src/cpu/x86/vm/sharedRuntime_x86_64.cpp

Wed, 03 Apr 2013 11:12:57 -0700

author
kvn
date
Wed, 03 Apr 2013 11:12:57 -0700
changeset 4873
e961c11b85fe
parent 4318
cd3d6a6b95d9
child 5284
e7f5651d459c
permissions
-rw-r--r--

8011102: Clear AVX registers after return from JNI call
Summary: Execute vzeroupper instruction after JNI call and on exits in jit compiled code which use 256bit vectors.
Reviewed-by: roland

duke@435 1 /*
never@3500 2 * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
twisti@4318 26 #include "asm/macroAssembler.hpp"
twisti@4318 27 #include "asm/macroAssembler.inline.hpp"
stefank@2314 28 #include "code/debugInfoRec.hpp"
stefank@2314 29 #include "code/icBuffer.hpp"
stefank@2314 30 #include "code/vtableStubs.hpp"
stefank@2314 31 #include "interpreter/interpreter.hpp"
coleenp@4037 32 #include "oops/compiledICHolder.hpp"
stefank@2314 33 #include "prims/jvmtiRedefineClassesTrace.hpp"
stefank@2314 34 #include "runtime/sharedRuntime.hpp"
stefank@2314 35 #include "runtime/vframeArray.hpp"
stefank@2314 36 #include "vmreg_x86.inline.hpp"
stefank@2314 37 #ifdef COMPILER1
stefank@2314 38 #include "c1/c1_Runtime1.hpp"
stefank@2314 39 #endif
stefank@2314 40 #ifdef COMPILER2
stefank@2314 41 #include "opto/runtime.hpp"
stefank@2314 42 #endif
duke@435 43
never@2950 44 #define __ masm->
duke@435 45
xlu@959 46 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
xlu@959 47
duke@435 48 class SimpleRuntimeFrame {
duke@435 49
duke@435 50 public:
duke@435 51
duke@435 52 // Most of the runtime stubs have this simple frame layout.
duke@435 53 // This class exists to make the layout shared in one place.
duke@435 54 // Offsets are for compiler stack slots, which are jints.
duke@435 55 enum layout {
duke@435 56 // The frame sender code expects that rbp will be in the "natural" place and
duke@435 57 // will override any oopMap setting for it. We must therefore force the layout
duke@435 58 // so that it agrees with the frame sender code.
duke@435 59 rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
duke@435 60 rbp_off2,
duke@435 61 return_off, return_off2,
duke@435 62 framesize
duke@435 63 };
duke@435 64 };
duke@435 65
duke@435 66 class RegisterSaver {
duke@435 67 // Capture info about frame layout. Layout offsets are in jint
duke@435 68 // units because compiler frame slots are jints.
duke@435 69 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
duke@435 70 enum layout {
duke@435 71 fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
duke@435 72 xmm_off = fpu_state_off + 160/BytesPerInt, // offset in fxsave save area
duke@435 73 DEF_XMM_OFFS(0),
duke@435 74 DEF_XMM_OFFS(1),
duke@435 75 DEF_XMM_OFFS(2),
duke@435 76 DEF_XMM_OFFS(3),
duke@435 77 DEF_XMM_OFFS(4),
duke@435 78 DEF_XMM_OFFS(5),
duke@435 79 DEF_XMM_OFFS(6),
duke@435 80 DEF_XMM_OFFS(7),
duke@435 81 DEF_XMM_OFFS(8),
duke@435 82 DEF_XMM_OFFS(9),
duke@435 83 DEF_XMM_OFFS(10),
duke@435 84 DEF_XMM_OFFS(11),
duke@435 85 DEF_XMM_OFFS(12),
duke@435 86 DEF_XMM_OFFS(13),
duke@435 87 DEF_XMM_OFFS(14),
duke@435 88 DEF_XMM_OFFS(15),
duke@435 89 fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
duke@435 90 fpu_stateH_end,
duke@435 91 r15_off, r15H_off,
duke@435 92 r14_off, r14H_off,
duke@435 93 r13_off, r13H_off,
duke@435 94 r12_off, r12H_off,
duke@435 95 r11_off, r11H_off,
duke@435 96 r10_off, r10H_off,
duke@435 97 r9_off, r9H_off,
duke@435 98 r8_off, r8H_off,
duke@435 99 rdi_off, rdiH_off,
duke@435 100 rsi_off, rsiH_off,
duke@435 101 ignore_off, ignoreH_off, // extra copy of rbp
duke@435 102 rsp_off, rspH_off,
duke@435 103 rbx_off, rbxH_off,
duke@435 104 rdx_off, rdxH_off,
duke@435 105 rcx_off, rcxH_off,
duke@435 106 rax_off, raxH_off,
duke@435 107 // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
duke@435 108 align_off, alignH_off,
duke@435 109 flags_off, flagsH_off,
duke@435 110 // The frame sender code expects that rbp will be in the "natural" place and
duke@435 111 // will override any oopMap setting for it. We must therefore force the layout
duke@435 112 // so that it agrees with the frame sender code.
duke@435 113 rbp_off, rbpH_off, // copy of rbp we will restore
duke@435 114 return_off, returnH_off, // slot for return address
duke@435 115 reg_save_size // size in compiler stack slots
duke@435 116 };
duke@435 117
duke@435 118 public:
kvn@4103 119 static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors = false);
kvn@4103 120 static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
duke@435 121
duke@435 122 // Offsets into the register save area
duke@435 123 // Used by deoptimization when it is managing result register
duke@435 124 // values on its own
duke@435 125
duke@435 126 static int rax_offset_in_bytes(void) { return BytesPerInt * rax_off; }
never@739 127 static int rdx_offset_in_bytes(void) { return BytesPerInt * rdx_off; }
duke@435 128 static int rbx_offset_in_bytes(void) { return BytesPerInt * rbx_off; }
duke@435 129 static int xmm0_offset_in_bytes(void) { return BytesPerInt * xmm0_off; }
duke@435 130 static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
duke@435 131
duke@435 132 // During deoptimization only the result registers need to be restored,
duke@435 133 // all the other values have already been extracted.
duke@435 134 static void restore_result_registers(MacroAssembler* masm);
duke@435 135 };
duke@435 136
kvn@4103 137 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors) {
kvn@4103 138 int vect_words = 0;
kvn@4103 139 #ifdef COMPILER2
kvn@4103 140 if (save_vectors) {
kvn@4103 141 assert(UseAVX > 0, "256bit vectors are supported only with AVX");
kvn@4103 142 assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
kvn@4103 143 // Save upper half of YMM registes
kvn@4103 144 vect_words = 16 * 16 / wordSize;
kvn@4103 145 additional_frame_words += vect_words;
kvn@4103 146 }
kvn@4103 147 #else
kvn@4103 148 assert(!save_vectors, "vectors are generated only by C2");
kvn@4103 149 #endif
duke@435 150
duke@435 151 // Always make the frame size 16-byte aligned
duke@435 152 int frame_size_in_bytes = round_to(additional_frame_words*wordSize +
duke@435 153 reg_save_size*BytesPerInt, 16);
duke@435 154 // OopMap frame size is in compiler stack slots (jint's) not bytes or words
duke@435 155 int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
duke@435 156 // The caller will allocate additional_frame_words
duke@435 157 int additional_frame_slots = additional_frame_words*wordSize / BytesPerInt;
duke@435 158 // CodeBlob frame size is in words.
duke@435 159 int frame_size_in_words = frame_size_in_bytes / wordSize;
duke@435 160 *total_frame_words = frame_size_in_words;
duke@435 161
duke@435 162 // Save registers, fpu state, and flags.
duke@435 163 // We assume caller has already pushed the return address onto the
duke@435 164 // stack, so rsp is 8-byte aligned here.
duke@435 165 // We push rpb twice in this sequence because we want the real rbp
duke@435 166 // to be under the return like a normal enter.
duke@435 167
duke@435 168 __ enter(); // rsp becomes 16-byte aligned here
duke@435 169 __ push_CPU_state(); // Push a multiple of 16 bytes
kvn@4103 170
kvn@4103 171 if (vect_words > 0) {
kvn@4103 172 assert(vect_words*wordSize == 256, "");
kvn@4103 173 __ subptr(rsp, 256); // Save upper half of YMM registes
kvn@4103 174 __ vextractf128h(Address(rsp, 0),xmm0);
kvn@4103 175 __ vextractf128h(Address(rsp, 16),xmm1);
kvn@4103 176 __ vextractf128h(Address(rsp, 32),xmm2);
kvn@4103 177 __ vextractf128h(Address(rsp, 48),xmm3);
kvn@4103 178 __ vextractf128h(Address(rsp, 64),xmm4);
kvn@4103 179 __ vextractf128h(Address(rsp, 80),xmm5);
kvn@4103 180 __ vextractf128h(Address(rsp, 96),xmm6);
kvn@4103 181 __ vextractf128h(Address(rsp,112),xmm7);
kvn@4103 182 __ vextractf128h(Address(rsp,128),xmm8);
kvn@4103 183 __ vextractf128h(Address(rsp,144),xmm9);
kvn@4103 184 __ vextractf128h(Address(rsp,160),xmm10);
kvn@4103 185 __ vextractf128h(Address(rsp,176),xmm11);
kvn@4103 186 __ vextractf128h(Address(rsp,192),xmm12);
kvn@4103 187 __ vextractf128h(Address(rsp,208),xmm13);
kvn@4103 188 __ vextractf128h(Address(rsp,224),xmm14);
kvn@4103 189 __ vextractf128h(Address(rsp,240),xmm15);
kvn@4103 190 }
duke@435 191 if (frame::arg_reg_save_area_bytes != 0) {
duke@435 192 // Allocate argument register save area
never@739 193 __ subptr(rsp, frame::arg_reg_save_area_bytes);
duke@435 194 }
duke@435 195
duke@435 196 // Set an oopmap for the call site. This oopmap will map all
duke@435 197 // oop-registers and debug-info registers as callee-saved. This
duke@435 198 // will allow deoptimization at this safepoint to find all possible
duke@435 199 // debug-info recordings, as well as let GC find all oops.
duke@435 200
duke@435 201 OopMapSet *oop_maps = new OopMapSet();
duke@435 202 OopMap* map = new OopMap(frame_size_in_slots, 0);
kvn@4103 203
kvn@4103 204 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_slots)
kvn@4103 205
kvn@4103 206 map->set_callee_saved(STACK_OFFSET( rax_off ), rax->as_VMReg());
kvn@4103 207 map->set_callee_saved(STACK_OFFSET( rcx_off ), rcx->as_VMReg());
kvn@4103 208 map->set_callee_saved(STACK_OFFSET( rdx_off ), rdx->as_VMReg());
kvn@4103 209 map->set_callee_saved(STACK_OFFSET( rbx_off ), rbx->as_VMReg());
duke@435 210 // rbp location is known implicitly by the frame sender code, needs no oopmap
duke@435 211 // and the location where rbp was saved by is ignored
kvn@4103 212 map->set_callee_saved(STACK_OFFSET( rsi_off ), rsi->as_VMReg());
kvn@4103 213 map->set_callee_saved(STACK_OFFSET( rdi_off ), rdi->as_VMReg());
kvn@4103 214 map->set_callee_saved(STACK_OFFSET( r8_off ), r8->as_VMReg());
kvn@4103 215 map->set_callee_saved(STACK_OFFSET( r9_off ), r9->as_VMReg());
kvn@4103 216 map->set_callee_saved(STACK_OFFSET( r10_off ), r10->as_VMReg());
kvn@4103 217 map->set_callee_saved(STACK_OFFSET( r11_off ), r11->as_VMReg());
kvn@4103 218 map->set_callee_saved(STACK_OFFSET( r12_off ), r12->as_VMReg());
kvn@4103 219 map->set_callee_saved(STACK_OFFSET( r13_off ), r13->as_VMReg());
kvn@4103 220 map->set_callee_saved(STACK_OFFSET( r14_off ), r14->as_VMReg());
kvn@4103 221 map->set_callee_saved(STACK_OFFSET( r15_off ), r15->as_VMReg());
kvn@4103 222 map->set_callee_saved(STACK_OFFSET(xmm0_off ), xmm0->as_VMReg());
kvn@4103 223 map->set_callee_saved(STACK_OFFSET(xmm1_off ), xmm1->as_VMReg());
kvn@4103 224 map->set_callee_saved(STACK_OFFSET(xmm2_off ), xmm2->as_VMReg());
kvn@4103 225 map->set_callee_saved(STACK_OFFSET(xmm3_off ), xmm3->as_VMReg());
kvn@4103 226 map->set_callee_saved(STACK_OFFSET(xmm4_off ), xmm4->as_VMReg());
kvn@4103 227 map->set_callee_saved(STACK_OFFSET(xmm5_off ), xmm5->as_VMReg());
kvn@4103 228 map->set_callee_saved(STACK_OFFSET(xmm6_off ), xmm6->as_VMReg());
kvn@4103 229 map->set_callee_saved(STACK_OFFSET(xmm7_off ), xmm7->as_VMReg());
kvn@4103 230 map->set_callee_saved(STACK_OFFSET(xmm8_off ), xmm8->as_VMReg());
kvn@4103 231 map->set_callee_saved(STACK_OFFSET(xmm9_off ), xmm9->as_VMReg());
kvn@4103 232 map->set_callee_saved(STACK_OFFSET(xmm10_off), xmm10->as_VMReg());
kvn@4103 233 map->set_callee_saved(STACK_OFFSET(xmm11_off), xmm11->as_VMReg());
kvn@4103 234 map->set_callee_saved(STACK_OFFSET(xmm12_off), xmm12->as_VMReg());
kvn@4103 235 map->set_callee_saved(STACK_OFFSET(xmm13_off), xmm13->as_VMReg());
kvn@4103 236 map->set_callee_saved(STACK_OFFSET(xmm14_off), xmm14->as_VMReg());
kvn@4103 237 map->set_callee_saved(STACK_OFFSET(xmm15_off), xmm15->as_VMReg());
duke@435 238
duke@435 239 // %%% These should all be a waste but we'll keep things as they were for now
duke@435 240 if (true) {
kvn@4103 241 map->set_callee_saved(STACK_OFFSET( raxH_off ), rax->as_VMReg()->next());
kvn@4103 242 map->set_callee_saved(STACK_OFFSET( rcxH_off ), rcx->as_VMReg()->next());
kvn@4103 243 map->set_callee_saved(STACK_OFFSET( rdxH_off ), rdx->as_VMReg()->next());
kvn@4103 244 map->set_callee_saved(STACK_OFFSET( rbxH_off ), rbx->as_VMReg()->next());
duke@435 245 // rbp location is known implicitly by the frame sender code, needs no oopmap
kvn@4103 246 map->set_callee_saved(STACK_OFFSET( rsiH_off ), rsi->as_VMReg()->next());
kvn@4103 247 map->set_callee_saved(STACK_OFFSET( rdiH_off ), rdi->as_VMReg()->next());
kvn@4103 248 map->set_callee_saved(STACK_OFFSET( r8H_off ), r8->as_VMReg()->next());
kvn@4103 249 map->set_callee_saved(STACK_OFFSET( r9H_off ), r9->as_VMReg()->next());
kvn@4103 250 map->set_callee_saved(STACK_OFFSET( r10H_off ), r10->as_VMReg()->next());
kvn@4103 251 map->set_callee_saved(STACK_OFFSET( r11H_off ), r11->as_VMReg()->next());
kvn@4103 252 map->set_callee_saved(STACK_OFFSET( r12H_off ), r12->as_VMReg()->next());
kvn@4103 253 map->set_callee_saved(STACK_OFFSET( r13H_off ), r13->as_VMReg()->next());
kvn@4103 254 map->set_callee_saved(STACK_OFFSET( r14H_off ), r14->as_VMReg()->next());
kvn@4103 255 map->set_callee_saved(STACK_OFFSET( r15H_off ), r15->as_VMReg()->next());
kvn@4103 256 map->set_callee_saved(STACK_OFFSET(xmm0H_off ), xmm0->as_VMReg()->next());
kvn@4103 257 map->set_callee_saved(STACK_OFFSET(xmm1H_off ), xmm1->as_VMReg()->next());
kvn@4103 258 map->set_callee_saved(STACK_OFFSET(xmm2H_off ), xmm2->as_VMReg()->next());
kvn@4103 259 map->set_callee_saved(STACK_OFFSET(xmm3H_off ), xmm3->as_VMReg()->next());
kvn@4103 260 map->set_callee_saved(STACK_OFFSET(xmm4H_off ), xmm4->as_VMReg()->next());
kvn@4103 261 map->set_callee_saved(STACK_OFFSET(xmm5H_off ), xmm5->as_VMReg()->next());
kvn@4103 262 map->set_callee_saved(STACK_OFFSET(xmm6H_off ), xmm6->as_VMReg()->next());
kvn@4103 263 map->set_callee_saved(STACK_OFFSET(xmm7H_off ), xmm7->as_VMReg()->next());
kvn@4103 264 map->set_callee_saved(STACK_OFFSET(xmm8H_off ), xmm8->as_VMReg()->next());
kvn@4103 265 map->set_callee_saved(STACK_OFFSET(xmm9H_off ), xmm9->as_VMReg()->next());
kvn@4103 266 map->set_callee_saved(STACK_OFFSET(xmm10H_off), xmm10->as_VMReg()->next());
kvn@4103 267 map->set_callee_saved(STACK_OFFSET(xmm11H_off), xmm11->as_VMReg()->next());
kvn@4103 268 map->set_callee_saved(STACK_OFFSET(xmm12H_off), xmm12->as_VMReg()->next());
kvn@4103 269 map->set_callee_saved(STACK_OFFSET(xmm13H_off), xmm13->as_VMReg()->next());
kvn@4103 270 map->set_callee_saved(STACK_OFFSET(xmm14H_off), xmm14->as_VMReg()->next());
kvn@4103 271 map->set_callee_saved(STACK_OFFSET(xmm15H_off), xmm15->as_VMReg()->next());
duke@435 272 }
duke@435 273
duke@435 274 return map;
duke@435 275 }
duke@435 276
kvn@4103 277 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
duke@435 278 if (frame::arg_reg_save_area_bytes != 0) {
duke@435 279 // Pop arg register save area
never@739 280 __ addptr(rsp, frame::arg_reg_save_area_bytes);
duke@435 281 }
kvn@4103 282 #ifdef COMPILER2
kvn@4103 283 if (restore_vectors) {
kvn@4103 284 // Restore upper half of YMM registes.
kvn@4103 285 assert(UseAVX > 0, "256bit vectors are supported only with AVX");
kvn@4103 286 assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
kvn@4103 287 __ vinsertf128h(xmm0, Address(rsp, 0));
kvn@4103 288 __ vinsertf128h(xmm1, Address(rsp, 16));
kvn@4103 289 __ vinsertf128h(xmm2, Address(rsp, 32));
kvn@4103 290 __ vinsertf128h(xmm3, Address(rsp, 48));
kvn@4103 291 __ vinsertf128h(xmm4, Address(rsp, 64));
kvn@4103 292 __ vinsertf128h(xmm5, Address(rsp, 80));
kvn@4103 293 __ vinsertf128h(xmm6, Address(rsp, 96));
kvn@4103 294 __ vinsertf128h(xmm7, Address(rsp,112));
kvn@4103 295 __ vinsertf128h(xmm8, Address(rsp,128));
kvn@4103 296 __ vinsertf128h(xmm9, Address(rsp,144));
kvn@4103 297 __ vinsertf128h(xmm10, Address(rsp,160));
kvn@4103 298 __ vinsertf128h(xmm11, Address(rsp,176));
kvn@4103 299 __ vinsertf128h(xmm12, Address(rsp,192));
kvn@4103 300 __ vinsertf128h(xmm13, Address(rsp,208));
kvn@4103 301 __ vinsertf128h(xmm14, Address(rsp,224));
kvn@4103 302 __ vinsertf128h(xmm15, Address(rsp,240));
kvn@4103 303 __ addptr(rsp, 256);
kvn@4103 304 }
kvn@4103 305 #else
kvn@4103 306 assert(!restore_vectors, "vectors are generated only by C2");
kvn@4103 307 #endif
duke@435 308 // Recover CPU state
duke@435 309 __ pop_CPU_state();
duke@435 310 // Get the rbp described implicitly by the calling convention (no oopMap)
never@739 311 __ pop(rbp);
duke@435 312 }
duke@435 313
duke@435 314 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
duke@435 315
duke@435 316 // Just restore result register. Only used by deoptimization. By
duke@435 317 // now any callee save register that needs to be restored to a c2
duke@435 318 // caller of the deoptee has been extracted into the vframeArray
duke@435 319 // and will be stuffed into the c2i adapter we create for later
duke@435 320 // restoration so only result registers need to be restored here.
duke@435 321
duke@435 322 // Restore fp result register
duke@435 323 __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
duke@435 324 // Restore integer result register
never@739 325 __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
never@739 326 __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
never@739 327
duke@435 328 // Pop all of the register save are off the stack except the return address
never@739 329 __ addptr(rsp, return_offset_in_bytes());
duke@435 330 }
duke@435 331
kvn@4103 332 // Is vector's size (in bytes) bigger than a size saved by default?
kvn@4103 333 // 16 bytes XMM registers are saved by default using fxsave/fxrstor instructions.
kvn@4103 334 bool SharedRuntime::is_wide_vector(int size) {
kvn@4103 335 return size > 16;
kvn@4103 336 }
kvn@4103 337
duke@435 338 // The java_calling_convention describes stack locations as ideal slots on
duke@435 339 // a frame with no abi restrictions. Since we must observe abi restrictions
duke@435 340 // (like the placement of the register window) the slots must be biased by
duke@435 341 // the following value.
duke@435 342 static int reg2offset_in(VMReg r) {
duke@435 343 // Account for saved rbp and return address
duke@435 344 // This should really be in_preserve_stack_slots
duke@435 345 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
duke@435 346 }
duke@435 347
duke@435 348 static int reg2offset_out(VMReg r) {
duke@435 349 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
duke@435 350 }
duke@435 351
duke@435 352 // ---------------------------------------------------------------------------
duke@435 353 // Read the array of BasicTypes from a signature, and compute where the
duke@435 354 // arguments should go. Values in the VMRegPair regs array refer to 4-byte
duke@435 355 // quantities. Values less than VMRegImpl::stack0 are registers, those above
duke@435 356 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer
duke@435 357 // as framesizes are fixed.
duke@435 358 // VMRegImpl::stack0 refers to the first slot 0(sp).
duke@435 359 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Register
duke@435 360 // up to RegisterImpl::number_of_registers) are the 64-bit
duke@435 361 // integer registers.
duke@435 362
duke@435 363 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
duke@435 364 // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit
duke@435 365 // units regardless of build. Of course for i486 there is no 64 bit build
duke@435 366
duke@435 367 // The Java calling convention is a "shifted" version of the C ABI.
duke@435 368 // By skipping the first C ABI register we can call non-static jni methods
duke@435 369 // with small numbers of arguments without having to shuffle the arguments
duke@435 370 // at all. Since we control the java ABI we ought to at least get some
duke@435 371 // advantage out of it.
duke@435 372
duke@435 373 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
duke@435 374 VMRegPair *regs,
duke@435 375 int total_args_passed,
duke@435 376 int is_outgoing) {
duke@435 377
duke@435 378 // Create the mapping between argument positions and
duke@435 379 // registers.
