@435 698
duke@435 699 // maps a BasicType to its instance field storage type:
duke@435 700 // all sub-word integral types are widened to T_INT
duke@435 701 extern BasicType type2field[T_CONFLICT+1];
duke@435 702 extern BasicType type2wfield[T_CONFLICT+1];
duke@435 703
duke@435 704
duke@435 705 // size in bytes
duke@435 706 enum ArrayElementSize {
roland@4159 707 T_BOOLEAN_aelem_bytes = 1,
roland@4159 708 T_CHAR_aelem_bytes = 2,
roland@4159 709 T_FLOAT_aelem_bytes = 4,
roland@4159 710 T_DOUBLE_aelem_bytes = 8,
roland@4159 711 T_BYTE_aelem_bytes = 1,
roland@4159 712 T_SHORT_aelem_bytes = 2,
roland@4159 713 T_INT_aelem_bytes = 4,
roland@4159 714 T_LONG_aelem_bytes = 8,
duke@435 715 #ifdef _LP64
roland@4159 716 T_OBJECT_aelem_bytes = 8,
roland@4159 717 T_ARRAY_aelem_bytes = 8,
duke@435 718 #else
roland@4159 719 T_OBJECT_aelem_bytes = 4,
roland@4159 720 T_ARRAY_aelem_bytes = 4,
duke@435 721 #endif
roland@4159 722 T_NARROWOOP_aelem_bytes = 4,
roland@4159 723 T_NARROWKLASS_aelem_bytes = 4,
roland@4159 724 T_VOID_aelem_bytes = 0
duke@435 725 };
duke@435 726
kvn@464 727 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
kvn@464 728 #ifdef ASSERT
kvn@464 729 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
kvn@464 730 #else
never@2118 731 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
kvn@464 732 #endif
duke@435 733
duke@435 734
duke@435 735 // JavaValue serves as a container for arbitrary Java values.
duke@435 736
duke@435 737 class JavaValue {
duke@435 738
duke@435 739 public:
duke@435 740 typedef union JavaCallValue {
duke@435 741 jfloat f;
duke@435 742 jdouble d;
duke@435 743 jint i;
duke@435 744 jlong l;
duke@435 745 jobject h;
duke@435 746 } JavaCallValue;
duke@435 747
duke@435 748 private:
duke@435 749 BasicType _type;
duke@435 750 JavaCallValue _value;
duke@435 751
duke@435 752 public:
duke@435 753 JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
duke@435 754
duke@435 755 JavaValue(jfloat value) {
duke@435 756 _type = T_FLOAT;
duke@435 757 _value.f = value;
duke@435 758 }
duke@435 759
duke@435 760 JavaValue(jdouble value) {
duke@435 761 _type = T_DOUBLE;
duke@435 762 _value.d = value;
duke@435 763 }
duke@435 764
duke@435 765 jfloat get_jfloat() const { return _value.f; }
duke@435 766 jdouble get_jdouble() const { return _value.d; }
duke@435 767 jint get_jint() const { return _value.i; }
duke@435 768 jlong get_jlong() const { return _value.l; }
duke@435 769 jobject get_jobject() const { return _value.h; }
duke@435 770 JavaCallValue* get_value_addr() { return &_value; }
duke@435 771 BasicType get_type() const { return _type; }
duke@435 772
duke@435 773 void set_jfloat(jfloat f) { _value.f = f;}
duke@435 774 void set_jdouble(jdouble d) { _value.d = d;}
duke@435 775 void set_jint(jint i) { _value.i = i;}
duke@435 776 void set_jlong(jlong l) { _value.l = l;}
duke@435 777 void set_jobject(jobject h) { _value.h = h;}
duke@435 778 void set_type(BasicType t) { _type = t; }
duke@435 779
duke@435 780 jboolean get_jboolean() const { return (jboolean) (_value.i);}
duke@435 781 jbyte get_jbyte() const { return (jbyte) (_value.i);}
duke@435 782 jchar get_jchar() const { return (jchar) (_value.i);}
duke@435 783 jshort get_jshort() const { return (jshort) (_value.i);}
duke@435 784
duke@435 785 };
duke@435 786
duke@435 787
duke@435 788 #define STACK_BIAS 0
duke@435 789 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
duke@435 790 // in order to extend the reach of the stack pointer.
duke@435 791 #if defined(SPARC) && defined(_LP64)
duke@435 792 #undef STACK_BIAS
duke@435 793 #define STACK_BIAS 0x7ff
duke@435 794 #endif
duke@435 795
duke@435 796
duke@435 797 // TosState describes the top-of-stack state before and after the execution of
duke@435 798 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
duke@435 799 // registers. The TosState corresponds to the 'machine represention' of this cached
duke@435 800 // value. There's 4 states corresponding to the JAVA types int, long, float & double
duke@435 801 // as well as a 5th state in case the top-of-stack value is actually on the top
duke@435 802 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
duke@435 803 // state when it comes to machine representation but is used separately for (oop)
duke@435 804 // type specific operations (e.g. verification code).
