src/share/vm/opto/type.cpp

Wed, 07 Oct 2009 12:43:50 -0700

author
kvn
date
Wed, 07 Oct 2009 12:43:50 -0700
changeset 1443
e90521d61f9a
parent 1427
6a8ccac44f41
child 1444
03b336640699
permissions
-rw-r--r--

6875959: CTW fails hotspot/src/share/vm/opto/reg_split.cpp:1087
Summary: To break spill ties choose bound live range over unbound to free register or one with smaller cost to spill.
Reviewed-by: never, jrose

duke@435 1 /*
twisti@1059 2 * Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // Portions of code courtesy of Clifford Click
duke@435 26
duke@435 27 // Optimization - Graph Style
duke@435 28
duke@435 29 #include "incls/_precompiled.incl"
duke@435 30 #include "incls/_type.cpp.incl"
duke@435 31
duke@435 32 // Dictionary of types shared among compilations.
duke@435 33 Dict* Type::_shared_type_dict = NULL;
duke@435 34
duke@435 35 // Array which maps compiler types to Basic Types
duke@435 36 const BasicType Type::_basic_type[Type::lastype] = {
duke@435 37 T_ILLEGAL, // Bad
duke@435 38 T_ILLEGAL, // Control
duke@435 39 T_VOID, // Top
duke@435 40 T_INT, // Int
duke@435 41 T_LONG, // Long
duke@435 42 T_VOID, // Half
coleenp@548 43 T_NARROWOOP, // NarrowOop
duke@435 44
duke@435 45 T_ILLEGAL, // Tuple
duke@435 46 T_ARRAY, // Array
duke@435 47
duke@435 48 T_ADDRESS, // AnyPtr // shows up in factory methods for NULL_PTR
duke@435 49 T_ADDRESS, // RawPtr
duke@435 50 T_OBJECT, // OopPtr
duke@435 51 T_OBJECT, // InstPtr
duke@435 52 T_OBJECT, // AryPtr
duke@435 53 T_OBJECT, // KlassPtr
duke@435 54
duke@435 55 T_OBJECT, // Function
duke@435 56 T_ILLEGAL, // Abio
duke@435 57 T_ADDRESS, // Return_Address
duke@435 58 T_ILLEGAL, // Memory
duke@435 59 T_FLOAT, // FloatTop
duke@435 60 T_FLOAT, // FloatCon
duke@435 61 T_FLOAT, // FloatBot
duke@435 62 T_DOUBLE, // DoubleTop
duke@435 63 T_DOUBLE, // DoubleCon
duke@435 64 T_DOUBLE, // DoubleBot
duke@435 65 T_ILLEGAL, // Bottom
duke@435 66 };
duke@435 67
duke@435 68 // Map ideal registers (machine types) to ideal types
duke@435 69 const Type *Type::mreg2type[_last_machine_leaf];
duke@435 70
duke@435 71 // Map basic types to canonical Type* pointers.
duke@435 72 const Type* Type:: _const_basic_type[T_CONFLICT+1];
duke@435 73
duke@435 74 // Map basic types to constant-zero Types.
duke@435 75 const Type* Type:: _zero_type[T_CONFLICT+1];
duke@435 76
duke@435 77 // Map basic types to array-body alias types.
duke@435 78 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
duke@435 79
duke@435 80 //=============================================================================
duke@435 81 // Convenience common pre-built types.
duke@435 82 const Type *Type::ABIO; // State-of-machine only
duke@435 83 const Type *Type::BOTTOM; // All values
duke@435 84 const Type *Type::CONTROL; // Control only
duke@435 85 const Type *Type::DOUBLE; // All doubles
duke@435 86 const Type *Type::FLOAT; // All floats
duke@435 87 const Type *Type::HALF; // Placeholder half of doublewide type
duke@435 88 const Type *Type::MEMORY; // Abstract store only
duke@435 89 const Type *Type::RETURN_ADDRESS;
duke@435 90 const Type *Type::TOP; // No values in set
duke@435 91
duke@435 92 //------------------------------get_const_type---------------------------
duke@435 93 const Type* Type::get_const_type(ciType* type) {
duke@435 94 if (type == NULL) {
duke@435 95 return NULL;
duke@435 96 } else if (type->is_primitive_type()) {
duke@435 97 return get_const_basic_type(type->basic_type());
duke@435 98 } else {
duke@435 99 return TypeOopPtr::make_from_klass(type->as_klass());
duke@435 100 }
duke@435 101 }
duke@435 102
duke@435 103 //---------------------------array_element_basic_type---------------------------------
duke@435 104 // Mapping to the array element's basic type.
duke@435 105 BasicType Type::array_element_basic_type() const {
duke@435 106 BasicType bt = basic_type();
duke@435 107 if (bt == T_INT) {
duke@435 108 if (this == TypeInt::INT) return T_INT;
duke@435 109 if (this == TypeInt::CHAR) return T_CHAR;
duke@435 110 if (this == TypeInt::BYTE) return T_BYTE;
duke@435 111 if (this == TypeInt::BOOL) return T_BOOLEAN;
duke@435 112 if (this == TypeInt::SHORT) return T_SHORT;
duke@435 113 return T_VOID;
duke@435 114 }
duke@435 115 return bt;
duke@435 116 }
duke@435 117
duke@435 118 //---------------------------get_typeflow_type---------------------------------
duke@435 119 // Import a type produced by ciTypeFlow.
duke@435 120 const Type* Type::get_typeflow_type(ciType* type) {
duke@435 121 switch (type->basic_type()) {
duke@435 122
duke@435 123 case ciTypeFlow::StateVector::T_BOTTOM:
duke@435 124 assert(type == ciTypeFlow::StateVector::bottom_type(), "");
duke@435 125 return Type::BOTTOM;
duke@435 126
duke@435 127 case ciTypeFlow::StateVector::T_TOP:
duke@435 128 assert(type == ciTypeFlow::StateVector::top_type(), "");
duke@435 129 return Type::TOP;
duke@435 130
duke@435 131 case ciTypeFlow::StateVector::T_NULL:
duke@435 132 assert(type == ciTypeFlow::StateVector::null_type(), "");
duke@435 133 return TypePtr::NULL_PTR;
duke@435 134
duke@435 135 case ciTypeFlow::StateVector::T_LONG2:
duke@435 136 // The ciTypeFlow pass pushes a long, then the half.
duke@435 137 // We do the same.
duke@435 138 assert(type == ciTypeFlow::StateVector::long2_type(), "");
duke@435 139 return TypeInt::TOP;
duke@435 140
duke@435 141 case ciTypeFlow::StateVector::T_DOUBLE2:
duke@435 142 // The ciTypeFlow pass pushes double, then the half.
duke@435 143 // Our convention is the same.
duke@435 144 assert(type == ciTypeFlow::StateVector::double2_type(), "");
duke@435 145 return Type::TOP;
duke@435 146
duke@435 147 case T_ADDRESS:
duke@435 148 assert(type->is_return_address(), "");
duke@435 149 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
duke@435 150
duke@435 151 default:
duke@435 152 // make sure we did not mix up the cases:
duke@435 153 assert(type != ciTypeFlow::StateVector::bottom_type(), "");
duke@435 154 assert(type != ciTypeFlow::StateVector::top_type(), "");
duke@435 155 assert(type != ciTypeFlow::StateVector::null_type(), "");
duke@435 156 assert(type != ciTypeFlow::StateVector::long2_type(), "");
duke@435 157 assert(type != ciTypeFlow::StateVector::double2_type(), "");
duke@435 158 assert(!type->is_return_address(), "");
duke@435 159
duke@435 160 return Type::get_const_type(type);
duke@435 161 }
duke@435 162 }
duke@435 163
duke@435 164
duke@435 165 //------------------------------make-------------------------------------------
duke@435 166 // Create a simple Type, with default empty symbol sets. Then hashcons it
duke@435 167 // and look for an existing copy in the type dictionary.
duke@435 168 const Type *Type::make( enum TYPES t ) {
duke@435 169 return (new Type(t))->hashcons();
duke@435 170 }
kvn@658 171
duke@435 172 //------------------------------cmp--------------------------------------------
duke@435 173 int Type::cmp( const Type *const t1, const Type *const t2 ) {
duke@435 174 if( t1->_base != t2->_base )
duke@435 175 return 1; // Missed badly
duke@435 176 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
duke@435 177 return !t1->eq(t2); // Return ZERO if equal
duke@435 178 }
duke@435 179
duke@435 180 //------------------------------hash-------------------------------------------
duke@435 181 int Type::uhash( const Type *const t ) {
duke@435 182 return t->hash();
duke@435 183 }
duke@435 184
duke@435 185 //--------------------------Initialize_shared----------------------------------
duke@435 186 void Type::Initialize_shared(Compile* current) {
duke@435 187 // This method does not need to be locked because the first system
duke@435 188 // compilations (stub compilations) occur serially. If they are
duke@435 189 // changed to proceed in parallel, then this section will need
duke@435 190 // locking.
duke@435 191
duke@435 192 Arena* save = current->type_arena();
duke@435 193 Arena* shared_type_arena = new Arena();
duke@435 194
duke@435 195 current->set_type_arena(shared_type_arena);
duke@435 196 _shared_type_dict =
duke@435 197 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
duke@435 198 shared_type_arena, 128 );
duke@435 199 current->set_type_dict(_shared_type_dict);
duke@435 200
duke@435 201 // Make shared pre-built types.
duke@435 202 CONTROL = make(Control); // Control only
duke@435 203 TOP = make(Top); // No values in set
duke@435 204 MEMORY = make(Memory); // Abstract store only
duke@435 205 ABIO = make(Abio); // State-of-machine only
duke@435 206 RETURN_ADDRESS=make(Return_Address);
duke@435 207 FLOAT = make(FloatBot); // All floats
duke@435 208 DOUBLE = make(DoubleBot); // All doubles
duke@435 209 BOTTOM = make(Bottom); // Everything
duke@435 210 HALF = make(Half); // Placeholder half of doublewide type
duke@435 211
duke@435 212 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
duke@435 213 TypeF::ONE = TypeF::make(1.0); // Float 1
duke@435 214
duke@435 215 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
duke@435 216 TypeD::ONE = TypeD::make(1.0); // Double 1
duke@435 217
duke@435 218 TypeInt::MINUS_1 = TypeInt::make(-1); // -1
duke@435 219 TypeInt::ZERO = TypeInt::make( 0); // 0
duke@435 220 TypeInt::ONE = TypeInt::make( 1); // 1
duke@435 221 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE.
duke@435 222 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes
duke@435 223 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1
duke@435 224 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE
duke@435 225 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO
duke@435 226 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin);
duke@435 227 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL
duke@435 228 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes
twisti@1059 229 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes
duke@435 230 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars
duke@435 231 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts
duke@435 232 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values
duke@435 233 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values
duke@435 234 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
duke@435 235 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
duke@435 236 // CmpL is overloaded both as the bytecode computation returning
duke@435 237 // a trinary (-1,0,+1) integer result AND as an efficient long
duke@435 238 // compare returning optimizer ideal-type flags.
duke@435 239 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
duke@435 240 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" );
duke@435 241 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" );
duke@435 242 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" );
duke@435 243
duke@435 244 TypeLong::MINUS_1 = TypeLong::make(-1); // -1
duke@435 245 TypeLong::ZERO = TypeLong::make( 0); // 0
duke@435 246 TypeLong::ONE = TypeLong::make( 1); // 1
duke@435 247 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
duke@435 248 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
duke@435 249 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
duke@435 250 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin);
duke@435 251
duke@435 252 const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 253 fboth[0] = Type::CONTROL;
duke@435 254 fboth[1] = Type::CONTROL;
duke@435 255 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
duke@435 256
duke@435 257 const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 258 ffalse[0] = Type::CONTROL;
duke@435 259 ffalse[1] = Type::TOP;
duke@435 260 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
duke@435 261
duke@435 262 const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 263 fneither[0] = Type::TOP;
duke@435 264 fneither[1] = Type::TOP;
duke@435 265 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
duke@435 266
duke@435 267 const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 268 ftrue[0] = Type::TOP;
duke@435 269 ftrue[1] = Type::CONTROL;
duke@435 270 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
duke@435 271
duke@435 272 const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 273 floop[0] = Type::CONTROL;
duke@435 274 floop[1] = TypeInt::INT;
duke@435 275 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
duke@435 276
duke@435 277 TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
duke@435 278 TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
duke@435 279 TypePtr::BOTTOM = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
duke@435 280
duke@435 281 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
duke@435 282 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
duke@435 283
duke@435 284 const Type **fmembar = TypeTuple::fields(0);
duke@435 285 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
duke@435 286
duke@435 287 const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 288 fsc[0] = TypeInt::CC;
duke@435 289 fsc[1] = Type::MEMORY;
duke@435 290 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
duke@435 291
duke@435 292 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
duke@435 293 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
duke@435 294 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
duke@435 295 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 296 false, 0, oopDesc::mark_offset_in_bytes());
duke@435 297 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 298 false, 0, oopDesc::klass_offset_in_bytes());
kvn@1427 299 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
duke@435 300
coleenp@548 301 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
coleenp@548 302 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
coleenp@548 303
coleenp@548 304 mreg2type[Op_Node] = Type::BOTTOM;
coleenp@548 305 mreg2type[Op_Set ] = 0;
coleenp@548 306 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
coleenp@548 307 mreg2type[Op_RegI] = TypeInt::INT;
coleenp@548 308 mreg2type[Op_RegP] = TypePtr::BOTTOM;
coleenp@548 309 mreg2type[Op_RegF] = Type::FLOAT;
coleenp@548 310 mreg2type[Op_RegD] = Type::DOUBLE;
coleenp@548 311 mreg2type[Op_RegL] = TypeLong::LONG;
coleenp@548 312 mreg2type[Op_RegFlags] = TypeInt::CC;
coleenp@548 313
duke@435 314 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), current->env()->Object_klass(), false, arrayOopDesc::length_offset_in_bytes());
kvn@598 315
kvn@598 316 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 317
kvn@598 318 #ifdef _LP64
kvn@598 319 if (UseCompressedOops) {
kvn@598 320 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS;
kvn@598 321 } else
kvn@598 322 #endif
kvn@598 323 {
kvn@598 324 // There is no shared klass for Object[]. See note in TypeAryPtr::klass().
kvn@598 325 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 326 }
duke@435 327 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot);
duke@435 328 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot);
duke@435 329 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot);
duke@435 330 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot);
duke@435 331 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot);
duke@435 332 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot);
duke@435 333 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot);
duke@435 334
kvn@598 335 // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
kvn@598 336 TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
duke@435 337 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
kvn@598 338 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
duke@435 339 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
duke@435 340 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
duke@435 341 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
duke@435 342 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
duke@435 343 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
duke@435 344 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
duke@435 345 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
duke@435 346 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
duke@435 347
duke@435 348 TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
duke@435 349 TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
duke@435 350
duke@435 351 const Type **fi2c = TypeTuple::fields(2);
duke@435 352 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // methodOop
duke@435 353 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
duke@435 354 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
duke@435 355
duke@435 356 const Type **intpair = TypeTuple::fields(2);
duke@435 357 intpair[0] = TypeInt::INT;
duke@435 358 intpair[1] = TypeInt::INT;
duke@435 359 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
duke@435 360
duke@435 361 const Type **longpair = TypeTuple::fields(2);
duke@435 362 longpair[0] = TypeLong::LONG;
duke@435 363 longpair[1] = TypeLong::LONG;
duke@435 364 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
duke@435 365
coleenp@548 366 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
duke@435 367 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
duke@435 368 _const_basic_type[T_CHAR] = TypeInt::CHAR;
duke@435 369 _const_basic_type[T_BYTE] = TypeInt::BYTE;
duke@435 370 _const_basic_type[T_SHORT] = TypeInt::SHORT;
duke@435 371 _const_basic_type[T_INT] = TypeInt::INT;
duke@435 372 _const_basic_type[T_LONG] = TypeLong::LONG;
duke@435 373 _const_basic_type[T_FLOAT] = Type::FLOAT;
duke@435 374 _const_basic_type[T_DOUBLE] = Type::DOUBLE;
duke@435 375 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
duke@435 376 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
duke@435 377 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
duke@435 378 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
duke@435 379 _const_basic_type[T_CONFLICT]= Type::BOTTOM; // why not?
duke@435 380
coleenp@548 381 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
duke@435 382 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
duke@435 383 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
duke@435 384 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
duke@435 385 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
duke@435 386 _zero_type[T_INT] = TypeInt::ZERO;
duke@435 387 _zero_type[T_LONG] = TypeLong::ZERO;
duke@435 388 _zero_type[T_FLOAT] = TypeF::ZERO;
duke@435 389 _zero_type[T_DOUBLE] = TypeD::ZERO;
duke@435 390 _zero_type[T_OBJECT] = TypePtr::NULL_PTR;
duke@435 391 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
duke@435 392 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
duke@435 393 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
duke@435 394
duke@435 395 // get_zero_type() should not happen for T_CONFLICT
duke@435 396 _zero_type[T_CONFLICT]= NULL;
duke@435 397
duke@435 398 // Restore working type arena.
duke@435 399 current->set_type_arena(save);
duke@435 400 current->set_type_dict(NULL);
duke@435 401 }
duke@435 402
duke@435 403 //------------------------------Initialize-------------------------------------
duke@435 404 void Type::Initialize(Compile* current) {
duke@435 405 assert(current->type_arena() != NULL, "must have created type arena");
duke@435 406
duke@435 407 if (_shared_type_dict == NULL) {
duke@435 408 Initialize_shared(current);
duke@435 409 }
duke@435 410
duke@435 411 Arena* type_arena = current->type_arena();
duke@435 412
duke@435 413 // Create the hash-cons'ing dictionary with top-level storage allocation
duke@435 414 Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
duke@435 415 current->set_type_dict(tdic);
duke@435 416
duke@435 417 // Transfer the shared types.
duke@435 418 DictI i(_shared_type_dict);
duke@435 419 for( ; i.test(); ++i ) {
duke@435 420 Type* t = (Type*)i._value;
duke@435 421 tdic->Insert(t,t); // New Type, insert into Type table
duke@435 422 }
coleenp@548 423
coleenp@548 424 #ifdef ASSERT
coleenp@548 425 verify_lastype();
coleenp@548 426 #endif
duke@435 427 }
duke@435 428
duke@435 429 //------------------------------hashcons---------------------------------------
duke@435 430 // Do the hash-cons trick. If the Type already exists in the type table,
duke@435 431 // delete the current Type and return the existing Type. Otherwise stick the
duke@435 432 // current Type in the Type table.
duke@435 433 const Type *Type::hashcons(void) {
duke@435 434 debug_only(base()); // Check the assertion in Type::base().
duke@435 435 // Look up the Type in the Type dictionary
duke@435 436 Dict *tdic = type_dict();
duke@435 437 Type* old = (Type*)(tdic->Insert(this, this, false));
duke@435 438 if( old ) { // Pre-existing Type?
duke@435 439 if( old != this ) // Yes, this guy is not the pre-existing?
duke@435 440 delete this; // Yes, Nuke this guy
duke@435 441 assert( old->_dual, "" );
duke@435 442 return old; // Return pre-existing
duke@435 443 }
duke@435 444
duke@435 445 // Every type has a dual (to make my lattice symmetric).
duke@435 446 // Since we just discovered a new Type, compute its dual right now.
duke@435 447 assert( !_dual, "" ); // No dual yet
duke@435 448 _dual = xdual(); // Compute the dual
duke@435 449 if( cmp(this,_dual)==0 ) { // Handle self-symmetric
duke@435 450 _dual = this;
duke@435 451 return this;
duke@435 452 }
duke@435 453 assert( !_dual->_dual, "" ); // No reverse dual yet
duke@435 454 assert( !(*tdic)[_dual], "" ); // Dual not in type system either
duke@435 455 // New Type, insert into Type table
duke@435 456 tdic->Insert((void*)_dual,(void*)_dual);
duke@435 457 ((Type*)_dual)->_dual = this; // Finish up being symmetric
duke@435 458 #ifdef ASSERT
duke@435 459 Type *dual_dual = (Type*)_dual->xdual();
duke@435 460 assert( eq(dual_dual), "xdual(xdual()) should be identity" );
duke@435 461 delete dual_dual;
duke@435 462 #endif
duke@435 463 return this; // Return new Type
duke@435 464 }
duke@435 465
duke@435 466 //------------------------------eq---------------------------------------------
duke@435 467 // Structural equality check for Type representations
duke@435 468 bool Type::eq( const Type * ) const {
duke@435 469 return true; // Nothing else can go wrong
duke@435 470 }
duke@435 471
duke@435 472 //------------------------------hash-------------------------------------------
duke@435 473 // Type-specific hashing function.
duke@435 474 int Type::hash(void) const {
duke@435 475 return _base;
duke@435 476 }
duke@435 477
duke@435 478 //------------------------------is_finite--------------------------------------
duke@435 479 // Has a finite value
duke@435 480 bool Type::is_finite() const {
duke@435 481 return false;
duke@435 482 }
duke@435 483
duke@435 484 //------------------------------is_nan-----------------------------------------
duke@435 485 // Is not a number (NaN)
duke@435 486 bool Type::is_nan() const {
duke@435 487 return false;
duke@435 488 }
duke@435 489
kvn@1255 490 //----------------------interface_vs_oop---------------------------------------
kvn@1255 491 #ifdef ASSERT
kvn@1255 492 bool Type::interface_vs_oop(const Type *t) const {
kvn@1255 493 bool result = false;
kvn@1255 494
kvn@1427 495 const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
kvn@1427 496 const TypePtr* t_ptr = t->make_ptr();
kvn@1427 497 if( this_ptr == NULL || t_ptr == NULL )
kvn@1427 498 return result;
kvn@1427 499
kvn@1427 500 const TypeInstPtr* this_inst = this_ptr->isa_instptr();
kvn@1427 501 const TypeInstPtr* t_inst = t_ptr->isa_instptr();
kvn@1255 502 if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
kvn@1255 503 bool this_interface = this_inst->klass()->is_interface();
kvn@1255 504 bool t_interface = t_inst->klass()->is_interface();
kvn@1255 505 result = this_interface ^ t_interface;
kvn@1255 506 }
kvn@1255 507
kvn@1255 508 return result;
kvn@1255 509 }
kvn@1255 510 #endif
kvn@1255 511
duke@435 512 //------------------------------meet-------------------------------------------
duke@435 513 // Compute the MEET of two types. NOT virtual. It enforces that meet is
duke@435 514 // commutative and the lattice is symmetric.
duke@435 515 const Type *Type::meet( const Type *t ) const {
coleenp@548 516 if (isa_narrowoop() && t->isa_narrowoop()) {
kvn@656 517 const Type* result = make_ptr()->meet(t->make_ptr());
kvn@656 518 return result->make_narrowoop();
coleenp@548 519 }
coleenp@548 520
duke@435 521 const Type *mt = xmeet(t);
coleenp@548 522 if (isa_narrowoop() || t->isa_narrowoop()) return mt;
duke@435 523 #ifdef ASSERT
duke@435 524 assert( mt == t->xmeet(this), "meet not commutative" );
duke@435 525 const Type* dual_join = mt->_dual;
duke@435 526 const Type *t2t = dual_join->xmeet(t->_dual);
duke@435 527 const Type *t2this = dual_join->xmeet( _dual);
duke@435 528
duke@435 529 // Interface meet Oop is Not Symmetric:
duke@435 530 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
duke@435 531 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
kvn@1255 532
kvn@1255 533 if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != _dual) ) {
duke@435 534 tty->print_cr("=== Meet Not Symmetric ===");
duke@435 535 tty->print("t = "); t->dump(); tty->cr();
duke@435 536 tty->print("this= "); dump(); tty->cr();
duke@435 537 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
duke@435 538
duke@435 539 tty->print("t_dual= "); t->_dual->dump(); tty->cr();
duke@435 540 tty->print("this_dual= "); _dual->dump(); tty->cr();
duke@435 541 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
duke@435 542
duke@435 543 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
duke@435 544 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
duke@435 545
duke@435 546 fatal("meet not symmetric" );
duke@435 547 }
duke@435 548 #endif
duke@435 549 return mt;
duke@435 550 }
duke@435 551
duke@435 552 //------------------------------xmeet------------------------------------------
duke@435 553 // Compute the MEET of two types. It returns a new Type object.
