src/cpu/x86/vm/sharedRuntime_x86_32.cpp

Sat, 01 Sep 2012 13:25:18 -0400

author
coleenp
date
Sat, 01 Sep 2012 13:25:18 -0400
changeset 4037
da91efe96a93
parent 3969
1d7922586cf6
child 4051
8a02ca5e5576
permissions
-rw-r--r--

6964458: Reimplement class meta-data storage to use native memory
Summary: Remove PermGen, allocate meta-data in metaspace linked to class loaders, rewrite GC walking, rewrite and rename metadata to be C++ classes
Reviewed-by: jmasa, stefank, never, coleenp, kvn, brutisso, mgerdin, dholmes, jrose, twisti, roland
Contributed-by: jmasa <jon.masamitsu@oracle.com>, stefank <stefan.karlsson@oracle.com>, mgerdin <mikael.gerdin@oracle.com>, never <tom.rodriguez@oracle.com>

duke@435 1 /*
never@3500 2 * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "asm/assembler.hpp"
stefank@2314 27 #include "assembler_x86.inline.hpp"
stefank@2314 28 #include "code/debugInfoRec.hpp"
stefank@2314 29 #include "code/icBuffer.hpp"
stefank@2314 30 #include "code/vtableStubs.hpp"
stefank@2314 31 #include "interpreter/interpreter.hpp"
coleenp@4037 32 #include "oops/compiledICHolder.hpp"
stefank@2314 33 #include "prims/jvmtiRedefineClassesTrace.hpp"
stefank@2314 34 #include "runtime/sharedRuntime.hpp"
stefank@2314 35 #include "runtime/vframeArray.hpp"
stefank@2314 36 #include "vmreg_x86.inline.hpp"
stefank@2314 37 #ifdef COMPILER1
stefank@2314 38 #include "c1/c1_Runtime1.hpp"
stefank@2314 39 #endif
stefank@2314 40 #ifdef COMPILER2
stefank@2314 41 #include "opto/runtime.hpp"
stefank@2314 42 #endif
duke@435 43
duke@435 44 #define __ masm->
duke@435 45
xlu@959 46 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
xlu@959 47
duke@435 48 class RegisterSaver {
duke@435 49 enum { FPU_regs_live = 8 /*for the FPU stack*/+8/*eight more for XMM registers*/ };
duke@435 50 // Capture info about frame layout
duke@435 51 enum layout {
duke@435 52 fpu_state_off = 0,
duke@435 53 fpu_state_end = fpu_state_off+FPUStateSizeInWords-1,
duke@435 54 st0_off, st0H_off,
duke@435 55 st1_off, st1H_off,
duke@435 56 st2_off, st2H_off,
duke@435 57 st3_off, st3H_off,
duke@435 58 st4_off, st4H_off,
duke@435 59 st5_off, st5H_off,
duke@435 60 st6_off, st6H_off,
duke@435 61 st7_off, st7H_off,
duke@435 62
duke@435 63 xmm0_off, xmm0H_off,
duke@435 64 xmm1_off, xmm1H_off,
duke@435 65 xmm2_off, xmm2H_off,
duke@435 66 xmm3_off, xmm3H_off,
duke@435 67 xmm4_off, xmm4H_off,
duke@435 68 xmm5_off, xmm5H_off,
duke@435 69 xmm6_off, xmm6H_off,
duke@435 70 xmm7_off, xmm7H_off,
duke@435 71 flags_off,
duke@435 72 rdi_off,
duke@435 73 rsi_off,
duke@435 74 ignore_off, // extra copy of rbp,
duke@435 75 rsp_off,
duke@435 76 rbx_off,
duke@435 77 rdx_off,
duke@435 78 rcx_off,
duke@435 79 rax_off,
duke@435 80 // The frame sender code expects that rbp will be in the "natural" place and
duke@435 81 // will override any oopMap setting for it. We must therefore force the layout
duke@435 82 // so that it agrees with the frame sender code.
duke@435 83 rbp_off,
duke@435 84 return_off, // slot for return address
duke@435 85 reg_save_size };
duke@435 86
duke@435 87
duke@435 88 public:
duke@435 89
duke@435 90 static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
duke@435 91 int* total_frame_words, bool verify_fpu = true);
duke@435 92 static void restore_live_registers(MacroAssembler* masm);
duke@435 93
duke@435 94 static int rax_offset() { return rax_off; }
duke@435 95 static int rbx_offset() { return rbx_off; }
duke@435 96
duke@435 97 // Offsets into the register save area
duke@435 98 // Used by deoptimization when it is managing result register
duke@435 99 // values on its own
duke@435 100
duke@435 101 static int raxOffset(void) { return rax_off; }
duke@435 102 static int rdxOffset(void) { return rdx_off; }
duke@435 103 static int rbxOffset(void) { return rbx_off; }
duke@435 104 static int xmm0Offset(void) { return xmm0_off; }
duke@435 105 // This really returns a slot in the fp save area, which one is not important
duke@435 106 static int fpResultOffset(void) { return st0_off; }
duke@435 107
duke@435 108 // During deoptimization only the result register need to be restored
duke@435 109 // all the other values have already been extracted.
duke@435 110
duke@435 111 static void restore_result_registers(MacroAssembler* masm);
duke@435 112
duke@435 113 };
duke@435 114
duke@435 115 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
duke@435 116 int* total_frame_words, bool verify_fpu) {
duke@435 117
duke@435 118 int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize;
duke@435 119 int frame_words = frame_size_in_bytes / wordSize;
duke@435 120 *total_frame_words = frame_words;
duke@435 121
duke@435 122 assert(FPUStateSizeInWords == 27, "update stack layout");
duke@435 123
duke@435 124 // save registers, fpu state, and flags
duke@435 125 // We assume caller has already has return address slot on the stack
duke@435 126 // We push epb twice in this sequence because we want the real rbp,
never@739 127 // to be under the return like a normal enter and we want to use pusha
duke@435 128 // We push by hand instead of pusing push
duke@435 129 __ enter();
never@739 130 __ pusha();
never@739 131 __ pushf();
never@739 132 __ subptr(rsp,FPU_regs_live*sizeof(jdouble)); // Push FPU registers space
duke@435 133 __ push_FPU_state(); // Save FPU state & init
duke@435 134
duke@435 135 if (verify_fpu) {
duke@435 136 // Some stubs may have non standard FPU control word settings so
duke@435 137 // only check and reset the value when it required to be the
duke@435 138 // standard value. The safepoint blob in particular can be used
duke@435 139 // in methods which are using the 24 bit control word for
duke@435 140 // optimized float math.
duke@435 141
duke@435 142 #ifdef ASSERT
duke@435 143 // Make sure the control word has the expected value
duke@435 144 Label ok;
duke@435 145 __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
duke@435 146 __ jccb(Assembler::equal, ok);
duke@435 147 __ stop("corrupted control word detected");
duke@435 148 __ bind(ok);
duke@435 149 #endif
duke@435 150
duke@435 151 // Reset the control word to guard against exceptions being unmasked
duke@435 152 // since fstp_d can cause FPU stack underflow exceptions. Write it
duke@435 153 // into the on stack copy and then reload that to make sure that the
duke@435 154 // current and future values are correct.
duke@435 155 __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
duke@435 156 }
duke@435 157
duke@435 158 __ frstor(Address(rsp, 0));
duke@435 159 if (!verify_fpu) {
duke@435 160 // Set the control word so that exceptions are masked for the
duke@435 161 // following code.
duke@435 162 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 163 }
duke@435 164
duke@435 165 // Save the FPU registers in de-opt-able form
duke@435 166
duke@435 167 __ fstp_d(Address(rsp, st0_off*wordSize)); // st(0)
duke@435 168 __ fstp_d(Address(rsp, st1_off*wordSize)); // st(1)
duke@435 169 __ fstp_d(Address(rsp, st2_off*wordSize)); // st(2)
duke@435 170 __ fstp_d(Address(rsp, st3_off*wordSize)); // st(3)
duke@435 171 __ fstp_d(Address(rsp, st4_off*wordSize)); // st(4)
duke@435 172 __ fstp_d(Address(rsp, st5_off*wordSize)); // st(5)
duke@435 173 __ fstp_d(Address(rsp, st6_off*wordSize)); // st(6)
duke@435 174 __ fstp_d(Address(rsp, st7_off*wordSize)); // st(7)
duke@435 175
duke@435 176 if( UseSSE == 1 ) { // Save the XMM state
duke@435 177 __ movflt(Address(rsp,xmm0_off*wordSize),xmm0);
duke@435 178 __ movflt(Address(rsp,xmm1_off*wordSize),xmm1);
duke@435 179 __ movflt(Address(rsp,xmm2_off*wordSize),xmm2);
duke@435 180 __ movflt(Address(rsp,xmm3_off*wordSize),xmm3);
duke@435 181 __ movflt(Address(rsp,xmm4_off*wordSize),xmm4);
duke@435 182 __ movflt(Address(rsp,xmm5_off*wordSize),xmm5);
duke@435 183 __ movflt(Address(rsp,xmm6_off*wordSize),xmm6);
duke@435 184 __ movflt(Address(rsp,xmm7_off*wordSize),xmm7);
duke@435 185 } else if( UseSSE >= 2 ) {
duke@435 186 __ movdbl(Address(rsp,xmm0_off*wordSize),xmm0);
duke@435 187 __ movdbl(Address(rsp,xmm1_off*wordSize),xmm1);
duke@435 188 __ movdbl(Address(rsp,xmm2_off*wordSize),xmm2);
duke@435 189 __ movdbl(Address(rsp,xmm3_off*wordSize),xmm3);
duke@435 190 __ movdbl(Address(rsp,xmm4_off*wordSize),xmm4);
duke@435 191 __ movdbl(Address(rsp,xmm5_off*wordSize),xmm5);
duke@435 192 __ movdbl(Address(rsp,xmm6_off*wordSize),xmm6);
duke@435 193 __ movdbl(Address(rsp,xmm7_off*wordSize),xmm7);
duke@435 194 }
duke@435 195
duke@435 196 // Set an oopmap for the call site. This oopmap will map all
duke@435 197 // oop-registers and debug-info registers as callee-saved. This
duke@435 198 // will allow deoptimization at this safepoint to find all possible
duke@435 199 // debug-info recordings, as well as let GC find all oops.
duke@435 200
duke@435 201 OopMapSet *oop_maps = new OopMapSet();
duke@435 202 OopMap* map = new OopMap( frame_words, 0 );
duke@435 203
duke@435 204 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
duke@435 205
duke@435 206 map->set_callee_saved(STACK_OFFSET( rax_off), rax->as_VMReg());
duke@435 207 map->set_callee_saved(STACK_OFFSET( rcx_off), rcx->as_VMReg());
duke@435 208 map->set_callee_saved(STACK_OFFSET( rdx_off), rdx->as_VMReg());
duke@435 209 map->set_callee_saved(STACK_OFFSET( rbx_off), rbx->as_VMReg());
duke@435 210 // rbp, location is known implicitly, no oopMap
duke@435 211 map->set_callee_saved(STACK_OFFSET( rsi_off), rsi->as_VMReg());
duke@435 212 map->set_callee_saved(STACK_OFFSET( rdi_off), rdi->as_VMReg());
duke@435 213 map->set_callee_saved(STACK_OFFSET(st0_off), as_FloatRegister(0)->as_VMReg());
duke@435 214 map->set_callee_saved(STACK_OFFSET(st1_off), as_FloatRegister(1)->as_VMReg());
duke@435 215 map->set_callee_saved(STACK_OFFSET(st2_off), as_FloatRegister(2)->as_VMReg());
duke@435 216 map->set_callee_saved(STACK_OFFSET(st3_off), as_FloatRegister(3)->as_VMReg());
duke@435 217 map->set_callee_saved(STACK_OFFSET(st4_off), as_FloatRegister(4)->as_VMReg());
duke@435 218 map->set_callee_saved(STACK_OFFSET(st5_off), as_FloatRegister(5)->as_VMReg());
duke@435 219 map->set_callee_saved(STACK_OFFSET(st6_off), as_FloatRegister(6)->as_VMReg());
duke@435 220 map->set_callee_saved(STACK_OFFSET(st7_off), as_FloatRegister(7)->as_VMReg());
duke@435 221 map->set_callee_saved(STACK_OFFSET(xmm0_off), xmm0->as_VMReg());
duke@435 222 map->set_callee_saved(STACK_OFFSET(xmm1_off), xmm1->as_VMReg());
duke@435 223 map->set_callee_saved(STACK_OFFSET(xmm2_off), xmm2->as_VMReg());
duke@435 224 map->set_callee_saved(STACK_OFFSET(xmm3_off), xmm3->as_VMReg());
duke@435 225 map->set_callee_saved(STACK_OFFSET(xmm4_off), xmm4->as_VMReg());
duke@435 226 map->set_callee_saved(STACK_OFFSET(xmm5_off), xmm5->as_VMReg());
duke@435 227 map->set_callee_saved(STACK_OFFSET(xmm6_off), xmm6->as_VMReg());
duke@435 228 map->set_callee_saved(STACK_OFFSET(xmm7_off), xmm7->as_VMReg());
duke@435 229 // %%% This is really a waste but we'll keep things as they were for now
duke@435 230 if (true) {
duke@435 231 #define NEXTREG(x) (x)->as_VMReg()->next()
duke@435 232 map->set_callee_saved(STACK_OFFSET(st0H_off), NEXTREG(as_FloatRegister(0)));
duke@435 233 map->set_callee_saved(STACK_OFFSET(st1H_off), NEXTREG(as_FloatRegister(1)));
duke@435 234 map->set_callee_saved(STACK_OFFSET(st2H_off), NEXTREG(as_FloatRegister(2)));
duke@435 235 map->set_callee_saved(STACK_OFFSET(st3H_off), NEXTREG(as_FloatRegister(3)));
duke@435 236 map->set_callee_saved(STACK_OFFSET(st4H_off), NEXTREG(as_FloatRegister(4)));
duke@435 237 map->set_callee_saved(STACK_OFFSET(st5H_off), NEXTREG(as_FloatRegister(5)));
duke@435 238 map->set_callee_saved(STACK_OFFSET(st6H_off), NEXTREG(as_FloatRegister(6)));
duke@435 239 map->set_callee_saved(STACK_OFFSET(st7H_off), NEXTREG(as_FloatRegister(7)));
duke@435 240 map->set_callee_saved(STACK_OFFSET(xmm0H_off), NEXTREG(xmm0));
duke@435 241 map->set_callee_saved(STACK_OFFSET(xmm1H_off), NEXTREG(xmm1));
duke@435 242 map->set_callee_saved(STACK_OFFSET(xmm2H_off), NEXTREG(xmm2));
duke@435 243 map->set_callee_saved(STACK_OFFSET(xmm3H_off), NEXTREG(xmm3));
duke@435 244 map->set_callee_saved(STACK_OFFSET(xmm4H_off), NEXTREG(xmm4));
duke@435 245 map->set_callee_saved(STACK_OFFSET(xmm5H_off), NEXTREG(xmm5));
duke@435 246 map->set_callee_saved(STACK_OFFSET(xmm6H_off), NEXTREG(xmm6));
duke@435 247 map->set_callee_saved(STACK_OFFSET(xmm7H_off), NEXTREG(xmm7));
duke@435 248 #undef NEXTREG
duke@435 249 #undef STACK_OFFSET
duke@435 250 }
duke@435 251
duke@435 252 return map;
duke@435 253
duke@435 254 }
duke@435 255
duke@435 256 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
duke@435 257
duke@435 258 // Recover XMM & FPU state
duke@435 259 if( UseSSE == 1 ) {
duke@435 260 __ movflt(xmm0,Address(rsp,xmm0_off*wordSize));
duke@435 261 __ movflt(xmm1,Address(rsp,xmm1_off*wordSize));
duke@435 262 __ movflt(xmm2,Address(rsp,xmm2_off*wordSize));
duke@435 263 __ movflt(xmm3,Address(rsp,xmm3_off*wordSize));
duke@435 264 __ movflt(xmm4,Address(rsp,xmm4_off*wordSize));
duke@435 265 __ movflt(xmm5,Address(rsp,xmm5_off*wordSize));
duke@435 266 __ movflt(xmm6,Address(rsp,xmm6_off*wordSize));
duke@435 267 __ movflt(xmm7,Address(rsp,xmm7_off*wordSize));
duke@435 268 } else if( UseSSE >= 2 ) {
duke@435 269 __ movdbl(xmm0,Address(rsp,xmm0_off*wordSize));
duke@435 270 __ movdbl(xmm1,Address(rsp,xmm1_off*wordSize));
duke@435 271 __ movdbl(xmm2,Address(rsp,xmm2_off*wordSize));
duke@435 272 __ movdbl(xmm3,Address(rsp,xmm3_off*wordSize));
duke@435 273 __ movdbl(xmm4,Address(rsp,xmm4_off*wordSize));
duke@435 274 __ movdbl(xmm5,Address(rsp,xmm5_off*wordSize));
duke@435 275 __ movdbl(xmm6,Address(rsp,xmm6_off*wordSize));
duke@435 276 __ movdbl(xmm7,Address(rsp,xmm7_off*wordSize));
duke@435 277 }
duke@435 278 __ pop_FPU_state();
never@739 279 __ addptr(rsp, FPU_regs_live*sizeof(jdouble)); // Pop FPU registers
never@739 280
never@739 281 __ popf();
never@739 282 __ popa();
duke@435 283 // Get the rbp, described implicitly by the frame sender code (no oopMap)
never@739 284 __ pop(rbp);
duke@435 285
duke@435 286 }
duke@435 287
duke@435 288 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
duke@435 289
duke@435 290 // Just restore result register. Only used by deoptimization. By
duke@435 291 // now any callee save register that needs to be restore to a c2
duke@435 292 // caller of the deoptee has been extracted into the vframeArray
duke@435 293 // and will be stuffed into the c2i adapter we create for later
duke@435 294 // restoration so only result registers need to be restored here.
duke@435 295 //
duke@435 296
duke@435 297 __ frstor(Address(rsp, 0)); // Restore fpu state
duke@435 298
duke@435 299 // Recover XMM & FPU state
duke@435 300 if( UseSSE == 1 ) {
duke@435 301 __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
duke@435 302 } else if( UseSSE >= 2 ) {
duke@435 303 __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
duke@435 304 }
never@739 305 __ movptr(rax, Address(rsp, rax_off*wordSize));
never@739 306 __ movptr(rdx, Address(rsp, rdx_off*wordSize));
duke@435 307 // Pop all of the register save are off the stack except the return address
never@739 308 __ addptr(rsp, return_off * wordSize);
duke@435 309 }
duke@435 310
duke@435 311 // The java_calling_convention describes stack locations as ideal slots on
duke@435 312 // a frame with no abi restrictions. Since we must observe abi restrictions
duke@435 313 // (like the placement of the register window) the slots must be biased by
duke@435 314 // the following value.
duke@435 315 static int reg2offset_in(VMReg r) {
duke@435 316 // Account for saved rbp, and return address
duke@435 317 // This should really be in_preserve_stack_slots
duke@435 318 return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
duke@435 319 }
duke@435 320
duke@435 321 static int reg2offset_out(VMReg r) {
duke@435 322 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
duke@435 323 }
duke@435 324
duke@435 325 // ---------------------------------------------------------------------------
duke@435 326 // Read the array of BasicTypes from a signature, and compute where the
duke@435 327 // arguments should go. Values in the VMRegPair regs array refer to 4-byte
duke@435 328 // quantities. Values less than SharedInfo::stack0 are registers, those above
duke@435 329 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer
duke@435 330 // as framesizes are fixed.
duke@435 331 // VMRegImpl::stack0 refers to the first slot 0(sp).
duke@435 332 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Register
duke@435 333 // up to RegisterImpl::number_of_registers) are the 32-bit
duke@435 334 // integer registers.
duke@435 335
duke@435 336 // Pass first two oop/int args in registers ECX and EDX.
duke@435 337 // Pass first two float/double args in registers XMM0 and XMM1.
duke@435 338 // Doubles have precedence, so if you pass a mix of floats and doubles
duke@435 339 // the doubles will grab the registers before the floats will.
duke@435 340
duke@435 341 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
duke@435 342 // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit
duke@435 343 // units regardless of build. Of course for i486 there is no 64 bit build
duke@435 344
duke@435 345
duke@435 346 // ---------------------------------------------------------------------------
duke@435 347 // The compiled Java calling convention.
duke@435 348 // Pass first two oop/int args in registers ECX and EDX.
duke@435 349 // Pass first two float/double args in registers XMM0 and XMM1.
