src/cpu/x86/vm/sharedRuntime_x86_32.cpp

Mon, 28 Mar 2011 03:58:07 -0700

author
twisti
date
Mon, 28 Mar 2011 03:58:07 -0700
changeset 2687
3d58a4983660
parent 2552
638119ce7cfd
child 2895
167b70ff3abc
permissions
-rw-r--r--

7022998: JSR 292 recursive method handle calls inline themselves infinitely
Reviewed-by: never, kvn

duke@435 1 /*
twisti@2552 2 * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "asm/assembler.hpp"
stefank@2314 27 #include "assembler_x86.inline.hpp"
stefank@2314 28 #include "code/debugInfoRec.hpp"
stefank@2314 29 #include "code/icBuffer.hpp"
stefank@2314 30 #include "code/vtableStubs.hpp"
stefank@2314 31 #include "interpreter/interpreter.hpp"
stefank@2314 32 #include "oops/compiledICHolderOop.hpp"
stefank@2314 33 #include "prims/jvmtiRedefineClassesTrace.hpp"
stefank@2314 34 #include "runtime/sharedRuntime.hpp"
stefank@2314 35 #include "runtime/vframeArray.hpp"
stefank@2314 36 #include "vmreg_x86.inline.hpp"
stefank@2314 37 #ifdef COMPILER1
stefank@2314 38 #include "c1/c1_Runtime1.hpp"
stefank@2314 39 #endif
stefank@2314 40 #ifdef COMPILER2
stefank@2314 41 #include "opto/runtime.hpp"
stefank@2314 42 #endif
duke@435 43
duke@435 44 #define __ masm->
duke@435 45 #ifdef COMPILER2
duke@435 46 UncommonTrapBlob *SharedRuntime::_uncommon_trap_blob;
duke@435 47 #endif // COMPILER2
duke@435 48
duke@435 49 DeoptimizationBlob *SharedRuntime::_deopt_blob;
duke@435 50 SafepointBlob *SharedRuntime::_polling_page_safepoint_handler_blob;
duke@435 51 SafepointBlob *SharedRuntime::_polling_page_return_handler_blob;
duke@435 52 RuntimeStub* SharedRuntime::_wrong_method_blob;
duke@435 53 RuntimeStub* SharedRuntime::_ic_miss_blob;
duke@435 54 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob;
duke@435 55 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob;
duke@435 56 RuntimeStub* SharedRuntime::_resolve_static_call_blob;
duke@435 57
xlu@959 58 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
xlu@959 59
duke@435 60 class RegisterSaver {
duke@435 61 enum { FPU_regs_live = 8 /*for the FPU stack*/+8/*eight more for XMM registers*/ };
duke@435 62 // Capture info about frame layout
duke@435 63 enum layout {
duke@435 64 fpu_state_off = 0,
duke@435 65 fpu_state_end = fpu_state_off+FPUStateSizeInWords-1,
duke@435 66 st0_off, st0H_off,
duke@435 67 st1_off, st1H_off,
duke@435 68 st2_off, st2H_off,
duke@435 69 st3_off, st3H_off,
duke@435 70 st4_off, st4H_off,
duke@435 71 st5_off, st5H_off,
duke@435 72 st6_off, st6H_off,
duke@435 73 st7_off, st7H_off,
duke@435 74
duke@435 75 xmm0_off, xmm0H_off,
duke@435 76 xmm1_off, xmm1H_off,
duke@435 77 xmm2_off, xmm2H_off,
duke@435 78 xmm3_off, xmm3H_off,
duke@435 79 xmm4_off, xmm4H_off,
duke@435 80 xmm5_off, xmm5H_off,
duke@435 81 xmm6_off, xmm6H_off,
duke@435 82 xmm7_off, xmm7H_off,
duke@435 83 flags_off,
duke@435 84 rdi_off,
duke@435 85 rsi_off,
duke@435 86 ignore_off, // extra copy of rbp,
duke@435 87 rsp_off,
duke@435 88 rbx_off,
duke@435 89 rdx_off,
duke@435 90 rcx_off,
duke@435 91 rax_off,
duke@435 92 // The frame sender code expects that rbp will be in the "natural" place and
duke@435 93 // will override any oopMap setting for it. We must therefore force the layout
duke@435 94 // so that it agrees with the frame sender code.