duke@435 554 const Type *Type::xmeet( const Type *t ) const {
duke@435 555 // Perform a fast test for common case; meeting the same types together.
duke@435 556 if( this == t ) return this; // Meeting same type-rep?
duke@435 557
duke@435 558 // Meeting TOP with anything?
duke@435 559 if( _base == Top ) return t;
duke@435 560
duke@435 561 // Meeting BOTTOM with anything?
duke@435 562 if( _base == Bottom ) return BOTTOM;
duke@435 563
duke@435 564 // Current "this->_base" is one of: Bad, Multi, Control, Top,
duke@435 565 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
duke@435 566 switch (t->base()) { // Switch on original type
duke@435 567
duke@435 568 // Cut in half the number of cases I must handle. Only need cases for when
duke@435 569 // the given enum "t->type" is less than or equal to the local enum "type".
duke@435 570 case FloatCon:
duke@435 571 case DoubleCon:
duke@435 572 case Int:
duke@435 573 case Long:
duke@435 574 return t->xmeet(this);
duke@435 575
duke@435 576 case OopPtr:
duke@435 577 return t->xmeet(this);
duke@435 578
duke@435 579 case InstPtr:
duke@435 580 return t->xmeet(this);
duke@435 581
duke@435 582 case KlassPtr:
duke@435 583 return t->xmeet(this);
duke@435 584
duke@435 585 case AryPtr:
duke@435 586 return t->xmeet(this);
duke@435 587
coleenp@548 588 case NarrowOop:
coleenp@548 589 return t->xmeet(this);
coleenp@548 590
duke@435 591 case Bad: // Type check
duke@435 592 default: // Bogus type not in lattice
duke@435 593 typerr(t);
duke@435 594 return Type::BOTTOM;
duke@435 595
duke@435 596 case Bottom: // Ye Olde Default
duke@435 597 return t;
duke@435 598
duke@435 599 case FloatTop:
duke@435 600 if( _base == FloatTop ) return this;
duke@435 601 case FloatBot: // Float
duke@435 602 if( _base == FloatBot || _base == FloatTop ) return FLOAT;
duke@435 603 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
duke@435 604 typerr(t);
duke@435 605 return Type::BOTTOM;
duke@435 606
duke@435 607 case DoubleTop:
duke@435 608 if( _base == DoubleTop ) return this;
duke@435 609 case DoubleBot: // Double
duke@435 610 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
duke@435 611 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
duke@435 612 typerr(t);
duke@435 613 return Type::BOTTOM;
duke@435 614
duke@435 615 // These next few cases must match exactly or it is a compile-time error.
duke@435 616 case Control: // Control of code
duke@435 617 case Abio: // State of world outside of program
duke@435 618 case Memory:
duke@435 619 if( _base == t->_base ) return this;
duke@435 620 typerr(t);
duke@435 621 return Type::BOTTOM;
duke@435 622
duke@435 623 case Top: // Top of the lattice
duke@435 624 return this;
duke@435 625 }
duke@435 626
duke@435 627 // The type is unchanged
duke@435 628 return this;
duke@435 629 }
duke@435 630
duke@435 631 //-----------------------------filter------------------------------------------
duke@435 632 const Type *Type::filter( const Type *kills ) const {
duke@435 633 const Type* ft = join(kills);
duke@435 634 if (ft->empty())
duke@435 635 return Type::TOP; // Canonical empty value
duke@435 636 return ft;
duke@435 637 }
duke@435 638
duke@435 639 //------------------------------xdual------------------------------------------
duke@435 640 // Compute dual right now.
duke@435 641 const Type::TYPES Type::dual_type[Type::lastype] = {
duke@435 642 Bad, // Bad
duke@435 643 Control, // Control
duke@435 644 Bottom, // Top
duke@435 645 Bad, // Int - handled in v-call
duke@435 646 Bad, // Long - handled in v-call
duke@435 647 Half, // Half
coleenp@548 648 Bad, // NarrowOop - handled in v-call
duke@435 649
duke@435 650 Bad, // Tuple - handled in v-call
duke@435 651 Bad, // Array - handled in v-call
duke@435 652
duke@435 653 Bad, // AnyPtr - handled in v-call
duke@435 654 Bad, // RawPtr - handled in v-call
duke@435 655 Bad, // OopPtr - handled in v-call
duke@435 656 Bad, // InstPtr - handled in v-call
duke@435 657 Bad, // AryPtr - handled in v-call
duke@435 658 Bad, // KlassPtr - handled in v-call
duke@435 659
duke@435 660 Bad, // Function - handled in v-call
duke@435 661 Abio, // Abio
duke@435 662 Return_Address,// Return_Address
duke@435 663 Memory, // Memory
duke@435 664 FloatBot, // FloatTop
duke@435 665 FloatCon, // FloatCon
duke@435 666 FloatTop, // FloatBot
duke@435 667 DoubleBot, // DoubleTop
duke@435 668 DoubleCon, // DoubleCon
duke@435 669 DoubleTop, // DoubleBot
duke@435 670 Top // Bottom
duke@435 671 };
duke@435 672
duke@435 673 const Type *Type::xdual() const {
duke@435 674 // Note: the base() accessor asserts the sanity of _base.
duke@435 675 assert(dual_type[base()] != Bad, "implement with v-call");
duke@435 676 return new Type(dual_type[_base]);
duke@435 677 }
duke@435 678
duke@435 679 //------------------------------has_memory-------------------------------------
duke@435 680 bool Type::has_memory() const {
duke@435 681 Type::TYPES tx = base();
duke@435 682 if (tx == Memory) return true;
duke@435 683 if (tx == Tuple) {
duke@435 684 const TypeTuple *t = is_tuple();
duke@435 685 for (uint i=0; i < t->cnt(); i++) {
duke@435 686 tx = t->field_at(i)->base();
duke@435 687 if (tx == Memory) return true;
duke@435 688 }
duke@435 689 }
duke@435 690 return false;
duke@435 691 }
duke@435 692
duke@435 693 #ifndef PRODUCT
duke@435 694 //------------------------------dump2------------------------------------------
duke@435 695 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 696 st->print(msg[_base]);
duke@435 697 }
duke@435 698
duke@435 699 //------------------------------dump-------------------------------------------
duke@435 700 void Type::dump_on(outputStream *st) const {
duke@435 701 ResourceMark rm;
duke@435 702 Dict d(cmpkey,hashkey); // Stop recursive type dumping
duke@435 703 dump2(d,1, st);
kvn@598 704 if (is_ptr_to_narrowoop()) {
coleenp@548 705 st->print(" [narrow]");
coleenp@548 706 }
duke@435 707 }
duke@435 708
duke@435 709 //------------------------------data-------------------------------------------
duke@435 710 const char * const Type::msg[Type::lastype] = {
coleenp@548 711 "bad","control","top","int:","long:","half", "narrowoop:",
duke@435 712 "tuple:", "aryptr",
duke@435 713 "anyptr:", "rawptr:", "java:", "inst:", "ary:", "klass:",
duke@435 714 "func", "abIO", "return_address", "memory",
duke@435 715 "float_top", "ftcon:", "float",
duke@435 716 "double_top", "dblcon:", "double",
duke@435 717 "bottom"
duke@435 718 };
duke@435 719 #endif
duke@435 720
duke@435 721 //------------------------------singleton--------------------------------------
duke@435 722 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 723 // constants (Ldi nodes). Singletons are integer, float or double constants.
duke@435 724 bool Type::singleton(void) const {
duke@435 725 return _base == Top || _base == Half;
duke@435 726 }
duke@435 727
duke@435 728 //------------------------------empty------------------------------------------
duke@435 729 // TRUE if Type is a type with no values, FALSE otherwise.
duke@435 730 bool Type::empty(void) const {
duke@435 731 switch (_base) {
duke@435 732 case DoubleTop:
duke@435 733 case FloatTop:
duke@435 734 case Top:
duke@435 735 return true;
duke@435 736
duke@435 737 case Half:
duke@435 738 case Abio:
duke@435 739 case Return_Address:
duke@435 740 case Memory:
duke@435 741 case Bottom:
duke@435 742 case FloatBot:
duke@435 743 case DoubleBot:
duke@435 744 return false; // never a singleton, therefore never empty
duke@435 745 }
duke@435 746
duke@435 747 ShouldNotReachHere();
duke@435 748 return false;
duke@435 749 }
duke@435 750
duke@435 751 //------------------------------dump_stats-------------------------------------
duke@435 752 // Dump collected statistics to stderr
duke@435 753 #ifndef PRODUCT
duke@435 754 void Type::dump_stats() {
duke@435 755 tty->print("Types made: %d\n", type_dict()->Size());
duke@435 756 }
duke@435 757 #endif
duke@435 758
duke@435 759 //------------------------------typerr-----------------------------------------
duke@435 760 void Type::typerr( const Type *t ) const {
duke@435 761 #ifndef PRODUCT
duke@435 762 tty->print("\nError mixing types: ");
duke@435 763 dump();
duke@435 764 tty->print(" and ");
duke@435 765 t->dump();
duke@435 766 tty->print("\n");
duke@435 767 #endif
duke@435 768 ShouldNotReachHere();
duke@435 769 }
duke@435 770
duke@435 771 //------------------------------isa_oop_ptr------------------------------------
duke@435 772 // Return true if type is an oop pointer type. False for raw pointers.
duke@435 773 static char isa_oop_ptr_tbl[Type::lastype] = {
coleenp@548 774 0,0,0,0,0,0,0/*narrowoop*/,0/*tuple*/, 0/*ary*/,
duke@435 775 0/*anyptr*/,0/*rawptr*/,1/*OopPtr*/,1/*InstPtr*/,1/*AryPtr*/,1/*KlassPtr*/,
duke@435 776 0/*func*/,0,0/*return_address*/,0,
duke@435 777 /*floats*/0,0,0, /*doubles*/0,0,0,
duke@435 778 0
duke@435 779 };
duke@435 780 bool Type::isa_oop_ptr() const {
duke@435 781 return isa_oop_ptr_tbl[_base] != 0;
duke@435 782 }
duke@435 783
duke@435 784 //------------------------------dump_stats-------------------------------------
duke@435 785 // // Check that arrays match type enum
duke@435 786 #ifndef PRODUCT
duke@435 787 void Type::verify_lastype() {
duke@435 788 // Check that arrays match enumeration
duke@435 789 assert( Type::dual_type [Type::lastype - 1] == Type::Top, "did not update array");
duke@435 790 assert( strcmp(Type::msg [Type::lastype - 1],"bottom") == 0, "did not update array");
duke@435 791 // assert( PhiNode::tbl [Type::lastype - 1] == NULL, "did not update array");
duke@435 792 assert( Matcher::base2reg[Type::lastype - 1] == 0, "did not update array");
duke@435 793 assert( isa_oop_ptr_tbl [Type::lastype - 1] == (char)0, "did not update array");
duke@435 794 }
duke@435 795 #endif
duke@435 796
duke@435 797 //=============================================================================
duke@435 798 // Convenience common pre-built types.
duke@435 799 const TypeF *TypeF::ZERO; // Floating point zero
duke@435 800 const TypeF *TypeF::ONE; // Floating point one
duke@435 801
duke@435 802 //------------------------------make-------------------------------------------
duke@435 803 // Create a float constant
duke@435 804 const TypeF *TypeF::make(float f) {
duke@435 805 return (TypeF*)(new TypeF(f))->hashcons();
duke@435 806 }
duke@435 807
duke@435 808 //------------------------------meet-------------------------------------------
duke@435 809 // Compute the MEET of two types. It returns a new Type object.
duke@435 810 const Type *TypeF::xmeet( const Type *t ) const {
duke@435 811 // Perform a fast test for common case; meeting the same types together.
duke@435 812 if( this == t ) return this; // Meeting same type-rep?
duke@435 813
duke@435 814 // Current "this->_base" is FloatCon
duke@435 815 switch (t->base()) { // Switch on original type
duke@435 816 case AnyPtr: // Mixing with oops happens when javac
duke@435 817 case RawPtr: // reuses local variables
duke@435 818 case OopPtr:
duke@435 819 case InstPtr:
duke@435 820 case KlassPtr:
duke@435 821 case AryPtr:
kvn@728 822 case NarrowOop:
duke@435 823 case Int:
duke@435 824 case Long:
duke@435 825 case DoubleTop:
duke@435 826 case DoubleCon:
duke@435 827 case DoubleBot:
duke@435 828 case Bottom: // Ye Olde Default
duke@435 829 return Type::BOTTOM;
duke@435 830
duke@435 831 case FloatBot:
duke@435 832 return t;
duke@435 833
duke@435 834 default: // All else is a mistake
duke@435 835 typerr(t);
duke@435 836
duke@435 837 case FloatCon: // Float-constant vs Float-constant?
duke@435 838 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants?
duke@435 839 // must compare bitwise as positive zero, negative zero and NaN have
duke@435 840 // all the same representation in C++
duke@435 841 return FLOAT; // Return generic float
duke@435 842 // Equal constants
duke@435 843 case Top:
duke@435 844 case FloatTop:
duke@435 845 break; // Return the float constant
duke@435 846 }
duke@435 847 return this; // Return the float constant
duke@435 848 }
duke@435 849
duke@435 850 //------------------------------xdual------------------------------------------
duke@435 851 // Dual: symmetric
duke@435 852 const Type *TypeF::xdual() const {
duke@435 853 return this;
duke@435 854 }
duke@435 855
duke@435 856 //------------------------------eq---------------------------------------------
duke@435 857 // Structural equality check for Type representations
duke@435 858 bool TypeF::eq( const Type *t ) const {
duke@435 859 if( g_isnan(_f) ||
duke@435 860 g_isnan(t->getf()) ) {
duke@435 861 // One or both are NANs. If both are NANs return true, else false.
duke@435 862 return (g_isnan(_f) && g_isnan(t->getf()));
duke@435 863 }
duke@435 864 if (_f == t->getf()) {
duke@435 865 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 866 if (_f == 0.0) {
duke@435 867 // difference between positive and negative zero
duke@435 868 if (jint_cast(_f) != jint_cast(t->getf())) return false;
duke@435 869 }
duke@435 870 return true;
duke@435 871 }
duke@435 872 return false;
duke@435 873 }
duke@435 874
duke@435 875 //------------------------------hash-------------------------------------------
duke@435 876 // Type-specific hashing function.
duke@435 877 int TypeF::hash(void) const {
duke@435 878 return *(int*)(&_f);
duke@435 879 }
duke@435 880
duke@435 881 //------------------------------is_finite--------------------------------------
duke@435 882 // Has a finite value
duke@435 883 bool TypeF::is_finite() const {
duke@435 884 return g_isfinite(getf()) != 0;
duke@435 885 }
duke@435 886
duke@435 887 //------------------------------is_nan-----------------------------------------
duke@435 888 // Is not a number (NaN)
duke@435 889 bool TypeF::is_nan() const {
duke@435 890 return g_isnan(getf()) != 0;
duke@435 891 }
duke@435 892
duke@435 893 //------------------------------dump2------------------------------------------
duke@435 894 // Dump float constant Type
duke@435 895 #ifndef PRODUCT
duke@435 896 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 897 Type::dump2(d,depth, st);
duke@435 898 st->print("%f", _f);
duke@435 899 }
duke@435 900 #endif
duke@435 901
duke@435 902 //------------------------------singleton--------------------------------------
duke@435 903 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 904 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 905 // or a single symbol.
duke@435 906 bool TypeF::singleton(void) const {
duke@435 907 return true; // Always a singleton
duke@435 908 }
duke@435 909
duke@435 910 bool TypeF::empty(void) const {
duke@435 911 return false; // always exactly a singleton
duke@435 912 }
duke@435 913
duke@435 914 //=============================================================================
duke@435 915 // Convenience common pre-built types.
duke@435 916 const TypeD *TypeD::ZERO; // Floating point zero
duke@435 917 const TypeD *TypeD::ONE; // Floating point one
duke@435 918
duke@435 919 //------------------------------make-------------------------------------------
duke@435 920 const TypeD *TypeD::make(double d) {
duke@435 921 return (TypeD*)(new TypeD(d))->hashcons();
duke@435 922 }
duke@435 923
duke@435 924 //------------------------------meet-------------------------------------------
duke@435 925 // Compute the MEET of two types. It returns a new Type object.
duke@435 926 const Type *TypeD::xmeet( const Type *t ) const {
duke@435 927 // Perform a fast test for common case; meeting the same types together.
duke@435 928 if( this == t ) return this; // Meeting same type-rep?
duke@435 929
duke@435 930 // Current "this->_base" is DoubleCon
duke@435 931 switch (t->base()) { // Switch on original type
duke@435 932 case AnyPtr: // Mixing with oops happens when javac
duke@435 933 case RawPtr: // reuses local variables
duke@435 934 case OopPtr:
duke@435 935 case InstPtr:
duke@435 936 case KlassPtr:
duke@435 937 case AryPtr:
never@618 938 case NarrowOop:
duke@435 939 case Int:
duke@435 940 case Long:
duke@435 941 case FloatTop:
duke@435 942 case FloatCon:
duke@435 943 case FloatBot:
duke@435 944 case Bottom: // Ye Olde Default
duke@435 945 return Type::BOTTOM;
duke@435 946
duke@435 947 case DoubleBot:
duke@435 948 return t;
duke@435 949
duke@435 950 default: // All else is a mistake
duke@435 951 typerr(t);
duke@435 952
duke@435 953 case DoubleCon: // Double-constant vs Double-constant?
duke@435 954 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet)
duke@435 955 return DOUBLE; // Return generic double
duke@435 956 case Top:
duke@435 957 case DoubleTop:
duke@435 958 break;
duke@435 959 }
duke@435 960 return this; // Return the double constant
duke@435 961 }
duke@435 962
duke@435 963 //------------------------------xdual------------------------------------------
duke@435 964 // Dual: symmetric
duke@435 965 const Type *TypeD::xdual() const {
duke@435 966 return this;
duke@435 967 }
duke@435 968
duke@435 969 //------------------------------eq---------------------------------------------
duke@435 970 // Structural equality check for Type representations
duke@435 971 bool TypeD::eq( const Type *t ) const {
duke@435 972 if( g_isnan(_d) ||
duke@435 973 g_isnan(t->getd()) ) {
duke@435 974 // One or both are NANs. If both are NANs return true, else false.
duke@435 975 return (g_isnan(_d) && g_isnan(t->getd()));
duke@435 976 }
duke@435 977 if (_d == t->getd()) {
duke@435 978 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 979 if (_d == 0.0) {
duke@435 980 // difference between positive and negative zero
duke@435 981 if (jlong_cast(_d) != jlong_cast(t->getd())) return false;
duke@435 982 }
duke@435 983 return true;
duke@435 984 }
duke@435 985 return false;
duke@435 986 }
duke@435 987
duke@435 988 //------------------------------hash-------------------------------------------
duke@435 989 // Type-specific hashing function.
duke@435 990 int TypeD::hash(void) const {
duke@435 991 return *(int*)(&_d);
duke@435 992 }
duke@435 993
duke@435 994 //------------------------------is_finite--------------------------------------
duke@435 995 // Has a finite value
duke@435 996 bool TypeD::is_finite() const {
duke@435 997 return g_isfinite(getd()) != 0;
duke@435 998 }
duke@435 999
duke@435 1000 //------------------------------is_nan-----------------------------------------
duke@435 1001 // Is not a number (NaN)
duke@435 1002 bool TypeD::is_nan() const {
duke@435 1003 return g_isnan(getd()) != 0;
duke@435 1004 }
duke@435 1005
duke@435 1006 //------------------------------dump2------------------------------------------
duke@435 1007 // Dump double constant Type
duke@435 1008 #ifndef PRODUCT
duke@435 1009 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1010 Type::dump2(d,depth,st);
duke@435 1011 st->print("%f", _d);
duke@435 1012 }
duke@435 1013 #endif
duke@435 1014
duke@435 1015 //------------------------------singleton--------------------------------------
duke@435 1016 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1017 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1018 // or a single symbol.
duke@435 1019 bool TypeD::singleton(void) const {
duke@435 1020 return true; // Always a singleton
duke@435 1021 }
duke@435 1022
duke@435 1023 bool TypeD::empty(void) const {
duke@435 1024 return false; // always exactly a singleton
duke@435 1025 }
duke@435 1026
duke@435 1027 //=============================================================================
duke@435 1028 // Convience common pre-built types.
duke@435 1029 const TypeInt *TypeInt::MINUS_1;// -1
duke@435 1030 const TypeInt *TypeInt::ZERO; // 0
duke@435 1031 const TypeInt *TypeInt::ONE; // 1
duke@435 1032 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE.
duke@435 1033 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes
duke@435 1034 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1
duke@435 1035 const TypeInt *TypeInt::CC_GT; // [1] == ONE
duke@435 1036 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO
duke@435 1037 const TypeInt *TypeInt::CC_LE; // [-1,0]
duke@435 1038 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!)
duke@435 1039 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127
twisti@1059 1040 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255
duke@435 1041 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535
duke@435 1042 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767
duke@435 1043 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero
duke@435 1044 const TypeInt *TypeInt::POS1; // Positive 32-bit integers
duke@435 1045 const TypeInt *TypeInt::INT; // 32-bit integers
duke@435 1046 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
duke@435 1047
duke@435 1048 //------------------------------TypeInt----------------------------------------
duke@435 1049 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
duke@435 1050 }
duke@435 1051
duke@435 1052 //------------------------------make-------------------------------------------
duke@435 1053 const TypeInt *TypeInt::make( jint lo ) {
duke@435 1054 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
duke@435 1055 }
duke@435 1056
duke@435 1057 #define SMALLINT ((juint)3) // a value too insignificant to consider widening
duke@435 1058
duke@435 1059 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
duke@435 1060 // Certain normalizations keep us sane when comparing types.
duke@435 1061 // The 'SMALLINT' covers constants and also CC and its relatives.
duke@435 1062 assert(CC == NULL || (juint)(CC->_hi - CC->_lo) <= SMALLINT, "CC is truly small");
duke@435 1063 if (lo <= hi) {
duke@435 1064 if ((juint)(hi - lo) <= SMALLINT) w = Type::WidenMin;
duke@435 1065 if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // plain int
duke@435 1066 }
duke@435 1067 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
duke@435 1068 }
duke@435 1069
duke@435 1070 //------------------------------meet-------------------------------------------
duke@435 1071 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1072 // with reference count equal to the number of Types pointing at it.
duke@435 1073 // Caller should wrap a Types around it.
duke@435 1074 const Type *TypeInt::xmeet( const Type *t ) const {
duke@435 1075 // Perform a fast test for common case; meeting the same types together.
duke@435 1076 if( this == t ) return this; // Meeting same type?