duke@435 350 // Doubles have precedence, so if you pass a mix of floats and doubles
duke@435 351 // the doubles will grab the registers before the floats will.
duke@435 352 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
duke@435 353 VMRegPair *regs,
duke@435 354 int total_args_passed,
duke@435 355 int is_outgoing) {
duke@435 356 uint stack = 0; // Starting stack position for args on stack
duke@435 357
duke@435 358
duke@435 359 // Pass first two oop/int args in registers ECX and EDX.
duke@435 360 uint reg_arg0 = 9999;
duke@435 361 uint reg_arg1 = 9999;
duke@435 362
duke@435 363 // Pass first two float/double args in registers XMM0 and XMM1.
duke@435 364 // Doubles have precedence, so if you pass a mix of floats and doubles
duke@435 365 // the doubles will grab the registers before the floats will.
duke@435 366 // CNC - TURNED OFF FOR non-SSE.
duke@435 367 // On Intel we have to round all doubles (and most floats) at
duke@435 368 // call sites by storing to the stack in any case.
duke@435 369 // UseSSE=0 ==> Don't Use ==> 9999+0
duke@435 370 // UseSSE=1 ==> Floats only ==> 9999+1
duke@435 371 // UseSSE>=2 ==> Floats or doubles ==> 9999+2
duke@435 372 enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
duke@435 373 uint fargs = (UseSSE>=2) ? 2 : UseSSE;
duke@435 374 uint freg_arg0 = 9999+fargs;
duke@435 375 uint freg_arg1 = 9999+fargs;
duke@435 376
duke@435 377 // Pass doubles & longs aligned on the stack. First count stack slots for doubles
duke@435 378 int i;
duke@435 379 for( i = 0; i < total_args_passed; i++) {
duke@435 380 if( sig_bt[i] == T_DOUBLE ) {
duke@435 381 // first 2 doubles go in registers
duke@435 382 if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
duke@435 383 else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
duke@435 384 else // Else double is passed low on the stack to be aligned.
duke@435 385 stack += 2;
duke@435 386 } else if( sig_bt[i] == T_LONG ) {
duke@435 387 stack += 2;
duke@435 388 }
duke@435 389 }
duke@435 390 int dstack = 0; // Separate counter for placing doubles
duke@435 391
duke@435 392 // Now pick where all else goes.
duke@435 393 for( i = 0; i < total_args_passed; i++) {
duke@435 394 // From the type and the argument number (count) compute the location
duke@435 395 switch( sig_bt[i] ) {
duke@435 396 case T_SHORT:
duke@435 397 case T_CHAR:
duke@435 398 case T_BYTE:
duke@435 399 case T_BOOLEAN:
duke@435 400 case T_INT:
duke@435 401 case T_ARRAY:
duke@435 402 case T_OBJECT:
duke@435 403 case T_ADDRESS:
duke@435 404 if( reg_arg0 == 9999 ) {
duke@435 405 reg_arg0 = i;
duke@435 406 regs[i].set1(rcx->as_VMReg());
duke@435 407 } else if( reg_arg1 == 9999 ) {
duke@435 408 reg_arg1 = i;
duke@435 409 regs[i].set1(rdx->as_VMReg());
duke@435 410 } else {
duke@435 411 regs[i].set1(VMRegImpl::stack2reg(stack++));
duke@435 412 }
duke@435 413 break;
duke@435 414 case T_FLOAT:
duke@435 415 if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
duke@435 416 freg_arg0 = i;
duke@435 417 regs[i].set1(xmm0->as_VMReg());
duke@435 418 } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
duke@435 419 freg_arg1 = i;
duke@435 420 regs[i].set1(xmm1->as_VMReg());
duke@435 421 } else {
duke@435 422 regs[i].set1(VMRegImpl::stack2reg(stack++));
duke@435 423 }
duke@435 424 break;
duke@435 425 case T_LONG:
duke@435 426 assert(sig_bt[i+1] == T_VOID, "missing Half" );
duke@435 427 regs[i].set2(VMRegImpl::stack2reg(dstack));
duke@435 428 dstack += 2;
duke@435 429 break;
duke@435 430 case T_DOUBLE:
duke@435 431 assert(sig_bt[i+1] == T_VOID, "missing Half" );
duke@435 432 if( freg_arg0 == (uint)i ) {
duke@435 433 regs[i].set2(xmm0->as_VMReg());
duke@435 434 } else if( freg_arg1 == (uint)i ) {
duke@435 435 regs[i].set2(xmm1->as_VMReg());
duke@435 436 } else {
duke@435 437 regs[i].set2(VMRegImpl::stack2reg(dstack));
duke@435 438 dstack += 2;
duke@435 439 }
duke@435 440 break;
duke@435 441 case T_VOID: regs[i].set_bad(); break;
duke@435 442 break;
duke@435 443 default:
duke@435 444 ShouldNotReachHere();
duke@435 445 break;
duke@435 446 }
duke@435 447 }
duke@435 448
duke@435 449 // return value can be odd number of VMRegImpl stack slots make multiple of 2
duke@435 450 return round_to(stack, 2);
duke@435 451 }
duke@435 452
duke@435 453 // Patch the callers callsite with entry to compiled code if it exists.
duke@435 454 static void patch_callers_callsite(MacroAssembler *masm) {
duke@435 455 Label L;
coleenp@4037 456 __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
duke@435 457 __ jcc(Assembler::equal, L);
duke@435 458 // Schedule the branch target address early.
duke@435 459 // Call into the VM to patch the caller, then jump to compiled callee
duke@435 460 // rax, isn't live so capture return address while we easily can
never@739 461 __ movptr(rax, Address(rsp, 0));
never@739 462 __ pusha();
never@739 463 __ pushf();
duke@435 464
duke@435 465 if (UseSSE == 1) {
never@739 466 __ subptr(rsp, 2*wordSize);
duke@435 467 __ movflt(Address(rsp, 0), xmm0);
duke@435 468 __ movflt(Address(rsp, wordSize), xmm1);
duke@435 469 }
duke@435 470 if (UseSSE >= 2) {
never@739 471 __ subptr(rsp, 4*wordSize);
duke@435 472 __ movdbl(Address(rsp, 0), xmm0);
duke@435 473 __ movdbl(Address(rsp, 2*wordSize), xmm1);
duke@435 474 }
duke@435 475 #ifdef COMPILER2
duke@435 476 // C2 may leave the stack dirty if not in SSE2+ mode
duke@435 477 if (UseSSE >= 2) {
duke@435 478 __ verify_FPU(0, "c2i transition should have clean FPU stack");
duke@435 479 } else {
duke@435 480 __ empty_FPU_stack();
duke@435 481 }
duke@435 482 #endif /* COMPILER2 */
duke@435 483
duke@435 484 // VM needs caller's callsite
never@739 485 __ push(rax);
duke@435 486 // VM needs target method
never@739 487 __ push(rbx);
duke@435 488 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
never@739 489 __ addptr(rsp, 2*wordSize);
duke@435 490
duke@435 491 if (UseSSE == 1) {
duke@435 492 __ movflt(xmm0, Address(rsp, 0));
duke@435 493 __ movflt(xmm1, Address(rsp, wordSize));
never@739 494 __ addptr(rsp, 2*wordSize);
duke@435 495 }
duke@435 496 if (UseSSE >= 2) {
duke@435 497 __ movdbl(xmm0, Address(rsp, 0));
duke@435 498 __ movdbl(xmm1, Address(rsp, 2*wordSize));
never@739 499 __ addptr(rsp, 4*wordSize);
duke@435 500 }
duke@435 501
never@739 502 __ popf();
never@739 503 __ popa();
duke@435 504 __ bind(L);
duke@435 505 }
duke@435 506
duke@435 507
duke@435 508 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
twisti@1861 509 int next_off = st_off - Interpreter::stackElementSize;
twisti@1861 510 __ movdbl(Address(rsp, next_off), r);
duke@435 511 }
duke@435 512
duke@435 513 static void gen_c2i_adapter(MacroAssembler *masm,
duke@435 514 int total_args_passed,
duke@435 515 int comp_args_on_stack,
duke@435 516 const BasicType *sig_bt,
duke@435 517 const VMRegPair *regs,
duke@435 518 Label& skip_fixup) {
duke@435 519 // Before we get into the guts of the C2I adapter, see if we should be here
duke@435 520 // at all. We've come from compiled code and are attempting to jump to the
duke@435 521 // interpreter, which means the caller made a static call to get here
duke@435 522 // (vcalls always get a compiled target if there is one). Check for a
duke@435 523 // compiled target. If there is one, we need to patch the caller's call.
duke@435 524 patch_callers_callsite(masm);
duke@435 525
duke@435 526 __ bind(skip_fixup);
duke@435 527
duke@435 528 #ifdef COMPILER2
duke@435 529 // C2 may leave the stack dirty if not in SSE2+ mode
duke@435 530 if (UseSSE >= 2) {
duke@435 531 __ verify_FPU(0, "c2i transition should have clean FPU stack");
duke@435 532 } else {
duke@435 533 __ empty_FPU_stack();
duke@435 534 }
duke@435 535 #endif /* COMPILER2 */
duke@435 536
duke@435 537 // Since all args are passed on the stack, total_args_passed * interpreter_
duke@435 538 // stack_element_size is the
duke@435 539 // space we need.
twisti@1861 540 int extraspace = total_args_passed * Interpreter::stackElementSize;
duke@435 541
duke@435 542 // Get return address
never@739 543 __ pop(rax);
duke@435 544
duke@435 545 // set senderSP value
never@739 546 __ movptr(rsi, rsp);
never@739 547
never@739 548 __ subptr(rsp, extraspace);
duke@435 549
duke@435 550 // Now write the args into the outgoing interpreter space
duke@435 551 for (int i = 0; i < total_args_passed; i++) {
duke@435 552 if (sig_bt[i] == T_VOID) {
duke@435 553 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
duke@435 554 continue;
duke@435 555 }
duke@435 556
duke@435 557 // st_off points to lowest address on stack.
twisti@1861 558 int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize;
twisti@1861 559 int next_off = st_off - Interpreter::stackElementSize;
never@739 560
duke@435 561 // Say 4 args:
duke@435 562 // i st_off
duke@435 563 // 0 12 T_LONG
duke@435 564 // 1 8 T_VOID
duke@435 565 // 2 4 T_OBJECT
duke@435 566 // 3 0 T_BOOL
duke@435 567 VMReg r_1 = regs[i].first();
duke@435 568 VMReg r_2 = regs[i].second();
duke@435 569 if (!r_1->is_valid()) {
duke@435 570 assert(!r_2->is_valid(), "");
duke@435 571 continue;
duke@435 572 }
duke@435 573
duke@435 574 if (r_1->is_stack()) {
duke@435 575 // memory to memory use fpu stack top
duke@435 576 int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
duke@435 577
duke@435 578 if (!r_2->is_valid()) {
duke@435 579 __ movl(rdi, Address(rsp, ld_off));
never@739 580 __ movptr(Address(rsp, st_off), rdi);
duke@435 581 } else {
duke@435 582
duke@435 583 // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
duke@435 584 // st_off == MSW, st_off-wordSize == LSW
duke@435 585
never@739 586 __ movptr(rdi, Address(rsp, ld_off));
never@739 587 __ movptr(Address(rsp, next_off), rdi);
never@739 588 #ifndef _LP64
never@739 589 __ movptr(rdi, Address(rsp, ld_off + wordSize));
never@739 590 __ movptr(Address(rsp, st_off), rdi);
never@739 591 #else
never@739 592 #ifdef ASSERT
never@739 593 // Overwrite the unused slot with known junk
never@739 594 __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
never@739 595 __ movptr(Address(rsp, st_off), rax);
never@739 596 #endif /* ASSERT */
never@739 597 #endif // _LP64
duke@435 598 }
duke@435 599 } else if (r_1->is_Register()) {
duke@435 600 Register r = r_1->as_Register();
duke@435 601 if (!r_2->is_valid()) {
duke@435 602 __ movl(Address(rsp, st_off), r);
duke@435 603 } else {
duke@435 604 // long/double in gpr
never@739 605 NOT_LP64(ShouldNotReachHere());
never@739 606 // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
never@739 607 // T_DOUBLE and T_LONG use two slots in the interpreter
never@739 608 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
never@739 609 // long/double in gpr
never@739 610 #ifdef ASSERT
never@739 611 // Overwrite the unused slot with known junk
never@739 612 LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
never@739 613 __ movptr(Address(rsp, st_off), rax);
never@739 614 #endif /* ASSERT */
never@739 615 __ movptr(Address(rsp, next_off), r);
never@739 616 } else {
never@739 617 __ movptr(Address(rsp, st_off), r);
never@739 618 }
duke@435 619 }
duke@435 620 } else {
duke@435 621 assert(r_1->is_XMMRegister(), "");
duke@435 622 if (!r_2->is_valid()) {
duke@435 623 __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
duke@435 624 } else {
duke@435 625 assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
duke@435 626 move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
duke@435 627 }
duke@435 628 }
duke@435 629 }
duke@435 630
duke@435 631 // Schedule the branch target address early.
coleenp@4037 632 __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
duke@435 633 // And repush original return address
never@739 634 __ push(rax);
duke@435 635 __ jmp(rcx);
duke@435 636 }
duke@435 637
duke@435 638
duke@435 639 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
twisti@1861 640 int next_val_off = ld_off - Interpreter::stackElementSize;
twisti@1861 641 __ movdbl(r, Address(saved_sp, next_val_off));
duke@435 642 }
duke@435 643
twisti@3969 644 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
twisti@3969 645 address code_start, address code_end,
twisti@3969 646 Label& L_ok) {
twisti@3969 647 Label L_fail;
twisti@3969 648 __ lea(temp_reg, ExternalAddress(code_start));
twisti@3969 649 __ cmpptr(pc_reg, temp_reg);
twisti@3969 650 __ jcc(Assembler::belowEqual, L_fail);
twisti@3969 651 __ lea(temp_reg, ExternalAddress(code_end));
twisti@3969 652 __ cmpptr(pc_reg, temp_reg);
twisti@3969 653 __ jcc(Assembler::below, L_ok);
twisti@3969 654 __ bind(L_fail);
twisti@3969 655 }
twisti@3969 656
duke@435 657 static void gen_i2c_adapter(MacroAssembler *masm,
duke@435 658 int total_args_passed,
duke@435 659 int comp_args_on_stack,
duke@435 660 const BasicType *sig_bt,
duke@435 661 const VMRegPair *regs) {
duke@435 662
duke@435 663 // Note: rsi contains the senderSP on entry. We must preserve it since
duke@435 664 // we may do a i2c -> c2i transition if we lose a race where compiled
duke@435 665 // code goes non-entrant while we get args ready.
duke@435 666
twisti@3969 667 // Adapters can be frameless because they do not require the caller
twisti@3969 668 // to perform additional cleanup work, such as correcting the stack pointer.
twisti@3969 669 // An i2c adapter is frameless because the *caller* frame, which is interpreted,
twisti@3969 670 // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
twisti@3969 671 // even if a callee has modified the stack pointer.
twisti@3969 672 // A c2i adapter is frameless because the *callee* frame, which is interpreted,
twisti@3969 673 // routinely repairs its caller's stack pointer (from sender_sp, which is set
twisti@3969 674 // up via the senderSP register).
twisti@3969 675 // In other words, if *either* the caller or callee is interpreted, we can
twisti@3969 676 // get the stack pointer repaired after a call.
twisti@3969 677 // This is why c2i and i2c adapters cannot be indefinitely composed.
twisti@3969 678 // In particular, if a c2i adapter were to somehow call an i2c adapter,
twisti@3969 679 // both caller and callee would be compiled methods, and neither would
twisti@3969 680 // clean up the stack pointer changes performed by the two adapters.
twisti@3969 681 // If this happens, control eventually transfers back to the compiled
twisti@3969 682 // caller, but with an uncorrected stack, causing delayed havoc.
twisti@3969 683
duke@435 684 // Pick up the return address
never@739 685 __ movptr(rax, Address(rsp, 0));
duke@435 686
twisti@3969 687 if (VerifyAdapterCalls &&
twisti@3969 688 (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
twisti@3969 689 // So, let's test for cascading c2i/i2c adapters right now.
twisti@3969 690 // assert(Interpreter::contains($return_addr) ||
twisti@3969 691 // StubRoutines::contains($return_addr),
twisti@3969 692 // "i2c adapter must return to an interpreter frame");
twisti@3969 693 __ block_comment("verify_i2c { ");
twisti@3969 694 Label L_ok;
twisti@3969 695 if (Interpreter::code() != NULL)
twisti@3969 696 range_check(masm, rax, rdi,
twisti@3969 697 Interpreter::code()->code_start(), Interpreter::code()->code_end(),
twisti@3969 698 L_ok);
twisti@3969 699 if (StubRoutines::code1() != NULL)
twisti@3969 700 range_check(masm, rax, rdi,
twisti@3969 701 StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
twisti@3969 702 L_ok);
twisti@3969 703 if (StubRoutines::code2() != NULL)
twisti@3969 704 range_check(masm, rax, rdi,
twisti@3969 705 StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
twisti@3969 706 L_ok);
twisti@3969 707 const char* msg = "i2c adapter must return to an interpreter frame";
twisti@3969 708 __ block_comment(msg);
twisti@3969 709 __ stop(msg);
twisti@3969 710 __ bind(L_ok);
twisti@3969 711 __ block_comment("} verify_i2ce ");
twisti@3969 712 }
twisti@3969 713
duke@435 714 // Must preserve original SP for loading incoming arguments because
duke@435 715 // we need to align the outgoing SP for compiled code.
never@739 716 __ movptr(rdi, rsp);
duke@435 717
duke@435 718 // Cut-out for having no stack args. Since up to 2 int/oop args are passed
duke@435 719 // in registers, we will occasionally have no stack args.
duke@435 720 int comp_words_on_stack = 0;
duke@435 721 if (comp_args_on_stack) {
duke@435 722 // Sig words on the stack are greater-than VMRegImpl::stack0. Those in
duke@435 723 // registers are below. By subtracting stack0, we either get a negative
duke@435 724 // number (all values in registers) or the maximum stack slot accessed.
duke@435 725 // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
duke@435 726 // Convert 4-byte stack slots to words.
duke@435 727 comp_words_on_stack = round_to(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
duke@435 728 // Round up to miminum stack alignment, in wordSize
duke@435 729 comp_words_on_stack = round_to(comp_words_on_stack, 2);
never@739 730 __ subptr(rsp, comp_words_on_stack * wordSize);
duke@435 731 }
duke@435 732
duke@435 733 // Align the outgoing SP
never@739 734 __ andptr(rsp, -(StackAlignmentInBytes));
duke@435 735
duke@435 736 // push the return address on the stack (note that pushing, rather
duke@435 737 // than storing it, yields the correct frame alignment for the callee)
never@739 738 __ push(rax);
duke@435 739
duke@435 740 // Put saved SP in another register
duke@435 741 const Register saved_sp = rax;
never@739 742 __ movptr(saved_sp, rdi);
duke@435 743
duke@435 744
duke@435 745 // Will jump to the compiled code just as if compiled code was doing it.
duke@435 746 // Pre-load the register-jump target early, to schedule it better.
coleenp@4037 747 __ movptr(rdi, Address(rbx, in_bytes(Method::from_compiled_offset())));
duke@435 748
duke@435 749 // Now generate the shuffle code. Pick up all register args and move the
duke@435 750 // rest through the floating point stack top.
duke@435 751 for (int i = 0; i < total_args_passed; i++) {
duke@435 752 if (sig_bt[i] == T_VOID) {
duke@435 753 // Longs and doubles are passed in native word order, but misaligned
duke@435 754 // in the 32-bit build.
duke@435 755 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
duke@435 756 continue;
duke@435 757 }
duke@435 758
duke@435 759 // Pick up 0, 1 or 2 words from SP+offset.
duke@435 760
duke@435 761 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
duke@435 762 "scrambled load targets?");
duke@435 763 // Load in argument order going down.
twisti@1861 764 int ld_off = (total_args_passed - i) * Interpreter::stackElementSize;
duke@435 765 // Point to interpreter value (vs. tag)
twisti@1861 766 int next_off = ld_off - Interpreter::stackElementSize;
duke@435 767 //
duke@435 768 //
duke@435 769 //
duke@435 770 VMReg r_1 = regs[i].first();
duke@435 771 VMReg r_2 = regs[i].second();
duke@435 772 if (!r_1->is_valid()) {
duke@435 773 assert(!r_2->is_valid(), "");
duke@435 774 continue;
duke@435 775 }
duke@435 776 if (r_1->is_stack()) {
duke@435 777 // Convert stack slot to an SP offset (+ wordSize to account for return address )
duke@435 778 int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
duke@435 779
duke@435 780 // We can use rsi as a temp here because compiled code doesn't need rsi as an input
duke@435 781 // and if we end up going thru a c2i because of a miss a reasonable value of rsi
duke@435 782 // we be generated.
