src/cpu/x86/vm/stubGenerator_x86_64.cpp

Tue, 21 Jun 2011 09:04:55 -0700

author
never
date
Tue, 21 Jun 2011 09:04:55 -0700
changeset 2980
de6a837d75cf
parent 2978
d83ac25d0304
child 3136
c565834fb592
permissions
-rw-r--r--

7056380: VM crashes with SIGSEGV in compiled code
Summary: code was using andq reg, imm instead of addq addr, imm
Reviewed-by: kvn, jrose, twisti

duke@435 1 /*
iveresov@2595 2 * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "asm/assembler.hpp"
stefank@2314 27 #include "assembler_x86.inline.hpp"
stefank@2314 28 #include "interpreter/interpreter.hpp"
stefank@2314 29 #include "nativeInst_x86.hpp"
stefank@2314 30 #include "oops/instanceOop.hpp"
stefank@2314 31 #include "oops/methodOop.hpp"
stefank@2314 32 #include "oops/objArrayKlass.hpp"
stefank@2314 33 #include "oops/oop.inline.hpp"
stefank@2314 34 #include "prims/methodHandles.hpp"
stefank@2314 35 #include "runtime/frame.inline.hpp"
stefank@2314 36 #include "runtime/handles.inline.hpp"
stefank@2314 37 #include "runtime/sharedRuntime.hpp"
stefank@2314 38 #include "runtime/stubCodeGenerator.hpp"
stefank@2314 39 #include "runtime/stubRoutines.hpp"
stefank@2314 40 #include "utilities/top.hpp"
stefank@2314 41 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 42 # include "thread_linux.inline.hpp"
stefank@2314 43 #endif
stefank@2314 44 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 45 # include "thread_solaris.inline.hpp"
stefank@2314 46 #endif
stefank@2314 47 #ifdef TARGET_OS_FAMILY_windows
stefank@2314 48 # include "thread_windows.inline.hpp"
stefank@2314 49 #endif
stefank@2314 50 #ifdef COMPILER2
stefank@2314 51 #include "opto/runtime.hpp"
stefank@2314 52 #endif
duke@435 53
duke@435 54 // Declaration and definition of StubGenerator (no .hpp file).
duke@435 55 // For a more detailed description of the stub routine structure
duke@435 56 // see the comment in stubRoutines.hpp
duke@435 57
duke@435 58 #define __ _masm->
coleenp@548 59 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
never@739 60 #define a__ ((Assembler*)_masm)->
duke@435 61
duke@435 62 #ifdef PRODUCT
duke@435 63 #define BLOCK_COMMENT(str) /* nothing */
duke@435 64 #else
duke@435 65 #define BLOCK_COMMENT(str) __ block_comment(str)
duke@435 66 #endif
duke@435 67
duke@435 68 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
duke@435 69 const int MXCSR_MASK = 0xFFC0; // Mask out any pending exceptions
duke@435 70
duke@435 71 // Stub Code definitions
duke@435 72
duke@435 73 static address handle_unsafe_access() {
duke@435 74 JavaThread* thread = JavaThread::current();
duke@435 75 address pc = thread->saved_exception_pc();
duke@435 76 // pc is the instruction which we must emulate
duke@435 77 // doing a no-op is fine: return garbage from the load
duke@435 78 // therefore, compute npc
duke@435 79 address npc = Assembler::locate_next_instruction(pc);
duke@435 80
duke@435 81 // request an async exception
duke@435 82 thread->set_pending_unsafe_access_error();
duke@435 83
duke@435 84 // return address of next instruction to execute
duke@435 85 return npc;
duke@435 86 }
duke@435 87
duke@435 88 class StubGenerator: public StubCodeGenerator {
duke@435 89 private:
duke@435 90
duke@435 91 #ifdef PRODUCT
duke@435 92 #define inc_counter_np(counter) (0)
duke@435 93 #else
duke@435 94 void inc_counter_np_(int& counter) {
duke@435 95 __ incrementl(ExternalAddress((address)&counter));
duke@435 96 }
duke@435 97 #define inc_counter_np(counter) \
duke@435 98 BLOCK_COMMENT("inc_counter " #counter); \
duke@435 99 inc_counter_np_(counter);
duke@435 100 #endif
duke@435 101
duke@435 102 // Call stubs are used to call Java from C
duke@435 103 //
duke@435 104 // Linux Arguments:
duke@435 105 // c_rarg0: call wrapper address address
duke@435 106 // c_rarg1: result address
duke@435 107 // c_rarg2: result type BasicType
duke@435 108 // c_rarg3: method methodOop
duke@435 109 // c_rarg4: (interpreter) entry point address
duke@435 110 // c_rarg5: parameters intptr_t*
duke@435 111 // 16(rbp): parameter size (in words) int
duke@435 112 // 24(rbp): thread Thread*
duke@435 113 //
duke@435 114 // [ return_from_Java ] <--- rsp
duke@435 115 // [ argument word n ]
duke@435 116 // ...
duke@435 117 // -12 [ argument word 1 ]
duke@435 118 // -11 [ saved r15 ] <--- rsp_after_call
duke@435 119 // -10 [ saved r14 ]
duke@435 120 // -9 [ saved r13 ]
duke@435 121 // -8 [ saved r12 ]
duke@435 122 // -7 [ saved rbx ]
duke@435 123 // -6 [ call wrapper ]
duke@435 124 // -5 [ result ]
duke@435 125 // -4 [ result type ]
duke@435 126 // -3 [ method ]
duke@435 127 // -2 [ entry point ]
duke@435 128 // -1 [ parameters ]
duke@435 129 // 0 [ saved rbp ] <--- rbp
duke@435 130 // 1 [ return address ]
duke@435 131 // 2 [ parameter size ]
duke@435 132 // 3 [ thread ]
duke@435 133 //
duke@435 134 // Windows Arguments:
duke@435 135 // c_rarg0: call wrapper address address
duke@435 136 // c_rarg1: result address
duke@435 137 // c_rarg2: result type BasicType
duke@435 138 // c_rarg3: method methodOop
duke@435 139 // 48(rbp): (interpreter) entry point address
duke@435 140 // 56(rbp): parameters intptr_t*
duke@435 141 // 64(rbp): parameter size (in words) int
duke@435 142 // 72(rbp): thread Thread*
duke@435 143 //
duke@435 144 // [ return_from_Java ] <--- rsp
duke@435 145 // [ argument word n ]
duke@435 146 // ...
iveresov@2689 147 // -28 [ argument word 1 ]
iveresov@2689 148 // -27 [ saved xmm15 ] <--- rsp_after_call
iveresov@2689 149 // [ saved xmm7-xmm14 ]
iveresov@2689 150 // -9 [ saved xmm6 ] (each xmm register takes 2 slots)
iveresov@2689 151 // -7 [ saved r15 ]
duke@435 152 // -6 [ saved r14 ]
duke@435 153 // -5 [ saved r13 ]
duke@435 154 // -4 [ saved r12 ]
duke@435 155 // -3 [ saved rdi ]
duke@435 156 // -2 [ saved rsi ]
duke@435 157 // -1 [ saved rbx ]
duke@435 158 // 0 [ saved rbp ] <--- rbp
duke@435 159 // 1 [ return address ]
duke@435 160 // 2 [ call wrapper ]
duke@435 161 // 3 [ result ]
duke@435 162 // 4 [ result type ]
duke@435 163 // 5 [ method ]
duke@435 164 // 6 [ entry point ]
duke@435 165 // 7 [ parameters ]
duke@435 166 // 8 [ parameter size ]
duke@435 167 // 9 [ thread ]
duke@435 168 //
duke@435 169 // Windows reserves the callers stack space for arguments 1-4.
duke@435 170 // We spill c_rarg0-c_rarg3 to this space.
duke@435 171
duke@435 172 // Call stub stack layout word offsets from rbp
duke@435 173 enum call_stub_layout {
duke@435 174 #ifdef _WIN64
iveresov@2689 175 xmm_save_first = 6, // save from xmm6
iveresov@2689 176 xmm_save_last = 15, // to xmm15
iveresov@2689 177 xmm_save_base = -9,
iveresov@2689 178 rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27
iveresov@2689 179 r15_off = -7,
duke@435 180 r14_off = -6,
duke@435 181 r13_off = -5,
duke@435 182 r12_off = -4,
duke@435 183 rdi_off = -3,
duke@435 184 rsi_off = -2,
duke@435 185 rbx_off = -1,
duke@435 186 rbp_off = 0,
duke@435 187 retaddr_off = 1,
duke@435 188 call_wrapper_off = 2,
duke@435 189 result_off = 3,
duke@435 190 result_type_off = 4,
duke@435 191 method_off = 5,
duke@435 192 entry_point_off = 6,
duke@435 193 parameters_off = 7,
duke@435 194 parameter_size_off = 8,
duke@435 195 thread_off = 9
duke@435 196 #else
duke@435 197 rsp_after_call_off = -12,
duke@435 198 mxcsr_off = rsp_after_call_off,
duke@435 199 r15_off = -11,
duke@435 200 r14_off = -10,
duke@435 201 r13_off = -9,
duke@435 202 r12_off = -8,
duke@435 203 rbx_off = -7,
duke@435 204 call_wrapper_off = -6,
duke@435 205 result_off = -5,
duke@435 206 result_type_off = -4,
duke@435 207 method_off = -3,
duke@435 208 entry_point_off = -2,
duke@435 209 parameters_off = -1,
duke@435 210 rbp_off = 0,
duke@435 211 retaddr_off = 1,
duke@435 212 parameter_size_off = 2,
duke@435 213 thread_off = 3
duke@435 214 #endif
duke@435 215 };
duke@435 216
iveresov@2689 217 #ifdef _WIN64
iveresov@2689 218 Address xmm_save(int reg) {
iveresov@2689 219 assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range");
iveresov@2689 220 return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize);
iveresov@2689 221 }
iveresov@2689 222 #endif
iveresov@2689 223
duke@435 224 address generate_call_stub(address& return_address) {
duke@435 225 assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
duke@435 226 (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
duke@435 227 "adjust this code");
duke@435 228 StubCodeMark mark(this, "StubRoutines", "call_stub");
duke@435 229 address start = __ pc();
duke@435 230
duke@435 231 // same as in generate_catch_exception()!
duke@435 232 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
duke@435 233
duke@435 234 const Address call_wrapper (rbp, call_wrapper_off * wordSize);
duke@435 235 const Address result (rbp, result_off * wordSize);
duke@435 236 const Address result_type (rbp, result_type_off * wordSize);
duke@435 237 const Address method (rbp, method_off * wordSize);
duke@435 238 const Address entry_point (rbp, entry_point_off * wordSize);
duke@435 239 const Address parameters (rbp, parameters_off * wordSize);
duke@435 240 const Address parameter_size(rbp, parameter_size_off * wordSize);
duke@435 241
duke@435 242 // same as in generate_catch_exception()!
duke@435 243 const Address thread (rbp, thread_off * wordSize);
duke@435 244
duke@435 245 const Address r15_save(rbp, r15_off * wordSize);
duke@435 246 const Address r14_save(rbp, r14_off * wordSize);
duke@435 247 const Address r13_save(rbp, r13_off * wordSize);
duke@435 248 const Address r12_save(rbp, r12_off * wordSize);
duke@435 249 const Address rbx_save(rbp, rbx_off * wordSize);
duke@435 250
duke@435 251 // stub code
duke@435 252 __ enter();
never@739 253 __ subptr(rsp, -rsp_after_call_off * wordSize);
duke@435 254
duke@435 255 // save register parameters
duke@435 256 #ifndef _WIN64
never@739 257 __ movptr(parameters, c_rarg5); // parameters
never@739 258 __ movptr(entry_point, c_rarg4); // entry_point
duke@435 259 #endif
duke@435 260
never@739 261 __ movptr(method, c_rarg3); // method
never@739 262 __ movl(result_type, c_rarg2); // result type
never@739 263 __ movptr(result, c_rarg1); // result
never@739 264 __ movptr(call_wrapper, c_rarg0); // call wrapper
duke@435 265
duke@435 266 // save regs belonging to calling function
never@739 267 __ movptr(rbx_save, rbx);
never@739 268 __ movptr(r12_save, r12);
never@739 269 __ movptr(r13_save, r13);
never@739 270 __ movptr(r14_save, r14);
never@739 271 __ movptr(r15_save, r15);
duke@435 272 #ifdef _WIN64
iveresov@2689 273 for (int i = 6; i <= 15; i++) {
iveresov@2689 274 __ movdqu(xmm_save(i), as_XMMRegister(i));
iveresov@2689 275 }
iveresov@2689 276
duke@435 277 const Address rdi_save(rbp, rdi_off * wordSize);
duke@435 278 const Address rsi_save(rbp, rsi_off * wordSize);
duke@435 279
never@739 280 __ movptr(rsi_save, rsi);
never@739 281 __ movptr(rdi_save, rdi);
duke@435 282 #else
duke@435 283 const Address mxcsr_save(rbp, mxcsr_off * wordSize);
duke@435 284 {
duke@435 285 Label skip_ldmx;
duke@435 286 __ stmxcsr(mxcsr_save);
duke@435 287 __ movl(rax, mxcsr_save);
duke@435 288 __ andl(rax, MXCSR_MASK); // Only check control and mask bits
never@739 289 ExternalAddress mxcsr_std(StubRoutines::x86::mxcsr_std());
duke@435 290 __ cmp32(rax, mxcsr_std);
duke@435 291 __ jcc(Assembler::equal, skip_ldmx);
duke@435 292 __ ldmxcsr(mxcsr_std);
duke@435 293 __ bind(skip_ldmx);
duke@435 294 }
duke@435 295 #endif
duke@435 296
duke@435 297 // Load up thread register
never@739 298 __ movptr(r15_thread, thread);
coleenp@548 299 __ reinit_heapbase();
duke@435 300
duke@435 301 #ifdef ASSERT
duke@435 302 // make sure we have no pending exceptions
duke@435 303 {
duke@435 304 Label L;
never@739 305 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 306 __ jcc(Assembler::equal, L);
duke@435 307 __ stop("StubRoutines::call_stub: entered with pending exception");
duke@435 308 __ bind(L);
duke@435 309 }
duke@435 310 #endif
duke@435 311
duke@435 312 // pass parameters if any
duke@435 313 BLOCK_COMMENT("pass parameters if any");
duke@435 314 Label parameters_done;
duke@435 315 __ movl(c_rarg3, parameter_size);
duke@435 316 __ testl(c_rarg3, c_rarg3);
duke@435 317 __ jcc(Assembler::zero, parameters_done);
duke@435 318
duke@435 319 Label loop;
never@739 320 __ movptr(c_rarg2, parameters); // parameter pointer
never@739 321 __ movl(c_rarg1, c_rarg3); // parameter counter is in c_rarg1
duke@435 322 __ BIND(loop);
never@739 323 __ movptr(rax, Address(c_rarg2, 0));// get parameter
never@739 324 __ addptr(c_rarg2, wordSize); // advance to next parameter
never@739 325 __ decrementl(c_rarg1); // decrement counter
never@739 326 __ push(rax); // pass parameter
duke@435 327 __ jcc(Assembler::notZero, loop);
duke@435 328
duke@435 329 // call Java function
duke@435 330 __ BIND(parameters_done);
never@739 331 __ movptr(rbx, method); // get methodOop
never@739 332 __ movptr(c_rarg1, entry_point); // get entry_point
never@739 333 __ mov(r13, rsp); // set sender sp
duke@435 334 BLOCK_COMMENT("call Java function");
duke@435 335 __ call(c_rarg1);
duke@435 336
duke@435 337 BLOCK_COMMENT("call_stub_return_address:");
duke@435 338 return_address = __ pc();
duke@435 339
duke@435 340 // store result depending on type (everything that is not
duke@435 341 // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
never@739 342 __ movptr(c_rarg0, result);
duke@435 343 Label is_long, is_float, is_double, exit;
duke@435 344 __ movl(c_rarg1, result_type);
duke@435 345 __ cmpl(c_rarg1, T_OBJECT);
duke@435 346 __ jcc(Assembler::equal, is_long);
duke@435 347 __ cmpl(c_rarg1, T_LONG);
duke@435 348 __ jcc(Assembler::equal, is_long);
duke@435 349 __ cmpl(c_rarg1, T_FLOAT);
duke@435 350 __ jcc(Assembler::equal, is_float);
duke@435 351 __ cmpl(c_rarg1, T_DOUBLE);
duke@435 352 __ jcc(Assembler::equal, is_double);
duke@435 353
duke@435 354 // handle T_INT case
duke@435 355 __ movl(Address(c_rarg0, 0), rax);
duke@435 356
duke@435 357 __ BIND(exit);
duke@435 358
duke@435 359 // pop parameters
never@739 360 __ lea(rsp, rsp_after_call);
duke@435 361
duke@435 362 #ifdef ASSERT
duke@435 363 // verify that threads correspond
duke@435 364 {
duke@435 365 Label L, S;
never@739 366 __ cmpptr(r15_thread, thread);
duke@435 367 __ jcc(Assembler::notEqual, S);
duke@435 368 __ get_thread(rbx);
never@739 369 __ cmpptr(r15_thread, rbx);
duke@435 370 __ jcc(Assembler::equal, L);
duke@435 371 __ bind(S);
duke@435 372 __ jcc(Assembler::equal, L);
duke@435 373 __ stop("StubRoutines::call_stub: threads must correspond");
duke@435 374 __ bind(L);
duke@435 375 }
duke@435 376 #endif
duke@435 377
duke@435 378 // restore regs belonging to calling function
iveresov@2689 379 #ifdef _WIN64
iveresov@2689 380 for (int i = 15; i >= 6; i--) {
iveresov@2689 381 __ movdqu(as_XMMRegister(i), xmm_save(i));
iveresov@2689 382 }
iveresov@2689 383 #endif
never@739 384 __ movptr(r15, r15_save);
never@739 385 __ movptr(r14, r14_save);
never@739 386 __ movptr(r13, r13_save);
never@739 387 __ movptr(r12, r12_save);
never@739 388 __ movptr(rbx, rbx_save);
duke@435 389
duke@435 390 #ifdef _WIN64
never@739 391 __ movptr(rdi, rdi_save);
never@739 392 __ movptr(rsi, rsi_save);
duke@435 393 #else
duke@435 394 __ ldmxcsr(mxcsr_save);
duke@435 395 #endif
duke@435 396
duke@435 397 // restore rsp
never@739 398 __ addptr(rsp, -rsp_after_call_off * wordSize);
duke@435 399
duke@435 400 // return
never@739 401 __ pop(rbp);
duke@435 402 __ ret(0);
duke@435 403
duke@435 404 // handle return types different from T_INT
duke@435 405 __ BIND(is_long);
duke@435 406 __ movq(Address(c_rarg0, 0), rax);
duke@435 407 __ jmp(exit);
duke@435 408
duke@435 409 __ BIND(is_float);
duke@435 410 __ movflt(Address(c_rarg0, 0), xmm0);
duke@435 411 __ jmp(exit);
duke@435 412
duke@435 413 __ BIND(is_double);
duke@435 414 __ movdbl(Address(c_rarg0, 0), xmm0);
duke@435 415 __ jmp(exit);
duke@435 416
duke@435 417 return start;
duke@435 418 }
duke@435 419
duke@435 420 // Return point for a Java call if there's an exception thrown in
duke@435 421 // Java code. The exception is caught and transformed into a
duke@435 422 // pending exception stored in JavaThread that can be tested from
duke@435 423 // within the VM.