duke@435 1077
duke@435 1078 // Currently "this->_base" is a TypeInt
duke@435 1079 switch (t->base()) { // Switch on original type
duke@435 1080 case AnyPtr: // Mixing with oops happens when javac
duke@435 1081 case RawPtr: // reuses local variables
duke@435 1082 case OopPtr:
duke@435 1083 case InstPtr:
duke@435 1084 case KlassPtr:
duke@435 1085 case AryPtr:
never@618 1086 case NarrowOop:
duke@435 1087 case Long:
duke@435 1088 case FloatTop:
duke@435 1089 case FloatCon:
duke@435 1090 case FloatBot:
duke@435 1091 case DoubleTop:
duke@435 1092 case DoubleCon:
duke@435 1093 case DoubleBot:
duke@435 1094 case Bottom: // Ye Olde Default
duke@435 1095 return Type::BOTTOM;
duke@435 1096 default: // All else is a mistake
duke@435 1097 typerr(t);
duke@435 1098 case Top: // No change
duke@435 1099 return this;
duke@435 1100 case Int: // Int vs Int?
duke@435 1101 break;
duke@435 1102 }
duke@435 1103
duke@435 1104 // Expand covered set
duke@435 1105 const TypeInt *r = t->is_int();
duke@435 1106 // (Avoid TypeInt::make, to avoid the argument normalizations it enforces.)
duke@435 1107 return (new TypeInt( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ))->hashcons();
duke@435 1108 }
duke@435 1109
duke@435 1110 //------------------------------xdual------------------------------------------
duke@435 1111 // Dual: reverse hi & lo; flip widen
duke@435 1112 const Type *TypeInt::xdual() const {
duke@435 1113 return new TypeInt(_hi,_lo,WidenMax-_widen);
duke@435 1114 }
duke@435 1115
duke@435 1116 //------------------------------widen------------------------------------------
duke@435 1117 // Only happens for optimistic top-down optimizations.
duke@435 1118 const Type *TypeInt::widen( const Type *old ) const {
duke@435 1119 // Coming from TOP or such; no widening
duke@435 1120 if( old->base() != Int ) return this;
duke@435 1121 const TypeInt *ot = old->is_int();
duke@435 1122
duke@435 1123 // If new guy is equal to old guy, no widening
duke@435 1124 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1125 return old;
duke@435 1126
duke@435 1127 // If new guy contains old, then we widened
duke@435 1128 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1129 // New contains old
duke@435 1130 // If new guy is already wider than old, no widening
duke@435 1131 if( _widen > ot->_widen ) return this;
duke@435 1132 // If old guy was a constant, do not bother
duke@435 1133 if (ot->_lo == ot->_hi) return this;
duke@435 1134 // Now widen new guy.
duke@435 1135 // Check for widening too far
duke@435 1136 if (_widen == WidenMax) {
duke@435 1137 if (min_jint < _lo && _hi < max_jint) {
duke@435 1138 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1139 // which is closer to its respective limit.
duke@435 1140 if (_lo >= 0 || // easy common case
duke@435 1141 (juint)(_lo - min_jint) >= (juint)(max_jint - _hi)) {
duke@435 1142 // Try to widen to an unsigned range type of 31 bits:
duke@435 1143 return make(_lo, max_jint, WidenMax);
duke@435 1144 } else {
duke@435 1145 return make(min_jint, _hi, WidenMax);
duke@435 1146 }
duke@435 1147 }
duke@435 1148 return TypeInt::INT;
duke@435 1149 }
duke@435 1150 // Returned widened new guy
duke@435 1151 return make(_lo,_hi,_widen+1);
duke@435 1152 }
duke@435 1153
duke@435 1154 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1155 // bottom. Return the wider fellow.
duke@435 1156 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1157 return old;
duke@435 1158
duke@435 1159 //fatal("Integer value range is not subset");
duke@435 1160 //return this;
duke@435 1161 return TypeInt::INT;
duke@435 1162 }
duke@435 1163
duke@435 1164 //------------------------------narrow---------------------------------------
duke@435 1165 // Only happens for pessimistic optimizations.
duke@435 1166 const Type *TypeInt::narrow( const Type *old ) const {
duke@435 1167 if (_lo >= _hi) return this; // already narrow enough
duke@435 1168 if (old == NULL) return this;
duke@435 1169 const TypeInt* ot = old->isa_int();
duke@435 1170 if (ot == NULL) return this;
duke@435 1171 jint olo = ot->_lo;
duke@435 1172 jint ohi = ot->_hi;
duke@435 1173
duke@435 1174 // If new guy is equal to old guy, no narrowing
duke@435 1175 if (_lo == olo && _hi == ohi) return old;
duke@435 1176
duke@435 1177 // If old guy was maximum range, allow the narrowing
duke@435 1178 if (olo == min_jint && ohi == max_jint) return this;
duke@435 1179
duke@435 1180 if (_lo < olo || _hi > ohi)
duke@435 1181 return this; // doesn't narrow; pretty wierd
duke@435 1182
duke@435 1183 // The new type narrows the old type, so look for a "death march".
duke@435 1184 // See comments on PhaseTransform::saturate.
duke@435 1185 juint nrange = _hi - _lo;
duke@435 1186 juint orange = ohi - olo;
duke@435 1187 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1188 // Use the new type only if the range shrinks a lot.
duke@435 1189 // We do not want the optimizer computing 2^31 point by point.
duke@435 1190 return old;
duke@435 1191 }
duke@435 1192
duke@435 1193 return this;
duke@435 1194 }
duke@435 1195
duke@435 1196 //-----------------------------filter------------------------------------------
duke@435 1197 const Type *TypeInt::filter( const Type *kills ) const {
duke@435 1198 const TypeInt* ft = join(kills)->isa_int();
duke@435 1199 if (ft == NULL || ft->_lo > ft->_hi)
duke@435 1200 return Type::TOP; // Canonical empty value
duke@435 1201 if (ft->_widen < this->_widen) {
duke@435 1202 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1203 // The widen bits must be allowed to run freely through the graph.
duke@435 1204 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1205 }
duke@435 1206 return ft;
duke@435 1207 }
duke@435 1208
duke@435 1209 //------------------------------eq---------------------------------------------
duke@435 1210 // Structural equality check for Type representations
duke@435 1211 bool TypeInt::eq( const Type *t ) const {
duke@435 1212 const TypeInt *r = t->is_int(); // Handy access
duke@435 1213 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1214 }
duke@435 1215
duke@435 1216 //------------------------------hash-------------------------------------------
duke@435 1217 // Type-specific hashing function.
duke@435 1218 int TypeInt::hash(void) const {
duke@435 1219 return _lo+_hi+_widen+(int)Type::Int;
duke@435 1220 }
duke@435 1221
duke@435 1222 //------------------------------is_finite--------------------------------------
duke@435 1223 // Has a finite value
duke@435 1224 bool TypeInt::is_finite() const {
duke@435 1225 return true;
duke@435 1226 }
duke@435 1227
duke@435 1228 //------------------------------dump2------------------------------------------
duke@435 1229 // Dump TypeInt
duke@435 1230 #ifndef PRODUCT
duke@435 1231 static const char* intname(char* buf, jint n) {
duke@435 1232 if (n == min_jint)
duke@435 1233 return "min";
duke@435 1234 else if (n < min_jint + 10000)
duke@435 1235 sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
duke@435 1236 else if (n == max_jint)
duke@435 1237 return "max";
duke@435 1238 else if (n > max_jint - 10000)
duke@435 1239 sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
duke@435 1240 else
duke@435 1241 sprintf(buf, INT32_FORMAT, n);
duke@435 1242 return buf;
duke@435 1243 }
duke@435 1244
duke@435 1245 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1246 char buf[40], buf2[40];
duke@435 1247 if (_lo == min_jint && _hi == max_jint)
duke@435 1248 st->print("int");
duke@435 1249 else if (is_con())
duke@435 1250 st->print("int:%s", intname(buf, get_con()));
duke@435 1251 else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
duke@435 1252 st->print("bool");
duke@435 1253 else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
duke@435 1254 st->print("byte");
duke@435 1255 else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
duke@435 1256 st->print("char");
duke@435 1257 else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
duke@435 1258 st->print("short");
duke@435 1259 else if (_hi == max_jint)
duke@435 1260 st->print("int:>=%s", intname(buf, _lo));
duke@435 1261 else if (_lo == min_jint)
duke@435 1262 st->print("int:<=%s", intname(buf, _hi));
duke@435 1263 else
duke@435 1264 st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
duke@435 1265
duke@435 1266 if (_widen != 0 && this != TypeInt::INT)
duke@435 1267 st->print(":%.*s", _widen, "wwww");
duke@435 1268 }
duke@435 1269 #endif
duke@435 1270
duke@435 1271 //------------------------------singleton--------------------------------------
duke@435 1272 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1273 // constants.
duke@435 1274 bool TypeInt::singleton(void) const {
duke@435 1275 return _lo >= _hi;
duke@435 1276 }
duke@435 1277
duke@435 1278 bool TypeInt::empty(void) const {
duke@435 1279 return _lo > _hi;
duke@435 1280 }
duke@435 1281
duke@435 1282 //=============================================================================
duke@435 1283 // Convenience common pre-built types.
duke@435 1284 const TypeLong *TypeLong::MINUS_1;// -1
duke@435 1285 const TypeLong *TypeLong::ZERO; // 0
duke@435 1286 const TypeLong *TypeLong::ONE; // 1
duke@435 1287 const TypeLong *TypeLong::POS; // >=0
duke@435 1288 const TypeLong *TypeLong::LONG; // 64-bit integers
duke@435 1289 const TypeLong *TypeLong::INT; // 32-bit subrange
duke@435 1290 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
duke@435 1291
duke@435 1292 //------------------------------TypeLong---------------------------------------
duke@435 1293 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
duke@435 1294 }
duke@435 1295
duke@435 1296 //------------------------------make-------------------------------------------
duke@435 1297 const TypeLong *TypeLong::make( jlong lo ) {
duke@435 1298 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
duke@435 1299 }
duke@435 1300
duke@435 1301 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
duke@435 1302 // Certain normalizations keep us sane when comparing types.
duke@435 1303 // The '1' covers constants.
duke@435 1304 if (lo <= hi) {
duke@435 1305 if ((julong)(hi - lo) <= SMALLINT) w = Type::WidenMin;
duke@435 1306 if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // plain long
duke@435 1307 }
duke@435 1308 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
duke@435 1309 }
duke@435 1310
duke@435 1311
duke@435 1312 //------------------------------meet-------------------------------------------
duke@435 1313 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1314 // with reference count equal to the number of Types pointing at it.
duke@435 1315 // Caller should wrap a Types around it.
duke@435 1316 const Type *TypeLong::xmeet( const Type *t ) const {
duke@435 1317 // Perform a fast test for common case; meeting the same types together.
duke@435 1318 if( this == t ) return this; // Meeting same type?
duke@435 1319
duke@435 1320 // Currently "this->_base" is a TypeLong
duke@435 1321 switch (t->base()) { // Switch on original type
duke@435 1322 case AnyPtr: // Mixing with oops happens when javac
duke@435 1323 case RawPtr: // reuses local variables
duke@435 1324 case OopPtr:
duke@435 1325 case InstPtr:
duke@435 1326 case KlassPtr:
duke@435 1327 case AryPtr:
never@618 1328 case NarrowOop:
duke@435 1329 case Int:
duke@435 1330 case FloatTop:
duke@435 1331 case FloatCon:
duke@435 1332 case FloatBot:
duke@435 1333 case DoubleTop:
duke@435 1334 case DoubleCon:
duke@435 1335 case DoubleBot:
duke@435 1336 case Bottom: // Ye Olde Default
duke@435 1337 return Type::BOTTOM;
duke@435 1338 default: // All else is a mistake
duke@435 1339 typerr(t);
duke@435 1340 case Top: // No change
duke@435 1341 return this;
duke@435 1342 case Long: // Long vs Long?
duke@435 1343 break;
duke@435 1344 }
duke@435 1345
duke@435 1346 // Expand covered set
duke@435 1347 const TypeLong *r = t->is_long(); // Turn into a TypeLong
duke@435 1348 // (Avoid TypeLong::make, to avoid the argument normalizations it enforces.)
duke@435 1349 return (new TypeLong( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ))->hashcons();
duke@435 1350 }
duke@435 1351
duke@435 1352 //------------------------------xdual------------------------------------------
duke@435 1353 // Dual: reverse hi & lo; flip widen
duke@435 1354 const Type *TypeLong::xdual() const {
duke@435 1355 return new TypeLong(_hi,_lo,WidenMax-_widen);
duke@435 1356 }
duke@435 1357
duke@435 1358 //------------------------------widen------------------------------------------
duke@435 1359 // Only happens for optimistic top-down optimizations.
duke@435 1360 const Type *TypeLong::widen( const Type *old ) const {
duke@435 1361 // Coming from TOP or such; no widening
duke@435 1362 if( old->base() != Long ) return this;
duke@435 1363 const TypeLong *ot = old->is_long();
duke@435 1364
duke@435 1365 // If new guy is equal to old guy, no widening
duke@435 1366 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1367 return old;
duke@435 1368
duke@435 1369 // If new guy contains old, then we widened
duke@435 1370 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1371 // New contains old
duke@435 1372 // If new guy is already wider than old, no widening
duke@435 1373 if( _widen > ot->_widen ) return this;
duke@435 1374 // If old guy was a constant, do not bother
duke@435 1375 if (ot->_lo == ot->_hi) return this;
duke@435 1376 // Now widen new guy.
duke@435 1377 // Check for widening too far
duke@435 1378 if (_widen == WidenMax) {
duke@435 1379 if (min_jlong < _lo && _hi < max_jlong) {
duke@435 1380 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1381 // which is closer to its respective limit.
duke@435 1382 if (_lo >= 0 || // easy common case
duke@435 1383 (julong)(_lo - min_jlong) >= (julong)(max_jlong - _hi)) {
duke@435 1384 // Try to widen to an unsigned range type of 32/63 bits:
duke@435 1385 if (_hi < max_juint)
duke@435 1386 return make(_lo, max_juint, WidenMax);
duke@435 1387 else
duke@435 1388 return make(_lo, max_jlong, WidenMax);
duke@435 1389 } else {
duke@435 1390 return make(min_jlong, _hi, WidenMax);
duke@435 1391 }
duke@435 1392 }
duke@435 1393 return TypeLong::LONG;
duke@435 1394 }
duke@435 1395 // Returned widened new guy
duke@435 1396 return make(_lo,_hi,_widen+1);
duke@435 1397 }
duke@435 1398
duke@435 1399 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1400 // bottom. Return the wider fellow.
duke@435 1401 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1402 return old;
duke@435 1403
duke@435 1404 // fatal("Long value range is not subset");
duke@435 1405 // return this;
duke@435 1406 return TypeLong::LONG;
duke@435 1407 }
duke@435 1408
duke@435 1409 //------------------------------narrow----------------------------------------
duke@435 1410 // Only happens for pessimistic optimizations.
duke@435 1411 const Type *TypeLong::narrow( const Type *old ) const {
duke@435 1412 if (_lo >= _hi) return this; // already narrow enough
duke@435 1413 if (old == NULL) return this;
duke@435 1414 const TypeLong* ot = old->isa_long();
duke@435 1415 if (ot == NULL) return this;
duke@435 1416 jlong olo = ot->_lo;
duke@435 1417 jlong ohi = ot->_hi;
duke@435 1418
duke@435 1419 // If new guy is equal to old guy, no narrowing
duke@435 1420 if (_lo == olo && _hi == ohi) return old;
duke@435 1421
duke@435 1422 // If old guy was maximum range, allow the narrowing
duke@435 1423 if (olo == min_jlong && ohi == max_jlong) return this;
duke@435 1424
duke@435 1425 if (_lo < olo || _hi > ohi)
duke@435 1426 return this; // doesn't narrow; pretty wierd
duke@435 1427
duke@435 1428 // The new type narrows the old type, so look for a "death march".
duke@435 1429 // See comments on PhaseTransform::saturate.
duke@435 1430 julong nrange = _hi - _lo;
duke@435 1431 julong orange = ohi - olo;
duke@435 1432 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1433 // Use the new type only if the range shrinks a lot.
duke@435 1434 // We do not want the optimizer computing 2^31 point by point.
duke@435 1435 return old;
duke@435 1436 }
duke@435 1437
duke@435 1438 return this;
duke@435 1439 }
duke@435 1440
duke@435 1441 //-----------------------------filter------------------------------------------
duke@435 1442 const Type *TypeLong::filter( const Type *kills ) const {
duke@435 1443 const TypeLong* ft = join(kills)->isa_long();
duke@435 1444 if (ft == NULL || ft->_lo > ft->_hi)
duke@435 1445 return Type::TOP; // Canonical empty value
duke@435 1446 if (ft->_widen < this->_widen) {
duke@435 1447 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1448 // The widen bits must be allowed to run freely through the graph.
duke@435 1449 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1450 }
duke@435 1451 return ft;
duke@435 1452 }
duke@435 1453
duke@435 1454 //------------------------------eq---------------------------------------------
duke@435 1455 // Structural equality check for Type representations
duke@435 1456 bool TypeLong::eq( const Type *t ) const {
duke@435 1457 const TypeLong *r = t->is_long(); // Handy access
duke@435 1458 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1459 }
duke@435 1460
duke@435 1461 //------------------------------hash-------------------------------------------
duke@435 1462 // Type-specific hashing function.
duke@435 1463 int TypeLong::hash(void) const {
duke@435 1464 return (int)(_lo+_hi+_widen+(int)Type::Long);
duke@435 1465 }
duke@435 1466
duke@435 1467 //------------------------------is_finite--------------------------------------
duke@435 1468 // Has a finite value
duke@435 1469 bool TypeLong::is_finite() const {
duke@435 1470 return true;
duke@435 1471 }
duke@435 1472
duke@435 1473 //------------------------------dump2------------------------------------------
duke@435 1474 // Dump TypeLong
duke@435 1475 #ifndef PRODUCT
duke@435 1476 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
duke@435 1477 if (n > x) {
duke@435 1478 if (n >= x + 10000) return NULL;
duke@435 1479 sprintf(buf, "%s+" INT64_FORMAT, xname, n - x);
duke@435 1480 } else if (n < x) {
duke@435 1481 if (n <= x - 10000) return NULL;
duke@435 1482 sprintf(buf, "%s-" INT64_FORMAT, xname, x - n);
duke@435 1483 } else {
duke@435 1484 return xname;
duke@435 1485 }
duke@435 1486 return buf;
duke@435 1487 }
duke@435 1488
duke@435 1489 static const char* longname(char* buf, jlong n) {
duke@435 1490 const char* str;
duke@435 1491 if (n == min_jlong)
duke@435 1492 return "min";
duke@435 1493 else if (n < min_jlong + 10000)
duke@435 1494 sprintf(buf, "min+" INT64_FORMAT, n - min_jlong);
duke@435 1495 else if (n == max_jlong)
duke@435 1496 return "max";
duke@435 1497 else if (n > max_jlong - 10000)
duke@435 1498 sprintf(buf, "max-" INT64_FORMAT, max_jlong - n);
duke@435 1499 else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
duke@435 1500 return str;
duke@435 1501 else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
duke@435 1502 return str;
duke@435 1503 else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
duke@435 1504 return str;
duke@435 1505 else
duke@435 1506 sprintf(buf, INT64_FORMAT, n);
duke@435 1507 return buf;
duke@435 1508 }
duke@435 1509
duke@435 1510 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1511 char buf[80], buf2[80];
duke@435 1512 if (_lo == min_jlong && _hi == max_jlong)
duke@435 1513 st->print("long");
duke@435 1514 else if (is_con())
duke@435 1515 st->print("long:%s", longname(buf, get_con()));
duke@435 1516 else if (_hi == max_jlong)
duke@435 1517 st->print("long:>=%s", longname(buf, _lo));
duke@435 1518 else if (_lo == min_jlong)
duke@435 1519 st->print("long:<=%s", longname(buf, _hi));
duke@435 1520 else
duke@435 1521 st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
duke@435 1522
duke@435 1523 if (_widen != 0 && this != TypeLong::LONG)
duke@435 1524 st->print(":%.*s", _widen, "wwww");
duke@435 1525 }
duke@435 1526 #endif
duke@435 1527
duke@435 1528 //------------------------------singleton--------------------------------------
duke@435 1529 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1530 // constants
duke@435 1531 bool TypeLong::singleton(void) const {
duke@435 1532 return _lo >= _hi;
duke@435 1533 }
duke@435 1534
duke@435 1535 bool TypeLong::empty(void) const {
duke@435 1536 return _lo > _hi;
duke@435 1537 }
duke@435 1538
duke@435 1539 //=============================================================================
duke@435 1540 // Convenience common pre-built types.
duke@435 1541 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
duke@435 1542 const TypeTuple *TypeTuple::IFFALSE;
duke@435 1543 const TypeTuple *TypeTuple::IFTRUE;
duke@435 1544 const TypeTuple *TypeTuple::IFNEITHER;
duke@435 1545 const TypeTuple *TypeTuple::LOOPBODY;
duke@435 1546 const TypeTuple *TypeTuple::MEMBAR;
duke@435 1547 const TypeTuple *TypeTuple::STORECONDITIONAL;
duke@435 1548 const TypeTuple *TypeTuple::START_I2C;
duke@435 1549 const TypeTuple *TypeTuple::INT_PAIR;
duke@435 1550 const TypeTuple *TypeTuple::LONG_PAIR;
duke@435 1551
duke@435 1552
duke@435 1553 //------------------------------make-------------------------------------------
duke@435 1554 // Make a TypeTuple from the range of a method signature
duke@435 1555 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
duke@435 1556 ciType* return_type = sig->return_type();
duke@435 1557 uint total_fields = TypeFunc::Parms + return_type->size();
duke@435 1558 const Type **field_array = fields(total_fields);
duke@435 1559 switch (return_type->basic_type()) {
duke@435 1560 case T_LONG:
duke@435 1561 field_array[TypeFunc::Parms] = TypeLong::LONG;
duke@435 1562 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1563 break;
duke@435 1564 case T_DOUBLE:
duke@435 1565 field_array[TypeFunc::Parms] = Type::DOUBLE;
duke@435 1566 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1567 break;
duke@435 1568 case T_OBJECT:
duke@435 1569 case T_ARRAY:
duke@435 1570 case T_BOOLEAN:
duke@435 1571 case T_CHAR:
duke@435 1572 case T_FLOAT:
duke@435 1573 case T_BYTE:
duke@435 1574 case T_SHORT:
duke@435 1575 case T_INT:
duke@435 1576 field_array[TypeFunc::Parms] = get_const_type(return_type);
duke@435 1577 break;
duke@435 1578 case T_VOID:
duke@435 1579 break;
duke@435 1580 default:
duke@435 1581 ShouldNotReachHere();
duke@435 1582 }
duke@435 1583 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1584 }
duke@435 1585
duke@435 1586 // Make a TypeTuple from the domain of a method signature
duke@435 1587 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
duke@435 1588 uint total_fields = TypeFunc::Parms + sig->size();
duke@435 1589
duke@435 1590 uint pos = TypeFunc::Parms;
duke@435 1591 const Type **field_array;
duke@435 1592 if (recv != NULL) {
duke@435 1593 total_fields++;
duke@435 1594 field_array = fields(total_fields);
duke@435 1595 // Use get_const_type here because it respects UseUniqueSubclasses:
duke@435 1596 field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
duke@435 1597 } else {
duke@435 1598 field_array = fields(total_fields);
duke@435 1599 }
duke@435 1600
duke@435 1601 int i = 0;
duke@435 1602 while (pos < total_fields) {
duke@435 1603 ciType* type = sig->type_at(i);
duke@435 1604
duke@435 1605 switch (type->basic_type()) {
duke@435 1606 case T_LONG:
duke@435 1607 field_array[pos++] = TypeLong::LONG;
duke@435 1608 field_array[pos++] = Type::HALF;
duke@435 1609 break;
duke@435 1610 case T_DOUBLE:
duke@435 1611 field_array[pos++] = Type::DOUBLE;
duke@435 1612 field_array[pos++] = Type::HALF;
duke@435 1613 break;
duke@435 1614 case T_OBJECT:
duke@435 1615 case T_ARRAY:
duke@435 1616 case T_BOOLEAN:
duke@435 1617 case T_CHAR:
duke@435 1618 case T_FLOAT:
duke@435 1619 case T_BYTE:
duke@435 1620 case T_SHORT:
duke@435 1621 case T_INT:
duke@435 1622 field_array[pos++] = get_const_type(type);
duke@435 1623 break;
duke@435 1624 default:
duke@435 1625 ShouldNotReachHere();
duke@435 1626 }
duke@435 1627 i++;
duke@435 1628 }
duke@435 1629 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1630 }
duke@435 1631
duke@435 1632 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
duke@435 1633 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
duke@435 1634 }
duke@435 1635
duke@435 1636 //------------------------------fields-----------------------------------------
duke@435 1637 // Subroutine call type with space allocated for argument types
duke@435 1638 const Type **TypeTuple::fields( uint arg_cnt ) {
duke@435 1639 const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
duke@435 1640 flds[TypeFunc::Control ] = Type::CONTROL;
duke@435 1641 flds[TypeFunc::I_O ] = Type::ABIO;
duke@435 1642 flds[TypeFunc::Memory ] = Type::MEMORY;
duke@435 1643 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
duke@435 1644 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
duke@435 1645
duke@435 1646 return flds;
duke@435 1647 }
duke@435 1648
duke@435 1649 //------------------------------meet-------------------------------------------
duke@435 1650 // Compute the MEET of two types. It returns a new Type object.