duke@435 95 rbp_off,
duke@435 96 return_off, // slot for return address
duke@435 97 reg_save_size };
duke@435 98
duke@435 99
duke@435 100 public:
duke@435 101
duke@435 102 static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
duke@435 103 int* total_frame_words, bool verify_fpu = true);
duke@435 104 static void restore_live_registers(MacroAssembler* masm);
duke@435 105
duke@435 106 static int rax_offset() { return rax_off; }
duke@435 107 static int rbx_offset() { return rbx_off; }
duke@435 108
duke@435 109 // Offsets into the register save area
duke@435 110 // Used by deoptimization when it is managing result register
duke@435 111 // values on its own
duke@435 112
duke@435 113 static int raxOffset(void) { return rax_off; }
duke@435 114 static int rdxOffset(void) { return rdx_off; }
duke@435 115 static int rbxOffset(void) { return rbx_off; }
duke@435 116 static int xmm0Offset(void) { return xmm0_off; }
duke@435 117 // This really returns a slot in the fp save area, which one is not important
duke@435 118 static int fpResultOffset(void) { return st0_off; }
duke@435 119
duke@435 120 // During deoptimization only the result register need to be restored
duke@435 121 // all the other values have already been extracted.
duke@435 122
duke@435 123 static void restore_result_registers(MacroAssembler* masm);
duke@435 124
duke@435 125 };
duke@435 126
duke@435 127 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
duke@435 128 int* total_frame_words, bool verify_fpu) {
duke@435 129
duke@435 130 int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize;
duke@435 131 int frame_words = frame_size_in_bytes / wordSize;
duke@435 132 *total_frame_words = frame_words;
duke@435 133
duke@435 134 assert(FPUStateSizeInWords == 27, "update stack layout");
duke@435 135
duke@435 136 // save registers, fpu state, and flags
duke@435 137 // We assume caller has already has return address slot on the stack
duke@435 138 // We push epb twice in this sequence because we want the real rbp,
never@739 139 // to be under the return like a normal enter and we want to use pusha
duke@435 140 // We push by hand instead of pusing push
duke@435 141 __ enter();
never@739 142 __ pusha();
never@739 143 __ pushf();
never@739 144 __ subptr(rsp,FPU_regs_live*sizeof(jdouble)); // Push FPU registers space
duke@435 145 __ push_FPU_state(); // Save FPU state & init
duke@435 146
duke@435 147 if (verify_fpu) {
duke@435 148 // Some stubs may have non standard FPU control word settings so
duke@435 149 // only check and reset the value when it required to be the
duke@435 150 // standard value. The safepoint blob in particular can be used
duke@435 151 // in methods which are using the 24 bit control word for
duke@435 152 // optimized float math.
duke@435 153
duke@435 154 #ifdef ASSERT
duke@435 155 // Make sure the control word has the expected value
duke@435 156 Label ok;
duke@435 157 __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
duke@435 158 __ jccb(Assembler::equal, ok);
duke@435 159 __ stop("corrupted control word detected");
duke@435 160 __ bind(ok);
duke@435 161 #endif
duke@435 162
duke@435 163 // Reset the control word to guard against exceptions being unmasked
duke@435 164 // since fstp_d can cause FPU stack underflow exceptions. Write it
duke@435 165 // into the on stack copy and then reload that to make sure that the
duke@435 166 // current and future values are correct.
duke@435 167 __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
duke@435 168 }
duke@435 169
duke@435 170 __ frstor(Address(rsp, 0));
duke@435 171 if (!verify_fpu) {
duke@435 172 // Set the control word so that exceptions are masked for the
duke@435 173 // following code.