duke@435 380 static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
duke@435 381 j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
duke@435 382 };
duke@435 383 static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
duke@435 384 j_farg0, j_farg1, j_farg2, j_farg3,
duke@435 385 j_farg4, j_farg5, j_farg6, j_farg7
duke@435 386 };
duke@435 387
duke@435 388
duke@435 389 uint int_args = 0;
duke@435 390 uint fp_args = 0;
duke@435 391 uint stk_args = 0; // inc by 2 each time
duke@435 392
duke@435 393 for (int i = 0; i < total_args_passed; i++) {
duke@435 394 switch (sig_bt[i]) {
duke@435 395 case T_BOOLEAN:
duke@435 396 case T_CHAR:
duke@435 397 case T_BYTE:
duke@435 398 case T_SHORT:
duke@435 399 case T_INT:
duke@435 400 if (int_args < Argument::n_int_register_parameters_j) {
duke@435 401 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
duke@435 402 } else {
duke@435 403 regs[i].set1(VMRegImpl::stack2reg(stk_args));
duke@435 404 stk_args += 2;
duke@435 405 }
duke@435 406 break;
duke@435 407 case T_VOID:
duke@435 408 // halves of T_LONG or T_DOUBLE
duke@435 409 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
duke@435 410 regs[i].set_bad();
duke@435 411 break;
duke@435 412 case T_LONG:
duke@435 413 assert(sig_bt[i + 1] == T_VOID, "expecting half");
duke@435 414 // fall through
duke@435 415 case T_OBJECT:
duke@435 416 case T_ARRAY:
duke@435 417 case T_ADDRESS:
duke@435 418 if (int_args < Argument::n_int_register_parameters_j) {
duke@435 419 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
duke@435 420 } else {
duke@435 421 regs[i].set2(VMRegImpl::stack2reg(stk_args));
duke@435 422 stk_args += 2;
duke@435 423 }
duke@435 424 break;
duke@435 425 case T_FLOAT:
duke@435 426 if (fp_args < Argument::n_float_register_parameters_j) {
duke@435 427 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
duke@435 428 } else {
duke@435 429 regs[i].set1(VMRegImpl::stack2reg(stk_args));
duke@435 430 stk_args += 2;
duke@435 431 }
duke@435 432 break;
duke@435 433 case T_DOUBLE:
duke@435 434 assert(sig_bt[i + 1] == T_VOID, "expecting half");
duke@435 435 if (fp_args < Argument::n_float_register_parameters_j) {
duke@435 436 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
duke@435 437 } else {
duke@435 438 regs[i].set2(VMRegImpl::stack2reg(stk_args));
duke@435 439 stk_args += 2;
duke@435 440 }
duke@435 441 break;
duke@435 442 default:
duke@435 443 ShouldNotReachHere();
duke@435 444 break;
duke@435 445 }
duke@435 446 }
duke@435 447
duke@435 448 return round_to(stk_args, 2);
duke@435 449 }
duke@435 450
duke@435 451 // Patch the callers callsite with entry to compiled code if it exists.
duke@435 452 static void patch_callers_callsite(MacroAssembler *masm) {
duke@435 453 Label L;
coleenp@4037 454 __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
duke@435 455 __ jcc(Assembler::equal, L);
duke@435 456
duke@435 457 // Save the current stack pointer
never@739 458 __ mov(r13, rsp);
duke@435 459 // Schedule the branch target address early.
duke@435 460 // Call into the VM to patch the caller, then jump to compiled callee
duke@435 461 // rax isn't live so capture return address while we easily can
never@739 462 __ movptr(rax, Address(rsp, 0));
duke@435 463
duke@435 464 // align stack so push_CPU_state doesn't fault
never@739 465 __ andptr(rsp, -(StackAlignmentInBytes));
duke@435 466 __ push_CPU_state();
duke@435 467
duke@435 468 // VM needs caller's callsite
duke@435 469 // VM needs target method
duke@435 470 // This needs to be a long call since we will relocate this adapter to
duke@435 471 // the codeBuffer and it may not reach
duke@435 472
duke@435 473 // Allocate argument register save area
duke@435 474 if (frame::arg_reg_save_area_bytes != 0) {
never@739 475 __ subptr(rsp, frame::arg_reg_save_area_bytes);
duke@435 476 }
never@739 477 __ mov(c_rarg0, rbx);
never@739 478 __ mov(c_rarg1, rax);
duke@435 479 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
duke@435 480
duke@435 481 // De-allocate argument register save area
duke@435 482 if (frame::arg_reg_save_area_bytes != 0) {
never@739 483 __ addptr(rsp, frame::arg_reg_save_area_bytes);
duke@435 484 }
duke@435 485
duke@435 486 __ pop_CPU_state();
duke@435 487 // restore sp
never@739 488 __ mov(rsp, r13);
duke@435 489 __ bind(L);
duke@435 490 }
duke@435 491
duke@435 492
duke@435 493 static void gen_c2i_adapter(MacroAssembler *masm,
duke@435 494 int total_args_passed,
duke@435 495 int comp_args_on_stack,
duke@435 496 const BasicType *sig_bt,
duke@435 497 const VMRegPair *regs,
duke@435 498 Label& skip_fixup) {
duke@435 499 // Before we get into the guts of the C2I adapter, see if we should be here
duke@435 500 // at all. We've come from compiled code and are attempting to jump to the
duke@435 501 // interpreter, which means the caller made a static call to get here
duke@435 502 // (vcalls always get a compiled target if there is one). Check for a
duke@435 503 // compiled target. If there is one, we need to patch the caller's call.
duke@435 504 patch_callers_callsite(masm);
duke@435 505
duke@435 506 __ bind(skip_fixup);
duke@435 507
duke@435 508 // Since all args are passed on the stack, total_args_passed *
duke@435 509 // Interpreter::stackElementSize is the space we need. Plus 1 because
duke@435 510 // we also account for the return address location since
duke@435 511 // we store it first rather than hold it in rax across all the shuffling
duke@435 512
twisti@1861 513 int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize;
duke@435 514
duke@435 515 // stack is aligned, keep it that way
duke@435 516 extraspace = round_to(extraspace, 2*wordSize);
duke@435 517
duke@435 518 // Get return address
never@739 519 __ pop(rax);
duke@435 520
duke@435 521 // set senderSP value
never@739 522 __ mov(r13, rsp);
never@739 523
never@739 524 __ subptr(rsp, extraspace);
duke@435 525
duke@435 526 // Store the return address in the expected location
never@739 527 __ movptr(Address(rsp, 0), rax);
duke@435 528
duke@435 529 // Now write the args into the outgoing interpreter space
duke@435 530 for (int i = 0; i < total_args_passed; i++) {
duke@435 531 if (sig_bt[i] == T_VOID) {
duke@435 532 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
duke@435 533 continue;
duke@435 534 }
duke@435 535
duke@435 536 // offset to start parameters
twisti@1861 537 int st_off = (total_args_passed - i) * Interpreter::stackElementSize;
twisti@1861 538 int next_off = st_off - Interpreter::stackElementSize;
duke@435 539
duke@435 540 // Say 4 args:
duke@435 541 // i st_off
duke@435 542 // 0 32 T_LONG
duke@435 543 // 1 24 T_VOID
duke@435 544 // 2 16 T_OBJECT
duke@435 545 // 3 8 T_BOOL
duke@435 546 // - 0 return address
duke@435 547 //
duke@435 548 // However to make thing extra confusing. Because we can fit a long/double in
duke@435 549 // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
duke@435 550 // leaves one slot empty and only stores to a single slot. In this case the
duke@435 551 // slot that is occupied is the T_VOID slot. See I said it was confusing.
duke@435 552
duke@435 553 VMReg r_1 = regs[i].first();
duke@435 554 VMReg r_2 = regs[i].second();
duke@435 555 if (!r_1->is_valid()) {
duke@435 556 assert(!r_2->is_valid(), "");
duke@435 557 continue;
duke@435 558 }
duke@435 559 if (r_1->is_stack()) {
duke@435 560 // memory to memory use rax
duke@435 561 int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
duke@435 562 if (!r_2->is_valid()) {
duke@435 563 // sign extend??
duke@435 564 __ movl(rax, Address(rsp, ld_off));
never@739 565 __ movptr(Address(rsp, st_off), rax);
duke@435 566
duke@435 567 } else {
duke@435 568
duke@435 569 __ movq(rax, Address(rsp, ld_off));
duke@435 570
duke@435 571 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
duke@435 572 // T_DOUBLE and T_LONG use two slots in the interpreter
duke@435 573 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
duke@435 574 // ld_off == LSW, ld_off+wordSize == MSW
duke@435 575 // st_off == MSW, next_off == LSW
duke@435 576 __ movq(Address(rsp, next_off), rax);
duke@435 577 #ifdef ASSERT
duke@435 578 // Overwrite the unused slot with known junk
duke@435 579 __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
never@739 580 __ movptr(Address(rsp, st_off), rax);
duke@435 581 #endif /* ASSERT */
duke@435 582 } else {
duke@435 583 __ movq(Address(rsp, st_off), rax);
duke@435 584 }
duke@435 585 }
duke@435 586 } else if (r_1->is_Register()) {
duke@435 587 Register r = r_1->as_Register();
duke@435 588 if (!r_2->is_valid()) {
duke@435 589 // must be only an int (or less ) so move only 32bits to slot
duke@435 590 // why not sign extend??
duke@435 591 __ movl(Address(rsp, st_off), r);
duke@435 592 } else {
duke@435 593 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
duke@435 594 // T_DOUBLE and T_LONG use two slots in the interpreter
duke@435 595 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
duke@435 596 // long/double in gpr
duke@435 597 #ifdef ASSERT
duke@435 598 // Overwrite the unused slot with known junk
duke@435 599 __ mov64(rax, CONST64(0xdeadffffdeadaaab));
never@739 600 __ movptr(Address(rsp, st_off), rax);
duke@435 601 #endif /* ASSERT */
duke@435 602 __ movq(Address(rsp, next_off), r);
duke@435 603 } else {
never@739 604 __ movptr(Address(rsp, st_off), r);
duke@435 605 }
duke@435 606 }
duke@435 607 } else {
duke@435 608 assert(r_1->is_XMMRegister(), "");
duke@435 609 if (!r_2->is_valid()) {
duke@435 610 // only a float use just part of the slot
duke@435 611 __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
duke@435 612 } else {
duke@435 613 #ifdef ASSERT
duke@435 614 // Overwrite the unused slot with known junk
duke@435 615 __ mov64(rax, CONST64(0xdeadffffdeadaaac));
never@739 616 __ movptr(Address(rsp, st_off), rax);
duke@435 617 #endif /* ASSERT */
duke@435 618 __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
duke@435 619 }
duke@435 620 }
duke@435 621 }
duke@435 622
duke@435 623 // Schedule the branch target address early.
coleenp@4037 624 __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
duke@435 625 __ jmp(rcx);
duke@435 626 }
duke@435 627
twisti@3969 628 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
twisti@3969 629 address code_start, address code_end,
twisti@3969 630 Label& L_ok) {
twisti@3969 631 Label L_fail;
twisti@3969 632 __ lea(temp_reg, ExternalAddress(code_start));
twisti@3969 633 __ cmpptr(pc_reg, temp_reg);
twisti@3969 634 __ jcc(Assembler::belowEqual, L_fail);
twisti@3969 635 __ lea(temp_reg, ExternalAddress(code_end));
twisti@3969 636 __ cmpptr(pc_reg, temp_reg);
twisti@3969 637 __ jcc(Assembler::below, L_ok);
twisti@3969 638 __ bind(L_fail);
twisti@3969 639 }
twisti@3969 640
duke@435 641 static void gen_i2c_adapter(MacroAssembler *masm,
duke@435 642 int total_args_passed,
duke@435 643 int comp_args_on_stack,
duke@435 644 const BasicType *sig_bt,
duke@435 645 const VMRegPair *regs) {
duke@435 646
duke@435 647 // Note: r13 contains the senderSP on entry. We must preserve it since
duke@435 648 // we may do a i2c -> c2i transition if we lose a race where compiled
duke@435 649 // code goes non-entrant while we get args ready.
duke@435 650 // In addition we use r13 to locate all the interpreter args as
duke@435 651 // we must align the stack to 16 bytes on an i2c entry else we
duke@435 652 // lose alignment we expect in all compiled code and register
duke@435 653 // save code can segv when fxsave instructions find improperly
duke@435 654 // aligned stack pointer.
duke@435 655
twisti@3969 656 // Adapters can be frameless because they do not require the caller
twisti@3969 657 // to perform additional cleanup work, such as correcting the stack pointer.
twisti@3969 658 // An i2c adapter is frameless because the *caller* frame, which is interpreted,
twisti@3969 659 // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
twisti@3969 660 // even if a callee has modified the stack pointer.
twisti@3969 661 // A c2i adapter is frameless because the *callee* frame, which is interpreted,
twisti@3969 662 // routinely repairs its caller's stack pointer (from sender_sp, which is set
twisti@3969 663 // up via the senderSP register).
twisti@3969 664 // In other words, if *either* the caller or callee is interpreted, we can
twisti@3969 665 // get the stack pointer repaired after a call.
twisti@3969 666 // This is why c2i and i2c adapters cannot be indefinitely composed.
twisti@3969 667 // In particular, if a c2i adapter were to somehow call an i2c adapter,
twisti@3969 668 // both caller and callee would be compiled methods, and neither would
twisti@3969 669 // clean up the stack pointer changes performed by the two adapters.
twisti@3969 670 // If this happens, control eventually transfers back to the compiled
twisti@3969 671 // caller, but with an uncorrected stack, causing delayed havoc.
twisti@3969 672
twisti@2552 673 // Pick up the return address
never@739 674 __ movptr(rax, Address(rsp, 0));
duke@435 675
twisti@3969 676 if (VerifyAdapterCalls &&
twisti@3969 677 (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
twisti@3969 678 // So, let's test for cascading c2i/i2c adapters right now.
twisti@3969 679 // assert(Interpreter::contains($return_addr) ||
twisti@3969 680 // StubRoutines::contains($return_addr),
twisti@3969 681 // "i2c adapter must return to an interpreter frame");
twisti@3969 682 __ block_comment("verify_i2c { ");
twisti@3969 683 Label L_ok;
twisti@3969 684 if (Interpreter::code() != NULL)
twisti@3969 685 range_check(masm, rax, r11,
twisti@3969 686 Interpreter::code()->code_start(), Interpreter::code()->code_end(),
twisti@3969 687 L_ok);
twisti@3969 688 if (StubRoutines::code1() != NULL)
twisti@3969 689 range_check(masm, rax, r11,
twisti@3969 690 StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
twisti@3969 691 L_ok);
twisti@3969 692 if (StubRoutines::code2() != NULL)
twisti@3969 693 range_check(masm, rax, r11,
twisti@3969 694 StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
twisti@3969 695 L_ok);
twisti@3969 696 const char* msg = "i2c adapter must return to an interpreter frame";
twisti@3969 697 __ block_comment(msg);
twisti@3969 698 __ stop(msg);
twisti@3969 699 __ bind(L_ok);
twisti@3969 700 __ block_comment("} verify_i2ce ");
twisti@3969 701 }
twisti@3969 702
twisti@1570 703 // Must preserve original SP for loading incoming arguments because
twisti@1570 704 // we need to align the outgoing SP for compiled code.
twisti@1570 705 __ movptr(r11, rsp);
twisti@1570 706
duke@435 707 // Cut-out for having no stack args. Since up to 2 int/oop args are passed
duke@435 708 // in registers, we will occasionally have no stack args.
duke@435 709 int comp_words_on_stack = 0;
duke@435 710 if (comp_args_on_stack) {
duke@435 711 // Sig words on the stack are greater-than VMRegImpl::stack0. Those in
duke@435 712 // registers are below. By subtracting stack0, we either get a negative
duke@435 713 // number (all values in registers) or the maximum stack slot accessed.
duke@435 714
duke@435 715 // Convert 4-byte c2 stack slots to words.
duke@435 716 comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
duke@435 717 // Round up to miminum stack alignment, in wordSize
duke@435 718 comp_words_on_stack = round_to(comp_words_on_stack, 2);
never@739 719 __ subptr(rsp, comp_words_on_stack * wordSize);
duke@435 720 }
duke@435 721
duke@435 722
duke@435 723 // Ensure compiled code always sees stack at proper alignment
never@739 724 __ andptr(rsp, -16);
duke@435 725
duke@435 726 // push the return address and misalign the stack that youngest frame always sees
duke@435 727 // as far as the placement of the call instruction
never@739 728 __ push(rax);
duke@435 729
twisti@1570 730 // Put saved SP in another register
twisti@1570 731 const Register saved_sp = rax;
twisti@1570 732 __ movptr(saved_sp, r11);
twisti@1570 733
duke@435 734 // Will jump to the compiled code just as if compiled code was doing it.
duke@435 735 // Pre-load the register-jump target early, to schedule it better.
coleenp@4037 736 __ movptr(r11, Address(rbx, in_bytes(Method::from_compiled_offset())));
duke@435 737
duke@435 738 // Now generate the shuffle code. Pick up all register args and move the
duke@435 739 // rest through the floating point stack top.
duke@435 740 for (int i = 0; i < total_args_passed; i++) {
duke@435 741 if (sig_bt[i] == T_VOID) {
duke@435 742 // Longs and doubles are passed in native word order, but misaligned
duke@435 743 // in the 32-bit build.
duke@435 744 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
duke@435 745 continue;
duke@435 746 }
duke@435 747
duke@435 748 // Pick up 0, 1 or 2 words from SP+offset.
duke@435 749
duke@435 750 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
duke@435 751 "scrambled load targets?");
duke@435 752 // Load in argument order going down.
twisti@1861 753 int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
duke@435 754 // Point to interpreter value (vs. tag)
twisti@1861 755 int next_off = ld_off - Interpreter::stackElementSize;
duke@435 756 //
duke@435 757 //
duke@435 758 //
duke@435 759 VMReg r_1 = regs[i].first();
duke@435 760 VMReg r_2 = regs[i].second();
duke@435 761 if (!r_1->is_valid()) {
duke@435 762 assert(!r_2->is_valid(), "");
duke@435 763 continue;
duke@435 764 }
duke@435 765 if (r_1->is_stack()) {
duke@435 766 // Convert stack slot to an SP offset (+ wordSize to account for return address )
duke@435 767 int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
twisti@1570 768
twisti@1570 769 // We can use r13 as a temp here because compiled code doesn't need r13 as an input
twisti@1570 770 // and if we end up going thru a c2i because of a miss a reasonable value of r13
twisti@1570 771 // will be generated.
duke@435 772 if (!r_2->is_valid()) {
duke@435 773 // sign extend???
twisti@1570 774 __ movl(r13, Address(saved_sp, ld_off));
twisti@1570 775 __ movptr(Address(rsp, st_off), r13);
duke@435 776 } else {
duke@435 777 //
duke@435 778 // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
duke@435 779 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
duke@435 780 // So we must adjust where to pick up the data to match the interpreter.
duke@435 781 //
duke@435 782 // Interpreter local[n] == MSW, local[n+1] == LSW however locals
duke@435 783 // are accessed as negative so LSW is at LOW address
duke@435 784
duke@435 785 // ld_off is MSW so get LSW
duke@435 786 const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
duke@435 787 next_off : ld_off;
twisti@1570 788 __ movq(r13, Address(saved_sp, offset));
duke@435 789 // st_off is LSW (i.e. reg.first())
twisti@1570 790 __ movq(Address(rsp, st_off), r13);
duke@435 791 }
duke@435 792 } else if (r_1->is_Register()) { // Register argument
duke@435 793 Register r = r_1->as_Register();
duke@435 794 assert(r != rax, "must be different");
duke@435 795 if (r_2->is_valid()) {
duke@435 796 //
duke@435 797 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
duke@435 798 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
duke@435 799 // So we must adjust where to pick up the data to match the interpreter.
duke@435 800
duke@435 801 const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
duke@435 802 next_off : ld_off;
duke@435 803
duke@435 804 // this can be a misaligned move
twisti@1570 805 __ movq(r, Address(saved_sp, offset));
duke@435 806 } else {
duke@435 807 // sign extend and use a full word?
twisti@1570 808 __ movl(r, Address(saved_sp, ld_off));
duke@435 809 }
duke@435 810 } else {
duke@435 811 if (!r_2->is_valid()) {
twisti@1570 812 __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
duke@435 813 } else {
twisti@1570 814 __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
duke@435 815 }
duke@435 816 }
duke@435 817 }
duke@435 818
duke@435 819 // 6243940 We might end up in handle_wrong_method if
duke@435 820 // the callee is deoptimized as we race thru here. If that
duke@435 821 // happens we don't want to take a safepoint because the
duke@435 822 // caller frame will look interpreted and arguments are now
duke@435 823 // "compiled" so it is much better to make this transition
duke@435 824 // invisible to the stack walking code. Unfortunately if
duke@435 825 // we try and find the callee by normal means a safepoint
duke@435 826 // is possible. So we stash the desired callee in the thread
duke@435 827 // and the vm will find there should this case occur.
duke@435 828
never@739 829 __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
duke@435 830
coleenp@4037 831 // put Method* where a c2i would expect should we end up there
coleenp@4037 832 // only needed becaus eof c2 resolve stubs return Method* as a result in
duke@435 833 // rax
never@739 834 __ mov(rax, rbx);
duke@435 835 __ jmp(r11);
duke@435 836 }
duke@435 837
duke@435 838 // ---------------------------------------------------------------
duke@435 839 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
duke@435 840 int total_args_passed,
duke@435 841 int comp_args_on_stack,
duke@435 842 const BasicType *sig_bt,
never@1622 843 const VMRegPair *regs,
never@1622 844 AdapterFingerPrint* fingerprint) {
duke@435 845 address i2c_entry = __ pc();
duke@435 846
duke@435 847 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
duke@435 848
duke@435 849 // -------------------------------------------------------------------------
coleenp@4037 850 // Generate a C2I adapter. On entry we know rbx holds the Method* during calls
duke@435 851 // to the interpreter. The args start out packed in the compiled layout. They
duke@435 852 // need to be unpacked into the interpreter layout. This will almost always
duke@435 853 // require some stack space. We grow the current (compiled) stack, then repack
duke@435 854 // the args. We finally end in a jump to the generic interpreter entry point.
duke@435 855 // On exit from the interpreter, the interpreter will restore our SP (lest the
duke@435 856 // compiled code, which relys solely on SP and not RBP, get sick).
duke@435 857
duke@435 858 address c2i_unverified_entry = __ pc();
duke@435 859 Label skip_fixup;
duke@435 860 Label ok;
duke@435 861
duke@435 862 Register holder = rax;
duke@435 863 Register receiver = j_rarg0;
duke@435 864 Register temp = rbx;
duke@435 865
duke@435 866 {
coleenp@548 867 __ load_klass(temp, receiver);
coleenp@4037 868 __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
coleenp@4037 869 __ movptr(rbx, Address(holder, CompiledICHolder::holder_method_offset()));
duke@435 870 __ jcc(Assembler::equal, ok);
duke@435 871 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
duke@435 872
duke@435 873 __ bind(ok);
duke@435 874 // Method might have been compiled since the call site was patched to
duke@435 875 // interpreted if that is the case treat it as a miss so we can get
duke@435 876 // the call site corrected.
coleenp@4037 877 __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
duke@435 878 __ jcc(Assembler::equal, skip_fixup);
duke@435 879 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
duke@435 880 }
duke@435 881
duke@435 882 address c2i_entry = __ pc();
duke@435 883
duke@435 884 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
duke@435 885
duke@435 886 __ flush();
never@1622 887 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
duke@435 888 }
duke@435 889
duke@435 890 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
duke@435 891 VMRegPair *regs,
duke@435 892 int total_args_passed) {
duke@435 893 // We return the amount of VMRegImpl stack slots we need to reserve for all
duke@435 894 // the arguments NOT counting out_preserve_stack_slots.
duke@435 895
duke@435 896 // NOTE: These arrays will have to change when c1 is ported
duke@435 897 #ifdef _WIN64
duke@435 898 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
duke@435 899 c_rarg0, c_rarg1, c_rarg2, c_rarg3
duke@435 900 };
duke@435 901 static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
duke@435 902 c_farg0, c_farg1, c_farg2, c_farg3
duke@435 903 };
duke@435 904 #else
duke@435 905 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
duke@435 906 c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
duke@435 907 };
duke@435 908 static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
duke@435 909 c_farg0, c_farg1, c_farg2, c_farg3,
duke@435 910 c_farg4, c_farg5, c_farg6, c_farg7
duke@435 911 };
duke@435 912 #endif // _WIN64
duke@435 913
duke@435 914
duke@435 915 uint int_args = 0;
duke@435 916 uint fp_args = 0;
duke@435 917 uint stk_args = 0; // inc by 2 each time
duke@435 918
duke@435 919 for (int i = 0; i < total_args_passed; i++) {
duke@435 920 switch (sig_bt[i]) {
duke@435 921 case T_BOOLEAN:
duke@435 922 case T_CHAR:
duke@435 923 case T_BYTE:
duke@435 924 case T_SHORT:
duke@435 925 case T_INT:
duke@435 926 if (int_args < Argument::n_int_register_parameters_c) {
duke@435 927 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
duke@435 928 #ifdef _WIN64
duke@435 929 fp_args++;
duke@435 930 // Allocate slots for callee to stuff register args the stack.