duke@435 424 //
duke@435 425 // Note: Usually the parameters are removed by the callee. In case
duke@435 426 // of an exception crossing an activation frame boundary, that is
duke@435 427 // not the case if the callee is compiled code => need to setup the
duke@435 428 // rsp.
duke@435 429 //
duke@435 430 // rax: exception oop
duke@435 431
duke@435 432 address generate_catch_exception() {
duke@435 433 StubCodeMark mark(this, "StubRoutines", "catch_exception");
duke@435 434 address start = __ pc();
duke@435 435
duke@435 436 // same as in generate_call_stub():
duke@435 437 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
duke@435 438 const Address thread (rbp, thread_off * wordSize);
duke@435 439
duke@435 440 #ifdef ASSERT
duke@435 441 // verify that threads correspond
duke@435 442 {
duke@435 443 Label L, S;
never@739 444 __ cmpptr(r15_thread, thread);
duke@435 445 __ jcc(Assembler::notEqual, S);
duke@435 446 __ get_thread(rbx);
never@739 447 __ cmpptr(r15_thread, rbx);
duke@435 448 __ jcc(Assembler::equal, L);
duke@435 449 __ bind(S);
duke@435 450 __ stop("StubRoutines::catch_exception: threads must correspond");
duke@435 451 __ bind(L);
duke@435 452 }
duke@435 453 #endif
duke@435 454
duke@435 455 // set pending exception
duke@435 456 __ verify_oop(rax);
duke@435 457
never@739 458 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
duke@435 459 __ lea(rscratch1, ExternalAddress((address)__FILE__));
never@739 460 __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
duke@435 461 __ movl(Address(r15_thread, Thread::exception_line_offset()), (int) __LINE__);
duke@435 462
duke@435 463 // complete return to VM
duke@435 464 assert(StubRoutines::_call_stub_return_address != NULL,
duke@435 465 "_call_stub_return_address must have been generated before");
duke@435 466 __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
duke@435 467
duke@435 468 return start;
duke@435 469 }
duke@435 470
duke@435 471 // Continuation point for runtime calls returning with a pending
duke@435 472 // exception. The pending exception check happened in the runtime
duke@435 473 // or native call stub. The pending exception in Thread is
duke@435 474 // converted into a Java-level exception.
duke@435 475 //
duke@435 476 // Contract with Java-level exception handlers:
duke@435 477 // rax: exception
duke@435 478 // rdx: throwing pc
duke@435 479 //
duke@435 480 // NOTE: At entry of this stub, exception-pc must be on stack !!
duke@435 481
duke@435 482 address generate_forward_exception() {
duke@435 483 StubCodeMark mark(this, "StubRoutines", "forward exception");
duke@435 484 address start = __ pc();
duke@435 485
duke@435 486 // Upon entry, the sp points to the return address returning into
duke@435 487 // Java (interpreted or compiled) code; i.e., the return address
duke@435 488 // becomes the throwing pc.
duke@435 489 //
duke@435 490 // Arguments pushed before the runtime call are still on the stack
duke@435 491 // but the exception handler will reset the stack pointer ->
duke@435 492 // ignore them. A potential result in registers can be ignored as
duke@435 493 // well.
duke@435 494
duke@435 495 #ifdef ASSERT
duke@435 496 // make sure this code is only executed if there is a pending exception
duke@435 497 {
duke@435 498 Label L;
never@739 499 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL);
duke@435 500 __ jcc(Assembler::notEqual, L);
duke@435 501 __ stop("StubRoutines::forward exception: no pending exception (1)");
duke@435 502 __ bind(L);
duke@435 503 }
duke@435 504 #endif
duke@435 505
duke@435 506 // compute exception handler into rbx
never@739 507 __ movptr(c_rarg0, Address(rsp, 0));
duke@435 508 BLOCK_COMMENT("call exception_handler_for_return_address");
duke@435 509 __ call_VM_leaf(CAST_FROM_FN_PTR(address,
duke@435 510 SharedRuntime::exception_handler_for_return_address),
twisti@1730 511 r15_thread, c_rarg0);
never@739 512 __ mov(rbx, rax);
duke@435 513
duke@435 514 // setup rax & rdx, remove return address & clear pending exception
never@739 515 __ pop(rdx);
never@739 516 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
xlu@947 517 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 518
duke@435 519 #ifdef ASSERT
duke@435 520 // make sure exception is set
duke@435 521 {
duke@435 522 Label L;
never@739 523 __ testptr(rax, rax);
duke@435 524 __ jcc(Assembler::notEqual, L);
duke@435 525 __ stop("StubRoutines::forward exception: no pending exception (2)");
duke@435 526 __ bind(L);
duke@435 527 }
duke@435 528 #endif
duke@435 529
duke@435 530 // continue at exception handler (return address removed)
duke@435 531 // rax: exception
duke@435 532 // rbx: exception handler
duke@435 533 // rdx: throwing pc
duke@435 534 __ verify_oop(rax);
duke@435 535 __ jmp(rbx);
duke@435 536
duke@435 537 return start;
duke@435 538 }
duke@435 539
duke@435 540 // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
duke@435 541 //
duke@435 542 // Arguments :
duke@435 543 // c_rarg0: exchange_value
duke@435 544 // c_rarg0: dest
duke@435 545 //
duke@435 546 // Result:
duke@435 547 // *dest <- ex, return (orig *dest)
duke@435 548 address generate_atomic_xchg() {
duke@435 549 StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
duke@435 550 address start = __ pc();
duke@435 551
duke@435 552 __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
duke@435 553 __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
duke@435 554 __ ret(0);
duke@435 555
duke@435 556 return start;
duke@435 557 }
duke@435 558
duke@435 559 // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
duke@435 560 //
duke@435 561 // Arguments :
duke@435 562 // c_rarg0: exchange_value
duke@435 563 // c_rarg1: dest
duke@435 564 //
duke@435 565 // Result:
duke@435 566 // *dest <- ex, return (orig *dest)
duke@435 567 address generate_atomic_xchg_ptr() {
duke@435 568 StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
duke@435 569 address start = __ pc();
duke@435 570
never@739 571 __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
never@739 572 __ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK
duke@435 573 __ ret(0);
duke@435 574
duke@435 575 return start;
duke@435 576 }
duke@435 577
duke@435 578 // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
duke@435 579 // jint compare_value)
duke@435 580 //
duke@435 581 // Arguments :
duke@435 582 // c_rarg0: exchange_value
duke@435 583 // c_rarg1: dest
duke@435 584 // c_rarg2: compare_value
duke@435 585 //
duke@435 586 // Result:
duke@435 587 // if ( compare_value == *dest ) {
duke@435 588 // *dest = exchange_value
duke@435 589 // return compare_value;
duke@435 590 // else
duke@435 591 // return *dest;
duke@435 592 address generate_atomic_cmpxchg() {
duke@435 593 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
duke@435 594 address start = __ pc();
duke@435 595
duke@435 596 __ movl(rax, c_rarg2);
duke@435 597 if ( os::is_MP() ) __ lock();
duke@435 598 __ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
duke@435 599 __ ret(0);
duke@435 600
duke@435 601 return start;
duke@435 602 }
duke@435 603
duke@435 604 // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value,
duke@435 605 // volatile jlong* dest,
duke@435 606 // jlong compare_value)
duke@435 607 // Arguments :
duke@435 608 // c_rarg0: exchange_value
duke@435 609 // c_rarg1: dest
duke@435 610 // c_rarg2: compare_value
duke@435 611 //
duke@435 612 // Result:
duke@435 613 // if ( compare_value == *dest ) {
duke@435 614 // *dest = exchange_value
duke@435 615 // return compare_value;
duke@435 616 // else
duke@435 617 // return *dest;
duke@435 618 address generate_atomic_cmpxchg_long() {
duke@435 619 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
duke@435 620 address start = __ pc();
duke@435 621
duke@435 622 __ movq(rax, c_rarg2);
duke@435 623 if ( os::is_MP() ) __ lock();
duke@435 624 __ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
duke@435 625 __ ret(0);
duke@435 626
duke@435 627 return start;
duke@435 628 }
duke@435 629
duke@435 630 // Support for jint atomic::add(jint add_value, volatile jint* dest)
duke@435 631 //
duke@435 632 // Arguments :
duke@435 633 // c_rarg0: add_value
duke@435 634 // c_rarg1: dest
duke@435 635 //
duke@435 636 // Result:
duke@435 637 // *dest += add_value
duke@435 638 // return *dest;
duke@435 639 address generate_atomic_add() {
duke@435 640 StubCodeMark mark(this, "StubRoutines", "atomic_add");
duke@435 641 address start = __ pc();
duke@435 642
duke@435 643 __ movl(rax, c_rarg0);
duke@435 644 if ( os::is_MP() ) __ lock();
duke@435 645 __ xaddl(Address(c_rarg1, 0), c_rarg0);
duke@435 646 __ addl(rax, c_rarg0);
duke@435 647 __ ret(0);
duke@435 648
duke@435 649 return start;
duke@435 650 }
duke@435 651
duke@435 652 // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
duke@435 653 //
duke@435 654 // Arguments :
duke@435 655 // c_rarg0: add_value
duke@435 656 // c_rarg1: dest
duke@435 657 //
duke@435 658 // Result:
duke@435 659 // *dest += add_value
duke@435 660 // return *dest;
duke@435 661 address generate_atomic_add_ptr() {
duke@435 662 StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
duke@435 663 address start = __ pc();
duke@435 664
never@739 665 __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
duke@435 666 if ( os::is_MP() ) __ lock();
never@739 667 __ xaddptr(Address(c_rarg1, 0), c_rarg0);
never@739 668 __ addptr(rax, c_rarg0);
duke@435 669 __ ret(0);
duke@435 670
duke@435 671 return start;
duke@435 672 }
duke@435 673
duke@435 674 // Support for intptr_t OrderAccess::fence()
duke@435 675 //
duke@435 676 // Arguments :
duke@435 677 //
duke@435 678 // Result:
duke@435 679 address generate_orderaccess_fence() {
duke@435 680 StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
duke@435 681 address start = __ pc();
never@1106 682 __ membar(Assembler::StoreLoad);
duke@435 683 __ ret(0);
duke@435 684
duke@435 685 return start;
duke@435 686 }
duke@435 687
duke@435 688 // Support for intptr_t get_previous_fp()
duke@435 689 //
duke@435 690 // This routine is used to find the previous frame pointer for the
duke@435 691 // caller (current_frame_guess). This is used as part of debugging
duke@435 692 // ps() is seemingly lost trying to find frames.
duke@435 693 // This code assumes that caller current_frame_guess) has a frame.
duke@435 694 address generate_get_previous_fp() {
duke@435 695 StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
duke@435 696 const Address old_fp(rbp, 0);
duke@435 697 const Address older_fp(rax, 0);
duke@435 698 address start = __ pc();
duke@435 699
duke@435 700 __ enter();
never@739 701 __ movptr(rax, old_fp); // callers fp
never@739 702 __ movptr(rax, older_fp); // the frame for ps()
never@739 703 __ pop(rbp);
duke@435 704 __ ret(0);
duke@435 705
duke@435 706 return start;
duke@435 707 }
duke@435 708
duke@435 709 //----------------------------------------------------------------------------------------------------
duke@435 710 // Support for void verify_mxcsr()
duke@435 711 //
duke@435 712 // This routine is used with -Xcheck:jni to verify that native
duke@435 713 // JNI code does not return to Java code without restoring the
duke@435 714 // MXCSR register to our expected state.
duke@435 715
duke@435 716 address generate_verify_mxcsr() {
duke@435 717 StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
duke@435 718 address start = __ pc();
duke@435 719
duke@435 720 const Address mxcsr_save(rsp, 0);
duke@435 721
duke@435 722 if (CheckJNICalls) {
duke@435 723 Label ok_ret;
never@739 724 __ push(rax);
never@739 725 __ subptr(rsp, wordSize); // allocate a temp location
duke@435 726 __ stmxcsr(mxcsr_save);
duke@435 727 __ movl(rax, mxcsr_save);
duke@435 728 __ andl(rax, MXCSR_MASK); // Only check control and mask bits
never@739 729 __ cmpl(rax, *(int *)(StubRoutines::x86::mxcsr_std()));
duke@435 730 __ jcc(Assembler::equal, ok_ret);
duke@435 731
duke@435 732 __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
duke@435 733
never@739 734 __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
duke@435 735
duke@435 736 __ bind(ok_ret);
never@739 737 __ addptr(rsp, wordSize);
never@739 738 __ pop(rax);
duke@435 739 }
duke@435 740
duke@435 741 __ ret(0);
duke@435 742
duke@435 743 return start;
duke@435 744 }
duke@435 745
duke@435 746 address generate_f2i_fixup() {
duke@435 747 StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
duke@435 748 Address inout(rsp, 5 * wordSize); // return address + 4 saves
duke@435 749
duke@435 750 address start = __ pc();
duke@435 751
duke@435 752 Label L;
duke@435 753
never@739 754 __ push(rax);
never@739 755 __ push(c_rarg3);
never@739 756 __ push(c_rarg2);
never@739 757 __ push(c_rarg1);
duke@435 758
duke@435 759 __ movl(rax, 0x7f800000);
duke@435 760 __ xorl(c_rarg3, c_rarg3);
duke@435 761 __ movl(c_rarg2, inout);
duke@435 762 __ movl(c_rarg1, c_rarg2);
duke@435 763 __ andl(c_rarg1, 0x7fffffff);
duke@435 764 __ cmpl(rax, c_rarg1); // NaN? -> 0
duke@435 765 __ jcc(Assembler::negative, L);
duke@435 766 __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
duke@435 767 __ movl(c_rarg3, 0x80000000);
duke@435 768 __ movl(rax, 0x7fffffff);
duke@435 769 __ cmovl(Assembler::positive, c_rarg3, rax);
duke@435 770
duke@435 771 __ bind(L);
never@739 772 __ movptr(inout, c_rarg3);
never@739 773
never@739 774 __ pop(c_rarg1);
never@739 775 __ pop(c_rarg2);
never@739 776 __ pop(c_rarg3);
never@739 777 __ pop(rax);
duke@435 778
duke@435 779 __ ret(0);
duke@435 780
duke@435 781 return start;
duke@435 782 }
duke@435 783
duke@435 784 address generate_f2l_fixup() {
duke@435 785 StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
duke@435 786 Address inout(rsp, 5 * wordSize); // return address + 4 saves
duke@435 787 address start = __ pc();
duke@435 788
duke@435 789 Label L;
duke@435 790
never@739 791 __ push(rax);
never@739 792 __ push(c_rarg3);
never@739 793 __ push(c_rarg2);
never@739 794 __ push(c_rarg1);
duke@435 795
duke@435 796 __ movl(rax, 0x7f800000);
duke@435 797 __ xorl(c_rarg3, c_rarg3);
duke@435 798 __ movl(c_rarg2, inout);
duke@435 799 __ movl(c_rarg1, c_rarg2);
duke@435 800 __ andl(c_rarg1, 0x7fffffff);
duke@435 801 __ cmpl(rax, c_rarg1); // NaN? -> 0
duke@435 802 __ jcc(Assembler::negative, L);
duke@435 803 __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
duke@435 804 __ mov64(c_rarg3, 0x8000000000000000);
duke@435 805 __ mov64(rax, 0x7fffffffffffffff);
never@739 806 __ cmov(Assembler::positive, c_rarg3, rax);
duke@435 807
duke@435 808 __ bind(L);
never@739 809 __ movptr(inout, c_rarg3);
never@739 810
never@739 811 __ pop(c_rarg1);
never@739 812 __ pop(c_rarg2);
never@739 813 __ pop(c_rarg3);
never@739 814 __ pop(rax);
duke@435 815
duke@435 816 __ ret(0);
duke@435 817
duke@435 818 return start;
duke@435 819 }
duke@435 820
duke@435 821 address generate_d2i_fixup() {
duke@435 822 StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
duke@435 823 Address inout(rsp, 6 * wordSize); // return address + 5 saves
duke@435 824
duke@435 825 address start = __ pc();
duke@435 826
duke@435 827 Label L;
duke@435 828
never@739 829 __ push(rax);
never@739 830 __ push(c_rarg3);
never@739 831 __ push(c_rarg2);
never@739 832 __ push(c_rarg1);
never@739 833 __ push(c_rarg0);
duke@435 834
duke@435 835 __ movl(rax, 0x7ff00000);
duke@435 836 __ movq(c_rarg2, inout);
duke@435 837 __ movl(c_rarg3, c_rarg2);
never@739 838 __ mov(c_rarg1, c_rarg2);
never@739 839 __ mov(c_rarg0, c_rarg2);
duke@435 840 __ negl(c_rarg3);
never@739 841 __ shrptr(c_rarg1, 0x20);
duke@435 842 __ orl(c_rarg3, c_rarg2);
duke@435 843 __ andl(c_rarg1, 0x7fffffff);
duke@435 844 __ xorl(c_rarg2, c_rarg2);
duke@435 845 __ shrl(c_rarg3, 0x1f);
duke@435 846 __ orl(c_rarg1, c_rarg3);
duke@435 847 __ cmpl(rax, c_rarg1);
duke@435 848 __ jcc(Assembler::negative, L); // NaN -> 0
never@739 849 __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
duke@435 850 __ movl(c_rarg2, 0x80000000);
duke@435 851 __ movl(rax, 0x7fffffff);
never@739 852 __ cmov(Assembler::positive, c_rarg2, rax);
duke@435 853
duke@435 854 __ bind(L);
never@739 855 __ movptr(inout, c_rarg2);
never@739 856
never@739 857 __ pop(c_rarg0);
never@739 858 __ pop(c_rarg1);
never@739 859 __ pop(c_rarg2);
never@739 860 __ pop(c_rarg3);
never@739 861 __ pop(rax);
duke@435 862
duke@435 863 __ ret(0);
duke@435 864
duke@435 865 return start;
duke@435 866 }
duke@435 867
duke@435 868 address generate_d2l_fixup() {
duke@435 869 StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
duke@435 870 Address inout(rsp, 6 * wordSize); // return address + 5 saves
duke@435 871
duke@435 872 address start = __ pc();
duke@435 873
duke@435 874 Label L;
duke@435 875
never@739 876 __ push(rax);
never@739 877 __ push(c_rarg3);
never@739 878 __ push(c_rarg2);
never@739 879 __ push(c_rarg1);
never@739 880 __ push(c_rarg0);
duke@435 881
duke@435 882 __ movl(rax, 0x7ff00000);
duke@435 883 __ movq(c_rarg2, inout);
duke@435 884 __ movl(c_rarg3, c_rarg2);
never@739 885 __ mov(c_rarg1, c_rarg2);
never@739 886 __ mov(c_rarg0, c_rarg2);
duke@435 887 __ negl(c_rarg3);
never@739 888 __ shrptr(c_rarg1, 0x20);
duke@435 889 __ orl(c_rarg3, c_rarg2);
duke@435 890 __ andl(c_rarg1, 0x7fffffff);
duke@435 891 __ xorl(c_rarg2, c_rarg2);
duke@435 892 __ shrl(c_rarg3, 0x1f);
duke@435 893 __ orl(c_rarg1, c_rarg3);
duke@435 894 __ cmpl(rax, c_rarg1);
duke@435 895 __ jcc(Assembler::negative, L); // NaN -> 0
duke@435 896 __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
duke@435 897 __ mov64(c_rarg2, 0x8000000000000000);
duke@435 898 __ mov64(rax, 0x7fffffffffffffff);
duke@435 899 __ cmovq(Assembler::positive, c_rarg2, rax);
duke@435 900
duke@435 901 __ bind(L);
duke@435 902 __ movq(inout, c_rarg2);
duke@435 903
never@739 904 __ pop(c_rarg0);
never@739 905 __ pop(c_rarg1);
never@739 906 __ pop(c_rarg2);
never@739 907 __ pop(c_rarg3);
never@739 908 __ pop(rax);
duke@435 909
duke@435 910 __ ret(0);
duke@435 911
duke@435 912 return start;
duke@435 913 }
duke@435 914
duke@435 915 address generate_fp_mask(const char *stub_name, int64_t mask) {
kvn@1800 916 __ align(CodeEntryAlignment);
duke@435 917 StubCodeMark mark(this, "StubRoutines", stub_name);
duke@435 918 address start = __ pc();
duke@435 919
duke@435 920 __ emit_data64( mask, relocInfo::none );
duke@435 921 __ emit_data64( mask, relocInfo::none );
duke@435 922
duke@435 923 return start;
duke@435 924 }
duke@435 925
duke@435 926 // The following routine generates a subroutine to throw an
duke@435 927 // asynchronous UnknownError when an unsafe access gets a fault that
duke@435 928 // could not be reasonably prevented by the programmer. (Example:
duke@435 929 // SIGBUS/OBJERR.)