duke@435 1651 const Type *TypeTuple::xmeet( const Type *t ) const {
duke@435 1652 // Perform a fast test for common case; meeting the same types together.
duke@435 1653 if( this == t ) return this; // Meeting same type-rep?
duke@435 1654
duke@435 1655 // Current "this->_base" is Tuple
duke@435 1656 switch (t->base()) { // switch on original type
duke@435 1657
duke@435 1658 case Bottom: // Ye Olde Default
duke@435 1659 return t;
duke@435 1660
duke@435 1661 default: // All else is a mistake
duke@435 1662 typerr(t);
duke@435 1663
duke@435 1664 case Tuple: { // Meeting 2 signatures?
duke@435 1665 const TypeTuple *x = t->is_tuple();
duke@435 1666 assert( _cnt == x->_cnt, "" );
duke@435 1667 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1668 for( uint i=0; i<_cnt; i++ )
duke@435 1669 fields[i] = field_at(i)->xmeet( x->field_at(i) );
duke@435 1670 return TypeTuple::make(_cnt,fields);
duke@435 1671 }
duke@435 1672 case Top:
duke@435 1673 break;
duke@435 1674 }
duke@435 1675 return this; // Return the double constant
duke@435 1676 }
duke@435 1677
duke@435 1678 //------------------------------xdual------------------------------------------
duke@435 1679 // Dual: compute field-by-field dual
duke@435 1680 const Type *TypeTuple::xdual() const {
duke@435 1681 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1682 for( uint i=0; i<_cnt; i++ )
duke@435 1683 fields[i] = _fields[i]->dual();
duke@435 1684 return new TypeTuple(_cnt,fields);
duke@435 1685 }
duke@435 1686
duke@435 1687 //------------------------------eq---------------------------------------------
duke@435 1688 // Structural equality check for Type representations
duke@435 1689 bool TypeTuple::eq( const Type *t ) const {
duke@435 1690 const TypeTuple *s = (const TypeTuple *)t;
duke@435 1691 if (_cnt != s->_cnt) return false; // Unequal field counts
duke@435 1692 for (uint i = 0; i < _cnt; i++)
duke@435 1693 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION!
duke@435 1694 return false; // Missed
duke@435 1695 return true;
duke@435 1696 }
duke@435 1697
duke@435 1698 //------------------------------hash-------------------------------------------
duke@435 1699 // Type-specific hashing function.
duke@435 1700 int TypeTuple::hash(void) const {
duke@435 1701 intptr_t sum = _cnt;
duke@435 1702 for( uint i=0; i<_cnt; i++ )
duke@435 1703 sum += (intptr_t)_fields[i]; // Hash on pointers directly
duke@435 1704 return sum;
duke@435 1705 }
duke@435 1706
duke@435 1707 //------------------------------dump2------------------------------------------
duke@435 1708 // Dump signature Type
duke@435 1709 #ifndef PRODUCT
duke@435 1710 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1711 st->print("{");
duke@435 1712 if( !depth || d[this] ) { // Check for recursive print
duke@435 1713 st->print("...}");
duke@435 1714 return;
duke@435 1715 }
duke@435 1716 d.Insert((void*)this, (void*)this); // Stop recursion
duke@435 1717 if( _cnt ) {
duke@435 1718 uint i;
duke@435 1719 for( i=0; i<_cnt-1; i++ ) {
duke@435 1720 st->print("%d:", i);
duke@435 1721 _fields[i]->dump2(d, depth-1, st);
duke@435 1722 st->print(", ");
duke@435 1723 }
duke@435 1724 st->print("%d:", i);
duke@435 1725 _fields[i]->dump2(d, depth-1, st);
duke@435 1726 }
duke@435 1727 st->print("}");
duke@435 1728 }
duke@435 1729 #endif
duke@435 1730
duke@435 1731 //------------------------------singleton--------------------------------------
duke@435 1732 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1733 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1734 // or a single symbol.
duke@435 1735 bool TypeTuple::singleton(void) const {
duke@435 1736 return false; // Never a singleton
duke@435 1737 }
duke@435 1738
duke@435 1739 bool TypeTuple::empty(void) const {
duke@435 1740 for( uint i=0; i<_cnt; i++ ) {
duke@435 1741 if (_fields[i]->empty()) return true;
duke@435 1742 }
duke@435 1743 return false;
duke@435 1744 }
duke@435 1745
duke@435 1746 //=============================================================================
duke@435 1747 // Convenience common pre-built types.
duke@435 1748
duke@435 1749 inline const TypeInt* normalize_array_size(const TypeInt* size) {
duke@435 1750 // Certain normalizations keep us sane when comparing types.
duke@435 1751 // We do not want arrayOop variables to differ only by the wideness
duke@435 1752 // of their index types. Pick minimum wideness, since that is the
duke@435 1753 // forced wideness of small ranges anyway.
duke@435 1754 if (size->_widen != Type::WidenMin)
duke@435 1755 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
duke@435 1756 else
duke@435 1757 return size;
duke@435 1758 }
duke@435 1759
duke@435 1760 //------------------------------make-------------------------------------------
duke@435 1761 const TypeAry *TypeAry::make( const Type *elem, const TypeInt *size) {
coleenp@548 1762 if (UseCompressedOops && elem->isa_oopptr()) {
kvn@656 1763 elem = elem->make_narrowoop();
coleenp@548 1764 }
duke@435 1765 size = normalize_array_size(size);
duke@435 1766 return (TypeAry*)(new TypeAry(elem,size))->hashcons();
duke@435 1767 }
duke@435 1768
duke@435 1769 //------------------------------meet-------------------------------------------
duke@435 1770 // Compute the MEET of two types. It returns a new Type object.
duke@435 1771 const Type *TypeAry::xmeet( const Type *t ) const {
duke@435 1772 // Perform a fast test for common case; meeting the same types together.
duke@435 1773 if( this == t ) return this; // Meeting same type-rep?
duke@435 1774
duke@435 1775 // Current "this->_base" is Ary
duke@435 1776 switch (t->base()) { // switch on original type
duke@435 1777
duke@435 1778 case Bottom: // Ye Olde Default
duke@435 1779 return t;
duke@435 1780
duke@435 1781 default: // All else is a mistake
duke@435 1782 typerr(t);
duke@435 1783
duke@435 1784 case Array: { // Meeting 2 arrays?
duke@435 1785 const TypeAry *a = t->is_ary();
duke@435 1786 return TypeAry::make(_elem->meet(a->_elem),
duke@435 1787 _size->xmeet(a->_size)->is_int());
duke@435 1788 }
duke@435 1789 case Top:
duke@435 1790 break;
duke@435 1791 }
duke@435 1792 return this; // Return the double constant
duke@435 1793 }
duke@435 1794
duke@435 1795 //------------------------------xdual------------------------------------------
duke@435 1796 // Dual: compute field-by-field dual
duke@435 1797 const Type *TypeAry::xdual() const {
duke@435 1798 const TypeInt* size_dual = _size->dual()->is_int();
duke@435 1799 size_dual = normalize_array_size(size_dual);
duke@435 1800 return new TypeAry( _elem->dual(), size_dual);
duke@435 1801 }
duke@435 1802
duke@435 1803 //------------------------------eq---------------------------------------------
duke@435 1804 // Structural equality check for Type representations
duke@435 1805 bool TypeAry::eq( const Type *t ) const {
duke@435 1806 const TypeAry *a = (const TypeAry*)t;
duke@435 1807 return _elem == a->_elem &&
duke@435 1808 _size == a->_size;
duke@435 1809 }
duke@435 1810
duke@435 1811 //------------------------------hash-------------------------------------------
duke@435 1812 // Type-specific hashing function.
duke@435 1813 int TypeAry::hash(void) const {
duke@435 1814 return (intptr_t)_elem + (intptr_t)_size;
duke@435 1815 }
duke@435 1816
kvn@1255 1817 //----------------------interface_vs_oop---------------------------------------
kvn@1255 1818 #ifdef ASSERT
kvn@1255 1819 bool TypeAry::interface_vs_oop(const Type *t) const {
kvn@1255 1820 const TypeAry* t_ary = t->is_ary();
kvn@1255 1821 if (t_ary) {
kvn@1255 1822 return _elem->interface_vs_oop(t_ary->_elem);
kvn@1255 1823 }
kvn@1255 1824 return false;
kvn@1255 1825 }
kvn@1255 1826 #endif
kvn@1255 1827
duke@435 1828 //------------------------------dump2------------------------------------------
duke@435 1829 #ifndef PRODUCT
duke@435 1830 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1831 _elem->dump2(d, depth, st);
duke@435 1832 st->print("[");
duke@435 1833 _size->dump2(d, depth, st);
duke@435 1834 st->print("]");
duke@435 1835 }
duke@435 1836 #endif
duke@435 1837
duke@435 1838 //------------------------------singleton--------------------------------------
duke@435 1839 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1840 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1841 // or a single symbol.
duke@435 1842 bool TypeAry::singleton(void) const {
duke@435 1843 return false; // Never a singleton
duke@435 1844 }
duke@435 1845
duke@435 1846 bool TypeAry::empty(void) const {
duke@435 1847 return _elem->empty() || _size->empty();
duke@435 1848 }
duke@435 1849
duke@435 1850 //--------------------------ary_must_be_exact----------------------------------
duke@435 1851 bool TypeAry::ary_must_be_exact() const {
duke@435 1852 if (!UseExactTypes) return false;
duke@435 1853 // This logic looks at the element type of an array, and returns true
duke@435 1854 // if the element type is either a primitive or a final instance class.
duke@435 1855 // In such cases, an array built on this ary must have no subclasses.
duke@435 1856 if (_elem == BOTTOM) return false; // general array not exact
duke@435 1857 if (_elem == TOP ) return false; // inverted general array not exact
coleenp@548 1858 const TypeOopPtr* toop = NULL;
kvn@656 1859 if (UseCompressedOops && _elem->isa_narrowoop()) {
kvn@656 1860 toop = _elem->make_ptr()->isa_oopptr();
coleenp@548 1861 } else {
coleenp@548 1862 toop = _elem->isa_oopptr();
coleenp@548 1863 }
duke@435 1864 if (!toop) return true; // a primitive type, like int
duke@435 1865 ciKlass* tklass = toop->klass();
duke@435 1866 if (tklass == NULL) return false; // unloaded class
duke@435 1867 if (!tklass->is_loaded()) return false; // unloaded class
coleenp@548 1868 const TypeInstPtr* tinst;
coleenp@548 1869 if (_elem->isa_narrowoop())
kvn@656 1870 tinst = _elem->make_ptr()->isa_instptr();
coleenp@548 1871 else
coleenp@548 1872 tinst = _elem->isa_instptr();
kvn@656 1873 if (tinst)
kvn@656 1874 return tklass->as_instance_klass()->is_final();
coleenp@548 1875 const TypeAryPtr* tap;
coleenp@548 1876 if (_elem->isa_narrowoop())
kvn@656 1877 tap = _elem->make_ptr()->isa_aryptr();
coleenp@548 1878 else
coleenp@548 1879 tap = _elem->isa_aryptr();
kvn@656 1880 if (tap)
kvn@656 1881 return tap->ary()->ary_must_be_exact();
duke@435 1882 return false;
duke@435 1883 }
duke@435 1884
duke@435 1885 //=============================================================================
duke@435 1886 // Convenience common pre-built types.
duke@435 1887 const TypePtr *TypePtr::NULL_PTR;
duke@435 1888 const TypePtr *TypePtr::NOTNULL;
duke@435 1889 const TypePtr *TypePtr::BOTTOM;
duke@435 1890
duke@435 1891 //------------------------------meet-------------------------------------------
duke@435 1892 // Meet over the PTR enum
duke@435 1893 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
duke@435 1894 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
duke@435 1895 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
duke@435 1896 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
duke@435 1897 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
duke@435 1898 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
duke@435 1899 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
duke@435 1900 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
duke@435 1901 };
duke@435 1902
duke@435 1903 //------------------------------make-------------------------------------------
duke@435 1904 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
duke@435 1905 return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
duke@435 1906 }
duke@435 1907
duke@435 1908 //------------------------------cast_to_ptr_type-------------------------------
duke@435 1909 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
duke@435 1910 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
duke@435 1911 if( ptr == _ptr ) return this;
duke@435 1912 return make(_base, ptr, _offset);
duke@435 1913 }
duke@435 1914
duke@435 1915 //------------------------------get_con----------------------------------------
duke@435 1916 intptr_t TypePtr::get_con() const {
duke@435 1917 assert( _ptr == Null, "" );
duke@435 1918 return _offset;
duke@435 1919 }
duke@435 1920
duke@435 1921 //------------------------------meet-------------------------------------------
duke@435 1922 // Compute the MEET of two types. It returns a new Type object.
duke@435 1923 const Type *TypePtr::xmeet( const Type *t ) const {
duke@435 1924 // Perform a fast test for common case; meeting the same types together.
duke@435 1925 if( this == t ) return this; // Meeting same type-rep?
duke@435 1926
duke@435 1927 // Current "this->_base" is AnyPtr
duke@435 1928 switch (t->base()) { // switch on original type
duke@435 1929 case Int: // Mixing ints & oops happens when javac
duke@435 1930 case Long: // reuses local variables
duke@435 1931 case FloatTop:
duke@435 1932 case FloatCon:
duke@435 1933 case FloatBot:
duke@435 1934 case DoubleTop:
duke@435 1935 case DoubleCon:
duke@435 1936 case DoubleBot:
coleenp@548 1937 case NarrowOop:
duke@435 1938 case Bottom: // Ye Olde Default
duke@435 1939 return Type::BOTTOM;
duke@435 1940 case Top:
duke@435 1941 return this;
duke@435 1942
duke@435 1943 case AnyPtr: { // Meeting to AnyPtrs
duke@435 1944 const TypePtr *tp = t->is_ptr();
duke@435 1945 return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
duke@435 1946 }
duke@435 1947 case RawPtr: // For these, flip the call around to cut down
duke@435 1948 case OopPtr:
duke@435 1949 case InstPtr: // on the cases I have to handle.
duke@435 1950 case KlassPtr:
duke@435 1951 case AryPtr:
duke@435 1952 return t->xmeet(this); // Call in reverse direction
duke@435 1953 default: // All else is a mistake
duke@435 1954 typerr(t);
duke@435 1955
duke@435 1956 }
duke@435 1957 return this;
duke@435 1958 }
duke@435 1959
duke@435 1960 //------------------------------meet_offset------------------------------------
duke@435 1961 int TypePtr::meet_offset( int offset ) const {
duke@435 1962 // Either is 'TOP' offset? Return the other offset!
duke@435 1963 if( _offset == OffsetTop ) return offset;
duke@435 1964 if( offset == OffsetTop ) return _offset;
duke@435 1965 // If either is different, return 'BOTTOM' offset
duke@435 1966 if( _offset != offset ) return OffsetBot;
duke@435 1967 return _offset;
duke@435 1968 }
duke@435 1969
duke@435 1970 //------------------------------dual_offset------------------------------------
duke@435 1971 int TypePtr::dual_offset( ) const {
duke@435 1972 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
duke@435 1973 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
duke@435 1974 return _offset; // Map everything else into self
duke@435 1975 }
duke@435 1976
duke@435 1977 //------------------------------xdual------------------------------------------
duke@435 1978 // Dual: compute field-by-field dual
duke@435 1979 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
duke@435 1980 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
duke@435 1981 };
duke@435 1982 const Type *TypePtr::xdual() const {
duke@435 1983 return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
duke@435 1984 }
duke@435 1985
kvn@741 1986 //------------------------------xadd_offset------------------------------------
kvn@741 1987 int TypePtr::xadd_offset( intptr_t offset ) const {
kvn@741 1988 // Adding to 'TOP' offset? Return 'TOP'!
kvn@741 1989 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
kvn@741 1990 // Adding to 'BOTTOM' offset? Return 'BOTTOM'!
kvn@741 1991 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
kvn@741 1992 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
kvn@741 1993 offset += (intptr_t)_offset;
kvn@741 1994 if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
kvn@741 1995
kvn@741 1996 // assert( _offset >= 0 && _offset+offset >= 0, "" );
kvn@741 1997 // It is possible to construct a negative offset during PhaseCCP
kvn@741 1998
kvn@741 1999 return (int)offset; // Sum valid offsets
kvn@741 2000 }
kvn@741 2001
duke@435 2002 //------------------------------add_offset-------------------------------------
kvn@741 2003 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
kvn@741 2004 return make( AnyPtr, _ptr, xadd_offset(offset) );
duke@435 2005 }
duke@435 2006
duke@435 2007 //------------------------------eq---------------------------------------------
duke@435 2008 // Structural equality check for Type representations
duke@435 2009 bool TypePtr::eq( const Type *t ) const {
duke@435 2010 const TypePtr *a = (const TypePtr*)t;
duke@435 2011 return _ptr == a->ptr() && _offset == a->offset();
duke@435 2012 }
duke@435 2013
duke@435 2014 //------------------------------hash-------------------------------------------
duke@435 2015 // Type-specific hashing function.
duke@435 2016 int TypePtr::hash(void) const {
duke@435 2017 return _ptr + _offset;
duke@435 2018 }
duke@435 2019
duke@435 2020 //------------------------------dump2------------------------------------------
duke@435 2021 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
duke@435 2022 "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
duke@435 2023 };
duke@435 2024
duke@435 2025 #ifndef PRODUCT
duke@435 2026 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2027 if( _ptr == Null ) st->print("NULL");
duke@435 2028 else st->print("%s *", ptr_msg[_ptr]);
duke@435 2029 if( _offset == OffsetTop ) st->print("+top");
duke@435 2030 else if( _offset == OffsetBot ) st->print("+bot");
duke@435 2031 else if( _offset ) st->print("+%d", _offset);
duke@435 2032 }
duke@435 2033 #endif
duke@435 2034
duke@435 2035 //------------------------------singleton--------------------------------------
duke@435 2036 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2037 // constants
duke@435 2038 bool TypePtr::singleton(void) const {
duke@435 2039 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2040 return (_offset != OffsetBot) && !below_centerline(_ptr);
duke@435 2041 }
duke@435 2042
duke@435 2043 bool TypePtr::empty(void) const {
duke@435 2044 return (_offset == OffsetTop) || above_centerline(_ptr);
duke@435 2045 }
duke@435 2046
duke@435 2047 //=============================================================================
duke@435 2048 // Convenience common pre-built types.
duke@435 2049 const TypeRawPtr *TypeRawPtr::BOTTOM;
duke@435 2050 const TypeRawPtr *TypeRawPtr::NOTNULL;
duke@435 2051
duke@435 2052 //------------------------------make-------------------------------------------
duke@435 2053 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
duke@435 2054 assert( ptr != Constant, "what is the constant?" );
duke@435 2055 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2056 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
duke@435 2057 }
duke@435 2058
duke@435 2059 const TypeRawPtr *TypeRawPtr::make( address bits ) {
duke@435 2060 assert( bits, "Use TypePtr for NULL" );
duke@435 2061 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
duke@435 2062 }
duke@435 2063
duke@435 2064 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2065 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2066 assert( ptr != Constant, "what is the constant?" );
duke@435 2067 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2068 assert( _bits==0, "Why cast a constant address?");
duke@435 2069 if( ptr == _ptr ) return this;
duke@435 2070 return make(ptr);
duke@435 2071 }
duke@435 2072
duke@435 2073 //------------------------------get_con----------------------------------------
duke@435 2074 intptr_t TypeRawPtr::get_con() const {
duke@435 2075 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2076 return (intptr_t)_bits;
duke@435 2077 }
duke@435 2078
duke@435 2079 //------------------------------meet-------------------------------------------
duke@435 2080 // Compute the MEET of two types. It returns a new Type object.
duke@435 2081 const Type *TypeRawPtr::xmeet( const Type *t ) const {
duke@435 2082 // Perform a fast test for common case; meeting the same types together.
duke@435 2083 if( this == t ) return this; // Meeting same type-rep?
duke@435 2084
duke@435 2085 // Current "this->_base" is RawPtr
duke@435 2086 switch( t->base() ) { // switch on original type
duke@435 2087 case Bottom: // Ye Olde Default
duke@435 2088 return t;
duke@435 2089 case Top:
duke@435 2090 return this;
duke@435 2091 case AnyPtr: // Meeting to AnyPtrs
duke@435 2092 break;
duke@435 2093 case RawPtr: { // might be top, bot, any/not or constant
duke@435 2094 enum PTR tptr = t->is_ptr()->ptr();
duke@435 2095 enum PTR ptr = meet_ptr( tptr );
duke@435 2096 if( ptr == Constant ) { // Cannot be equal constants, so...