duke@435 805
duke@435 806 enum TosState { // describes the tos cache contents
duke@435 807 btos = 0, // byte, bool tos cached
kevinw@8368 808 ztos = 1, // byte, bool tos cached
kevinw@8368 809 ctos = 2, // char tos cached
kevinw@8368 810 stos = 3, // short tos cached
kevinw@8368 811 itos = 4, // int tos cached
kevinw@8368 812 ltos = 5, // long tos cached
kevinw@8368 813 ftos = 6, // float tos cached
kevinw@8368 814 dtos = 7, // double tos cached
kevinw@8368 815 atos = 8, // object cached
kevinw@8368 816 vtos = 9, // tos not cached
duke@435 817 number_of_states,
duke@435 818 ilgl // illegal state: should not occur
duke@435 819 };
duke@435 820
duke@435 821
duke@435 822 inline TosState as_TosState(BasicType type) {
duke@435 823 switch (type) {
duke@435 824 case T_BYTE : return btos;
kevinw@8368 825 case T_BOOLEAN: return ztos;
duke@435 826 case T_CHAR : return ctos;
duke@435 827 case T_SHORT : return stos;
duke@435 828 case T_INT : return itos;
duke@435 829 case T_LONG : return ltos;
duke@435 830 case T_FLOAT : return ftos;
duke@435 831 case T_DOUBLE : return dtos;
duke@435 832 case T_VOID : return vtos;
duke@435 833 case T_ARRAY : // fall through
duke@435 834 case T_OBJECT : return atos;
duke@435 835 }
duke@435 836 return ilgl;
duke@435 837 }
duke@435 838
jrose@1161 839 inline BasicType as_BasicType(TosState state) {
jrose@1161 840 switch (state) {
jrose@1161 841 case btos : return T_BYTE;
kevinw@8368 842 case ztos : return T_BOOLEAN;
jrose@1161 843 case ctos : return T_CHAR;
jrose@1161 844 case stos : return T_SHORT;
jrose@1161 845 case itos : return T_INT;
jrose@1161 846 case ltos : return T_LONG;
jrose@1161 847 case ftos : return T_FLOAT;
jrose@1161 848 case dtos : return T_DOUBLE;
jrose@1161 849 case atos : return T_OBJECT;
jrose@1161 850 case vtos : return T_VOID;
jrose@1161 851 }
jrose@1161 852 return T_ILLEGAL;
jrose@1161 853 }
jrose@1161 854
duke@435 855
duke@435 856 // Helper function to convert BasicType info into TosState
duke@435 857 // Note: Cannot define here as it uses global constant at the time being.
duke@435 858 TosState as_TosState(BasicType type);
duke@435 859
duke@435 860
duke@435 861 // JavaThreadState keeps track of which part of the code a thread is executing in. This
duke@435 862 // information is needed by the safepoint code.
duke@435 863 //
duke@435 864 // There are 4 essential states:
duke@435 865 //
duke@435 866 // _thread_new : Just started, but not executed init. code yet (most likely still in OS init code)
duke@435 867 // _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles
duke@435 868 // _thread_in_vm : Executing in the vm
duke@435 869 // _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub)
duke@435 870 //
duke@435 871 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
duke@435 872 // a transition from one state to another. These extra states makes it possible for the safepoint code to
duke@435 873 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
duke@435 874 //
duke@435 875 // Given a state, the xxx_trans state can always be found by adding 1.
duke@435 876 //
duke@435 877 enum JavaThreadState {
duke@435 878 _thread_uninitialized = 0, // should never happen (missing initialization)
duke@435 879 _thread_new = 2, // just starting up, i.e., in process of being initialized
duke@435 880 _thread_new_trans = 3, // corresponding transition state (not used, included for completness)
duke@435 881 _thread_in_native = 4, // running in native code
duke@435 882 _thread_in_native_trans = 5, // corresponding transition state
duke@435 883 _thread_in_vm = 6, // running in VM
duke@435 884 _thread_in_vm_trans = 7, // corresponding transition state
duke@435 885 _thread_in_Java = 8, // running in Java or in stub code
duke@435 886 _thread_in_Java_trans = 9, // corresponding transition state (not used, included for completness)
duke@435 887 _thread_blocked = 10, // blocked in vm
duke@435 888 _thread_blocked_trans = 11, // corresponding transition state
duke@435 889 _thread_max_state = 12 // maximum thread state+1 - used for statistics allocation
duke@435 890 };
duke@435 891
duke@435 892
duke@435 893 // Handy constants for deciding which compiler mode to use.