duke@435 174 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 175 }
duke@435 176
duke@435 177 // Save the FPU registers in de-opt-able form
duke@435 178
duke@435 179 __ fstp_d(Address(rsp, st0_off*wordSize)); // st(0)
duke@435 180 __ fstp_d(Address(rsp, st1_off*wordSize)); // st(1)
duke@435 181 __ fstp_d(Address(rsp, st2_off*wordSize)); // st(2)
duke@435 182 __ fstp_d(Address(rsp, st3_off*wordSize)); // st(3)
duke@435 183 __ fstp_d(Address(rsp, st4_off*wordSize)); // st(4)
duke@435 184 __ fstp_d(Address(rsp, st5_off*wordSize)); // st(5)
duke@435 185 __ fstp_d(Address(rsp, st6_off*wordSize)); // st(6)
duke@435 186 __ fstp_d(Address(rsp, st7_off*wordSize)); // st(7)
duke@435 187
duke@435 188 if( UseSSE == 1 ) { // Save the XMM state
duke@435 189 __ movflt(Address(rsp,xmm0_off*wordSize),xmm0);
duke@435 190 __ movflt(Address(rsp,xmm1_off*wordSize),xmm1);
duke@435 191 __ movflt(Address(rsp,xmm2_off*wordSize),xmm2);
duke@435 192 __ movflt(Address(rsp,xmm3_off*wordSize),xmm3);
duke@435 193 __ movflt(Address(rsp,xmm4_off*wordSize),xmm4);
duke@435 194 __ movflt(Address(rsp,xmm5_off*wordSize),xmm5);
duke@435 195 __ movflt(Address(rsp,xmm6_off*wordSize),xmm6);
duke@435 196 __ movflt(Address(rsp,xmm7_off*wordSize),xmm7);
duke@435 197 } else if( UseSSE >= 2 ) {
duke@435 198 __ movdbl(Address(rsp,xmm0_off*wordSize),xmm0);
duke@435 199 __ movdbl(Address(rsp,xmm1_off*wordSize),xmm1);
duke@435 200 __ movdbl(Address(rsp,xmm2_off*wordSize),xmm2);
duke@435 201 __ movdbl(Address(rsp,xmm3_off*wordSize),xmm3);
duke@435 202 __ movdbl(Address(rsp,xmm4_off*wordSize),xmm4);
duke@435 203 __ movdbl(Address(rsp,xmm5_off*wordSize),xmm5);
duke@435 204 __ movdbl(Address(rsp,xmm6_off*wordSize),xmm6);
duke@435 205 __ movdbl(Address(rsp,xmm7_off*wordSize),xmm7);
duke@435 206 }
duke@435 207
duke@435 208 // Set an oopmap for the call site. This oopmap will map all
duke@435 209 // oop-registers and debug-info registers as callee-saved. This
duke@435 210 // will allow deoptimization at this safepoint to find all possible
duke@435 211 // debug-info recordings, as well as let GC find all oops.