duke@435 783 if (!r_2->is_valid()) {
duke@435 784 // __ fld_s(Address(saved_sp, ld_off));
duke@435 785 // __ fstp_s(Address(rsp, st_off));
duke@435 786 __ movl(rsi, Address(saved_sp, ld_off));
never@739 787 __ movptr(Address(rsp, st_off), rsi);
duke@435 788 } else {
duke@435 789 // Interpreter local[n] == MSW, local[n+1] == LSW however locals
duke@435 790 // are accessed as negative so LSW is at LOW address
duke@435 791
duke@435 792 // ld_off is MSW so get LSW
duke@435 793 // st_off is LSW (i.e. reg.first())
duke@435 794 // __ fld_d(Address(saved_sp, next_off));
duke@435 795 // __ fstp_d(Address(rsp, st_off));
never@739 796 //
never@739 797 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
never@739 798 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
never@739 799 // So we must adjust where to pick up the data to match the interpreter.
never@739 800 //
never@739 801 // Interpreter local[n] == MSW, local[n+1] == LSW however locals
never@739 802 // are accessed as negative so LSW is at LOW address
never@739 803
never@739 804 // ld_off is MSW so get LSW
never@739 805 const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
never@739 806 next_off : ld_off;
never@739 807 __ movptr(rsi, Address(saved_sp, offset));
never@739 808 __ movptr(Address(rsp, st_off), rsi);
never@739 809 #ifndef _LP64
never@739 810 __ movptr(rsi, Address(saved_sp, ld_off));
never@739 811 __ movptr(Address(rsp, st_off + wordSize), rsi);
never@739 812 #endif // _LP64
duke@435 813 }
duke@435 814 } else if (r_1->is_Register()) { // Register argument
duke@435 815 Register r = r_1->as_Register();
duke@435 816 assert(r != rax, "must be different");
duke@435 817 if (r_2->is_valid()) {
never@739 818 //
never@739 819 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
never@739 820 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
never@739 821 // So we must adjust where to pick up the data to match the interpreter.
never@739 822
never@739 823 const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
never@739 824 next_off : ld_off;
never@739 825
never@739 826 // this can be a misaligned move
never@739 827 __ movptr(r, Address(saved_sp, offset));
never@739 828 #ifndef _LP64
duke@435 829 assert(r_2->as_Register() != rax, "need another temporary register");
duke@435 830 // Remember r_1 is low address (and LSB on x86)
duke@435 831 // So r_2 gets loaded from high address regardless of the platform
never@739 832 __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
never@739 833 #endif // _LP64
duke@435 834 } else {
duke@435 835 __ movl(r, Address(saved_sp, ld_off));
duke@435 836 }
duke@435 837 } else {
duke@435 838 assert(r_1->is_XMMRegister(), "");
duke@435 839 if (!r_2->is_valid()) {
duke@435 840 __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
duke@435 841 } else {
duke@435 842 move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
duke@435 843 }
duke@435 844 }
duke@435 845 }
duke@435 846
duke@435 847 // 6243940 We might end up in handle_wrong_method if
duke@435 848 // the callee is deoptimized as we race thru here. If that
duke@435 849 // happens we don't want to take a safepoint because the
duke@435 850 // caller frame will look interpreted and arguments are now
duke@435 851 // "compiled" so it is much better to make this transition
duke@435 852 // invisible to the stack walking code. Unfortunately if
duke@435 853 // we try and find the callee by normal means a safepoint
duke@435 854 // is possible. So we stash the desired callee in the thread
duke@435 855 // and the vm will find there should this case occur.
duke@435 856
duke@435 857 __ get_thread(rax);
never@739 858 __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
duke@435 859
coleenp@4037 860 // move Method* to rax, in case we end up in an c2i adapter.
coleenp@4037 861 // the c2i adapters expect Method* in rax, (c2) because c2's
duke@435 862 // resolve stubs return the result (the method) in rax,.
duke@435 863 // I'd love to fix this.
never@739 864 __ mov(rax, rbx);
duke@435 865
duke@435 866 __ jmp(rdi);
duke@435 867 }
duke@435 868
duke@435 869 // ---------------------------------------------------------------
duke@435 870 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
duke@435 871 int total_args_passed,
duke@435 872 int comp_args_on_stack,
duke@435 873 const BasicType *sig_bt,
never@1622 874 const VMRegPair *regs,
never@1622 875 AdapterFingerPrint* fingerprint) {
duke@435 876 address i2c_entry = __ pc();
duke@435 877
duke@435 878 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
duke@435 879
duke@435 880 // -------------------------------------------------------------------------
coleenp@4037 881 // Generate a C2I adapter. On entry we know rbx, holds the Method* during calls
duke@435 882 // to the interpreter. The args start out packed in the compiled layout. They
duke@435 883 // need to be unpacked into the interpreter layout. This will almost always
duke@435 884 // require some stack space. We grow the current (compiled) stack, then repack
duke@435 885 // the args. We finally end in a jump to the generic interpreter entry point.
duke@435 886 // On exit from the interpreter, the interpreter will restore our SP (lest the
duke@435 887 // compiled code, which relys solely on SP and not EBP, get sick).
duke@435 888
duke@435 889 address c2i_unverified_entry = __ pc();
duke@435 890 Label skip_fixup;
duke@435 891
duke@435 892 Register holder = rax;
duke@435 893 Register receiver = rcx;
duke@435 894 Register temp = rbx;
duke@435 895
duke@435 896 {
duke@435 897
duke@435 898 Label missed;
never@739 899 __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
coleenp@4037 900 __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
coleenp@4037 901 __ movptr(rbx, Address(holder, CompiledICHolder::holder_method_offset()));
duke@435 902 __ jcc(Assembler::notEqual, missed);
duke@435 903 // Method might have been compiled since the call site was patched to
duke@435 904 // interpreted if that is the case treat it as a miss so we can get
duke@435 905 // the call site corrected.
coleenp@4037 906 __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
duke@435 907 __ jcc(Assembler::equal, skip_fixup);
duke@435 908
duke@435 909 __ bind(missed);
duke@435 910 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
duke@435 911 }
duke@435 912
duke@435 913 address c2i_entry = __ pc();
duke@435 914
duke@435 915 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
duke@435 916
duke@435 917 __ flush();
never@1622 918 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
duke@435 919 }
duke@435 920
duke@435 921 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
duke@435 922 VMRegPair *regs,
duke@435 923 int total_args_passed) {
duke@435 924 // We return the amount of VMRegImpl stack slots we need to reserve for all
duke@435 925 // the arguments NOT counting out_preserve_stack_slots.
duke@435 926
duke@435 927 uint stack = 0; // All arguments on stack
duke@435 928
duke@435 929 for( int i = 0; i < total_args_passed; i++) {
duke@435 930 // From the type and the argument number (count) compute the location
duke@435 931 switch( sig_bt[i] ) {
duke@435 932 case T_BOOLEAN:
duke@435 933 case T_CHAR:
duke@435 934 case T_FLOAT:
duke@435 935 case T_BYTE:
duke@435 936 case T_SHORT:
duke@435 937 case T_INT:
duke@435 938 case T_OBJECT:
duke@435 939 case T_ARRAY:
duke@435 940 case T_ADDRESS:
duke@435 941 regs[i].set1(VMRegImpl::stack2reg(stack++));
duke@435 942 break;
duke@435 943 case T_LONG:
duke@435 944 case T_DOUBLE: // The stack numbering is reversed from Java
duke@435 945 // Since C arguments do not get reversed, the ordering for
duke@435 946 // doubles on the stack must be opposite the Java convention
duke@435 947 assert(sig_bt[i+1] == T_VOID, "missing Half" );
duke@435 948 regs[i].set2(VMRegImpl::stack2reg(stack));
duke@435 949 stack += 2;
duke@435 950 break;
duke@435 951 case T_VOID: regs[i].set_bad(); break;
duke@435 952 default:
duke@435 953 ShouldNotReachHere();
duke@435 954 break;
duke@435 955 }
duke@435 956 }
duke@435 957 return stack;
duke@435 958 }
duke@435 959
duke@435 960 // A simple move of integer like type
duke@435 961 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 962 if (src.first()->is_stack()) {
duke@435 963 if (dst.first()->is_stack()) {
duke@435 964 // stack to stack
duke@435 965 // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
duke@435 966 // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
never@739 967 __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
never@739 968 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 969 } else {
duke@435 970 // stack to reg
never@739 971 __ movl2ptr(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
duke@435 972 }
duke@435 973 } else if (dst.first()->is_stack()) {
duke@435 974 // reg to stack
never@739 975 // no need to sign extend on 64bit
never@739 976 __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
duke@435 977 } else {
never@739 978 if (dst.first() != src.first()) {
never@739 979 __ mov(dst.first()->as_Register(), src.first()->as_Register());
never@739 980 }
duke@435 981 }
duke@435 982 }
duke@435 983
duke@435 984 // An oop arg. Must pass a handle not the oop itself
duke@435 985 static void object_move(MacroAssembler* masm,
duke@435 986 OopMap* map,
duke@435 987 int oop_handle_offset,
duke@435 988 int framesize_in_slots,
duke@435 989 VMRegPair src,
duke@435 990 VMRegPair dst,
duke@435 991 bool is_receiver,
duke@435 992 int* receiver_offset) {
duke@435 993
duke@435 994 // Because of the calling conventions we know that src can be a
duke@435 995 // register or a stack location. dst can only be a stack location.
duke@435 996
duke@435 997 assert(dst.first()->is_stack(), "must be stack");
duke@435 998 // must pass a handle. First figure out the location we use as a handle
duke@435 999
duke@435 1000 if (src.first()->is_stack()) {
duke@435 1001 // Oop is already on the stack as an argument
duke@435 1002 Register rHandle = rax;
duke@435 1003 Label nil;
never@739 1004 __ xorptr(rHandle, rHandle);
never@739 1005 __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
duke@435 1006 __ jcc(Assembler::equal, nil);
never@739 1007 __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
duke@435 1008 __ bind(nil);
never@739 1009 __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
duke@435 1010
duke@435 1011 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
duke@435 1012 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
duke@435 1013 if (is_receiver) {
duke@435 1014 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
duke@435 1015 }
duke@435 1016 } else {
duke@435 1017 // Oop is in an a register we must store it to the space we reserve
duke@435 1018 // on the stack for oop_handles
duke@435 1019 const Register rOop = src.first()->as_Register();
duke@435 1020 const Register rHandle = rax;
duke@435 1021 int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
duke@435 1022 int offset = oop_slot*VMRegImpl::stack_slot_size;
duke@435 1023 Label skip;
never@739 1024 __ movptr(Address(rsp, offset), rOop);
duke@435 1025 map->set_oop(VMRegImpl::stack2reg(oop_slot));
never@739 1026 __ xorptr(rHandle, rHandle);
never@739 1027 __ cmpptr(rOop, (int32_t)NULL_WORD);
duke@435 1028 __ jcc(Assembler::equal, skip);
never@739 1029 __ lea(rHandle, Address(rsp, offset));
duke@435 1030 __ bind(skip);
duke@435 1031 // Store the handle parameter
never@739 1032 __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
duke@435 1033 if (is_receiver) {
duke@435 1034 *receiver_offset = offset;
duke@435 1035 }
duke@435 1036 }
duke@435 1037 }
duke@435 1038
duke@435 1039 // A float arg may have to do float reg int reg conversion
duke@435 1040 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1041 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
duke@435 1042
duke@435 1043 // Because of the calling convention we know that src is either a stack location
duke@435 1044 // or an xmm register. dst can only be a stack location.
duke@435 1045
duke@435 1046 assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
duke@435 1047
duke@435 1048 if (src.first()->is_stack()) {
duke@435 1049 __ movl(rax, Address(rbp, reg2offset_in(src.first())));
never@739 1050 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 1051 } else {
duke@435 1052 // reg to stack
duke@435 1053 __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
duke@435 1054 }
duke@435 1055 }
duke@435 1056
duke@435 1057 // A long move
duke@435 1058 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1059
duke@435 1060 // The only legal possibility for a long_move VMRegPair is:
duke@435 1061 // 1: two stack slots (possibly unaligned)
duke@435 1062 // as neither the java or C calling convention will use registers
duke@435 1063 // for longs.
duke@435 1064
duke@435 1065 if (src.first()->is_stack() && dst.first()->is_stack()) {
duke@435 1066 assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
never@739 1067 __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
never@739 1068 NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
never@739 1069 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
never@739 1070 NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
duke@435 1071 } else {
duke@435 1072 ShouldNotReachHere();
duke@435 1073 }
duke@435 1074 }
duke@435 1075
duke@435 1076 // A double move
duke@435 1077 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1078
duke@435 1079 // The only legal possibilities for a double_move VMRegPair are:
duke@435 1080 // The painful thing here is that like long_move a VMRegPair might be
duke@435 1081
duke@435 1082 // Because of the calling convention we know that src is either
duke@435 1083 // 1: a single physical register (xmm registers only)
duke@435 1084 // 2: two stack slots (possibly unaligned)
duke@435 1085 // dst can only be a pair of stack slots.
duke@435 1086
duke@435 1087 assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
duke@435 1088
duke@435 1089 if (src.first()->is_stack()) {
duke@435 1090 // source is all stack
never@739 1091 __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
never@739 1092 NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
never@739 1093 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
never@739 1094 NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
duke@435 1095 } else {
duke@435 1096 // reg to stack
duke@435 1097 // No worries about stack alignment
duke@435 1098 __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
duke@435 1099 }
duke@435 1100 }
duke@435 1101
duke@435 1102
duke@435 1103 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
duke@435 1104 // We always ignore the frame_slots arg and just use the space just below frame pointer
duke@435 1105 // which by this time is free to use
duke@435 1106 switch (ret_type) {
duke@435 1107 case T_FLOAT:
duke@435 1108 __ fstp_s(Address(rbp, -wordSize));
duke@435 1109 break;
duke@435 1110 case T_DOUBLE:
duke@435 1111 __ fstp_d(Address(rbp, -2*wordSize));
duke@435 1112 break;
duke@435 1113 case T_VOID: break;
duke@435 1114 case T_LONG:
never@739 1115 __ movptr(Address(rbp, -wordSize), rax);
never@739 1116 NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
duke@435 1117 break;
duke@435 1118 default: {
never@739 1119 __ movptr(Address(rbp, -wordSize), rax);
duke@435 1120 }
duke@435 1121 }
duke@435 1122 }
duke@435 1123
duke@435 1124 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
duke@435 1125 // We always ignore the frame_slots arg and just use the space just below frame pointer
duke@435 1126 // which by this time is free to use
duke@435 1127 switch (ret_type) {
duke@435 1128 case T_FLOAT:
duke@435 1129 __ fld_s(Address(rbp, -wordSize));
duke@435 1130 break;
duke@435 1131 case T_DOUBLE:
duke@435 1132 __ fld_d(Address(rbp, -2*wordSize));
duke@435 1133 break;
duke@435 1134 case T_LONG:
never@739 1135 __ movptr(rax, Address(rbp, -wordSize));
never@739 1136 NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
duke@435 1137 break;
duke@435 1138 case T_VOID: break;
duke@435 1139 default: {
never@739 1140 __ movptr(rax, Address(rbp, -wordSize));
duke@435 1141 }
duke@435 1142 }
duke@435 1143 }
duke@435 1144
never@3500 1145
never@3500 1146 static void save_or_restore_arguments(MacroAssembler* masm,
never@3500 1147 const int stack_slots,
never@3500 1148 const int total_in_args,
never@3500 1149 const int arg_save_area,
never@3500 1150 OopMap* map,
never@3500 1151 VMRegPair* in_regs,
never@3500 1152 BasicType* in_sig_bt) {
never@3500 1153 // if map is non-NULL then the code should store the values,
never@3500 1154 // otherwise it should load them.
never@3500 1155 int handle_index = 0;
never@3500 1156 // Save down double word first
never@3500 1157 for ( int i = 0; i < total_in_args; i++) {
never@3500 1158 if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
never@3500 1159 int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
never@3500 1160 int offset = slot * VMRegImpl::stack_slot_size;
never@3500 1161 handle_index += 2;
never@3500 1162 assert(handle_index <= stack_slots, "overflow");
never@3500 1163 if (map != NULL) {
never@3500 1164 __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
never@3500 1165 } else {
never@3500 1166 __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
never@3500 1167 }
never@3500 1168 }
never@3500 1169 if (in_regs[i].first()->is_Register() && in_sig_bt[i] == T_LONG) {
never@3500 1170 int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
never@3500 1171 int offset = slot * VMRegImpl::stack_slot_size;
never@3500 1172 handle_index += 2;
never@3500 1173 assert(handle_index <= stack_slots, "overflow");
never@3500 1174 if (map != NULL) {
never@3500 1175 __ movl(Address(rsp, offset), in_regs[i].first()->as_Register());
never@3500 1176 if (in_regs[i].second()->is_Register()) {
never@3500 1177 __ movl(Address(rsp, offset + 4), in_regs[i].second()->as_Register());
never@3500 1178 }
never@3500 1179 } else {
never@3500 1180 __ movl(in_regs[i].first()->as_Register(), Address(rsp, offset));
never@3500 1181 if (in_regs[i].second()->is_Register()) {
never@3500 1182 __ movl(in_regs[i].second()->as_Register(), Address(rsp, offset + 4));
never@3500 1183 }
never@3500 1184 }
never@3500 1185 }
never@3500 1186 }
never@3500 1187 // Save or restore single word registers
never@3500 1188 for ( int i = 0; i < total_in_args; i++) {
never@3500 1189 if (in_regs[i].first()->is_Register()) {
never@3500 1190 int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
never@3500 1191 int offset = slot * VMRegImpl::stack_slot_size;
never@3500 1192 assert(handle_index <= stack_slots, "overflow");
never@3500 1193 if (in_sig_bt[i] == T_ARRAY && map != NULL) {
never@3500 1194 map->set_oop(VMRegImpl::stack2reg(slot));;
never@3500 1195 }
never@3500 1196
never@3500 1197 // Value is in an input register pass we must flush it to the stack
never@3500 1198 const Register reg = in_regs[i].first()->as_Register();
never@3500 1199 switch (in_sig_bt[i]) {
never@3500 1200 case T_ARRAY:
never@3500 1201 if (map != NULL) {
never@3500 1202 __ movptr(Address(rsp, offset), reg);
never@3500 1203 } else {
never@3500 1204 __ movptr(reg, Address(rsp, offset));
never@3500 1205 }
never@3500 1206 break;
never@3500 1207 case T_BOOLEAN:
never@3500 1208 case T_CHAR:
never@3500 1209 case T_BYTE:
never@3500 1210 case T_SHORT:
never@3500 1211 case T_INT:
never@3500 1212 if (map != NULL) {
never@3500 1213 __ movl(Address(rsp, offset), reg);
never@3500 1214 } else {
never@3500 1215 __ movl(reg, Address(rsp, offset));
never@3500 1216 }
never@3500 1217 break;
never@3500 1218 case T_OBJECT:
never@3500 1219 default: ShouldNotReachHere();
never@3500 1220 }
never@3500 1221 } else if (in_regs[i].first()->is_XMMRegister()) {
never@3500 1222 if (in_sig_bt[i] == T_FLOAT) {
never@3500 1223 int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
never@3500 1224 int offset = slot * VMRegImpl::stack_slot_size;
never@3500 1225 assert(handle_index <= stack_slots, "overflow");
never@3500 1226 if (map != NULL) {
never@3500 1227 __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
never@3500 1228 } else {
never@3500 1229 __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
never@3500 1230 }
never@3500 1231 }
never@3500 1232 } else if (in_regs[i].first()->is_stack()) {
never@3500 1233 if (in_sig_bt[i] == T_ARRAY && map != NULL) {
never@3500 1234 int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
never@3500 1235 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
never@3500 1236 }
never@3500 1237 }
never@3500 1238 }
never@3500 1239 }
never@3500 1240
never@3500 1241 // Check GC_locker::needs_gc and enter the runtime if it's true. This
never@3500 1242 // keeps a new JNI critical region from starting until a GC has been
never@3500 1243 // forced. Save down any oops in registers and describe them in an
never@3500 1244 // OopMap.