duke@435 894 enum MethodCompilation {
duke@435 895 InvocationEntryBci = -1, // i.e., not a on-stack replacement compilation
duke@435 896 InvalidOSREntryBci = -2
duke@435 897 };
duke@435 898
duke@435 899 // Enumeration to distinguish tiers of compilation
duke@435 900 enum CompLevel {
iveresov@2138 901 CompLevel_any = -1,
iveresov@2138 902 CompLevel_all = -1,
iveresov@2138 903 CompLevel_none = 0, // Interpreter
iveresov@2138 904 CompLevel_simple = 1, // C1
iveresov@2138 905 CompLevel_limited_profile = 2, // C1, invocation & backedge counters
iveresov@2138 906 CompLevel_full_profile = 3, // C1, invocation & backedge counters + mdo
twisti@2729 907 CompLevel_full_optimization = 4, // C2 or Shark
duke@435 908
twisti@2729 909 #if defined(COMPILER2) || defined(SHARK)
iveresov@2138 910 CompLevel_highest_tier = CompLevel_full_optimization, // pure C2 and tiered
iveresov@2138 911 #elif defined(COMPILER1)
iveresov@2138 912 CompLevel_highest_tier = CompLevel_simple, // pure C1
duke@435 913 #else
iveresov@2138 914 CompLevel_highest_tier = CompLevel_none,
iveresov@2138 915 #endif
iveresov@2138 916
iveresov@2138 917 #if defined(TIERED)
iveresov@2138 918 CompLevel_initial_compile = CompLevel_full_profile // tiered
iveresov@2138 919 #elif defined(COMPILER1)
iveresov@2138 920 CompLevel_initial_compile = CompLevel_simple // pure C1
twisti@2729 921 #elif defined(COMPILER2) || defined(SHARK)
iveresov@2138 922 CompLevel_initial_compile = CompLevel_full_optimization // pure C2
iveresov@2138 923 #else
iveresov@2138 924 CompLevel_initial_compile = CompLevel_none
iveresov@2138 925 #endif
duke@435 926 };
duke@435 927
iveresov@2138 928 inline bool is_c1_compile(int comp_level) {
iveresov@2138 929 return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
duke@435 930 }
iveresov@2138 931
iveresov@2138 932 inline bool is_c2_compile(int comp_level) {
duke@435 933 return comp_level == CompLevel_full_optimization;
duke@435 934 }
iveresov@2138 935
duke@435 936 inline bool is_highest_tier_compile(int comp_level) {
duke@435 937 return comp_level == CompLevel_highest_tier;
duke@435 938 }
duke@435 939
iignatyev@4908 940 inline bool is_compile(int comp_level) {
iignatyev@4908 941 return is_c1_compile(comp_level) || is_c2_compile(comp_level);
iignatyev@4908 942 }
iignatyev@4908 943
duke@435 944 //----------------------------------------------------------------------------------------------------
duke@435 945 // 'Forward' declarations of frequently used classes
duke@435 946 // (in order to reduce interface dependencies & reduce
duke@435 947 // number of unnecessary compilations after changes)
duke@435 948
duke@435 949 class symbolTable;
duke@435 950 class ClassFileStream;
duke@435 951
duke@435 952 class Event;
duke@435 953
duke@435 954 class Thread;
duke@435 955 class VMThread;
duke@435 956 class JavaThread;
duke@435 957 class Threads;
duke@435 958
duke@435 959 class VM_Operation;
duke@435 960 class VMOperationQueue;
duke@435 961
duke@435 962 class CodeBlob;
duke@435 963 class nmethod;
duke@435 964 class OSRAdapter;
duke@435 965 class I2CAdapter;
duke@435 966 class C2IAdapter;
duke@435 967 class CompiledIC;
duke@435 968 class relocInfo;
duke@435 969 class ScopeDesc;
duke@435 970 class PcDesc;
duke@435 971
duke@435 972 class Recompiler;
duke@435 973 class Recompilee;
duke@435 974 class RecompilationPolicy;
duke@435 975 class RFrame;
duke@435 976 class CompiledRFrame;
duke@435 977 class InterpretedRFrame;
duke@435 978
duke@435 979 class frame;
duke@435 980
duke@435 981 class vframe;
duke@435 982 class javaVFrame;
duke@435 983 class interpretedVFrame;
duke@435 984 class compiledVFrame;
duke@435 985 class deoptimizedVFrame;
duke@435 986 class externalVFrame;
duke@435 987 class entryVFrame;
duke@435 988
duke@435 989 class RegisterMap;
duke@435 990
duke@435 991 class Mutex;
duke@435 992 class Monitor;
duke@435 993 class BasicLock;
duke@435 994 class BasicObjectLock;
duke@435 995
duke@435 996 class PeriodicTask;
duke@435 997
duke@435 998 class JavaCallWrapper;
duke@435 999
duke@435 1000 class oopDesc;
coleenp@4037 1001 class metaDataOopDesc;
duke@435 1002
duke@435 1003 class NativeCall;
duke@435 1004
duke@435 1005 class zone;
duke@435 1006
duke@435 1007 class StubQueue;
duke@435 1008
duke@435 1009 class outputStream;
duke@435 1010
duke@435 1011 class ResourceArea;
duke@435 1012
duke@435 1013 class DebugInformationRecorder;
duke@435 1014 class ScopeValue;
duke@435 1015 class CompressedStream;
duke@435 1016 class DebugInfoReadStream;
duke@435 1017 class DebugInfoWriteStream;
duke@435 1018 class LocationValue;
duke@435 1019 class ConstantValue;
duke@435 1020 class IllegalValue;
duke@435 1021
duke@435 1022 class PrivilegedElement;