duke@435 212
duke@435 213 OopMapSet *oop_maps = new OopMapSet();
duke@435 214 OopMap* map = new OopMap( frame_words, 0 );
duke@435 215
duke@435 216 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
duke@435 217
duke@435 218 map->set_callee_saved(STACK_OFFSET( rax_off), rax->as_VMReg());
duke@435 219 map->set_callee_saved(STACK_OFFSET( rcx_off), rcx->as_VMReg());
duke@435 220 map->set_callee_saved(STACK_OFFSET( rdx_off), rdx->as_VMReg());
duke@435 221 map->set_callee_saved(STACK_OFFSET( rbx_off), rbx->as_VMReg());
duke@435 222 // rbp, location is known implicitly, no oopMap
duke@435 223 map->set_callee_saved(STACK_OFFSET( rsi_off), rsi->as_VMReg());
duke@435 224 map->set_callee_saved(STACK_OFFSET( rdi_off), rdi->as_VMReg());
duke@435 225 map->set_callee_saved(STACK_OFFSET(st0_off), as_FloatRegister(0)->as_VMReg());
duke@435 226 map->set_callee_saved(STACK_OFFSET(st1_off), as_FloatRegister(1)->as_VMReg());
duke@435 227 map->set_callee_saved(STACK_OFFSET(st2_off), as_FloatRegister(2)->as_VMReg());
duke@435 228 map->set_callee_saved(STACK_OFFSET(st3_off), as_FloatRegister(3)->as_VMReg());
duke@435 229 map->set_callee_saved(STACK_OFFSET(st4_off), as_FloatRegister(4)->as_VMReg());
duke@435 230 map->set_callee_saved(STACK_OFFSET(st5_off), as_FloatRegister(5)->as_VMReg());
duke@435 231 map->set_callee_saved(STACK_OFFSET(st6_off), as_FloatRegister(6)->as_VMReg());
duke@435 232 map->set_callee_saved(STACK_OFFSET(st7_off), as_FloatRegister(7)->as_VMReg());
duke@435 233 map->set_callee_saved(STACK_OFFSET(xmm0_off), xmm0->as_VMReg());
duke@435 234 map->set_callee_saved(STACK_OFFSET(xmm1_off), xmm1->as_VMReg());
duke@435 235 map->set_callee_saved(STACK_OFFSET(xmm2_off), xmm2->as_VMReg());
duke@435 236 map->set_callee_saved(STACK_OFFSET(xmm3_off), xmm3->as_VMReg());
duke@435 237 map->set_callee_saved(STACK_OFFSET(xmm4_off), xmm4->as_VMReg());
duke@435 238 map->set_callee_saved(STACK_OFFSET(xmm5_off), xmm5->as_VMReg());
duke@435 239 map->set_callee_saved(STACK_OFFSET(xmm6_off), xmm6->as_VMReg());
duke@435 240 map->set_callee_saved(STACK_OFFSET(xmm7_off), xmm7->as_VMReg());
duke@435 241 // %%% This is really a waste but we'll keep things as they were for now
duke@435 242 if (true) {
duke@435 243 #define NEXTREG(x) (x)->as_VMReg()->next()
duke@435 244 map->set_callee_saved(STACK_OFFSET(st0H_off), NEXTREG(as_FloatRegister(0)));
duke@435 245 map->set_callee_saved(STACK_OFFSET(st1H_off), NEXTREG(as_FloatRegister(1)));
duke@435 246 map->set_callee_saved(STACK_OFFSET(st2H_off), NEXTREG(as_FloatRegister(2)));
duke@435 247 map->set_callee_saved(STACK_OFFSET(st3H_off), NEXTREG(as_FloatRegister(3)));
duke@435 248 map->set_callee_saved(STACK_OFFSET(st4H_off), NEXTREG(as_FloatRegister(4)));
duke@435 249 map->set_callee_saved(STACK_OFFSET(st5H_off), NEXTREG(as_FloatRegister(5)));
duke@435 250 map->set_callee_saved(STACK_OFFSET(st6H_off), NEXTREG(as_FloatRegister(6)));
duke@435 251 map->set_callee_saved(STACK_OFFSET(st7H_off), NEXTREG(as_FloatRegister(7)));
duke@435 252 map->set_callee_saved(STACK_OFFSET(xmm0H_off), NEXTREG(xmm0));
duke@435 253 map->set_callee_saved(STACK_OFFSET(xmm1H_off), NEXTREG(xmm1));
duke@435 254 map->set_callee_saved(STACK_OFFSET(xmm2H_off), NEXTREG(xmm2));
duke@435 255 map->set_callee_saved(STACK_OFFSET(xmm3H_off), NEXTREG(xmm3));
duke@435 256 map->set_callee_saved(STACK_OFFSET(xmm4H_off), NEXTREG(xmm4));