duke@435 931 stk_args += 2;
duke@435 932 #endif
duke@435 933 } else {
duke@435 934 regs[i].set1(VMRegImpl::stack2reg(stk_args));
duke@435 935 stk_args += 2;
duke@435 936 }
duke@435 937 break;
duke@435 938 case T_LONG:
duke@435 939 assert(sig_bt[i + 1] == T_VOID, "expecting half");
duke@435 940 // fall through
duke@435 941 case T_OBJECT:
duke@435 942 case T_ARRAY:
duke@435 943 case T_ADDRESS:
roland@4051 944 case T_METADATA:
duke@435 945 if (int_args < Argument::n_int_register_parameters_c) {
duke@435 946 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
duke@435 947 #ifdef _WIN64
duke@435 948 fp_args++;
duke@435 949 stk_args += 2;
duke@435 950 #endif
duke@435 951 } else {
duke@435 952 regs[i].set2(VMRegImpl::stack2reg(stk_args));
duke@435 953 stk_args += 2;
duke@435 954 }
duke@435 955 break;
duke@435 956 case T_FLOAT:
duke@435 957 if (fp_args < Argument::n_float_register_parameters_c) {
duke@435 958 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
duke@435 959 #ifdef _WIN64
duke@435 960 int_args++;
duke@435 961 // Allocate slots for callee to stuff register args the stack.
duke@435 962 stk_args += 2;
duke@435 963 #endif
duke@435 964 } else {
duke@435 965 regs[i].set1(VMRegImpl::stack2reg(stk_args));
duke@435 966 stk_args += 2;
duke@435 967 }
duke@435 968 break;
duke@435 969 case T_DOUBLE:
duke@435 970 assert(sig_bt[i + 1] == T_VOID, "expecting half");
duke@435 971 if (fp_args < Argument::n_float_register_parameters_c) {
duke@435 972 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
duke@435 973 #ifdef _WIN64
duke@435 974 int_args++;
duke@435 975 // Allocate slots for callee to stuff register args the stack.
duke@435 976 stk_args += 2;
duke@435 977 #endif
duke@435 978 } else {
duke@435 979 regs[i].set2(VMRegImpl::stack2reg(stk_args));
duke@435 980 stk_args += 2;
duke@435 981 }
duke@435 982 break;
duke@435 983 case T_VOID: // Halves of longs and doubles
duke@435 984 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
duke@435 985 regs[i].set_bad();
duke@435 986 break;
duke@435 987 default:
duke@435 988 ShouldNotReachHere();
duke@435 989 break;
duke@435 990 }
duke@435 991 }
duke@435 992 #ifdef _WIN64
duke@435 993 // windows abi requires that we always allocate enough stack space
duke@435 994 // for 4 64bit registers to be stored down.
duke@435 995 if (stk_args < 8) {
duke@435 996 stk_args = 8;
duke@435 997 }
duke@435 998 #endif // _WIN64
duke@435 999
duke@435 1000 return stk_args;
duke@435 1001 }
duke@435 1002
duke@435 1003 // On 64 bit we will store integer like items to the stack as
duke@435 1004 // 64 bits items (sparc abi) even though java would only store
duke@435 1005 // 32bits for a parameter. On 32bit it will simply be 32 bits
duke@435 1006 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
duke@435 1007 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1008 if (src.first()->is_stack()) {
duke@435 1009 if (dst.first()->is_stack()) {
duke@435 1010 // stack to stack
duke@435 1011 __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
duke@435 1012 __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 1013 } else {
duke@435 1014 // stack to reg
duke@435 1015 __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
duke@435 1016 }
duke@435 1017 } else if (dst.first()->is_stack()) {
duke@435 1018 // reg to stack
duke@435 1019 // Do we really have to sign extend???
duke@435 1020 // __ movslq(src.first()->as_Register(), src.first()->as_Register());
duke@435 1021 __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
duke@435 1022 } else {
duke@435 1023 // Do we really have to sign extend???
duke@435 1024 // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
duke@435 1025 if (dst.first() != src.first()) {
duke@435 1026 __ movq(dst.first()->as_Register(), src.first()->as_Register());
duke@435 1027 }
duke@435 1028 }
duke@435 1029 }
duke@435 1030
never@3500 1031 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
never@3500 1032 if (src.first()->is_stack()) {
never@3500 1033 if (dst.first()->is_stack()) {
never@3500 1034 // stack to stack
never@3500 1035 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
never@3500 1036 __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
never@3500 1037 } else {
never@3500 1038 // stack to reg
never@3500 1039 __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
never@3500 1040 }
never@3500 1041 } else if (dst.first()->is_stack()) {
never@3500 1042 // reg to stack
never@3500 1043 __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
never@3500 1044 } else {
never@3500 1045 if (dst.first() != src.first()) {
never@3500 1046 __ movq(dst.first()->as_Register(), src.first()->as_Register());
never@3500 1047 }
never@3500 1048 }
never@3500 1049 }
duke@435 1050
duke@435 1051 // An oop arg. Must pass a handle not the oop itself
duke@435 1052 static void object_move(MacroAssembler* masm,
duke@435 1053 OopMap* map,
duke@435 1054 int oop_handle_offset,
duke@435 1055 int framesize_in_slots,
duke@435 1056 VMRegPair src,
duke@435 1057 VMRegPair dst,
duke@435 1058 bool is_receiver,
duke@435 1059 int* receiver_offset) {
duke@435 1060
duke@435 1061 // must pass a handle. First figure out the location we use as a handle
duke@435 1062
duke@435 1063 Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
duke@435 1064
duke@435 1065 // See if oop is NULL if it is we need no handle
duke@435 1066
duke@435 1067 if (src.first()->is_stack()) {
duke@435 1068
duke@435 1069 // Oop is already on the stack as an argument
duke@435 1070 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
duke@435 1071 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
duke@435 1072 if (is_receiver) {
duke@435 1073 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
duke@435 1074 }
duke@435 1075
never@739 1076 __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
never@739 1077 __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
duke@435 1078 // conditionally move a NULL
never@739 1079 __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
duke@435 1080 } else {
duke@435 1081
duke@435 1082 // Oop is in an a register we must store it to the space we reserve
duke@435 1083 // on the stack for oop_handles and pass a handle if oop is non-NULL
duke@435 1084
duke@435 1085 const Register rOop = src.first()->as_Register();
duke@435 1086 int oop_slot;
duke@435 1087 if (rOop == j_rarg0)
duke@435 1088 oop_slot = 0;
duke@435 1089 else if (rOop == j_rarg1)
duke@435 1090 oop_slot = 1;
duke@435 1091 else if (rOop == j_rarg2)
duke@435 1092 oop_slot = 2;
duke@435 1093 else if (rOop == j_rarg3)
duke@435 1094 oop_slot = 3;
duke@435 1095 else if (rOop == j_rarg4)
duke@435 1096 oop_slot = 4;
duke@435 1097 else {
duke@435 1098 assert(rOop == j_rarg5, "wrong register");
duke@435 1099 oop_slot = 5;
duke@435 1100 }
duke@435 1101
duke@435 1102 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
duke@435 1103 int offset = oop_slot*VMRegImpl::stack_slot_size;
duke@435 1104
duke@435 1105 map->set_oop(VMRegImpl::stack2reg(oop_slot));
duke@435 1106 // Store oop in handle area, may be NULL
never@739 1107 __ movptr(Address(rsp, offset), rOop);
duke@435 1108 if (is_receiver) {
duke@435 1109 *receiver_offset = offset;
duke@435 1110 }
duke@435 1111
never@739 1112 __ cmpptr(rOop, (int32_t)NULL_WORD);
never@739 1113 __ lea(rHandle, Address(rsp, offset));
duke@435 1114 // conditionally move a NULL from the handle area where it was just stored
never@739 1115 __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
duke@435 1116 }
duke@435 1117
duke@435 1118 // If arg is on the stack then place it otherwise it is already in correct reg.
duke@435 1119 if (dst.first()->is_stack()) {
never@739 1120 __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
duke@435 1121 }
duke@435 1122 }
duke@435 1123
duke@435 1124 // A float arg may have to do float reg int reg conversion
duke@435 1125 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1126 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
duke@435 1127
duke@435 1128 // The calling conventions assures us that each VMregpair is either
duke@435 1129 // all really one physical register or adjacent stack slots.
duke@435 1130 // This greatly simplifies the cases here compared to sparc.
duke@435 1131
duke@435 1132 if (src.first()->is_stack()) {
duke@435 1133 if (dst.first()->is_stack()) {
duke@435 1134 __ movl(rax, Address(rbp, reg2offset_in(src.first())));
never@739 1135 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 1136 } else {
duke@435 1137 // stack to reg
duke@435 1138 assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
duke@435 1139 __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
duke@435 1140 }
duke@435 1141 } else if (dst.first()->is_stack()) {
duke@435 1142 // reg to stack
duke@435 1143 assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
duke@435 1144 __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
duke@435 1145 } else {
duke@435 1146 // reg to reg
duke@435 1147 // In theory these overlap but the ordering is such that this is likely a nop
duke@435 1148 if ( src.first() != dst.first()) {
duke@435 1149 __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
duke@435 1150 }
duke@435 1151 }
duke@435 1152 }
duke@435 1153
duke@435 1154 // A long move
duke@435 1155 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1156
duke@435 1157 // The calling conventions assures us that each VMregpair is either
duke@435 1158 // all really one physical register or adjacent stack slots.
duke@435 1159 // This greatly simplifies the cases here compared to sparc.
duke@435 1160
duke@435 1161 if (src.is_single_phys_reg() ) {
duke@435 1162 if (dst.is_single_phys_reg()) {
duke@435 1163 if (dst.first() != src.first()) {
never@739 1164 __ mov(dst.first()->as_Register(), src.first()->as_Register());
duke@435 1165 }
duke@435 1166 } else {
duke@435 1167 assert(dst.is_single_reg(), "not a stack pair");
duke@435 1168 __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
duke@435 1169 }
duke@435 1170 } else if (dst.is_single_phys_reg()) {
duke@435 1171 assert(src.is_single_reg(), "not a stack pair");
duke@435 1172 __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
duke@435 1173 } else {
duke@435 1174 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
duke@435 1175 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
duke@435 1176 __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 1177 }
duke@435 1178 }
duke@435 1179
duke@435 1180 // A double move
duke@435 1181 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1182
duke@435 1183 // The calling conventions assures us that each VMregpair is either
duke@435 1184 // all really one physical register or adjacent stack slots.
duke@435 1185 // This greatly simplifies the cases here compared to sparc.
duke@435 1186
duke@435 1187 if (src.is_single_phys_reg() ) {
duke@435 1188 if (dst.is_single_phys_reg()) {
duke@435 1189 // In theory these overlap but the ordering is such that this is likely a nop
duke@435 1190 if ( src.first() != dst.first()) {
duke@435 1191 __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
duke@435 1192 }
duke@435 1193 } else {
duke@435 1194 assert(dst.is_single_reg(), "not a stack pair");
duke@435 1195 __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
duke@435 1196 }
duke@435 1197 } else if (dst.is_single_phys_reg()) {
duke@435 1198 assert(src.is_single_reg(), "not a stack pair");
duke@435 1199 __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
duke@435 1200 } else {
duke@435 1201 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
duke@435 1202 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
duke@435 1203 __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 1204 }
duke@435 1205 }
duke@435 1206
duke@435 1207
duke@435 1208 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
duke@435 1209 // We always ignore the frame_slots arg and just use the space just below frame pointer
duke@435 1210 // which by this time is free to use
duke@435 1211 switch (ret_type) {
duke@435 1212 case T_FLOAT:
duke@435 1213 __ movflt(Address(rbp, -wordSize), xmm0);
duke@435 1214 break;
duke@435 1215 case T_DOUBLE:
duke@435 1216 __ movdbl(Address(rbp, -wordSize), xmm0);
duke@435 1217 break;
duke@435 1218 case T_VOID: break;
duke@435 1219 default: {
never@739 1220 __ movptr(Address(rbp, -wordSize), rax);
duke@435 1221 }
duke@435 1222 }
duke@435 1223 }
duke@435 1224
duke@435 1225 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
duke@435 1226 // We always ignore the frame_slots arg and just use the space just below frame pointer
duke@435 1227 // which by this time is free to use
duke@435 1228 switch (ret_type) {
duke@435 1229 case T_FLOAT:
duke@435 1230 __ movflt(xmm0, Address(rbp, -wordSize));
duke@435 1231 break;
duke@435 1232 case T_DOUBLE:
duke@435 1233 __ movdbl(xmm0, Address(rbp, -wordSize));
duke@435 1234 break;
duke@435 1235 case T_VOID: break;
duke@435 1236 default: {
never@739 1237 __ movptr(rax, Address(rbp, -wordSize));
duke@435 1238 }
duke@435 1239 }
duke@435 1240 }
duke@435 1241
duke@435 1242 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
duke@435 1243 for ( int i = first_arg ; i < arg_count ; i++ ) {
duke@435 1244 if (args[i].first()->is_Register()) {
never@739 1245 __ push(args[i].first()->as_Register());
duke@435 1246 } else if (args[i].first()->is_XMMRegister()) {
never@739 1247 __ subptr(rsp, 2*wordSize);
duke@435 1248 __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
duke@435 1249 }
duke@435 1250 }
duke@435 1251 }
duke@435 1252
duke@435 1253 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
duke@435 1254 for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
duke@435 1255 if (args[i].first()->is_Register()) {
never@739 1256 __ pop(args[i].first()->as_Register());
duke@435 1257 } else if (args[i].first()->is_XMMRegister()) {
duke@435 1258 __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
never@739 1259 __ addptr(rsp, 2*wordSize);
duke@435 1260 }
duke@435 1261 }
duke@435 1262 }
duke@435 1263
never@3500 1264
never@3500 1265 static void save_or_restore_arguments(MacroAssembler* masm,
never@3500 1266 const int stack_slots,
never@3500 1267 const int total_in_args,
never@3500 1268 const int arg_save_area,
never@3500 1269 OopMap* map,
never@3500 1270 VMRegPair* in_regs,
never@3500 1271 BasicType* in_sig_bt) {
never@3500 1272 // if map is non-NULL then the code should store the values,
never@3500 1273 // otherwise it should load them.
never@3608 1274 int slot = arg_save_area;
never@3500 1275 // Save down double word first
never@3500 1276 for ( int i = 0; i < total_in_args; i++) {
never@3500 1277 if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
never@3500 1278 int offset = slot * VMRegImpl::stack_slot_size;
never@3608 1279 slot += VMRegImpl::slots_per_word;
never@3608 1280 assert(slot <= stack_slots, "overflow");
never@3500 1281 if (map != NULL) {
never@3500 1282 __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
never@3500 1283 } else {
never@3500 1284 __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
never@3500 1285 }
never@3500 1286 }
never@3500 1287 if (in_regs[i].first()->is_Register() &&
never@3500 1288 (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
never@3500 1289 int offset = slot * VMRegImpl::stack_slot_size;
never@3500 1290 if (map != NULL) {
never@3500 1291 __ movq(Address(rsp, offset), in_regs[i].first()->as_Register());
never@3500 1292 if (in_sig_bt[i] == T_ARRAY) {
never@3500 1293 map->set_oop(VMRegImpl::stack2reg(slot));;
never@3500 1294 }
never@3500 1295 } else {
never@3500 1296 __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset));
never@3500 1297 }
never@3610 1298 slot += VMRegImpl::slots_per_word;
never@3500 1299 }
never@3500 1300 }
never@3500 1301 // Save or restore single word registers
never@3500 1302 for ( int i = 0; i < total_in_args; i++) {
never@3500 1303 if (in_regs[i].first()->is_Register()) {
never@3500 1304 int offset = slot * VMRegImpl::stack_slot_size;
never@3608 1305 slot++;
never@3608 1306 assert(slot <= stack_slots, "overflow");
never@3500 1307
never@3500 1308 // Value is in an input register pass we must flush it to the stack
never@3500 1309 const Register reg = in_regs[i].first()->as_Register();
never@3500 1310 switch (in_sig_bt[i]) {
never@3500 1311 case T_BOOLEAN:
never@3500 1312 case T_CHAR:
never@3500 1313 case T_BYTE:
never@3500 1314 case T_SHORT:
never@3500 1315 case T_INT:
never@3500 1316 if (map != NULL) {
never@3500 1317 __ movl(Address(rsp, offset), reg);
never@3500 1318 } else {
never@3500 1319 __ movl(reg, Address(rsp, offset));
never@3500 1320 }
never@3500 1321 break;
never@3500 1322 case T_ARRAY:
never@3500 1323 case T_LONG:
never@3500 1324 // handled above
never@3500 1325 break;
never@3500 1326 case T_OBJECT:
never@3500 1327 default: ShouldNotReachHere();
never@3500 1328 }
never@3500 1329 } else if (in_regs[i].first()->is_XMMRegister()) {
never@3500 1330 if (in_sig_bt[i] == T_FLOAT) {
never@3500 1331 int offset = slot * VMRegImpl::stack_slot_size;
never@3608 1332 slot++;
never@3608 1333 assert(slot <= stack_slots, "overflow");
never@3500 1334 if (map != NULL) {
never@3500 1335 __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
never@3500 1336 } else {
never@3500 1337 __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
never@3500 1338 }
never@3500 1339 }
never@3500 1340 } else if (in_regs[i].first()->is_stack()) {
never@3500 1341 if (in_sig_bt[i] == T_ARRAY && map != NULL) {
never@3500 1342 int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
never@3500 1343 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
never@3500 1344 }
never@3500 1345 }
never@3500 1346 }
never@3500 1347 }
never@3500 1348
never@3500 1349
never@3500 1350 // Check GC_locker::needs_gc and enter the runtime if it's true. This
never@3500 1351 // keeps a new JNI critical region from starting until a GC has been
never@3500 1352 // forced. Save down any oops in registers and describe them in an
never@3500 1353 // OopMap.
never@3500 1354 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
never@3500 1355 int stack_slots,
never@3500 1356 int total_c_args,
never@3500 1357 int total_in_args,
never@3500 1358 int arg_save_area,
never@3500 1359 OopMapSet* oop_maps,
never@3500 1360 VMRegPair* in_regs,
never@3500 1361 BasicType* in_sig_bt) {
never@3500 1362 __ block_comment("check GC_locker::needs_gc");
never@3500 1363 Label cont;
never@3500 1364 __ cmp8(ExternalAddress((address)GC_locker::needs_gc_address()), false);
never@3500 1365 __ jcc(Assembler::equal, cont);
never@3500 1366
never@3500 1367 // Save down any incoming oops and call into the runtime to halt for a GC
never@3500 1368
never@3500 1369 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
never@3500 1370 save_or_restore_arguments(masm, stack_slots, total_in_args,
never@3500 1371 arg_save_area, map, in_regs, in_sig_bt);
never@3500 1372
never@3500 1373 address the_pc = __ pc();
never@3500 1374 oop_maps->add_gc_map( __ offset(), map);
never@3500 1375 __ set_last_Java_frame(rsp, noreg, the_pc);
never@3500 1376
never@3500 1377 __ block_comment("block_for_jni_critical");
never@3500 1378 __ movptr(c_rarg0, r15_thread);
never@3500 1379 __ mov(r12, rsp); // remember sp
never@3500 1380 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
never@3500 1381 __ andptr(rsp, -16); // align stack as required by ABI
never@3500 1382 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
never@3500 1383 __ mov(rsp, r12); // restore sp
never@3500 1384 __ reinit_heapbase();
never@3500 1385
never@3500 1386 __ reset_last_Java_frame(false, true);
never@3500 1387
never@3500 1388 save_or_restore_arguments(masm, stack_slots, total_in_args,
never@3500 1389 arg_save_area, NULL, in_regs, in_sig_bt);
never@3500 1390
never@3500 1391 __ bind(cont);
never@3500 1392 #ifdef ASSERT
never@3500 1393 if (StressCriticalJNINatives) {
never@3500 1394 // Stress register saving
never@3500 1395 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
never@3500 1396 save_or_restore_arguments(masm, stack_slots, total_in_args,
never@3500 1397 arg_save_area, map, in_regs, in_sig_bt);
never@3500 1398 // Destroy argument registers
never@3500 1399 for (int i = 0; i < total_in_args - 1; i++) {
never@3500 1400 if (in_regs[i].first()->is_Register()) {
never@3500 1401 const Register reg = in_regs[i].first()->as_Register();
never@3500 1402 __ xorptr(reg, reg);
never@3500 1403 } else if (in_regs[i].first()->is_XMMRegister()) {
never@3500 1404 __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
never@3500 1405 } else if (in_regs[i].first()->is_FloatRegister()) {
never@3500 1406 ShouldNotReachHere();
never@3500 1407 } else if (in_regs[i].first()->is_stack()) {
never@3500 1408 // Nothing to do
never@3500 1409 } else {
never@3500 1410 ShouldNotReachHere();
never@3500 1411 }
never@3500 1412 if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
never@3500 1413 i++;
never@3500 1414 }
never@3500 1415 }
never@3500 1416
never@3500 1417 save_or_restore_arguments(masm, stack_slots, total_in_args,
never@3500 1418 arg_save_area, NULL, in_regs, in_sig_bt);
never@3500 1419 }
never@3500 1420 #endif
never@3500 1421 }
never@3500 1422
never@3500 1423 // Unpack an array argument into a pointer to the body and the length
never@3500 1424 // if the array is non-null, otherwise pass 0 for both.
never@3500 1425 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
never@3500 1426 Register tmp_reg = rax;
never@3500 1427 assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
never@3500 1428 "possible collision");
never@3500 1429 assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
never@3500 1430 "possible collision");
never@3500 1431
never@3500 1432 // Pass the length, ptr pair
never@3500 1433 Label is_null, done;
never@3500 1434 VMRegPair tmp;
never@3500 1435 tmp.set_ptr(tmp_reg->as_VMReg());
never@3500 1436 if (reg.first()->is_stack()) {
never@3500 1437 // Load the arg up from the stack
never@3500 1438 move_ptr(masm, reg, tmp);
never@3500 1439 reg = tmp;
never@3500 1440 }
never@3500 1441 __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
never@3500 1442 __ jccb(Assembler::equal, is_null);
never@3500 1443 __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
never@3500 1444 move_ptr(masm, tmp, body_arg);
never@3500 1445 // load the length relative to the body.
never@3500 1446 __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
never@3500 1447 arrayOopDesc::base_offset_in_bytes(in_elem_type)));
never@3500 1448 move32_64(masm, tmp, length_arg);
never@3500 1449 __ jmpb(done);
never@3500 1450 __ bind(is_null);
never@3500 1451 // Pass zeros
never@3500 1452 __ xorptr(tmp_reg, tmp_reg);
never@3500 1453 move_ptr(masm, tmp, body_arg);
never@3500 1454 move32_64(masm, tmp, length_arg);
never@3500 1455 __ bind(done);
never@3500 1456 }
never@3500 1457
never@3608 1458
twisti@3969 1459 // Different signatures may require very different orders for the move
twisti@3969 1460 // to avoid clobbering other arguments. There's no simple way to
twisti@3969 1461 // order them safely. Compute a safe order for issuing stores and
twisti@3969 1462 // break any cycles in those stores. This code is fairly general but
twisti@3969 1463 // it's not necessary on the other platforms so we keep it in the
twisti@3969 1464 // platform dependent code instead of moving it into a shared file.
twisti@3969 1465 // (See bugs 7013347 & 7145024.)
twisti@3969 1466 // Note that this code is specific to LP64.