duke@435 930 address generate_handler_for_unsafe_access() {
duke@435 931 StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
duke@435 932 address start = __ pc();
duke@435 933
never@739 934 __ push(0); // hole for return address-to-be
never@739 935 __ pusha(); // push registers
duke@435 936 Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
duke@435 937
never@739 938 __ subptr(rsp, frame::arg_reg_save_area_bytes);
duke@435 939 BLOCK_COMMENT("call handle_unsafe_access");
duke@435 940 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
never@739 941 __ addptr(rsp, frame::arg_reg_save_area_bytes);
never@739 942
never@739 943 __ movptr(next_pc, rax); // stuff next address
never@739 944 __ popa();
duke@435 945 __ ret(0); // jump to next address
duke@435 946
duke@435 947 return start;
duke@435 948 }
duke@435 949
duke@435 950 // Non-destructive plausibility checks for oops
duke@435 951 //
duke@435 952 // Arguments:
duke@435 953 // all args on stack!
duke@435 954 //
duke@435 955 // Stack after saving c_rarg3:
duke@435 956 // [tos + 0]: saved c_rarg3
duke@435 957 // [tos + 1]: saved c_rarg2
kvn@559 958 // [tos + 2]: saved r12 (several TemplateTable methods use it)
kvn@559 959 // [tos + 3]: saved flags
kvn@559 960 // [tos + 4]: return address
kvn@559 961 // * [tos + 5]: error message (char*)
kvn@559 962 // * [tos + 6]: object to verify (oop)
kvn@559 963 // * [tos + 7]: saved rax - saved by caller and bashed
kvn@1938 964 // * [tos + 8]: saved r10 (rscratch1) - saved by caller
duke@435 965 // * = popped on exit
duke@435 966 address generate_verify_oop() {
duke@435 967 StubCodeMark mark(this, "StubRoutines", "verify_oop");
duke@435 968 address start = __ pc();
duke@435 969
duke@435 970 Label exit, error;
duke@435 971
never@739 972 __ pushf();
duke@435 973 __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
duke@435 974
never@739 975 __ push(r12);
kvn@559 976
duke@435 977 // save c_rarg2 and c_rarg3
never@739 978 __ push(c_rarg2);
never@739 979 __ push(c_rarg3);
duke@435 980
kvn@559 981 enum {
kvn@559 982 // After previous pushes.
kvn@559 983 oop_to_verify = 6 * wordSize,
kvn@559 984 saved_rax = 7 * wordSize,
kvn@1938 985 saved_r10 = 8 * wordSize,
kvn@559 986
kvn@559 987 // Before the call to MacroAssembler::debug(), see below.
kvn@559 988 return_addr = 16 * wordSize,
kvn@559 989 error_msg = 17 * wordSize
kvn@559 990 };
kvn@559 991
duke@435 992 // get object
never@739 993 __ movptr(rax, Address(rsp, oop_to_verify));
duke@435 994
duke@435 995 // make sure object is 'reasonable'
never@739 996 __ testptr(rax, rax);
duke@435 997 __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
duke@435 998 // Check if the oop is in the right area of memory
never@739 999 __ movptr(c_rarg2, rax);
xlu@947 1000 __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask());
never@739 1001 __ andptr(c_rarg2, c_rarg3);
xlu@947 1002 __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits());
never@739 1003 __ cmpptr(c_rarg2, c_rarg3);
duke@435 1004 __ jcc(Assembler::notZero, error);
duke@435 1005
kvn@559 1006 // set r12 to heapbase for load_klass()
kvn@559 1007 __ reinit_heapbase();
kvn@559 1008
duke@435 1009 // make sure klass is 'reasonable'
coleenp@548 1010 __ load_klass(rax, rax); // get klass
never@739 1011 __ testptr(rax, rax);
duke@435 1012 __ jcc(Assembler::zero, error); // if klass is NULL it is broken
duke@435 1013 // Check if the klass is in the right area of memory
never@739 1014 __ mov(c_rarg2, rax);
xlu@947 1015 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
never@739 1016 __ andptr(c_rarg2, c_rarg3);
xlu@947 1017 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
never@739 1018 __ cmpptr(c_rarg2, c_rarg3);
duke@435 1019 __ jcc(Assembler::notZero, error);
duke@435 1020
duke@435 1021 // make sure klass' klass is 'reasonable'
coleenp@548 1022 __ load_klass(rax, rax);
never@739 1023 __ testptr(rax, rax);
duke@435 1024 __ jcc(Assembler::zero, error); // if klass' klass is NULL it is broken
duke@435 1025 // Check if the klass' klass is in the right area of memory
xlu@947 1026 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
never@739 1027 __ andptr(rax, c_rarg3);
xlu@947 1028 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
never@739 1029 __ cmpptr(rax, c_rarg3);
duke@435 1030 __ jcc(Assembler::notZero, error);
duke@435 1031
duke@435 1032 // return if everything seems ok
duke@435 1033 __ bind(exit);
never@739 1034 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back
kvn@1938 1035 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
never@739 1036 __ pop(c_rarg3); // restore c_rarg3
never@739 1037 __ pop(c_rarg2); // restore c_rarg2
never@739 1038 __ pop(r12); // restore r12
never@739 1039 __ popf(); // restore flags
kvn@1938 1040 __ ret(4 * wordSize); // pop caller saved stuff
duke@435 1041
duke@435 1042 // handle errors
duke@435 1043 __ bind(error);
never@739 1044 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back
kvn@1938 1045 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
never@739 1046 __ pop(c_rarg3); // get saved c_rarg3 back
never@739 1047 __ pop(c_rarg2); // get saved c_rarg2 back
never@739 1048 __ pop(r12); // get saved r12 back
never@739 1049 __ popf(); // get saved flags off stack --
duke@435 1050 // will be ignored
duke@435 1051
never@739 1052 __ pusha(); // push registers
duke@435 1053 // (rip is already
duke@435 1054 // already pushed)
kvn@559 1055 // debug(char* msg, int64_t pc, int64_t regs[])
duke@435 1056 // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
duke@435 1057 // pushed all the registers, so now the stack looks like:
duke@435 1058 // [tos + 0] 16 saved registers
duke@435 1059 // [tos + 16] return address
kvn@559 1060 // * [tos + 17] error message (char*)
kvn@559 1061 // * [tos + 18] object to verify (oop)
kvn@559 1062 // * [tos + 19] saved rax - saved by caller and bashed
kvn@1938 1063 // * [tos + 20] saved r10 (rscratch1) - saved by caller
kvn@559 1064 // * = popped on exit
kvn@559 1065
never@739 1066 __ movptr(c_rarg0, Address(rsp, error_msg)); // pass address of error message
never@739 1067 __ movptr(c_rarg1, Address(rsp, return_addr)); // pass return address
never@739 1068 __ movq(c_rarg2, rsp); // pass address of regs on stack
never@739 1069 __ mov(r12, rsp); // remember rsp
never@739 1070 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
never@739 1071 __ andptr(rsp, -16); // align stack as required by ABI
duke@435 1072 BLOCK_COMMENT("call MacroAssembler::debug");
never@739 1073 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
never@739 1074 __ mov(rsp, r12); // restore rsp
never@739 1075 __ popa(); // pop registers (includes r12)
kvn@1938 1076 __ ret(4 * wordSize); // pop caller saved stuff
duke@435 1077
duke@435 1078 return start;
duke@435 1079 }
duke@435 1080
duke@435 1081 //
duke@435 1082 // Verify that a register contains clean 32-bits positive value
duke@435 1083 // (high 32-bits are 0) so it could be used in 64-bits shifts.
duke@435 1084 //
duke@435 1085 // Input:
duke@435 1086 // Rint - 32-bits value
duke@435 1087 // Rtmp - scratch
duke@435 1088 //
duke@435 1089 void assert_clean_int(Register Rint, Register Rtmp) {
duke@435 1090 #ifdef ASSERT
duke@435 1091 Label L;
duke@435 1092 assert_different_registers(Rtmp, Rint);
duke@435 1093 __ movslq(Rtmp, Rint);
duke@435 1094 __ cmpq(Rtmp, Rint);
kvn@559 1095 __ jcc(Assembler::equal, L);
duke@435 1096 __ stop("high 32-bits of int value are not 0");
duke@435 1097 __ bind(L);
duke@435 1098 #endif
duke@435 1099 }
duke@435 1100
duke@435 1101 // Generate overlap test for array copy stubs
duke@435 1102 //
duke@435 1103 // Input:
duke@435 1104 // c_rarg0 - from
duke@435 1105 // c_rarg1 - to
duke@435 1106 // c_rarg2 - element count
duke@435 1107 //
duke@435 1108 // Output:
duke@435 1109 // rax - &from[element count - 1]
duke@435 1110 //
duke@435 1111 void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
duke@435 1112 assert(no_overlap_target != NULL, "must be generated");
duke@435 1113 array_overlap_test(no_overlap_target, NULL, sf);
duke@435 1114 }
duke@435 1115 void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
duke@435 1116 array_overlap_test(NULL, &L_no_overlap, sf);
duke@435 1117 }
duke@435 1118 void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
duke@435 1119 const Register from = c_rarg0;
duke@435 1120 const Register to = c_rarg1;
duke@435 1121 const Register count = c_rarg2;
duke@435 1122 const Register end_from = rax;
duke@435 1123
never@739 1124 __ cmpptr(to, from);
never@739 1125 __ lea(end_from, Address(from, count, sf, 0));
duke@435 1126 if (NOLp == NULL) {
duke@435 1127 ExternalAddress no_overlap(no_overlap_target);
duke@435 1128 __ jump_cc(Assembler::belowEqual, no_overlap);
never@739 1129 __ cmpptr(to, end_from);
duke@435 1130 __ jump_cc(Assembler::aboveEqual, no_overlap);
duke@435 1131 } else {
duke@435 1132 __ jcc(Assembler::belowEqual, (*NOLp));
never@739 1133 __ cmpptr(to, end_from);
duke@435 1134 __ jcc(Assembler::aboveEqual, (*NOLp));
duke@435 1135 }
duke@435 1136 }
duke@435 1137
duke@435 1138 // Shuffle first three arg regs on Windows into Linux/Solaris locations.
duke@435 1139 //
duke@435 1140 // Outputs:
duke@435 1141 // rdi - rcx
duke@435 1142 // rsi - rdx
duke@435 1143 // rdx - r8
duke@435 1144 // rcx - r9
duke@435 1145 //
duke@435 1146 // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
duke@435 1147 // are non-volatile. r9 and r10 should not be used by the caller.
duke@435 1148 //
duke@435 1149 void setup_arg_regs(int nargs = 3) {
duke@435 1150 const Register saved_rdi = r9;
duke@435 1151 const Register saved_rsi = r10;
duke@435 1152 assert(nargs == 3 || nargs == 4, "else fix");
duke@435 1153 #ifdef _WIN64
duke@435 1154 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
duke@435 1155 "unexpected argument registers");
duke@435 1156 if (nargs >= 4)
never@739 1157 __ mov(rax, r9); // r9 is also saved_rdi
never@739 1158 __ movptr(saved_rdi, rdi);
never@739 1159 __ movptr(saved_rsi, rsi);
never@739 1160 __ mov(rdi, rcx); // c_rarg0
never@739 1161 __ mov(rsi, rdx); // c_rarg1
never@739 1162 __ mov(rdx, r8); // c_rarg2
duke@435 1163 if (nargs >= 4)
never@739 1164 __ mov(rcx, rax); // c_rarg3 (via rax)
duke@435 1165 #else
duke@435 1166 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
duke@435 1167 "unexpected argument registers");
duke@435 1168 #endif
duke@435 1169 }
duke@435 1170
duke@435 1171 void restore_arg_regs() {
duke@435 1172 const Register saved_rdi = r9;
duke@435 1173 const Register saved_rsi = r10;
duke@435 1174 #ifdef _WIN64
never@739 1175 __ movptr(rdi, saved_rdi);
never@739 1176 __ movptr(rsi, saved_rsi);
duke@435 1177 #endif
duke@435 1178 }
duke@435 1179
duke@435 1180 // Generate code for an array write pre barrier
duke@435 1181 //
duke@435 1182 // addr - starting address
iveresov@2606 1183 // count - element count
iveresov@2606 1184 // tmp - scratch register
duke@435 1185 //
duke@435 1186 // Destroy no registers!
duke@435 1187 //
iveresov@2606 1188 void gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) {
duke@435 1189 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1190 switch (bs->kind()) {
duke@435 1191 case BarrierSet::G1SATBCT:
duke@435 1192 case BarrierSet::G1SATBCTLogging:
iveresov@2606 1193 // With G1, don't generate the call if we statically know that the target in uninitialized
iveresov@2606 1194 if (!dest_uninitialized) {
iveresov@2606 1195 __ pusha(); // push registers
iveresov@2606 1196 if (count == c_rarg0) {
iveresov@2606 1197 if (addr == c_rarg1) {
iveresov@2606 1198 // exactly backwards!!
iveresov@2606 1199 __ xchgptr(c_rarg1, c_rarg0);
iveresov@2606 1200 } else {
iveresov@2606 1201 __ movptr(c_rarg1, count);
iveresov@2606 1202 __ movptr(c_rarg0, addr);
iveresov@2606 1203 }
iveresov@2606 1204 } else {
iveresov@2606 1205 __ movptr(c_rarg0, addr);
iveresov@2606 1206 __ movptr(c_rarg1, count);
iveresov@2606 1207 }
iveresov@2606 1208 __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), 2);
iveresov@2606 1209 __ popa();
duke@435 1210 }
iveresov@2606 1211 break;
duke@435 1212 case BarrierSet::CardTableModRef:
duke@435 1213 case BarrierSet::CardTableExtension:
duke@435 1214 case BarrierSet::ModRef:
duke@435 1215 break;
ysr@777 1216 default:
duke@435 1217 ShouldNotReachHere();
duke@435 1218
duke@435 1219 }
duke@435 1220 }
duke@435 1221
duke@435 1222 //
duke@435 1223 // Generate code for an array write post barrier
duke@435 1224 //
duke@435 1225 // Input:
duke@435 1226 // start - register containing starting address of destination array
duke@435 1227 // end - register containing ending address of destination array
duke@435 1228 // scratch - scratch register
duke@435 1229 //
duke@435 1230 // The input registers are overwritten.