duke@435 257 map->set_callee_saved(STACK_OFFSET(xmm5H_off), NEXTREG(xmm5));
duke@435 258 map->set_callee_saved(STACK_OFFSET(xmm6H_off), NEXTREG(xmm6));
duke@435 259 map->set_callee_saved(STACK_OFFSET(xmm7H_off), NEXTREG(xmm7));
duke@435 260 #undef NEXTREG
duke@435 261 #undef STACK_OFFSET
duke@435 262 }
duke@435 263
duke@435 264 return map;
duke@435 265
duke@435 266 }
duke@435 267
duke@435 268 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
duke@435 269
duke@435 270 // Recover XMM & FPU state
duke@435 271 if( UseSSE == 1 ) {
duke@435 272 __ movflt(xmm0,Address(rsp,xmm0_off*wordSize));
duke@435 273 __ movflt(xmm1,Address(rsp,xmm1_off*wordSize));
duke@435 274 __ movflt(xmm2,Address(rsp,xmm2_off*wordSize));
duke@435 275 __ movflt(xmm3,Address(rsp,xmm3_off*wordSize));
duke@435 276 __ movflt(xmm4,Address(rsp,xmm4_off*wordSize));
duke@435 277 __ movflt(xmm5,Address(rsp,xmm5_off*wordSize));
duke@435 278 __ movflt(xmm6,Address(rsp,xmm6_off*wordSize));
duke@435 279 __ movflt(xmm7,Address(rsp,xmm7_off*wordSize));
duke@435 280 } else if( UseSSE >= 2 ) {
duke@435 281 __ movdbl(xmm0,Address(rsp,xmm0_off*wordSize));
duke@435 282 __ movdbl(xmm1,Address(rsp,xmm1_off*wordSize));
duke@435 283 __ movdbl(xmm2,Address(rsp,xmm2_off*wordSize));
duke@435 284 __ movdbl(xmm3,Address(rsp,xmm3_off*wordSize));
duke@435 285 __ movdbl(xmm4,Address(rsp,xmm4_off*wordSize));
duke@435 286 __ movdbl(xmm5,Address(rsp,xmm5_off*wordSize));
duke@435 287 __ movdbl(xmm6,Address(rsp,xmm6_off*wordSize));
duke@435 288 __ movdbl(xmm7,Address(rsp,xmm7_off*wordSize));
duke@435 289 }
duke@435 290 __ pop_FPU_state();
never@739 291 __ addptr(rsp, FPU_regs_live*sizeof(jdouble)); // Pop FPU registers
never@739 292
never@739 293 __ popf();
never@739 294 __ popa();
duke@435 295 // Get the rbp, described implicitly by the frame sender code (no oopMap)
never@739 296 __ pop(rbp);
duke@435 297
duke@435 298 }
duke@435 299
duke@435 300 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
duke@435 301
duke@435 302 // Just restore result register. Only used by deoptimization. By
duke@435 303 // now any callee save register that needs to be restore to a c2
duke@435 304 // caller of the deoptee has been extracted into the vframeArray
duke@435 305 // and will be stuffed into the c2i adapter we create for later
duke@435 306 // restoration so only result registers need to be restored here.
duke@435 307 //
duke@435 308
duke@435 309 __ frstor(Address(rsp, 0)); // Restore fpu state
duke@435 310
duke@435 311 // Recover XMM & FPU state
duke@435 312 if( UseSSE == 1 ) {
duke@435 313 __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
duke@435 314 } else if( UseSSE >= 2 ) {
duke@435 315 __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
duke@435 316 }
never@739 317 __ movptr(rax, Address(rsp, rax_off*wordSize));
never@739 318 __ movptr(rdx, Address(rsp, rdx_off*wordSize));
duke@435 319 // Pop all of the register save are off the stack except the return address
never@739 320 __ addptr(rsp, return_off * wordSize);
duke@435 321 }
duke@435 322
duke@435 323 // The java_calling_convention describes stack locations as ideal slots on
duke@435 324 // a frame with no abi restrictions. Since we must observe abi restrictions
duke@435 325 // (like the placement of the register window) the slots must be biased by
duke@435 326 // the following value.