never@3608 1467 class ComputeMoveOrder: public StackObj {
never@3608 1468 class MoveOperation: public ResourceObj {
never@3608 1469 friend class ComputeMoveOrder;
never@3608 1470 private:
never@3608 1471 VMRegPair _src;
never@3608 1472 VMRegPair _dst;
never@3608 1473 int _src_index;
never@3608 1474 int _dst_index;
never@3608 1475 bool _processed;
never@3608 1476 MoveOperation* _next;
never@3608 1477 MoveOperation* _prev;
never@3608 1478
never@3608 1479 static int get_id(VMRegPair r) {
never@3608 1480 return r.first()->value();
never@3608 1481 }
never@3608 1482
never@3608 1483 public:
never@3608 1484 MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst):
never@3608 1485 _src(src)
never@3608 1486 , _src_index(src_index)
never@3608 1487 , _dst(dst)
never@3608 1488 , _dst_index(dst_index)
never@3608 1489 , _next(NULL)
never@3608 1490 , _prev(NULL)
never@3608 1491 , _processed(false) {
never@3608 1492 }
never@3608 1493
never@3608 1494 VMRegPair src() const { return _src; }
never@3608 1495 int src_id() const { return get_id(src()); }
never@3608 1496 int src_index() const { return _src_index; }
never@3608 1497 VMRegPair dst() const { return _dst; }
never@3608 1498 void set_dst(int i, VMRegPair dst) { _dst_index = i, _dst = dst; }
never@3608 1499 int dst_index() const { return _dst_index; }
never@3608 1500 int dst_id() const { return get_id(dst()); }
never@3608 1501 MoveOperation* next() const { return _next; }
never@3608 1502 MoveOperation* prev() const { return _prev; }
never@3608 1503 void set_processed() { _processed = true; }
never@3608 1504 bool is_processed() const { return _processed; }
never@3608 1505
never@3608 1506 // insert
never@3608 1507 void break_cycle(VMRegPair temp_register) {
never@3608 1508 // create a new store following the last store
never@3608 1509 // to move from the temp_register to the original
never@3608 1510 MoveOperation* new_store = new MoveOperation(-1, temp_register, dst_index(), dst());
never@3608 1511
never@3608 1512 // break the cycle of links and insert new_store at the end
never@3608 1513 // break the reverse link.
never@3608 1514 MoveOperation* p = prev();
never@3608 1515 assert(p->next() == this, "must be");
never@3608 1516 _prev = NULL;
never@3608 1517 p->_next = new_store;
never@3608 1518 new_store->_prev = p;
never@3608 1519
never@3608 1520 // change the original store to save it's value in the temp.
never@3608 1521 set_dst(-1, temp_register);
never@3608 1522 }
never@3608 1523
never@3608 1524 void link(GrowableArray<MoveOperation*>& killer) {
never@3608 1525 // link this store in front the store that it depends on
never@3608 1526 MoveOperation* n = killer.at_grow(src_id(), NULL);
never@3608 1527 if (n != NULL) {
never@3608 1528 assert(_next == NULL && n->_prev == NULL, "shouldn't have been set yet");
never@3608 1529 _next = n;
never@3608 1530 n->_prev = this;
never@3608 1531 }
never@3608 1532 }
never@3608 1533 };
never@3608 1534
never@3608 1535 private:
never@3608 1536 GrowableArray<MoveOperation*> edges;
never@3608 1537
never@3608 1538 public:
never@3608 1539 ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs,
never@3608 1540 BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) {
never@3608 1541 // Move operations where the dest is the stack can all be
never@3608 1542 // scheduled first since they can't interfere with the other moves.
never@3608 1543 for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
never@3608 1544 if (in_sig_bt[i] == T_ARRAY) {
never@3608 1545 c_arg--;
never@3608 1546 if (out_regs[c_arg].first()->is_stack() &&
never@3608 1547 out_regs[c_arg + 1].first()->is_stack()) {
never@3608 1548 arg_order.push(i);
never@3608 1549 arg_order.push(c_arg);
never@3608 1550 } else {
never@3608 1551 if (out_regs[c_arg].first()->is_stack() ||
never@3608 1552 in_regs[i].first() == out_regs[c_arg].first()) {
never@3608 1553 add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg + 1]);
never@3608 1554 } else {
never@3608 1555 add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
never@3608 1556 }
never@3608 1557 }
never@3608 1558 } else if (in_sig_bt[i] == T_VOID) {
never@3608 1559 arg_order.push(i);
never@3608 1560 arg_order.push(c_arg);
never@3608 1561 } else {
never@3608 1562 if (out_regs[c_arg].first()->is_stack() ||
never@3608 1563 in_regs[i].first() == out_regs[c_arg].first()) {
never@3608 1564 arg_order.push(i);
never@3608 1565 arg_order.push(c_arg);
never@3608 1566 } else {
never@3608 1567 add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
never@3608 1568 }
never@3608 1569 }
never@3608 1570 }
never@3608 1571 // Break any cycles in the register moves and emit the in the
never@3608 1572 // proper order.
never@3608 1573 GrowableArray<MoveOperation*>* stores = get_store_order(tmp_vmreg);
never@3608 1574 for (int i = 0; i < stores->length(); i++) {
never@3608 1575 arg_order.push(stores->at(i)->src_index());
never@3608 1576 arg_order.push(stores->at(i)->dst_index());
never@3608 1577 }
never@3608 1578 }
never@3608 1579
never@3608 1580 // Collected all the move operations
never@3608 1581 void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) {
never@3608 1582 if (src.first() == dst.first()) return;
never@3608 1583 edges.append(new MoveOperation(src_index, src, dst_index, dst));
never@3608 1584 }
never@3608 1585
never@3608 1586 // Walk the edges breaking cycles between moves. The result list
never@3608 1587 // can be walked in order to produce the proper set of loads
never@3608 1588 GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) {
never@3608 1589 // Record which moves kill which values
never@3608 1590 GrowableArray<MoveOperation*> killer;
never@3608 1591 for (int i = 0; i < edges.length(); i++) {
never@3608 1592 MoveOperation* s = edges.at(i);
never@3608 1593 assert(killer.at_grow(s->dst_id(), NULL) == NULL, "only one killer");
never@3608 1594 killer.at_put_grow(s->dst_id(), s, NULL);
never@3608 1595 }
never@3608 1596 assert(killer.at_grow(MoveOperation::get_id(temp_register), NULL) == NULL,
never@3608 1597 "make sure temp isn't in the registers that are killed");
never@3608 1598
never@3608 1599 // create links between loads and stores
never@3608 1600 for (int i = 0; i < edges.length(); i++) {
never@3608 1601 edges.at(i)->link(killer);
never@3608 1602 }
never@3608 1603
never@3608 1604 // at this point, all the move operations are chained together
never@3608 1605 // in a doubly linked list. Processing it backwards finds
never@3608 1606 // the beginning of the chain, forwards finds the end. If there's
never@3608 1607 // a cycle it can be broken at any point, so pick an edge and walk
never@3608 1608 // backward until the list ends or we end where we started.
never@3608 1609 GrowableArray<MoveOperation*>* stores = new GrowableArray<MoveOperation*>();
never@3608 1610 for (int e = 0; e < edges.length(); e++) {
never@3608 1611 MoveOperation* s = edges.at(e);
never@3608 1612 if (!s->is_processed()) {
never@3608 1613 MoveOperation* start = s;
never@3608 1614 // search for the beginning of the chain or cycle
never@3608 1615 while (start->prev() != NULL && start->prev() != s) {
never@3608 1616 start = start->prev();
never@3608 1617 }
never@3608 1618 if (start->prev() == s) {
never@3608 1619 start->break_cycle(temp_register);
never@3608 1620 }
never@3608 1621 // walk the chain forward inserting to store list
never@3608 1622 while (start != NULL) {
never@3608 1623 stores->append(start);
never@3608 1624 start->set_processed();
never@3608 1625 start = start->next();
never@3608 1626 }
never@3608 1627 }
never@3608 1628 }
never@3608 1629 return stores;
never@3608 1630 }
never@3608 1631 };
never@3608 1632
twisti@3969 1633 static void verify_oop_args(MacroAssembler* masm,
twisti@4101 1634 methodHandle method,
twisti@3969 1635 const BasicType* sig_bt,
twisti@3969 1636 const VMRegPair* regs) {
twisti@3969 1637 Register temp_reg = rbx; // not part of any compiled calling seq
twisti@3969 1638 if (VerifyOops) {
twisti@4101 1639 for (int i = 0; i < method->size_of_parameters(); i++) {
twisti@3969 1640 if (sig_bt[i] == T_OBJECT ||
twisti@3969 1641 sig_bt[i] == T_ARRAY) {
twisti@3969 1642 VMReg r = regs[i].first();
twisti@3969 1643 assert(r->is_valid(), "bad oop arg");
twisti@3969 1644 if (r->is_stack()) {
twisti@3969 1645 __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
twisti@3969 1646 __ verify_oop(temp_reg);
twisti@3969 1647 } else {
twisti@3969 1648 __ verify_oop(r->as_Register());
twisti@3969 1649 }
twisti@3969 1650 }
twisti@3969 1651 }
twisti@3969 1652 }
twisti@3969 1653 }
twisti@3969 1654
twisti@3969 1655 static void gen_special_dispatch(MacroAssembler* masm,
twisti@4101 1656 methodHandle method,
twisti@3969 1657 const BasicType* sig_bt,
twisti@3969 1658 const VMRegPair* regs) {
twisti@4101 1659 verify_oop_args(masm, method, sig_bt, regs);
twisti@4101 1660 vmIntrinsics::ID iid = method->intrinsic_id();
twisti@3969 1661
twisti@3969 1662 // Now write the args into the outgoing interpreter space
twisti@3969 1663 bool has_receiver = false;
twisti@3969 1664 Register receiver_reg = noreg;
twisti@3969 1665 int member_arg_pos = -1;
twisti@3969 1666 Register member_reg = noreg;
twisti@4101 1667 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
twisti@3969 1668 if (ref_kind != 0) {
twisti@4101 1669 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument
twisti@3969 1670 member_reg = rbx; // known to be free at this point
twisti@3969 1671 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
twisti@4101 1672 } else if (iid == vmIntrinsics::_invokeBasic) {
twisti@3969 1673 has_receiver = true;
twisti@3969 1674 } else {
twisti@4101 1675 fatal(err_msg_res("unexpected intrinsic id %d", iid));
twisti@3969 1676 }
twisti@3969 1677
twisti@3969 1678 if (member_reg != noreg) {
twisti@3969 1679 // Load the member_arg into register, if necessary.
twisti@4101 1680 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
twisti@3969 1681 VMReg r = regs[member_arg_pos].first();
twisti@3969 1682 if (r->is_stack()) {
twisti@3969 1683 __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
twisti@3969 1684 } else {
twisti@3969 1685 // no data motion is needed
twisti@3969 1686 member_reg = r->as_Register();
twisti@3969 1687 }
twisti@3969 1688 }
twisti@3969 1689
twisti@3969 1690 if (has_receiver) {
twisti@3969 1691 // Make sure the receiver is loaded into a register.
twisti@4101 1692 assert(method->size_of_parameters() > 0, "oob");
twisti@3969 1693 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
twisti@3969 1694 VMReg r = regs[0].first();
twisti@3969 1695 assert(r->is_valid(), "bad receiver arg");
twisti@3969 1696 if (r->is_stack()) {
twisti@3969 1697 // Porting note: This assumes that compiled calling conventions always
twisti@3969 1698 // pass the receiver oop in a register. If this is not true on some
twisti@3969 1699 // platform, pick a temp and load the receiver from stack.
twisti@4101 1700 fatal("receiver always in a register");
twisti@3969 1701 receiver_reg = j_rarg0; // known to be free at this point
twisti@3969 1702 __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
twisti@3969 1703 } else {
twisti@3969 1704 // no data motion is needed
twisti@3969 1705 receiver_reg = r->as_Register();
twisti@3969 1706 }
twisti@3969 1707 }
twisti@3969 1708
twisti@3969 1709 // Figure out which address we are really jumping to:
twisti@4101 1710 MethodHandles::generate_method_handle_dispatch(masm, iid,
twisti@3969 1711 receiver_reg, member_reg, /*for_compiler_entry:*/ true);
twisti@3969 1712 }
never@3608 1713
duke@435 1714 // ---------------------------------------------------------------------------
duke@435 1715 // Generate a native wrapper for a given method. The method takes arguments
duke@435 1716 // in the Java compiled code convention, marshals them to the native
duke@435 1717 // convention (handlizes oops, etc), transitions to native, makes the call,
duke@435 1718 // returns to java state (possibly blocking), unhandlizes any result and
duke@435 1719 // returns.
twisti@3969 1720 //
twisti@3969 1721 // Critical native functions are a shorthand for the use of
twisti@3969 1722 // GetPrimtiveArrayCritical and disallow the use of any other JNI
twisti@3969 1723 // functions. The wrapper is expected to unpack the arguments before
twisti@3969 1724 // passing them to the callee and perform checks before and after the
twisti@3969 1725 // native call to ensure that they GC_locker
twisti@3969 1726 // lock_critical/unlock_critical semantics are followed. Some other
twisti@3969 1727 // parts of JNI setup are skipped like the tear down of the JNI handle
twisti@3969 1728 // block and the check for pending exceptions it's impossible for them
twisti@3969 1729 // to be thrown.
twisti@3969 1730 //
twisti@3969 1731 // They are roughly structured like this:
twisti@3969 1732 // if (GC_locker::needs_gc())
twisti@3969 1733 // SharedRuntime::block_for_jni_critical();
twisti@3969 1734 // tranistion to thread_in_native
twisti@3969 1735 // unpack arrray arguments and call native entry point
twisti@3969 1736 // check for safepoint in progress
twisti@3969 1737 // check if any thread suspend flags are set
twisti@3969 1738 // call into JVM and possible unlock the JNI critical
twisti@3969 1739 // if a GC was suppressed while in the critical native.
twisti@3969 1740 // transition back to thread_in_Java
twisti@3969 1741 // return to caller
twisti@3969 1742 //
twisti@3969 1743 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
duke@435 1744 methodHandle method,
twisti@2687 1745 int compile_id,
twisti@3969 1746 BasicType* in_sig_bt,
twisti@3969 1747 VMRegPair* in_regs,
duke@435 1748 BasicType ret_type) {
twisti@3969 1749 if (method->is_method_handle_intrinsic()) {
twisti@3969 1750 vmIntrinsics::ID iid = method->intrinsic_id();
twisti@3969 1751 intptr_t start = (intptr_t)__ pc();
twisti@3969 1752 int vep_offset = ((intptr_t)__ pc()) - start;
twisti@3969 1753 gen_special_dispatch(masm,
twisti@4101 1754 method,
twisti@3969 1755 in_sig_bt,
twisti@3969 1756 in_regs);
twisti@3969 1757 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period
twisti@3969 1758 __ flush();
twisti@3969 1759 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually
twisti@3969 1760 return nmethod::new_native_nmethod(method,
twisti@3969 1761 compile_id,
twisti@3969 1762 masm->code(),
twisti@3969 1763 vep_offset,
twisti@3969 1764 frame_complete,
twisti@3969 1765 stack_slots / VMRegImpl::slots_per_word,
twisti@3969 1766 in_ByteSize(-1),
twisti@3969 1767 in_ByteSize(-1),
twisti@3969 1768 (OopMapSet*)NULL);
twisti@3969 1769 }
never@3500 1770 bool is_critical_native = true;
never@3500 1771 address native_func = method->critical_native_function();
never@3500 1772 if (native_func == NULL) {
never@3500 1773 native_func = method->native_function();
never@3500 1774 is_critical_native = false;
never@3500 1775 }
never@3500 1776 assert(native_func != NULL, "must have function");
never@3500 1777
duke@435 1778 // An OopMap for lock (and class if static)
duke@435 1779 OopMapSet *oop_maps = new OopMapSet();
duke@435 1780 intptr_t start = (intptr_t)__ pc();
duke@435 1781
duke@435 1782 // We have received a description of where all the java arg are located
duke@435 1783 // on entry to the wrapper. We need to convert these args to where
duke@435 1784 // the jni function will expect them. To figure out where they go
duke@435 1785 // we convert the java signature to a C signature by inserting
duke@435 1786 // the hidden arguments as arg[0] and possibly arg[1] (static method)
duke@435 1787
twisti@4101 1788 const int total_in_args = method->size_of_parameters();
never@3500 1789 int total_c_args = total_in_args;
never@3500 1790 if (!is_critical_native) {
never@3500 1791 total_c_args += 1;
never@3500 1792 if (method->is_static()) {
never@3500 1793 total_c_args++;
never@3500 1794 }
never@3500 1795 } else {
never@3500 1796 for (int i = 0; i < total_in_args; i++) {
never@3500 1797 if (in_sig_bt[i] == T_ARRAY) {
never@3500 1798 total_c_args++;
never@3500 1799 }
never@3500 1800 }
duke@435 1801 }
duke@435 1802
duke@435 1803 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
never@3500 1804 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
never@3500 1805 BasicType* in_elem_bt = NULL;
duke@435 1806
duke@435 1807 int argc = 0;
never@3500 1808 if (!is_critical_native) {
never@3500 1809 out_sig_bt[argc++] = T_ADDRESS;
never@3500 1810 if (method->is_static()) {
never@3500 1811 out_sig_bt[argc++] = T_OBJECT;
never@3500 1812 }
never@3500 1813
never@3500 1814 for (int i = 0; i < total_in_args ; i++ ) {
never@3500 1815 out_sig_bt[argc++] = in_sig_bt[i];
never@3500 1816 }
never@3500 1817 } else {
never@3500 1818 Thread* THREAD = Thread::current();
never@3500 1819 in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
never@3500 1820 SignatureStream ss(method->signature());
never@3500 1821 for (int i = 0; i < total_in_args ; i++ ) {
never@3500 1822 if (in_sig_bt[i] == T_ARRAY) {
never@3500 1823 // Arrays are passed as int, elem* pair
never@3500 1824 out_sig_bt[argc++] = T_INT;
never@3500 1825 out_sig_bt[argc++] = T_ADDRESS;
never@3500 1826 Symbol* atype = ss.as_symbol(CHECK_NULL);
never@3500 1827 const char* at = atype->as_C_string();
never@3500 1828 if (strlen(at) == 2) {
never@3500 1829 assert(at[0] == '[', "must be");
never@3500 1830 switch (at[1]) {
never@3500 1831 case 'B': in_elem_bt[i] = T_BYTE; break;
never@3500 1832 case 'C': in_elem_bt[i] = T_CHAR; break;
never@3500 1833 case 'D': in_elem_bt[i] = T_DOUBLE; break;
never@3500 1834 case 'F': in_elem_bt[i] = T_FLOAT; break;
never@3500 1835 case 'I': in_elem_bt[i] = T_INT; break;
never@3500 1836 case 'J': in_elem_bt[i] = T_LONG; break;
never@3500 1837 case 'S': in_elem_bt[i] = T_SHORT; break;
never@3500 1838 case 'Z': in_elem_bt[i] = T_BOOLEAN; break;
never@3500 1839 default: ShouldNotReachHere();
never@3500 1840 }
never@3500 1841 }
never@3500 1842 } else {
never@3500 1843 out_sig_bt[argc++] = in_sig_bt[i];
never@3500 1844 in_elem_bt[i] = T_VOID;
never@3500 1845 }
never@3500 1846 if (in_sig_bt[i] != T_VOID) {
never@3500 1847 assert(in_sig_bt[i] == ss.type(), "must match");
never@3500 1848 ss.next();
never@3500 1849 }
never@3500 1850 }
duke@435 1851 }
duke@435 1852
duke@435 1853 // Now figure out where the args must be stored and how much stack space
duke@435 1854 // they require.
duke@435 1855 int out_arg_slots;
duke@435 1856 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
duke@435 1857
duke@435 1858 // Compute framesize for the wrapper. We need to handlize all oops in
duke@435 1859 // incoming registers
duke@435 1860
duke@435 1861 // Calculate the total number of stack slots we will need.
duke@435 1862
duke@435 1863 // First count the abi requirement plus all of the outgoing args
duke@435 1864 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
duke@435 1865
duke@435 1866 // Now the space for the inbound oop handle area
never@3500 1867 int total_save_slots = 6 * VMRegImpl::slots_per_word; // 6 arguments passed in registers
never@3500 1868 if (is_critical_native) {
never@3500 1869 // Critical natives may have to call out so they need a save area
never@3500 1870 // for register arguments.
never@3500 1871 int double_slots = 0;
never@3500 1872 int single_slots = 0;
never@3500 1873 for ( int i = 0; i < total_in_args; i++) {
never@3500 1874 if (in_regs[i].first()->is_Register()) {
never@3500 1875 const Register reg = in_regs[i].first()->as_Register();
never@3500 1876 switch (in_sig_bt[i]) {
never@3500 1877 case T_BOOLEAN:
never@3500 1878 case T_BYTE:
never@3500 1879 case T_SHORT:
never@3500 1880 case T_CHAR:
never@3500 1881 case T_INT: single_slots++; break;
twisti@3969 1882 case T_ARRAY: // specific to LP64 (7145024)
never@3500 1883 case T_LONG: double_slots++; break;
never@3500 1884 default: ShouldNotReachHere();
never@3500 1885 }
never@3500 1886 } else if (in_regs[i].first()->is_XMMRegister()) {
never@3500 1887 switch (in_sig_bt[i]) {
never@3500 1888 case T_FLOAT: single_slots++; break;
never@3500 1889 case T_DOUBLE: double_slots++; break;
never@3500 1890 default: ShouldNotReachHere();
never@3500 1891 }
never@3500 1892 } else if (in_regs[i].first()->is_FloatRegister()) {
never@3500 1893 ShouldNotReachHere();
never@3500 1894 }
never@3500 1895 }
never@3500 1896 total_save_slots = double_slots * 2 + single_slots;
never@3500 1897 // align the save area
never@3500 1898 if (double_slots != 0) {
never@3500 1899 stack_slots = round_to(stack_slots, 2);
never@3500 1900 }
never@3500 1901 }
duke@435 1902
duke@435 1903 int oop_handle_offset = stack_slots;
never@3500 1904 stack_slots += total_save_slots;
duke@435 1905
duke@435 1906 // Now any space we need for handlizing a klass if static method
duke@435 1907
duke@435 1908 int klass_slot_offset = 0;
duke@435 1909 int klass_offset = -1;
duke@435 1910 int lock_slot_offset = 0;
duke@435 1911 bool is_static = false;
duke@435 1912
duke@435 1913 if (method->is_static()) {
duke@435 1914 klass_slot_offset = stack_slots;
duke@435 1915 stack_slots += VMRegImpl::slots_per_word;
duke@435 1916 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
duke@435 1917 is_static = true;
duke@435 1918 }
duke@435 1919
duke@435 1920 // Plus a lock if needed
duke@435 1921
duke@435 1922 if (method->is_synchronized()) {
duke@435 1923 lock_slot_offset = stack_slots;
duke@435 1924 stack_slots += VMRegImpl::slots_per_word;
duke@435 1925 }
duke@435 1926
duke@435 1927 // Now a place (+2) to save return values or temp during shuffling
duke@435 1928 // + 4 for return address (which we own) and saved rbp
duke@435 1929 stack_slots += 6;
duke@435 1930
duke@435 1931 // Ok The space we have allocated will look like:
duke@435 1932 //
duke@435 1933 //
duke@435 1934 // FP-> | |
duke@435 1935 // |---------------------|
duke@435 1936 // | 2 slots for moves |
duke@435 1937 // |---------------------|
duke@435 1938 // | lock box (if sync) |
duke@435 1939 // |---------------------| <- lock_slot_offset
duke@435 1940 // | klass (if static) |
duke@435 1941 // |---------------------| <- klass_slot_offset
duke@435 1942 // | oopHandle area |
duke@435 1943 // |---------------------| <- oop_handle_offset (6 java arg registers)
duke@435 1944 // | outbound memory |
duke@435 1945 // | based arguments |
duke@435 1946 // | |
duke@435 1947 // |---------------------|
duke@435 1948 // | |
duke@435 1949 // SP-> | out_preserved_slots |
duke@435 1950 //
duke@435 1951 //
duke@435 1952
duke@435 1953
duke@435 1954 // Now compute actual number of stack words we need rounding to make
duke@435 1955 // stack properly aligned.
xlu@959 1956 stack_slots = round_to(stack_slots, StackAlignmentInSlots);
duke@435 1957
duke@435 1958 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
duke@435 1959
duke@435 1960 // First thing make an ic check to see if we should even be here
duke@435 1961
duke@435 1962 // We are free to use all registers as temps without saving them and
duke@435 1963 // restoring them except rbp. rbp is the only callee save register
duke@435 1964 // as far as the interpreter and the compiler(s) are concerned.