duke@435 2097 if( tptr == Constant && _ptr != Constant) return t;
duke@435 2098 if( _ptr == Constant && tptr != Constant) return this;
duke@435 2099 ptr = NotNull; // Fall down in lattice
duke@435 2100 }
duke@435 2101 return make( ptr );
duke@435 2102 }
duke@435 2103
duke@435 2104 case OopPtr:
duke@435 2105 case InstPtr:
duke@435 2106 case KlassPtr:
duke@435 2107 case AryPtr:
duke@435 2108 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2109 default: // All else is a mistake
duke@435 2110 typerr(t);
duke@435 2111 }
duke@435 2112
duke@435 2113 // Found an AnyPtr type vs self-RawPtr type
duke@435 2114 const TypePtr *tp = t->is_ptr();
duke@435 2115 switch (tp->ptr()) {
duke@435 2116 case TypePtr::TopPTR: return this;
duke@435 2117 case TypePtr::BotPTR: return t;
duke@435 2118 case TypePtr::Null:
duke@435 2119 if( _ptr == TypePtr::TopPTR ) return t;
duke@435 2120 return TypeRawPtr::BOTTOM;
duke@435 2121 case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
duke@435 2122 case TypePtr::AnyNull:
duke@435 2123 if( _ptr == TypePtr::Constant) return this;
duke@435 2124 return make( meet_ptr(TypePtr::AnyNull) );
duke@435 2125 default: ShouldNotReachHere();
duke@435 2126 }
duke@435 2127 return this;
duke@435 2128 }
duke@435 2129
duke@435 2130 //------------------------------xdual------------------------------------------
duke@435 2131 // Dual: compute field-by-field dual
duke@435 2132 const Type *TypeRawPtr::xdual() const {
duke@435 2133 return new TypeRawPtr( dual_ptr(), _bits );
duke@435 2134 }
duke@435 2135
duke@435 2136 //------------------------------add_offset-------------------------------------
kvn@741 2137 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
duke@435 2138 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
duke@435 2139 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
duke@435 2140 if( offset == 0 ) return this; // No change
duke@435 2141 switch (_ptr) {
duke@435 2142 case TypePtr::TopPTR:
duke@435 2143 case TypePtr::BotPTR:
duke@435 2144 case TypePtr::NotNull:
duke@435 2145 return this;
duke@435 2146 case TypePtr::Null:
duke@435 2147 case TypePtr::Constant:
duke@435 2148 return make( _bits+offset );
duke@435 2149 default: ShouldNotReachHere();
duke@435 2150 }
duke@435 2151 return NULL; // Lint noise
duke@435 2152 }
duke@435 2153
duke@435 2154 //------------------------------eq---------------------------------------------
duke@435 2155 // Structural equality check for Type representations
duke@435 2156 bool TypeRawPtr::eq( const Type *t ) const {
duke@435 2157 const TypeRawPtr *a = (const TypeRawPtr*)t;
duke@435 2158 return _bits == a->_bits && TypePtr::eq(t);
duke@435 2159 }
duke@435 2160
duke@435 2161 //------------------------------hash-------------------------------------------
duke@435 2162 // Type-specific hashing function.
duke@435 2163 int TypeRawPtr::hash(void) const {
duke@435 2164 return (intptr_t)_bits + TypePtr::hash();
duke@435 2165 }
duke@435 2166
duke@435 2167 //------------------------------dump2------------------------------------------
duke@435 2168 #ifndef PRODUCT
duke@435 2169 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2170 if( _ptr == Constant )
duke@435 2171 st->print(INTPTR_FORMAT, _bits);
duke@435 2172 else
duke@435 2173 st->print("rawptr:%s", ptr_msg[_ptr]);
duke@435 2174 }
duke@435 2175 #endif
duke@435 2176
duke@435 2177 //=============================================================================
duke@435 2178 // Convenience common pre-built type.
duke@435 2179 const TypeOopPtr *TypeOopPtr::BOTTOM;
duke@435 2180
kvn@598 2181 //------------------------------TypeOopPtr-------------------------------------
kvn@598 2182 TypeOopPtr::TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id )
kvn@598 2183 : TypePtr(t, ptr, offset),
kvn@598 2184 _const_oop(o), _klass(k),
kvn@598 2185 _klass_is_exact(xk),
kvn@598 2186 _is_ptr_to_narrowoop(false),
kvn@598 2187 _instance_id(instance_id) {
kvn@598 2188 #ifdef _LP64
kvn@598 2189 if (UseCompressedOops && _offset != 0) {
kvn@598 2190 if (klass() == NULL) {
kvn@598 2191 assert(this->isa_aryptr(), "only arrays without klass");
kvn@598 2192 _is_ptr_to_narrowoop = true;
kvn@598 2193 } else if (_offset == oopDesc::klass_offset_in_bytes()) {
kvn@598 2194 _is_ptr_to_narrowoop = true;
kvn@598 2195 } else if (this->isa_aryptr()) {
kvn@598 2196 _is_ptr_to_narrowoop = (klass()->is_obj_array_klass() &&
kvn@598 2197 _offset != arrayOopDesc::length_offset_in_bytes());
kvn@598 2198 } else if (klass() == ciEnv::current()->Class_klass() &&
kvn@598 2199 (_offset == java_lang_Class::klass_offset_in_bytes() ||
kvn@598 2200 _offset == java_lang_Class::array_klass_offset_in_bytes())) {
kvn@598 2201 // Special hidden fields from the Class.
kvn@598 2202 assert(this->isa_instptr(), "must be an instance ptr.");
kvn@598 2203 _is_ptr_to_narrowoop = true;
kvn@598 2204 } else if (klass()->is_instance_klass()) {
kvn@598 2205 ciInstanceKlass* ik = klass()->as_instance_klass();
kvn@598 2206 ciField* field = NULL;
kvn@598 2207 if (this->isa_klassptr()) {
kvn@598 2208 // Perm objects don't use compressed references, except for
kvn@598 2209 // static fields which are currently compressed.
kvn@598 2210 field = ik->get_field_by_offset(_offset, true);
kvn@598 2211 if (field != NULL) {
kvn@598 2212 BasicType basic_elem_type = field->layout_type();
kvn@598 2213 _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
kvn@598 2214 basic_elem_type == T_ARRAY);
kvn@598 2215 }
kvn@598 2216 } else if (_offset == OffsetBot || _offset == OffsetTop) {
kvn@598 2217 // unsafe access
kvn@598 2218 _is_ptr_to_narrowoop = true;
kvn@598 2219 } else { // exclude unsafe ops
kvn@598 2220 assert(this->isa_instptr(), "must be an instance ptr.");
kvn@598 2221 // Field which contains a compressed oop references.
kvn@598 2222 field = ik->get_field_by_offset(_offset, false);
kvn@598 2223 if (field != NULL) {
kvn@598 2224 BasicType basic_elem_type = field->layout_type();
kvn@598 2225 _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
kvn@598 2226 basic_elem_type == T_ARRAY);
kvn@598 2227 } else if (klass()->equals(ciEnv::current()->Object_klass())) {
kvn@598 2228 // Compile::find_alias_type() cast exactness on all types to verify
kvn@598 2229 // that it does not affect alias type.
kvn@598 2230 _is_ptr_to_narrowoop = true;
kvn@598 2231 } else {
kvn@598 2232 // Type for the copy start in LibraryCallKit::inline_native_clone().
kvn@598 2233 assert(!klass_is_exact(), "only non-exact klass");
kvn@598 2234 _is_ptr_to_narrowoop = true;
kvn@598 2235 }
kvn@598 2236 }
kvn@598 2237 }
kvn@598 2238 }
kvn@598 2239 #endif
kvn@598 2240 }
kvn@598 2241
duke@435 2242 //------------------------------make-------------------------------------------
duke@435 2243 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
kvn@1393 2244 int offset, int instance_id) {
duke@435 2245 assert(ptr != Constant, "no constant generic pointers");
duke@435 2246 ciKlass* k = ciKlassKlass::make();
duke@435 2247 bool xk = false;
duke@435 2248 ciObject* o = NULL;
kvn@1393 2249 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id))->hashcons();
duke@435 2250 }
duke@435 2251
duke@435 2252
duke@435 2253 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2254 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2255 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
duke@435 2256 if( ptr == _ptr ) return this;
kvn@1427 2257 return make(ptr, _offset, _instance_id);
duke@435 2258 }
duke@435 2259
kvn@682 2260 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2261 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
duke@435 2262 // There are no instances of a general oop.
duke@435 2263 // Return self unchanged.
duke@435 2264 return this;
duke@435 2265 }
duke@435 2266
duke@435 2267 //-----------------------------cast_to_exactness-------------------------------
duke@435 2268 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2269 // There is no such thing as an exact general oop.
duke@435 2270 // Return self unchanged.
duke@435 2271 return this;
duke@435 2272 }
duke@435 2273
duke@435 2274
duke@435 2275 //------------------------------as_klass_type----------------------------------
duke@435 2276 // Return the klass type corresponding to this instance or array type.
duke@435 2277 // It is the type that is loaded from an object of this type.
duke@435 2278 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
duke@435 2279 ciKlass* k = klass();
duke@435 2280 bool xk = klass_is_exact();
duke@435 2281 if (k == NULL || !k->is_java_klass())
duke@435 2282 return TypeKlassPtr::OBJECT;
duke@435 2283 else
duke@435 2284 return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
duke@435 2285 }
duke@435 2286
duke@435 2287
duke@435 2288 //------------------------------meet-------------------------------------------
duke@435 2289 // Compute the MEET of two types. It returns a new Type object.
duke@435 2290 const Type *TypeOopPtr::xmeet( const Type *t ) const {
duke@435 2291 // Perform a fast test for common case; meeting the same types together.
duke@435 2292 if( this == t ) return this; // Meeting same type-rep?
duke@435 2293
duke@435 2294 // Current "this->_base" is OopPtr
duke@435 2295 switch (t->base()) { // switch on original type
duke@435 2296
duke@435 2297 case Int: // Mixing ints & oops happens when javac
duke@435 2298 case Long: // reuses local variables
duke@435 2299 case FloatTop:
duke@435 2300 case FloatCon:
duke@435 2301 case FloatBot:
duke@435 2302 case DoubleTop:
duke@435 2303 case DoubleCon:
duke@435 2304 case DoubleBot:
kvn@728 2305 case NarrowOop:
duke@435 2306 case Bottom: // Ye Olde Default
duke@435 2307 return Type::BOTTOM;
duke@435 2308 case Top:
duke@435 2309 return this;
duke@435 2310
duke@435 2311 default: // All else is a mistake
duke@435 2312 typerr(t);
duke@435 2313
duke@435 2314 case RawPtr:
duke@435 2315 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2316
duke@435 2317 case AnyPtr: {
duke@435 2318 // Found an AnyPtr type vs self-OopPtr type
duke@435 2319 const TypePtr *tp = t->is_ptr();
duke@435 2320 int offset = meet_offset(tp->offset());
duke@435 2321 PTR ptr = meet_ptr(tp->ptr());
duke@435 2322 switch (tp->ptr()) {
duke@435 2323 case Null:
duke@435 2324 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2325 // else fall through:
duke@435 2326 case TopPTR:
kvn@1427 2327 case AnyNull: {
kvn@1427 2328 int instance_id = meet_instance_id(InstanceTop);
kvn@1427 2329 return make(ptr, offset, instance_id);
kvn@1427 2330 }
duke@435 2331 case BotPTR:
duke@435 2332 case NotNull:
duke@435 2333 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2334 default: typerr(t);
duke@435 2335 }
duke@435 2336 }
duke@435 2337
duke@435 2338 case OopPtr: { // Meeting to other OopPtrs
duke@435 2339 const TypeOopPtr *tp = t->is_oopptr();
kvn@1393 2340 int instance_id = meet_instance_id(tp->instance_id());
kvn@1393 2341 return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id );
duke@435 2342 }
duke@435 2343
duke@435 2344 case InstPtr: // For these, flip the call around to cut down
duke@435 2345 case KlassPtr: // on the cases I have to handle.
duke@435 2346 case AryPtr:
duke@435 2347 return t->xmeet(this); // Call in reverse direction
duke@435 2348
duke@435 2349 } // End of switch
duke@435 2350 return this; // Return the double constant
duke@435 2351 }
duke@435 2352
duke@435 2353
duke@435 2354 //------------------------------xdual------------------------------------------
duke@435 2355 // Dual of a pure heap pointer. No relevant klass or oop information.
duke@435 2356 const Type *TypeOopPtr::xdual() const {
duke@435 2357 assert(klass() == ciKlassKlass::make(), "no klasses here");
duke@435 2358 assert(const_oop() == NULL, "no constants here");
kvn@658 2359 return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id() );
duke@435 2360 }
duke@435 2361
duke@435 2362 //--------------------------make_from_klass_common-----------------------------
duke@435 2363 // Computes the element-type given a klass.
duke@435 2364 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
duke@435 2365 assert(klass->is_java_klass(), "must be java language klass");
duke@435 2366 if (klass->is_instance_klass()) {
duke@435 2367 Compile* C = Compile::current();
duke@435 2368 Dependencies* deps = C->dependencies();
duke@435 2369 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
duke@435 2370 // Element is an instance
duke@435 2371 bool klass_is_exact = false;
duke@435 2372 if (klass->is_loaded()) {
duke@435 2373 // Try to set klass_is_exact.
duke@435 2374 ciInstanceKlass* ik = klass->as_instance_klass();
duke@435 2375 klass_is_exact = ik->is_final();
duke@435 2376 if (!klass_is_exact && klass_change
duke@435 2377 && deps != NULL && UseUniqueSubclasses) {
duke@435 2378 ciInstanceKlass* sub = ik->unique_concrete_subklass();
duke@435 2379 if (sub != NULL) {
duke@435 2380 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
duke@435 2381 klass = ik = sub;
duke@435 2382 klass_is_exact = sub->is_final();
duke@435 2383 }
duke@435 2384 }
duke@435 2385 if (!klass_is_exact && try_for_exact
duke@435 2386 && deps != NULL && UseExactTypes) {
duke@435 2387 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 2388 // Add a dependence; if concrete subclass added we need to recompile
duke@435 2389 deps->assert_leaf_type(ik);
duke@435 2390 klass_is_exact = true;
duke@435 2391 }
duke@435 2392 }
duke@435 2393 }
duke@435 2394 return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
duke@435 2395 } else if (klass->is_obj_array_klass()) {
duke@435 2396 // Element is an object array. Recursively call ourself.
duke@435 2397 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
duke@435 2398 bool xk = etype->klass_is_exact();
duke@435 2399 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2400 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2401 // are all not-null. This is not true in generally, as code can
duke@435 2402 // slam NULLs down in the subarrays.
duke@435 2403 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
duke@435 2404 return arr;
duke@435 2405 } else if (klass->is_type_array_klass()) {
duke@435 2406 // Element is an typeArray
duke@435 2407 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2408 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2409 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2410 // is not-null. That was not true in general.
duke@435 2411 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
duke@435 2412 return arr;
duke@435 2413 } else {
duke@435 2414 ShouldNotReachHere();
duke@435 2415 return NULL;
duke@435 2416 }
duke@435 2417 }
duke@435 2418
duke@435 2419 //------------------------------make_from_constant-----------------------------
duke@435 2420 // Make a java pointer from an oop constant
jrose@1424 2421 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
duke@435 2422 if (o->is_method_data() || o->is_method()) {
duke@435 2423 // Treat much like a typeArray of bytes, like below, but fake the type...
duke@435 2424 const Type* etype = (Type*)get_const_basic_type(T_BYTE);
duke@435 2425 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2426 ciKlass *klass = ciTypeArrayKlass::make((BasicType) T_BYTE);
jrose@1424 2427 assert(o->can_be_constant(), "method data oops should be tenured");
duke@435 2428 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
duke@435 2429 return arr;
duke@435 2430 } else {
duke@435 2431 assert(o->is_java_object(), "must be java language object");
duke@435 2432 assert(!o->is_null_object(), "null object not yet handled here.");
duke@435 2433 ciKlass *klass = o->klass();
duke@435 2434 if (klass->is_instance_klass()) {
duke@435 2435 // Element is an instance
jrose@1424 2436 if (require_constant) {
jrose@1424 2437 if (!o->can_be_constant()) return NULL;
jrose@1424 2438 } else if (!o->should_be_constant()) {
duke@435 2439 return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
duke@435 2440 }
duke@435 2441 return TypeInstPtr::make(o);
duke@435 2442 } else if (klass->is_obj_array_klass()) {
duke@435 2443 // Element is an object array. Recursively call ourself.
duke@435 2444 const Type *etype =
duke@435 2445 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
duke@435 2446 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
duke@435 2447 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2448 // are all not-null. This is not true in generally, as code can
duke@435 2449 // slam NULLs down in the subarrays.
jrose@1424 2450 if (require_constant) {
jrose@1424 2451 if (!o->can_be_constant()) return NULL;
jrose@1424 2452 } else if (!o->should_be_constant()) {
duke@435 2453 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
duke@435 2454 }
duke@435 2455 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
duke@435 2456 return arr;
duke@435 2457 } else if (klass->is_type_array_klass()) {
duke@435 2458 // Element is an typeArray
duke@435 2459 const Type* etype =
duke@435 2460 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2461 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
duke@435 2462 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2463 // is not-null. That was not true in general.
jrose@1424 2464 if (require_constant) {
jrose@1424 2465 if (!o->can_be_constant()) return NULL;
jrose@1424 2466 } else if (!o->should_be_constant()) {
duke@435 2467 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
duke@435 2468 }
duke@435 2469 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
duke@435 2470 return arr;
duke@435 2471 }
duke@435 2472 }
duke@435 2473
duke@435 2474 ShouldNotReachHere();
duke@435 2475 return NULL;
duke@435 2476 }
duke@435 2477
duke@435 2478 //------------------------------get_con----------------------------------------
duke@435 2479 intptr_t TypeOopPtr::get_con() const {
duke@435 2480 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2481 assert( _offset >= 0, "" );
duke@435 2482
duke@435 2483 if (_offset != 0) {
duke@435 2484 // After being ported to the compiler interface, the compiler no longer
duke@435 2485 // directly manipulates the addresses of oops. Rather, it only has a pointer
duke@435 2486 // to a handle at compile time. This handle is embedded in the generated
duke@435 2487 // code and dereferenced at the time the nmethod is made. Until that time,
duke@435 2488 // it is not reasonable to do arithmetic with the addresses of oops (we don't
duke@435 2489 // have access to the addresses!). This does not seem to currently happen,
twisti@1040 2490 // but this assertion here is to help prevent its occurence.
duke@435 2491 tty->print_cr("Found oop constant with non-zero offset");
duke@435 2492 ShouldNotReachHere();
duke@435 2493 }
duke@435 2494
jrose@1424 2495 return (intptr_t)const_oop()->constant_encoding();
duke@435 2496 }
duke@435 2497
duke@435 2498
duke@435 2499 //-----------------------------filter------------------------------------------
duke@435 2500 // Do not allow interface-vs.-noninterface joins to collapse to top.
duke@435 2501 const Type *TypeOopPtr::filter( const Type *kills ) const {
duke@435 2502
duke@435 2503 const Type* ft = join(kills);
duke@435 2504 const TypeInstPtr* ftip = ft->isa_instptr();
duke@435 2505 const TypeInstPtr* ktip = kills->isa_instptr();
never@990 2506 const TypeKlassPtr* ftkp = ft->isa_klassptr();
never@990 2507 const TypeKlassPtr* ktkp = kills->isa_klassptr();
duke@435 2508
duke@435 2509 if (ft->empty()) {
duke@435 2510 // Check for evil case of 'this' being a class and 'kills' expecting an
duke@435 2511 // interface. This can happen because the bytecodes do not contain
duke@435 2512 // enough type info to distinguish a Java-level interface variable
duke@435 2513 // from a Java-level object variable. If we meet 2 classes which
duke@435 2514 // both implement interface I, but their meet is at 'j/l/O' which
duke@435 2515 // doesn't implement I, we have no way to tell if the result should
duke@435 2516 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
duke@435 2517 // into a Phi which "knows" it's an Interface type we'll have to
duke@435 2518 // uplift the type.
duke@435 2519 if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
duke@435 2520 return kills; // Uplift to interface
never@990 2521 if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
never@990 2522 return kills; // Uplift to interface
duke@435 2523
duke@435 2524 return Type::TOP; // Canonical empty value
duke@435 2525 }
duke@435 2526
duke@435 2527 // If we have an interface-typed Phi or cast and we narrow to a class type,
duke@435 2528 // the join should report back the class. However, if we have a J/L/Object
duke@435 2529 // class-typed Phi and an interface flows in, it's possible that the meet &
duke@435 2530 // join report an interface back out. This isn't possible but happens
duke@435 2531 // because the type system doesn't interact well with interfaces.
duke@435 2532 if (ftip != NULL && ktip != NULL &&
duke@435 2533 ftip->is_loaded() && ftip->klass()->is_interface() &&
duke@435 2534 ktip->is_loaded() && !ktip->klass()->is_interface()) {
duke@435 2535 // Happens in a CTW of rt.jar, 320-341, no extra flags
duke@435 2536 return ktip->cast_to_ptr_type(ftip->ptr());
duke@435 2537 }
never@990 2538 if (ftkp != NULL && ktkp != NULL &&
never@990 2539 ftkp->is_loaded() && ftkp->klass()->is_interface() &&
never@990 2540 ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
never@990 2541 // Happens in a CTW of rt.jar, 320-341, no extra flags
never@990 2542 return ktkp->cast_to_ptr_type(ftkp->ptr());
never@990 2543 }
duke@435 2544
duke@435 2545 return ft;
duke@435 2546 }
duke@435 2547
duke@435 2548 //------------------------------eq---------------------------------------------
duke@435 2549 // Structural equality check for Type representations
duke@435 2550 bool TypeOopPtr::eq( const Type *t ) const {
duke@435 2551 const TypeOopPtr *a = (const TypeOopPtr*)t;
duke@435 2552 if (_klass_is_exact != a->_klass_is_exact ||
duke@435 2553 _instance_id != a->_instance_id) return false;
duke@435 2554 ciObject* one = const_oop();
duke@435 2555 ciObject* two = a->const_oop();
duke@435 2556 if (one == NULL || two == NULL) {
duke@435 2557 return (one == two) && TypePtr::eq(t);
duke@435 2558 } else {
duke@435 2559 return one->equals(two) && TypePtr::eq(t);
duke@435 2560 }
duke@435 2561 }
duke@435 2562
duke@435 2563 //------------------------------hash-------------------------------------------
duke@435 2564 // Type-specific hashing function.
duke@435 2565 int TypeOopPtr::hash(void) const {
duke@435 2566 return
duke@435 2567 (const_oop() ? const_oop()->hash() : 0) +
duke@435 2568 _klass_is_exact +
duke@435 2569 _instance_id +
duke@435 2570 TypePtr::hash();
duke@435 2571 }
duke@435 2572
duke@435 2573 //------------------------------dump2------------------------------------------
duke@435 2574 #ifndef PRODUCT
duke@435 2575 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2576 st->print("oopptr:%s", ptr_msg[_ptr]);
duke@435 2577 if( _klass_is_exact ) st->print(":exact");
duke@435 2578 if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
duke@435 2579 switch( _offset ) {
duke@435 2580 case OffsetTop: st->print("+top"); break;
duke@435 2581 case OffsetBot: st->print("+any"); break;
duke@435 2582 case 0: break;
duke@435 2583 default: st->print("+%d",_offset); break;
duke@435 2584 }
kvn@658 2585 if (_instance_id == InstanceTop)
kvn@658 2586 st->print(",iid=top");
kvn@658 2587 else if (_instance_id != InstanceBot)
duke@435 2588 st->print(",iid=%d",_instance_id);
duke@435 2589 }
duke@435 2590 #endif
duke@435 2591
duke@435 2592 //------------------------------singleton--------------------------------------
duke@435 2593 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2594 // constants
duke@435 2595 bool TypeOopPtr::singleton(void) const {
duke@435 2596 // detune optimizer to not generate constant oop + constant offset as a constant!
duke@435 2597 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2598 return (_offset == 0) && !below_centerline(_ptr);
duke@435 2599 }
duke@435 2600
duke@435 2601 //------------------------------add_offset-------------------------------------
kvn@741 2602 const TypePtr *TypeOopPtr::add_offset( intptr_t offset ) const {
kvn@1427 2603 return make( _ptr, xadd_offset(offset), _instance_id);
duke@435 2604 }
duke@435 2605
kvn@658 2606 //------------------------------meet_instance_id--------------------------------
kvn@658 2607 int TypeOopPtr::meet_instance_id( int instance_id ) const {
kvn@658 2608 // Either is 'TOP' instance? Return the other instance!