duke@435 1023 class MonitorArray;
duke@435 1024
duke@435 1025 class MonitorInfo;
duke@435 1026
duke@435 1027 class OffsetClosure;
duke@435 1028 class OopMapCache;
duke@435 1029 class InterpreterOopMap;
duke@435 1030 class OopMapCacheEntry;
duke@435 1031 class OSThread;
duke@435 1032
duke@435 1033 typedef int (*OSThreadStartFunc)(void*);
duke@435 1034
duke@435 1035 class Space;
duke@435 1036
duke@435 1037 class JavaValue;
duke@435 1038 class methodHandle;
duke@435 1039 class JavaCallArguments;
duke@435 1040
duke@435 1041 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
duke@435 1042
duke@435 1043 extern void basic_fatal(const char* msg);
duke@435 1044
duke@435 1045
duke@435 1046 //----------------------------------------------------------------------------------------------------
duke@435 1047 // Special constants for debugging
duke@435 1048
duke@435 1049 const jint badInt = -3; // generic "bad int" value
kevinw@9325 1050 const intptr_t badAddressVal = -2; // generic "bad address" value
kevinw@9325 1051 const intptr_t badOopVal = -1; // generic "bad oop" value
duke@435 1052 const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
duke@435 1053 const int badHandleValue = 0xBC; // value used to zap vm handle area
duke@435 1054 const int badResourceValue = 0xAB; // value used to zap resource area
duke@435 1055 const int freeBlockPad = 0xBA; // value used to pad freed blocks.
duke@435 1056 const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks.
duke@435 1057 const intptr_t badJNIHandleVal = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
duke@435 1058 const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC
coleenp@4037 1059 const juint badMetaWordVal = 0xBAADFADE; // value used to zap metadata heap after GC
duke@435 1060 const int badCodeHeapNewVal= 0xCC; // value used to zap Code heap at allocation
duke@435 1061 const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation
duke@435 1062
duke@435 1063
duke@435 1064 // (These must be implemented as #defines because C++ compilers are
duke@435 1065 // not obligated to inline non-integral constants!)
duke@435 1066 #define badAddress ((address)::badAddressVal)
hseigel@5784 1067 #define badOop (cast_to_oop(::badOopVal))
duke@435 1068 #define badHeapWord (::badHeapWordVal)
hseigel@5784 1069 #define badJNIHandle (cast_to_oop(::badJNIHandleVal))
duke@435 1070
jcoomes@1746 1071 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
jcoomes@1746 1072 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
duke@435 1073
duke@435 1074 //----------------------------------------------------------------------------------------------------
duke@435 1075 // Utility functions for bitfield manipulations
duke@435 1076
duke@435 1077 const intptr_t AllBits = ~0; // all bits set in a word
duke@435 1078 const intptr_t NoBits = 0; // no bits set in a word
duke@435 1079 const jlong NoLongBits = 0; // no bits set in a long
duke@435 1080 const intptr_t OneBit = 1; // only right_most bit set in a word
duke@435 1081
duke@435 1082 // get a word with the n.th or the right-most or left-most n bits set
duke@435 1083 // (note: #define used only so that they can be used in enum constant definitions)
duke@435 1084 #define nth_bit(n) (n >= BitsPerWord ? 0 : OneBit << (n))
duke@435 1085 #define right_n_bits(n) (nth_bit(n) - 1)
duke@435 1086 #define left_n_bits(n) (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
duke@435 1087
duke@435 1088 // bit-operations using a mask m
duke@435 1089 inline void set_bits (intptr_t& x, intptr_t m) { x |= m; }
duke@435 1090 inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; }
duke@435 1091 inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; }
duke@435 1092 inline jlong mask_long_bits (jlong x, jlong m) { return x & m; }
duke@435 1093 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
duke@435 1094
duke@435 1095 // bit-operations using the n.th bit
duke@435 1096 inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); }
duke@435 1097 inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
duke@435 1098 inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
duke@435 1099
duke@435 1100 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
duke@435 1101 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
duke@435 1102 return mask_bits(x >> start_bit_no, right_n_bits(field_length));
duke@435 1103 }
duke@435 1104
duke@435 1105
duke@435 1106 //----------------------------------------------------------------------------------------------------
duke@435 1107 // Utility functions for integers
duke@435 1108
duke@435 1109 // Avoid use of global min/max macros which may cause unwanted double
duke@435 1110 // evaluation of arguments.