never@3500 1245 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
never@3500 1246 Register thread,
never@3500 1247 int stack_slots,
never@3500 1248 int total_c_args,
never@3500 1249 int total_in_args,
never@3500 1250 int arg_save_area,
never@3500 1251 OopMapSet* oop_maps,
never@3500 1252 VMRegPair* in_regs,
never@3500 1253 BasicType* in_sig_bt) {
never@3500 1254 __ block_comment("check GC_locker::needs_gc");
never@3500 1255 Label cont;
never@3500 1256 __ cmp8(ExternalAddress((address)GC_locker::needs_gc_address()), false);
never@3500 1257 __ jcc(Assembler::equal, cont);
never@3500 1258
never@3500 1259 // Save down any incoming oops and call into the runtime to halt for a GC
never@3500 1260
never@3500 1261 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
never@3500 1262
never@3500 1263 save_or_restore_arguments(masm, stack_slots, total_in_args,
never@3500 1264 arg_save_area, map, in_regs, in_sig_bt);
never@3500 1265
never@3500 1266 address the_pc = __ pc();
never@3500 1267 oop_maps->add_gc_map( __ offset(), map);
never@3500 1268 __ set_last_Java_frame(thread, rsp, noreg, the_pc);
never@3500 1269
never@3500 1270 __ block_comment("block_for_jni_critical");
never@3500 1271 __ push(thread);
never@3500 1272 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
never@3500 1273 __ increment(rsp, wordSize);
never@3500 1274
never@3500 1275 __ get_thread(thread);
never@3500 1276 __ reset_last_Java_frame(thread, false, true);
never@3500 1277
never@3500 1278 save_or_restore_arguments(masm, stack_slots, total_in_args,
never@3500 1279 arg_save_area, NULL, in_regs, in_sig_bt);
never@3500 1280
never@3500 1281 __ bind(cont);
never@3500 1282 #ifdef ASSERT
never@3500 1283 if (StressCriticalJNINatives) {
never@3500 1284 // Stress register saving
never@3500 1285 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
never@3500 1286 save_or_restore_arguments(masm, stack_slots, total_in_args,
never@3500 1287 arg_save_area, map, in_regs, in_sig_bt);
never@3500 1288 // Destroy argument registers
never@3500 1289 for (int i = 0; i < total_in_args - 1; i++) {
never@3500 1290 if (in_regs[i].first()->is_Register()) {
never@3500 1291 const Register reg = in_regs[i].first()->as_Register();
never@3500 1292 __ xorptr(reg, reg);
never@3500 1293 } else if (in_regs[i].first()->is_XMMRegister()) {
never@3500 1294 __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
never@3500 1295 } else if (in_regs[i].first()->is_FloatRegister()) {
never@3500 1296 ShouldNotReachHere();
never@3500 1297 } else if (in_regs[i].first()->is_stack()) {
never@3500 1298 // Nothing to do
never@3500 1299 } else {
never@3500 1300 ShouldNotReachHere();
never@3500 1301 }
never@3500 1302 if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
never@3500 1303 i++;
never@3500 1304 }
never@3500 1305 }
never@3500 1306
never@3500 1307 save_or_restore_arguments(masm, stack_slots, total_in_args,
never@3500 1308 arg_save_area, NULL, in_regs, in_sig_bt);
never@3500 1309 }
never@3500 1310 #endif
never@3500 1311 }
never@3500 1312
never@3500 1313 // Unpack an array argument into a pointer to the body and the length
never@3500 1314 // if the array is non-null, otherwise pass 0 for both.
never@3500 1315 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
never@3500 1316 Register tmp_reg = rax;
never@3500 1317 assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
never@3500 1318 "possible collision");
never@3500 1319 assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
never@3500 1320 "possible collision");
never@3500 1321
never@3500 1322 // Pass the length, ptr pair
never@3500 1323 Label is_null, done;
never@3500 1324 VMRegPair tmp(tmp_reg->as_VMReg());
never@3500 1325 if (reg.first()->is_stack()) {
never@3500 1326 // Load the arg up from the stack
never@3500 1327 simple_move32(masm, reg, tmp);
never@3500 1328 reg = tmp;
never@3500 1329 }
never@3500 1330 __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
never@3500 1331 __ jccb(Assembler::equal, is_null);
never@3500 1332 __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
never@3500 1333 simple_move32(masm, tmp, body_arg);
never@3500 1334 // load the length relative to the body.
never@3500 1335 __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
never@3500 1336 arrayOopDesc::base_offset_in_bytes(in_elem_type)));
never@3500 1337 simple_move32(masm, tmp, length_arg);
never@3500 1338 __ jmpb(done);
never@3500 1339 __ bind(is_null);
never@3500 1340 // Pass zeros
never@3500 1341 __ xorptr(tmp_reg, tmp_reg);
never@3500 1342 simple_move32(masm, tmp, body_arg);
never@3500 1343 simple_move32(masm, tmp, length_arg);
never@3500 1344 __ bind(done);
never@3500 1345 }
never@3500 1346
twisti@3969 1347 static void verify_oop_args(MacroAssembler* masm,
twisti@3969 1348 int total_args_passed,
twisti@3969 1349 const BasicType* sig_bt,
twisti@3969 1350 const VMRegPair* regs) {
twisti@3969 1351 Register temp_reg = rbx; // not part of any compiled calling seq
twisti@3969 1352 if (VerifyOops) {
twisti@3969 1353 for (int i = 0; i < total_args_passed; i++) {
twisti@3969 1354 if (sig_bt[i] == T_OBJECT ||
twisti@3969 1355 sig_bt[i] == T_ARRAY) {
twisti@3969 1356 VMReg r = regs[i].first();
twisti@3969 1357 assert(r->is_valid(), "bad oop arg");
twisti@3969 1358 if (r->is_stack()) {
twisti@3969 1359 __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
twisti@3969 1360 __ verify_oop(temp_reg);
twisti@3969 1361 } else {
twisti@3969 1362 __ verify_oop(r->as_Register());
twisti@3969 1363 }
twisti@3969 1364 }
twisti@3969 1365 }
twisti@3969 1366 }
twisti@3969 1367 }
twisti@3969 1368
twisti@3969 1369 static void gen_special_dispatch(MacroAssembler* masm,
twisti@3969 1370 int total_args_passed,
twisti@3969 1371 int comp_args_on_stack,
twisti@3969 1372 vmIntrinsics::ID special_dispatch,
twisti@3969 1373 const BasicType* sig_bt,
twisti@3969 1374 const VMRegPair* regs) {
twisti@3969 1375 verify_oop_args(masm, total_args_passed, sig_bt, regs);
twisti@3969 1376
twisti@3969 1377 // Now write the args into the outgoing interpreter space
twisti@3969 1378 bool has_receiver = false;
twisti@3969 1379 Register receiver_reg = noreg;
twisti@3969 1380 int member_arg_pos = -1;
twisti@3969 1381 Register member_reg = noreg;
twisti@3969 1382 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(special_dispatch);
twisti@3969 1383 if (ref_kind != 0) {
twisti@3969 1384 member_arg_pos = total_args_passed - 1; // trailing MemberName argument
twisti@3969 1385 member_reg = rbx; // known to be free at this point
twisti@3969 1386 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
twisti@3969 1387 } else if (special_dispatch == vmIntrinsics::_invokeBasic) {
twisti@3969 1388 has_receiver = true;
twisti@3969 1389 } else {
twisti@3969 1390 guarantee(false, err_msg("special_dispatch=%d", special_dispatch));
twisti@3969 1391 }
twisti@3969 1392
twisti@3969 1393 if (member_reg != noreg) {
twisti@3969 1394 // Load the member_arg into register, if necessary.
twisti@3969 1395 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
twisti@3969 1396 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
twisti@3969 1397 VMReg r = regs[member_arg_pos].first();
twisti@3969 1398 assert(r->is_valid(), "bad member arg");
twisti@3969 1399 if (r->is_stack()) {
twisti@3969 1400 __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
twisti@3969 1401 } else {
twisti@3969 1402 // no data motion is needed
twisti@3969 1403 member_reg = r->as_Register();
twisti@3969 1404 }
twisti@3969 1405 }
twisti@3969 1406
twisti@3969 1407 if (has_receiver) {
twisti@3969 1408 // Make sure the receiver is loaded into a register.
twisti@3969 1409 assert(total_args_passed > 0, "oob");
twisti@3969 1410 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
twisti@3969 1411 VMReg r = regs[0].first();
twisti@3969 1412 assert(r->is_valid(), "bad receiver arg");
twisti@3969 1413 if (r->is_stack()) {
twisti@3969 1414 // Porting note: This assumes that compiled calling conventions always
twisti@3969 1415 // pass the receiver oop in a register. If this is not true on some
twisti@3969 1416 // platform, pick a temp and load the receiver from stack.
twisti@3969 1417 assert(false, "receiver always in a register");
twisti@3969 1418 receiver_reg = rcx; // known to be free at this point
twisti@3969 1419 __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
twisti@3969 1420 } else {
twisti@3969 1421 // no data motion is needed
twisti@3969 1422 receiver_reg = r->as_Register();
twisti@3969 1423 }
twisti@3969 1424 }
twisti@3969 1425
twisti@3969 1426 // Figure out which address we are really jumping to:
twisti@3969 1427 MethodHandles::generate_method_handle_dispatch(masm, special_dispatch,
twisti@3969 1428 receiver_reg, member_reg, /*for_compiler_entry:*/ true);
twisti@3969 1429 }
never@3500 1430
duke@435 1431 // ---------------------------------------------------------------------------
duke@435 1432 // Generate a native wrapper for a given method. The method takes arguments
duke@435 1433 // in the Java compiled code convention, marshals them to the native
duke@435 1434 // convention (handlizes oops, etc), transitions to native, makes the call,
duke@435 1435 // returns to java state (possibly blocking), unhandlizes any result and
duke@435 1436 // returns.
never@3500 1437 //
never@3500 1438 // Critical native functions are a shorthand for the use of
never@3500 1439 // GetPrimtiveArrayCritical and disallow the use of any other JNI
never@3500 1440 // functions. The wrapper is expected to unpack the arguments before
never@3500 1441 // passing them to the callee and perform checks before and after the
never@3500 1442 // native call to ensure that they GC_locker
never@3500 1443 // lock_critical/unlock_critical semantics are followed. Some other
never@3500 1444 // parts of JNI setup are skipped like the tear down of the JNI handle
never@3500 1445 // block and the check for pending exceptions it's impossible for them
never@3500 1446 // to be thrown.
never@3500 1447 //
never@3500 1448 // They are roughly structured like this:
never@3500 1449 // if (GC_locker::needs_gc())
never@3500 1450 // SharedRuntime::block_for_jni_critical();
never@3500 1451 // tranistion to thread_in_native
never@3500 1452 // unpack arrray arguments and call native entry point
never@3500 1453 // check for safepoint in progress
never@3500 1454 // check if any thread suspend flags are set
never@3500 1455 // call into JVM and possible unlock the JNI critical
never@3500 1456 // if a GC was suppressed while in the critical native.
never@3500 1457 // transition back to thread_in_Java
never@3500 1458 // return to caller
never@3500 1459 //
twisti@3969 1460 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
duke@435 1461 methodHandle method,
twisti@2687 1462 int compile_id,
duke@435 1463 int total_in_args,
duke@435 1464 int comp_args_on_stack,
twisti@3969 1465 BasicType* in_sig_bt,
twisti@3969 1466 VMRegPair* in_regs,
duke@435 1467 BasicType ret_type) {
twisti@3969 1468 if (method->is_method_handle_intrinsic()) {
twisti@3969 1469 vmIntrinsics::ID iid = method->intrinsic_id();
twisti@3969 1470 intptr_t start = (intptr_t)__ pc();
twisti@3969 1471 int vep_offset = ((intptr_t)__ pc()) - start;
twisti@3969 1472 gen_special_dispatch(masm,
twisti@3969 1473 total_in_args,
twisti@3969 1474 comp_args_on_stack,
twisti@3969 1475 method->intrinsic_id(),
twisti@3969 1476 in_sig_bt,
twisti@3969 1477 in_regs);
twisti@3969 1478 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period
twisti@3969 1479 __ flush();
twisti@3969 1480 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually
twisti@3969 1481 return nmethod::new_native_nmethod(method,
twisti@3969 1482 compile_id,
twisti@3969 1483 masm->code(),
twisti@3969 1484 vep_offset,
twisti@3969 1485 frame_complete,
twisti@3969 1486 stack_slots / VMRegImpl::slots_per_word,
twisti@3969 1487 in_ByteSize(-1),
twisti@3969 1488 in_ByteSize(-1),
twisti@3969 1489 (OopMapSet*)NULL);
twisti@3969 1490 }
never@3500 1491 bool is_critical_native = true;
never@3500 1492 address native_func = method->critical_native_function();
never@3500 1493 if (native_func == NULL) {
never@3500 1494 native_func = method->native_function();
never@3500 1495 is_critical_native = false;
never@3500 1496 }
never@3500 1497 assert(native_func != NULL, "must have function");
duke@435 1498
duke@435 1499 // An OopMap for lock (and class if static)
duke@435 1500 OopMapSet *oop_maps = new OopMapSet();
duke@435 1501
duke@435 1502 // We have received a description of where all the java arg are located
duke@435 1503 // on entry to the wrapper. We need to convert these args to where
duke@435 1504 // the jni function will expect them. To figure out where they go
duke@435 1505 // we convert the java signature to a C signature by inserting
duke@435 1506 // the hidden arguments as arg[0] and possibly arg[1] (static method)
duke@435 1507
never@3500 1508 int total_c_args = total_in_args;
never@3500 1509 if (!is_critical_native) {
never@3500 1510 total_c_args += 1;
never@3500 1511 if (method->is_static()) {
never@3500 1512 total_c_args++;
never@3500 1513 }
never@3500 1514 } else {
never@3500 1515 for (int i = 0; i < total_in_args; i++) {
never@3500 1516 if (in_sig_bt[i] == T_ARRAY) {
never@3500 1517 total_c_args++;
never@3500 1518 }
never@3500 1519 }
duke@435 1520 }
duke@435 1521
duke@435 1522 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
never@3500 1523 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
never@3500 1524 BasicType* in_elem_bt = NULL;
duke@435 1525
duke@435 1526 int argc = 0;
never@3500 1527 if (!is_critical_native) {
never@3500 1528 out_sig_bt[argc++] = T_ADDRESS;
never@3500 1529 if (method->is_static()) {
never@3500 1530 out_sig_bt[argc++] = T_OBJECT;
never@3500 1531 }
never@3500 1532
never@3500 1533 for (int i = 0; i < total_in_args ; i++ ) {
never@3500 1534 out_sig_bt[argc++] = in_sig_bt[i];
never@3500 1535 }
never@3500 1536 } else {
never@3500 1537 Thread* THREAD = Thread::current();
never@3500 1538 in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
never@3500 1539 SignatureStream ss(method->signature());
never@3500 1540 for (int i = 0; i < total_in_args ; i++ ) {
never@3500 1541 if (in_sig_bt[i] == T_ARRAY) {
never@3500 1542 // Arrays are passed as int, elem* pair
never@3500 1543 out_sig_bt[argc++] = T_INT;
never@3500 1544 out_sig_bt[argc++] = T_ADDRESS;
never@3500 1545 Symbol* atype = ss.as_symbol(CHECK_NULL);
never@3500 1546 const char* at = atype->as_C_string();
never@3500 1547 if (strlen(at) == 2) {
never@3500 1548 assert(at[0] == '[', "must be");
never@3500 1549 switch (at[1]) {
never@3500 1550 case 'B': in_elem_bt[i] = T_BYTE; break;
never@3500 1551 case 'C': in_elem_bt[i] = T_CHAR; break;
never@3500 1552 case 'D': in_elem_bt[i] = T_DOUBLE; break;
never@3500 1553 case 'F': in_elem_bt[i] = T_FLOAT; break;
never@3500 1554 case 'I': in_elem_bt[i] = T_INT; break;
never@3500 1555 case 'J': in_elem_bt[i] = T_LONG; break;
never@3500 1556 case 'S': in_elem_bt[i] = T_SHORT; break;
never@3500 1557 case 'Z': in_elem_bt[i] = T_BOOLEAN; break;
never@3500 1558 default: ShouldNotReachHere();
never@3500 1559 }
never@3500 1560 }
never@3500 1561 } else {
never@3500 1562 out_sig_bt[argc++] = in_sig_bt[i];
never@3500 1563 in_elem_bt[i] = T_VOID;
never@3500 1564 }
never@3500 1565 if (in_sig_bt[i] != T_VOID) {
never@3500 1566 assert(in_sig_bt[i] == ss.type(), "must match");
never@3500 1567 ss.next();
never@3500 1568 }
never@3500 1569 }
duke@435 1570 }
duke@435 1571
duke@435 1572 // Now figure out where the args must be stored and how much stack space
never@3500 1573 // they require.
duke@435 1574 int out_arg_slots;
duke@435 1575 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
duke@435 1576
duke@435 1577 // Compute framesize for the wrapper. We need to handlize all oops in
duke@435 1578 // registers a max of 2 on x86.
duke@435 1579
duke@435 1580 // Calculate the total number of stack slots we will need.
duke@435 1581
duke@435 1582 // First count the abi requirement plus all of the outgoing args
duke@435 1583 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
duke@435 1584
duke@435 1585 // Now the space for the inbound oop handle area
never@3500 1586 int total_save_slots = 2 * VMRegImpl::slots_per_word; // 2 arguments passed in registers
never@3500 1587 if (is_critical_native) {
never@3500 1588 // Critical natives may have to call out so they need a save area
never@3500 1589 // for register arguments.
never@3500 1590 int double_slots = 0;
never@3500 1591 int single_slots = 0;
never@3500 1592 for ( int i = 0; i < total_in_args; i++) {
never@3500 1593 if (in_regs[i].first()->is_Register()) {
never@3500 1594 const Register reg = in_regs[i].first()->as_Register();
never@3500 1595 switch (in_sig_bt[i]) {
twisti@3969 1596 case T_ARRAY: // critical array (uses 2 slots on LP64)
never@3500 1597 case T_BOOLEAN:
never@3500 1598 case T_BYTE:
never@3500 1599 case T_SHORT:
never@3500 1600 case T_CHAR:
never@3500 1601 case T_INT: single_slots++; break;
never@3500 1602 case T_LONG: double_slots++; break;
never@3500 1603 default: ShouldNotReachHere();
never@3500 1604 }
never@3500 1605 } else if (in_regs[i].first()->is_XMMRegister()) {
never@3500 1606 switch (in_sig_bt[i]) {
never@3500 1607 case T_FLOAT: single_slots++; break;
never@3500 1608 case T_DOUBLE: double_slots++; break;
never@3500 1609 default: ShouldNotReachHere();
never@3500 1610 }
never@3500 1611 } else if (in_regs[i].first()->is_FloatRegister()) {
never@3500 1612 ShouldNotReachHere();
never@3500 1613 }
never@3500 1614 }
never@3500 1615 total_save_slots = double_slots * 2 + single_slots;
never@3500 1616 // align the save area
never@3500 1617 if (double_slots != 0) {
never@3500 1618 stack_slots = round_to(stack_slots, 2);
never@3500 1619 }
never@3500 1620 }
duke@435 1621
duke@435 1622 int oop_handle_offset = stack_slots;
never@3500 1623 stack_slots += total_save_slots;
duke@435 1624
duke@435 1625 // Now any space we need for handlizing a klass if static method
duke@435 1626
duke@435 1627 int klass_slot_offset = 0;
duke@435 1628 int klass_offset = -1;
duke@435 1629 int lock_slot_offset = 0;
duke@435 1630 bool is_static = false;
duke@435 1631
duke@435 1632 if (method->is_static()) {
duke@435 1633 klass_slot_offset = stack_slots;
duke@435 1634 stack_slots += VMRegImpl::slots_per_word;
duke@435 1635 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
duke@435 1636 is_static = true;
duke@435 1637 }
duke@435 1638
duke@435 1639 // Plus a lock if needed
duke@435 1640
duke@435 1641 if (method->is_synchronized()) {
duke@435 1642 lock_slot_offset = stack_slots;
duke@435 1643 stack_slots += VMRegImpl::slots_per_word;
duke@435 1644 }
duke@435 1645
duke@435 1646 // Now a place (+2) to save return values or temp during shuffling
duke@435 1647 // + 2 for return address (which we own) and saved rbp,
duke@435 1648 stack_slots += 4;
duke@435 1649
duke@435 1650 // Ok The space we have allocated will look like:
duke@435 1651 //
duke@435 1652 //
duke@435 1653 // FP-> | |
duke@435 1654 // |---------------------|
duke@435 1655 // | 2 slots for moves |
duke@435 1656 // |---------------------|
duke@435 1657 // | lock box (if sync) |
duke@435 1658 // |---------------------| <- lock_slot_offset (-lock_slot_rbp_offset)
duke@435 1659 // | klass (if static) |
duke@435 1660 // |---------------------| <- klass_slot_offset
duke@435 1661 // | oopHandle area |
duke@435 1662 // |---------------------| <- oop_handle_offset (a max of 2 registers)
duke@435 1663 // | outbound memory |
duke@435 1664 // | based arguments |
duke@435 1665 // | |
duke@435 1666 // |---------------------|
duke@435 1667 // | |
duke@435 1668 // SP-> | out_preserved_slots |
duke@435 1669 //
duke@435 1670 //
duke@435 1671 // ****************************************************************************
duke@435 1672 // WARNING - on Windows Java Natives use pascal calling convention and pop the
duke@435 1673 // arguments off of the stack after the jni call. Before the call we can use
duke@435 1674 // instructions that are SP relative. After the jni call we switch to FP
duke@435 1675 // relative instructions instead of re-adjusting the stack on windows.