duke@435 1231 // The ending address is inclusive.
duke@435 1232 void gen_write_ref_array_post_barrier(Register start, Register end, Register scratch) {
duke@435 1233 assert_different_registers(start, end, scratch);
duke@435 1234 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1235 switch (bs->kind()) {
duke@435 1236 case BarrierSet::G1SATBCT:
duke@435 1237 case BarrierSet::G1SATBCTLogging:
duke@435 1238
duke@435 1239 {
never@739 1240 __ pusha(); // push registers (overkill)
duke@435 1241 // must compute element count unless barrier set interface is changed (other platforms supply count)
duke@435 1242 assert_different_registers(start, end, scratch);
ysr@1280 1243 __ lea(scratch, Address(end, BytesPerHeapOop));
ysr@1280 1244 __ subptr(scratch, start); // subtract start to get #bytes
ysr@1280 1245 __ shrptr(scratch, LogBytesPerHeapOop); // convert to element count
never@739 1246 __ mov(c_rarg0, start);
never@739 1247 __ mov(c_rarg1, scratch);
apetrusenko@1627 1248 __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), 2);
never@739 1249 __ popa();
duke@435 1250 }
duke@435 1251 break;
duke@435 1252 case BarrierSet::CardTableModRef:
duke@435 1253 case BarrierSet::CardTableExtension:
duke@435 1254 {
duke@435 1255 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 1256 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 1257
duke@435 1258 Label L_loop;
duke@435 1259
never@739 1260 __ shrptr(start, CardTableModRefBS::card_shift);
ysr@1280 1261 __ addptr(end, BytesPerHeapOop);
never@739 1262 __ shrptr(end, CardTableModRefBS::card_shift);
never@739 1263 __ subptr(end, start); // number of bytes to copy
duke@435 1264
never@684 1265 intptr_t disp = (intptr_t) ct->byte_map_base;
never@684 1266 if (__ is_simm32(disp)) {
never@684 1267 Address cardtable(noreg, noreg, Address::no_scale, disp);
never@684 1268 __ lea(scratch, cardtable);
never@684 1269 } else {
never@684 1270 ExternalAddress cardtable((address)disp);
never@684 1271 __ lea(scratch, cardtable);
never@684 1272 }
never@684 1273
duke@435 1274 const Register count = end; // 'end' register contains bytes count now
never@739 1275 __ addptr(start, scratch);
duke@435 1276 __ BIND(L_loop);
duke@435 1277 __ movb(Address(start, count, Address::times_1), 0);
never@739 1278 __ decrement(count);
duke@435 1279 __ jcc(Assembler::greaterEqual, L_loop);
duke@435 1280 }
ysr@777 1281 break;
ysr@777 1282 default:
ysr@777 1283 ShouldNotReachHere();
ysr@777 1284
ysr@777 1285 }
ysr@777 1286 }
duke@435 1287
kvn@840 1288
duke@435 1289 // Copy big chunks forward
duke@435 1290 //
duke@435 1291 // Inputs:
duke@435 1292 // end_from - source arrays end address
duke@435 1293 // end_to - destination array end address
duke@435 1294 // qword_count - 64-bits element count, negative
duke@435 1295 // to - scratch
duke@435 1296 // L_copy_32_bytes - entry label
duke@435 1297 // L_copy_8_bytes - exit label
duke@435 1298 //
duke@435 1299 void copy_32_bytes_forward(Register end_from, Register end_to,
duke@435 1300 Register qword_count, Register to,
duke@435 1301 Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
duke@435 1302 DEBUG_ONLY(__ stop("enter at entry label, not here"));
duke@435 1303 Label L_loop;
kvn@1800 1304 __ align(OptoLoopAlignment);
duke@435 1305 __ BIND(L_loop);
kvn@840 1306 if(UseUnalignedLoadStores) {
kvn@840 1307 __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
kvn@840 1308 __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
kvn@840 1309 __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8));
kvn@840 1310 __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1);
kvn@840 1311
kvn@840 1312 } else {
kvn@840 1313 __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
kvn@840 1314 __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
kvn@840 1315 __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
kvn@840 1316 __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
kvn@840 1317 __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
kvn@840 1318 __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
kvn@840 1319 __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
kvn@840 1320 __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
kvn@840 1321 }
duke@435 1322 __ BIND(L_copy_32_bytes);
never@739 1323 __ addptr(qword_count, 4);
duke@435 1324 __ jcc(Assembler::lessEqual, L_loop);
never@739 1325 __ subptr(qword_count, 4);
duke@435 1326 __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
duke@435 1327 }
duke@435 1328
duke@435 1329
duke@435 1330 // Copy big chunks backward
duke@435 1331 //
duke@435 1332 // Inputs:
duke@435 1333 // from - source arrays address
duke@435 1334 // dest - destination array address
duke@435 1335 // qword_count - 64-bits element count
duke@435 1336 // to - scratch
duke@435 1337 // L_copy_32_bytes - entry label
duke@435 1338 // L_copy_8_bytes - exit label
duke@435 1339 //
duke@435 1340 void copy_32_bytes_backward(Register from, Register dest,
duke@435 1341 Register qword_count, Register to,
duke@435 1342 Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
duke@435 1343 DEBUG_ONLY(__ stop("enter at entry label, not here"));
duke@435 1344 Label L_loop;
kvn@1800 1345 __ align(OptoLoopAlignment);
duke@435 1346 __ BIND(L_loop);
kvn@840 1347 if(UseUnalignedLoadStores) {
kvn@840 1348 __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16));
kvn@840 1349 __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0);
kvn@840 1350 __ movdqu(xmm1, Address(from, qword_count, Address::times_8, 0));
kvn@840 1351 __ movdqu(Address(dest, qword_count, Address::times_8, 0), xmm1);
kvn@840 1352
kvn@840 1353 } else {
kvn@840 1354 __ movq(to, Address(from, qword_count, Address::times_8, 24));
kvn@840 1355 __ movq(Address(dest, qword_count, Address::times_8, 24), to);
kvn@840 1356 __ movq(to, Address(from, qword_count, Address::times_8, 16));
kvn@840 1357 __ movq(Address(dest, qword_count, Address::times_8, 16), to);
kvn@840 1358 __ movq(to, Address(from, qword_count, Address::times_8, 8));
kvn@840 1359 __ movq(Address(dest, qword_count, Address::times_8, 8), to);
kvn@840 1360 __ movq(to, Address(from, qword_count, Address::times_8, 0));
kvn@840 1361 __ movq(Address(dest, qword_count, Address::times_8, 0), to);
kvn@840 1362 }
duke@435 1363 __ BIND(L_copy_32_bytes);
never@739 1364 __ subptr(qword_count, 4);
duke@435 1365 __ jcc(Assembler::greaterEqual, L_loop);
never@739 1366 __ addptr(qword_count, 4);
duke@435 1367 __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
duke@435 1368 }
duke@435 1369
duke@435 1370
duke@435 1371 // Arguments:
duke@435 1372 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1373 // ignored
duke@435 1374 // name - stub name string
duke@435 1375 //
duke@435 1376 // Inputs:
duke@435 1377 // c_rarg0 - source array address
duke@435 1378 // c_rarg1 - destination array address
duke@435 1379 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1380 //
duke@435 1381 // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
duke@435 1382 // we let the hardware handle it. The one to eight bytes within words,
duke@435 1383 // dwords or qwords that span cache line boundaries will still be loaded
duke@435 1384 // and stored atomically.
duke@435 1385 //
duke@435 1386 // Side Effects:
duke@435 1387 // disjoint_byte_copy_entry is set to the no-overlap entry point
duke@435 1388 // used by generate_conjoint_byte_copy().
duke@435 1389 //
iveresov@2595 1390 address generate_disjoint_byte_copy(bool aligned, address* entry, const char *name) {
duke@435 1391 __ align(CodeEntryAlignment);
duke@435 1392 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1393 address start = __ pc();
duke@435 1394
duke@435 1395 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
duke@435 1396 Label L_copy_byte, L_exit;
duke@435 1397 const Register from = rdi; // source array address
duke@435 1398 const Register to = rsi; // destination array address
duke@435 1399 const Register count = rdx; // elements count
duke@435 1400 const Register byte_count = rcx;
duke@435 1401 const Register qword_count = count;
duke@435 1402 const Register end_from = from; // source array end address
duke@435 1403 const Register end_to = to; // destination array end address
duke@435 1404 // End pointers are inclusive, and if count is not zero they point
duke@435 1405 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1406
duke@435 1407 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1408 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1409
iveresov@2595 1410 if (entry != NULL) {
iveresov@2595 1411 *entry = __ pc();
iveresov@2595 1412 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1413 BLOCK_COMMENT("Entry:");
iveresov@2595 1414 }
duke@435 1415
duke@435 1416 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1417 // r9 and r10 may be used to save non-volatile registers
duke@435 1418
duke@435 1419 // 'from', 'to' and 'count' are now valid
never@739 1420 __ movptr(byte_count, count);
never@739 1421 __ shrptr(count, 3); // count => qword_count
duke@435 1422
duke@435 1423 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1424 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1425 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1426 __ negptr(qword_count); // make the count negative
duke@435 1427 __ jmp(L_copy_32_bytes);
duke@435 1428
duke@435 1429 // Copy trailing qwords
duke@435 1430 __ BIND(L_copy_8_bytes);
duke@435 1431 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1432 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1433 __ increment(qword_count);
duke@435 1434 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1435
duke@435 1436 // Check for and copy trailing dword
duke@435 1437 __ BIND(L_copy_4_bytes);
never@739 1438 __ testl(byte_count, 4);
duke@435 1439 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 1440 __ movl(rax, Address(end_from, 8));
duke@435 1441 __ movl(Address(end_to, 8), rax);
duke@435 1442
never@739 1443 __ addptr(end_from, 4);
never@739 1444 __ addptr(end_to, 4);
duke@435 1445
duke@435 1446 // Check for and copy trailing word
duke@435 1447 __ BIND(L_copy_2_bytes);
never@739 1448 __ testl(byte_count, 2);
duke@435 1449 __ jccb(Assembler::zero, L_copy_byte);
duke@435 1450 __ movw(rax, Address(end_from, 8));
duke@435 1451 __ movw(Address(end_to, 8), rax);
duke@435 1452
never@739 1453 __ addptr(end_from, 2);
never@739 1454 __ addptr(end_to, 2);
duke@435 1455
duke@435 1456 // Check for and copy trailing byte
duke@435 1457 __ BIND(L_copy_byte);
never@739 1458 __ testl(byte_count, 1);
duke@435 1459 __ jccb(Assembler::zero, L_exit);
duke@435 1460 __ movb(rax, Address(end_from, 8));
duke@435 1461 __ movb(Address(end_to, 8), rax);
duke@435 1462
duke@435 1463 __ BIND(L_exit);
duke@435 1464 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
duke@435 1465 restore_arg_regs();
never@739 1466 __ xorptr(rax, rax); // return 0
duke@435 1467 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1468 __ ret(0);
duke@435 1469
duke@435 1470 // Copy in 32-bytes chunks
duke@435 1471 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1472 __ jmp(L_copy_4_bytes);
duke@435 1473
duke@435 1474 return start;
duke@435 1475 }
duke@435 1476
duke@435 1477 // Arguments:
duke@435 1478 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1479 // ignored
duke@435 1480 // name - stub name string
duke@435 1481 //
duke@435 1482 // Inputs:
duke@435 1483 // c_rarg0 - source array address
duke@435 1484 // c_rarg1 - destination array address
duke@435 1485 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1486 //
duke@435 1487 // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
duke@435 1488 // we let the hardware handle it. The one to eight bytes within words,
duke@435 1489 // dwords or qwords that span cache line boundaries will still be loaded
duke@435 1490 // and stored atomically.
duke@435 1491 //
iveresov@2595 1492 address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
iveresov@2595 1493 address* entry, const char *name) {
duke@435 1494 __ align(CodeEntryAlignment);
duke@435 1495 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1496 address start = __ pc();
duke@435 1497
duke@435 1498 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
duke@435 1499 const Register from = rdi; // source array address
duke@435 1500 const Register to = rsi; // destination array address
duke@435 1501 const Register count = rdx; // elements count
duke@435 1502 const Register byte_count = rcx;
duke@435 1503 const Register qword_count = count;
duke@435 1504
duke@435 1505 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1506 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1507
iveresov@2595 1508 if (entry != NULL) {
iveresov@2595 1509 *entry = __ pc();
iveresov@2595 1510 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1511 BLOCK_COMMENT("Entry:");
iveresov@2595 1512 }
iveresov@2595 1513
iveresov@2595 1514 array_overlap_test(nooverlap_target, Address::times_1);
duke@435 1515 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1516 // r9 and r10 may be used to save non-volatile registers
duke@435 1517
duke@435 1518 // 'from', 'to' and 'count' are now valid
never@739 1519 __ movptr(byte_count, count);
never@739 1520 __ shrptr(count, 3); // count => qword_count
duke@435 1521
duke@435 1522 // Copy from high to low addresses.
duke@435 1523
duke@435 1524 // Check for and copy trailing byte
never@739 1525 __ testl(byte_count, 1);
duke@435 1526 __ jcc(Assembler::zero, L_copy_2_bytes);
duke@435 1527 __ movb(rax, Address(from, byte_count, Address::times_1, -1));
duke@435 1528 __ movb(Address(to, byte_count, Address::times_1, -1), rax);
never@739 1529 __ decrement(byte_count); // Adjust for possible trailing word
duke@435 1530
duke@435 1531 // Check for and copy trailing word
duke@435 1532 __ BIND(L_copy_2_bytes);
never@739 1533 __ testl(byte_count, 2);
duke@435 1534 __ jcc(Assembler::zero, L_copy_4_bytes);
duke@435 1535 __ movw(rax, Address(from, byte_count, Address::times_1, -2));
duke@435 1536 __ movw(Address(to, byte_count, Address::times_1, -2), rax);
duke@435 1537
duke@435 1538 // Check for and copy trailing dword
duke@435 1539 __ BIND(L_copy_4_bytes);
never@739 1540 __ testl(byte_count, 4);
duke@435 1541 __ jcc(Assembler::zero, L_copy_32_bytes);
duke@435 1542 __ movl(rax, Address(from, qword_count, Address::times_8));
duke@435 1543 __ movl(Address(to, qword_count, Address::times_8), rax);
duke@435 1544 __ jmp(L_copy_32_bytes);
duke@435 1545
duke@435 1546 // Copy trailing qwords
duke@435 1547 __ BIND(L_copy_8_bytes);
duke@435 1548 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1549 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 1550 __ decrement(qword_count);
duke@435 1551 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1552
duke@435 1553 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
duke@435 1554 restore_arg_regs();
never@739 1555 __ xorptr(rax, rax); // return 0
duke@435 1556 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1557 __ ret(0);
duke@435 1558
duke@435 1559 // Copy in 32-bytes chunks
duke@435 1560 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1561
duke@435 1562 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
duke@435 1563 restore_arg_regs();
never@739 1564 __ xorptr(rax, rax); // return 0
duke@435 1565 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1566 __ ret(0);
duke@435 1567
duke@435 1568 return start;
duke@435 1569 }
duke@435 1570
duke@435 1571 // Arguments:
duke@435 1572 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1573 // ignored
duke@435 1574 // name - stub name string
duke@435 1575 //
duke@435 1576 // Inputs:
duke@435 1577 // c_rarg0 - source array address
duke@435 1578 // c_rarg1 - destination array address
duke@435 1579 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1580 //
duke@435 1581 // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
duke@435 1582 // let the hardware handle it. The two or four words within dwords
duke@435 1583 // or qwords that span cache line boundaries will still be loaded
duke@435 1584 // and stored atomically.
duke@435 1585 //
duke@435 1586 // Side Effects:
duke@435 1587 // disjoint_short_copy_entry is set to the no-overlap entry point
duke@435 1588 // used by generate_conjoint_short_copy().