duke@435 1965
duke@435 1966
duke@435 1967 const Register ic_reg = rax;
duke@435 1968 const Register receiver = j_rarg0;
duke@435 1969
never@3500 1970 Label hit;
duke@435 1971 Label exception_pending;
duke@435 1972
never@1283 1973 assert_different_registers(ic_reg, receiver, rscratch1);
duke@435 1974 __ verify_oop(receiver);
never@1283 1975 __ load_klass(rscratch1, receiver);
never@1283 1976 __ cmpq(ic_reg, rscratch1);
never@3500 1977 __ jcc(Assembler::equal, hit);
duke@435 1978
duke@435 1979 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
duke@435 1980
duke@435 1981 // Verified entry point must be aligned
duke@435 1982 __ align(8);
duke@435 1983
never@3500 1984 __ bind(hit);
never@3500 1985
duke@435 1986 int vep_offset = ((intptr_t)__ pc()) - start;
duke@435 1987
duke@435 1988 // The instruction at the verified entry point must be 5 bytes or longer
duke@435 1989 // because it can be patched on the fly by make_non_entrant. The stack bang
duke@435 1990 // instruction fits that requirement.
duke@435 1991
duke@435 1992 // Generate stack overflow check
duke@435 1993
duke@435 1994 if (UseStackBanging) {
duke@435 1995 __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
duke@435 1996 } else {
duke@435 1997 // need a 5 byte instruction to allow MT safe patching to non-entrant
duke@435 1998 __ fat_nop();
duke@435 1999 }
duke@435 2000
duke@435 2001 // Generate a new frame for the wrapper.
duke@435 2002 __ enter();
duke@435 2003 // -2 because return address is already present and so is saved rbp
never@739 2004 __ subptr(rsp, stack_size - 2*wordSize);
duke@435 2005
never@3500 2006 // Frame is now completed as far as size and linkage.
never@3500 2007 int frame_complete = ((intptr_t)__ pc()) - start;
duke@435 2008
duke@435 2009 #ifdef ASSERT
duke@435 2010 {
duke@435 2011 Label L;
never@739 2012 __ mov(rax, rsp);
twisti@1040 2013 __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
never@739 2014 __ cmpptr(rax, rsp);
duke@435 2015 __ jcc(Assembler::equal, L);
duke@435 2016 __ stop("improperly aligned stack");
duke@435 2017 __ bind(L);
duke@435 2018 }
duke@435 2019 #endif /* ASSERT */
duke@435 2020
duke@435 2021
duke@435 2022 // We use r14 as the oop handle for the receiver/klass
duke@435 2023 // It is callee save so it survives the call to native
duke@435 2024
duke@435 2025 const Register oop_handle_reg = r14;
duke@435 2026
never@3500 2027 if (is_critical_native) {
never@3500 2028 check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args,
never@3500 2029 oop_handle_offset, oop_maps, in_regs, in_sig_bt);
never@3500 2030 }
duke@435 2031
duke@435 2032 //
duke@435 2033 // We immediately shuffle the arguments so that any vm call we have to
duke@435 2034 // make from here on out (sync slow path, jvmti, etc.) we will have
duke@435 2035 // captured the oops from our caller and have a valid oopMap for
duke@435 2036 // them.
duke@435 2037
duke@435 2038 // -----------------
duke@435 2039 // The Grand Shuffle
duke@435 2040
duke@435 2041 // The Java calling convention is either equal (linux) or denser (win64) than the
duke@435 2042 // c calling convention. However the because of the jni_env argument the c calling
duke@435 2043 // convention always has at least one more (and two for static) arguments than Java.
duke@435 2044 // Therefore if we move the args from java -> c backwards then we will never have
duke@435 2045 // a register->register conflict and we don't have to build a dependency graph
duke@435 2046 // and figure out how to break any cycles.
duke@435 2047 //
duke@435 2048
duke@435 2049 // Record esp-based slot for receiver on stack for non-static methods
duke@435 2050 int receiver_offset = -1;
duke@435 2051
duke@435 2052 // This is a trick. We double the stack slots so we can claim
duke@435 2053 // the oops in the caller's frame. Since we are sure to have
duke@435 2054 // more args than the caller doubling is enough to make
duke@435 2055 // sure we can capture all the incoming oop args from the
duke@435 2056 // caller.
duke@435 2057 //
duke@435 2058 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
duke@435 2059
duke@435 2060 // Mark location of rbp (someday)
duke@435 2061 // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
duke@435 2062
duke@435 2063 // Use eax, ebx as temporaries during any memory-memory moves we have to do
duke@435 2064 // All inbound args are referenced based on rbp and all outbound args via rsp.
duke@435 2065
duke@435 2066
duke@435 2067 #ifdef ASSERT
duke@435 2068 bool reg_destroyed[RegisterImpl::number_of_registers];
duke@435 2069 bool freg_destroyed[XMMRegisterImpl::number_of_registers];
duke@435 2070 for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
duke@435 2071 reg_destroyed[r] = false;
duke@435 2072 }
duke@435 2073 for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
duke@435 2074 freg_destroyed[f] = false;
duke@435 2075 }
duke@435 2076
duke@435 2077 #endif /* ASSERT */
duke@435 2078
never@3500 2079 // This may iterate in two different directions depending on the
never@3500 2080 // kind of native it is. The reason is that for regular JNI natives
never@3500 2081 // the incoming and outgoing registers are offset upwards and for
never@3500 2082 // critical natives they are offset down.
never@3608 2083 GrowableArray<int> arg_order(2 * total_in_args);
never@3608 2084 VMRegPair tmp_vmreg;
never@3608 2085 tmp_vmreg.set1(rbx->as_VMReg());
never@3608 2086
never@3608 2087 if (!is_critical_native) {
never@3608 2088 for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
never@3608 2089 arg_order.push(i);
never@3608 2090 arg_order.push(c_arg);
never@3608 2091 }
never@3608 2092 } else {
never@3608 2093 // Compute a valid move order, using tmp_vmreg to break any cycles
never@3608 2094 ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg);
never@3500 2095 }
never@3608 2096
never@3608 2097 int temploc = -1;
never@3608 2098 for (int ai = 0; ai < arg_order.length(); ai += 2) {
never@3608 2099 int i = arg_order.at(ai);
never@3608 2100 int c_arg = arg_order.at(ai + 1);
never@3608 2101 __ block_comment(err_msg("move %d -> %d", i, c_arg));
never@3608 2102 if (c_arg == -1) {
never@3608 2103 assert(is_critical_native, "should only be required for critical natives");
never@3608 2104 // This arg needs to be moved to a temporary
never@3608 2105 __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register());
never@3608 2106 in_regs[i] = tmp_vmreg;
never@3608 2107 temploc = i;
never@3608 2108 continue;
never@3608 2109 } else if (i == -1) {
never@3608 2110 assert(is_critical_native, "should only be required for critical natives");
never@3608 2111 // Read from the temporary location
never@3608 2112 assert(temploc != -1, "must be valid");
never@3608 2113 i = temploc;
never@3608 2114 temploc = -1;
never@3608 2115 }
duke@435 2116 #ifdef ASSERT
duke@435 2117 if (in_regs[i].first()->is_Register()) {
duke@435 2118 assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
duke@435 2119 } else if (in_regs[i].first()->is_XMMRegister()) {
duke@435 2120 assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
duke@435 2121 }
duke@435 2122 if (out_regs[c_arg].first()->is_Register()) {
duke@435 2123 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
duke@435 2124 } else if (out_regs[c_arg].first()->is_XMMRegister()) {
duke@435 2125 freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
duke@435 2126 }
duke@435 2127 #endif /* ASSERT */
duke@435 2128 switch (in_sig_bt[i]) {
duke@435 2129 case T_ARRAY:
never@3500 2130 if (is_critical_native) {
never@3500 2131 unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
never@3500 2132 c_arg++;
never@3500 2133 #ifdef ASSERT
never@3500 2134 if (out_regs[c_arg].first()->is_Register()) {
never@3500 2135 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
never@3500 2136 } else if (out_regs[c_arg].first()->is_XMMRegister()) {
never@3500 2137 freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
never@3500 2138 }
never@3500 2139 #endif
never@3500 2140 break;
never@3500 2141 }
duke@435 2142 case T_OBJECT:
never@3500 2143 assert(!is_critical_native, "no oop arguments");
duke@435 2144 object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
duke@435 2145 ((i == 0) && (!is_static)),
duke@435 2146 &receiver_offset);
duke@435 2147 break;
duke@435 2148 case T_VOID:
duke@435 2149 break;
duke@435 2150
duke@435 2151 case T_FLOAT:
duke@435 2152 float_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 2153 break;
duke@435 2154
duke@435 2155 case T_DOUBLE:
duke@435 2156 assert( i + 1 < total_in_args &&
duke@435 2157 in_sig_bt[i + 1] == T_VOID &&
duke@435 2158 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
duke@435 2159 double_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 2160 break;
duke@435 2161
duke@435 2162 case T_LONG :
duke@435 2163 long_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 2164 break;
duke@435 2165
duke@435 2166 case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
duke@435 2167
duke@435 2168 default:
duke@435 2169 move32_64(masm, in_regs[i], out_regs[c_arg]);
duke@435 2170 }
duke@435 2171 }
duke@435 2172
duke@435 2173 // point c_arg at the first arg that is already loaded in case we
duke@435 2174 // need to spill before we call out
never@3608 2175 int c_arg = total_c_args - total_in_args;
duke@435 2176
duke@435 2177 // Pre-load a static method's oop into r14. Used both by locking code and
duke@435 2178 // the normal JNI call code.
never@3500 2179 if (method->is_static() && !is_critical_native) {
duke@435 2180
duke@435 2181 // load oop into a register
coleenp@4251 2182 __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
duke@435 2183
duke@435 2184 // Now handlize the static class mirror it's known not-null.
never@739 2185 __ movptr(Address(rsp, klass_offset), oop_handle_reg);
duke@435 2186 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
duke@435 2187
duke@435 2188 // Now get the handle
never@739 2189 __ lea(oop_handle_reg, Address(rsp, klass_offset));
duke@435 2190 // store the klass handle as second argument
never@739 2191 __ movptr(c_rarg1, oop_handle_reg);
duke@435 2192 // and protect the arg if we must spill
duke@435 2193 c_arg--;
duke@435 2194 }
duke@435 2195
duke@435 2196 // Change state to native (we save the return address in the thread, since it might not
duke@435 2197 // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
duke@435 2198 // points into the right code segment. It does not have to be the correct return pc.
duke@435 2199 // We use the same pc/oopMap repeatedly when we call out
duke@435 2200
duke@435 2201 intptr_t the_pc = (intptr_t) __ pc();
duke@435 2202 oop_maps->add_gc_map(the_pc - start, map);
duke@435 2203
duke@435 2204 __ set_last_Java_frame(rsp, noreg, (address)the_pc);
duke@435 2205
duke@435 2206
duke@435 2207 // We have all of the arguments setup at this point. We must not touch any register
duke@435 2208 // argument registers at this point (what if we save/restore them there are no oop?
duke@435 2209
duke@435 2210 {
duke@435 2211 SkipIfEqual skip(masm, &DTraceMethodProbes, false);
duke@435 2212 // protect the args we've loaded
duke@435 2213 save_args(masm, total_c_args, c_arg, out_regs);
coleenp@4037 2214 __ mov_metadata(c_rarg1, method());
duke@435 2215 __ call_VM_leaf(
duke@435 2216 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
duke@435 2217 r15_thread, c_rarg1);
duke@435 2218 restore_args(masm, total_c_args, c_arg, out_regs);
duke@435 2219 }
duke@435 2220
dcubed@1045 2221 // RedefineClasses() tracing support for obsolete method entry
dcubed@1045 2222 if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
dcubed@1045 2223 // protect the args we've loaded
dcubed@1045 2224 save_args(masm, total_c_args, c_arg, out_regs);
coleenp@4037 2225 __ mov_metadata(c_rarg1, method());
dcubed@1045 2226 __ call_VM_leaf(
dcubed@1045 2227 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
dcubed@1045 2228 r15_thread, c_rarg1);
dcubed@1045 2229 restore_args(masm, total_c_args, c_arg, out_regs);
dcubed@1045 2230 }
dcubed@1045 2231
duke@435 2232 // Lock a synchronized method
duke@435 2233
duke@435 2234 // Register definitions used by locking and unlocking
duke@435 2235
duke@435 2236 const Register swap_reg = rax; // Must use rax for cmpxchg instruction
duke@435 2237 const Register obj_reg = rbx; // Will contain the oop
duke@435 2238 const Register lock_reg = r13; // Address of compiler lock object (BasicLock)
duke@435 2239 const Register old_hdr = r13; // value of old header at unlock time
duke@435 2240
duke@435 2241 Label slow_path_lock;
duke@435 2242 Label lock_done;
duke@435 2243
duke@435 2244 if (method->is_synchronized()) {
never@3500 2245 assert(!is_critical_native, "unhandled");
duke@435 2246
duke@435 2247
duke@435 2248 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
duke@435 2249
duke@435 2250 // Get the handle (the 2nd argument)
never@739 2251 __ mov(oop_handle_reg, c_rarg1);
duke@435 2252
duke@435 2253 // Get address of the box
duke@435 2254
never@739 2255 __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
duke@435 2256
duke@435 2257 // Load the oop from the handle
never@739 2258 __ movptr(obj_reg, Address(oop_handle_reg, 0));
duke@435 2259
duke@435 2260 if (UseBiasedLocking) {
duke@435 2261 __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
duke@435 2262 }
duke@435 2263
duke@435 2264 // Load immediate 1 into swap_reg %rax
duke@435 2265 __ movl(swap_reg, 1);
duke@435 2266
duke@435 2267 // Load (object->mark() | 1) into swap_reg %rax
never@739 2268 __ orptr(swap_reg, Address(obj_reg, 0));
duke@435 2269
duke@435 2270 // Save (object->mark() | 1) into BasicLock's displaced header
never@739 2271 __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
duke@435 2272
duke@435 2273 if (os::is_MP()) {
duke@435 2274 __ lock();
duke@435 2275 }
duke@435 2276
duke@435 2277 // src -> dest iff dest == rax else rax <- dest
never@739 2278 __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
duke@435 2279 __ jcc(Assembler::equal, lock_done);
duke@435 2280
duke@435 2281 // Hmm should this move to the slow path code area???
duke@435 2282
duke@435 2283 // Test if the oopMark is an obvious stack pointer, i.e.,
duke@435 2284 // 1) (mark & 3) == 0, and
duke@435 2285 // 2) rsp <= mark < mark + os::pagesize()
duke@435 2286 // These 3 tests can be done by evaluating the following
duke@435 2287 // expression: ((mark - rsp) & (3 - os::vm_page_size())),
duke@435 2288 // assuming both stack pointer and pagesize have their
duke@435 2289 // least significant 2 bits clear.
duke@435 2290 // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
duke@435 2291
never@739 2292 __ subptr(swap_reg, rsp);
never@739 2293 __ andptr(swap_reg, 3 - os::vm_page_size());
duke@435 2294
duke@435 2295 // Save the test result, for recursive case, the result is zero
never@739 2296 __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
duke@435 2297 __ jcc(Assembler::notEqual, slow_path_lock);
duke@435 2298
duke@435 2299 // Slow path will re-enter here
duke@435 2300
duke@435 2301 __ bind(lock_done);
duke@435 2302 }
duke@435 2303
duke@435 2304
duke@435 2305 // Finally just about ready to make the JNI call
duke@435 2306
duke@435 2307
duke@435 2308 // get JNIEnv* which is first argument to native
never@3500 2309 if (!is_critical_native) {
never@3500 2310 __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
never@3500 2311 }
duke@435 2312
duke@435 2313 // Now set thread in native
never@739 2314 __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
duke@435 2315
never@3500 2316 __ call(RuntimeAddress(native_func));
duke@435 2317
kvn@4873 2318 // Verify or restore cpu control state after JNI call
kvn@4873 2319 __ restore_cpu_control_state_after_jni();
duke@435 2320
duke@435 2321 // Unpack native results.
duke@435 2322 switch (ret_type) {
duke@435 2323 case T_BOOLEAN: __ c2bool(rax); break;
duke@435 2324 case T_CHAR : __ movzwl(rax, rax); break;
duke@435 2325 case T_BYTE : __ sign_extend_byte (rax); break;
duke@435 2326 case T_SHORT : __ sign_extend_short(rax); break;
duke@435 2327 case T_INT : /* nothing to do */ break;
duke@435 2328 case T_DOUBLE :
duke@435 2329 case T_FLOAT :
duke@435 2330 // Result is in xmm0 we'll save as needed
duke@435 2331 break;
duke@435 2332 case T_ARRAY: // Really a handle
duke@435 2333 case T_OBJECT: // Really a handle
duke@435 2334 break; // can't de-handlize until after safepoint check
duke@435 2335 case T_VOID: break;
duke@435 2336 case T_LONG: break;
duke@435 2337 default : ShouldNotReachHere();
duke@435 2338 }
duke@435 2339
duke@435 2340 // Switch thread to "native transition" state before reading the synchronization state.
duke@435 2341 // This additional state is necessary because reading and testing the synchronization
duke@435 2342 // state is not atomic w.r.t. GC, as this scenario demonstrates:
duke@435 2343 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
duke@435 2344 // VM thread changes sync state to synchronizing and suspends threads for GC.
duke@435 2345 // Thread A is resumed to finish this native method, but doesn't block here since it
duke@435 2346 // didn't see any synchronization is progress, and escapes.
never@739 2347 __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
duke@435 2348
duke@435 2349 if(os::is_MP()) {
duke@435 2350 if (UseMembar) {
duke@435 2351 // Force this write out before the read below
duke@435 2352 __ membar(Assembler::Membar_mask_bits(
duke@435 2353 Assembler::LoadLoad | Assembler::LoadStore |
duke@435 2354 Assembler::StoreLoad | Assembler::StoreStore));
duke@435 2355 } else {
duke@435 2356 // Write serialization page so VM thread can do a pseudo remote membar.
duke@435 2357 // We use the current thread pointer to calculate a thread specific
duke@435 2358 // offset to write to within the page. This minimizes bus traffic
duke@435 2359 // due to cache line collision.
duke@435 2360 __ serialize_memory(r15_thread, rcx);
duke@435 2361 }
duke@435 2362 }
duke@435 2363
never@3500 2364 Label after_transition;
duke@435 2365
duke@435 2366 // check for safepoint operation in progress and/or pending suspend requests
duke@435 2367 {
duke@435 2368 Label Continue;
duke@435 2369
duke@435 2370 __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
duke@435 2371 SafepointSynchronize::_not_synchronized);
duke@435 2372
duke@435 2373 Label L;
duke@435 2374 __ jcc(Assembler::notEqual, L);
duke@435 2375 __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
duke@435 2376 __ jcc(Assembler::equal, Continue);
duke@435 2377 __ bind(L);
duke@435 2378
duke@435 2379 // Don't use call_VM as it will see a possible pending exception and forward it
duke@435 2380 // and never return here preventing us from clearing _last_native_pc down below.
duke@435 2381 // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
duke@435 2382 // preserved and correspond to the bcp/locals pointers. So we do a runtime call
duke@435 2383 // by hand.
duke@435 2384 //
duke@435 2385 save_native_result(masm, ret_type, stack_slots);
never@739 2386 __ mov(c_rarg0, r15_thread);
never@739 2387 __ mov(r12, rsp); // remember sp
never@739 2388 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
never@739 2389 __ andptr(rsp, -16); // align stack as required by ABI
never@3500 2390 if (!is_critical_native) {
never@3500 2391 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
never@3500 2392 } else {
never@3500 2393 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)));
never@3500 2394 }
never@739 2395 __ mov(rsp, r12); // restore sp
coleenp@548 2396 __ reinit_heapbase();
duke@435 2397 // Restore any method result value
duke@435 2398 restore_native_result(masm, ret_type, stack_slots);
never@3500 2399
never@3500 2400 if (is_critical_native) {
never@3500 2401 // The call above performed the transition to thread_in_Java so
never@3500 2402 // skip the transition logic below.
never@3500 2403 __ jmpb(after_transition);
never@3500 2404 }
never@3500 2405
duke@435 2406 __ bind(Continue);
duke@435 2407 }
duke@435 2408
duke@435 2409 // change thread state
duke@435 2410 __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
never@3500 2411 __ bind(after_transition);
duke@435 2412
duke@435 2413 Label reguard;
duke@435 2414 Label reguard_done;
duke@435 2415 __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
duke@435 2416 __ jcc(Assembler::equal, reguard);
duke@435 2417 __ bind(reguard_done);
duke@435 2418
duke@435 2419 // native result if any is live
duke@435 2420
duke@435 2421 // Unlock
duke@435 2422 Label unlock_done;
duke@435 2423 Label slow_path_unlock;
duke@435 2424 if (method->is_synchronized()) {
duke@435 2425
duke@435 2426 // Get locked oop from the handle we passed to jni
never@739 2427 __ movptr(obj_reg, Address(oop_handle_reg, 0));
duke@435 2428
duke@435 2429 Label done;
duke@435 2430
duke@435 2431 if (UseBiasedLocking) {
duke@435 2432 __ biased_locking_exit(obj_reg, old_hdr, done);
duke@435 2433 }
duke@435 2434
duke@435 2435 // Simple recursive lock?
duke@435 2436
never@739 2437 __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
duke@435 2438 __ jcc(Assembler::equal, done);
duke@435 2439
duke@435 2440 // Must save rax if if it is live now because cmpxchg must use it
duke@435 2441 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
duke@435 2442 save_native_result(masm, ret_type, stack_slots);
duke@435 2443 }
duke@435 2444
duke@435 2445
duke@435 2446 // get address of the stack lock
never@739 2447 __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
duke@435 2448 // get old displaced header
never@739 2449 __ movptr(old_hdr, Address(rax, 0));
duke@435 2450
duke@435 2451 // Atomic swap old header if oop still contains the stack lock
duke@435 2452 if (os::is_MP()) {
duke@435 2453 __ lock();
duke@435 2454 }
never@739 2455 __ cmpxchgptr(old_hdr, Address(obj_reg, 0));
duke@435 2456 __ jcc(Assembler::notEqual, slow_path_unlock);
duke@435 2457
duke@435 2458 // slow path re-enters here
duke@435 2459 __ bind(unlock_done);
duke@435 2460 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
duke@435 2461 restore_native_result(masm, ret_type, stack_slots);
duke@435 2462 }
duke@435 2463
duke@435 2464 __ bind(done);
duke@435 2465
duke@435 2466 }
duke@435 2467 {
duke@435 2468 SkipIfEqual skip(masm, &DTraceMethodProbes, false);
duke@435 2469 save_native_result(masm, ret_type, stack_slots);
coleenp@4037 2470 __ mov_metadata(c_rarg1, method());
duke@435 2471 __ call_VM_leaf(
duke@435 2472 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
duke@435 2473 r15_thread, c_rarg1);
duke@435 2474 restore_native_result(masm, ret_type, stack_slots);
duke@435 2475 }
duke@435 2476
duke@435 2477 __ reset_last_Java_frame(false, true);
duke@435 2478
duke@435 2479 // Unpack oop result
duke@435 2480 if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
duke@435 2481 Label L;
never@739 2482 __ testptr(rax, rax);
duke@435 2483 __ jcc(Assembler::zero, L);
never@739 2484 __ movptr(rax, Address(rax, 0));
duke@435 2485 __ bind(L);
duke@435 2486 __ verify_oop(rax);
duke@435 2487 }
duke@435 2488
never@3500 2489 if (!is_critical_native) {
never@3500 2490 // reset handle block
never@3500 2491 __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
never@3500 2492 __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
never@3500 2493 }
duke@435 2494
duke@435 2495 // pop our frame
duke@435 2496
duke@435 2497 __ leave();
duke@435 2498
never@3500 2499 if (!is_critical_native) {
never@3500 2500 // Any exception pending?