duke@435 1676 // ****************************************************************************
duke@435 1677
duke@435 1678
duke@435 1679 // Now compute actual number of stack words we need rounding to make
duke@435 1680 // stack properly aligned.
xlu@959 1681 stack_slots = round_to(stack_slots, StackAlignmentInSlots);
duke@435 1682
duke@435 1683 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
duke@435 1684
duke@435 1685 intptr_t start = (intptr_t)__ pc();
duke@435 1686
duke@435 1687 // First thing make an ic check to see if we should even be here
duke@435 1688
duke@435 1689 // We are free to use all registers as temps without saving them and
never@3500 1690 // restoring them except rbp. rbp is the only callee save register
duke@435 1691 // as far as the interpreter and the compiler(s) are concerned.
duke@435 1692
duke@435 1693
duke@435 1694 const Register ic_reg = rax;
duke@435 1695 const Register receiver = rcx;
duke@435 1696 Label hit;
duke@435 1697 Label exception_pending;
duke@435 1698
duke@435 1699 __ verify_oop(receiver);
never@739 1700 __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
duke@435 1701 __ jcc(Assembler::equal, hit);
duke@435 1702
duke@435 1703 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
duke@435 1704
duke@435 1705 // verified entry must be aligned for code patching.
duke@435 1706 // and the first 5 bytes must be in the same cache line
duke@435 1707 // if we align at 8 then we will be sure 5 bytes are in the same line
duke@435 1708 __ align(8);
duke@435 1709
duke@435 1710 __ bind(hit);
duke@435 1711
duke@435 1712 int vep_offset = ((intptr_t)__ pc()) - start;
duke@435 1713
duke@435 1714 #ifdef COMPILER1
duke@435 1715 if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
duke@435 1716 // Object.hashCode can pull the hashCode from the header word
duke@435 1717 // instead of doing a full VM transition once it's been computed.
duke@435 1718 // Since hashCode is usually polymorphic at call sites we can't do
duke@435 1719 // this optimization at the call site without a lot of work.
duke@435 1720 Label slowCase;
duke@435 1721 Register receiver = rcx;
duke@435 1722 Register result = rax;
never@739 1723 __ movptr(result, Address(receiver, oopDesc::mark_offset_in_bytes()));
duke@435 1724
duke@435 1725 // check if locked
never@739 1726 __ testptr(result, markOopDesc::unlocked_value);
duke@435 1727 __ jcc (Assembler::zero, slowCase);
duke@435 1728
duke@435 1729 if (UseBiasedLocking) {
duke@435 1730 // Check if biased and fall through to runtime if so
never@739 1731 __ testptr(result, markOopDesc::biased_lock_bit_in_place);
duke@435 1732 __ jcc (Assembler::notZero, slowCase);
duke@435 1733 }
duke@435 1734
duke@435 1735 // get hash
never@739 1736 __ andptr(result, markOopDesc::hash_mask_in_place);
duke@435 1737 // test if hashCode exists
duke@435 1738 __ jcc (Assembler::zero, slowCase);
never@739 1739 __ shrptr(result, markOopDesc::hash_shift);
duke@435 1740 __ ret(0);
duke@435 1741 __ bind (slowCase);
duke@435 1742 }
duke@435 1743 #endif // COMPILER1
duke@435 1744
duke@435 1745 // The instruction at the verified entry point must be 5 bytes or longer
duke@435 1746 // because it can be patched on the fly by make_non_entrant. The stack bang
duke@435 1747 // instruction fits that requirement.
duke@435 1748
duke@435 1749 // Generate stack overflow check
duke@435 1750
duke@435 1751 if (UseStackBanging) {
duke@435 1752 __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
duke@435 1753 } else {
duke@435 1754 // need a 5 byte instruction to allow MT safe patching to non-entrant
duke@435 1755 __ fat_nop();
duke@435 1756 }
duke@435 1757
duke@435 1758 // Generate a new frame for the wrapper.
duke@435 1759 __ enter();
never@3500 1760 // -2 because return address is already present and so is saved rbp
never@739 1761 __ subptr(rsp, stack_size - 2*wordSize);
duke@435 1762
never@3500 1763 // Frame is now completed as far as size and linkage.
duke@435 1764 int frame_complete = ((intptr_t)__ pc()) - start;
duke@435 1765
duke@435 1766 // Calculate the difference between rsp and rbp,. We need to know it
duke@435 1767 // after the native call because on windows Java Natives will pop
duke@435 1768 // the arguments and it is painful to do rsp relative addressing
duke@435 1769 // in a platform independent way. So after the call we switch to
duke@435 1770 // rbp, relative addressing.
duke@435 1771
duke@435 1772 int fp_adjustment = stack_size - 2*wordSize;
duke@435 1773
duke@435 1774 #ifdef COMPILER2
duke@435 1775 // C2 may leave the stack dirty if not in SSE2+ mode
duke@435 1776 if (UseSSE >= 2) {
duke@435 1777 __ verify_FPU(0, "c2i transition should have clean FPU stack");
duke@435 1778 } else {
duke@435 1779 __ empty_FPU_stack();
duke@435 1780 }
duke@435 1781 #endif /* COMPILER2 */
duke@435 1782
duke@435 1783 // Compute the rbp, offset for any slots used after the jni call
duke@435 1784
duke@435 1785 int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
duke@435 1786
duke@435 1787 // We use rdi as a thread pointer because it is callee save and
duke@435 1788 // if we load it once it is usable thru the entire wrapper
duke@435 1789 const Register thread = rdi;
duke@435 1790
duke@435 1791 // We use rsi as the oop handle for the receiver/klass
duke@435 1792 // It is callee save so it survives the call to native
duke@435 1793
duke@435 1794 const Register oop_handle_reg = rsi;
duke@435 1795
duke@435 1796 __ get_thread(thread);
duke@435 1797
never@3500 1798 if (is_critical_native) {
never@3500 1799 check_needs_gc_for_critical_native(masm, thread, stack_slots, total_c_args, total_in_args,
never@3500 1800 oop_handle_offset, oop_maps, in_regs, in_sig_bt);
never@3500 1801 }
duke@435 1802
duke@435 1803 //
duke@435 1804 // We immediately shuffle the arguments so that any vm call we have to
duke@435 1805 // make from here on out (sync slow path, jvmti, etc.) we will have
duke@435 1806 // captured the oops from our caller and have a valid oopMap for
duke@435 1807 // them.
duke@435 1808
duke@435 1809 // -----------------
duke@435 1810 // The Grand Shuffle
duke@435 1811 //
duke@435 1812 // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
duke@435 1813 // and, if static, the class mirror instead of a receiver. This pretty much
duke@435 1814 // guarantees that register layout will not match (and x86 doesn't use reg
duke@435 1815 // parms though amd does). Since the native abi doesn't use register args
duke@435 1816 // and the java conventions does we don't have to worry about collisions.
duke@435 1817 // All of our moved are reg->stack or stack->stack.
duke@435 1818 // We ignore the extra arguments during the shuffle and handle them at the
duke@435 1819 // last moment. The shuffle is described by the two calling convention
duke@435 1820 // vectors we have in our possession. We simply walk the java vector to
duke@435 1821 // get the source locations and the c vector to get the destinations.
duke@435 1822
never@3500 1823 int c_arg = is_critical_native ? 0 : (method->is_static() ? 2 : 1 );
duke@435 1824
duke@435 1825 // Record rsp-based slot for receiver on stack for non-static methods
duke@435 1826 int receiver_offset = -1;
duke@435 1827
duke@435 1828 // This is a trick. We double the stack slots so we can claim
duke@435 1829 // the oops in the caller's frame. Since we are sure to have
duke@435 1830 // more args than the caller doubling is enough to make
duke@435 1831 // sure we can capture all the incoming oop args from the
duke@435 1832 // caller.
duke@435 1833 //
duke@435 1834 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
duke@435 1835
duke@435 1836 // Mark location of rbp,
duke@435 1837 // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
duke@435 1838
duke@435 1839 // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
duke@435 1840 // Are free to temporaries if we have to do stack to steck moves.
duke@435 1841 // All inbound args are referenced based on rbp, and all outbound args via rsp.
duke@435 1842
never@3500 1843 for (int i = 0; i < total_in_args ; i++, c_arg++ ) {
duke@435 1844 switch (in_sig_bt[i]) {
duke@435 1845 case T_ARRAY:
never@3500 1846 if (is_critical_native) {
never@3500 1847 unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
never@3500 1848 c_arg++;
never@3500 1849 break;
never@3500 1850 }
duke@435 1851 case T_OBJECT:
never@3500 1852 assert(!is_critical_native, "no oop arguments");
duke@435 1853 object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
duke@435 1854 ((i == 0) && (!is_static)),
duke@435 1855 &receiver_offset);
duke@435 1856 break;
duke@435 1857 case T_VOID:
duke@435 1858 break;
duke@435 1859
duke@435 1860 case T_FLOAT:
duke@435 1861 float_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 1862 break;
duke@435 1863
duke@435 1864 case T_DOUBLE:
duke@435 1865 assert( i + 1 < total_in_args &&
duke@435 1866 in_sig_bt[i + 1] == T_VOID &&
duke@435 1867 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
duke@435 1868 double_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 1869 break;
duke@435 1870
duke@435 1871 case T_LONG :
duke@435 1872 long_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 1873 break;
duke@435 1874
duke@435 1875 case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
duke@435 1876
duke@435 1877 default:
duke@435 1878 simple_move32(masm, in_regs[i], out_regs[c_arg]);
duke@435 1879 }
duke@435 1880 }
duke@435 1881
duke@435 1882 // Pre-load a static method's oop into rsi. Used both by locking code and
duke@435 1883 // the normal JNI call code.
never@3500 1884 if (method->is_static() && !is_critical_native) {
duke@435 1885
duke@435 1886 // load opp into a register
duke@435 1887 __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
duke@435 1888
duke@435 1889 // Now handlize the static class mirror it's known not-null.
never@739 1890 __ movptr(Address(rsp, klass_offset), oop_handle_reg);
duke@435 1891 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
duke@435 1892
duke@435 1893 // Now get the handle
never@739 1894 __ lea(oop_handle_reg, Address(rsp, klass_offset));
duke@435 1895 // store the klass handle as second argument
never@739 1896 __ movptr(Address(rsp, wordSize), oop_handle_reg);
duke@435 1897 }
duke@435 1898
duke@435 1899 // Change state to native (we save the return address in the thread, since it might not
duke@435 1900 // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
duke@435 1901 // points into the right code segment. It does not have to be the correct return pc.
duke@435 1902 // We use the same pc/oopMap repeatedly when we call out
duke@435 1903
duke@435 1904 intptr_t the_pc = (intptr_t) __ pc();
duke@435 1905 oop_maps->add_gc_map(the_pc - start, map);
duke@435 1906
duke@435 1907 __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
duke@435 1908
duke@435 1909
duke@435 1910 // We have all of the arguments setup at this point. We must not touch any register
duke@435 1911 // argument registers at this point (what if we save/restore them there are no oop?
duke@435 1912
duke@435 1913 {
duke@435 1914 SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
coleenp@4037 1915 __ mov_metadata(rax, method());
duke@435 1916 __ call_VM_leaf(
duke@435 1917 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
duke@435 1918 thread, rax);
duke@435 1919 }
duke@435 1920
dcubed@1045 1921 // RedefineClasses() tracing support for obsolete method entry
dcubed@1045 1922 if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
coleenp@4037 1923 __ mov_metadata(rax, method());
dcubed@1045 1924 __ call_VM_leaf(
dcubed@1045 1925 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
dcubed@1045 1926 thread, rax);
dcubed@1045 1927 }
dcubed@1045 1928
duke@435 1929 // These are register definitions we need for locking/unlocking
duke@435 1930 const Register swap_reg = rax; // Must use rax, for cmpxchg instruction
duke@435 1931 const Register obj_reg = rcx; // Will contain the oop
duke@435 1932 const Register lock_reg = rdx; // Address of compiler lock object (BasicLock)
duke@435 1933
duke@435 1934 Label slow_path_lock;
duke@435 1935 Label lock_done;
duke@435 1936
duke@435 1937 // Lock a synchronized method
duke@435 1938 if (method->is_synchronized()) {
never@3500 1939 assert(!is_critical_native, "unhandled");
duke@435 1940
duke@435 1941
duke@435 1942 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
duke@435 1943
duke@435 1944 // Get the handle (the 2nd argument)
never@739 1945 __ movptr(oop_handle_reg, Address(rsp, wordSize));
duke@435 1946
duke@435 1947 // Get address of the box
duke@435 1948
never@739 1949 __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
duke@435 1950
duke@435 1951 // Load the oop from the handle
never@739 1952 __ movptr(obj_reg, Address(oop_handle_reg, 0));
duke@435 1953
duke@435 1954 if (UseBiasedLocking) {
duke@435 1955 // Note that oop_handle_reg is trashed during this call
duke@435 1956 __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
duke@435 1957 }
duke@435 1958
duke@435 1959 // Load immediate 1 into swap_reg %rax,
never@739 1960 __ movptr(swap_reg, 1);
duke@435 1961
duke@435 1962 // Load (object->mark() | 1) into swap_reg %rax,
never@739 1963 __ orptr(swap_reg, Address(obj_reg, 0));
duke@435 1964
duke@435 1965 // Save (object->mark() | 1) into BasicLock's displaced header
never@739 1966 __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
duke@435 1967
duke@435 1968 if (os::is_MP()) {
duke@435 1969 __ lock();
duke@435 1970 }
duke@435 1971
duke@435 1972 // src -> dest iff dest == rax, else rax, <- dest
duke@435 1973 // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
never@739 1974 __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
duke@435 1975 __ jcc(Assembler::equal, lock_done);
duke@435 1976
duke@435 1977 // Test if the oopMark is an obvious stack pointer, i.e.,
duke@435 1978 // 1) (mark & 3) == 0, and
duke@435 1979 // 2) rsp <= mark < mark + os::pagesize()
duke@435 1980 // These 3 tests can be done by evaluating the following
duke@435 1981 // expression: ((mark - rsp) & (3 - os::vm_page_size())),
duke@435 1982 // assuming both stack pointer and pagesize have their
duke@435 1983 // least significant 2 bits clear.
duke@435 1984 // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
duke@435 1985
never@739 1986 __ subptr(swap_reg, rsp);
never@739 1987 __ andptr(swap_reg, 3 - os::vm_page_size());
duke@435 1988
duke@435 1989 // Save the test result, for recursive case, the result is zero
never@739 1990 __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
duke@435 1991 __ jcc(Assembler::notEqual, slow_path_lock);
duke@435 1992 // Slow path will re-enter here
duke@435 1993 __ bind(lock_done);
duke@435 1994
duke@435 1995 if (UseBiasedLocking) {
duke@435 1996 // Re-fetch oop_handle_reg as we trashed it above
never@739 1997 __ movptr(oop_handle_reg, Address(rsp, wordSize));
duke@435 1998 }
duke@435 1999 }
duke@435 2000
duke@435 2001
duke@435 2002 // Finally just about ready to make the JNI call
duke@435 2003
duke@435 2004
duke@435 2005 // get JNIEnv* which is first argument to native
never@3500 2006 if (!is_critical_native) {
never@3500 2007 __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
never@3500 2008 __ movptr(Address(rsp, 0), rdx);
never@3500 2009 }
duke@435 2010
duke@435 2011 // Now set thread in native
duke@435 2012 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
duke@435 2013
never@3500 2014 __ call(RuntimeAddress(native_func));
duke@435 2015
duke@435 2016 // WARNING - on Windows Java Natives use pascal calling convention and pop the
duke@435 2017 // arguments off of the stack. We could just re-adjust the stack pointer here
duke@435 2018 // and continue to do SP relative addressing but we instead switch to FP
duke@435 2019 // relative addressing.
duke@435 2020
duke@435 2021 // Unpack native results.
duke@435 2022 switch (ret_type) {
duke@435 2023 case T_BOOLEAN: __ c2bool(rax); break;
never@739 2024 case T_CHAR : __ andptr(rax, 0xFFFF); break;
duke@435 2025 case T_BYTE : __ sign_extend_byte (rax); break;
duke@435 2026 case T_SHORT : __ sign_extend_short(rax); break;
duke@435 2027 case T_INT : /* nothing to do */ break;
duke@435 2028 case T_DOUBLE :
duke@435 2029 case T_FLOAT :
duke@435 2030 // Result is in st0 we'll save as needed
duke@435 2031 break;
duke@435 2032 case T_ARRAY: // Really a handle
duke@435 2033 case T_OBJECT: // Really a handle
duke@435 2034 break; // can't de-handlize until after safepoint check
duke@435 2035 case T_VOID: break;
duke@435 2036 case T_LONG: break;
duke@435 2037 default : ShouldNotReachHere();
duke@435 2038 }
duke@435 2039
duke@435 2040 // Switch thread to "native transition" state before reading the synchronization state.
duke@435 2041 // This additional state is necessary because reading and testing the synchronization
duke@435 2042 // state is not atomic w.r.t. GC, as this scenario demonstrates:
duke@435 2043 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
duke@435 2044 // VM thread changes sync state to synchronizing and suspends threads for GC.
duke@435 2045 // Thread A is resumed to finish this native method, but doesn't block here since it
duke@435 2046 // didn't see any synchronization is progress, and escapes.
duke@435 2047 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
duke@435 2048
duke@435 2049 if(os::is_MP()) {
duke@435 2050 if (UseMembar) {
never@739 2051 // Force this write out before the read below
never@739 2052 __ membar(Assembler::Membar_mask_bits(
never@739 2053 Assembler::LoadLoad | Assembler::LoadStore |
never@739 2054 Assembler::StoreLoad | Assembler::StoreStore));
duke@435 2055 } else {
duke@435 2056 // Write serialization page so VM thread can do a pseudo remote membar.
duke@435 2057 // We use the current thread pointer to calculate a thread specific
duke@435 2058 // offset to write to within the page. This minimizes bus traffic
duke@435 2059 // due to cache line collision.
duke@435 2060 __ serialize_memory(thread, rcx);
duke@435 2061 }
duke@435 2062 }
duke@435 2063
duke@435 2064 if (AlwaysRestoreFPU) {
duke@435 2065 // Make sure the control word is correct.
duke@435 2066 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 2067 }
duke@435 2068
never@3500 2069 Label after_transition;
never@3500 2070
duke@435 2071 // check for safepoint operation in progress and/or pending suspend requests
duke@435 2072 { Label Continue;
duke@435 2073
duke@435 2074 __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
duke@435 2075 SafepointSynchronize::_not_synchronized);
duke@435 2076
duke@435 2077 Label L;
duke@435 2078 __ jcc(Assembler::notEqual, L);
duke@435 2079 __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
duke@435 2080 __ jcc(Assembler::equal, Continue);
duke@435 2081 __ bind(L);
duke@435 2082
duke@435 2083 // Don't use call_VM as it will see a possible pending exception and forward it
duke@435 2084 // and never return here preventing us from clearing _last_native_pc down below.
duke@435 2085 // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
duke@435 2086 // preserved and correspond to the bcp/locals pointers. So we do a runtime call
duke@435 2087 // by hand.