kvn@658 2609 if( _instance_id == InstanceTop ) return instance_id;
kvn@658 2610 if( instance_id == InstanceTop ) return _instance_id;
kvn@658 2611 // If either is different, return 'BOTTOM' instance
kvn@658 2612 if( _instance_id != instance_id ) return InstanceBot;
kvn@658 2613 return _instance_id;
duke@435 2614 }
duke@435 2615
kvn@658 2616 //------------------------------dual_instance_id--------------------------------
kvn@658 2617 int TypeOopPtr::dual_instance_id( ) const {
kvn@658 2618 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
kvn@658 2619 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
kvn@658 2620 return _instance_id; // Map everything else into self
kvn@658 2621 }
kvn@658 2622
kvn@658 2623
duke@435 2624 //=============================================================================
duke@435 2625 // Convenience common pre-built types.
duke@435 2626 const TypeInstPtr *TypeInstPtr::NOTNULL;
duke@435 2627 const TypeInstPtr *TypeInstPtr::BOTTOM;
duke@435 2628 const TypeInstPtr *TypeInstPtr::MIRROR;
duke@435 2629 const TypeInstPtr *TypeInstPtr::MARK;
duke@435 2630 const TypeInstPtr *TypeInstPtr::KLASS;
duke@435 2631
duke@435 2632 //------------------------------TypeInstPtr-------------------------------------
duke@435 2633 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
duke@435 2634 : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
duke@435 2635 assert(k != NULL &&
duke@435 2636 (k->is_loaded() || o == NULL),
duke@435 2637 "cannot have constants with non-loaded klass");
duke@435 2638 };
duke@435 2639
duke@435 2640 //------------------------------make-------------------------------------------
duke@435 2641 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
duke@435 2642 ciKlass* k,
duke@435 2643 bool xk,
duke@435 2644 ciObject* o,
duke@435 2645 int offset,
duke@435 2646 int instance_id) {
duke@435 2647 assert( !k->is_loaded() || k->is_instance_klass() ||
duke@435 2648 k->is_method_klass(), "Must be for instance or method");
duke@435 2649 // Either const_oop() is NULL or else ptr is Constant
duke@435 2650 assert( (!o && ptr != Constant) || (o && ptr == Constant),
duke@435 2651 "constant pointers must have a value supplied" );
duke@435 2652 // Ptr is never Null
duke@435 2653 assert( ptr != Null, "NULL pointers are not typed" );
duke@435 2654
kvn@682 2655 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 2656 if (!UseExactTypes) xk = false;
duke@435 2657 if (ptr == Constant) {
duke@435 2658 // Note: This case includes meta-object constants, such as methods.
duke@435 2659 xk = true;
duke@435 2660 } else if (k->is_loaded()) {
duke@435 2661 ciInstanceKlass* ik = k->as_instance_klass();
duke@435 2662 if (!xk && ik->is_final()) xk = true; // no inexact final klass
duke@435 2663 if (xk && ik->is_interface()) xk = false; // no exact interface
duke@435 2664 }
duke@435 2665
duke@435 2666 // Now hash this baby
duke@435 2667 TypeInstPtr *result =
duke@435 2668 (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
duke@435 2669
duke@435 2670 return result;
duke@435 2671 }
duke@435 2672
duke@435 2673
duke@435 2674 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2675 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2676 if( ptr == _ptr ) return this;
duke@435 2677 // Reconstruct _sig info here since not a problem with later lazy
duke@435 2678 // construction, _sig will show up on demand.
kvn@658 2679 return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id);
duke@435 2680 }
duke@435 2681
duke@435 2682
duke@435 2683 //-----------------------------cast_to_exactness-------------------------------
duke@435 2684 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2685 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 2686 if (!UseExactTypes) return this;
duke@435 2687 if (!_klass->is_loaded()) return this;
duke@435 2688 ciInstanceKlass* ik = _klass->as_instance_klass();
duke@435 2689 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
duke@435 2690 if( ik->is_interface() ) return this; // cannot set xk
duke@435 2691 return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
duke@435 2692 }
duke@435 2693
kvn@682 2694 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2695 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
kvn@658 2696 if( instance_id == _instance_id ) return this;
kvn@682 2697 return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id);
duke@435 2698 }
duke@435 2699
duke@435 2700 //------------------------------xmeet_unloaded---------------------------------
duke@435 2701 // Compute the MEET of two InstPtrs when at least one is unloaded.
duke@435 2702 // Assume classes are different since called after check for same name/class-loader
duke@435 2703 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
duke@435 2704 int off = meet_offset(tinst->offset());
duke@435 2705 PTR ptr = meet_ptr(tinst->ptr());
kvn@1427 2706 int instance_id = meet_instance_id(tinst->instance_id());
duke@435 2707
duke@435 2708 const TypeInstPtr *loaded = is_loaded() ? this : tinst;
duke@435 2709 const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
duke@435 2710 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 2711 //
duke@435 2712 // Meet unloaded class with java/lang/Object
duke@435 2713 //
duke@435 2714 // Meet
duke@435 2715 // | Unloaded Class
duke@435 2716 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
duke@435 2717 // ===================================================================
duke@435 2718 // TOP | ..........................Unloaded......................|
duke@435 2719 // AnyNull | U-AN |................Unloaded......................|
duke@435 2720 // Constant | ... O-NN .................................. | O-BOT |
duke@435 2721 // NotNull | ... O-NN .................................. | O-BOT |
duke@435 2722 // BOTTOM | ........................Object-BOTTOM ..................|
duke@435 2723 //
duke@435 2724 assert(loaded->ptr() != TypePtr::Null, "insanity check");
duke@435 2725 //
duke@435 2726 if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
kvn@1427 2727 else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass(), false, NULL, off, instance_id ); }
duke@435 2728 else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 2729 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
duke@435 2730 if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 2731 else { return TypeInstPtr::NOTNULL; }
duke@435 2732 }
duke@435 2733 else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
duke@435 2734
duke@435 2735 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
duke@435 2736 }
duke@435 2737
duke@435 2738 // Both are unloaded, not the same class, not Object
duke@435 2739 // Or meet unloaded with a different loaded class, not java/lang/Object
duke@435 2740 if( ptr != TypePtr::BotPTR ) {
duke@435 2741 return TypeInstPtr::NOTNULL;
duke@435 2742 }
duke@435 2743 return TypeInstPtr::BOTTOM;
duke@435 2744 }
duke@435 2745
duke@435 2746
duke@435 2747 //------------------------------meet-------------------------------------------
duke@435 2748 // Compute the MEET of two types. It returns a new Type object.
duke@435 2749 const Type *TypeInstPtr::xmeet( const Type *t ) const {
duke@435 2750 // Perform a fast test for common case; meeting the same types together.
duke@435 2751 if( this == t ) return this; // Meeting same type-rep?
duke@435 2752
duke@435 2753 // Current "this->_base" is Pointer
duke@435 2754 switch (t->base()) { // switch on original type
duke@435 2755
duke@435 2756 case Int: // Mixing ints & oops happens when javac
duke@435 2757 case Long: // reuses local variables
duke@435 2758 case FloatTop:
duke@435 2759 case FloatCon:
duke@435 2760 case FloatBot:
duke@435 2761 case DoubleTop:
duke@435 2762 case DoubleCon:
duke@435 2763 case DoubleBot:
coleenp@548 2764 case NarrowOop:
duke@435 2765 case Bottom: // Ye Olde Default
duke@435 2766 return Type::BOTTOM;
duke@435 2767 case Top:
duke@435 2768 return this;
duke@435 2769
duke@435 2770 default: // All else is a mistake
duke@435 2771 typerr(t);
duke@435 2772
duke@435 2773 case RawPtr: return TypePtr::BOTTOM;
duke@435 2774
duke@435 2775 case AryPtr: { // All arrays inherit from Object class
duke@435 2776 const TypeAryPtr *tp = t->is_aryptr();
duke@435 2777 int offset = meet_offset(tp->offset());
duke@435 2778 PTR ptr = meet_ptr(tp->ptr());
kvn@658 2779 int instance_id = meet_instance_id(tp->instance_id());
duke@435 2780 switch (ptr) {
duke@435 2781 case TopPTR:
duke@435 2782 case AnyNull: // Fall 'down' to dual of object klass
duke@435 2783 if (klass()->equals(ciEnv::current()->Object_klass())) {
kvn@658 2784 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
duke@435 2785 } else {
duke@435 2786 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 2787 ptr = NotNull;
kvn@658 2788 instance_id = InstanceBot;
kvn@658 2789 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id);
duke@435 2790 }
duke@435 2791 case Constant:
duke@435 2792 case NotNull:
duke@435 2793 case BotPTR: // Fall down to object klass
duke@435 2794 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 2795 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
duke@435 2796 // If 'this' (InstPtr) is above the centerline and it is Object class
twisti@1040 2797 // then we can subclass in the Java class hierarchy.
duke@435 2798 if (klass()->equals(ciEnv::current()->Object_klass())) {
duke@435 2799 // that is, tp's array type is a subtype of my klass
kvn@658 2800 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
duke@435 2801 }
duke@435 2802 }
duke@435 2803 // The other case cannot happen, since I cannot be a subtype of an array.
duke@435 2804 // The meet falls down to Object class below centerline.
duke@435 2805 if( ptr == Constant )
duke@435 2806 ptr = NotNull;
kvn@658 2807 instance_id = InstanceBot;
kvn@658 2808 return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id );
duke@435 2809 default: typerr(t);
duke@435 2810 }
duke@435 2811 }
duke@435 2812
duke@435 2813 case OopPtr: { // Meeting to OopPtrs
duke@435 2814 // Found a OopPtr type vs self-InstPtr type
kvn@1393 2815 const TypeOopPtr *tp = t->is_oopptr();
duke@435 2816 int offset = meet_offset(tp->offset());
duke@435 2817 PTR ptr = meet_ptr(tp->ptr());
duke@435 2818 switch (tp->ptr()) {
duke@435 2819 case TopPTR:
kvn@658 2820 case AnyNull: {
kvn@658 2821 int instance_id = meet_instance_id(InstanceTop);
duke@435 2822 return make(ptr, klass(), klass_is_exact(),
kvn@658 2823 (ptr == Constant ? const_oop() : NULL), offset, instance_id);
kvn@658 2824 }
duke@435 2825 case NotNull:
kvn@1393 2826 case BotPTR: {
kvn@1393 2827 int instance_id = meet_instance_id(tp->instance_id());
kvn@1393 2828 return TypeOopPtr::make(ptr, offset, instance_id);
kvn@1393 2829 }
duke@435 2830 default: typerr(t);
duke@435 2831 }
duke@435 2832 }
duke@435 2833
duke@435 2834 case AnyPtr: { // Meeting to AnyPtrs
duke@435 2835 // Found an AnyPtr type vs self-InstPtr type
duke@435 2836 const TypePtr *tp = t->is_ptr();
duke@435 2837 int offset = meet_offset(tp->offset());
duke@435 2838 PTR ptr = meet_ptr(tp->ptr());
duke@435 2839 switch (tp->ptr()) {
duke@435 2840 case Null:
duke@435 2841 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
kvn@658 2842 // else fall through to AnyNull
duke@435 2843 case TopPTR:
kvn@658 2844 case AnyNull: {
kvn@658 2845 int instance_id = meet_instance_id(InstanceTop);
duke@435 2846 return make( ptr, klass(), klass_is_exact(),
kvn@658 2847 (ptr == Constant ? const_oop() : NULL), offset, instance_id);
kvn@658 2848 }
duke@435 2849 case NotNull:
duke@435 2850 case BotPTR:
duke@435 2851 return TypePtr::make( AnyPtr, ptr, offset );
duke@435 2852 default: typerr(t);
duke@435 2853 }
duke@435 2854 }
duke@435 2855
duke@435 2856 /*
duke@435 2857 A-top }
duke@435 2858 / | \ } Tops
duke@435 2859 B-top A-any C-top }
duke@435 2860 | / | \ | } Any-nulls
duke@435 2861 B-any | C-any }
duke@435 2862 | | |
duke@435 2863 B-con A-con C-con } constants; not comparable across classes
duke@435 2864 | | |
duke@435 2865 B-not | C-not }
duke@435 2866 | \ | / | } not-nulls
duke@435 2867 B-bot A-not C-bot }
duke@435 2868 \ | / } Bottoms
duke@435 2869 A-bot }
duke@435 2870 */
duke@435 2871
duke@435 2872 case InstPtr: { // Meeting 2 Oops?
duke@435 2873 // Found an InstPtr sub-type vs self-InstPtr type
duke@435 2874 const TypeInstPtr *tinst = t->is_instptr();
duke@435 2875 int off = meet_offset( tinst->offset() );
duke@435 2876 PTR ptr = meet_ptr( tinst->ptr() );
kvn@658 2877 int instance_id = meet_instance_id(tinst->instance_id());
duke@435 2878
duke@435 2879 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 2880 // If we have constants, then we created oops so classes are loaded
duke@435 2881 // and we can handle the constants further down. This case handles
duke@435 2882 // both-not-loaded or both-loaded classes
duke@435 2883 if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
duke@435 2884 return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
duke@435 2885 }
duke@435 2886
duke@435 2887 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 2888 ciKlass* tinst_klass = tinst->klass();
duke@435 2889 ciKlass* this_klass = this->klass();
duke@435 2890 bool tinst_xk = tinst->klass_is_exact();
duke@435 2891 bool this_xk = this->klass_is_exact();
duke@435 2892 if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
duke@435 2893 // One of these classes has not been loaded
duke@435 2894 const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
duke@435 2895 #ifndef PRODUCT
duke@435 2896 if( PrintOpto && Verbose ) {
duke@435 2897 tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
duke@435 2898 tty->print(" this == "); this->dump(); tty->cr();
duke@435 2899 tty->print(" tinst == "); tinst->dump(); tty->cr();
duke@435 2900 }
duke@435 2901 #endif
duke@435 2902 return unloaded_meet;
duke@435 2903 }
duke@435 2904
duke@435 2905 // Handle mixing oops and interfaces first.
duke@435 2906 if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
duke@435 2907 ciKlass *tmp = tinst_klass; // Swap interface around
duke@435 2908 tinst_klass = this_klass;
duke@435 2909 this_klass = tmp;
duke@435 2910 bool tmp2 = tinst_xk;
duke@435 2911 tinst_xk = this_xk;
duke@435 2912 this_xk = tmp2;
duke@435 2913 }
duke@435 2914 if (tinst_klass->is_interface() &&
duke@435 2915 !(this_klass->is_interface() ||
duke@435 2916 // Treat java/lang/Object as an honorary interface,
duke@435 2917 // because we need a bottom for the interface hierarchy.
duke@435 2918 this_klass == ciEnv::current()->Object_klass())) {
duke@435 2919 // Oop meets interface!
duke@435 2920
duke@435 2921 // See if the oop subtypes (implements) interface.
duke@435 2922 ciKlass *k;
duke@435 2923 bool xk;
duke@435 2924 if( this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 2925 // Oop indeed subtypes. Now keep oop or interface depending
duke@435 2926 // on whether we are both above the centerline or either is
duke@435 2927 // below the centerline. If we are on the centerline
duke@435 2928 // (e.g., Constant vs. AnyNull interface), use the constant.
duke@435 2929 k = below_centerline(ptr) ? tinst_klass : this_klass;
duke@435 2930 // If we are keeping this_klass, keep its exactness too.
duke@435 2931 xk = below_centerline(ptr) ? tinst_xk : this_xk;
duke@435 2932 } else { // Does not implement, fall to Object
duke@435 2933 // Oop does not implement interface, so mixing falls to Object
duke@435 2934 // just like the verifier does (if both are above the
duke@435 2935 // centerline fall to interface)
duke@435 2936 k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
duke@435 2937 xk = above_centerline(ptr) ? tinst_xk : false;
duke@435 2938 // Watch out for Constant vs. AnyNull interface.
duke@435 2939 if (ptr == Constant) ptr = NotNull; // forget it was a constant
kvn@682 2940 instance_id = InstanceBot;
duke@435 2941 }
duke@435 2942 ciObject* o = NULL; // the Constant value, if any
duke@435 2943 if (ptr == Constant) {
duke@435 2944 // Find out which constant.
duke@435 2945 o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
duke@435 2946 }
kvn@658 2947 return make( ptr, k, xk, o, off, instance_id );
duke@435 2948 }
duke@435 2949
duke@435 2950 // Either oop vs oop or interface vs interface or interface vs Object
duke@435 2951
duke@435 2952 // !!! Here's how the symmetry requirement breaks down into invariants:
duke@435 2953 // If we split one up & one down AND they subtype, take the down man.
duke@435 2954 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 2955 // If both are up and they subtype, take the subtype class.
duke@435 2956 // If both are up and they do NOT subtype, "fall hard".
duke@435 2957 // If both are down and they subtype, take the supertype class.
duke@435 2958 // If both are down and they do NOT subtype, "fall hard".
duke@435 2959 // Constants treated as down.
duke@435 2960
duke@435 2961 // Now, reorder the above list; observe that both-down+subtype is also
duke@435 2962 // "fall hard"; "fall hard" becomes the default case:
duke@435 2963 // If we split one up & one down AND they subtype, take the down man.
duke@435 2964 // If both are up and they subtype, take the subtype class.
duke@435 2965
duke@435 2966 // If both are down and they subtype, "fall hard".
duke@435 2967 // If both are down and they do NOT subtype, "fall hard".
duke@435 2968 // If both are up and they do NOT subtype, "fall hard".
duke@435 2969 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 2970
duke@435 2971 // If a proper subtype is exact, and we return it, we return it exactly.
duke@435 2972 // If a proper supertype is exact, there can be no subtyping relationship!
duke@435 2973 // If both types are equal to the subtype, exactness is and-ed below the
duke@435 2974 // centerline and or-ed above it. (N.B. Constants are always exact.)
duke@435 2975
duke@435 2976 // Check for subtyping:
duke@435 2977 ciKlass *subtype = NULL;
duke@435 2978 bool subtype_exact = false;
duke@435 2979 if( tinst_klass->equals(this_klass) ) {
duke@435 2980 subtype = this_klass;
duke@435 2981 subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
duke@435 2982 } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 2983 subtype = this_klass; // Pick subtyping class
duke@435 2984 subtype_exact = this_xk;
duke@435 2985 } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
duke@435 2986 subtype = tinst_klass; // Pick subtyping class
duke@435 2987 subtype_exact = tinst_xk;
duke@435 2988 }
duke@435 2989
duke@435 2990 if( subtype ) {
duke@435 2991 if( above_centerline(ptr) ) { // both are up?
duke@435 2992 this_klass = tinst_klass = subtype;
duke@435 2993 this_xk = tinst_xk = subtype_exact;
duke@435 2994 } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
duke@435 2995 this_klass = tinst_klass; // tinst is down; keep down man
duke@435 2996 this_xk = tinst_xk;
duke@435 2997 } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
duke@435 2998 tinst_klass = this_klass; // this is down; keep down man
duke@435 2999 tinst_xk = this_xk;
duke@435 3000 } else {
duke@435 3001 this_xk = subtype_exact; // either they are equal, or we'll do an LCA
duke@435 3002 }
duke@435 3003 }
duke@435 3004
duke@435 3005 // Check for classes now being equal
duke@435 3006 if (tinst_klass->equals(this_klass)) {
duke@435 3007 // If the klasses are equal, the constants may still differ. Fall to
duke@435 3008 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 3009 // handled elsewhere).
duke@435 3010 ciObject* o = NULL; // Assume not constant when done
duke@435 3011 ciObject* this_oop = const_oop();
duke@435 3012 ciObject* tinst_oop = tinst->const_oop();
duke@435 3013 if( ptr == Constant ) {
duke@435 3014 if (this_oop != NULL && tinst_oop != NULL &&
duke@435 3015 this_oop->equals(tinst_oop) )
duke@435 3016 o = this_oop;
duke@435 3017 else if (above_centerline(this ->_ptr))
duke@435 3018 o = tinst_oop;
duke@435 3019 else if (above_centerline(tinst ->_ptr))
duke@435 3020 o = this_oop;
duke@435 3021 else
duke@435 3022 ptr = NotNull;
duke@435 3023 }
duke@435 3024 return make( ptr, this_klass, this_xk, o, off, instance_id );
duke@435 3025 } // Else classes are not equal
duke@435 3026
duke@435 3027 // Since klasses are different, we require a LCA in the Java
duke@435 3028 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 3029 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 3030 ptr = NotNull;
kvn@682 3031 instance_id = InstanceBot;
duke@435 3032
duke@435 3033 // Now we find the LCA of Java classes
duke@435 3034 ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
kvn@658 3035 return make( ptr, k, false, NULL, off, instance_id );
duke@435 3036 } // End of case InstPtr
duke@435 3037
duke@435 3038 case KlassPtr:
duke@435 3039 return TypeInstPtr::BOTTOM;
duke@435 3040
duke@435 3041 } // End of switch
duke@435 3042 return this; // Return the double constant
duke@435 3043 }
duke@435 3044
duke@435 3045
duke@435 3046 //------------------------java_mirror_type--------------------------------------
duke@435 3047 ciType* TypeInstPtr::java_mirror_type() const {
duke@435 3048 // must be a singleton type
duke@435 3049 if( const_oop() == NULL ) return NULL;
duke@435 3050
duke@435 3051 // must be of type java.lang.Class
duke@435 3052 if( klass() != ciEnv::current()->Class_klass() ) return NULL;
duke@435 3053
duke@435 3054 return const_oop()->as_instance()->java_mirror_type();
duke@435 3055 }
duke@435 3056
duke@435 3057
duke@435 3058 //------------------------------xdual------------------------------------------
duke@435 3059 // Dual: do NOT dual on klasses. This means I do NOT understand the Java
twisti@1040 3060 // inheritance mechanism.
duke@435 3061 const Type *TypeInstPtr::xdual() const {
kvn@658 3062 return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id() );
duke@435 3063 }
duke@435 3064
duke@435 3065 //------------------------------eq---------------------------------------------
duke@435 3066 // Structural equality check for Type representations
duke@435 3067 bool TypeInstPtr::eq( const Type *t ) const {
duke@435 3068 const TypeInstPtr *p = t->is_instptr();
duke@435 3069 return
duke@435 3070 klass()->equals(p->klass()) &&
duke@435 3071 TypeOopPtr::eq(p); // Check sub-type stuff
duke@435 3072 }
duke@435 3073
duke@435 3074 //------------------------------hash-------------------------------------------
duke@435 3075 // Type-specific hashing function.
duke@435 3076 int TypeInstPtr::hash(void) const {
duke@435 3077 int hash = klass()->hash() + TypeOopPtr::hash();
duke@435 3078 return hash;
duke@435 3079 }
duke@435 3080
duke@435 3081 //------------------------------dump2------------------------------------------
duke@435 3082 // Dump oop Type
duke@435 3083 #ifndef PRODUCT
duke@435 3084 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3085 // Print the name of the klass.
duke@435 3086 klass()->print_name_on(st);
duke@435 3087
duke@435 3088 switch( _ptr ) {
duke@435 3089 case Constant:
duke@435 3090 // TO DO: Make CI print the hex address of the underlying oop.