never@3500 2501 __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
never@3500 2502 __ jcc(Assembler::notEqual, exception_pending);
never@3500 2503 }
duke@435 2504
duke@435 2505 // Return
duke@435 2506
duke@435 2507 __ ret(0);
duke@435 2508
duke@435 2509 // Unexpected paths are out of line and go here
duke@435 2510
never@3500 2511 if (!is_critical_native) {
never@3500 2512 // forward the exception
never@3500 2513 __ bind(exception_pending);
never@3500 2514
never@3500 2515 // and forward the exception
never@3500 2516 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
never@3500 2517 }
duke@435 2518
duke@435 2519 // Slow path locking & unlocking
duke@435 2520 if (method->is_synchronized()) {
duke@435 2521
duke@435 2522 // BEGIN Slow path lock
duke@435 2523 __ bind(slow_path_lock);
duke@435 2524
duke@435 2525 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
duke@435 2526 // args are (oop obj, BasicLock* lock, JavaThread* thread)
duke@435 2527
duke@435 2528 // protect the args we've loaded
duke@435 2529 save_args(masm, total_c_args, c_arg, out_regs);
duke@435 2530
never@739 2531 __ mov(c_rarg0, obj_reg);
never@739 2532 __ mov(c_rarg1, lock_reg);
never@739 2533 __ mov(c_rarg2, r15_thread);
duke@435 2534
duke@435 2535 // Not a leaf but we have last_Java_frame setup as we want
duke@435 2536 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
duke@435 2537 restore_args(masm, total_c_args, c_arg, out_regs);
duke@435 2538
duke@435 2539 #ifdef ASSERT
duke@435 2540 { Label L;
never@739 2541 __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
duke@435 2542 __ jcc(Assembler::equal, L);
duke@435 2543 __ stop("no pending exception allowed on exit from monitorenter");
duke@435 2544 __ bind(L);
duke@435 2545 }
duke@435 2546 #endif
duke@435 2547 __ jmp(lock_done);
duke@435 2548
duke@435 2549 // END Slow path lock
duke@435 2550
duke@435 2551 // BEGIN Slow path unlock
duke@435 2552 __ bind(slow_path_unlock);
duke@435 2553
duke@435 2554 // If we haven't already saved the native result we must save it now as xmm registers
duke@435 2555 // are still exposed.
duke@435 2556
duke@435 2557 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
duke@435 2558 save_native_result(masm, ret_type, stack_slots);
duke@435 2559 }
duke@435 2560
never@739 2561 __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
never@739 2562
never@739 2563 __ mov(c_rarg0, obj_reg);
never@739 2564 __ mov(r12, rsp); // remember sp
never@739 2565 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
never@739 2566 __ andptr(rsp, -16); // align stack as required by ABI
duke@435 2567
duke@435 2568 // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
duke@435 2569 // NOTE that obj_reg == rbx currently
never@739 2570 __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
never@739 2571 __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
duke@435 2572
duke@435 2573 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
never@739 2574 __ mov(rsp, r12); // restore sp
coleenp@548 2575 __ reinit_heapbase();
duke@435 2576 #ifdef ASSERT
duke@435 2577 {
duke@435 2578 Label L;
never@739 2579 __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
duke@435 2580 __ jcc(Assembler::equal, L);
duke@435 2581 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
duke@435 2582 __ bind(L);
duke@435 2583 }
duke@435 2584 #endif /* ASSERT */
duke@435 2585
never@739 2586 __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
duke@435 2587
duke@435 2588 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
duke@435 2589 restore_native_result(masm, ret_type, stack_slots);
duke@435 2590 }
duke@435 2591 __ jmp(unlock_done);
duke@435 2592
duke@435 2593 // END Slow path unlock
duke@435 2594
duke@435 2595 } // synchronized
duke@435 2596
duke@435 2597 // SLOW PATH Reguard the stack if needed
duke@435 2598
duke@435 2599 __ bind(reguard);
duke@435 2600 save_native_result(masm, ret_type, stack_slots);
never@739 2601 __ mov(r12, rsp); // remember sp
never@739 2602 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
never@739 2603 __ andptr(rsp, -16); // align stack as required by ABI
duke@435 2604 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
never@739 2605 __ mov(rsp, r12); // restore sp
coleenp@548 2606 __ reinit_heapbase();
duke@435 2607 restore_native_result(masm, ret_type, stack_slots);
duke@435 2608 // and continue
duke@435 2609 __ jmp(reguard_done);
duke@435 2610
duke@435 2611
duke@435 2612
duke@435 2613 __ flush();
duke@435 2614
duke@435 2615 nmethod *nm = nmethod::new_native_nmethod(method,
twisti@2687 2616 compile_id,
duke@435 2617 masm->code(),
duke@435 2618 vep_offset,
duke@435 2619 frame_complete,
duke@435 2620 stack_slots / VMRegImpl::slots_per_word,
duke@435 2621 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
duke@435 2622 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
duke@435 2623 oop_maps);
never@3500 2624
never@3500 2625 if (is_critical_native) {
never@3500 2626 nm->set_lazy_critical_native(true);
never@3500 2627 }
never@3500 2628
duke@435 2629 return nm;
duke@435 2630
duke@435 2631 }
duke@435 2632
kamg@551 2633 #ifdef HAVE_DTRACE_H
kamg@551 2634 // ---------------------------------------------------------------------------
kamg@551 2635 // Generate a dtrace nmethod for a given signature. The method takes arguments
kamg@551 2636 // in the Java compiled code convention, marshals them to the native
kamg@551 2637 // abi and then leaves nops at the position you would expect to call a native
kamg@551 2638 // function. When the probe is enabled the nops are replaced with a trap
kamg@551 2639 // instruction that dtrace inserts and the trace will cause a notification
kamg@551 2640 // to dtrace.
kamg@551 2641 //
kamg@551 2642 // The probes are only able to take primitive types and java/lang/String as
kamg@551 2643 // arguments. No other java types are allowed. Strings are converted to utf8
kamg@551 2644 // strings so that from dtrace point of view java strings are converted to C
kamg@551 2645 // strings. There is an arbitrary fixed limit on the total space that a method
kamg@551 2646 // can use for converting the strings. (256 chars per string in the signature).
kamg@551 2647 // So any java string larger then this is truncated.
kamg@551 2648
kamg@551 2649 static int fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
kamg@551 2650 static bool offsets_initialized = false;
kamg@551 2651
kamg@551 2652
kamg@551 2653 nmethod *SharedRuntime::generate_dtrace_nmethod(MacroAssembler *masm,
kamg@551 2654 methodHandle method) {
kamg@551 2655
kamg@551 2656
kamg@551 2657 // generate_dtrace_nmethod is guarded by a mutex so we are sure to
kamg@551 2658 // be single threaded in this method.
kamg@551 2659 assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
kamg@551 2660
kamg@551 2661 if (!offsets_initialized) {
kamg@551 2662 fp_offset[c_rarg0->as_VMReg()->value()] = -1 * wordSize;
kamg@551 2663 fp_offset[c_rarg1->as_VMReg()->value()] = -2 * wordSize;
kamg@551 2664 fp_offset[c_rarg2->as_VMReg()->value()] = -3 * wordSize;
kamg@551 2665 fp_offset[c_rarg3->as_VMReg()->value()] = -4 * wordSize;
kamg@551 2666 fp_offset[c_rarg4->as_VMReg()->value()] = -5 * wordSize;
kamg@551 2667 fp_offset[c_rarg5->as_VMReg()->value()] = -6 * wordSize;
kamg@551 2668
kamg@551 2669 fp_offset[c_farg0->as_VMReg()->value()] = -7 * wordSize;
kamg@551 2670 fp_offset[c_farg1->as_VMReg()->value()] = -8 * wordSize;
kamg@551 2671 fp_offset[c_farg2->as_VMReg()->value()] = -9 * wordSize;
kamg@551 2672 fp_offset[c_farg3->as_VMReg()->value()] = -10 * wordSize;
kamg@551 2673 fp_offset[c_farg4->as_VMReg()->value()] = -11 * wordSize;
kamg@551 2674 fp_offset[c_farg5->as_VMReg()->value()] = -12 * wordSize;
kamg@551 2675 fp_offset[c_farg6->as_VMReg()->value()] = -13 * wordSize;
kamg@551 2676 fp_offset[c_farg7->as_VMReg()->value()] = -14 * wordSize;
kamg@551 2677
kamg@551 2678 offsets_initialized = true;
kamg@551 2679 }
kamg@551 2680 // Fill in the signature array, for the calling-convention call.
kamg@551 2681 int total_args_passed = method->size_of_parameters();
kamg@551 2682
kamg@551 2683 BasicType* in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
kamg@551 2684 VMRegPair *in_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
kamg@551 2685
kamg@551 2686 // The signature we are going to use for the trap that dtrace will see
kamg@551 2687 // java/lang/String is converted. We drop "this" and any other object
kamg@551 2688 // is converted to NULL. (A one-slot java/lang/Long object reference
kamg@551 2689 // is converted to a two-slot long, which is why we double the allocation).
kamg@551 2690 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
kamg@551 2691 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
kamg@551 2692
kamg@551 2693 int i=0;
kamg@551 2694 int total_strings = 0;
kamg@551 2695 int first_arg_to_pass = 0;
kamg@551 2696 int total_c_args = 0;
kamg@551 2697
kamg@551 2698 // Skip the receiver as dtrace doesn't want to see it
kamg@551 2699 if( !method->is_static() ) {
kamg@551 2700 in_sig_bt[i++] = T_OBJECT;
kamg@551 2701 first_arg_to_pass = 1;
kamg@551 2702 }
kamg@551 2703
kamg@551 2704 // We need to convert the java args to where a native (non-jni) function
kamg@551 2705 // would expect them. To figure out where they go we convert the java
kamg@551 2706 // signature to a C signature.
kamg@551 2707
kamg@551 2708 SignatureStream ss(method->signature());
kamg@551 2709 for ( ; !ss.at_return_type(); ss.next()) {
kamg@551 2710 BasicType bt = ss.type();
kamg@551 2711 in_sig_bt[i++] = bt; // Collect remaining bits of signature
kamg@551 2712 out_sig_bt[total_c_args++] = bt;
kamg@551 2713 if( bt == T_OBJECT) {
coleenp@2497 2714 Symbol* s = ss.as_symbol_or_null(); // symbol is created
kamg@551 2715 if (s == vmSymbols::java_lang_String()) {
kamg@551 2716 total_strings++;
kamg@551 2717 out_sig_bt[total_c_args-1] = T_ADDRESS;
kamg@551 2718 } else if (s == vmSymbols::java_lang_Boolean() ||
kamg@551 2719 s == vmSymbols::java_lang_Character() ||
kamg@551 2720 s == vmSymbols::java_lang_Byte() ||
kamg@551 2721 s == vmSymbols::java_lang_Short() ||
kamg@551 2722 s == vmSymbols::java_lang_Integer() ||
kamg@551 2723 s == vmSymbols::java_lang_Float()) {
kamg@551 2724 out_sig_bt[total_c_args-1] = T_INT;
kamg@551 2725 } else if (s == vmSymbols::java_lang_Long() ||
kamg@551 2726 s == vmSymbols::java_lang_Double()) {
kamg@551 2727 out_sig_bt[total_c_args-1] = T_LONG;
kamg@551 2728 out_sig_bt[total_c_args++] = T_VOID;
kamg@551 2729 }
kamg@551 2730 } else if ( bt == T_LONG || bt == T_DOUBLE ) {
kamg@551 2731 in_sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
kamg@551 2732 // We convert double to long
kamg@551 2733 out_sig_bt[total_c_args-1] = T_LONG;
kamg@551 2734 out_sig_bt[total_c_args++] = T_VOID;
kamg@551 2735 } else if ( bt == T_FLOAT) {
kamg@551 2736 // We convert float to int
kamg@551 2737 out_sig_bt[total_c_args-1] = T_INT;
kamg@551 2738 }
kamg@551 2739 }
kamg@551 2740
kamg@551 2741 assert(i==total_args_passed, "validly parsed signature");
kamg@551 2742
kamg@551 2743 // Now get the compiled-Java layout as input arguments
kamg@551 2744 int comp_args_on_stack;
kamg@551 2745 comp_args_on_stack = SharedRuntime::java_calling_convention(
kamg@551 2746 in_sig_bt, in_regs, total_args_passed, false);
kamg@551 2747
kamg@551 2748 // Now figure out where the args must be stored and how much stack space
kamg@551 2749 // they require (neglecting out_preserve_stack_slots but space for storing
kamg@551 2750 // the 1st six register arguments). It's weird see int_stk_helper.
kamg@551 2751
kamg@551 2752 int out_arg_slots;
kamg@551 2753 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
kamg@551 2754
kamg@551 2755 // Calculate the total number of stack slots we will need.
kamg@551 2756
kamg@551 2757 // First count the abi requirement plus all of the outgoing args
kamg@551 2758 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
kamg@551 2759
kamg@551 2760 // Now space for the string(s) we must convert
kamg@551 2761 int* string_locs = NEW_RESOURCE_ARRAY(int, total_strings + 1);
kamg@551 2762 for (i = 0; i < total_strings ; i++) {
kamg@551 2763 string_locs[i] = stack_slots;
kamg@551 2764 stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
kamg@551 2765 }
kamg@551 2766
kamg@551 2767 // Plus the temps we might need to juggle register args
kamg@551 2768 // regs take two slots each
kamg@551 2769 stack_slots += (Argument::n_int_register_parameters_c +
kamg@551 2770 Argument::n_float_register_parameters_c) * 2;
kamg@551 2771
kamg@551 2772
kamg@551 2773 // + 4 for return address (which we own) and saved rbp,
kamg@551 2774
kamg@551 2775 stack_slots += 4;
kamg@551 2776
kamg@551 2777 // Ok The space we have allocated will look like:
kamg@551 2778 //
kamg@551 2779 //
kamg@551 2780 // FP-> | |
kamg@551 2781 // |---------------------|
kamg@551 2782 // | string[n] |
kamg@551 2783 // |---------------------| <- string_locs[n]
kamg@551 2784 // | string[n-1] |
kamg@551 2785 // |---------------------| <- string_locs[n-1]
kamg@551 2786 // | ... |
kamg@551 2787 // | ... |
kamg@551 2788 // |---------------------| <- string_locs[1]
kamg@551 2789 // | string[0] |
kamg@551 2790 // |---------------------| <- string_locs[0]
kamg@551 2791 // | outbound memory |
kamg@551 2792 // | based arguments |
kamg@551 2793 // | |
kamg@551 2794 // |---------------------|
kamg@551 2795 // | |
kamg@551 2796 // SP-> | out_preserved_slots |
kamg@551 2797 //
kamg@551 2798 //
kamg@551 2799
kamg@551 2800 // Now compute actual number of stack words we need rounding to make
kamg@551 2801 // stack properly aligned.
kamg@551 2802 stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
kamg@551 2803
kamg@551 2804 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
kamg@551 2805
kamg@551 2806 intptr_t start = (intptr_t)__ pc();
kamg@551 2807
kamg@551 2808 // First thing make an ic check to see if we should even be here
kamg@551 2809
kamg@551 2810 // We are free to use all registers as temps without saving them and
kamg@551 2811 // restoring them except rbp. rbp, is the only callee save register
kamg@551 2812 // as far as the interpreter and the compiler(s) are concerned.
kamg@551 2813
kamg@551 2814 const Register ic_reg = rax;
kamg@551 2815 const Register receiver = rcx;
kamg@551 2816 Label hit;
kamg@551 2817 Label exception_pending;
kamg@551 2818
kamg@551 2819
kamg@551 2820 __ verify_oop(receiver);
kamg@551 2821 __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
kamg@551 2822 __ jcc(Assembler::equal, hit);
kamg@551 2823
kamg@551 2824 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
kamg@551 2825
kamg@551 2826 // verified entry must be aligned for code patching.
kamg@551 2827 // and the first 5 bytes must be in the same cache line
kamg@551 2828 // if we align at 8 then we will be sure 5 bytes are in the same line
kamg@551 2829 __ align(8);
kamg@551 2830
kamg@551 2831 __ bind(hit);
kamg@551 2832
kamg@551 2833 int vep_offset = ((intptr_t)__ pc()) - start;
kamg@551 2834
kamg@551 2835
kamg@551 2836 // The instruction at the verified entry point must be 5 bytes or longer
kamg@551 2837 // because it can be patched on the fly by make_non_entrant. The stack bang
kamg@551 2838 // instruction fits that requirement.
kamg@551 2839
kamg@551 2840 // Generate stack overflow check
kamg@551 2841
kamg@551 2842 if (UseStackBanging) {
kamg@551 2843 if (stack_size <= StackShadowPages*os::vm_page_size()) {
kamg@551 2844 __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
kamg@551 2845 } else {
kamg@551 2846 __ movl(rax, stack_size);
kamg@551 2847 __ bang_stack_size(rax, rbx);
kamg@551 2848 }
kamg@551 2849 } else {
kamg@551 2850 // need a 5 byte instruction to allow MT safe patching to non-entrant
kamg@551 2851 __ fat_nop();
kamg@551 2852 }
kamg@551 2853
kamg@551 2854 assert(((uintptr_t)__ pc() - start - vep_offset) >= 5,
kamg@551 2855 "valid size for make_non_entrant");
kamg@551 2856
kamg@551 2857 // Generate a new frame for the wrapper.
kamg@551 2858 __ enter();
kamg@551 2859
kamg@551 2860 // -4 because return address is already present and so is saved rbp,
kamg@551 2861 if (stack_size - 2*wordSize != 0) {
kamg@551 2862 __ subq(rsp, stack_size - 2*wordSize);
kamg@551 2863 }
kamg@551 2864
kamg@551 2865 // Frame is now completed as far a size and linkage.
kamg@551 2866
kamg@551 2867 int frame_complete = ((intptr_t)__ pc()) - start;
kamg@551 2868
kamg@551 2869 int c_arg, j_arg;
kamg@551 2870
kamg@551 2871 // State of input register args
kamg@551 2872
kamg@551 2873 bool live[ConcreteRegisterImpl::number_of_registers];
kamg@551 2874
kamg@551 2875 live[j_rarg0->as_VMReg()->value()] = false;
kamg@551 2876 live[j_rarg1->as_VMReg()->value()] = false;
kamg@551 2877 live[j_rarg2->as_VMReg()->value()] = false;
kamg@551 2878 live[j_rarg3->as_VMReg()->value()] = false;
kamg@551 2879 live[j_rarg4->as_VMReg()->value()] = false;
kamg@551 2880 live[j_rarg5->as_VMReg()->value()] = false;
kamg@551 2881
kamg@551 2882 live[j_farg0->as_VMReg()->value()] = false;
kamg@551 2883 live[j_farg1->as_VMReg()->value()] = false;
kamg@551 2884 live[j_farg2->as_VMReg()->value()] = false;
kamg@551 2885 live[j_farg3->as_VMReg()->value()] = false;
kamg@551 2886 live[j_farg4->as_VMReg()->value()] = false;
kamg@551 2887 live[j_farg5->as_VMReg()->value()] = false;
kamg@551 2888 live[j_farg6->as_VMReg()->value()] = false;
kamg@551 2889 live[j_farg7->as_VMReg()->value()] = false;
kamg@551 2890
kamg@551 2891
kamg@551 2892 bool rax_is_zero = false;
kamg@551 2893
kamg@551 2894 // All args (except strings) destined for the stack are moved first
kamg@551 2895 for (j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 2896 j_arg < total_args_passed ; j_arg++, c_arg++ ) {
kamg@551 2897 VMRegPair src = in_regs[j_arg];
kamg@551 2898 VMRegPair dst = out_regs[c_arg];
kamg@551 2899
kamg@551 2900 // Get the real reg value or a dummy (rsp)
kamg@551 2901
kamg@551 2902 int src_reg = src.first()->is_reg() ?
kamg@551 2903 src.first()->value() :
kamg@551 2904 rsp->as_VMReg()->value();
kamg@551 2905
kamg@551 2906 bool useless = in_sig_bt[j_arg] == T_ARRAY ||
kamg@551 2907 (in_sig_bt[j_arg] == T_OBJECT &&
kamg@551 2908 out_sig_bt[c_arg] != T_INT &&
kamg@551 2909 out_sig_bt[c_arg] != T_ADDRESS &&
kamg@551 2910 out_sig_bt[c_arg] != T_LONG);
kamg@551 2911
kamg@551 2912 live[src_reg] = !useless;
kamg@551 2913
kamg@551 2914 if (dst.first()->is_stack()) {
kamg@551 2915
kamg@551 2916 // Even though a string arg in a register is still live after this loop
kamg@551 2917 // after the string conversion loop (next) it will be dead so we take
kamg@551 2918 // advantage of that now for simpler code to manage live.
kamg@551 2919
kamg@551 2920 live[src_reg] = false;
kamg@551 2921 switch (in_sig_bt[j_arg]) {
kamg@551 2922
kamg@551 2923 case T_ARRAY:
kamg@551 2924 case T_OBJECT:
kamg@551 2925 {
kamg@551 2926 Address stack_dst(rsp, reg2offset_out(dst.first()));
kamg@551 2927
kamg@551 2928 if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
kamg@551 2929 // need to unbox a one-word value
kamg@551 2930 Register in_reg = rax;
kamg@551 2931 if ( src.first()->is_reg() ) {
kamg@551 2932 in_reg = src.first()->as_Register();
kamg@551 2933 } else {
kamg@551 2934 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
kamg@551 2935 rax_is_zero = false;
kamg@551 2936 }
kamg@551 2937 Label skipUnbox;
kamg@551 2938 __ movptr(Address(rsp, reg2offset_out(dst.first())),
kamg@551 2939 (int32_t)NULL_WORD);
kamg@551 2940 __ testq(in_reg, in_reg);
kamg@551 2941 __ jcc(Assembler::zero, skipUnbox);
kamg@551 2942
kvn@600 2943 BasicType bt = out_sig_bt[c_arg];
kvn@600 2944 int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
kamg@551 2945 Address src1(in_reg, box_offset);
kvn@600 2946 if ( bt == T_LONG ) {
kamg@551 2947 __ movq(in_reg, src1);
kamg@551 2948 __ movq(stack_dst, in_reg);
kamg@551 2949 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 2950 ++c_arg; // skip over T_VOID to keep the loop indices in sync
kamg@551 2951 } else {
kamg@551 2952 __ movl(in_reg, src1);
kamg@551 2953 __ movl(stack_dst, in_reg);
kamg@551 2954 }
kamg@551 2955
kamg@551 2956 __ bind(skipUnbox);
kamg@551 2957 } else if (out_sig_bt[c_arg] != T_ADDRESS) {
kamg@551 2958 // Convert the arg to NULL
kamg@551 2959 if (!rax_is_zero) {
kamg@551 2960 __ xorq(rax, rax);
kamg@551 2961 rax_is_zero = true;
kamg@551 2962 }
kamg@551 2963 __ movq(stack_dst, rax);
kamg@551 2964 }
kamg@551 2965 }
kamg@551 2966 break;
kamg@551 2967
kamg@551 2968 case T_VOID:
kamg@551 2969 break;
kamg@551 2970
kamg@551 2971 case T_FLOAT:
kamg@551 2972 // This does the right thing since we know it is destined for the
kamg@551 2973 // stack
kamg@551 2974 float_move(masm, src, dst);
kamg@551 2975 break;
kamg@551 2976
kamg@551 2977 case T_DOUBLE:
kamg@551 2978 // This does the right thing since we know it is destined for the
kamg@551 2979 // stack
kamg@551 2980 double_move(masm, src, dst);
kamg@551 2981 break;
kamg@551 2982
kamg@551 2983 case T_LONG :
kamg@551 2984 long_move(masm, src, dst);
kamg@551 2985 break;
kamg@551 2986
kamg@551 2987 case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
kamg@551 2988
kamg@551 2989 default:
kamg@551 2990 move32_64(masm, src, dst);
kamg@551 2991 }
kamg@551 2992 }
kamg@551 2993
kamg@551 2994 }
kamg@551 2995
kamg@551 2996 // If we have any strings we must store any register based arg to the stack
kamg@551 2997 // This includes any still live xmm registers too.