duke@435 2088 //
duke@435 2089 save_native_result(masm, ret_type, stack_slots);
never@739 2090 __ push(thread);
never@3500 2091 if (!is_critical_native) {
never@3500 2092 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
never@3500 2093 JavaThread::check_special_condition_for_native_trans)));
never@3500 2094 } else {
never@3500 2095 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
never@3500 2096 JavaThread::check_special_condition_for_native_trans_and_transition)));
never@3500 2097 }
duke@435 2098 __ increment(rsp, wordSize);
duke@435 2099 // Restore any method result value
duke@435 2100 restore_native_result(masm, ret_type, stack_slots);
duke@435 2101
never@3500 2102 if (is_critical_native) {
never@3500 2103 // The call above performed the transition to thread_in_Java so
never@3500 2104 // skip the transition logic below.
never@3500 2105 __ jmpb(after_transition);
never@3500 2106 }
never@3500 2107
duke@435 2108 __ bind(Continue);
duke@435 2109 }
duke@435 2110
duke@435 2111 // change thread state
duke@435 2112 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
never@3500 2113 __ bind(after_transition);
duke@435 2114
duke@435 2115 Label reguard;
duke@435 2116 Label reguard_done;
duke@435 2117 __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
duke@435 2118 __ jcc(Assembler::equal, reguard);
duke@435 2119
duke@435 2120 // slow path reguard re-enters here
duke@435 2121 __ bind(reguard_done);
duke@435 2122
duke@435 2123 // Handle possible exception (will unlock if necessary)
duke@435 2124
duke@435 2125 // native result if any is live
duke@435 2126
duke@435 2127 // Unlock
duke@435 2128 Label slow_path_unlock;
duke@435 2129 Label unlock_done;
duke@435 2130 if (method->is_synchronized()) {
duke@435 2131
duke@435 2132 Label done;
duke@435 2133
duke@435 2134 // Get locked oop from the handle we passed to jni
never@739 2135 __ movptr(obj_reg, Address(oop_handle_reg, 0));
duke@435 2136
duke@435 2137 if (UseBiasedLocking) {
duke@435 2138 __ biased_locking_exit(obj_reg, rbx, done);
duke@435 2139 }
duke@435 2140
duke@435 2141 // Simple recursive lock?
duke@435 2142
never@739 2143 __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
duke@435 2144 __ jcc(Assembler::equal, done);
duke@435 2145
duke@435 2146 // Must save rax, if if it is live now because cmpxchg must use it
duke@435 2147 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
duke@435 2148 save_native_result(masm, ret_type, stack_slots);
duke@435 2149 }
duke@435 2150
duke@435 2151 // get old displaced header
never@739 2152 __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
duke@435 2153
duke@435 2154 // get address of the stack lock
never@739 2155 __ lea(rax, Address(rbp, lock_slot_rbp_offset));
duke@435 2156
duke@435 2157 // Atomic swap old header if oop still contains the stack lock
duke@435 2158 if (os::is_MP()) {
duke@435 2159 __ lock();
duke@435 2160 }
duke@435 2161
duke@435 2162 // src -> dest iff dest == rax, else rax, <- dest
duke@435 2163 // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
never@739 2164 __ cmpxchgptr(rbx, Address(obj_reg, 0));
duke@435 2165 __ jcc(Assembler::notEqual, slow_path_unlock);
duke@435 2166
duke@435 2167 // slow path re-enters here
duke@435 2168 __ bind(unlock_done);
duke@435 2169 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
duke@435 2170 restore_native_result(masm, ret_type, stack_slots);
duke@435 2171 }
duke@435 2172
duke@435 2173 __ bind(done);
duke@435 2174
duke@435 2175 }
duke@435 2176
duke@435 2177 {
duke@435 2178 SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
duke@435 2179 // Tell dtrace about this method exit
duke@435 2180 save_native_result(masm, ret_type, stack_slots);
coleenp@4037 2181 __ mov_metadata(rax, method());
duke@435 2182 __ call_VM_leaf(
duke@435 2183 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
duke@435 2184 thread, rax);
duke@435 2185 restore_native_result(masm, ret_type, stack_slots);
duke@435 2186 }
duke@435 2187
duke@435 2188 // We can finally stop using that last_Java_frame we setup ages ago
duke@435 2189
duke@435 2190 __ reset_last_Java_frame(thread, false, true);
duke@435 2191
duke@435 2192 // Unpack oop result
duke@435 2193 if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
duke@435 2194 Label L;
never@739 2195 __ cmpptr(rax, (int32_t)NULL_WORD);
duke@435 2196 __ jcc(Assembler::equal, L);
never@739 2197 __ movptr(rax, Address(rax, 0));
duke@435 2198 __ bind(L);
duke@435 2199 __ verify_oop(rax);
duke@435 2200 }
duke@435 2201
never@3500 2202 if (!is_critical_native) {
never@3500 2203 // reset handle block
never@3500 2204 __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
never@3500 2205 __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
never@3500 2206
never@3500 2207 // Any exception pending?
never@3500 2208 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
never@3500 2209 __ jcc(Assembler::notEqual, exception_pending);
never@3500 2210 }
duke@435 2211
duke@435 2212 // no exception, we're almost done
duke@435 2213
duke@435 2214 // check that only result value is on FPU stack
duke@435 2215 __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
duke@435 2216
duke@435 2217 // Fixup floating pointer results so that result looks like a return from a compiled method
duke@435 2218 if (ret_type == T_FLOAT) {
duke@435 2219 if (UseSSE >= 1) {
duke@435 2220 // Pop st0 and store as float and reload into xmm register
duke@435 2221 __ fstp_s(Address(rbp, -4));
duke@435 2222 __ movflt(xmm0, Address(rbp, -4));
duke@435 2223 }
duke@435 2224 } else if (ret_type == T_DOUBLE) {
duke@435 2225 if (UseSSE >= 2) {
duke@435 2226 // Pop st0 and store as double and reload into xmm register
duke@435 2227 __ fstp_d(Address(rbp, -8));
duke@435 2228 __ movdbl(xmm0, Address(rbp, -8));
duke@435 2229 }
duke@435 2230 }
duke@435 2231
duke@435 2232 // Return
duke@435 2233
duke@435 2234 __ leave();
duke@435 2235 __ ret(0);
duke@435 2236
duke@435 2237 // Unexpected paths are out of line and go here
duke@435 2238
duke@435 2239 // Slow path locking & unlocking
duke@435 2240 if (method->is_synchronized()) {
duke@435 2241
duke@435 2242 // BEGIN Slow path lock
duke@435 2243
duke@435 2244 __ bind(slow_path_lock);
duke@435 2245
duke@435 2246 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
duke@435 2247 // args are (oop obj, BasicLock* lock, JavaThread* thread)
never@739 2248 __ push(thread);
never@739 2249 __ push(lock_reg);
never@739 2250 __ push(obj_reg);
duke@435 2251 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
never@739 2252 __ addptr(rsp, 3*wordSize);
duke@435 2253
duke@435 2254 #ifdef ASSERT
duke@435 2255 { Label L;
never@739 2256 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
duke@435 2257 __ jcc(Assembler::equal, L);
duke@435 2258 __ stop("no pending exception allowed on exit from monitorenter");
duke@435 2259 __ bind(L);
duke@435 2260 }
duke@435 2261 #endif
duke@435 2262 __ jmp(lock_done);
duke@435 2263
duke@435 2264 // END Slow path lock
duke@435 2265
duke@435 2266 // BEGIN Slow path unlock
duke@435 2267 __ bind(slow_path_unlock);
duke@435 2268
duke@435 2269 // Slow path unlock
duke@435 2270
duke@435 2271 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
duke@435 2272 save_native_result(masm, ret_type, stack_slots);
duke@435 2273 }
duke@435 2274 // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
duke@435 2275
never@739 2276 __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
xlu@947 2277 __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
duke@435 2278
duke@435 2279
duke@435 2280 // should be a peal
duke@435 2281 // +wordSize because of the push above
never@739 2282 __ lea(rax, Address(rbp, lock_slot_rbp_offset));
never@739 2283 __ push(rax);
never@739 2284
never@739 2285 __ push(obj_reg);
duke@435 2286 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
never@739 2287 __ addptr(rsp, 2*wordSize);
duke@435 2288 #ifdef ASSERT
duke@435 2289 {
duke@435 2290 Label L;
never@739 2291 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
duke@435 2292 __ jcc(Assembler::equal, L);
duke@435 2293 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
duke@435 2294 __ bind(L);
duke@435 2295 }
duke@435 2296 #endif /* ASSERT */
duke@435 2297
never@739 2298 __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
duke@435 2299
duke@435 2300 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
duke@435 2301 restore_native_result(masm, ret_type, stack_slots);
duke@435 2302 }
duke@435 2303 __ jmp(unlock_done);
duke@435 2304 // END Slow path unlock
duke@435 2305
duke@435 2306 }
duke@435 2307
duke@435 2308 // SLOW PATH Reguard the stack if needed
duke@435 2309
duke@435 2310 __ bind(reguard);
duke@435 2311 save_native_result(masm, ret_type, stack_slots);
duke@435 2312 {
duke@435 2313 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
duke@435 2314 }
duke@435 2315 restore_native_result(masm, ret_type, stack_slots);
duke@435 2316 __ jmp(reguard_done);
duke@435 2317
duke@435 2318
duke@435 2319 // BEGIN EXCEPTION PROCESSING
duke@435 2320
never@3500 2321 if (!is_critical_native) {
never@3500 2322 // Forward the exception
never@3500 2323 __ bind(exception_pending);
never@3500 2324
never@3500 2325 // remove possible return value from FPU register stack
never@3500 2326 __ empty_FPU_stack();
never@3500 2327
never@3500 2328 // pop our frame
never@3500 2329 __ leave();
never@3500 2330 // and forward the exception
never@3500 2331 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
never@3500 2332 }
duke@435 2333
duke@435 2334 __ flush();
duke@435 2335
duke@435 2336 nmethod *nm = nmethod::new_native_nmethod(method,
twisti@2687 2337 compile_id,
duke@435 2338 masm->code(),
duke@435 2339 vep_offset,
duke@435 2340 frame_complete,
duke@435 2341 stack_slots / VMRegImpl::slots_per_word,
duke@435 2342 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
duke@435 2343 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
duke@435 2344 oop_maps);
never@3500 2345
never@3500 2346 if (is_critical_native) {
never@3500 2347 nm->set_lazy_critical_native(true);
never@3500 2348 }
never@3500 2349
duke@435 2350 return nm;
duke@435 2351
duke@435 2352 }
duke@435 2353
kamg@551 2354 #ifdef HAVE_DTRACE_H
kamg@551 2355 // ---------------------------------------------------------------------------
kamg@551 2356 // Generate a dtrace nmethod for a given signature. The method takes arguments
kamg@551 2357 // in the Java compiled code convention, marshals them to the native
kamg@551 2358 // abi and then leaves nops at the position you would expect to call a native
kamg@551 2359 // function. When the probe is enabled the nops are replaced with a trap
kamg@551 2360 // instruction that dtrace inserts and the trace will cause a notification
kamg@551 2361 // to dtrace.
kamg@551 2362 //
kamg@551 2363 // The probes are only able to take primitive types and java/lang/String as
kamg@551 2364 // arguments. No other java types are allowed. Strings are converted to utf8
kamg@551 2365 // strings so that from dtrace point of view java strings are converted to C
kamg@551 2366 // strings. There is an arbitrary fixed limit on the total space that a method
kamg@551 2367 // can use for converting the strings. (256 chars per string in the signature).
kamg@551 2368 // So any java string larger then this is truncated.
kamg@551 2369
kamg@551 2370 nmethod *SharedRuntime::generate_dtrace_nmethod(
kamg@551 2371 MacroAssembler *masm, methodHandle method) {
kamg@551 2372
kamg@551 2373 // generate_dtrace_nmethod is guarded by a mutex so we are sure to
kamg@551 2374 // be single threaded in this method.
kamg@551 2375 assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
kamg@551 2376
kamg@551 2377 // Fill in the signature array, for the calling-convention call.
kamg@551 2378 int total_args_passed = method->size_of_parameters();
kamg@551 2379
kamg@551 2380 BasicType* in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
kamg@551 2381 VMRegPair *in_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
kamg@551 2382
kamg@551 2383 // The signature we are going to use for the trap that dtrace will see
kamg@551 2384 // java/lang/String is converted. We drop "this" and any other object
kamg@551 2385 // is converted to NULL. (A one-slot java/lang/Long object reference
kamg@551 2386 // is converted to a two-slot long, which is why we double the allocation).
kamg@551 2387 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
kamg@551 2388 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
kamg@551 2389
kamg@551 2390 int i=0;
kamg@551 2391 int total_strings = 0;
kamg@551 2392 int first_arg_to_pass = 0;
kamg@551 2393 int total_c_args = 0;
kamg@551 2394
kamg@551 2395 if( !method->is_static() ) { // Pass in receiver first
kamg@551 2396 in_sig_bt[i++] = T_OBJECT;
kamg@551 2397 first_arg_to_pass = 1;
kamg@551 2398 }
kamg@551 2399
kamg@551 2400 // We need to convert the java args to where a native (non-jni) function
kamg@551 2401 // would expect them. To figure out where they go we convert the java
kamg@551 2402 // signature to a C signature.
kamg@551 2403
kamg@551 2404 SignatureStream ss(method->signature());
kamg@551 2405 for ( ; !ss.at_return_type(); ss.next()) {
kamg@551 2406 BasicType bt = ss.type();
kamg@551 2407 in_sig_bt[i++] = bt; // Collect remaining bits of signature
kamg@551 2408 out_sig_bt[total_c_args++] = bt;
kamg@551 2409 if( bt == T_OBJECT) {
coleenp@2497 2410 Symbol* s = ss.as_symbol_or_null(); // symbol is created
kamg@551 2411 if (s == vmSymbols::java_lang_String()) {
kamg@551 2412 total_strings++;
kamg@551 2413 out_sig_bt[total_c_args-1] = T_ADDRESS;
kamg@551 2414 } else if (s == vmSymbols::java_lang_Boolean() ||
kamg@551 2415 s == vmSymbols::java_lang_Character() ||
kamg@551 2416 s == vmSymbols::java_lang_Byte() ||
kamg@551 2417 s == vmSymbols::java_lang_Short() ||
kamg@551 2418 s == vmSymbols::java_lang_Integer() ||
kamg@551 2419 s == vmSymbols::java_lang_Float()) {
kamg@551 2420 out_sig_bt[total_c_args-1] = T_INT;
kamg@551 2421 } else if (s == vmSymbols::java_lang_Long() ||
kamg@551 2422 s == vmSymbols::java_lang_Double()) {
kamg@551 2423 out_sig_bt[total_c_args-1] = T_LONG;
kamg@551 2424 out_sig_bt[total_c_args++] = T_VOID;
kamg@551 2425 }
kamg@551 2426 } else if ( bt == T_LONG || bt == T_DOUBLE ) {
kamg@551 2427 in_sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
kamg@551 2428 out_sig_bt[total_c_args++] = T_VOID;
kamg@551 2429 }
kamg@551 2430 }
kamg@551 2431
kamg@551 2432 assert(i==total_args_passed, "validly parsed signature");
kamg@551 2433
kamg@551 2434 // Now get the compiled-Java layout as input arguments
kamg@551 2435 int comp_args_on_stack;
kamg@551 2436 comp_args_on_stack = SharedRuntime::java_calling_convention(
kamg@551 2437 in_sig_bt, in_regs, total_args_passed, false);
kamg@551 2438
kamg@551 2439 // Now figure out where the args must be stored and how much stack space
kamg@551 2440 // they require (neglecting out_preserve_stack_slots).
kamg@551 2441
kamg@551 2442 int out_arg_slots;
kamg@551 2443 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
kamg@551 2444
kamg@551 2445 // Calculate the total number of stack slots we will need.
kamg@551 2446
kamg@551 2447 // First count the abi requirement plus all of the outgoing args
kamg@551 2448 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
kamg@551 2449
kamg@551 2450 // Now space for the string(s) we must convert
kamg@551 2451
kamg@551 2452 int* string_locs = NEW_RESOURCE_ARRAY(int, total_strings + 1);
kamg@551 2453 for (i = 0; i < total_strings ; i++) {
kamg@551 2454 string_locs[i] = stack_slots;
kamg@551 2455 stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
kamg@551 2456 }
kamg@551 2457
kamg@551 2458 // + 2 for return address (which we own) and saved rbp,
kamg@551 2459
kamg@551 2460 stack_slots += 2;
kamg@551 2461
kamg@551 2462 // Ok The space we have allocated will look like:
kamg@551 2463 //
kamg@551 2464 //
kamg@551 2465 // FP-> | |
kamg@551 2466 // |---------------------|
kamg@551 2467 // | string[n] |
kamg@551 2468 // |---------------------| <- string_locs[n]
kamg@551 2469 // | string[n-1] |
kamg@551 2470 // |---------------------| <- string_locs[n-1]
kamg@551 2471 // | ... |
kamg@551 2472 // | ... |
kamg@551 2473 // |---------------------| <- string_locs[1]
kamg@551 2474 // | string[0] |
kamg@551 2475 // |---------------------| <- string_locs[0]
kamg@551 2476 // | outbound memory |
kamg@551 2477 // | based arguments |
kamg@551 2478 // | |
kamg@551 2479 // |---------------------|
kamg@551 2480 // | |
kamg@551 2481 // SP-> | out_preserved_slots |
kamg@551 2482 //
kamg@551 2483 //
kamg@551 2484
kamg@551 2485 // Now compute actual number of stack words we need rounding to make
kamg@551 2486 // stack properly aligned.
kamg@551 2487 stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
kamg@551 2488
kamg@551 2489 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
kamg@551 2490
kamg@551 2491 intptr_t start = (intptr_t)__ pc();
kamg@551 2492
kamg@551 2493 // First thing make an ic check to see if we should even be here
kamg@551 2494
kamg@551 2495 // We are free to use all registers as temps without saving them and
kamg@551 2496 // restoring them except rbp. rbp, is the only callee save register
kamg@551 2497 // as far as the interpreter and the compiler(s) are concerned.
kamg@551 2498
kamg@551 2499 const Register ic_reg = rax;
kamg@551 2500 const Register receiver = rcx;
kamg@551 2501 Label hit;
kamg@551 2502 Label exception_pending;
kamg@551 2503
kamg@551 2504
kamg@551 2505 __ verify_oop(receiver);
kamg@551 2506 __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
kamg@551 2507 __ jcc(Assembler::equal, hit);
kamg@551 2508
kamg@551 2509 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
kamg@551 2510
kamg@551 2511 // verified entry must be aligned for code patching.
kamg@551 2512 // and the first 5 bytes must be in the same cache line
kamg@551 2513 // if we align at 8 then we will be sure 5 bytes are in the same line
kamg@551 2514 __ align(8);
kamg@551 2515
kamg@551 2516 __ bind(hit);
kamg@551 2517
kamg@551 2518 int vep_offset = ((intptr_t)__ pc()) - start;
kamg@551 2519
kamg@551 2520
kamg@551 2521 // The instruction at the verified entry point must be 5 bytes or longer
kamg@551 2522 // because it can be patched on the fly by make_non_entrant. The stack bang
kamg@551 2523 // instruction fits that requirement.
kamg@551 2524
kamg@551 2525 // Generate stack overflow check
kamg@551 2526
kamg@551 2527
kamg@551 2528 if (UseStackBanging) {
kamg@551 2529 if (stack_size <= StackShadowPages*os::vm_page_size()) {
kamg@551 2530 __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
kamg@551 2531 } else {
kamg@551 2532 __ movl(rax, stack_size);
kamg@551 2533 __ bang_stack_size(rax, rbx);
kamg@551 2534 }
kamg@551 2535 } else {
kamg@551 2536 // need a 5 byte instruction to allow MT safe patching to non-entrant
kamg@551 2537 __ fat_nop();
kamg@551 2538 }
kamg@551 2539
kamg@551 2540 assert(((int)__ pc() - start - vep_offset) >= 5,
kamg@551 2541 "valid size for make_non_entrant");
kamg@551 2542
kamg@551 2543 // Generate a new frame for the wrapper.
kamg@551 2544 __ enter();
kamg@551 2545
kamg@551 2546 // -2 because return address is already present and so is saved rbp,
kamg@551 2547 if (stack_size - 2*wordSize != 0) {
kamg@551 2548 __ subl(rsp, stack_size - 2*wordSize);
kamg@551 2549 }
kamg@551 2550
kamg@551 2551 // Frame is now completed as far a size and linkage.