duke@435 327 static int reg2offset_in(VMReg r) {
duke@435 328 // Account for saved rbp, and return address
duke@435 329 // This should really be in_preserve_stack_slots
duke@435 330 return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
duke@435 331 }
duke@435 332
duke@435 333 static int reg2offset_out(VMReg r) {
duke@435 334 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
duke@435 335 }
duke@435 336
duke@435 337 // ---------------------------------------------------------------------------
duke@435 338 // Read the array of BasicTypes from a signature, and compute where the
duke@435 339 // arguments should go. Values in the VMRegPair regs array refer to 4-byte
duke@435 340 // quantities. Values less than SharedInfo::stack0 are registers, those above
duke@435 341 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer
duke@435 342 // as framesizes are fixed.
duke@435 343 // VMRegImpl::stack0 refers to the first slot 0(sp).
duke@435 344 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Register
duke@435 345 // up to RegisterImpl::number_of_registers) are the 32-bit
duke@435 346 // integer registers.
duke@435 347
duke@435 348 // Pass first two oop/int args in registers ECX and EDX.
duke@435 349 // Pass first two float/double args in registers XMM0 and XMM1.
duke@435 350 // Doubles have precedence, so if you pass a mix of floats and doubles
duke@435 351 // the doubles will grab the registers before the floats will.
duke@435 352
duke@435 353 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
duke@435 354 // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit
duke@435 355 // units regardless of build. Of course for i486 there is no 64 bit build
duke@435 356
duke@435 357
duke@435 358 // ---------------------------------------------------------------------------
duke@435 359 // The compiled Java calling convention.
duke@435 360 // Pass first two oop/int args in registers ECX and EDX.
duke@435 361 // Pass first two float/double args in registers XMM0 and XMM1.
duke@435 362 // Doubles have precedence, so if you pass a mix of floats and doubles
duke@435 363 // the doubles will grab the registers before the floats will.
duke@435 364 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
duke@435 365 VMRegPair *regs,
duke@435 366 int total_args_passed,
duke@435 367 int is_outgoing) {
duke@435 368 uint stack = 0; // Starting stack position for args on stack
duke@435 369
duke@435 370
duke@435 371 // Pass first two oop/int args in registers ECX and EDX.
duke@435 372 uint reg_arg0 = 9999;
duke@435 373 uint reg_arg1 = 9999;
duke@435 374
duke@435 375 // Pass first two float/double args in registers XMM0 and XMM1.
duke@435 376 // Doubles have precedence, so if you pass a mix of floats and doubles
duke@435 377 // the doubles will grab the registers before the floats will.
duke@435 378 // CNC - TURNED OFF FOR non-SSE.
duke@435 379 // On Intel we have to round all doubles (and most floats) at
duke@435 380 // call sites by storing to the stack in any case.
duke@435 381 // UseSSE=0 ==> Don't Use ==> 9999+0
duke@435 382 // UseSSE=1 ==> Floats only ==> 9999+1
duke@435 383 // UseSSE>=2 ==> Floats or doubles ==> 9999+2
duke@435 384 enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
duke@435 385 uint fargs = (UseSSE>=2) ? 2 : UseSSE;
duke@435 386 uint freg_arg0 = 9999+fargs;
duke@435 387 uint freg_arg1 = 9999+fargs;
duke@435 388
duke@435 389 // Pass doubles & longs aligned on the stack. First count stack slots for doubles
duke@435 390 int i;
duke@435 391 for( i = 0; i < total_args_passed; i++) {
duke@435 392 if( sig_bt[i] == T_DOUBLE ) {
duke@435 393 // first 2 doubles go in registers
duke@435 394 if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
duke@435 395 else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
duke@435 396 else // Else double is passed low on the stack to be aligned.
duke@435 397 stack += 2;
duke@435 398 } else if( sig_bt[i] == T_LONG ) {
duke@435 399 stack += 2;
duke@435 400 }
duke@435 401 }
duke@435 402 int dstack = 0; // Separate counter for placing doubles
duke@435 403
duke@435 404 // Now pick where all else goes.