kamg@551 2998
kamg@551 2999 int sid = 0;
kamg@551 3000
kamg@551 3001 if (total_strings > 0 ) {
kamg@551 3002 for (j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 3003 j_arg < total_args_passed ; j_arg++, c_arg++ ) {
kamg@551 3004 VMRegPair src = in_regs[j_arg];
kamg@551 3005 VMRegPair dst = out_regs[c_arg];
kamg@551 3006
kamg@551 3007 if (src.first()->is_reg()) {
kamg@551 3008 Address src_tmp(rbp, fp_offset[src.first()->value()]);
kamg@551 3009
kamg@551 3010 // string oops were left untouched by the previous loop even if the
kamg@551 3011 // eventual (converted) arg is destined for the stack so park them
kamg@551 3012 // away now (except for first)
kamg@551 3013
kamg@551 3014 if (out_sig_bt[c_arg] == T_ADDRESS) {
kamg@551 3015 Address utf8_addr = Address(
kamg@551 3016 rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
kamg@551 3017 if (sid != 1) {
kamg@551 3018 // The first string arg won't be killed until after the utf8
kamg@551 3019 // conversion
kamg@551 3020 __ movq(utf8_addr, src.first()->as_Register());
kamg@551 3021 }
kamg@551 3022 } else if (dst.first()->is_reg()) {
kamg@551 3023 if (in_sig_bt[j_arg] == T_FLOAT || in_sig_bt[j_arg] == T_DOUBLE) {
kamg@551 3024
kamg@551 3025 // Convert the xmm register to an int and store it in the reserved
kamg@551 3026 // location for the eventual c register arg
kamg@551 3027 XMMRegister f = src.first()->as_XMMRegister();
kamg@551 3028 if (in_sig_bt[j_arg] == T_FLOAT) {
kamg@551 3029 __ movflt(src_tmp, f);
kamg@551 3030 } else {
kamg@551 3031 __ movdbl(src_tmp, f);
kamg@551 3032 }
kamg@551 3033 } else {
kamg@551 3034 // If the arg is an oop type we don't support don't bother to store
kamg@551 3035 // it remember string was handled above.
kamg@551 3036 bool useless = in_sig_bt[j_arg] == T_ARRAY ||
kamg@551 3037 (in_sig_bt[j_arg] == T_OBJECT &&
kamg@551 3038 out_sig_bt[c_arg] != T_INT &&
kamg@551 3039 out_sig_bt[c_arg] != T_LONG);
kamg@551 3040
kamg@551 3041 if (!useless) {
kamg@551 3042 __ movq(src_tmp, src.first()->as_Register());
kamg@551 3043 }
kamg@551 3044 }
kamg@551 3045 }
kamg@551 3046 }
kamg@551 3047 if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
kamg@551 3048 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 3049 ++c_arg; // skip over T_VOID to keep the loop indices in sync
kamg@551 3050 }
kamg@551 3051 }
kamg@551 3052
kamg@551 3053 // Now that the volatile registers are safe, convert all the strings
kamg@551 3054 sid = 0;
kamg@551 3055
kamg@551 3056 for (j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 3057 j_arg < total_args_passed ; j_arg++, c_arg++ ) {
kamg@551 3058 if (out_sig_bt[c_arg] == T_ADDRESS) {
kamg@551 3059 // It's a string
kamg@551 3060 Address utf8_addr = Address(
kamg@551 3061 rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
kamg@551 3062 // The first string we find might still be in the original java arg
kamg@551 3063 // register
kamg@551 3064
kamg@551 3065 VMReg src = in_regs[j_arg].first();
kamg@551 3066
kamg@551 3067 // We will need to eventually save the final argument to the trap
kamg@551 3068 // in the von-volatile location dedicated to src. This is the offset
kamg@551 3069 // from fp we will use.
kamg@551 3070 int src_off = src->is_reg() ?
kamg@551 3071 fp_offset[src->value()] : reg2offset_in(src);
kamg@551 3072
kamg@551 3073 // This is where the argument will eventually reside
kamg@551 3074 VMRegPair dst = out_regs[c_arg];
kamg@551 3075
kamg@551 3076 if (src->is_reg()) {
kamg@551 3077 if (sid == 1) {
kamg@551 3078 __ movq(c_rarg0, src->as_Register());
kamg@551 3079 } else {
kamg@551 3080 __ movq(c_rarg0, utf8_addr);
kamg@551 3081 }
kamg@551 3082 } else {
kamg@551 3083 // arg is still in the original location
kamg@551 3084 __ movq(c_rarg0, Address(rbp, reg2offset_in(src)));
kamg@551 3085 }
kamg@551 3086 Label done, convert;
kamg@551 3087
kamg@551 3088 // see if the oop is NULL
kamg@551 3089 __ testq(c_rarg0, c_rarg0);
kamg@551 3090 __ jcc(Assembler::notEqual, convert);
kamg@551 3091
kamg@551 3092 if (dst.first()->is_reg()) {
kamg@551 3093 // Save the ptr to utf string in the origina src loc or the tmp
kamg@551 3094 // dedicated to it
kamg@551 3095 __ movq(Address(rbp, src_off), c_rarg0);
kamg@551 3096 } else {
kamg@551 3097 __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg0);
kamg@551 3098 }
kamg@551 3099 __ jmp(done);
kamg@551 3100
kamg@551 3101 __ bind(convert);
kamg@551 3102
kamg@551 3103 __ lea(c_rarg1, utf8_addr);
kamg@551 3104 if (dst.first()->is_reg()) {
kamg@551 3105 __ movq(Address(rbp, src_off), c_rarg1);
kamg@551 3106 } else {
kamg@551 3107 __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg1);
kamg@551 3108 }
kamg@551 3109 // And do the conversion
kamg@551 3110 __ call(RuntimeAddress(
kamg@551 3111 CAST_FROM_FN_PTR(address, SharedRuntime::get_utf)));
kamg@551 3112
kamg@551 3113 __ bind(done);
kamg@551 3114 }
kamg@551 3115 if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
kamg@551 3116 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 3117 ++c_arg; // skip over T_VOID to keep the loop indices in sync
kamg@551 3118 }
kamg@551 3119 }
kamg@551 3120 // The get_utf call killed all the c_arg registers
kamg@551 3121 live[c_rarg0->as_VMReg()->value()] = false;
kamg@551 3122 live[c_rarg1->as_VMReg()->value()] = false;
kamg@551 3123 live[c_rarg2->as_VMReg()->value()] = false;
kamg@551 3124 live[c_rarg3->as_VMReg()->value()] = false;
kamg@551 3125 live[c_rarg4->as_VMReg()->value()] = false;
kamg@551 3126 live[c_rarg5->as_VMReg()->value()] = false;
kamg@551 3127
kamg@551 3128 live[c_farg0->as_VMReg()->value()] = false;
kamg@551 3129 live[c_farg1->as_VMReg()->value()] = false;
kamg@551 3130 live[c_farg2->as_VMReg()->value()] = false;
kamg@551 3131 live[c_farg3->as_VMReg()->value()] = false;
kamg@551 3132 live[c_farg4->as_VMReg()->value()] = false;
kamg@551 3133 live[c_farg5->as_VMReg()->value()] = false;
kamg@551 3134 live[c_farg6->as_VMReg()->value()] = false;
kamg@551 3135 live[c_farg7->as_VMReg()->value()] = false;
kamg@551 3136 }
kamg@551 3137
kamg@551 3138 // Now we can finally move the register args to their desired locations
kamg@551 3139
kamg@551 3140 rax_is_zero = false;
kamg@551 3141
kamg@551 3142 for (j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 3143 j_arg < total_args_passed ; j_arg++, c_arg++ ) {
kamg@551 3144
kamg@551 3145 VMRegPair src = in_regs[j_arg];
kamg@551 3146 VMRegPair dst = out_regs[c_arg];
kamg@551 3147
kamg@551 3148 // Only need to look for args destined for the interger registers (since we
kamg@551 3149 // convert float/double args to look like int/long outbound)
kamg@551 3150 if (dst.first()->is_reg()) {
kamg@551 3151 Register r = dst.first()->as_Register();
kamg@551 3152
kamg@551 3153 // Check if the java arg is unsupported and thereofre useless
kamg@551 3154 bool useless = in_sig_bt[j_arg] == T_ARRAY ||
kamg@551 3155 (in_sig_bt[j_arg] == T_OBJECT &&
kamg@551 3156 out_sig_bt[c_arg] != T_INT &&
kamg@551 3157 out_sig_bt[c_arg] != T_ADDRESS &&
kamg@551 3158 out_sig_bt[c_arg] != T_LONG);
kamg@551 3159
kamg@551 3160
kamg@551 3161 // If we're going to kill an existing arg save it first
kamg@551 3162 if (live[dst.first()->value()]) {
kamg@551 3163 // you can't kill yourself
kamg@551 3164 if (src.first() != dst.first()) {
kamg@551 3165 __ movq(Address(rbp, fp_offset[dst.first()->value()]), r);
kamg@551 3166 }
kamg@551 3167 }
kamg@551 3168 if (src.first()->is_reg()) {
kamg@551 3169 if (live[src.first()->value()] ) {
kamg@551 3170 if (in_sig_bt[j_arg] == T_FLOAT) {
kamg@551 3171 __ movdl(r, src.first()->as_XMMRegister());
kamg@551 3172 } else if (in_sig_bt[j_arg] == T_DOUBLE) {
kamg@551 3173 __ movdq(r, src.first()->as_XMMRegister());
kamg@551 3174 } else if (r != src.first()->as_Register()) {
kamg@551 3175 if (!useless) {
kamg@551 3176 __ movq(r, src.first()->as_Register());
kamg@551 3177 }
kamg@551 3178 }
kamg@551 3179 } else {
kamg@551 3180 // If the arg is an oop type we don't support don't bother to store
kamg@551 3181 // it
kamg@551 3182 if (!useless) {
kamg@551 3183 if (in_sig_bt[j_arg] == T_DOUBLE ||
kamg@551 3184 in_sig_bt[j_arg] == T_LONG ||
kamg@551 3185 in_sig_bt[j_arg] == T_OBJECT ) {
kamg@551 3186 __ movq(r, Address(rbp, fp_offset[src.first()->value()]));
kamg@551 3187 } else {
kamg@551 3188 __ movl(r, Address(rbp, fp_offset[src.first()->value()]));
kamg@551 3189 }
kamg@551 3190 }
kamg@551 3191 }
kamg@551 3192 live[src.first()->value()] = false;
kamg@551 3193 } else if (!useless) {
kamg@551 3194 // full sized move even for int should be ok
kamg@551 3195 __ movq(r, Address(rbp, reg2offset_in(src.first())));
kamg@551 3196 }
kamg@551 3197
kamg@551 3198 // At this point r has the original java arg in the final location
kamg@551 3199 // (assuming it wasn't useless). If the java arg was an oop
kamg@551 3200 // we have a bit more to do
kamg@551 3201
kamg@551 3202 if (in_sig_bt[j_arg] == T_ARRAY || in_sig_bt[j_arg] == T_OBJECT ) {
kamg@551 3203 if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
kamg@551 3204 // need to unbox a one-word value
kamg@551 3205 Label skip;
kamg@551 3206 __ testq(r, r);
kamg@551 3207 __ jcc(Assembler::equal, skip);
kvn@600 3208 BasicType bt = out_sig_bt[c_arg];
kvn@600 3209 int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
kamg@551 3210 Address src1(r, box_offset);
kvn@600 3211 if ( bt == T_LONG ) {
kamg@551 3212 __ movq(r, src1);
kamg@551 3213 } else {
kamg@551 3214 __ movl(r, src1);
kamg@551 3215 }
kamg@551 3216 __ bind(skip);
kamg@551 3217
kamg@551 3218 } else if (out_sig_bt[c_arg] != T_ADDRESS) {
kamg@551 3219 // Convert the arg to NULL
kamg@551 3220 __ xorq(r, r);
kamg@551 3221 }
kamg@551 3222 }
kamg@551 3223
kamg@551 3224 // dst can longer be holding an input value
kamg@551 3225 live[dst.first()->value()] = false;
kamg@551 3226 }
kamg@551 3227 if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
kamg@551 3228 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 3229 ++c_arg; // skip over T_VOID to keep the loop indices in sync
kamg@551 3230 }
kamg@551 3231 }
kamg@551 3232
kamg@551 3233
kamg@551 3234 // Ok now we are done. Need to place the nop that dtrace wants in order to
kamg@551 3235 // patch in the trap
kamg@551 3236 int patch_offset = ((intptr_t)__ pc()) - start;
kamg@551 3237
kamg@551 3238 __ nop();
kamg@551 3239
kamg@551 3240
kamg@551 3241 // Return
kamg@551 3242
kamg@551 3243 __ leave();
kamg@551 3244 __ ret(0);
kamg@551 3245
kamg@551 3246 __ flush();
kamg@551 3247
kamg@551 3248 nmethod *nm = nmethod::new_dtrace_nmethod(
kamg@551 3249 method, masm->code(), vep_offset, patch_offset, frame_complete,
kamg@551 3250 stack_slots / VMRegImpl::slots_per_word);
kamg@551 3251 return nm;
kamg@551 3252
kamg@551 3253 }
kamg@551 3254
kamg@551 3255 #endif // HAVE_DTRACE_H
kamg@551 3256
duke@435 3257 // this function returns the adjust size (in number of words) to a c2i adapter
duke@435 3258 // activation for use during deoptimization
duke@435 3259 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
twisti@1861 3260 return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
duke@435 3261 }
duke@435 3262
duke@435 3263
duke@435 3264 uint SharedRuntime::out_preserve_stack_slots() {
duke@435 3265 return 0;
duke@435 3266 }
duke@435 3267
duke@435 3268 //------------------------------generate_deopt_blob----------------------------
duke@435 3269 void SharedRuntime::generate_deopt_blob() {
duke@435 3270 // Allocate space for the code
duke@435 3271 ResourceMark rm;
duke@435 3272 // Setup code generation tools
duke@435 3273 CodeBuffer buffer("deopt_blob", 2048, 1024);
duke@435 3274 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3275 int frame_size_in_words;
duke@435 3276 OopMap* map = NULL;
duke@435 3277 OopMapSet *oop_maps = new OopMapSet();
duke@435 3278
duke@435 3279 // -------------
duke@435 3280 // This code enters when returning to a de-optimized nmethod. A return
duke@435 3281 // address has been pushed on the the stack, and return values are in
duke@435 3282 // registers.
duke@435 3283 // If we are doing a normal deopt then we were called from the patched
duke@435 3284 // nmethod from the point we returned to the nmethod. So the return
duke@435 3285 // address on the stack is wrong by NativeCall::instruction_size
duke@435 3286 // We will adjust the value so it looks like we have the original return
duke@435 3287 // address on the stack (like when we eagerly deoptimized).
duke@435 3288 // In the case of an exception pending when deoptimizing, we enter
duke@435 3289 // with a return address on the stack that points after the call we patched
duke@435 3290 // into the exception handler. We have the following register state from,
duke@435 3291 // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
duke@435 3292 // rax: exception oop
duke@435 3293 // rbx: exception handler
duke@435 3294 // rdx: throwing pc
duke@435 3295 // So in this case we simply jam rdx into the useless return address and
duke@435 3296 // the stack looks just like we want.
duke@435 3297 //
duke@435 3298 // At this point we need to de-opt. We save the argument return
duke@435 3299 // registers. We call the first C routine, fetch_unroll_info(). This
duke@435 3300 // routine captures the return values and returns a structure which
duke@435 3301 // describes the current frame size and the sizes of all replacement frames.
duke@435 3302 // The current frame is compiled code and may contain many inlined
duke@435 3303 // functions, each with their own JVM state. We pop the current frame, then
duke@435 3304 // push all the new frames. Then we call the C routine unpack_frames() to
duke@435 3305 // populate these frames. Finally unpack_frames() returns us the new target
duke@435 3306 // address. Notice that callee-save registers are BLOWN here; they have
duke@435 3307 // already been captured in the vframeArray at the time the return PC was
duke@435 3308 // patched.
duke@435 3309 address start = __ pc();
duke@435 3310 Label cont;
duke@435 3311
duke@435 3312 // Prolog for non exception case!
duke@435 3313
duke@435 3314 // Save everything in sight.
duke@435 3315 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
duke@435 3316
duke@435 3317 // Normal deoptimization. Save exec mode for unpack_frames.
coleenp@548 3318 __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
duke@435 3319 __ jmp(cont);
never@739 3320
never@739 3321 int reexecute_offset = __ pc() - start;
never@739 3322
never@739 3323 // Reexecute case
never@739 3324 // return address is the pc describes what bci to do re-execute at
never@739 3325
never@739 3326 // No need to update map as each call to save_live_registers will produce identical oopmap
never@739 3327 (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
never@739 3328
never@739 3329 __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
never@739 3330 __ jmp(cont);
never@739 3331
duke@435 3332 int exception_offset = __ pc() - start;
duke@435 3333
duke@435 3334 // Prolog for exception case
duke@435 3335
never@739 3336 // all registers are dead at this entry point, except for rax, and
never@739 3337 // rdx which contain the exception oop and exception pc
never@739 3338 // respectively. Set them in TLS and fall thru to the
never@739 3339 // unpack_with_exception_in_tls entry point.
never@739 3340
never@739 3341 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
never@739 3342 __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
never@739 3343
never@739 3344 int exception_in_tls_offset = __ pc() - start;
never@739 3345
never@739 3346 // new implementation because exception oop is now passed in JavaThread
never@739 3347
never@739 3348 // Prolog for exception case
never@739 3349 // All registers must be preserved because they might be used by LinearScan
never@739 3350 // Exceptiop oop and throwing PC are passed in JavaThread
never@739 3351 // tos: stack at point of call to method that threw the exception (i.e. only
never@739 3352 // args are on the stack, no return address)
never@739 3353
never@739 3354 // make room on stack for the return address
never@739 3355 // It will be patched later with the throwing pc. The correct value is not
never@739 3356 // available now because loading it from memory would destroy registers.
never@739 3357 __ push(0);
duke@435 3358
duke@435 3359 // Save everything in sight.
duke@435 3360 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
duke@435 3361
never@739 3362 // Now it is safe to overwrite any register
never@739 3363
duke@435 3364 // Deopt during an exception. Save exec mode for unpack_frames.
coleenp@548 3365 __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
duke@435 3366
never@739 3367 // load throwing pc from JavaThread and patch it as the return address
never@739 3368 // of the current frame. Then clear the field in JavaThread
never@739 3369
never@739 3370 __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
never@739 3371 __ movptr(Address(rbp, wordSize), rdx);
never@739 3372 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
never@739 3373
never@739 3374 #ifdef ASSERT
never@739 3375 // verify that there is really an exception oop in JavaThread
never@739 3376 __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
never@739 3377 __ verify_oop(rax);
never@739 3378
never@739 3379 // verify that there is no pending exception
never@739 3380 Label no_pending_exception;
never@739 3381 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
never@739 3382 __ testptr(rax, rax);
never@739 3383 __ jcc(Assembler::zero, no_pending_exception);
never@739 3384 __ stop("must not have pending exception here");
never@739 3385 __ bind(no_pending_exception);
never@739 3386 #endif
never@739 3387
duke@435 3388 __ bind(cont);
duke@435 3389
duke@435 3390 // Call C code. Need thread and this frame, but NOT official VM entry
duke@435 3391 // crud. We cannot block on this call, no GC can happen.
duke@435 3392 //
duke@435 3393 // UnrollBlock* fetch_unroll_info(JavaThread* thread)
duke@435 3394
duke@435 3395 // fetch_unroll_info needs to call last_java_frame().
duke@435 3396
duke@435 3397 __ set_last_Java_frame(noreg, noreg, NULL);
duke@435 3398 #ifdef ASSERT
duke@435 3399 { Label L;
never@739 3400 __ cmpptr(Address(r15_thread,
duke@435 3401 JavaThread::last_Java_fp_offset()),
never@739 3402 (int32_t)0);
duke@435 3403 __ jcc(Assembler::equal, L);
duke@435 3404 __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
duke@435 3405 __ bind(L);
duke@435 3406 }
duke@435 3407 #endif // ASSERT
never@739 3408 __ mov(c_rarg0, r15_thread);
duke@435 3409 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
duke@435 3410
duke@435 3411 // Need to have an oopmap that tells fetch_unroll_info where to
duke@435 3412 // find any register it might need.
duke@435 3413 oop_maps->add_gc_map(__ pc() - start, map);
duke@435 3414
duke@435 3415 __ reset_last_Java_frame(false, false);
duke@435 3416
duke@435 3417 // Load UnrollBlock* into rdi
never@739 3418 __ mov(rdi, rax);
never@739 3419
never@739 3420 Label noException;
never@1117 3421 __ cmpl(r14, Deoptimization::Unpack_exception); // Was exception pending?
never@739 3422 __ jcc(Assembler::notEqual, noException);
never@739 3423 __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
never@739 3424 // QQQ this is useless it was NULL above
never@739 3425 __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
never@739 3426 __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
never@739 3427 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
never@739 3428
never@739 3429 __ verify_oop(rax);
never@739 3430
never@739 3431 // Overwrite the result registers with the exception results.
never@739 3432 __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
never@739 3433 // I think this is useless
never@739 3434 __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
never@739 3435
never@739 3436 __ bind(noException);
duke@435 3437
duke@435 3438 // Only register save data is on the stack.
duke@435 3439 // Now restore the result registers. Everything else is either dead
duke@435 3440 // or captured in the vframeArray.
duke@435 3441 RegisterSaver::restore_result_registers(masm);
duke@435 3442
duke@435 3443 // All of the register save area has been popped of the stack. Only the
duke@435 3444 // return address remains.
duke@435 3445
duke@435 3446 // Pop all the frames we must move/replace.
duke@435 3447 //
duke@435 3448 // Frame picture (youngest to oldest)
duke@435 3449 // 1: self-frame (no frame link)
duke@435 3450 // 2: deopting frame (no frame link)
duke@435 3451 // 3: caller of deopting frame (could be compiled/interpreted).
duke@435 3452 //
duke@435 3453 // Note: by leaving the return address of self-frame on the stack
duke@435 3454 // and using the size of frame 2 to adjust the stack
duke@435 3455 // when we are done the return to frame 3 will still be on the stack.
duke@435 3456
duke@435 3457 // Pop deoptimized frame
duke@435 3458 __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
never@739 3459 __ addptr(rsp, rcx);
duke@435 3460
duke@435 3461 // rsp should be pointing at the return address to the caller (3)
duke@435 3462
duke@435 3463 // Stack bang to make sure there's enough room for these interpreter frames.
duke@435 3464 if (UseStackBanging) {
duke@435 3465 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
duke@435 3466 __ bang_stack_size(rbx, rcx);
duke@435 3467 }
duke@435 3468
duke@435 3469 // Load address of array of frame pcs into rcx
never@739 3470 __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
duke@435 3471
duke@435 3472 // Trash the old pc
never@739 3473 __ addptr(rsp, wordSize);
duke@435 3474
duke@435 3475 // Load address of array of frame sizes into rsi
never@739 3476 __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
duke@435 3477
duke@435 3478 // Load counter into rdx
duke@435 3479 __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
duke@435 3480
duke@435 3481 // Pick up the initial fp we should save
bdelsart@3130 3482 __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
duke@435 3483
duke@435 3484 // Now adjust the caller's stack to make up for the extra locals
duke@435 3485 // but record the original sp so that we can save it in the skeletal interpreter
duke@435 3486 // frame and the stack walking of interpreter_sender will get the unextended sp
duke@435 3487 // value and not the "real" sp value.
duke@435 3488
duke@435 3489 const Register sender_sp = r8;
duke@435 3490
never@739 3491 __ mov(sender_sp, rsp);
duke@435 3492 __ movl(rbx, Address(rdi,
duke@435 3493 Deoptimization::UnrollBlock::
duke@435 3494 caller_adjustment_offset_in_bytes()));
never@739 3495 __ subptr(rsp, rbx);
duke@435 3496
duke@435 3497 // Push interpreter frames in a loop
duke@435 3498 Label loop;
duke@435 3499 __ bind(loop);
never@739 3500 __ movptr(rbx, Address(rsi, 0)); // Load frame size
never@739 3501 #ifdef CC_INTERP
never@739 3502 __ subptr(rbx, 4*wordSize); // we'll push pc and ebp by hand and
never@739 3503 #ifdef ASSERT
never@739 3504 __ push(0xDEADDEAD); // Make a recognizable pattern
never@739 3505 __ push(0xDEADDEAD);
never@739 3506 #else /* ASSERT */
never@739 3507 __ subptr(rsp, 2*wordSize); // skip the "static long no_param"
never@739 3508 #endif /* ASSERT */
never@739 3509 #else
never@739 3510 __ subptr(rbx, 2*wordSize); // We'll push pc and ebp by hand
never@739 3511 #endif // CC_INTERP
never@739 3512 __ pushptr(Address(rcx, 0)); // Save return address
duke@435 3513 __ enter(); // Save old & set new ebp
never@739 3514 __ subptr(rsp, rbx); // Prolog
never@739 3515 #ifdef CC_INTERP
never@739 3516 __ movptr(Address(rbp,
never@739 3517 -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
never@739 3518 sender_sp); // Make it walkable
never@739 3519 #else /* CC_INTERP */
duke@435 3520 // This value is corrected by layout_activation_impl
never@739 3521 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
never@739 3522 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
never@739 3523 #endif /* CC_INTERP */
never@739 3524 __ mov(sender_sp, rsp); // Pass sender_sp to next frame
never@739 3525 __ addptr(rsi, wordSize); // Bump array pointer (sizes)
never@739 3526 __ addptr(rcx, wordSize); // Bump array pointer (pcs)
duke@435 3527 __ decrementl(rdx); // Decrement counter
duke@435 3528 __ jcc(Assembler::notZero, loop);
never@739 3529 __ pushptr(Address(rcx, 0)); // Save final return address
duke@435 3530
duke@435 3531 // Re-push self-frame
duke@435 3532 __ enter(); // Save old & set new ebp
duke@435 3533
duke@435 3534 // Allocate a full sized register save area.