duke@435 3091 if (WizardMode || Verbose) {
duke@435 3092 const_oop()->print_oop(st);
duke@435 3093 }
duke@435 3094 case BotPTR:
duke@435 3095 if (!WizardMode && !Verbose) {
duke@435 3096 if( _klass_is_exact ) st->print(":exact");
duke@435 3097 break;
duke@435 3098 }
duke@435 3099 case TopPTR:
duke@435 3100 case AnyNull:
duke@435 3101 case NotNull:
duke@435 3102 st->print(":%s", ptr_msg[_ptr]);
duke@435 3103 if( _klass_is_exact ) st->print(":exact");
duke@435 3104 break;
duke@435 3105 }
duke@435 3106
duke@435 3107 if( _offset ) { // Dump offset, if any
duke@435 3108 if( _offset == OffsetBot ) st->print("+any");
duke@435 3109 else if( _offset == OffsetTop ) st->print("+unknown");
duke@435 3110 else st->print("+%d", _offset);
duke@435 3111 }
duke@435 3112
duke@435 3113 st->print(" *");
kvn@658 3114 if (_instance_id == InstanceTop)
kvn@658 3115 st->print(",iid=top");
kvn@658 3116 else if (_instance_id != InstanceBot)
duke@435 3117 st->print(",iid=%d",_instance_id);
duke@435 3118 }
duke@435 3119 #endif
duke@435 3120
duke@435 3121 //------------------------------add_offset-------------------------------------
kvn@741 3122 const TypePtr *TypeInstPtr::add_offset( intptr_t offset ) const {
duke@435 3123 return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
duke@435 3124 }
duke@435 3125
duke@435 3126 //=============================================================================
duke@435 3127 // Convenience common pre-built types.
duke@435 3128 const TypeAryPtr *TypeAryPtr::RANGE;
duke@435 3129 const TypeAryPtr *TypeAryPtr::OOPS;
kvn@598 3130 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
duke@435 3131 const TypeAryPtr *TypeAryPtr::BYTES;
duke@435 3132 const TypeAryPtr *TypeAryPtr::SHORTS;
duke@435 3133 const TypeAryPtr *TypeAryPtr::CHARS;
duke@435 3134 const TypeAryPtr *TypeAryPtr::INTS;
duke@435 3135 const TypeAryPtr *TypeAryPtr::LONGS;
duke@435 3136 const TypeAryPtr *TypeAryPtr::FLOATS;
duke@435 3137 const TypeAryPtr *TypeAryPtr::DOUBLES;
duke@435 3138
duke@435 3139 //------------------------------make-------------------------------------------
duke@435 3140 const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
duke@435 3141 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3142 "integral arrays must be pre-equipped with a class");
duke@435 3143 if (!xk) xk = ary->ary_must_be_exact();
kvn@682 3144 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3145 if (!UseExactTypes) xk = (ptr == Constant);
duke@435 3146 return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id))->hashcons();
duke@435 3147 }
duke@435 3148
duke@435 3149 //------------------------------make-------------------------------------------
duke@435 3150 const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
duke@435 3151 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3152 "integral arrays must be pre-equipped with a class");
duke@435 3153 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
duke@435 3154 if (!xk) xk = (o != NULL) || ary->ary_must_be_exact();
kvn@682 3155 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3156 if (!UseExactTypes) xk = (ptr == Constant);
duke@435 3157 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id))->hashcons();
duke@435 3158 }
duke@435 3159
duke@435 3160 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3161 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3162 if( ptr == _ptr ) return this;
kvn@658 3163 return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id);
duke@435 3164 }
duke@435 3165
duke@435 3166
duke@435 3167 //-----------------------------cast_to_exactness-------------------------------
duke@435 3168 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3169 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3170 if (!UseExactTypes) return this;
duke@435 3171 if (_ary->ary_must_be_exact()) return this; // cannot clear xk
duke@435 3172 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
duke@435 3173 }
duke@435 3174
kvn@682 3175 //-----------------------------cast_to_instance_id----------------------------
kvn@658 3176 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
kvn@658 3177 if( instance_id == _instance_id ) return this;
kvn@682 3178 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id);
duke@435 3179 }
duke@435 3180
duke@435 3181 //-----------------------------narrow_size_type-------------------------------
duke@435 3182 // Local cache for arrayOopDesc::max_array_length(etype),
duke@435 3183 // which is kind of slow (and cached elsewhere by other users).
duke@435 3184 static jint max_array_length_cache[T_CONFLICT+1];
duke@435 3185 static jint max_array_length(BasicType etype) {
duke@435 3186 jint& cache = max_array_length_cache[etype];
duke@435 3187 jint res = cache;
duke@435 3188 if (res == 0) {
duke@435 3189 switch (etype) {
coleenp@548 3190 case T_NARROWOOP:
coleenp@548 3191 etype = T_OBJECT;
coleenp@548 3192 break;
duke@435 3193 case T_CONFLICT:
duke@435 3194 case T_ILLEGAL:
duke@435 3195 case T_VOID:
duke@435 3196 etype = T_BYTE; // will produce conservatively high value
duke@435 3197 }
duke@435 3198 cache = res = arrayOopDesc::max_array_length(etype);
duke@435 3199 }
duke@435 3200 return res;
duke@435 3201 }
duke@435 3202
duke@435 3203 // Narrow the given size type to the index range for the given array base type.
duke@435 3204 // Return NULL if the resulting int type becomes empty.
rasbold@801 3205 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
duke@435 3206 jint hi = size->_hi;
duke@435 3207 jint lo = size->_lo;
duke@435 3208 jint min_lo = 0;
rasbold@801 3209 jint max_hi = max_array_length(elem()->basic_type());
duke@435 3210 //if (index_not_size) --max_hi; // type of a valid array index, FTR
duke@435 3211 bool chg = false;
duke@435 3212 if (lo < min_lo) { lo = min_lo; chg = true; }
duke@435 3213 if (hi > max_hi) { hi = max_hi; chg = true; }
twisti@1040 3214 // Negative length arrays will produce weird intermediate dead fast-path code
duke@435 3215 if (lo > hi)
rasbold@801 3216 return TypeInt::ZERO;
duke@435 3217 if (!chg)
duke@435 3218 return size;
duke@435 3219 return TypeInt::make(lo, hi, Type::WidenMin);
duke@435 3220 }
duke@435 3221
duke@435 3222 //-------------------------------cast_to_size----------------------------------
duke@435 3223 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
duke@435 3224 assert(new_size != NULL, "");
rasbold@801 3225 new_size = narrow_size_type(new_size);
duke@435 3226 if (new_size == size()) return this;
duke@435 3227 const TypeAry* new_ary = TypeAry::make(elem(), new_size);
kvn@658 3228 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
duke@435 3229 }
duke@435 3230
duke@435 3231
duke@435 3232 //------------------------------eq---------------------------------------------
duke@435 3233 // Structural equality check for Type representations
duke@435 3234 bool TypeAryPtr::eq( const Type *t ) const {
duke@435 3235 const TypeAryPtr *p = t->is_aryptr();
duke@435 3236 return
duke@435 3237 _ary == p->_ary && // Check array
duke@435 3238 TypeOopPtr::eq(p); // Check sub-parts
duke@435 3239 }
duke@435 3240
duke@435 3241 //------------------------------hash-------------------------------------------
duke@435 3242 // Type-specific hashing function.
duke@435 3243 int TypeAryPtr::hash(void) const {
duke@435 3244 return (intptr_t)_ary + TypeOopPtr::hash();
duke@435 3245 }
duke@435 3246
duke@435 3247 //------------------------------meet-------------------------------------------
duke@435 3248 // Compute the MEET of two types. It returns a new Type object.
duke@435 3249 const Type *TypeAryPtr::xmeet( const Type *t ) const {
duke@435 3250 // Perform a fast test for common case; meeting the same types together.
duke@435 3251 if( this == t ) return this; // Meeting same type-rep?
duke@435 3252 // Current "this->_base" is Pointer
duke@435 3253 switch (t->base()) { // switch on original type
duke@435 3254
duke@435 3255 // Mixing ints & oops happens when javac reuses local variables
duke@435 3256 case Int:
duke@435 3257 case Long:
duke@435 3258 case FloatTop:
duke@435 3259 case FloatCon:
duke@435 3260 case FloatBot:
duke@435 3261 case DoubleTop:
duke@435 3262 case DoubleCon:
duke@435 3263 case DoubleBot:
coleenp@548 3264 case NarrowOop:
duke@435 3265 case Bottom: // Ye Olde Default
duke@435 3266 return Type::BOTTOM;
duke@435 3267 case Top:
duke@435 3268 return this;
duke@435 3269
duke@435 3270 default: // All else is a mistake
duke@435 3271 typerr(t);
duke@435 3272
duke@435 3273 case OopPtr: { // Meeting to OopPtrs
duke@435 3274 // Found a OopPtr type vs self-AryPtr type
kvn@1393 3275 const TypeOopPtr *tp = t->is_oopptr();
duke@435 3276 int offset = meet_offset(tp->offset());
duke@435 3277 PTR ptr = meet_ptr(tp->ptr());
duke@435 3278 switch (tp->ptr()) {
duke@435 3279 case TopPTR:
kvn@658 3280 case AnyNull: {
kvn@658 3281 int instance_id = meet_instance_id(InstanceTop);
kvn@658 3282 return make(ptr, (ptr == Constant ? const_oop() : NULL),
kvn@658 3283 _ary, _klass, _klass_is_exact, offset, instance_id);
kvn@658 3284 }
duke@435 3285 case BotPTR:
kvn@1393 3286 case NotNull: {
kvn@1393 3287 int instance_id = meet_instance_id(tp->instance_id());
kvn@1393 3288 return TypeOopPtr::make(ptr, offset, instance_id);
kvn@1393 3289 }
duke@435 3290 default: ShouldNotReachHere();
duke@435 3291 }
duke@435 3292 }
duke@435 3293
duke@435 3294 case AnyPtr: { // Meeting two AnyPtrs
duke@435 3295 // Found an AnyPtr type vs self-AryPtr type
duke@435 3296 const TypePtr *tp = t->is_ptr();
duke@435 3297 int offset = meet_offset(tp->offset());
duke@435 3298 PTR ptr = meet_ptr(tp->ptr());
duke@435 3299 switch (tp->ptr()) {
duke@435 3300 case TopPTR:
duke@435 3301 return this;
duke@435 3302 case BotPTR:
duke@435 3303 case NotNull:
duke@435 3304 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3305 case Null:
duke@435 3306 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
kvn@658 3307 // else fall through to AnyNull
kvn@658 3308 case AnyNull: {
kvn@658 3309 int instance_id = meet_instance_id(InstanceTop);
kvn@658 3310 return make( ptr, (ptr == Constant ? const_oop() : NULL),
kvn@658 3311 _ary, _klass, _klass_is_exact, offset, instance_id);
kvn@658 3312 }
duke@435 3313 default: ShouldNotReachHere();
duke@435 3314 }
duke@435 3315 }
duke@435 3316
duke@435 3317 case RawPtr: return TypePtr::BOTTOM;
duke@435 3318
duke@435 3319 case AryPtr: { // Meeting 2 references?
duke@435 3320 const TypeAryPtr *tap = t->is_aryptr();
duke@435 3321 int off = meet_offset(tap->offset());
duke@435 3322 const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
duke@435 3323 PTR ptr = meet_ptr(tap->ptr());
kvn@658 3324 int instance_id = meet_instance_id(tap->instance_id());
duke@435 3325 ciKlass* lazy_klass = NULL;
duke@435 3326 if (tary->_elem->isa_int()) {
duke@435 3327 // Integral array element types have irrelevant lattice relations.
duke@435 3328 // It is the klass that determines array layout, not the element type.
duke@435 3329 if (_klass == NULL)
duke@435 3330 lazy_klass = tap->_klass;
duke@435 3331 else if (tap->_klass == NULL || tap->_klass == _klass) {
duke@435 3332 lazy_klass = _klass;
duke@435 3333 } else {
duke@435 3334 // Something like byte[int+] meets char[int+].
duke@435 3335 // This must fall to bottom, not (int[-128..65535])[int+].
kvn@682 3336 instance_id = InstanceBot;
duke@435 3337 tary = TypeAry::make(Type::BOTTOM, tary->_size);
duke@435 3338 }
duke@435 3339 }
duke@435 3340 bool xk;
duke@435 3341 switch (tap->ptr()) {
duke@435 3342 case AnyNull:
duke@435 3343 case TopPTR:
duke@435 3344 // Compute new klass on demand, do not use tap->_klass
duke@435 3345 xk = (tap->_klass_is_exact | this->_klass_is_exact);
kvn@658 3346 return make( ptr, const_oop(), tary, lazy_klass, xk, off, instance_id );
duke@435 3347 case Constant: {
duke@435 3348 ciObject* o = const_oop();
duke@435 3349 if( _ptr == Constant ) {
duke@435 3350 if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
jrose@1424 3351 xk = (klass() == tap->klass());
duke@435 3352 ptr = NotNull;
duke@435 3353 o = NULL;
kvn@682 3354 instance_id = InstanceBot;
jrose@1424 3355 } else {
jrose@1424 3356 xk = true;
duke@435 3357 }
duke@435 3358 } else if( above_centerline(_ptr) ) {
duke@435 3359 o = tap->const_oop();
jrose@1424 3360 xk = true;
jrose@1424 3361 } else {
jrose@1424 3362 xk = this->_klass_is_exact;
duke@435 3363 }
kvn@658 3364 return TypeAryPtr::make( ptr, o, tary, tap->_klass, xk, off, instance_id );
duke@435 3365 }
duke@435 3366 case NotNull:
duke@435 3367 case BotPTR:
duke@435 3368 // Compute new klass on demand, do not use tap->_klass
duke@435 3369 if (above_centerline(this->_ptr))
duke@435 3370 xk = tap->_klass_is_exact;
duke@435 3371 else if (above_centerline(tap->_ptr))
duke@435 3372 xk = this->_klass_is_exact;
duke@435 3373 else xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
duke@435 3374 (klass() == tap->klass()); // Only precise for identical arrays
kvn@658 3375 return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, instance_id );
duke@435 3376 default: ShouldNotReachHere();
duke@435 3377 }
duke@435 3378 }
duke@435 3379
duke@435 3380 // All arrays inherit from Object class
duke@435 3381 case InstPtr: {
duke@435 3382 const TypeInstPtr *tp = t->is_instptr();
duke@435 3383 int offset = meet_offset(tp->offset());
duke@435 3384 PTR ptr = meet_ptr(tp->ptr());
kvn@658 3385 int instance_id = meet_instance_id(tp->instance_id());
duke@435 3386 switch (ptr) {
duke@435 3387 case TopPTR:
duke@435 3388 case AnyNull: // Fall 'down' to dual of object klass
duke@435 3389 if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
kvn@658 3390 return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
duke@435 3391 } else {
duke@435 3392 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 3393 ptr = NotNull;
kvn@658 3394 instance_id = InstanceBot;
kvn@658 3395 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
duke@435 3396 }
duke@435 3397 case Constant:
duke@435 3398 case NotNull:
duke@435 3399 case BotPTR: // Fall down to object klass
duke@435 3400 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 3401 if (above_centerline(tp->ptr())) {
duke@435 3402 // If 'tp' is above the centerline and it is Object class
twisti@1040 3403 // then we can subclass in the Java class hierarchy.
duke@435 3404 if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 3405 // that is, my array type is a subtype of 'tp' klass
kvn@658 3406 return make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
duke@435 3407 }
duke@435 3408 }
duke@435 3409 // The other case cannot happen, since t cannot be a subtype of an array.
duke@435 3410 // The meet falls down to Object class below centerline.
duke@435 3411 if( ptr == Constant )
duke@435 3412 ptr = NotNull;
kvn@658 3413 instance_id = InstanceBot;
kvn@658 3414 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
duke@435 3415 default: typerr(t);
duke@435 3416 }
duke@435 3417 }
duke@435 3418
duke@435 3419 case KlassPtr:
duke@435 3420 return TypeInstPtr::BOTTOM;
duke@435 3421
duke@435 3422 }
duke@435 3423 return this; // Lint noise
duke@435 3424 }
duke@435 3425
duke@435 3426 //------------------------------xdual------------------------------------------
duke@435 3427 // Dual: compute field-by-field dual
duke@435 3428 const Type *TypeAryPtr::xdual() const {
kvn@658 3429 return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id() );
duke@435 3430 }
duke@435 3431
kvn@1255 3432 //----------------------interface_vs_oop---------------------------------------
kvn@1255 3433 #ifdef ASSERT
kvn@1255 3434 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
kvn@1255 3435 const TypeAryPtr* t_aryptr = t->isa_aryptr();
kvn@1255 3436 if (t_aryptr) {
kvn@1255 3437 return _ary->interface_vs_oop(t_aryptr->_ary);
kvn@1255 3438 }
kvn@1255 3439 return false;
kvn@1255 3440 }
kvn@1255 3441 #endif
kvn@1255 3442
duke@435 3443 //------------------------------dump2------------------------------------------
duke@435 3444 #ifndef PRODUCT
duke@435 3445 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3446 _ary->dump2(d,depth,st);
duke@435 3447 switch( _ptr ) {
duke@435 3448 case Constant:
duke@435 3449 const_oop()->print(st);
duke@435 3450 break;
duke@435 3451 case BotPTR:
duke@435 3452 if (!WizardMode && !Verbose) {
duke@435 3453 if( _klass_is_exact ) st->print(":exact");
duke@435 3454 break;
duke@435 3455 }
duke@435 3456 case TopPTR:
duke@435 3457 case AnyNull:
duke@435 3458 case NotNull:
duke@435 3459 st->print(":%s", ptr_msg[_ptr]);
duke@435 3460 if( _klass_is_exact ) st->print(":exact");
duke@435 3461 break;
duke@435 3462 }
duke@435 3463
kvn@499 3464 if( _offset != 0 ) {
kvn@499 3465 int header_size = objArrayOopDesc::header_size() * wordSize;
kvn@499 3466 if( _offset == OffsetTop ) st->print("+undefined");
kvn@499 3467 else if( _offset == OffsetBot ) st->print("+any");
kvn@499 3468 else if( _offset < header_size ) st->print("+%d", _offset);
kvn@499 3469 else {
kvn@499 3470 BasicType basic_elem_type = elem()->basic_type();
kvn@499 3471 int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@499 3472 int elem_size = type2aelembytes(basic_elem_type);
kvn@499 3473 st->print("[%d]", (_offset - array_base)/elem_size);
kvn@499 3474 }
kvn@499 3475 }
kvn@499 3476 st->print(" *");
kvn@658 3477 if (_instance_id == InstanceTop)
kvn@658 3478 st->print(",iid=top");
kvn@658 3479 else if (_instance_id != InstanceBot)
duke@435 3480 st->print(",iid=%d",_instance_id);
duke@435 3481 }
duke@435 3482 #endif
duke@435 3483
duke@435 3484 bool TypeAryPtr::empty(void) const {
duke@435 3485 if (_ary->empty()) return true;
duke@435 3486 return TypeOopPtr::empty();
duke@435 3487 }
duke@435 3488
duke@435 3489 //------------------------------add_offset-------------------------------------
kvn@741 3490 const TypePtr *TypeAryPtr::add_offset( intptr_t offset ) const {
duke@435 3491 return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
duke@435 3492 }
duke@435 3493
duke@435 3494
duke@435 3495 //=============================================================================
coleenp@548 3496 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
coleenp@548 3497 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
coleenp@548 3498
coleenp@548 3499
coleenp@548 3500 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
coleenp@548 3501 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
coleenp@548 3502 }
coleenp@548 3503
coleenp@548 3504 //------------------------------hash-------------------------------------------
coleenp@548 3505 // Type-specific hashing function.
coleenp@548 3506 int TypeNarrowOop::hash(void) const {
never@1262 3507 return _ptrtype->hash() + 7;
coleenp@548 3508 }
coleenp@548 3509
coleenp@548 3510
coleenp@548 3511 bool TypeNarrowOop::eq( const Type *t ) const {
coleenp@548 3512 const TypeNarrowOop* tc = t->isa_narrowoop();
coleenp@548 3513 if (tc != NULL) {
never@1262 3514 if (_ptrtype->base() != tc->_ptrtype->base()) {
coleenp@548 3515 return false;
coleenp@548 3516 }
never@1262 3517 return tc->_ptrtype->eq(_ptrtype);
coleenp@548 3518 }
coleenp@548 3519 return false;
coleenp@548 3520 }
coleenp@548 3521
coleenp@548 3522 bool TypeNarrowOop::singleton(void) const { // TRUE if type is a singleton
never@1262 3523 return _ptrtype->singleton();
coleenp@548 3524 }
coleenp@548 3525
coleenp@548 3526 bool TypeNarrowOop::empty(void) const {
never@1262 3527 return _ptrtype->empty();
coleenp@548 3528 }
coleenp@548 3529
kvn@728 3530 //------------------------------xmeet------------------------------------------
coleenp@548 3531 // Compute the MEET of two types. It returns a new Type object.
coleenp@548 3532 const Type *TypeNarrowOop::xmeet( const Type *t ) const {
coleenp@548 3533 // Perform a fast test for common case; meeting the same types together.
coleenp@548 3534 if( this == t ) return this; // Meeting same type-rep?
coleenp@548 3535
coleenp@548 3536
coleenp@548 3537 // Current "this->_base" is OopPtr
coleenp@548 3538 switch (t->base()) { // switch on original type
coleenp@548 3539
coleenp@548 3540 case Int: // Mixing ints & oops happens when javac
coleenp@548 3541 case Long: // reuses local variables
coleenp@548 3542 case FloatTop:
coleenp@548 3543 case FloatCon:
coleenp@548 3544 case FloatBot:
coleenp@548 3545 case DoubleTop:
coleenp@548 3546 case DoubleCon:
coleenp@548 3547 case DoubleBot:
kvn@728 3548 case AnyPtr:
kvn@728 3549 case RawPtr:
kvn@728 3550 case OopPtr:
kvn@728 3551 case InstPtr:
kvn@728 3552 case KlassPtr:
kvn@728 3553 case AryPtr:
kvn@728 3554
coleenp@548 3555 case Bottom: // Ye Olde Default
coleenp@548 3556 return Type::BOTTOM;
coleenp@548 3557 case Top:
coleenp@548 3558 return this;
coleenp@548 3559
coleenp@548 3560 case NarrowOop: {
never@1262 3561 const Type* result = _ptrtype->xmeet(t->make_ptr());
coleenp@548 3562 if (result->isa_ptr()) {
coleenp@548 3563 return TypeNarrowOop::make(result->is_ptr());
coleenp@548 3564 }
coleenp@548 3565 return result;
coleenp@548 3566 }
coleenp@548 3567
coleenp@548 3568 default: // All else is a mistake
coleenp@548 3569 typerr(t);
coleenp@548 3570
coleenp@548 3571 } // End of switch
kvn@728 3572
kvn@728 3573 return this;
coleenp@548 3574 }
coleenp@548 3575
coleenp@548 3576 const Type *TypeNarrowOop::xdual() const { // Compute dual right now.