duke@435 1111 #ifdef max
duke@435 1112 #undef max
duke@435 1113 #endif
duke@435 1114
duke@435 1115 #ifdef min
duke@435 1116 #undef min
duke@435 1117 #endif
duke@435 1118
duke@435 1119 #define max(a,b) Do_not_use_max_use_MAX2_instead
duke@435 1120 #define min(a,b) Do_not_use_min_use_MIN2_instead
duke@435 1121
duke@435 1122 // It is necessary to use templates here. Having normal overloaded
duke@435 1123 // functions does not work because it is necessary to provide both 32-
duke@435 1124 // and 64-bit overloaded functions, which does not work, and having
duke@435 1125 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
duke@435 1126 // will be even more error-prone than macros.
duke@435 1127 template<class T> inline T MAX2(T a, T b) { return (a > b) ? a : b; }
duke@435 1128 template<class T> inline T MIN2(T a, T b) { return (a < b) ? a : b; }
duke@435 1129 template<class T> inline T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); }
duke@435 1130 template<class T> inline T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); }
duke@435 1131 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
duke@435 1132 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
duke@435 1133
duke@435 1134 template<class T> inline T ABS(T x) { return (x > 0) ? x : -x; }
duke@435 1135
duke@435 1136 // true if x is a power of 2, false otherwise
duke@435 1137 inline bool is_power_of_2(intptr_t x) {
duke@435 1138 return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
duke@435 1139 }
duke@435 1140
duke@435 1141 // long version of is_power_of_2
duke@435 1142 inline bool is_power_of_2_long(jlong x) {
duke@435 1143 return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
duke@435 1144 }
duke@435 1145
duke@435 1146 //* largest i such that 2^i <= x
duke@435 1147 // A negative value of 'x' will return '31'
roland@9613 1148 inline int log2_intptr(uintptr_t x) {
duke@435 1149 int i = -1;
duke@435 1150 uintptr_t p = 1;
roland@9613 1151 while (p != 0 && p <= x) {
duke@435 1152 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
duke@435 1153 i++; p *= 2;
duke@435 1154 }
duke@435 1155 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
twisti@1040 1156 // (if p = 0 then overflow occurred and i = 31)
duke@435 1157 return i;
duke@435 1158 }
duke@435 1159
duke@435 1160 //* largest i such that 2^i <= x
roland@9614 1161 inline int log2_long(julong x) {
duke@435 1162 int i = -1;
duke@435 1163 julong p = 1;
roland@9613 1164 while (p != 0 && p <= x) {
duke@435 1165 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
duke@435 1166 i++; p *= 2;
duke@435 1167 }
duke@435 1168 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
twisti@1040 1169 // (if p = 0 then overflow occurred and i = 63)
duke@435 1170 return i;
duke@435 1171 }
duke@435 1172
roland@9613 1173 inline int log2_intptr(intptr_t x) {
roland@9613 1174 return log2_intptr((uintptr_t)x);
roland@9613 1175 }
roland@9613 1176
roland@9614 1177 inline int log2_int(int x) {
roland@9613 1178 return log2_intptr((uintptr_t)x);
roland@9613 1179 }
roland@9613 1180
roland@9614 1181 inline int log2_jint(jint x) {
roland@9613 1182 return log2_intptr((uintptr_t)x);
roland@9613 1183 }
roland@9613 1184
roland@9614 1185 inline int log2_uint(uint x) {
roland@9614 1186 return log2_intptr((uintptr_t)x);
roland@9614 1187 }
roland@9614 1188
roland@9614 1189 // A negative value of 'x' will return '63'
roland@9614 1190 inline int log2_jlong(jlong x) {
roland@9614 1191 return log2_long((julong)x);
roland@9613 1192 }
roland@9613 1193
duke@435 1194 //* the argument must be exactly a power of 2
duke@435 1195 inline int exact_log2(intptr_t x) {
duke@435 1196 #ifdef ASSERT
duke@435 1197 if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
duke@435 1198 #endif
duke@435 1199 return log2_intptr(x);
duke@435 1200 }
duke@435 1201
twisti@1003 1202 //* the argument must be exactly a power of 2
twisti@1003 1203 inline int exact_log2_long(jlong x) {
twisti@1003 1204 #ifdef ASSERT
twisti@1003 1205 if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
twisti@1003 1206 #endif
twisti@1003 1207 return log2_long(x);
twisti@1003 1208 }
twisti@1003 1209
duke@435 1210
duke@435 1211 // returns integer round-up to the nearest multiple of s (s must be a power of two)
duke@435 1212 inline intptr_t round_to(intptr_t x, uintx s) {
duke@435 1213 #ifdef ASSERT
duke@435 1214 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
duke@435 1215 #endif
duke@435 1216 const uintx m = s - 1;
duke@435 1217 return mask_bits(x + m, ~m);
duke@435 1218 }
duke@435 1219
duke@435 1220 // returns integer round-down to the nearest multiple of s (s must be a power of two)
duke@435 1221 inline intptr_t round_down(intptr_t x, uintx s) {
duke@435 1222 #ifdef ASSERT
duke@435 1223 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
duke@435 1224 #endif
duke@435 1225 const uintx m = s - 1;
duke@435 1226 return mask_bits(x, ~m);
duke@435 1227 }
duke@435 1228
duke@435 1229
duke@435 1230 inline bool is_odd (intx x) { return x & 1; }
duke@435 1231 inline bool is_even(intx x) { return !is_odd(x); }
duke@435 1232
roland@9613 1233 // abs methods which cannot overflow and so are well-defined across
roland@9613 1234 // the entire domain of integer types.