kamg@551 2552
kamg@551 2553 int frame_complete = ((intptr_t)__ pc()) - start;
kamg@551 2554
kamg@551 2555 // First thing we do store all the args as if we are doing the call.
kamg@551 2556 // Since the C calling convention is stack based that ensures that
kamg@551 2557 // all the Java register args are stored before we need to convert any
kamg@551 2558 // string we might have.
kamg@551 2559
kamg@551 2560 int sid = 0;
kamg@551 2561 int c_arg, j_arg;
kamg@551 2562 int string_reg = 0;
kamg@551 2563
kamg@551 2564 for (j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 2565 j_arg < total_args_passed ; j_arg++, c_arg++ ) {
kamg@551 2566
kamg@551 2567 VMRegPair src = in_regs[j_arg];
kamg@551 2568 VMRegPair dst = out_regs[c_arg];
kamg@551 2569 assert(dst.first()->is_stack() || in_sig_bt[j_arg] == T_VOID,
kamg@551 2570 "stack based abi assumed");
kamg@551 2571
kamg@551 2572 switch (in_sig_bt[j_arg]) {
kamg@551 2573
kamg@551 2574 case T_ARRAY:
kamg@551 2575 case T_OBJECT:
kamg@551 2576 if (out_sig_bt[c_arg] == T_ADDRESS) {
kamg@551 2577 // Any register based arg for a java string after the first
kamg@551 2578 // will be destroyed by the call to get_utf so we store
kamg@551 2579 // the original value in the location the utf string address
kamg@551 2580 // will eventually be stored.
kamg@551 2581 if (src.first()->is_reg()) {
kamg@551 2582 if (string_reg++ != 0) {
kamg@551 2583 simple_move32(masm, src, dst);
kamg@551 2584 }
kamg@551 2585 }
kamg@551 2586 } else if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
kamg@551 2587 // need to unbox a one-word value
kamg@551 2588 Register in_reg = rax;
kamg@551 2589 if ( src.first()->is_reg() ) {
kamg@551 2590 in_reg = src.first()->as_Register();
kamg@551 2591 } else {
kamg@551 2592 simple_move32(masm, src, in_reg->as_VMReg());
kamg@551 2593 }
kamg@551 2594 Label skipUnbox;
kamg@551 2595 __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
kamg@551 2596 if ( out_sig_bt[c_arg] == T_LONG ) {
kamg@551 2597 __ movl(Address(rsp, reg2offset_out(dst.second())), NULL_WORD);
kamg@551 2598 }
kamg@551 2599 __ testl(in_reg, in_reg);
kamg@551 2600 __ jcc(Assembler::zero, skipUnbox);
kamg@551 2601 assert(dst.first()->is_stack() &&
kamg@551 2602 (!dst.second()->is_valid() || dst.second()->is_stack()),
kamg@551 2603 "value(s) must go into stack slots");
kvn@600 2604
kvn@600 2605 BasicType bt = out_sig_bt[c_arg];
kvn@600 2606 int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
kvn@600 2607 if ( bt == T_LONG ) {
kamg@551 2608 __ movl(rbx, Address(in_reg,
kamg@551 2609 box_offset + VMRegImpl::stack_slot_size));
kamg@551 2610 __ movl(Address(rsp, reg2offset_out(dst.second())), rbx);
kamg@551 2611 }
kamg@551 2612 __ movl(in_reg, Address(in_reg, box_offset));
kamg@551 2613 __ movl(Address(rsp, reg2offset_out(dst.first())), in_reg);
kamg@551 2614 __ bind(skipUnbox);
kamg@551 2615 } else {
kamg@551 2616 // Convert the arg to NULL
kamg@551 2617 __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
kamg@551 2618 }
kamg@551 2619 if (out_sig_bt[c_arg] == T_LONG) {
kamg@551 2620 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 2621 ++c_arg; // Move over the T_VOID To keep the loop indices in sync
kamg@551 2622 }
kamg@551 2623 break;
kamg@551 2624
kamg@551 2625 case T_VOID:
kamg@551 2626 break;
kamg@551 2627
kamg@551 2628 case T_FLOAT:
kamg@551 2629 float_move(masm, src, dst);
kamg@551 2630 break;
kamg@551 2631
kamg@551 2632 case T_DOUBLE:
kamg@551 2633 assert( j_arg + 1 < total_args_passed &&
kamg@551 2634 in_sig_bt[j_arg + 1] == T_VOID, "bad arg list");
kamg@551 2635 double_move(masm, src, dst);
kamg@551 2636 break;
kamg@551 2637
kamg@551 2638 case T_LONG :
kamg@551 2639 long_move(masm, src, dst);
kamg@551 2640 break;
kamg@551 2641
kamg@551 2642 case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
kamg@551 2643
kamg@551 2644 default:
kamg@551 2645 simple_move32(masm, src, dst);
kamg@551 2646 }
kamg@551 2647 }
kamg@551 2648
kamg@551 2649 // Now we must convert any string we have to utf8
kamg@551 2650 //
kamg@551 2651
kamg@551 2652 for (sid = 0, j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 2653 sid < total_strings ; j_arg++, c_arg++ ) {
kamg@551 2654
kamg@551 2655 if (out_sig_bt[c_arg] == T_ADDRESS) {
kamg@551 2656
kamg@551 2657 Address utf8_addr = Address(
kamg@551 2658 rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
kamg@551 2659 __ leal(rax, utf8_addr);
kamg@551 2660
kamg@551 2661 // The first string we find might still be in the original java arg
kamg@551 2662 // register
kamg@551 2663 VMReg orig_loc = in_regs[j_arg].first();
kamg@551 2664 Register string_oop;
kamg@551 2665
kamg@551 2666 // This is where the argument will eventually reside
kamg@551 2667 Address dest = Address(rsp, reg2offset_out(out_regs[c_arg].first()));
kamg@551 2668
kamg@551 2669 if (sid == 1 && orig_loc->is_reg()) {
kamg@551 2670 string_oop = orig_loc->as_Register();
kamg@551 2671 assert(string_oop != rax, "smashed arg");
kamg@551 2672 } else {
kamg@551 2673
kamg@551 2674 if (orig_loc->is_reg()) {
kamg@551 2675 // Get the copy of the jls object
kamg@551 2676 __ movl(rcx, dest);
kamg@551 2677 } else {
kamg@551 2678 // arg is still in the original location
kamg@551 2679 __ movl(rcx, Address(rbp, reg2offset_in(orig_loc)));
kamg@551 2680 }
kamg@551 2681 string_oop = rcx;
kamg@551 2682
kamg@551 2683 }
kamg@551 2684 Label nullString;
kamg@551 2685 __ movl(dest, NULL_WORD);
kamg@551 2686 __ testl(string_oop, string_oop);
kamg@551 2687 __ jcc(Assembler::zero, nullString);
kamg@551 2688
kamg@551 2689 // Now we can store the address of the utf string as the argument
kamg@551 2690 __ movl(dest, rax);
kamg@551 2691
kamg@551 2692 // And do the conversion
kamg@551 2693 __ call_VM_leaf(CAST_FROM_FN_PTR(
kamg@551 2694 address, SharedRuntime::get_utf), string_oop, rax);
kamg@551 2695 __ bind(nullString);
kamg@551 2696 }
kamg@551 2697
kamg@551 2698 if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
kamg@551 2699 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 2700 ++c_arg; // Move over the T_VOID To keep the loop indices in sync
kamg@551 2701 }
kamg@551 2702 }
kamg@551 2703
kamg@551 2704
kamg@551 2705 // Ok now we are done. Need to place the nop that dtrace wants in order to
kamg@551 2706 // patch in the trap
kamg@551 2707
kamg@551 2708 int patch_offset = ((intptr_t)__ pc()) - start;
kamg@551 2709
kamg@551 2710 __ nop();
kamg@551 2711
kamg@551 2712
kamg@551 2713 // Return
kamg@551 2714
kamg@551 2715 __ leave();
kamg@551 2716 __ ret(0);
kamg@551 2717
kamg@551 2718 __ flush();
kamg@551 2719
kamg@551 2720 nmethod *nm = nmethod::new_dtrace_nmethod(
kamg@551 2721 method, masm->code(), vep_offset, patch_offset, frame_complete,
kamg@551 2722 stack_slots / VMRegImpl::slots_per_word);
kamg@551 2723 return nm;
kamg@551 2724
kamg@551 2725 }
kamg@551 2726
kamg@551 2727 #endif // HAVE_DTRACE_H
kamg@551 2728
duke@435 2729 // this function returns the adjust size (in number of words) to a c2i adapter
duke@435 2730 // activation for use during deoptimization
duke@435 2731 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
twisti@1861 2732 return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
duke@435 2733 }
duke@435 2734
duke@435 2735
duke@435 2736 uint SharedRuntime::out_preserve_stack_slots() {
duke@435 2737 return 0;
duke@435 2738 }
duke@435 2739
duke@435 2740
duke@435 2741 //------------------------------generate_deopt_blob----------------------------
duke@435 2742 void SharedRuntime::generate_deopt_blob() {
duke@435 2743 // allocate space for the code
duke@435 2744 ResourceMark rm;
duke@435 2745 // setup code generation tools
duke@435 2746 CodeBuffer buffer("deopt_blob", 1024, 1024);
duke@435 2747 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 2748 int frame_size_in_words;
duke@435 2749 OopMap* map = NULL;
duke@435 2750 // Account for the extra args we place on the stack
duke@435 2751 // by the time we call fetch_unroll_info
duke@435 2752 const int additional_words = 2; // deopt kind, thread
duke@435 2753
duke@435 2754 OopMapSet *oop_maps = new OopMapSet();
duke@435 2755
duke@435 2756 // -------------
duke@435 2757 // This code enters when returning to a de-optimized nmethod. A return
duke@435 2758 // address has been pushed on the the stack, and return values are in
duke@435 2759 // registers.
duke@435 2760 // If we are doing a normal deopt then we were called from the patched
duke@435 2761 // nmethod from the point we returned to the nmethod. So the return
duke@435 2762 // address on the stack is wrong by NativeCall::instruction_size
duke@435 2763 // We will adjust the value to it looks like we have the original return
duke@435 2764 // address on the stack (like when we eagerly deoptimized).
duke@435 2765 // In the case of an exception pending with deoptimized then we enter
duke@435 2766 // with a return address on the stack that points after the call we patched
duke@435 2767 // into the exception handler. We have the following register state:
duke@435 2768 // rax,: exception
duke@435 2769 // rbx,: exception handler
duke@435 2770 // rdx: throwing pc
duke@435 2771 // So in this case we simply jam rdx into the useless return address and
duke@435 2772 // the stack looks just like we want.
duke@435 2773 //
duke@435 2774 // At this point we need to de-opt. We save the argument return
duke@435 2775 // registers. We call the first C routine, fetch_unroll_info(). This
duke@435 2776 // routine captures the return values and returns a structure which
duke@435 2777 // describes the current frame size and the sizes of all replacement frames.
duke@435 2778 // The current frame is compiled code and may contain many inlined
duke@435 2779 // functions, each with their own JVM state. We pop the current frame, then
duke@435 2780 // push all the new frames. Then we call the C routine unpack_frames() to
duke@435 2781 // populate these frames. Finally unpack_frames() returns us the new target
duke@435 2782 // address. Notice that callee-save registers are BLOWN here; they have
duke@435 2783 // already been captured in the vframeArray at the time the return PC was
duke@435 2784 // patched.
duke@435 2785 address start = __ pc();
duke@435 2786 Label cont;
duke@435 2787
duke@435 2788 // Prolog for non exception case!
duke@435 2789
duke@435 2790 // Save everything in sight.
duke@435 2791
cfang@1361 2792 map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
duke@435 2793 // Normal deoptimization
never@739 2794 __ push(Deoptimization::Unpack_deopt);
duke@435 2795 __ jmp(cont);
duke@435 2796
duke@435 2797 int reexecute_offset = __ pc() - start;
duke@435 2798
duke@435 2799 // Reexecute case
duke@435 2800 // return address is the pc describes what bci to do re-execute at
duke@435 2801
duke@435 2802 // No need to update map as each call to save_live_registers will produce identical oopmap
cfang@1361 2803 (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
duke@435 2804
never@739 2805 __ push(Deoptimization::Unpack_reexecute);
duke@435 2806 __ jmp(cont);
duke@435 2807
duke@435 2808 int exception_offset = __ pc() - start;
duke@435 2809
duke@435 2810 // Prolog for exception case
duke@435 2811
duke@435 2812 // all registers are dead at this entry point, except for rax, and
duke@435 2813 // rdx which contain the exception oop and exception pc
duke@435 2814 // respectively. Set them in TLS and fall thru to the
duke@435 2815 // unpack_with_exception_in_tls entry point.
duke@435 2816
duke@435 2817 __ get_thread(rdi);
never@739 2818 __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
never@739 2819 __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
duke@435 2820
duke@435 2821 int exception_in_tls_offset = __ pc() - start;
duke@435 2822
duke@435 2823 // new implementation because exception oop is now passed in JavaThread
duke@435 2824
duke@435 2825 // Prolog for exception case
duke@435 2826 // All registers must be preserved because they might be used by LinearScan
duke@435 2827 // Exceptiop oop and throwing PC are passed in JavaThread
duke@435 2828 // tos: stack at point of call to method that threw the exception (i.e. only
duke@435 2829 // args are on the stack, no return address)
duke@435 2830
duke@435 2831 // make room on stack for the return address
duke@435 2832 // It will be patched later with the throwing pc. The correct value is not
duke@435 2833 // available now because loading it from memory would destroy registers.
never@739 2834 __ push(0);
duke@435 2835
duke@435 2836 // Save everything in sight.
duke@435 2837
duke@435 2838 // No need to update map as each call to save_live_registers will produce identical oopmap
cfang@1361 2839 (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
duke@435 2840
duke@435 2841 // Now it is safe to overwrite any register
duke@435 2842
duke@435 2843 // store the correct deoptimization type
never@739 2844 __ push(Deoptimization::Unpack_exception);
duke@435 2845
duke@435 2846 // load throwing pc from JavaThread and patch it as the return address
duke@435 2847 // of the current frame. Then clear the field in JavaThread
duke@435 2848 __ get_thread(rdi);
never@739 2849 __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
never@739 2850 __ movptr(Address(rbp, wordSize), rdx);
xlu@947 2851 __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
duke@435 2852
duke@435 2853 #ifdef ASSERT
duke@435 2854 // verify that there is really an exception oop in JavaThread
never@739 2855 __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
duke@435 2856 __ verify_oop(rax);
duke@435 2857
duke@435 2858 // verify that there is no pending exception
duke@435 2859 Label no_pending_exception;
never@739 2860 __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
never@739 2861 __ testptr(rax, rax);
duke@435 2862 __ jcc(Assembler::zero, no_pending_exception);
duke@435 2863 __ stop("must not have pending exception here");
duke@435 2864 __ bind(no_pending_exception);
duke@435 2865 #endif
duke@435 2866
duke@435 2867 __ bind(cont);
duke@435 2868
duke@435 2869 // Compiled code leaves the floating point stack dirty, empty it.
duke@435 2870 __ empty_FPU_stack();
duke@435 2871
duke@435 2872
duke@435 2873 // Call C code. Need thread and this frame, but NOT official VM entry
duke@435 2874 // crud. We cannot block on this call, no GC can happen.
duke@435 2875 __ get_thread(rcx);
never@739 2876 __ push(rcx);
duke@435 2877 // fetch_unroll_info needs to call last_java_frame()
duke@435 2878 __ set_last_Java_frame(rcx, noreg, noreg, NULL);
duke@435 2879
duke@435 2880 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
duke@435 2881
duke@435 2882 // Need to have an oopmap that tells fetch_unroll_info where to
duke@435 2883 // find any register it might need.
duke@435 2884
duke@435 2885 oop_maps->add_gc_map( __ pc()-start, map);
duke@435 2886
duke@435 2887 // Discard arg to fetch_unroll_info
never@739 2888 __ pop(rcx);
duke@435 2889
duke@435 2890 __ get_thread(rcx);
duke@435 2891 __ reset_last_Java_frame(rcx, false, false);
duke@435 2892
duke@435 2893 // Load UnrollBlock into EDI
never@739 2894 __ mov(rdi, rax);
duke@435 2895
duke@435 2896 // Move the unpack kind to a safe place in the UnrollBlock because
duke@435 2897 // we are very short of registers
duke@435 2898
duke@435 2899 Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
duke@435 2900 // retrieve the deopt kind from where we left it.
never@739 2901 __ pop(rax);
duke@435 2902 __ movl(unpack_kind, rax); // save the unpack_kind value
duke@435 2903
duke@435 2904 Label noException;
duke@435 2905 __ cmpl(rax, Deoptimization::Unpack_exception); // Was exception pending?
duke@435 2906 __ jcc(Assembler::notEqual, noException);
never@739 2907 __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
never@739 2908 __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
xlu@947 2909 __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
xlu@947 2910 __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
duke@435 2911
duke@435 2912 __ verify_oop(rax);
duke@435 2913
duke@435 2914 // Overwrite the result registers with the exception results.
never@739 2915 __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
never@739 2916 __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
duke@435 2917
duke@435 2918 __ bind(noException);
duke@435 2919
duke@435 2920 // Stack is back to only having register save data on the stack.
duke@435 2921 // Now restore the result registers. Everything else is either dead or captured
duke@435 2922 // in the vframeArray.
duke@435 2923
duke@435 2924 RegisterSaver::restore_result_registers(masm);
duke@435 2925
cfang@1361 2926 // Non standard control word may be leaked out through a safepoint blob, and we can
cfang@1361 2927 // deopt at a poll point with the non standard control word. However, we should make
cfang@1361 2928 // sure the control word is correct after restore_result_registers.
cfang@1361 2929 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
cfang@1361 2930
duke@435 2931 // All of the register save area has been popped of the stack. Only the
duke@435 2932 // return address remains.
duke@435 2933
duke@435 2934 // Pop all the frames we must move/replace.
duke@435 2935 //
duke@435 2936 // Frame picture (youngest to oldest)
duke@435 2937 // 1: self-frame (no frame link)
duke@435 2938 // 2: deopting frame (no frame link)
duke@435 2939 // 3: caller of deopting frame (could be compiled/interpreted).
duke@435 2940 //
duke@435 2941 // Note: by leaving the return address of self-frame on the stack
duke@435 2942 // and using the size of frame 2 to adjust the stack
duke@435 2943 // when we are done the return to frame 3 will still be on the stack.
duke@435 2944
duke@435 2945 // Pop deoptimized frame
never@739 2946 __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
duke@435 2947
duke@435 2948 // sp should be pointing at the return address to the caller (3)
duke@435 2949
duke@435 2950 // Stack bang to make sure there's enough room for these interpreter frames.
duke@435 2951 if (UseStackBanging) {
duke@435 2952 __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
duke@435 2953 __ bang_stack_size(rbx, rcx);
duke@435 2954 }
duke@435 2955
duke@435 2956 // Load array of frame pcs into ECX
never@739 2957 __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
never@739 2958
never@739 2959 __ pop(rsi); // trash the old pc
duke@435 2960
duke@435 2961 // Load array of frame sizes into ESI
never@739 2962 __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
duke@435 2963
duke@435 2964 Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
duke@435 2965
duke@435 2966 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
duke@435 2967 __ movl(counter, rbx);
duke@435 2968
duke@435 2969 // Pick up the initial fp we should save
bdelsart@3130 2970 __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
duke@435 2971
duke@435 2972 // Now adjust the caller's stack to make up for the extra locals
duke@435 2973 // but record the original sp so that we can save it in the skeletal interpreter
duke@435 2974 // frame and the stack walking of interpreter_sender will get the unextended sp
duke@435 2975 // value and not the "real" sp value.
duke@435 2976
duke@435 2977 Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
never@739 2978 __ movptr(sp_temp, rsp);
never@739 2979 __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
never@739 2980 __ subptr(rsp, rbx);
duke@435 2981
duke@435 2982 // Push interpreter frames in a loop
duke@435 2983 Label loop;
duke@435 2984 __ bind(loop);
never@739 2985 __ movptr(rbx, Address(rsi, 0)); // Load frame size
duke@435 2986 #ifdef CC_INTERP
never@739 2987 __ subptr(rbx, 4*wordSize); // we'll push pc and ebp by hand and
duke@435 2988 #ifdef ASSERT
never@739 2989 __ push(0xDEADDEAD); // Make a recognizable pattern
never@739 2990 __ push(0xDEADDEAD);
duke@435 2991 #else /* ASSERT */
never@739 2992 __ subptr(rsp, 2*wordSize); // skip the "static long no_param"
duke@435 2993 #endif /* ASSERT */
duke@435 2994 #else /* CC_INTERP */
never@739 2995 __ subptr(rbx, 2*wordSize); // we'll push pc and rbp, by hand
duke@435 2996 #endif /* CC_INTERP */
never@739 2997 __ pushptr(Address(rcx, 0)); // save return address
duke@435 2998 __ enter(); // save old & set new rbp,
never@739 2999 __ subptr(rsp, rbx); // Prolog!