duke@435 1589 //
iveresov@2595 1590 address generate_disjoint_short_copy(bool aligned, address *entry, const char *name) {
duke@435 1591 __ align(CodeEntryAlignment);
duke@435 1592 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1593 address start = __ pc();
duke@435 1594
duke@435 1595 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
duke@435 1596 const Register from = rdi; // source array address
duke@435 1597 const Register to = rsi; // destination array address
duke@435 1598 const Register count = rdx; // elements count
duke@435 1599 const Register word_count = rcx;
duke@435 1600 const Register qword_count = count;
duke@435 1601 const Register end_from = from; // source array end address
duke@435 1602 const Register end_to = to; // destination array end address
duke@435 1603 // End pointers are inclusive, and if count is not zero they point
duke@435 1604 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1605
duke@435 1606 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1607 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1608
iveresov@2595 1609 if (entry != NULL) {
iveresov@2595 1610 *entry = __ pc();
iveresov@2595 1611 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1612 BLOCK_COMMENT("Entry:");
iveresov@2595 1613 }
duke@435 1614
duke@435 1615 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1616 // r9 and r10 may be used to save non-volatile registers
duke@435 1617
duke@435 1618 // 'from', 'to' and 'count' are now valid
never@739 1619 __ movptr(word_count, count);
never@739 1620 __ shrptr(count, 2); // count => qword_count
duke@435 1621
duke@435 1622 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1623 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1624 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1625 __ negptr(qword_count);
duke@435 1626 __ jmp(L_copy_32_bytes);
duke@435 1627
duke@435 1628 // Copy trailing qwords
duke@435 1629 __ BIND(L_copy_8_bytes);
duke@435 1630 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1631 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1632 __ increment(qword_count);
duke@435 1633 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1634
duke@435 1635 // Original 'dest' is trashed, so we can't use it as a
duke@435 1636 // base register for a possible trailing word copy
duke@435 1637
duke@435 1638 // Check for and copy trailing dword
duke@435 1639 __ BIND(L_copy_4_bytes);
never@739 1640 __ testl(word_count, 2);
duke@435 1641 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 1642 __ movl(rax, Address(end_from, 8));
duke@435 1643 __ movl(Address(end_to, 8), rax);
duke@435 1644
never@739 1645 __ addptr(end_from, 4);
never@739 1646 __ addptr(end_to, 4);
duke@435 1647
duke@435 1648 // Check for and copy trailing word
duke@435 1649 __ BIND(L_copy_2_bytes);
never@739 1650 __ testl(word_count, 1);
duke@435 1651 __ jccb(Assembler::zero, L_exit);
duke@435 1652 __ movw(rax, Address(end_from, 8));
duke@435 1653 __ movw(Address(end_to, 8), rax);
duke@435 1654
duke@435 1655 __ BIND(L_exit);
duke@435 1656 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
duke@435 1657 restore_arg_regs();
never@739 1658 __ xorptr(rax, rax); // return 0
duke@435 1659 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1660 __ ret(0);
duke@435 1661
duke@435 1662 // Copy in 32-bytes chunks
duke@435 1663 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1664 __ jmp(L_copy_4_bytes);
duke@435 1665
duke@435 1666 return start;
duke@435 1667 }
duke@435 1668
never@2118 1669 address generate_fill(BasicType t, bool aligned, const char *name) {
never@2118 1670 __ align(CodeEntryAlignment);
never@2118 1671 StubCodeMark mark(this, "StubRoutines", name);
never@2118 1672 address start = __ pc();
never@2118 1673
never@2118 1674 BLOCK_COMMENT("Entry:");
never@2118 1675
never@2118 1676 const Register to = c_rarg0; // source array address
never@2118 1677 const Register value = c_rarg1; // value
never@2118 1678 const Register count = c_rarg2; // elements count
never@2118 1679
never@2118 1680 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@2118 1681
never@2118 1682 __ generate_fill(t, aligned, to, value, count, rax, xmm0);
never@2118 1683
never@2118 1684 __ leave(); // required for proper stackwalking of RuntimeStub frame
never@2118 1685 __ ret(0);
never@2118 1686 return start;
never@2118 1687 }
never@2118 1688
duke@435 1689 // Arguments:
duke@435 1690 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1691 // ignored
duke@435 1692 // name - stub name string
duke@435 1693 //
duke@435 1694 // Inputs:
duke@435 1695 // c_rarg0 - source array address
duke@435 1696 // c_rarg1 - destination array address
duke@435 1697 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1698 //
duke@435 1699 // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
duke@435 1700 // let the hardware handle it. The two or four words within dwords
duke@435 1701 // or qwords that span cache line boundaries will still be loaded
duke@435 1702 // and stored atomically.
duke@435 1703 //
iveresov@2595 1704 address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
iveresov@2595 1705 address *entry, const char *name) {
duke@435 1706 __ align(CodeEntryAlignment);
duke@435 1707 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1708 address start = __ pc();
duke@435 1709
duke@435 1710 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes;
duke@435 1711 const Register from = rdi; // source array address
duke@435 1712 const Register to = rsi; // destination array address
duke@435 1713 const Register count = rdx; // elements count
duke@435 1714 const Register word_count = rcx;
duke@435 1715 const Register qword_count = count;
duke@435 1716
duke@435 1717 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1718 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1719
iveresov@2595 1720 if (entry != NULL) {
iveresov@2595 1721 *entry = __ pc();
iveresov@2595 1722 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1723 BLOCK_COMMENT("Entry:");
iveresov@2595 1724 }
iveresov@2595 1725
iveresov@2595 1726 array_overlap_test(nooverlap_target, Address::times_2);
duke@435 1727 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1728 // r9 and r10 may be used to save non-volatile registers
duke@435 1729
duke@435 1730 // 'from', 'to' and 'count' are now valid
never@739 1731 __ movptr(word_count, count);
never@739 1732 __ shrptr(count, 2); // count => qword_count
duke@435 1733
duke@435 1734 // Copy from high to low addresses. Use 'to' as scratch.
duke@435 1735
duke@435 1736 // Check for and copy trailing word
never@739 1737 __ testl(word_count, 1);
duke@435 1738 __ jccb(Assembler::zero, L_copy_4_bytes);
duke@435 1739 __ movw(rax, Address(from, word_count, Address::times_2, -2));
duke@435 1740 __ movw(Address(to, word_count, Address::times_2, -2), rax);
duke@435 1741
duke@435 1742 // Check for and copy trailing dword
duke@435 1743 __ BIND(L_copy_4_bytes);
never@739 1744 __ testl(word_count, 2);
duke@435 1745 __ jcc(Assembler::zero, L_copy_32_bytes);
duke@435 1746 __ movl(rax, Address(from, qword_count, Address::times_8));
duke@435 1747 __ movl(Address(to, qword_count, Address::times_8), rax);
duke@435 1748 __ jmp(L_copy_32_bytes);
duke@435 1749
duke@435 1750 // Copy trailing qwords
duke@435 1751 __ BIND(L_copy_8_bytes);
duke@435 1752 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1753 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 1754 __ decrement(qword_count);
duke@435 1755 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1756
duke@435 1757 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
duke@435 1758 restore_arg_regs();
never@739 1759 __ xorptr(rax, rax); // return 0
duke@435 1760 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1761 __ ret(0);
duke@435 1762
duke@435 1763 // Copy in 32-bytes chunks
duke@435 1764 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1765
duke@435 1766 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
duke@435 1767 restore_arg_regs();
never@739 1768 __ xorptr(rax, rax); // return 0
duke@435 1769 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1770 __ ret(0);
duke@435 1771
duke@435 1772 return start;
duke@435 1773 }
duke@435 1774
duke@435 1775 // Arguments:
duke@435 1776 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1777 // ignored
coleenp@548 1778 // is_oop - true => oop array, so generate store check code
duke@435 1779 // name - stub name string
duke@435 1780 //
duke@435 1781 // Inputs:
duke@435 1782 // c_rarg0 - source array address
duke@435 1783 // c_rarg1 - destination array address
duke@435 1784 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1785 //
duke@435 1786 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
duke@435 1787 // the hardware handle it. The two dwords within qwords that span
duke@435 1788 // cache line boundaries will still be loaded and stored atomicly.
duke@435 1789 //
duke@435 1790 // Side Effects:
duke@435 1791 // disjoint_int_copy_entry is set to the no-overlap entry point
coleenp@548 1792 // used by generate_conjoint_int_oop_copy().
duke@435 1793 //
iveresov@2606 1794 address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, address* entry,
iveresov@2606 1795 const char *name, bool dest_uninitialized = false) {
duke@435 1796 __ align(CodeEntryAlignment);
duke@435 1797 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1798 address start = __ pc();
duke@435 1799
duke@435 1800 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
duke@435 1801 const Register from = rdi; // source array address
duke@435 1802 const Register to = rsi; // destination array address
duke@435 1803 const Register count = rdx; // elements count
duke@435 1804 const Register dword_count = rcx;
duke@435 1805 const Register qword_count = count;
duke@435 1806 const Register end_from = from; // source array end address
duke@435 1807 const Register end_to = to; // destination array end address
coleenp@548 1808 const Register saved_to = r11; // saved destination array address
duke@435 1809 // End pointers are inclusive, and if count is not zero they point
duke@435 1810 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1811
duke@435 1812 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1813 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1814
iveresov@2595 1815 if (entry != NULL) {
iveresov@2595 1816 *entry = __ pc();
iveresov@2595 1817 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1818 BLOCK_COMMENT("Entry:");
coleenp@548 1819 }
coleenp@548 1820
duke@435 1821 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1822 // r9 and r10 may be used to save non-volatile registers
coleenp@548 1823 if (is_oop) {
coleenp@548 1824 __ movq(saved_to, to);
iveresov@2606 1825 gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
coleenp@548 1826 }
coleenp@548 1827
duke@435 1828 // 'from', 'to' and 'count' are now valid
never@739 1829 __ movptr(dword_count, count);
never@739 1830 __ shrptr(count, 1); // count => qword_count
duke@435 1831
duke@435 1832 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1833 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1834 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1835 __ negptr(qword_count);
duke@435 1836 __ jmp(L_copy_32_bytes);
duke@435 1837
duke@435 1838 // Copy trailing qwords
duke@435 1839 __ BIND(L_copy_8_bytes);
duke@435 1840 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1841 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1842 __ increment(qword_count);
duke@435 1843 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1844
duke@435 1845 // Check for and copy trailing dword
duke@435 1846 __ BIND(L_copy_4_bytes);
never@739 1847 __ testl(dword_count, 1); // Only byte test since the value is 0 or 1
duke@435 1848 __ jccb(Assembler::zero, L_exit);
duke@435 1849 __ movl(rax, Address(end_from, 8));
duke@435 1850 __ movl(Address(end_to, 8), rax);
duke@435 1851
duke@435 1852 __ BIND(L_exit);
coleenp@548 1853 if (is_oop) {
coleenp@548 1854 __ leaq(end_to, Address(saved_to, dword_count, Address::times_4, -4));
coleenp@548 1855 gen_write_ref_array_post_barrier(saved_to, end_to, rax);
coleenp@548 1856 }
duke@435 1857 inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
duke@435 1858 restore_arg_regs();
never@739 1859 __ xorptr(rax, rax); // return 0
duke@435 1860 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1861 __ ret(0);
duke@435 1862
duke@435 1863 // Copy 32-bytes chunks
duke@435 1864 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1865 __ jmp(L_copy_4_bytes);
duke@435 1866
duke@435 1867 return start;
duke@435 1868 }
duke@435 1869
duke@435 1870 // Arguments:
duke@435 1871 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1872 // ignored
coleenp@548 1873 // is_oop - true => oop array, so generate store check code
duke@435 1874 // name - stub name string
duke@435 1875 //
duke@435 1876 // Inputs:
duke@435 1877 // c_rarg0 - source array address
duke@435 1878 // c_rarg1 - destination array address
duke@435 1879 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1880 //
duke@435 1881 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
duke@435 1882 // the hardware handle it. The two dwords within qwords that span
duke@435 1883 // cache line boundaries will still be loaded and stored atomicly.
duke@435 1884 //
iveresov@2595 1885 address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, address nooverlap_target,
iveresov@2606 1886 address *entry, const char *name,
iveresov@2606 1887 bool dest_uninitialized = false) {
duke@435 1888 __ align(CodeEntryAlignment);
duke@435 1889 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1890 address start = __ pc();
duke@435 1891
coleenp@548 1892 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit;
duke@435 1893 const Register from = rdi; // source array address
duke@435 1894 const Register to = rsi; // destination array address
duke@435 1895 const Register count = rdx; // elements count
duke@435 1896 const Register dword_count = rcx;
duke@435 1897 const Register qword_count = count;
duke@435 1898
duke@435 1899 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1900 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1901
iveresov@2595 1902 if (entry != NULL) {
iveresov@2595 1903 *entry = __ pc();
iveresov@2595 1904 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1905 BLOCK_COMMENT("Entry:");
iveresov@2595 1906 }
iveresov@2595 1907
iveresov@2595 1908 array_overlap_test(nooverlap_target, Address::times_4);
iveresov@2595 1909 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
iveresov@2595 1910 // r9 and r10 may be used to save non-volatile registers
iveresov@2595 1911
coleenp@548 1912 if (is_oop) {
coleenp@548 1913 // no registers are destroyed by this call
iveresov@2606 1914 gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
coleenp@548 1915 }
coleenp@548 1916
coleenp@548 1917 assert_clean_int(count, rax); // Make sure 'count' is clean int.
duke@435 1918 // 'from', 'to' and 'count' are now valid
never@739 1919 __ movptr(dword_count, count);
never@739 1920 __ shrptr(count, 1); // count => qword_count
duke@435 1921
duke@435 1922 // Copy from high to low addresses. Use 'to' as scratch.
duke@435 1923
duke@435 1924 // Check for and copy trailing dword
never@739 1925 __ testl(dword_count, 1);
duke@435 1926 __ jcc(Assembler::zero, L_copy_32_bytes);
duke@435 1927 __ movl(rax, Address(from, dword_count, Address::times_4, -4));
duke@435 1928 __ movl(Address(to, dword_count, Address::times_4, -4), rax);
duke@435 1929 __ jmp(L_copy_32_bytes);
duke@435 1930
duke@435 1931 // Copy trailing qwords
duke@435 1932 __ BIND(L_copy_8_bytes);
duke@435 1933 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1934 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 1935 __ decrement(qword_count);
duke@435 1936 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1937
duke@435 1938 inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
coleenp@548 1939 if (is_oop) {
coleenp@548 1940 __ jmp(L_exit);
coleenp@548 1941 }
duke@435 1942 restore_arg_regs();
never@739 1943 __ xorptr(rax, rax); // return 0
duke@435 1944 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1945 __ ret(0);
duke@435 1946
duke@435 1947 // Copy in 32-bytes chunks
duke@435 1948 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1949
coleenp@548 1950 inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
coleenp@548 1951 __ bind(L_exit);
coleenp@548 1952 if (is_oop) {
coleenp@548 1953 Register end_to = rdx;
coleenp@548 1954 __ leaq(end_to, Address(to, dword_count, Address::times_4, -4));
coleenp@548 1955 gen_write_ref_array_post_barrier(to, end_to, rax);
coleenp@548 1956 }
duke@435 1957 restore_arg_regs();
never@739 1958 __ xorptr(rax, rax); // return 0
duke@435 1959 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1960 __ ret(0);
duke@435 1961
duke@435 1962 return start;
duke@435 1963 }
duke@435 1964
duke@435 1965 // Arguments:
duke@435 1966 // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
duke@435 1967 // ignored
duke@435 1968 // is_oop - true => oop array, so generate store check code
duke@435 1969 // name - stub name string
duke@435 1970 //
duke@435 1971 // Inputs:
duke@435 1972 // c_rarg0 - source array address
duke@435 1973 // c_rarg1 - destination array address
duke@435 1974 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1975 //
coleenp@548 1976 // Side Effects:
duke@435 1977 // disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
duke@435 1978 // no-overlap entry point used by generate_conjoint_long_oop_copy().
duke@435 1979 //
iveresov@2606 1980 address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, address *entry,
iveresov@2606 1981 const char *name, bool dest_uninitialized = false) {
duke@435 1982 __ align(CodeEntryAlignment);
duke@435 1983 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1984 address start = __ pc();
duke@435 1985
duke@435 1986 Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
duke@435 1987 const Register from = rdi; // source array address
duke@435 1988 const Register to = rsi; // destination array address
duke@435 1989 const Register qword_count = rdx; // elements count
duke@435 1990 const Register end_from = from; // source array end address
duke@435 1991 const Register end_to = rcx; // destination array end address
duke@435 1992 const Register saved_to = to;
duke@435 1993 // End pointers are inclusive, and if count is not zero they point
duke@435 1994 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1995
duke@435 1996 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1997 // Save no-overlap entry point for generate_conjoint_long_oop_copy()
duke@435 1998 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1999
iveresov@2595 2000 if (entry != NULL) {
iveresov@2595 2001 *entry = __ pc();
iveresov@2595 2002 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2003 BLOCK_COMMENT("Entry:");
duke@435 2004 }
duke@435 2005
duke@435 2006 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 2007 // r9 and r10 may be used to save non-volatile registers
duke@435 2008 // 'from', 'to' and 'qword_count' are now valid
iveresov@2595 2009 if (is_oop) {
iveresov@2595 2010 // no registers are destroyed by this call
iveresov@2606 2011 gen_write_ref_array_pre_barrier(to, qword_count, dest_uninitialized);
iveresov@2595 2012 }
duke@435 2013
duke@435 2014 // Copy from low to high addresses. Use 'to' as scratch.