roland@9613 1235 static inline unsigned int uabs(unsigned int n) {
roland@9613 1236 union {
roland@9613 1237 unsigned int result;
roland@9613 1238 int value;
roland@9613 1239 };
roland@9613 1240 result = n;
roland@9613 1241 if (value < 0) result = 0-result;
roland@9613 1242 return result;
roland@9613 1243 }
roland@9619 1244 static inline julong uabs(julong n) {
roland@9613 1245 union {
roland@9619 1246 julong result;
roland@9619 1247 jlong value;
roland@9613 1248 };
roland@9613 1249 result = n;
roland@9613 1250 if (value < 0) result = 0-result;
roland@9613 1251 return result;
roland@9613 1252 }
roland@9619 1253 static inline julong uabs(jlong n) { return uabs((julong)n); }
roland@9613 1254 static inline unsigned int uabs(int n) { return uabs((unsigned int)n); }
roland@9613 1255
duke@435 1256 // "to" should be greater than "from."
duke@435 1257 inline intx byte_size(void* from, void* to) {
duke@435 1258 return (address)to - (address)from;
duke@435 1259 }
duke@435 1260
duke@435 1261 //----------------------------------------------------------------------------------------------------
duke@435 1262 // Avoid non-portable casts with these routines (DEPRECATED)
duke@435 1263
duke@435 1264 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
duke@435 1265 // Bytes is optimized machine-specifically and may be much faster then the portable routines below.
duke@435 1266
duke@435 1267 // Given sequence of four bytes, build into a 32-bit word
duke@435 1268 // following the conventions used in class files.
duke@435 1269 // On the 386, this could be realized with a simple address cast.
duke@435 1270 //
duke@435 1271
duke@435 1272 // This routine takes eight bytes:
duke@435 1273 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
twisti@2144 1274 return (( u8(c1) << 56 ) & ( u8(0xff) << 56 ))
twisti@2144 1275 | (( u8(c2) << 48 ) & ( u8(0xff) << 48 ))
twisti@2144 1276 | (( u8(c3) << 40 ) & ( u8(0xff) << 40 ))
twisti@2144 1277 | (( u8(c4) << 32 ) & ( u8(0xff) << 32 ))
twisti@2144 1278 | (( u8(c5) << 24 ) & ( u8(0xff) << 24 ))
twisti@2144 1279 | (( u8(c6) << 16 ) & ( u8(0xff) << 16 ))
twisti@2144 1280 | (( u8(c7) << 8 ) & ( u8(0xff) << 8 ))
twisti@2144 1281 | (( u8(c8) << 0 ) & ( u8(0xff) << 0 ));
duke@435 1282 }
duke@435 1283
duke@435 1284 // This routine takes four bytes:
duke@435 1285 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
twisti@2144 1286 return (( u4(c1) << 24 ) & 0xff000000)
twisti@2144 1287 | (( u4(c2) << 16 ) & 0x00ff0000)
twisti@2144 1288 | (( u4(c3) << 8 ) & 0x0000ff00)
twisti@2144 1289 | (( u4(c4) << 0 ) & 0x000000ff);
duke@435 1290 }
duke@435 1291
duke@435 1292 // And this one works if the four bytes are contiguous in memory:
duke@435 1293 inline u4 build_u4_from( u1* p ) {
duke@435 1294 return build_u4_from( p[0], p[1], p[2], p[3] );
duke@435 1295 }
duke@435 1296
duke@435 1297 // Ditto for two-byte ints:
duke@435 1298 inline u2 build_u2_from( u1 c1, u1 c2 ) {
twisti@2144 1299 return u2((( u2(c1) << 8 ) & 0xff00)
twisti@2144 1300 | (( u2(c2) << 0 ) & 0x00ff));
duke@435 1301 }
duke@435 1302
duke@435 1303 // And this one works if the two bytes are contiguous in memory:
duke@435 1304 inline u2 build_u2_from( u1* p ) {
duke@435 1305 return build_u2_from( p[0], p[1] );
duke@435 1306 }
duke@435 1307
duke@435 1308 // Ditto for floats:
duke@435 1309 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
duke@435 1310 u4 u = build_u4_from( c1, c2, c3, c4 );
duke@435 1311 return *(jfloat*)&u;
duke@435 1312 }
duke@435 1313
duke@435 1314 inline jfloat build_float_from( u1* p ) {
duke@435 1315 u4 u = build_u4_from( p );
duke@435 1316 return *(jfloat*)&u;
duke@435 1317 }
duke@435 1318
duke@435 1319
duke@435 1320 // now (64-bit) longs
duke@435 1321
duke@435 1322 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
twisti@2144 1323 return (( jlong(c1) << 56 ) & ( jlong(0xff) << 56 ))
twisti@2144 1324 | (( jlong(c2) << 48 ) & ( jlong(0xff) << 48 ))
twisti@2144 1325 | (( jlong(c3) << 40 ) & ( jlong(0xff) << 40 ))
twisti@2144 1326 | (( jlong(c4) << 32 ) & ( jlong(0xff) << 32 ))
twisti@2144 1327 | (( jlong(c5) << 24 ) & ( jlong(0xff) << 24 ))
twisti@2144 1328 | (( jlong(c6) << 16 ) & ( jlong(0xff) << 16 ))
twisti@2144 1329 | (( jlong(c7) << 8 ) & ( jlong(0xff) << 8 ))
twisti@2144 1330 | (( jlong(c8) << 0 ) & ( jlong(0xff) << 0 ));
duke@435 1331 }
duke@435 1332
duke@435 1333 inline jlong build_long_from( u1* p ) {
duke@435 1334 return build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
duke@435 1335 }
duke@435 1336
duke@435 1337
duke@435 1338 // Doubles, too!