duke@435 3535 // Return address and rbp are in place, so we allocate two less words.
never@739 3536 __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
duke@435 3537
duke@435 3538 // Restore frame locals after moving the frame
duke@435 3539 __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
never@739 3540 __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
duke@435 3541
duke@435 3542 // Call C code. Need thread but NOT official VM entry
duke@435 3543 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 3544 // restore return values to their stack-slots with the new SP.
duke@435 3545 //
duke@435 3546 // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
duke@435 3547
duke@435 3548 // Use rbp because the frames look interpreted now
never@3253 3549 // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
never@3253 3550 // Don't need the precise return PC here, just precise enough to point into this code blob.
never@3253 3551 address the_pc = __ pc();
never@3253 3552 __ set_last_Java_frame(noreg, rbp, the_pc);
never@3253 3553
never@3253 3554 __ andptr(rsp, -(StackAlignmentInBytes)); // Fix stack alignment as required by ABI
never@739 3555 __ mov(c_rarg0, r15_thread);
coleenp@548 3556 __ movl(c_rarg1, r14); // second arg: exec_mode
duke@435 3557 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
never@3253 3558 // Revert SP alignment after call since we're going to do some SP relative addressing below
never@3253 3559 __ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset()));
duke@435 3560
duke@435 3561 // Set an oopmap for the call site
never@3253 3562 // Use the same PC we used for the last java frame
never@3253 3563 oop_maps->add_gc_map(the_pc - start,
duke@435 3564 new OopMap( frame_size_in_words, 0 ));
duke@435 3565
never@3253 3566 // Clear fp AND pc
never@3253 3567 __ reset_last_Java_frame(true, true);
duke@435 3568
duke@435 3569 // Collect return values
duke@435 3570 __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
never@739 3571 __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
never@739 3572 // I think this is useless (throwing pc?)
never@739 3573 __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
duke@435 3574
duke@435 3575 // Pop self-frame.
duke@435 3576 __ leave(); // Epilog
duke@435 3577
duke@435 3578 // Jump to interpreter
duke@435 3579 __ ret(0);
duke@435 3580
duke@435 3581 // Make sure all code is generated
duke@435 3582 masm->flush();
duke@435 3583
never@739 3584 _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
never@739 3585 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
duke@435 3586 }
duke@435 3587
duke@435 3588 #ifdef COMPILER2
duke@435 3589 //------------------------------generate_uncommon_trap_blob--------------------
duke@435 3590 void SharedRuntime::generate_uncommon_trap_blob() {
duke@435 3591 // Allocate space for the code
duke@435 3592 ResourceMark rm;
duke@435 3593 // Setup code generation tools
duke@435 3594 CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
duke@435 3595 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3596
duke@435 3597 assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
duke@435 3598
duke@435 3599 address start = __ pc();
duke@435 3600
duke@435 3601 // Push self-frame. We get here with a return address on the
duke@435 3602 // stack, so rsp is 8-byte aligned until we allocate our frame.
never@739 3603 __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
duke@435 3604
duke@435 3605 // No callee saved registers. rbp is assumed implicitly saved
never@739 3606 __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
duke@435 3607
duke@435 3608 // compiler left unloaded_class_index in j_rarg0 move to where the
duke@435 3609 // runtime expects it.
duke@435 3610 __ movl(c_rarg1, j_rarg0);
duke@435 3611
duke@435 3612 __ set_last_Java_frame(noreg, noreg, NULL);
duke@435 3613
duke@435 3614 // Call C code. Need thread but NOT official VM entry
duke@435 3615 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 3616 // capture callee-saved registers as well as return values.
duke@435 3617 // Thread is in rdi already.
duke@435 3618 //
duke@435 3619 // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
duke@435 3620
never@739 3621 __ mov(c_rarg0, r15_thread);
duke@435 3622 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
duke@435 3623
duke@435 3624 // Set an oopmap for the call site
duke@435 3625 OopMapSet* oop_maps = new OopMapSet();
duke@435 3626 OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
duke@435 3627
duke@435 3628 // location of rbp is known implicitly by the frame sender code
duke@435 3629
duke@435 3630 oop_maps->add_gc_map(__ pc() - start, map);
duke@435 3631
duke@435 3632 __ reset_last_Java_frame(false, false);
duke@435 3633
duke@435 3634 // Load UnrollBlock* into rdi
never@739 3635 __ mov(rdi, rax);
duke@435 3636
duke@435 3637 // Pop all the frames we must move/replace.
duke@435 3638 //
duke@435 3639 // Frame picture (youngest to oldest)
duke@435 3640 // 1: self-frame (no frame link)
duke@435 3641 // 2: deopting frame (no frame link)
duke@435 3642 // 3: caller of deopting frame (could be compiled/interpreted).
duke@435 3643
duke@435 3644 // Pop self-frame. We have no frame, and must rely only on rax and rsp.
never@739 3645 __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
duke@435 3646
duke@435 3647 // Pop deoptimized frame (int)
duke@435 3648 __ movl(rcx, Address(rdi,
duke@435 3649 Deoptimization::UnrollBlock::
duke@435 3650 size_of_deoptimized_frame_offset_in_bytes()));
never@739 3651 __ addptr(rsp, rcx);
duke@435 3652
duke@435 3653 // rsp should be pointing at the return address to the caller (3)
duke@435 3654
duke@435 3655 // Stack bang to make sure there's enough room for these interpreter frames.
duke@435 3656 if (UseStackBanging) {
duke@435 3657 __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
duke@435 3658 __ bang_stack_size(rbx, rcx);
duke@435 3659 }
duke@435 3660
duke@435 3661 // Load address of array of frame pcs into rcx (address*)
never@739 3662 __ movptr(rcx,
never@739 3663 Address(rdi,
never@739 3664 Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
duke@435 3665
duke@435 3666 // Trash the return pc
never@739 3667 __ addptr(rsp, wordSize);
duke@435 3668
duke@435 3669 // Load address of array of frame sizes into rsi (intptr_t*)
never@739 3670 __ movptr(rsi, Address(rdi,
never@739 3671 Deoptimization::UnrollBlock::
never@739 3672 frame_sizes_offset_in_bytes()));
duke@435 3673
duke@435 3674 // Counter
duke@435 3675 __ movl(rdx, Address(rdi,
duke@435 3676 Deoptimization::UnrollBlock::
duke@435 3677 number_of_frames_offset_in_bytes())); // (int)
duke@435 3678
duke@435 3679 // Pick up the initial fp we should save
never@739 3680 __ movptr(rbp,
never@739 3681 Address(rdi,
bdelsart@3130 3682 Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
duke@435 3683
duke@435 3684 // Now adjust the caller's stack to make up for the extra locals but
duke@435 3685 // record the original sp so that we can save it in the skeletal
duke@435 3686 // interpreter frame and the stack walking of interpreter_sender
duke@435 3687 // will get the unextended sp value and not the "real" sp value.
duke@435 3688
duke@435 3689 const Register sender_sp = r8;
duke@435 3690
never@739 3691 __ mov(sender_sp, rsp);
duke@435 3692 __ movl(rbx, Address(rdi,
duke@435 3693 Deoptimization::UnrollBlock::
duke@435 3694 caller_adjustment_offset_in_bytes())); // (int)
never@739 3695 __ subptr(rsp, rbx);
duke@435 3696
duke@435 3697 // Push interpreter frames in a loop
duke@435 3698 Label loop;
duke@435 3699 __ bind(loop);
never@739 3700 __ movptr(rbx, Address(rsi, 0)); // Load frame size
never@739 3701 __ subptr(rbx, 2 * wordSize); // We'll push pc and rbp by hand
never@739 3702 __ pushptr(Address(rcx, 0)); // Save return address
never@739 3703 __ enter(); // Save old & set new rbp
never@739 3704 __ subptr(rsp, rbx); // Prolog
coleenp@955 3705 #ifdef CC_INTERP
coleenp@955 3706 __ movptr(Address(rbp,
coleenp@955 3707 -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
coleenp@955 3708 sender_sp); // Make it walkable
coleenp@955 3709 #else // CC_INTERP
never@739 3710 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
never@739 3711 sender_sp); // Make it walkable
duke@435 3712 // This value is corrected by layout_activation_impl
never@739 3713 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
coleenp@955 3714 #endif // CC_INTERP
never@739 3715 __ mov(sender_sp, rsp); // Pass sender_sp to next frame
never@739 3716 __ addptr(rsi, wordSize); // Bump array pointer (sizes)
never@739 3717 __ addptr(rcx, wordSize); // Bump array pointer (pcs)
never@739 3718 __ decrementl(rdx); // Decrement counter
duke@435 3719 __ jcc(Assembler::notZero, loop);
never@739 3720 __ pushptr(Address(rcx, 0)); // Save final return address
duke@435 3721
duke@435 3722 // Re-push self-frame
duke@435 3723 __ enter(); // Save old & set new rbp
never@739 3724 __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
duke@435 3725 // Prolog
duke@435 3726
duke@435 3727 // Use rbp because the frames look interpreted now
never@3253 3728 // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
never@3253 3729 // Don't need the precise return PC here, just precise enough to point into this code blob.
never@3253 3730 address the_pc = __ pc();
never@3253 3731 __ set_last_Java_frame(noreg, rbp, the_pc);
duke@435 3732
duke@435 3733 // Call C code. Need thread but NOT official VM entry
duke@435 3734 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 3735 // restore return values to their stack-slots with the new SP.
duke@435 3736 // Thread is in rdi already.
duke@435 3737 //
duke@435 3738 // BasicType unpack_frames(JavaThread* thread, int exec_mode);
duke@435 3739
never@3253 3740 __ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI
never@739 3741 __ mov(c_rarg0, r15_thread);
duke@435 3742 __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
duke@435 3743 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
duke@435 3744
duke@435 3745 // Set an oopmap for the call site
never@3253 3746 // Use the same PC we used for the last java frame
never@3253 3747 oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
never@3253 3748
never@3253 3749 // Clear fp AND pc
never@3253 3750 __ reset_last_Java_frame(true, true);
duke@435 3751
duke@435 3752 // Pop self-frame.
duke@435 3753 __ leave(); // Epilog
duke@435 3754
duke@435 3755 // Jump to interpreter
duke@435 3756 __ ret(0);
duke@435 3757
duke@435 3758 // Make sure all code is generated
duke@435 3759 masm->flush();
duke@435 3760
duke@435 3761 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps,
duke@435 3762 SimpleRuntimeFrame::framesize >> 1);
duke@435 3763 }
duke@435 3764 #endif // COMPILER2
duke@435 3765
duke@435 3766
duke@435 3767 //------------------------------generate_handler_blob------
duke@435 3768 //
duke@435 3769 // Generate a special Compile2Runtime blob that saves all registers,
duke@435 3770 // and setup oopmap.
duke@435 3771 //
kvn@4103 3772 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
duke@435 3773 assert(StubRoutines::forward_exception_entry() != NULL,
duke@435 3774 "must be generated before");
duke@435 3775
duke@435 3776 ResourceMark rm;
duke@435 3777 OopMapSet *oop_maps = new OopMapSet();
duke@435 3778 OopMap* map;
duke@435 3779
duke@435 3780 // Allocate space for the code. Setup code generation tools.
duke@435 3781 CodeBuffer buffer("handler_blob", 2048, 1024);
duke@435 3782 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3783
duke@435 3784 address start = __ pc();
duke@435 3785 address call_pc = NULL;
duke@435 3786 int frame_size_in_words;
kvn@4103 3787 bool cause_return = (poll_type == POLL_AT_RETURN);
kvn@4103 3788 bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
duke@435 3789
duke@435 3790 // Make room for return address (or push it again)
duke@435 3791 if (!cause_return) {
never@739 3792 __ push(rbx);
duke@435 3793 }
duke@435 3794
duke@435 3795 // Save registers, fpu state, and flags
kvn@4103 3796 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, save_vectors);
duke@435 3797
duke@435 3798 // The following is basically a call_VM. However, we need the precise
duke@435 3799 // address of the call in order to generate an oopmap. Hence, we do all the
duke@435 3800 // work outselves.
duke@435 3801
duke@435 3802 __ set_last_Java_frame(noreg, noreg, NULL);
duke@435 3803
duke@435 3804 // The return address must always be correct so that frame constructor never
duke@435 3805 // sees an invalid pc.
duke@435 3806
duke@435 3807 if (!cause_return) {
duke@435 3808 // overwrite the dummy value we pushed on entry
never@739 3809 __ movptr(c_rarg0, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
never@739 3810 __ movptr(Address(rbp, wordSize), c_rarg0);
duke@435 3811 }
duke@435 3812
duke@435 3813 // Do the call
never@739 3814 __ mov(c_rarg0, r15_thread);
duke@435 3815 __ call(RuntimeAddress(call_ptr));
duke@435 3816
duke@435 3817 // Set an oopmap for the call site. This oopmap will map all
duke@435 3818 // oop-registers and debug-info registers as callee-saved. This
duke@435 3819 // will allow deoptimization at this safepoint to find all possible
duke@435 3820 // debug-info recordings, as well as let GC find all oops.
duke@435 3821
duke@435 3822 oop_maps->add_gc_map( __ pc() - start, map);
duke@435 3823
duke@435 3824 Label noException;
duke@435 3825
duke@435 3826 __ reset_last_Java_frame(false, false);
duke@435 3827
never@739 3828 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 3829 __ jcc(Assembler::equal, noException);
duke@435 3830
duke@435 3831 // Exception pending
duke@435 3832
kvn@4103 3833 RegisterSaver::restore_live_registers(masm, save_vectors);
duke@435 3834
duke@435 3835 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 3836
duke@435 3837 // No exception case
duke@435 3838 __ bind(noException);
duke@435 3839
duke@435 3840 // Normal exit, restore registers and exit.
kvn@4103 3841 RegisterSaver::restore_live_registers(masm, save_vectors);
duke@435 3842
duke@435 3843 __ ret(0);
duke@435 3844
duke@435 3845 // Make sure all code is generated
duke@435 3846 masm->flush();
duke@435 3847
duke@435 3848 // Fill-out other meta info
duke@435 3849 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
duke@435 3850 }
duke@435 3851
duke@435 3852 //
duke@435 3853 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
duke@435 3854 //
duke@435 3855 // Generate a stub that calls into vm to find out the proper destination
duke@435 3856 // of a java call. All the argument registers are live at this point
duke@435 3857 // but since this is generic code we don't know what they are and the caller
duke@435 3858 // must do any gc of the args.
duke@435 3859 //
never@2950 3860 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
duke@435 3861 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
duke@435 3862
duke@435 3863 // allocate space for the code
duke@435 3864 ResourceMark rm;
duke@435 3865
duke@435 3866 CodeBuffer buffer(name, 1000, 512);
duke@435 3867 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3868
duke@435 3869 int frame_size_in_words;
duke@435 3870
duke@435 3871 OopMapSet *oop_maps = new OopMapSet();
duke@435 3872 OopMap* map = NULL;
duke@435 3873
duke@435 3874 int start = __ offset();
duke@435 3875
duke@435 3876 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
duke@435 3877
duke@435 3878 int frame_complete = __ offset();
duke@435 3879
duke@435 3880 __ set_last_Java_frame(noreg, noreg, NULL);
duke@435 3881
never@739 3882 __ mov(c_rarg0, r15_thread);
duke@435 3883
duke@435 3884 __ call(RuntimeAddress(destination));
duke@435 3885
duke@435 3886
duke@435 3887 // Set an oopmap for the call site.
duke@435 3888 // We need this not only for callee-saved registers, but also for volatile
duke@435 3889 // registers that the compiler might be keeping live across a safepoint.
duke@435 3890
duke@435 3891 oop_maps->add_gc_map( __ offset() - start, map);
duke@435 3892
duke@435 3893 // rax contains the address we are going to jump to assuming no exception got installed
duke@435 3894
duke@435 3895 // clear last_Java_sp
duke@435 3896 __ reset_last_Java_frame(false, false);
duke@435 3897 // check for pending exceptions
duke@435 3898 Label pending;
never@739 3899 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 3900 __ jcc(Assembler::notEqual, pending);
duke@435 3901
coleenp@4037 3902 // get the returned Method*
coleenp@4037 3903 __ get_vm_result_2(rbx, r15_thread);
never@739 3904 __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
never@739 3905
never@739 3906 __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
duke@435 3907
duke@435 3908 RegisterSaver::restore_live_registers(masm);
duke@435 3909
duke@435 3910 // We are back the the original state on entry and ready to go.
duke@435 3911
duke@435 3912 __ jmp(rax);
duke@435 3913
duke@435 3914 // Pending exception after the safepoint
duke@435 3915
duke@435 3916 __ bind(pending);
duke@435 3917
duke@435 3918 RegisterSaver::restore_live_registers(masm);
duke@435 3919
duke@435 3920 // exception pending => remove activation and forward to exception handler
duke@435 3921
duke@435 3922 __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
duke@435 3923
never@739 3924 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
duke@435 3925 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 3926
duke@435 3927 // -------------
duke@435 3928 // make sure all code is generated
duke@435 3929 masm->flush();
duke@435 3930
duke@435 3931 // return the blob
duke@435 3932 // frame_size_words or bytes??
duke@435 3933 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
duke@435 3934 }
duke@435 3935
duke@435 3936
duke@435 3937 #ifdef COMPILER2
duke@435 3938 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
duke@435 3939 //
duke@435 3940 //------------------------------generate_exception_blob---------------------------
duke@435 3941 // creates exception blob at the end
duke@435 3942 // Using exception blob, this code is jumped from a compiled method.
duke@435 3943 // (see emit_exception_handler in x86_64.ad file)
duke@435 3944 //
duke@435 3945 // Given an exception pc at a call we call into the runtime for the
duke@435 3946 // handler in this method. This handler might merely restore state
duke@435 3947 // (i.e. callee save registers) unwind the frame and jump to the
duke@435 3948 // exception handler for the nmethod if there is no Java level handler
duke@435 3949 // for the nmethod.
duke@435 3950 //
duke@435 3951 // This code is entered with a jmp.
duke@435 3952 //
duke@435 3953 // Arguments:
duke@435 3954 // rax: exception oop
duke@435 3955 // rdx: exception pc
duke@435 3956 //
duke@435 3957 // Results:
duke@435 3958 // rax: exception oop
duke@435 3959 // rdx: exception pc in caller or ???
duke@435 3960 // destination: exception handler of caller
duke@435 3961 //
duke@435 3962 // Note: the exception pc MUST be at a call (precise debug information)
duke@435 3963 // Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
duke@435 3964 //
duke@435 3965
duke@435 3966 void OptoRuntime::generate_exception_blob() {
duke@435 3967 assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
duke@435 3968 assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
duke@435 3969 assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
duke@435 3970
duke@435 3971 assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
duke@435 3972
duke@435 3973 // Allocate space for the code
duke@435 3974 ResourceMark rm;
duke@435 3975 // Setup code generation tools
duke@435 3976 CodeBuffer buffer("exception_blob", 2048, 1024);
duke@435 3977 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3978
duke@435 3979
duke@435 3980 address start = __ pc();
duke@435 3981
duke@435 3982 // Exception pc is 'return address' for stack walker
never@739 3983 __ push(rdx);
never@739 3984 __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
duke@435 3985
duke@435 3986 // Save callee-saved registers. See x86_64.ad.
duke@435 3987
duke@435 3988 // rbp is an implicitly saved callee saved register (i.e. the calling
duke@435 3989 // convention will save restore it in prolog/epilog) Other than that
duke@435 3990 // there are no callee save registers now that adapter frames are gone.
duke@435 3991
never@739 3992 __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
duke@435 3993
duke@435 3994 // Store exception in Thread object. We cannot pass any arguments to the
duke@435 3995 // handle_exception call, since we do not want to make any assumption
duke@435 3996 // about the size of the frame where the exception happened in.
duke@435 3997 // c_rarg0 is either rdi (Linux) or rcx (Windows).
never@739 3998 __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
never@739 3999 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
duke@435 4000
duke@435 4001 // This call does all the hard work. It checks if an exception handler
duke@435 4002 // exists in the method.
duke@435 4003 // If so, it returns the handler address.
duke@435 4004 // If not, it prepares for stack-unwinding, restoring the callee-save
duke@435 4005 // registers of the frame being removed.
duke@435 4006 //
duke@435 4007 // address OptoRuntime::handle_exception_C(JavaThread* thread)
duke@435 4008
roland@3607 4009 // At a method handle call, the stack may not be properly aligned
roland@3607 4010 // when returning with an exception.
roland@3607 4011 address the_pc = __ pc();
roland@3607 4012 __ set_last_Java_frame(noreg, noreg, the_pc);
never@739 4013 __ mov(c_rarg0, r15_thread);
roland@3607 4014 __ andptr(rsp, -(StackAlignmentInBytes)); // Align stack
duke@435 4015 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
duke@435 4016
duke@435 4017 // Set an oopmap for the call site. This oopmap will only be used if we
duke@435 4018 // are unwinding the stack. Hence, all locations will be dead.
duke@435 4019 // Callee-saved registers will be the same as the frame above (i.e.,
duke@435 4020 // handle_exception_stub), since they were restored when we got the
duke@435 4021 // exception.
duke@435 4022
duke@435 4023 OopMapSet* oop_maps = new OopMapSet();
duke@435 4024
roland@3607 4025 oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
roland@3607 4026
roland@3607 4027 __ reset_last_Java_frame(false, true);
duke@435 4028
duke@435 4029 // Restore callee-saved registers
duke@435 4030
duke@435 4031 // rbp is an implicitly saved callee saved register (i.e. the calling
duke@435 4032 // convention will save restore it in prolog/epilog) Other than that
duke@435 4033 // there are no callee save registers no that adapter frames are gone.
duke@435 4034
never@739 4035 __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
never@739 4036
never@739 4037 __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
never@739 4038 __ pop(rdx); // No need for exception pc anymore
duke@435 4039
duke@435 4040 // rax: exception handler
duke@435 4041
twisti@1803 4042 // Restore SP from BP if the exception PC is a MethodHandle call site.
twisti@1803 4043 __ cmpl(Address(r15_thread, JavaThread::is_method_handle_return_offset()), 0);
twisti@1922 4044 __ cmovptr(Assembler::notEqual, rsp, rbp_mh_SP_save);
twisti@1570 4045
duke@435 4046 // We have a handler in rax (could be deopt blob).
never@739 4047 __ mov(r8, rax);
duke@435 4048
duke@435 4049 // Get the exception oop
never@739 4050 __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
duke@435 4051 // Get the exception pc in case we are deoptimized
never@739 4052 __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
duke@435 4053 #ifdef ASSERT
duke@435 4054 __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
duke@435 4055 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
duke@435 4056 #endif
duke@435 4057 // Clear the exception oop so GC no longer processes it as a root.
duke@435 4058 __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
duke@435 4059
duke@435 4060 // rax: exception oop
duke@435 4061 // r8: exception handler
duke@435 4062 // rdx: exception pc
duke@435 4063 // Jump to handler
duke@435 4064
duke@435 4065 __ jmp(r8);
duke@435 4066
duke@435 4067 // Make sure all code is generated
duke@435 4068 masm->flush();
duke@435 4069
duke@435 4070 // Set exception blob
duke@435 4071 _exception_blob = ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
duke@435 4072 }
duke@435 4073 #endif // COMPILER2

mercurial