never@739 2015 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 2016 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 2017 __ negptr(qword_count);
duke@435 2018 __ jmp(L_copy_32_bytes);
duke@435 2019
duke@435 2020 // Copy trailing qwords
duke@435 2021 __ BIND(L_copy_8_bytes);
duke@435 2022 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 2023 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 2024 __ increment(qword_count);
duke@435 2025 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 2026
duke@435 2027 if (is_oop) {
duke@435 2028 __ jmp(L_exit);
duke@435 2029 } else {
duke@435 2030 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
duke@435 2031 restore_arg_regs();
never@739 2032 __ xorptr(rax, rax); // return 0
duke@435 2033 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2034 __ ret(0);
duke@435 2035 }
duke@435 2036
duke@435 2037 // Copy 64-byte chunks
duke@435 2038 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 2039
duke@435 2040 if (is_oop) {
duke@435 2041 __ BIND(L_exit);
duke@435 2042 gen_write_ref_array_post_barrier(saved_to, end_to, rax);
duke@435 2043 inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
duke@435 2044 } else {
duke@435 2045 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
duke@435 2046 }
duke@435 2047 restore_arg_regs();
never@739 2048 __ xorptr(rax, rax); // return 0
duke@435 2049 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2050 __ ret(0);
duke@435 2051
duke@435 2052 return start;
duke@435 2053 }
duke@435 2054
duke@435 2055 // Arguments:
duke@435 2056 // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
duke@435 2057 // ignored
duke@435 2058 // is_oop - true => oop array, so generate store check code
duke@435 2059 // name - stub name string
duke@435 2060 //
duke@435 2061 // Inputs:
duke@435 2062 // c_rarg0 - source array address
duke@435 2063 // c_rarg1 - destination array address
duke@435 2064 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 2065 //
iveresov@2606 2066 address generate_conjoint_long_oop_copy(bool aligned, bool is_oop,
iveresov@2606 2067 address nooverlap_target, address *entry,
iveresov@2606 2068 const char *name, bool dest_uninitialized = false) {
duke@435 2069 __ align(CodeEntryAlignment);
duke@435 2070 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2071 address start = __ pc();
duke@435 2072
duke@435 2073 Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
duke@435 2074 const Register from = rdi; // source array address
duke@435 2075 const Register to = rsi; // destination array address
duke@435 2076 const Register qword_count = rdx; // elements count
duke@435 2077 const Register saved_count = rcx;
duke@435 2078
duke@435 2079 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2080 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 2081
iveresov@2595 2082 if (entry != NULL) {
iveresov@2595 2083 *entry = __ pc();
iveresov@2595 2084 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2085 BLOCK_COMMENT("Entry:");
duke@435 2086 }
iveresov@2595 2087
iveresov@2595 2088 array_overlap_test(nooverlap_target, Address::times_8);
duke@435 2089 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 2090 // r9 and r10 may be used to save non-volatile registers
duke@435 2091 // 'from', 'to' and 'qword_count' are now valid
duke@435 2092 if (is_oop) {
duke@435 2093 // Save to and count for store barrier
never@739 2094 __ movptr(saved_count, qword_count);
duke@435 2095 // No registers are destroyed by this call
iveresov@2606 2096 gen_write_ref_array_pre_barrier(to, saved_count, dest_uninitialized);
duke@435 2097 }
duke@435 2098
duke@435 2099 __ jmp(L_copy_32_bytes);
duke@435 2100
duke@435 2101 // Copy trailing qwords
duke@435 2102 __ BIND(L_copy_8_bytes);
duke@435 2103 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 2104 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 2105 __ decrement(qword_count);
duke@435 2106 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 2107
duke@435 2108 if (is_oop) {
duke@435 2109 __ jmp(L_exit);
duke@435 2110 } else {
duke@435 2111 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
duke@435 2112 restore_arg_regs();
never@739 2113 __ xorptr(rax, rax); // return 0
duke@435 2114 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2115 __ ret(0);
duke@435 2116 }
duke@435 2117
duke@435 2118 // Copy in 32-bytes chunks
duke@435 2119 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 2120
duke@435 2121 if (is_oop) {
duke@435 2122 __ BIND(L_exit);
never@739 2123 __ lea(rcx, Address(to, saved_count, Address::times_8, -8));
duke@435 2124 gen_write_ref_array_post_barrier(to, rcx, rax);
duke@435 2125 inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
duke@435 2126 } else {
duke@435 2127 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
duke@435 2128 }
duke@435 2129 restore_arg_regs();
never@739 2130 __ xorptr(rax, rax); // return 0
duke@435 2131 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2132 __ ret(0);
duke@435 2133
duke@435 2134 return start;
duke@435 2135 }
duke@435 2136
duke@435 2137
duke@435 2138 // Helper for generating a dynamic type check.
duke@435 2139 // Smashes no registers.
duke@435 2140 void generate_type_check(Register sub_klass,
duke@435 2141 Register super_check_offset,
duke@435 2142 Register super_klass,
duke@435 2143 Label& L_success) {
duke@435 2144 assert_different_registers(sub_klass, super_check_offset, super_klass);
duke@435 2145
duke@435 2146 BLOCK_COMMENT("type_check:");
duke@435 2147
duke@435 2148 Label L_miss;
duke@435 2149
jrose@1079 2150 __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg, &L_success, &L_miss, NULL,
jrose@1079 2151 super_check_offset);
jrose@1079 2152 __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
duke@435 2153
duke@435 2154 // Fall through on failure!
duke@435 2155 __ BIND(L_miss);
duke@435 2156 }
duke@435 2157
duke@435 2158 //
duke@435 2159 // Generate checkcasting array copy stub
duke@435 2160 //
duke@435 2161 // Input:
duke@435 2162 // c_rarg0 - source array address
duke@435 2163 // c_rarg1 - destination array address
duke@435 2164 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 2165 // c_rarg3 - size_t ckoff (super_check_offset)
duke@435 2166 // not Win64
duke@435 2167 // c_rarg4 - oop ckval (super_klass)
duke@435 2168 // Win64
duke@435 2169 // rsp+40 - oop ckval (super_klass)
duke@435 2170 //
duke@435 2171 // Output:
duke@435 2172 // rax == 0 - success
duke@435 2173 // rax == -1^K - failure, where K is partial transfer count
duke@435 2174 //
iveresov@2606 2175 address generate_checkcast_copy(const char *name, address *entry,
iveresov@2606 2176 bool dest_uninitialized = false) {
duke@435 2177
duke@435 2178 Label L_load_element, L_store_element, L_do_card_marks, L_done;
duke@435 2179
duke@435 2180 // Input registers (after setup_arg_regs)
duke@435 2181 const Register from = rdi; // source array address
duke@435 2182 const Register to = rsi; // destination array address
duke@435 2183 const Register length = rdx; // elements count
duke@435 2184 const Register ckoff = rcx; // super_check_offset
duke@435 2185 const Register ckval = r8; // super_klass
duke@435 2186
duke@435 2187 // Registers used as temps (r13, r14 are save-on-entry)
duke@435 2188 const Register end_from = from; // source array end address
duke@435 2189 const Register end_to = r13; // destination array end address
duke@435 2190 const Register count = rdx; // -(count_remaining)
duke@435 2191 const Register r14_length = r14; // saved copy of length
duke@435 2192 // End pointers are inclusive, and if length is not zero they point
duke@435 2193 // to the last unit copied: end_to[0] := end_from[0]
duke@435 2194
duke@435 2195 const Register rax_oop = rax; // actual oop copied
duke@435 2196 const Register r11_klass = r11; // oop._klass
duke@435 2197
duke@435 2198 //---------------------------------------------------------------
duke@435 2199 // Assembler stub will be used for this call to arraycopy
duke@435 2200 // if the two arrays are subtypes of Object[] but the
duke@435 2201 // destination array type is not equal to or a supertype
duke@435 2202 // of the source type. Each element must be separately
duke@435 2203 // checked.
duke@435 2204
duke@435 2205 __ align(CodeEntryAlignment);
duke@435 2206 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2207 address start = __ pc();
duke@435 2208
duke@435 2209 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2210
duke@435 2211 #ifdef ASSERT
duke@435 2212 // caller guarantees that the arrays really are different
duke@435 2213 // otherwise, we would have to make conjoint checks
duke@435 2214 { Label L;
coleenp@548 2215 array_overlap_test(L, TIMES_OOP);
duke@435 2216 __ stop("checkcast_copy within a single array");
duke@435 2217 __ bind(L);
duke@435 2218 }
duke@435 2219 #endif //ASSERT
duke@435 2220
duke@435 2221 setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
duke@435 2222 // ckoff => rcx, ckval => r8
duke@435 2223 // r9 and r10 may be used to save non-volatile registers
duke@435 2224 #ifdef _WIN64
duke@435 2225 // last argument (#4) is on stack on Win64
twisti@2348 2226 __ movptr(ckval, Address(rsp, 6 * wordSize));
duke@435 2227 #endif
duke@435 2228
twisti@2348 2229 // Caller of this entry point must set up the argument registers.
iveresov@2595 2230 if (entry != NULL) {
iveresov@2595 2231 *entry = __ pc();
iveresov@2595 2232 BLOCK_COMMENT("Entry:");
iveresov@2595 2233 }
twisti@2348 2234
twisti@2348 2235 // allocate spill slots for r13, r14
twisti@2348 2236 enum {
twisti@2348 2237 saved_r13_offset,
twisti@2348 2238 saved_r14_offset,
twisti@2348 2239 saved_rbp_offset
twisti@2348 2240 };
twisti@2348 2241 __ subptr(rsp, saved_rbp_offset * wordSize);
twisti@2348 2242 __ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
twisti@2348 2243 __ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
twisti@2348 2244
duke@435 2245 // check that int operands are properly extended to size_t
duke@435 2246 assert_clean_int(length, rax);
duke@435 2247 assert_clean_int(ckoff, rax);
duke@435 2248
duke@435 2249 #ifdef ASSERT
duke@435 2250 BLOCK_COMMENT("assert consistent ckoff/ckval");
duke@435 2251 // The ckoff and ckval must be mutually consistent,
duke@435 2252 // even though caller generates both.
duke@435 2253 { Label L;
duke@435 2254 int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 2255 Klass::super_check_offset_offset_in_bytes());
duke@435 2256 __ cmpl(ckoff, Address(ckval, sco_offset));
duke@435 2257 __ jcc(Assembler::equal, L);
duke@435 2258 __ stop("super_check_offset inconsistent");
duke@435 2259 __ bind(L);
duke@435 2260 }
duke@435 2261 #endif //ASSERT
duke@435 2262
duke@435 2263 // Loop-invariant addresses. They are exclusive end pointers.
coleenp@548 2264 Address end_from_addr(from, length, TIMES_OOP, 0);
coleenp@548 2265 Address end_to_addr(to, length, TIMES_OOP, 0);
duke@435 2266 // Loop-variant addresses. They assume post-incremented count < 0.
coleenp@548 2267 Address from_element_addr(end_from, count, TIMES_OOP, 0);
coleenp@548 2268 Address to_element_addr(end_to, count, TIMES_OOP, 0);
duke@435 2269
iveresov@2606 2270 gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
duke@435 2271
duke@435 2272 // Copy from low to high addresses, indexed from the end of each array.
never@739 2273 __ lea(end_from, end_from_addr);
never@739 2274 __ lea(end_to, end_to_addr);
never@739 2275 __ movptr(r14_length, length); // save a copy of the length
never@739 2276 assert(length == count, ""); // else fix next line:
never@739 2277 __ negptr(count); // negate and test the length
duke@435 2278 __ jcc(Assembler::notZero, L_load_element);
duke@435 2279
duke@435 2280 // Empty array: Nothing to do.
never@739 2281 __ xorptr(rax, rax); // return 0 on (trivial) success
duke@435 2282 __ jmp(L_done);
duke@435 2283
duke@435 2284 // ======== begin loop ========
duke@435 2285 // (Loop is rotated; its entry is L_load_element.)
duke@435 2286 // Loop control:
duke@435 2287 // for (count = -count; count != 0; count++)
duke@435 2288 // Base pointers src, dst are biased by 8*(count-1),to last element.
kvn@1800 2289 __ align(OptoLoopAlignment);
duke@435 2290
duke@435 2291 __ BIND(L_store_element);
coleenp@548 2292 __ store_heap_oop(to_element_addr, rax_oop); // store the oop
never@739 2293 __ increment(count); // increment the count toward zero
duke@435 2294 __ jcc(Assembler::zero, L_do_card_marks);
duke@435 2295
duke@435 2296 // ======== loop entry is here ========
duke@435 2297 __ BIND(L_load_element);
coleenp@548 2298 __ load_heap_oop(rax_oop, from_element_addr); // load the oop
never@739 2299 __ testptr(rax_oop, rax_oop);
duke@435 2300 __ jcc(Assembler::zero, L_store_element);
duke@435 2301
coleenp@548 2302 __ load_klass(r11_klass, rax_oop);// query the object klass
duke@435 2303 generate_type_check(r11_klass, ckoff, ckval, L_store_element);
duke@435 2304 // ======== end loop ========
duke@435 2305
duke@435 2306 // It was a real error; we must depend on the caller to finish the job.
duke@435 2307 // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
duke@435 2308 // Emit GC store barriers for the oops we have copied (r14 + rdx),
duke@435 2309 // and report their number to the caller.
duke@435 2310 assert_different_registers(rax, r14_length, count, to, end_to, rcx);
never@739 2311 __ lea(end_to, to_element_addr);
ysr@1280 2312 __ addptr(end_to, -heapOopSize); // make an inclusive end pointer
apetrusenko@797 2313 gen_write_ref_array_post_barrier(to, end_to, rscratch1);
never@739 2314 __ movptr(rax, r14_length); // original oops
never@739 2315 __ addptr(rax, count); // K = (original - remaining) oops
never@739 2316 __ notptr(rax); // report (-1^K) to caller
duke@435 2317 __ jmp(L_done);
duke@435 2318
duke@435 2319 // Come here on success only.
duke@435 2320 __ BIND(L_do_card_marks);
ysr@1280 2321 __ addptr(end_to, -heapOopSize); // make an inclusive end pointer
apetrusenko@797 2322 gen_write_ref_array_post_barrier(to, end_to, rscratch1);
never@739 2323 __ xorptr(rax, rax); // return 0 on success
duke@435 2324
duke@435 2325 // Common exit point (success or failure).
duke@435 2326 __ BIND(L_done);
never@739 2327 __ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
never@739 2328 __ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
duke@435 2329 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
duke@435 2330 restore_arg_regs();
duke@435 2331 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2332 __ ret(0);
duke@435 2333
duke@435 2334 return start;
duke@435 2335 }
duke@435 2336
duke@435 2337 //
duke@435 2338 // Generate 'unsafe' array copy stub
duke@435 2339 // Though just as safe as the other stubs, it takes an unscaled
duke@435 2340 // size_t argument instead of an element count.
duke@435 2341 //
duke@435 2342 // Input:
duke@435 2343 // c_rarg0 - source array address
duke@435 2344 // c_rarg1 - destination array address
duke@435 2345 // c_rarg2 - byte count, treated as ssize_t, can be zero
duke@435 2346 //
duke@435 2347 // Examines the alignment of the operands and dispatches
duke@435 2348 // to a long, int, short, or byte copy loop.
duke@435 2349 //
iveresov@2595 2350 address generate_unsafe_copy(const char *name,
iveresov@2595 2351 address byte_copy_entry, address short_copy_entry,
iveresov@2595 2352 address int_copy_entry, address long_copy_entry) {
duke@435 2353
duke@435 2354 Label L_long_aligned, L_int_aligned, L_short_aligned;
duke@435 2355
duke@435 2356 // Input registers (before setup_arg_regs)
duke@435 2357 const Register from = c_rarg0; // source array address
duke@435 2358 const Register to = c_rarg1; // destination array address
duke@435 2359 const Register size = c_rarg2; // byte count (size_t)
duke@435 2360
duke@435 2361 // Register used as a temp
duke@435 2362 const Register bits = rax; // test copy of low bits
duke@435 2363
duke@435 2364 __ align(CodeEntryAlignment);
duke@435 2365 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2366 address start = __ pc();
duke@435 2367
duke@435 2368 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2369
duke@435 2370 // bump this on entry, not on exit:
duke@435 2371 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
duke@435 2372
never@739 2373 __ mov(bits, from);
never@739 2374 __ orptr(bits, to);
never@739 2375 __ orptr(bits, size);
duke@435 2376
duke@435 2377 __ testb(bits, BytesPerLong-1);
duke@435 2378 __ jccb(Assembler::zero, L_long_aligned);
duke@435 2379
duke@435 2380 __ testb(bits, BytesPerInt-1);
duke@435 2381 __ jccb(Assembler::zero, L_int_aligned);
duke@435 2382
duke@435 2383 __ testb(bits, BytesPerShort-1);
duke@435 2384 __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
duke@435 2385
duke@435 2386 __ BIND(L_short_aligned);
never@739 2387 __ shrptr(size, LogBytesPerShort); // size => short_count
duke@435 2388 __ jump(RuntimeAddress(short_copy_entry));
duke@435 2389
duke@435 2390 __ BIND(L_int_aligned);
never@739 2391 __ shrptr(size, LogBytesPerInt); // size => int_count
duke@435 2392 __ jump(RuntimeAddress(int_copy_entry));
duke@435 2393
duke@435 2394 __ BIND(L_long_aligned);
never@739 2395 __ shrptr(size, LogBytesPerLong); // size => qword_count
duke@435 2396 __ jump(RuntimeAddress(long_copy_entry));
duke@435 2397
duke@435 2398 return start;
duke@435 2399 }
duke@435 2400
duke@435 2401 // Perform range checks on the proposed arraycopy.
duke@435 2402 // Kills temp, but nothing else.
duke@435 2403 // Also, clean the sign bits of src_pos and dst_pos.
duke@435 2404 void arraycopy_range_checks(Register src, // source array oop (c_rarg0)
duke@435 2405 Register src_pos, // source position (c_rarg1)
duke@435 2406 Register dst, // destination array oo (c_rarg2)
duke@435 2407 Register dst_pos, // destination position (c_rarg3)
duke@435 2408 Register length,
duke@435 2409 Register temp,
duke@435 2410 Label& L_failed) {
duke@435 2411 BLOCK_COMMENT("arraycopy_range_checks:");
duke@435 2412
duke@435 2413 // if (src_pos + length > arrayOop(src)->length()) FAIL;
duke@435 2414 __ movl(temp, length);
duke@435 2415 __ addl(temp, src_pos); // src_pos + length
duke@435 2416 __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
duke@435 2417 __ jcc(Assembler::above, L_failed);
duke@435 2418
duke@435 2419 // if (dst_pos + length > arrayOop(dst)->length()) FAIL;
duke@435 2420 __ movl(temp, length);
duke@435 2421 __ addl(temp, dst_pos); // dst_pos + length
duke@435 2422 __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
duke@435 2423 __ jcc(Assembler::above, L_failed);
duke@435 2424
duke@435 2425 // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
duke@435 2426 // Move with sign extension can be used since they are positive.