duke@435 1339 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
duke@435 1340 jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
duke@435 1341 return *(jdouble*)&u;
duke@435 1342 }
duke@435 1343
duke@435 1344 inline jdouble build_double_from( u1* p ) {
duke@435 1345 jlong u = build_long_from( p );
duke@435 1346 return *(jdouble*)&u;
duke@435 1347 }
duke@435 1348
duke@435 1349
duke@435 1350 // Portable routines to go the other way:
duke@435 1351
duke@435 1352 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
duke@435 1353 c1 = u1(x >> 8);
duke@435 1354 c2 = u1(x);
duke@435 1355 }
duke@435 1356
duke@435 1357 inline void explode_short_to( u2 x, u1* p ) {
duke@435 1358 explode_short_to( x, p[0], p[1]);
duke@435 1359 }
duke@435 1360
duke@435 1361 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
duke@435 1362 c1 = u1(x >> 24);
duke@435 1363 c2 = u1(x >> 16);
duke@435 1364 c3 = u1(x >> 8);
duke@435 1365 c4 = u1(x);
duke@435 1366 }
duke@435 1367
duke@435 1368 inline void explode_int_to( u4 x, u1* p ) {
duke@435 1369 explode_int_to( x, p[0], p[1], p[2], p[3]);
duke@435 1370 }
duke@435 1371
duke@435 1372
duke@435 1373 // Pack and extract shorts to/from ints:
duke@435 1374
duke@435 1375 inline int extract_low_short_from_int(jint x) {
duke@435 1376 return x & 0xffff;
duke@435 1377 }
duke@435 1378
duke@435 1379 inline int extract_high_short_from_int(jint x) {
duke@435 1380 return (x >> 16) & 0xffff;
duke@435 1381 }
duke@435 1382
duke@435 1383 inline int build_int_from_shorts( jushort low, jushort high ) {
duke@435 1384 return ((int)((unsigned int)high << 16) | (unsigned int)low);
duke@435 1385 }
duke@435 1386
drchase@6680 1387 // Convert pointer to intptr_t, for use in printing pointers.
drchase@6680 1388 inline intptr_t p2i(const void * p) {
drchase@6680 1389 return (intptr_t) p;
drchase@6680 1390 }
drchase@6680 1391
duke@435 1392 // Printf-style formatters for fixed- and variable-width types as pointers and
never@3156 1393 // integers. These are derived from the definitions in inttypes.h. If the platform
never@3156 1394 // doesn't provide appropriate definitions, they should be provided in
never@3156 1395 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
duke@435 1396
tonyp@2643 1397 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
tonyp@2472 1398
duke@435 1399 // Format 32-bit quantities.
never@3156 1400 #define INT32_FORMAT "%" PRId32
never@3156 1401 #define UINT32_FORMAT "%" PRIu32
never@3156 1402 #define INT32_FORMAT_W(width) "%" #width PRId32
never@3156 1403 #define UINT32_FORMAT_W(width) "%" #width PRIu32
duke@435 1404
never@3156 1405 #define PTR32_FORMAT "0x%08" PRIx32
duke@435 1406
duke@435 1407 // Format 64-bit quantities.