never@1262 3577 const TypePtr* odual = _ptrtype->dual()->is_ptr();
coleenp@548 3578 return new TypeNarrowOop(odual);
coleenp@548 3579 }
coleenp@548 3580
coleenp@548 3581 const Type *TypeNarrowOop::filter( const Type *kills ) const {
coleenp@548 3582 if (kills->isa_narrowoop()) {
never@1262 3583 const Type* ft =_ptrtype->filter(kills->is_narrowoop()->_ptrtype);
coleenp@548 3584 if (ft->empty())
coleenp@548 3585 return Type::TOP; // Canonical empty value
coleenp@548 3586 if (ft->isa_ptr()) {
coleenp@548 3587 return make(ft->isa_ptr());
coleenp@548 3588 }
coleenp@548 3589 return ft;
coleenp@548 3590 } else if (kills->isa_ptr()) {
never@1262 3591 const Type* ft = _ptrtype->join(kills);
coleenp@548 3592 if (ft->empty())
coleenp@548 3593 return Type::TOP; // Canonical empty value
coleenp@548 3594 return ft;
coleenp@548 3595 } else {
coleenp@548 3596 return Type::TOP;
coleenp@548 3597 }
coleenp@548 3598 }
coleenp@548 3599
coleenp@548 3600
coleenp@548 3601 intptr_t TypeNarrowOop::get_con() const {
never@1262 3602 return _ptrtype->get_con();
coleenp@548 3603 }
coleenp@548 3604
coleenp@548 3605 #ifndef PRODUCT
coleenp@548 3606 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
never@852 3607 st->print("narrowoop: ");
never@1262 3608 _ptrtype->dump2(d, depth, st);
coleenp@548 3609 }
coleenp@548 3610 #endif
coleenp@548 3611
coleenp@548 3612
coleenp@548 3613 //=============================================================================
duke@435 3614 // Convenience common pre-built types.
duke@435 3615
duke@435 3616 // Not-null object klass or below
duke@435 3617 const TypeKlassPtr *TypeKlassPtr::OBJECT;
duke@435 3618 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
duke@435 3619
duke@435 3620 //------------------------------TypeKlasPtr------------------------------------
duke@435 3621 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
duke@435 3622 : TypeOopPtr(KlassPtr, ptr, klass, (ptr==Constant), (ptr==Constant ? klass : NULL), offset, 0) {
duke@435 3623 }
duke@435 3624
duke@435 3625 //------------------------------make-------------------------------------------
duke@435 3626 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
duke@435 3627 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
duke@435 3628 assert( k != NULL, "Expect a non-NULL klass");
duke@435 3629 assert(k->is_instance_klass() || k->is_array_klass() ||
duke@435 3630 k->is_method_klass(), "Incorrect type of klass oop");
duke@435 3631 TypeKlassPtr *r =
duke@435 3632 (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
duke@435 3633
duke@435 3634 return r;
duke@435 3635 }
duke@435 3636
duke@435 3637 //------------------------------eq---------------------------------------------
duke@435 3638 // Structural equality check for Type representations
duke@435 3639 bool TypeKlassPtr::eq( const Type *t ) const {
duke@435 3640 const TypeKlassPtr *p = t->is_klassptr();
duke@435 3641 return
duke@435 3642 klass()->equals(p->klass()) &&
duke@435 3643 TypeOopPtr::eq(p);
duke@435 3644 }
duke@435 3645
duke@435 3646 //------------------------------hash-------------------------------------------
duke@435 3647 // Type-specific hashing function.
duke@435 3648 int TypeKlassPtr::hash(void) const {
duke@435 3649 return klass()->hash() + TypeOopPtr::hash();
duke@435 3650 }
duke@435 3651
duke@435 3652
duke@435 3653 //------------------------------klass------------------------------------------
duke@435 3654 // Return the defining klass for this class
duke@435 3655 ciKlass* TypeAryPtr::klass() const {
duke@435 3656 if( _klass ) return _klass; // Return cached value, if possible
duke@435 3657
duke@435 3658 // Oops, need to compute _klass and cache it
duke@435 3659 ciKlass* k_ary = NULL;
duke@435 3660 const TypeInstPtr *tinst;
duke@435 3661 const TypeAryPtr *tary;
coleenp@548 3662 const Type* el = elem();
coleenp@548 3663 if (el->isa_narrowoop()) {
kvn@656 3664 el = el->make_ptr();
coleenp@548 3665 }
coleenp@548 3666
duke@435 3667 // Get element klass
coleenp@548 3668 if ((tinst = el->isa_instptr()) != NULL) {
duke@435 3669 // Compute array klass from element klass
duke@435 3670 k_ary = ciObjArrayKlass::make(tinst->klass());
coleenp@548 3671 } else if ((tary = el->isa_aryptr()) != NULL) {
duke@435 3672 // Compute array klass from element klass
duke@435 3673 ciKlass* k_elem = tary->klass();
duke@435 3674 // If element type is something like bottom[], k_elem will be null.
duke@435 3675 if (k_elem != NULL)
duke@435 3676 k_ary = ciObjArrayKlass::make(k_elem);
coleenp@548 3677 } else if ((el->base() == Type::Top) ||
coleenp@548 3678 (el->base() == Type::Bottom)) {
duke@435 3679 // element type of Bottom occurs from meet of basic type
duke@435 3680 // and object; Top occurs when doing join on Bottom.
duke@435 3681 // Leave k_ary at NULL.
duke@435 3682 } else {
duke@435 3683 // Cannot compute array klass directly from basic type,
duke@435 3684 // since subtypes of TypeInt all have basic type T_INT.
coleenp@548 3685 assert(!el->isa_int(),
duke@435 3686 "integral arrays must be pre-equipped with a class");
duke@435 3687 // Compute array klass directly from basic type
coleenp@548 3688 k_ary = ciTypeArrayKlass::make(el->basic_type());
duke@435 3689 }
duke@435 3690
kvn@598 3691 if( this != TypeAryPtr::OOPS ) {
duke@435 3692 // The _klass field acts as a cache of the underlying
duke@435 3693 // ciKlass for this array type. In order to set the field,
duke@435 3694 // we need to cast away const-ness.
duke@435 3695 //
duke@435 3696 // IMPORTANT NOTE: we *never* set the _klass field for the
duke@435 3697 // type TypeAryPtr::OOPS. This Type is shared between all
duke@435 3698 // active compilations. However, the ciKlass which represents
duke@435 3699 // this Type is *not* shared between compilations, so caching
duke@435 3700 // this value would result in fetching a dangling pointer.
duke@435 3701 //
duke@435 3702 // Recomputing the underlying ciKlass for each request is
duke@435 3703 // a bit less efficient than caching, but calls to
duke@435 3704 // TypeAryPtr::OOPS->klass() are not common enough to matter.
duke@435 3705 ((TypeAryPtr*)this)->_klass = k_ary;
kvn@598 3706 if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
kvn@598 3707 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
kvn@598 3708 ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
kvn@598 3709 }
kvn@598 3710 }
duke@435 3711 return k_ary;
duke@435 3712 }
duke@435 3713
duke@435 3714
duke@435 3715 //------------------------------add_offset-------------------------------------
duke@435 3716 // Access internals of klass object
kvn@741 3717 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
duke@435 3718 return make( _ptr, klass(), xadd_offset(offset) );
duke@435 3719 }
duke@435 3720
duke@435 3721 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3722 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
kvn@992 3723 assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
duke@435 3724 if( ptr == _ptr ) return this;
duke@435 3725 return make(ptr, _klass, _offset);
duke@435 3726 }
duke@435 3727
duke@435 3728
duke@435 3729 //-----------------------------cast_to_exactness-------------------------------
duke@435 3730 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3731 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3732 if (!UseExactTypes) return this;
duke@435 3733 return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
duke@435 3734 }
duke@435 3735
duke@435 3736
duke@435 3737 //-----------------------------as_instance_type--------------------------------
duke@435 3738 // Corresponding type for an instance of the given class.
duke@435 3739 // It will be NotNull, and exact if and only if the klass type is exact.
duke@435 3740 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
duke@435 3741 ciKlass* k = klass();
duke@435 3742 bool xk = klass_is_exact();
duke@435 3743 //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
duke@435 3744 const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
duke@435 3745 toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
duke@435 3746 return toop->cast_to_exactness(xk)->is_oopptr();
duke@435 3747 }
duke@435 3748
duke@435 3749
duke@435 3750 //------------------------------xmeet------------------------------------------
duke@435 3751 // Compute the MEET of two types, return a new Type object.
duke@435 3752 const Type *TypeKlassPtr::xmeet( const Type *t ) const {
duke@435 3753 // Perform a fast test for common case; meeting the same types together.
duke@435 3754 if( this == t ) return this; // Meeting same type-rep?
duke@435 3755
duke@435 3756 // Current "this->_base" is Pointer
duke@435 3757 switch (t->base()) { // switch on original type
duke@435 3758
duke@435 3759 case Int: // Mixing ints & oops happens when javac
duke@435 3760 case Long: // reuses local variables
duke@435 3761 case FloatTop:
duke@435 3762 case FloatCon:
duke@435 3763 case FloatBot:
duke@435 3764 case DoubleTop:
duke@435 3765 case DoubleCon:
duke@435 3766 case DoubleBot:
kvn@728 3767 case NarrowOop:
duke@435 3768 case Bottom: // Ye Olde Default
duke@435 3769 return Type::BOTTOM;
duke@435 3770 case Top:
duke@435 3771 return this;
duke@435 3772
duke@435 3773 default: // All else is a mistake
duke@435 3774 typerr(t);
duke@435 3775
duke@435 3776 case RawPtr: return TypePtr::BOTTOM;
duke@435 3777
duke@435 3778 case OopPtr: { // Meeting to OopPtrs
duke@435 3779 // Found a OopPtr type vs self-KlassPtr type
duke@435 3780 const TypePtr *tp = t->is_oopptr();
duke@435 3781 int offset = meet_offset(tp->offset());
duke@435 3782 PTR ptr = meet_ptr(tp->ptr());
duke@435 3783 switch (tp->ptr()) {
duke@435 3784 case TopPTR:
duke@435 3785 case AnyNull:
duke@435 3786 return make(ptr, klass(), offset);
duke@435 3787 case BotPTR:
duke@435 3788 case NotNull:
duke@435 3789 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3790 default: typerr(t);
duke@435 3791 }
duke@435 3792 }
duke@435 3793
duke@435 3794 case AnyPtr: { // Meeting to AnyPtrs
duke@435 3795 // Found an AnyPtr type vs self-KlassPtr type
duke@435 3796 const TypePtr *tp = t->is_ptr();
duke@435 3797 int offset = meet_offset(tp->offset());
duke@435 3798 PTR ptr = meet_ptr(tp->ptr());
duke@435 3799 switch (tp->ptr()) {
duke@435 3800 case TopPTR:
duke@435 3801 return this;
duke@435 3802 case Null:
duke@435 3803 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
duke@435 3804 case AnyNull:
duke@435 3805 return make( ptr, klass(), offset );
duke@435 3806 case BotPTR:
duke@435 3807 case NotNull:
duke@435 3808 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3809 default: typerr(t);
duke@435 3810 }
duke@435 3811 }
duke@435 3812
duke@435 3813 case AryPtr: // Meet with AryPtr
duke@435 3814 case InstPtr: // Meet with InstPtr
duke@435 3815 return TypeInstPtr::BOTTOM;
duke@435 3816
duke@435 3817 //
duke@435 3818 // A-top }
duke@435 3819 // / | \ } Tops
duke@435 3820 // B-top A-any C-top }
duke@435 3821 // | / | \ | } Any-nulls
duke@435 3822 // B-any | C-any }
duke@435 3823 // | | |
duke@435 3824 // B-con A-con C-con } constants; not comparable across classes
duke@435 3825 // | | |
duke@435 3826 // B-not | C-not }
duke@435 3827 // | \ | / | } not-nulls
duke@435 3828 // B-bot A-not C-bot }
duke@435 3829 // \ | / } Bottoms
duke@435 3830 // A-bot }
duke@435 3831 //
duke@435 3832
duke@435 3833 case KlassPtr: { // Meet two KlassPtr types
duke@435 3834 const TypeKlassPtr *tkls = t->is_klassptr();
duke@435 3835 int off = meet_offset(tkls->offset());
duke@435 3836 PTR ptr = meet_ptr(tkls->ptr());
duke@435 3837
duke@435 3838 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 3839 // If we have constants, then we created oops so classes are loaded
duke@435 3840 // and we can handle the constants further down. This case handles
duke@435 3841 // not-loaded classes
duke@435 3842 if( ptr != Constant && tkls->klass()->equals(klass()) ) {
duke@435 3843 return make( ptr, klass(), off );
duke@435 3844 }
duke@435 3845
duke@435 3846 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 3847 ciKlass* tkls_klass = tkls->klass();
duke@435 3848 ciKlass* this_klass = this->klass();
duke@435 3849 assert( tkls_klass->is_loaded(), "This class should have been loaded.");
duke@435 3850 assert( this_klass->is_loaded(), "This class should have been loaded.");
duke@435 3851
duke@435 3852 // If 'this' type is above the centerline and is a superclass of the
duke@435 3853 // other, we can treat 'this' as having the same type as the other.
duke@435 3854 if ((above_centerline(this->ptr())) &&
duke@435 3855 tkls_klass->is_subtype_of(this_klass)) {
duke@435 3856 this_klass = tkls_klass;
duke@435 3857 }
duke@435 3858 // If 'tinst' type is above the centerline and is a superclass of the
duke@435 3859 // other, we can treat 'tinst' as having the same type as the other.
duke@435 3860 if ((above_centerline(tkls->ptr())) &&
duke@435 3861 this_klass->is_subtype_of(tkls_klass)) {
duke@435 3862 tkls_klass = this_klass;
duke@435 3863 }
duke@435 3864
duke@435 3865 // Check for classes now being equal
duke@435 3866 if (tkls_klass->equals(this_klass)) {
duke@435 3867 // If the klasses are equal, the constants may still differ. Fall to
duke@435 3868 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 3869 // handled elsewhere).
duke@435 3870 ciObject* o = NULL; // Assume not constant when done
duke@435 3871 ciObject* this_oop = const_oop();
duke@435 3872 ciObject* tkls_oop = tkls->const_oop();
duke@435 3873 if( ptr == Constant ) {
duke@435 3874 if (this_oop != NULL && tkls_oop != NULL &&
duke@435 3875 this_oop->equals(tkls_oop) )
duke@435 3876 o = this_oop;
duke@435 3877 else if (above_centerline(this->ptr()))
duke@435 3878 o = tkls_oop;
duke@435 3879 else if (above_centerline(tkls->ptr()))
duke@435 3880 o = this_oop;
duke@435 3881 else
duke@435 3882 ptr = NotNull;
duke@435 3883 }
duke@435 3884 return make( ptr, this_klass, off );
duke@435 3885 } // Else classes are not equal
duke@435 3886
duke@435 3887 // Since klasses are different, we require the LCA in the Java
duke@435 3888 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 3889 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 3890 ptr = NotNull;
duke@435 3891 // Now we find the LCA of Java classes
duke@435 3892 ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
duke@435 3893 return make( ptr, k, off );
duke@435 3894 } // End of case KlassPtr
duke@435 3895
duke@435 3896 } // End of switch
duke@435 3897 return this; // Return the double constant
duke@435 3898 }
duke@435 3899
duke@435 3900 //------------------------------xdual------------------------------------------
duke@435 3901 // Dual: compute field-by-field dual
duke@435 3902 const Type *TypeKlassPtr::xdual() const {
duke@435 3903 return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
duke@435 3904 }
duke@435 3905
duke@435 3906 //------------------------------dump2------------------------------------------
duke@435 3907 // Dump Klass Type
duke@435 3908 #ifndef PRODUCT
duke@435 3909 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
duke@435 3910 switch( _ptr ) {
duke@435 3911 case Constant:
duke@435 3912 st->print("precise ");
duke@435 3913 case NotNull:
duke@435 3914 {
duke@435 3915 const char *name = klass()->name()->as_utf8();
duke@435 3916 if( name ) {
duke@435 3917 st->print("klass %s: " INTPTR_FORMAT, name, klass());
duke@435 3918 } else {
duke@435 3919 ShouldNotReachHere();
duke@435 3920 }
duke@435 3921 }
duke@435 3922 case BotPTR:
duke@435 3923 if( !WizardMode && !Verbose && !_klass_is_exact ) break;
duke@435 3924 case TopPTR:
duke@435 3925 case AnyNull:
duke@435 3926 st->print(":%s", ptr_msg[_ptr]);
duke@435 3927 if( _klass_is_exact ) st->print(":exact");
duke@435 3928 break;
duke@435 3929 }
duke@435 3930
duke@435 3931 if( _offset ) { // Dump offset, if any
duke@435 3932 if( _offset == OffsetBot ) { st->print("+any"); }
duke@435 3933 else if( _offset == OffsetTop ) { st->print("+unknown"); }
duke@435 3934 else { st->print("+%d", _offset); }
duke@435 3935 }
duke@435 3936
duke@435 3937 st->print(" *");
duke@435 3938 }
duke@435 3939 #endif
duke@435 3940
duke@435 3941
duke@435 3942
duke@435 3943 //=============================================================================
duke@435 3944 // Convenience common pre-built types.
duke@435 3945
duke@435 3946 //------------------------------make-------------------------------------------
duke@435 3947 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
duke@435 3948 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
duke@435 3949 }
duke@435 3950
duke@435 3951 //------------------------------make-------------------------------------------
duke@435 3952 const TypeFunc *TypeFunc::make(ciMethod* method) {
duke@435 3953 Compile* C = Compile::current();
duke@435 3954 const TypeFunc* tf = C->last_tf(method); // check cache
duke@435 3955 if (tf != NULL) return tf; // The hit rate here is almost 50%.
duke@435 3956 const TypeTuple *domain;
duke@435 3957 if (method->flags().is_static()) {
duke@435 3958 domain = TypeTuple::make_domain(NULL, method->signature());
duke@435 3959 } else {
duke@435 3960 domain = TypeTuple::make_domain(method->holder(), method->signature());
duke@435 3961 }
duke@435 3962 const TypeTuple *range = TypeTuple::make_range(method->signature());
duke@435 3963 tf = TypeFunc::make(domain, range);
duke@435 3964 C->set_last_tf(method, tf); // fill cache
duke@435 3965 return tf;
duke@435 3966 }
duke@435 3967
duke@435 3968 //------------------------------meet-------------------------------------------
duke@435 3969 // Compute the MEET of two types. It returns a new Type object.
duke@435 3970 const Type *TypeFunc::xmeet( const Type *t ) const {
duke@435 3971 // Perform a fast test for common case; meeting the same types together.
duke@435 3972 if( this == t ) return this; // Meeting same type-rep?
duke@435 3973
duke@435 3974 // Current "this->_base" is Func
duke@435 3975 switch (t->base()) { // switch on original type
duke@435 3976
duke@435 3977 case Bottom: // Ye Olde Default
duke@435 3978 return t;
duke@435 3979
duke@435 3980 default: // All else is a mistake
duke@435 3981 typerr(t);
duke@435 3982
duke@435 3983 case Top:
duke@435 3984 break;
duke@435 3985 }
duke@435 3986 return this; // Return the double constant
duke@435 3987 }
duke@435 3988
duke@435 3989 //------------------------------xdual------------------------------------------
duke@435 3990 // Dual: compute field-by-field dual
duke@435 3991 const Type *TypeFunc::xdual() const {
duke@435 3992 return this;
duke@435 3993 }
duke@435 3994
duke@435 3995 //------------------------------eq---------------------------------------------
duke@435 3996 // Structural equality check for Type representations
duke@435 3997 bool TypeFunc::eq( const Type *t ) const {
duke@435 3998 const TypeFunc *a = (const TypeFunc*)t;
duke@435 3999 return _domain == a->_domain &&
duke@435 4000 _range == a->_range;
duke@435 4001 }
duke@435 4002
duke@435 4003 //------------------------------hash-------------------------------------------
duke@435 4004 // Type-specific hashing function.
duke@435 4005 int TypeFunc::hash(void) const {
duke@435 4006 return (intptr_t)_domain + (intptr_t)_range;
duke@435 4007 }
duke@435 4008
duke@435 4009 //------------------------------dump2------------------------------------------
duke@435 4010 // Dump Function Type
duke@435 4011 #ifndef PRODUCT
duke@435 4012 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 4013 if( _range->_cnt <= Parms )
duke@435 4014 st->print("void");
duke@435 4015 else {
duke@435 4016 uint i;
duke@435 4017 for (i = Parms; i < _range->_cnt-1; i++) {
duke@435 4018 _range->field_at(i)->dump2(d,depth,st);
duke@435 4019 st->print("/");
duke@435 4020 }
duke@435 4021 _range->field_at(i)->dump2(d,depth,st);
duke@435 4022 }
duke@435 4023 st->print(" ");
duke@435 4024 st->print("( ");
duke@435 4025 if( !depth || d[this] ) { // Check for recursive dump
duke@435 4026 st->print("...)");
duke@435 4027 return;
duke@435 4028 }
duke@435 4029 d.Insert((void*)this,(void*)this); // Stop recursion
duke@435 4030 if (Parms < _domain->_cnt)
duke@435 4031 _domain->field_at(Parms)->dump2(d,depth-1,st);
duke@435 4032 for (uint i = Parms+1; i < _domain->_cnt; i++) {
duke@435 4033 st->print(", ");
duke@435 4034 _domain->field_at(i)->dump2(d,depth-1,st);
duke@435 4035 }
duke@435 4036 st->print(" )");
duke@435 4037 }
duke@435 4038
duke@435 4039 //------------------------------print_flattened--------------------------------
duke@435 4040 // Print a 'flattened' signature
duke@435 4041 static const char * const flat_type_msg[Type::lastype] = {
coleenp@548 4042 "bad","control","top","int","long","_", "narrowoop",
duke@435 4043 "tuple:", "array:",
duke@435 4044 "ptr", "rawptr", "ptr", "ptr", "ptr", "ptr",
duke@435 4045 "func", "abIO", "return_address", "mem",
duke@435 4046 "float_top", "ftcon:", "flt",
duke@435 4047 "double_top", "dblcon:", "dbl",
duke@435 4048 "bottom"
duke@435 4049 };
duke@435 4050
duke@435 4051 void TypeFunc::print_flattened() const {
duke@435 4052 if( _range->_cnt <= Parms )
duke@435 4053 tty->print("void");
duke@435 4054 else {
duke@435 4055 uint i;
duke@435 4056 for (i = Parms; i < _range->_cnt-1; i++)
duke@435 4057 tty->print("%s/",flat_type_msg[_range->field_at(i)->base()]);
duke@435 4058 tty->print("%s",flat_type_msg[_range->field_at(i)->base()]);
duke@435 4059 }
duke@435 4060 tty->print(" ( ");
duke@435 4061 if (Parms < _domain->_cnt)
duke@435 4062 tty->print("%s",flat_type_msg[_domain->field_at(Parms)->base()]);
duke@435 4063 for (uint i = Parms+1; i < _domain->_cnt; i++)
duke@435 4064 tty->print(", %s",flat_type_msg[_domain->field_at(i)->base()]);
duke@435 4065 tty->print(" )");
duke@435 4066 }
duke@435 4067 #endif
duke@435 4068
duke@435 4069 //------------------------------singleton--------------------------------------
duke@435 4070 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 4071 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 4072 // or a single symbol.
duke@435 4073 bool TypeFunc::singleton(void) const {
duke@435 4074 return false; // Never a singleton
duke@435 4075 }
duke@435 4076
duke@435 4077 bool TypeFunc::empty(void) const {
duke@435 4078 return false; // Never empty
duke@435 4079 }
duke@435 4080
duke@435 4081
duke@435 4082 BasicType TypeFunc::return_type() const{
duke@435 4083 if (range()->cnt() == TypeFunc::Parms) {
duke@435 4084 return T_VOID;
duke@435 4085 }
duke@435 4086 return range()->field_at(TypeFunc::Parms)->basic_type();
duke@435 4087 }

mercurial