duke@435 2427 __ movslq(src_pos, src_pos);
duke@435 2428 __ movslq(dst_pos, dst_pos);
duke@435 2429
duke@435 2430 BLOCK_COMMENT("arraycopy_range_checks done");
duke@435 2431 }
duke@435 2432
duke@435 2433 //
duke@435 2434 // Generate generic array copy stubs
duke@435 2435 //
duke@435 2436 // Input:
duke@435 2437 // c_rarg0 - src oop
duke@435 2438 // c_rarg1 - src_pos (32-bits)
duke@435 2439 // c_rarg2 - dst oop
duke@435 2440 // c_rarg3 - dst_pos (32-bits)
duke@435 2441 // not Win64
duke@435 2442 // c_rarg4 - element count (32-bits)
duke@435 2443 // Win64
duke@435 2444 // rsp+40 - element count (32-bits)
duke@435 2445 //
duke@435 2446 // Output:
duke@435 2447 // rax == 0 - success
duke@435 2448 // rax == -1^K - failure, where K is partial transfer count
duke@435 2449 //
iveresov@2595 2450 address generate_generic_copy(const char *name,
iveresov@2595 2451 address byte_copy_entry, address short_copy_entry,
iveresov@2691 2452 address int_copy_entry, address oop_copy_entry,
iveresov@2691 2453 address long_copy_entry, address checkcast_copy_entry) {
duke@435 2454
duke@435 2455 Label L_failed, L_failed_0, L_objArray;
duke@435 2456 Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
duke@435 2457
duke@435 2458 // Input registers
duke@435 2459 const Register src = c_rarg0; // source array oop
duke@435 2460 const Register src_pos = c_rarg1; // source position
duke@435 2461 const Register dst = c_rarg2; // destination array oop
duke@435 2462 const Register dst_pos = c_rarg3; // destination position
twisti@2348 2463 #ifndef _WIN64
twisti@2348 2464 const Register length = c_rarg4;
duke@435 2465 #else
twisti@2348 2466 const Address length(rsp, 6 * wordSize); // elements count is on stack on Win64
duke@435 2467 #endif
duke@435 2468
duke@435 2469 { int modulus = CodeEntryAlignment;
duke@435 2470 int target = modulus - 5; // 5 = sizeof jmp(L_failed)
duke@435 2471 int advance = target - (__ offset() % modulus);
duke@435 2472 if (advance < 0) advance += modulus;
duke@435 2473 if (advance > 0) __ nop(advance);
duke@435 2474 }
duke@435 2475 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2476
duke@435 2477 // Short-hop target to L_failed. Makes for denser prologue code.
duke@435 2478 __ BIND(L_failed_0);
duke@435 2479 __ jmp(L_failed);
duke@435 2480 assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
duke@435 2481
duke@435 2482 __ align(CodeEntryAlignment);
duke@435 2483 address start = __ pc();
duke@435 2484
duke@435 2485 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2486
duke@435 2487 // bump this on entry, not on exit:
duke@435 2488 inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
duke@435 2489
duke@435 2490 //-----------------------------------------------------------------------
duke@435 2491 // Assembler stub will be used for this call to arraycopy
duke@435 2492 // if the following conditions are met:
duke@435 2493 //
duke@435 2494 // (1) src and dst must not be null.
duke@435 2495 // (2) src_pos must not be negative.
duke@435 2496 // (3) dst_pos must not be negative.
duke@435 2497 // (4) length must not be negative.
duke@435 2498 // (5) src klass and dst klass should be the same and not NULL.
duke@435 2499 // (6) src and dst should be arrays.
duke@435 2500 // (7) src_pos + length must not exceed length of src.
duke@435 2501 // (8) dst_pos + length must not exceed length of dst.
duke@435 2502 //
duke@435 2503
duke@435 2504 // if (src == NULL) return -1;
never@739 2505 __ testptr(src, src); // src oop
duke@435 2506 size_t j1off = __ offset();
duke@435 2507 __ jccb(Assembler::zero, L_failed_0);
duke@435 2508
duke@435 2509 // if (src_pos < 0) return -1;
duke@435 2510 __ testl(src_pos, src_pos); // src_pos (32-bits)
duke@435 2511 __ jccb(Assembler::negative, L_failed_0);
duke@435 2512
duke@435 2513 // if (dst == NULL) return -1;
never@739 2514 __ testptr(dst, dst); // dst oop
duke@435 2515 __ jccb(Assembler::zero, L_failed_0);
duke@435 2516
duke@435 2517 // if (dst_pos < 0) return -1;
duke@435 2518 __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
duke@435 2519 size_t j4off = __ offset();
duke@435 2520 __ jccb(Assembler::negative, L_failed_0);
duke@435 2521
duke@435 2522 // The first four tests are very dense code,
duke@435 2523 // but not quite dense enough to put four
duke@435 2524 // jumps in a 16-byte instruction fetch buffer.
duke@435 2525 // That's good, because some branch predicters
duke@435 2526 // do not like jumps so close together.
duke@435 2527 // Make sure of this.
duke@435 2528 guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
duke@435 2529
duke@435 2530 // registers used as temp
duke@435 2531 const Register r11_length = r11; // elements count to copy
duke@435 2532 const Register r10_src_klass = r10; // array klass
duke@435 2533
duke@435 2534 // if (length < 0) return -1;
twisti@2348 2535 __ movl(r11_length, length); // length (elements count, 32-bits value)
duke@435 2536 __ testl(r11_length, r11_length);
duke@435 2537 __ jccb(Assembler::negative, L_failed_0);
duke@435 2538
coleenp@548 2539 __ load_klass(r10_src_klass, src);
duke@435 2540 #ifdef ASSERT
duke@435 2541 // assert(src->klass() != NULL);
twisti@2348 2542 {
twisti@2348 2543 BLOCK_COMMENT("assert klasses not null {");
twisti@2348 2544 Label L1, L2;
never@739 2545 __ testptr(r10_src_klass, r10_src_klass);
duke@435 2546 __ jcc(Assembler::notZero, L2); // it is broken if klass is NULL
duke@435 2547 __ bind(L1);
duke@435 2548 __ stop("broken null klass");
duke@435 2549 __ bind(L2);
twisti@2348 2550 __ load_klass(rax, dst);
twisti@2348 2551 __ cmpq(rax, 0);
duke@435 2552 __ jcc(Assembler::equal, L1); // this would be broken also
twisti@2348 2553 BLOCK_COMMENT("} assert klasses not null done");
duke@435 2554 }
duke@435 2555 #endif
duke@435 2556
duke@435 2557 // Load layout helper (32-bits)
duke@435 2558 //
duke@435 2559 // |array_tag| | header_size | element_type | |log2_element_size|
duke@435 2560 // 32 30 24 16 8 2 0
duke@435 2561 //
duke@435 2562 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
duke@435 2563 //
duke@435 2564
twisti@2348 2565 const int lh_offset = klassOopDesc::header_size() * HeapWordSize +
twisti@2348 2566 Klass::layout_helper_offset_in_bytes();
twisti@2348 2567
twisti@2348 2568 // Handle objArrays completely differently...
twisti@2348 2569 const jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
twisti@2348 2570 __ cmpl(Address(r10_src_klass, lh_offset), objArray_lh);
twisti@2348 2571 __ jcc(Assembler::equal, L_objArray);
twisti@2348 2572
twisti@2348 2573 // if (src->klass() != dst->klass()) return -1;
twisti@2348 2574 __ load_klass(rax, dst);
twisti@2348 2575 __ cmpq(r10_src_klass, rax);
twisti@2348 2576 __ jcc(Assembler::notEqual, L_failed);
duke@435 2577
duke@435 2578 const Register rax_lh = rax; // layout helper
duke@435 2579 __ movl(rax_lh, Address(r10_src_klass, lh_offset));
duke@435 2580
duke@435 2581 // if (!src->is_Array()) return -1;
duke@435 2582 __ cmpl(rax_lh, Klass::_lh_neutral_value);
duke@435 2583 __ jcc(Assembler::greaterEqual, L_failed);
duke@435 2584
duke@435 2585 // At this point, it is known to be a typeArray (array_tag 0x3).
duke@435 2586 #ifdef ASSERT
twisti@2348 2587 {
twisti@2348 2588 BLOCK_COMMENT("assert primitive array {");
twisti@2348 2589 Label L;
duke@435 2590 __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
duke@435 2591 __ jcc(Assembler::greaterEqual, L);
duke@435 2592 __ stop("must be a primitive array");
duke@435 2593 __ bind(L);
twisti@2348 2594 BLOCK_COMMENT("} assert primitive array done");
duke@435 2595 }
duke@435 2596 #endif
duke@435 2597
duke@435 2598 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2599 r10, L_failed);
duke@435 2600
duke@435 2601 // typeArrayKlass
duke@435 2602 //
duke@435 2603 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
duke@435 2604 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
duke@435 2605 //
duke@435 2606
duke@435 2607 const Register r10_offset = r10; // array offset
duke@435 2608 const Register rax_elsize = rax_lh; // element size
duke@435 2609
duke@435 2610 __ movl(r10_offset, rax_lh);
duke@435 2611 __ shrl(r10_offset, Klass::_lh_header_size_shift);
never@739 2612 __ andptr(r10_offset, Klass::_lh_header_size_mask); // array_offset
never@739 2613 __ addptr(src, r10_offset); // src array offset
never@739 2614 __ addptr(dst, r10_offset); // dst array offset
duke@435 2615 BLOCK_COMMENT("choose copy loop based on element size");
duke@435 2616 __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
duke@435 2617
duke@435 2618 // next registers should be set before the jump to corresponding stub
duke@435 2619 const Register from = c_rarg0; // source array address
duke@435 2620 const Register to = c_rarg1; // destination array address
duke@435 2621 const Register count = c_rarg2; // elements count
duke@435 2622
duke@435 2623 // 'from', 'to', 'count' registers should be set in such order
duke@435 2624 // since they are the same as 'src', 'src_pos', 'dst'.
duke@435 2625
duke@435 2626 __ BIND(L_copy_bytes);
duke@435 2627 __ cmpl(rax_elsize, 0);
duke@435 2628 __ jccb(Assembler::notEqual, L_copy_shorts);
never@739 2629 __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
never@739 2630 __ lea(to, Address(dst, dst_pos, Address::times_1, 0));// dst_addr
never@739 2631 __ movl2ptr(count, r11_length); // length
duke@435 2632 __ jump(RuntimeAddress(byte_copy_entry));
duke@435 2633
duke@435 2634 __ BIND(L_copy_shorts);
duke@435 2635 __ cmpl(rax_elsize, LogBytesPerShort);
duke@435 2636 __ jccb(Assembler::notEqual, L_copy_ints);
never@739 2637 __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
never@739 2638 __ lea(to, Address(dst, dst_pos, Address::times_2, 0));// dst_addr
never@739 2639 __ movl2ptr(count, r11_length); // length
duke@435 2640 __ jump(RuntimeAddress(short_copy_entry));
duke@435 2641
duke@435 2642 __ BIND(L_copy_ints);
duke@435 2643 __ cmpl(rax_elsize, LogBytesPerInt);
duke@435 2644 __ jccb(Assembler::notEqual, L_copy_longs);
never@739 2645 __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
never@739 2646 __ lea(to, Address(dst, dst_pos, Address::times_4, 0));// dst_addr
never@739 2647 __ movl2ptr(count, r11_length); // length
duke@435 2648 __ jump(RuntimeAddress(int_copy_entry));
duke@435 2649
duke@435 2650 __ BIND(L_copy_longs);
duke@435 2651 #ifdef ASSERT
twisti@2348 2652 {
twisti@2348 2653 BLOCK_COMMENT("assert long copy {");
twisti@2348 2654 Label L;
duke@435 2655 __ cmpl(rax_elsize, LogBytesPerLong);
duke@435 2656 __ jcc(Assembler::equal, L);
duke@435 2657 __ stop("must be long copy, but elsize is wrong");
duke@435 2658 __ bind(L);
twisti@2348 2659 BLOCK_COMMENT("} assert long copy done");
duke@435 2660 }
duke@435 2661 #endif
never@739 2662 __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
never@739 2663 __ lea(to, Address(dst, dst_pos, Address::times_8, 0));// dst_addr
never@739 2664 __ movl2ptr(count, r11_length); // length
duke@435 2665 __ jump(RuntimeAddress(long_copy_entry));
duke@435 2666
duke@435 2667 // objArrayKlass
duke@435 2668 __ BIND(L_objArray);
twisti@2348 2669 // live at this point: r10_src_klass, r11_length, src[_pos], dst[_pos]
duke@435 2670
duke@435 2671 Label L_plain_copy, L_checkcast_copy;
duke@435 2672 // test array classes for subtyping
twisti@2348 2673 __ load_klass(rax, dst);
twisti@2348 2674 __ cmpq(r10_src_klass, rax); // usual case is exact equality
duke@435 2675 __ jcc(Assembler::notEqual, L_checkcast_copy);
duke@435 2676
duke@435 2677 // Identically typed arrays can be copied without element-wise checks.
duke@435 2678 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2679 r10, L_failed);
duke@435 2680
never@739 2681 __ lea(from, Address(src, src_pos, TIMES_OOP,
duke@435 2682 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
never@739 2683 __ lea(to, Address(dst, dst_pos, TIMES_OOP,
never@739 2684 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
never@739 2685 __ movl2ptr(count, r11_length); // length
duke@435 2686 __ BIND(L_plain_copy);
duke@435 2687 __ jump(RuntimeAddress(oop_copy_entry));
duke@435 2688
duke@435 2689 __ BIND(L_checkcast_copy);
twisti@2348 2690 // live at this point: r10_src_klass, r11_length, rax (dst_klass)
duke@435 2691 {
duke@435 2692 // Before looking at dst.length, make sure dst is also an objArray.
twisti@2348 2693 __ cmpl(Address(rax, lh_offset), objArray_lh);
duke@435 2694 __ jcc(Assembler::notEqual, L_failed);
duke@435 2695
duke@435 2696 // It is safe to examine both src.length and dst.length.
duke@435 2697 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2698 rax, L_failed);
twisti@2348 2699
twisti@2348 2700 const Register r11_dst_klass = r11;
coleenp@548 2701 __ load_klass(r11_dst_klass, dst); // reload
duke@435 2702
duke@435 2703 // Marshal the base address arguments now, freeing registers.
never@739 2704 __ lea(from, Address(src, src_pos, TIMES_OOP,
duke@435 2705 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
never@739 2706 __ lea(to, Address(dst, dst_pos, TIMES_OOP,
duke@435 2707 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
twisti@2348 2708 __ movl(count, length); // length (reloaded)
duke@435 2709 Register sco_temp = c_rarg3; // this register is free now
duke@435 2710 assert_different_registers(from, to, count, sco_temp,
duke@435 2711 r11_dst_klass, r10_src_klass);
duke@435 2712 assert_clean_int(count, sco_temp);
duke@435 2713
duke@435 2714 // Generate the type check.
twisti@2348 2715 const int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
twisti@2348 2716 Klass::super_check_offset_offset_in_bytes());
duke@435 2717 __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
duke@435 2718 assert_clean_int(sco_temp, rax);
duke@435 2719 generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
duke@435 2720
duke@435 2721 // Fetch destination element klass from the objArrayKlass header.
duke@435 2722 int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 2723 objArrayKlass::element_klass_offset_in_bytes());
never@739 2724 __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
twisti@2348 2725 __ movl( sco_temp, Address(r11_dst_klass, sco_offset));
duke@435 2726 assert_clean_int(sco_temp, rax);
duke@435 2727
duke@435 2728 // the checkcast_copy loop needs two extra arguments:
duke@435 2729 assert(c_rarg3 == sco_temp, "#3 already in place");
twisti@2348 2730 // Set up arguments for checkcast_copy_entry.