never@739 3000 __ movptr(rbx, sp_temp); // sender's sp
duke@435 3001 #ifdef CC_INTERP
never@739 3002 __ movptr(Address(rbp,
duke@435 3003 -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
duke@435 3004 rbx); // Make it walkable
duke@435 3005 #else /* CC_INTERP */
duke@435 3006 // This value is corrected by layout_activation_impl
xlu@947 3007 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
never@739 3008 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
duke@435 3009 #endif /* CC_INTERP */
never@739 3010 __ movptr(sp_temp, rsp); // pass to next frame
never@739 3011 __ addptr(rsi, wordSize); // Bump array pointer (sizes)
never@739 3012 __ addptr(rcx, wordSize); // Bump array pointer (pcs)
never@739 3013 __ decrementl(counter); // decrement counter
duke@435 3014 __ jcc(Assembler::notZero, loop);
never@739 3015 __ pushptr(Address(rcx, 0)); // save final return address
duke@435 3016
duke@435 3017 // Re-push self-frame
duke@435 3018 __ enter(); // save old & set new rbp,
duke@435 3019
duke@435 3020 // Return address and rbp, are in place
duke@435 3021 // We'll push additional args later. Just allocate a full sized
duke@435 3022 // register save area
never@739 3023 __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
duke@435 3024
duke@435 3025 // Restore frame locals after moving the frame
never@739 3026 __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
never@739 3027 __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
duke@435 3028 __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize)); // Pop float stack and store in local
duke@435 3029 if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
duke@435 3030 if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
duke@435 3031
duke@435 3032 // Set up the args to unpack_frame
duke@435 3033
duke@435 3034 __ pushl(unpack_kind); // get the unpack_kind value
duke@435 3035 __ get_thread(rcx);
never@739 3036 __ push(rcx);
duke@435 3037
duke@435 3038 // set last_Java_sp, last_Java_fp
duke@435 3039 __ set_last_Java_frame(rcx, noreg, rbp, NULL);
duke@435 3040
duke@435 3041 // Call C code. Need thread but NOT official VM entry
duke@435 3042 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 3043 // restore return values to their stack-slots with the new SP.
duke@435 3044 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
duke@435 3045 // Set an oopmap for the call site
duke@435 3046 oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
duke@435 3047
duke@435 3048 // rax, contains the return result type
never@739 3049 __ push(rax);
duke@435 3050
duke@435 3051 __ get_thread(rcx);
duke@435 3052 __ reset_last_Java_frame(rcx, false, false);
duke@435 3053
duke@435 3054 // Collect return values
never@739 3055 __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
never@739 3056 __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
duke@435 3057
duke@435 3058 // Clear floating point stack before returning to interpreter
duke@435 3059 __ empty_FPU_stack();
duke@435 3060
duke@435 3061 // Check if we should push the float or double return value.
duke@435 3062 Label results_done, yes_double_value;
duke@435 3063 __ cmpl(Address(rsp, 0), T_DOUBLE);
duke@435 3064 __ jcc (Assembler::zero, yes_double_value);
duke@435 3065 __ cmpl(Address(rsp, 0), T_FLOAT);
duke@435 3066 __ jcc (Assembler::notZero, results_done);
duke@435 3067
duke@435 3068 // return float value as expected by interpreter
duke@435 3069 if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
duke@435 3070 else __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
duke@435 3071 __ jmp(results_done);
duke@435 3072
duke@435 3073 // return double value as expected by interpreter
duke@435 3074 __ bind(yes_double_value);
duke@435 3075 if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
duke@435 3076 else __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
duke@435 3077
duke@435 3078 __ bind(results_done);
duke@435 3079
duke@435 3080 // Pop self-frame.
duke@435 3081 __ leave(); // Epilog!
duke@435 3082
duke@435 3083 // Jump to interpreter
duke@435 3084 __ ret(0);
duke@435 3085
duke@435 3086 // -------------
duke@435 3087 // make sure all code is generated
duke@435 3088 masm->flush();
duke@435 3089
duke@435 3090 _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
duke@435 3091 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
duke@435 3092 }
duke@435 3093
duke@435 3094
duke@435 3095 #ifdef COMPILER2
duke@435 3096 //------------------------------generate_uncommon_trap_blob--------------------
duke@435 3097 void SharedRuntime::generate_uncommon_trap_blob() {
duke@435 3098 // allocate space for the code
duke@435 3099 ResourceMark rm;
duke@435 3100 // setup code generation tools
duke@435 3101 CodeBuffer buffer("uncommon_trap_blob", 512, 512);
duke@435 3102 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3103
duke@435 3104 enum frame_layout {
duke@435 3105 arg0_off, // thread sp + 0 // Arg location for
duke@435 3106 arg1_off, // unloaded_class_index sp + 1 // calling C
duke@435 3107 // The frame sender code expects that rbp will be in the "natural" place and
duke@435 3108 // will override any oopMap setting for it. We must therefore force the layout
duke@435 3109 // so that it agrees with the frame sender code.
duke@435 3110 rbp_off, // callee saved register sp + 2
duke@435 3111 return_off, // slot for return address sp + 3
duke@435 3112 framesize
duke@435 3113 };
duke@435 3114
duke@435 3115 address start = __ pc();
duke@435 3116 // Push self-frame.
never@739 3117 __ subptr(rsp, return_off*wordSize); // Epilog!
duke@435 3118
duke@435 3119 // rbp, is an implicitly saved callee saved register (i.e. the calling
duke@435 3120 // convention will save restore it in prolog/epilog) Other than that
duke@435 3121 // there are no callee save registers no that adapter frames are gone.
never@739 3122 __ movptr(Address(rsp, rbp_off*wordSize), rbp);
duke@435 3123
duke@435 3124 // Clear the floating point exception stack
duke@435 3125 __ empty_FPU_stack();
duke@435 3126
duke@435 3127 // set last_Java_sp
duke@435 3128 __ get_thread(rdx);
duke@435 3129 __ set_last_Java_frame(rdx, noreg, noreg, NULL);
duke@435 3130
duke@435 3131 // Call C code. Need thread but NOT official VM entry
duke@435 3132 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 3133 // capture callee-saved registers as well as return values.
never@739 3134 __ movptr(Address(rsp, arg0_off*wordSize), rdx);
duke@435 3135 // argument already in ECX
duke@435 3136 __ movl(Address(rsp, arg1_off*wordSize),rcx);
duke@435 3137 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
duke@435 3138
duke@435 3139 // Set an oopmap for the call site
duke@435 3140 OopMapSet *oop_maps = new OopMapSet();
duke@435 3141 OopMap* map = new OopMap( framesize, 0 );
duke@435 3142 // No oopMap for rbp, it is known implicitly
duke@435 3143
duke@435 3144 oop_maps->add_gc_map( __ pc()-start, map);
duke@435 3145
duke@435 3146 __ get_thread(rcx);
duke@435 3147
duke@435 3148 __ reset_last_Java_frame(rcx, false, false);
duke@435 3149
duke@435 3150 // Load UnrollBlock into EDI
never@739 3151 __ movptr(rdi, rax);
duke@435 3152
duke@435 3153 // Pop all the frames we must move/replace.
duke@435 3154 //
duke@435 3155 // Frame picture (youngest to oldest)
duke@435 3156 // 1: self-frame (no frame link)
duke@435 3157 // 2: deopting frame (no frame link)
duke@435 3158 // 3: caller of deopting frame (could be compiled/interpreted).
duke@435 3159
duke@435 3160 // Pop self-frame. We have no frame, and must rely only on EAX and ESP.
never@739 3161 __ addptr(rsp,(framesize-1)*wordSize); // Epilog!
duke@435 3162
duke@435 3163 // Pop deoptimized frame
never@739 3164 __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
never@739 3165 __ addptr(rsp, rcx);
duke@435 3166
duke@435 3167 // sp should be pointing at the return address to the caller (3)
duke@435 3168
duke@435 3169 // Stack bang to make sure there's enough room for these interpreter frames.
duke@435 3170 if (UseStackBanging) {
duke@435 3171 __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
duke@435 3172 __ bang_stack_size(rbx, rcx);
duke@435 3173 }
duke@435 3174
duke@435 3175
duke@435 3176 // Load array of frame pcs into ECX
duke@435 3177 __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
duke@435 3178
never@739 3179 __ pop(rsi); // trash the pc
duke@435 3180
duke@435 3181 // Load array of frame sizes into ESI
never@739 3182 __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
duke@435 3183
duke@435 3184 Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
duke@435 3185
duke@435 3186 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
duke@435 3187 __ movl(counter, rbx);
duke@435 3188
duke@435 3189 // Pick up the initial fp we should save
bdelsart@3130 3190 __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
duke@435 3191
duke@435 3192 // Now adjust the caller's stack to make up for the extra locals
duke@435 3193 // but record the original sp so that we can save it in the skeletal interpreter
duke@435 3194 // frame and the stack walking of interpreter_sender will get the unextended sp
duke@435 3195 // value and not the "real" sp value.
duke@435 3196
duke@435 3197 Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
never@739 3198 __ movptr(sp_temp, rsp);
never@739 3199 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
never@739 3200 __ subptr(rsp, rbx);
duke@435 3201
duke@435 3202 // Push interpreter frames in a loop
duke@435 3203 Label loop;
duke@435 3204 __ bind(loop);
never@739 3205 __ movptr(rbx, Address(rsi, 0)); // Load frame size
duke@435 3206 #ifdef CC_INTERP
never@739 3207 __ subptr(rbx, 4*wordSize); // we'll push pc and ebp by hand and
duke@435 3208 #ifdef ASSERT
never@739 3209 __ push(0xDEADDEAD); // Make a recognizable pattern
never@739 3210 __ push(0xDEADDEAD); // (parm to RecursiveInterpreter...)
duke@435 3211 #else /* ASSERT */
never@739 3212 __ subptr(rsp, 2*wordSize); // skip the "static long no_param"
duke@435 3213 #endif /* ASSERT */
duke@435 3214 #else /* CC_INTERP */
never@739 3215 __ subptr(rbx, 2*wordSize); // we'll push pc and rbp, by hand
duke@435 3216 #endif /* CC_INTERP */
never@739 3217 __ pushptr(Address(rcx, 0)); // save return address
duke@435 3218 __ enter(); // save old & set new rbp,
never@739 3219 __ subptr(rsp, rbx); // Prolog!
never@739 3220 __ movptr(rbx, sp_temp); // sender's sp
duke@435 3221 #ifdef CC_INTERP
never@739 3222 __ movptr(Address(rbp,
duke@435 3223 -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
duke@435 3224 rbx); // Make it walkable
duke@435 3225 #else /* CC_INTERP */
duke@435 3226 // This value is corrected by layout_activation_impl
xlu@947 3227 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
never@739 3228 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
duke@435 3229 #endif /* CC_INTERP */
never@739 3230 __ movptr(sp_temp, rsp); // pass to next frame
never@739 3231 __ addptr(rsi, wordSize); // Bump array pointer (sizes)
never@739 3232 __ addptr(rcx, wordSize); // Bump array pointer (pcs)
never@739 3233 __ decrementl(counter); // decrement counter
duke@435 3234 __ jcc(Assembler::notZero, loop);
never@739 3235 __ pushptr(Address(rcx, 0)); // save final return address
duke@435 3236
duke@435 3237 // Re-push self-frame
duke@435 3238 __ enter(); // save old & set new rbp,
never@739 3239 __ subptr(rsp, (framesize-2) * wordSize); // Prolog!
duke@435 3240
duke@435 3241
duke@435 3242 // set last_Java_sp, last_Java_fp
duke@435 3243 __ get_thread(rdi);
duke@435 3244 __ set_last_Java_frame(rdi, noreg, rbp, NULL);
duke@435 3245
duke@435 3246 // Call C code. Need thread but NOT official VM entry
duke@435 3247 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 3248 // restore return values to their stack-slots with the new SP.
never@739 3249 __ movptr(Address(rsp,arg0_off*wordSize),rdi);
duke@435 3250 __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
duke@435 3251 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
duke@435 3252 // Set an oopmap for the call site
duke@435 3253 oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
duke@435 3254
duke@435 3255 __ get_thread(rdi);
duke@435 3256 __ reset_last_Java_frame(rdi, true, false);
duke@435 3257
duke@435 3258 // Pop self-frame.
duke@435 3259 __ leave(); // Epilog!
duke@435 3260
duke@435 3261 // Jump to interpreter
duke@435 3262 __ ret(0);
duke@435 3263
duke@435 3264 // -------------
duke@435 3265 // make sure all code is generated
duke@435 3266 masm->flush();
duke@435 3267
duke@435 3268 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
duke@435 3269 }
duke@435 3270 #endif // COMPILER2
duke@435 3271
duke@435 3272 //------------------------------generate_handler_blob------
duke@435 3273 //
duke@435 3274 // Generate a special Compile2Runtime blob that saves all registers,
duke@435 3275 // setup oopmap, and calls safepoint code to stop the compiled code for
duke@435 3276 // a safepoint.
duke@435 3277 //
never@2950 3278 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, bool cause_return) {
duke@435 3279
duke@435 3280 // Account for thread arg in our frame
duke@435 3281 const int additional_words = 1;
duke@435 3282 int frame_size_in_words;
duke@435 3283
duke@435 3284 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
duke@435 3285
duke@435 3286 ResourceMark rm;
duke@435 3287 OopMapSet *oop_maps = new OopMapSet();
duke@435 3288 OopMap* map;
duke@435 3289
duke@435 3290 // allocate space for the code
duke@435 3291 // setup code generation tools
duke@435 3292 CodeBuffer buffer("handler_blob", 1024, 512);
duke@435 3293 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3294
duke@435 3295 const Register java_thread = rdi; // callee-saved for VC++
duke@435 3296 address start = __ pc();
duke@435 3297 address call_pc = NULL;
duke@435 3298
duke@435 3299 // If cause_return is true we are at a poll_return and there is
duke@435 3300 // the return address on the stack to the caller on the nmethod
duke@435 3301 // that is safepoint. We can leave this return on the stack and
duke@435 3302 // effectively complete the return and safepoint in the caller.
duke@435 3303 // Otherwise we push space for a return address that the safepoint
duke@435 3304 // handler will install later to make the stack walking sensible.
duke@435 3305 if( !cause_return )
never@739 3306 __ push(rbx); // Make room for return address (or push it again)
duke@435 3307
duke@435 3308 map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
duke@435 3309
duke@435 3310 // The following is basically a call_VM. However, we need the precise
duke@435 3311 // address of the call in order to generate an oopmap. Hence, we do all the
duke@435 3312 // work ourselves.
duke@435 3313
duke@435 3314 // Push thread argument and setup last_Java_sp
duke@435 3315 __ get_thread(java_thread);
never@739 3316 __ push(java_thread);
duke@435 3317 __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
duke@435 3318
duke@435 3319 // if this was not a poll_return then we need to correct the return address now.
duke@435 3320 if( !cause_return ) {
never@739 3321 __ movptr(rax, Address(java_thread, JavaThread::saved_exception_pc_offset()));
never@739 3322 __ movptr(Address(rbp, wordSize), rax);
duke@435 3323 }
duke@435 3324
duke@435 3325 // do the call
duke@435 3326 __ call(RuntimeAddress(call_ptr));
duke@435 3327
duke@435 3328 // Set an oopmap for the call site. This oopmap will map all
duke@435 3329 // oop-registers and debug-info registers as callee-saved. This
duke@435 3330 // will allow deoptimization at this safepoint to find all possible
duke@435 3331 // debug-info recordings, as well as let GC find all oops.
duke@435 3332
duke@435 3333 oop_maps->add_gc_map( __ pc() - start, map);
duke@435 3334
duke@435 3335 // Discard arg
never@739 3336 __ pop(rcx);
duke@435 3337
duke@435 3338 Label noException;
duke@435 3339
duke@435 3340 // Clear last_Java_sp again
duke@435 3341 __ get_thread(java_thread);
duke@435 3342 __ reset_last_Java_frame(java_thread, false, false);
duke@435 3343
never@739 3344 __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 3345 __ jcc(Assembler::equal, noException);
duke@435 3346
duke@435 3347 // Exception pending
duke@435 3348
duke@435 3349 RegisterSaver::restore_live_registers(masm);
duke@435 3350
duke@435 3351 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 3352
duke@435 3353 __ bind(noException);
duke@435 3354
duke@435 3355 // Normal exit, register restoring and exit
duke@435 3356 RegisterSaver::restore_live_registers(masm);
duke@435 3357
duke@435 3358 __ ret(0);
duke@435 3359
duke@435 3360 // make sure all code is generated
duke@435 3361 masm->flush();
duke@435 3362
duke@435 3363 // Fill-out other meta info
duke@435 3364 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
duke@435 3365 }
duke@435 3366
duke@435 3367 //
duke@435 3368 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
duke@435 3369 //
duke@435 3370 // Generate a stub that calls into vm to find out the proper destination
duke@435 3371 // of a java call. All the argument registers are live at this point
duke@435 3372 // but since this is generic code we don't know what they are and the caller
duke@435 3373 // must do any gc of the args.
duke@435 3374 //
never@2950 3375 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
duke@435 3376 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
duke@435 3377
duke@435 3378 // allocate space for the code
duke@435 3379 ResourceMark rm;
duke@435 3380
duke@435 3381 CodeBuffer buffer(name, 1000, 512);
duke@435 3382 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3383
duke@435 3384 int frame_size_words;
duke@435 3385 enum frame_layout {
duke@435 3386 thread_off,
duke@435 3387 extra_words };
duke@435 3388
duke@435 3389 OopMapSet *oop_maps = new OopMapSet();
duke@435 3390 OopMap* map = NULL;
duke@435 3391
duke@435 3392 int start = __ offset();
duke@435 3393
duke@435 3394 map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
duke@435 3395
duke@435 3396 int frame_complete = __ offset();
duke@435 3397
duke@435 3398 const Register thread = rdi;
duke@435 3399 __ get_thread(rdi);
duke@435 3400
never@739 3401 __ push(thread);
duke@435 3402 __ set_last_Java_frame(thread, noreg, rbp, NULL);
duke@435 3403
duke@435 3404 __ call(RuntimeAddress(destination));
duke@435 3405
duke@435 3406
duke@435 3407 // Set an oopmap for the call site.
duke@435 3408 // We need this not only for callee-saved registers, but also for volatile
duke@435 3409 // registers that the compiler might be keeping live across a safepoint.
duke@435 3410
duke@435 3411 oop_maps->add_gc_map( __ offset() - start, map);
duke@435 3412
duke@435 3413 // rax, contains the address we are going to jump to assuming no exception got installed
duke@435 3414
never@739 3415 __ addptr(rsp, wordSize);
duke@435 3416
duke@435 3417 // clear last_Java_sp
duke@435 3418 __ reset_last_Java_frame(thread, true, false);
duke@435 3419 // check for pending exceptions
duke@435 3420 Label pending;
never@739 3421 __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 3422 __ jcc(Assembler::notEqual, pending);
duke@435 3423
coleenp@4037 3424 // get the returned Method*
coleenp@4037 3425 __ get_vm_result_2(rbx, thread);
never@739 3426 __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
never@739 3427
never@739 3428 __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
duke@435 3429
duke@435 3430 RegisterSaver::restore_live_registers(masm);
duke@435 3431
duke@435 3432 // We are back the the original state on entry and ready to go.
duke@435 3433
duke@435 3434 __ jmp(rax);
duke@435 3435
duke@435 3436 // Pending exception after the safepoint
duke@435 3437
duke@435 3438 __ bind(pending);
duke@435 3439
duke@435 3440 RegisterSaver::restore_live_registers(masm);
duke@435 3441
duke@435 3442 // exception pending => remove activation and forward to exception handler
duke@435 3443
duke@435 3444 __ get_thread(thread);
xlu@947 3445 __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
never@739 3446 __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
duke@435 3447 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 3448
duke@435 3449 // -------------
duke@435 3450 // make sure all code is generated
duke@435 3451 masm->flush();
duke@435 3452
duke@435 3453 // return the blob
duke@435 3454 // frame_size_words or bytes??
duke@435 3455 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
duke@435 3456 }

mercurial