never@3156 1408 #define INT64_FORMAT "%" PRId64
never@3156 1409 #define UINT64_FORMAT "%" PRIu64
drchase@6680 1410 #define UINT64_FORMAT_X "%" PRIx64
never@3156 1411 #define INT64_FORMAT_W(width) "%" #width PRId64
never@3156 1412 #define UINT64_FORMAT_W(width) "%" #width PRIu64
duke@435 1413
never@3156 1414 #define PTR64_FORMAT "0x%016" PRIx64
duke@435 1415
hseigel@4465 1416 // Format jlong, if necessary
hseigel@4465 1417 #ifndef JLONG_FORMAT
hseigel@4465 1418 #define JLONG_FORMAT INT64_FORMAT
hseigel@4465 1419 #endif
hseigel@4465 1420 #ifndef JULONG_FORMAT
hseigel@4465 1421 #define JULONG_FORMAT UINT64_FORMAT
hseigel@4465 1422 #endif
hseigel@4465 1423
never@3156 1424 // Format pointers which change size between 32- and 64-bit.
duke@435 1425 #ifdef _LP64
never@3156 1426 #define INTPTR_FORMAT "0x%016" PRIxPTR
never@3156 1427 #define PTR_FORMAT "0x%016" PRIxPTR
duke@435 1428 #else // !_LP64
never@3156 1429 #define INTPTR_FORMAT "0x%08" PRIxPTR
never@3156 1430 #define PTR_FORMAT "0x%08" PRIxPTR
duke@435 1431 #endif // _LP64
duke@435 1432
drchase@6680 1433 #define INTPTR_FORMAT_W(width) "%" #width PRIxPTR
drchase@6680 1434
drchase@6680 1435 #define SSIZE_FORMAT "%" PRIdPTR
drchase@6680 1436 #define SIZE_FORMAT "%" PRIuPTR
drchase@6680 1437 #define SIZE_FORMAT_HEX "0x%" PRIxPTR
drchase@6680 1438 #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR
drchase@6680 1439 #define SIZE_FORMAT_W(width) "%" #width PRIuPTR
drchase@6680 1440 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
never@3156 1441
never@3156 1442 #define INTX_FORMAT "%" PRIdPTR
never@3156 1443 #define UINTX_FORMAT "%" PRIuPTR
never@3156 1444 #define INTX_FORMAT_W(width) "%" #width PRIdPTR
never@3156 1445 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
never@3156 1446
duke@435 1447
duke@435 1448 // Enable zap-a-lot if in debug version.
duke@435 1449
duke@435 1450 # ifdef ASSERT
duke@435 1451 # ifdef COMPILER2
duke@435 1452 # define ENABLE_ZAP_DEAD_LOCALS
duke@435 1453 #endif /* COMPILER2 */
duke@435 1454 # endif /* ASSERT */
duke@435 1455
duke@435 1456 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
stefank@2314 1457
aph@9610 1458 //----------------------------------------------------------------------------------------------------
aph@9610 1459 // Sum and product which can never overflow: they wrap, just like the
aph@9610 1460 // Java operations. Note that we don't intend these to be used for
aph@9610 1461 // general-purpose arithmetic: their purpose is to emulate Java
aph@9610 1462 // operations.
aph@9610 1463
aph@9610 1464 // The goal of this code to avoid undefined or implementation-defined
aph@9610 1465 // behaviour. The use of an lvalue to reference cast is explicitly
aph@9610 1466 // permitted by Lvalues and rvalues [basic.lval]. [Section 3.10 Para
aph@9610 1467 // 15 in C++03]
aph@9610 1468 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE) \
aph@9610 1469 inline TYPE NAME (TYPE in1, TYPE in2) { \
aph@9610 1470 UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
aph@9610 1471 ures OP ## = static_cast<UNSIGNED_TYPE>(in2); \
aph@9610 1472 return reinterpret_cast<TYPE&>(ures); \
aph@9610 1473 }
aph@9610 1474
aph@9610 1475 JAVA_INTEGER_OP(+, java_add, jint, juint)
aph@9610 1476 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
aph@9610 1477 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
aph@9610 1478 JAVA_INTEGER_OP(+, java_add, jlong, julong)
aph@9610 1479 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
aph@9610 1480 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
aph@9610 1481
aph@9610 1482 #undef JAVA_INTEGER_OP
aph@9610 1483
coleenp@4295 1484 // Dereference vptr
coleenp@4295 1485 // All C++ compilers that we know of have the vtbl pointer in the first
coleenp@4295 1486 // word. If there are exceptions, this function needs to be made compiler
coleenp@4295 1487 // specific.
coleenp@6678 1488 static inline void* dereference_vptr(const void* addr) {
coleenp@4295 1489 return *(void**)addr;
coleenp@4295 1490 }
coleenp@4295 1491
mikael@4889 1492 #ifndef PRODUCT
mikael@4889 1493
mikael@4889 1494 // For unit testing only
mikael@4889 1495 class GlobalDefinitions {
mikael@4889 1496 public:
mikael@4889 1497 static void test_globals();
mikael@4889 1498 };
mikael@4889 1499
mikael@4889 1500 #endif // PRODUCT
mikael@4889 1501
stefank@2314 1502 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP

mercurial