twisti@2348 2731 setup_arg_regs(4);
twisti@2348 2732 __ movptr(r8, r11_dst_klass); // dst.klass.element_klass, r8 is c_rarg4 on Linux/Solaris
duke@435 2733 __ jump(RuntimeAddress(checkcast_copy_entry));
duke@435 2734 }
duke@435 2735
duke@435 2736 __ BIND(L_failed);
never@739 2737 __ xorptr(rax, rax);
never@739 2738 __ notptr(rax); // return -1
duke@435 2739 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2740 __ ret(0);
duke@435 2741
duke@435 2742 return start;
duke@435 2743 }
duke@435 2744
duke@435 2745 void generate_arraycopy_stubs() {
iveresov@2595 2746 address entry;
iveresov@2595 2747 address entry_jbyte_arraycopy;
iveresov@2595 2748 address entry_jshort_arraycopy;
iveresov@2595 2749 address entry_jint_arraycopy;
iveresov@2595 2750 address entry_oop_arraycopy;
iveresov@2595 2751 address entry_jlong_arraycopy;
iveresov@2595 2752 address entry_checkcast_arraycopy;
iveresov@2595 2753
iveresov@2595 2754 StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, &entry,
iveresov@2595 2755 "jbyte_disjoint_arraycopy");
iveresov@2595 2756 StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, entry, &entry_jbyte_arraycopy,
iveresov@2595 2757 "jbyte_arraycopy");
iveresov@2595 2758
iveresov@2595 2759 StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry,
iveresov@2595 2760 "jshort_disjoint_arraycopy");
iveresov@2595 2761 StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, entry, &entry_jshort_arraycopy,
iveresov@2595 2762 "jshort_arraycopy");
iveresov@2595 2763
iveresov@2595 2764 StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, false, &entry,
iveresov@2595 2765 "jint_disjoint_arraycopy");
iveresov@2595 2766 StubRoutines::_jint_arraycopy = generate_conjoint_int_oop_copy(false, false, entry,
iveresov@2595 2767 &entry_jint_arraycopy, "jint_arraycopy");
iveresov@2595 2768
iveresov@2595 2769 StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, false, &entry,
iveresov@2595 2770 "jlong_disjoint_arraycopy");
iveresov@2595 2771 StubRoutines::_jlong_arraycopy = generate_conjoint_long_oop_copy(false, false, entry,
iveresov@2595 2772 &entry_jlong_arraycopy, "jlong_arraycopy");
duke@435 2773
coleenp@548 2774
coleenp@548 2775 if (UseCompressedOops) {
iveresov@2595 2776 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, true, &entry,
iveresov@2595 2777 "oop_disjoint_arraycopy");
iveresov@2595 2778 StubRoutines::_oop_arraycopy = generate_conjoint_int_oop_copy(false, true, entry,
iveresov@2595 2779 &entry_oop_arraycopy, "oop_arraycopy");
iveresov@2606 2780 StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_int_oop_copy(false, true, &entry,
iveresov@2606 2781 "oop_disjoint_arraycopy_uninit",
iveresov@2606 2782 /*dest_uninitialized*/true);
iveresov@2606 2783 StubRoutines::_oop_arraycopy_uninit = generate_conjoint_int_oop_copy(false, true, entry,
iveresov@2606 2784 NULL, "oop_arraycopy_uninit",
iveresov@2606 2785 /*dest_uninitialized*/true);
coleenp@548 2786 } else {
iveresov@2595 2787 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, true, &entry,
iveresov@2595 2788 "oop_disjoint_arraycopy");
iveresov@2595 2789 StubRoutines::_oop_arraycopy = generate_conjoint_long_oop_copy(false, true, entry,
iveresov@2595 2790 &entry_oop_arraycopy, "oop_arraycopy");
iveresov@2606 2791 StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_long_oop_copy(false, true, &entry,
iveresov@2606 2792 "oop_disjoint_arraycopy_uninit",
iveresov@2606 2793 /*dest_uninitialized*/true);
iveresov@2606 2794 StubRoutines::_oop_arraycopy_uninit = generate_conjoint_long_oop_copy(false, true, entry,
iveresov@2606 2795 NULL, "oop_arraycopy_uninit",
iveresov@2606 2796 /*dest_uninitialized*/true);
coleenp@548 2797 }
duke@435 2798
iveresov@2606 2799 StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
iveresov@2606 2800 StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
iveresov@2606 2801 /*dest_uninitialized*/true);
iveresov@2606 2802
iveresov@2595 2803 StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy",
iveresov@2595 2804 entry_jbyte_arraycopy,
iveresov@2595 2805 entry_jshort_arraycopy,
iveresov@2595 2806 entry_jint_arraycopy,
iveresov@2595 2807 entry_jlong_arraycopy);
iveresov@2595 2808 StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy",
iveresov@2595 2809 entry_jbyte_arraycopy,
iveresov@2595 2810 entry_jshort_arraycopy,
iveresov@2595 2811 entry_jint_arraycopy,
iveresov@2595 2812 entry_oop_arraycopy,
iveresov@2595 2813 entry_jlong_arraycopy,
iveresov@2595 2814 entry_checkcast_arraycopy);
duke@435 2815
never@2118 2816 StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
never@2118 2817 StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
never@2118 2818 StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
never@2118 2819 StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
never@2118 2820 StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
never@2118 2821 StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
never@2118 2822
duke@435 2823 // We don't generate specialized code for HeapWord-aligned source
duke@435 2824 // arrays, so just use the code we've already generated
duke@435 2825 StubRoutines::_arrayof_jbyte_disjoint_arraycopy = StubRoutines::_jbyte_disjoint_arraycopy;
duke@435 2826 StubRoutines::_arrayof_jbyte_arraycopy = StubRoutines::_jbyte_arraycopy;
duke@435 2827
duke@435 2828 StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
duke@435 2829 StubRoutines::_arrayof_jshort_arraycopy = StubRoutines::_jshort_arraycopy;
duke@435 2830
duke@435 2831 StubRoutines::_arrayof_jint_disjoint_arraycopy = StubRoutines::_jint_disjoint_arraycopy;
duke@435 2832 StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy;
duke@435 2833
duke@435 2834 StubRoutines::_arrayof_jlong_disjoint_arraycopy = StubRoutines::_jlong_disjoint_arraycopy;
duke@435 2835 StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
duke@435 2836
duke@435 2837 StubRoutines::_arrayof_oop_disjoint_arraycopy = StubRoutines::_oop_disjoint_arraycopy;
duke@435 2838 StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy;
iveresov@2606 2839
iveresov@2606 2840 StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit;
iveresov@2606 2841 StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit;
duke@435 2842 }
duke@435 2843
never@1609 2844 void generate_math_stubs() {
never@1609 2845 {
never@1609 2846 StubCodeMark mark(this, "StubRoutines", "log");
never@1609 2847 StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
never@1609 2848
never@1609 2849 __ subq(rsp, 8);
never@1609 2850 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2851 __ fld_d(Address(rsp, 0));
never@1609 2852 __ flog();
never@1609 2853 __ fstp_d(Address(rsp, 0));
never@1609 2854 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2855 __ addq(rsp, 8);
never@1609 2856 __ ret(0);
never@1609 2857 }
never@1609 2858 {
never@1609 2859 StubCodeMark mark(this, "StubRoutines", "log10");
never@1609 2860 StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
never@1609 2861
never@1609 2862 __ subq(rsp, 8);
never@1609 2863 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2864 __ fld_d(Address(rsp, 0));
never@1609 2865 __ flog10();
never@1609 2866 __ fstp_d(Address(rsp, 0));
never@1609 2867 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2868 __ addq(rsp, 8);
never@1609 2869 __ ret(0);
never@1609 2870 }
never@1609 2871 {
never@1609 2872 StubCodeMark mark(this, "StubRoutines", "sin");
never@1609 2873 StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc();
never@1609 2874
never@1609 2875 __ subq(rsp, 8);
never@1609 2876 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2877 __ fld_d(Address(rsp, 0));
never@1609 2878 __ trigfunc('s');
never@1609 2879 __ fstp_d(Address(rsp, 0));
never@1609 2880 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2881 __ addq(rsp, 8);
never@1609 2882 __ ret(0);
never@1609 2883 }
never@1609 2884 {
never@1609 2885 StubCodeMark mark(this, "StubRoutines", "cos");
never@1609 2886 StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
never@1609 2887
never@1609 2888 __ subq(rsp, 8);
never@1609 2889 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2890 __ fld_d(Address(rsp, 0));
never@1609 2891 __ trigfunc('c');
never@1609 2892 __ fstp_d(Address(rsp, 0));
never@1609 2893 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2894 __ addq(rsp, 8);
never@1609 2895 __ ret(0);
never@1609 2896 }
never@1609 2897 {
never@1609 2898 StubCodeMark mark(this, "StubRoutines", "tan");
never@1609 2899 StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
never@1609 2900
never@1609 2901 __ subq(rsp, 8);
never@1609 2902 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2903 __ fld_d(Address(rsp, 0));
never@1609 2904 __ trigfunc('t');
never@1609 2905 __ fstp_d(Address(rsp, 0));
never@1609 2906 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2907 __ addq(rsp, 8);
never@1609 2908 __ ret(0);
never@1609 2909 }
never@1609 2910
never@1609 2911 // The intrinsic version of these seem to return the same value as
never@1609 2912 // the strict version.
never@1609 2913 StubRoutines::_intrinsic_exp = SharedRuntime::dexp;
never@1609 2914 StubRoutines::_intrinsic_pow = SharedRuntime::dpow;
never@1609 2915 }
never@1609 2916
duke@435 2917 #undef __
duke@435 2918 #define __ masm->
duke@435 2919
duke@435 2920 // Continuation point for throwing of implicit exceptions that are
duke@435 2921 // not handled in the current activation. Fabricates an exception
duke@435 2922 // oop and initiates normal exception dispatching in this
duke@435 2923 // frame. Since we need to preserve callee-saved values (currently
duke@435 2924 // only for C2, but done for C1 as well) we need a callee-saved oop
duke@435 2925 // map and therefore have to make these stubs into RuntimeStubs
duke@435 2926 // rather than BufferBlobs. If the compiler needs all registers to
duke@435 2927 // be preserved between the fault point and the exception handler
duke@435 2928 // then it must assume responsibility for that in
duke@435 2929 // AbstractCompiler::continuation_for_implicit_null_exception or
duke@435 2930 // continuation_for_implicit_division_by_zero_exception. All other
duke@435 2931 // implicit exceptions (e.g., NullPointerException or
duke@435 2932 // AbstractMethodError on entry) are either at call sites or
duke@435 2933 // otherwise assume that stack unwinding will be initiated, so
duke@435 2934 // caller saved registers were assumed volatile in the compiler.
duke@435 2935 address generate_throw_exception(const char* name,
duke@435 2936 address runtime_entry,
never@2978 2937 bool restore_saved_exception_pc,
never@2978 2938 Register arg1 = noreg,
never@2978 2939 Register arg2 = noreg) {
duke@435 2940 // Information about frame layout at time of blocking runtime call.
duke@435 2941 // Note that we only have to preserve callee-saved registers since
duke@435 2942 // the compilers are responsible for supplying a continuation point
duke@435 2943 // if they expect all registers to be preserved.
duke@435 2944 enum layout {
duke@435 2945 rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
duke@435 2946 rbp_off2,
duke@435 2947 return_off,
duke@435 2948 return_off2,
duke@435 2949 framesize // inclusive of return address
duke@435 2950 };
duke@435 2951
duke@435 2952 int insts_size = 512;
duke@435 2953 int locs_size = 64;
duke@435 2954
duke@435 2955 CodeBuffer code(name, insts_size, locs_size);
duke@435 2956 OopMapSet* oop_maps = new OopMapSet();
duke@435 2957 MacroAssembler* masm = new MacroAssembler(&code);
duke@435 2958
duke@435 2959 address start = __ pc();
duke@435 2960
duke@435 2961 // This is an inlined and slightly modified version of call_VM
duke@435 2962 // which has the ability to fetch the return PC out of
duke@435 2963 // thread-local storage and also sets up last_Java_sp slightly
duke@435 2964 // differently than the real call_VM
duke@435 2965 if (restore_saved_exception_pc) {
never@739 2966 __ movptr(rax,
never@739 2967 Address(r15_thread,
never@739 2968 in_bytes(JavaThread::saved_exception_pc_offset())));
never@739 2969 __ push(rax);
duke@435 2970 }
duke@435 2971
duke@435 2972 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2973
duke@435 2974 assert(is_even(framesize/2), "sp not 16-byte aligned");
duke@435 2975
duke@435 2976 // return address and rbp are already in place
never@739 2977 __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
duke@435 2978
duke@435 2979 int frame_complete = __ pc() - start;
duke@435 2980
duke@435 2981 // Set up last_Java_sp and last_Java_fp
duke@435 2982 __ set_last_Java_frame(rsp, rbp, NULL);
duke@435 2983
duke@435 2984 // Call runtime
never@2978 2985 if (arg1 != noreg) {
never@2978 2986 assert(arg2 != c_rarg1, "clobbered");
never@2978 2987 __ movptr(c_rarg1, arg1);
never@2978 2988 }
never@2978 2989 if (arg2 != noreg) {
never@2978 2990 __ movptr(c_rarg2, arg2);
never@2978 2991 }
never@739 2992 __ movptr(c_rarg0, r15_thread);
duke@435 2993 BLOCK_COMMENT("call runtime_entry");
duke@435 2994 __ call(RuntimeAddress(runtime_entry));
duke@435 2995
duke@435 2996 // Generate oop map
duke@435 2997 OopMap* map = new OopMap(framesize, 0);
duke@435 2998
duke@435 2999 oop_maps->add_gc_map(__ pc() - start, map);
duke@435 3000
duke@435 3001 __ reset_last_Java_frame(true, false);
duke@435 3002
duke@435 3003 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 3004
duke@435 3005 // check for pending exceptions
duke@435 3006 #ifdef ASSERT
duke@435 3007 Label L;
never@739 3008 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()),
never@739 3009 (int32_t) NULL_WORD);
duke@435 3010 __ jcc(Assembler::notEqual, L);
duke@435 3011 __ should_not_reach_here();
duke@435 3012 __ bind(L);
duke@435 3013 #endif // ASSERT
duke@435 3014 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 3015
duke@435 3016
duke@435 3017 // codeBlob framesize is in words (not VMRegImpl::slot_size)
duke@435 3018 RuntimeStub* stub =
duke@435 3019 RuntimeStub::new_runtime_stub(name,
duke@435 3020 &code,
duke@435 3021 frame_complete,
duke@435 3022 (framesize >> (LogBytesPerWord - LogBytesPerInt)),
duke@435 3023 oop_maps, false);
duke@435 3024 return stub->entry_point();
duke@435 3025 }
duke@435 3026
duke@435 3027 // Initialization
duke@435 3028 void generate_initial() {
duke@435 3029 // Generates all stubs and initializes the entry points
duke@435 3030
duke@435 3031 // This platform-specific stub is needed by generate_call_stub()
never@739 3032 StubRoutines::x86::_mxcsr_std = generate_fp_mask("mxcsr_std", 0x0000000000001F80);
duke@435 3033
duke@435 3034 // entry points that exist in all platforms Note: This is code
duke@435 3035 // that could be shared among different platforms - however the
duke@435 3036 // benefit seems to be smaller than the disadvantage of having a
duke@435 3037 // much more complicated generator structure. See also comment in
duke@435 3038 // stubRoutines.hpp.
duke@435 3039
duke@435 3040 StubRoutines::_forward_exception_entry = generate_forward_exception();
duke@435 3041
duke@435 3042 StubRoutines::_call_stub_entry =
duke@435 3043 generate_call_stub(StubRoutines::_call_stub_return_address);
duke@435 3044
duke@435 3045 // is referenced by megamorphic call
duke@435 3046 StubRoutines::_catch_exception_entry = generate_catch_exception();
duke@435 3047
duke@435 3048 // atomic calls
duke@435 3049 StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
duke@435 3050 StubRoutines::_atomic_xchg_ptr_entry = generate_atomic_xchg_ptr();
duke@435 3051 StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg();
duke@435 3052 StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
duke@435 3053 StubRoutines::_atomic_add_entry = generate_atomic_add();
duke@435 3054 StubRoutines::_atomic_add_ptr_entry = generate_atomic_add_ptr();
duke@435 3055 StubRoutines::_fence_entry = generate_orderaccess_fence();
duke@435 3056
duke@435 3057 StubRoutines::_handler_for_unsafe_access_entry =
duke@435 3058 generate_handler_for_unsafe_access();
duke@435 3059
duke@435 3060 // platform dependent
never@739 3061 StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp();
never@739 3062
never@739 3063 StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr();
never@2978 3064
never@2978 3065 // Build this early so it's available for the interpreter. Stub
never@2978 3066 // expects the required and actual types as register arguments in
never@2978 3067 // j_rarg0 and j_rarg1 respectively.
never@2978 3068 StubRoutines::_throw_WrongMethodTypeException_entry =
never@2978 3069 generate_throw_exception("WrongMethodTypeException throw_exception",
never@2978 3070 CAST_FROM_FN_PTR(address, SharedRuntime::throw_WrongMethodTypeException),
never@2978 3071 false, rax, rcx);
duke@435 3072 }
duke@435 3073
duke@435 3074 void generate_all() {
duke@435 3075 // Generates all stubs and initializes the entry points
duke@435 3076
duke@435 3077 // These entry points require SharedInfo::stack0 to be set up in
duke@435 3078 // non-core builds and need to be relocatable, so they each
duke@435 3079 // fabricate a RuntimeStub internally.
duke@435 3080 StubRoutines::_throw_AbstractMethodError_entry =
duke@435 3081 generate_throw_exception("AbstractMethodError throw_exception",
duke@435 3082 CAST_FROM_FN_PTR(address,
duke@435 3083 SharedRuntime::
duke@435 3084 throw_AbstractMethodError),
duke@435 3085 false);
duke@435 3086
dcubed@451 3087 StubRoutines::_throw_IncompatibleClassChangeError_entry =
dcubed@451 3088 generate_throw_exception("IncompatibleClassChangeError throw_exception",
dcubed@451 3089 CAST_FROM_FN_PTR(address,
dcubed@451 3090 SharedRuntime::
dcubed@451 3091 throw_IncompatibleClassChangeError),
dcubed@451 3092 false);
dcubed@451 3093
duke@435 3094 StubRoutines::_throw_ArithmeticException_entry =
duke@435 3095 generate_throw_exception("ArithmeticException throw_exception",
duke@435 3096 CAST_FROM_FN_PTR(address,
duke@435 3097 SharedRuntime::
duke@435 3098 throw_ArithmeticException),
duke@435 3099 true);
duke@435 3100
duke@435 3101 StubRoutines::_throw_NullPointerException_entry =
duke@435 3102 generate_throw_exception("NullPointerException throw_exception",
duke@435 3103 CAST_FROM_FN_PTR(address,
duke@435 3104 SharedRuntime::
duke@435 3105 throw_NullPointerException),
duke@435 3106 true);
duke@435 3107
duke@435 3108 StubRoutines::_throw_NullPointerException_at_call_entry =
duke@435 3109 generate_throw_exception("NullPointerException at call throw_exception",
duke@435 3110 CAST_FROM_FN_PTR(address,
duke@435 3111 SharedRuntime::
duke@435 3112 throw_NullPointerException_at_call),
duke@435 3113 false);
duke@435 3114
duke@435 3115 StubRoutines::_throw_StackOverflowError_entry =
duke@435 3116 generate_throw_exception("StackOverflowError throw_exception",
duke@435 3117 CAST_FROM_FN_PTR(address,
duke@435 3118 SharedRuntime::
duke@435 3119 throw_StackOverflowError),
duke@435 3120 false);
duke@435 3121
duke@435 3122 // entry points that are platform specific
never@739 3123 StubRoutines::x86::_f2i_fixup = generate_f2i_fixup();
never@739 3124 StubRoutines::x86::_f2l_fixup = generate_f2l_fixup();
never@739 3125 StubRoutines::x86::_d2i_fixup = generate_d2i_fixup();
never@739 3126 StubRoutines::x86::_d2l_fixup = generate_d2l_fixup();
never@739 3127
never@739 3128 StubRoutines::x86::_float_sign_mask = generate_fp_mask("float_sign_mask", 0x7FFFFFFF7FFFFFFF);
never@739 3129 StubRoutines::x86::_float_sign_flip = generate_fp_mask("float_sign_flip", 0x8000000080000000);
never@739 3130 StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
never@739 3131 StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
duke@435 3132
duke@435 3133 // support for verify_oop (must happen after universe_init)
duke@435 3134 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
duke@435 3135
duke@435 3136 // arraycopy stubs used by compilers
duke@435 3137 generate_arraycopy_stubs();
twisti@1543 3138
never@1609 3139 generate_math_stubs();
duke@435 3140 }
duke@435 3141
duke@435 3142 public:
duke@435 3143 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
duke@435 3144 if (all) {
duke@435 3145 generate_all();
duke@435 3146 } else {
duke@435 3147 generate_initial();
duke@435 3148 }
duke@435 3149 }
duke@435 3150 }; // end class declaration
duke@435 3151
duke@435 3152 void StubGenerator_generate(CodeBuffer* code, bool all) {
duke@435 3153 StubGenerator g(code, all);
duke@435 3154 }

mercurial