duke@435 405 for( i = 0; i < total_args_passed; i++) {
duke@435 406 // From the type and the argument number (count) compute the location
duke@435 407 switch( sig_bt[i] ) {
duke@435 408 case T_SHORT:
duke@435 409 case T_CHAR:
duke@435 410 case T_BYTE:
duke@435 411 case T_BOOLEAN:
duke@435 412 case T_INT:
duke@435 413 case T_ARRAY:
duke@435 414 case T_OBJECT:
duke@435 415 case T_ADDRESS:
duke@435 416 if( reg_arg0 == 9999 ) {
duke@435 417 reg_arg0 = i;
duke@435 418 regs[i].set1(rcx->as_VMReg());
duke@435 419 } else if( reg_arg1 == 9999 ) {
duke@435 420 reg_arg1 = i;
duke@435 421 regs[i].set1(rdx->as_VMReg());
duke@435 422 } else {
duke@435 423 regs[i].set1(VMRegImpl::stack2reg(stack++));
duke@435 424 }
duke@435 425 break;
duke@435 426 case T_FLOAT:
duke@435 427 if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
duke@435 428 freg_arg0 = i;
duke@435 429 regs[i].set1(xmm0->as_VMReg());
duke@435 430 } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
duke@435 431 freg_arg1 = i;
duke@435 432 regs[i].set1(xmm1->as_VMReg());
duke@435 433 } else {
duke@435 434 regs[i].set1(VMRegImpl::stack2reg(stack++));
duke@435 435 }
duke@435 436 break;
duke@435 437 case T_LONG:
duke@435 438 assert(sig_bt[i+1] == T_VOID, "missing Half" );
duke@435 439 regs[i].set2(VMRegImpl::stack2reg(dstack));
duke@435 440 dstack += 2;
duke@435 441 break;
duke@435 442 case T_DOUBLE:
duke@435 443 assert(sig_bt[i+1] == T_VOID, "missing Half" );
duke@435 444 if( freg_arg0 == (uint)i ) {
duke@435 445 regs[i].set2(xmm0->as_VMReg());
duke@435 446 } else if( freg_arg1 == (uint)i ) {
duke@435 447 regs[i].set2(xmm1->as_VMReg());
duke@435 448 } else {
duke@435 449 regs[i].set2(VMRegImpl::stack2reg(dstack));
duke@435 450 dstack += 2;
duke@435 451 }
duke@435 452 break;
duke@435 453 case T_VOID: regs[i].set_bad(); break;
duke@435 454 break;
duke@435 455 default:
duke@435 456 ShouldNotReachHere();
duke@435 457 break;
duke@435 458 }
duke@435 459 }
duke@435 460
duke@435 461 // return value can be odd number of VMRegImpl stack slots make multiple of 2
duke@435 462 return round_to(stack, 2);
duke@435 463 }
duke@435 464
duke@435 465 // Patch the callers callsite with entry to compiled code if it exists.
duke@435 466 static void patch_callers_callsite(MacroAssembler *masm) {
duke@435 467 Label L;
duke@435 468 __ verify_oop(rbx);
never@739 469 __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
duke@435 470 __ jcc(Assembler::equal, L);
duke@435 471 // Schedule the branch target address early.
duke@435 472 // Call into the VM to patch the caller, then jump to compiled callee
duke@435 473 // rax, isn't live so capture return address while we easily can
never@739 474 __ movptr(rax, Address(rsp, 0));
never@739 475 __ pusha();
never@739 476 __ pushf();
duke@435 477
duke@435 478 if (UseSSE == 1) {
never@739 479 __ subptr(rsp, 2*wordSize);
duke@435 480 __ movflt(Address(rsp, 0), xmm0);
duke@435 481 __ movflt(Address(rsp, wordSize), xmm1);
duke@435 482 }
duke@435 483 if (UseSSE >= 2) {
never@739 484 __ subptr(rsp, 4*wordSize);
duke@435 485 __ movdbl(Address(rsp, 0), xmm0);
duke@435 486 __ movdbl(Address(rsp, 2*wordSize), xmm1);
duke@435 487 }
duke@435 488 #ifdef COMPILER2
duke@435 489 // C2 may leave the stack dirty if not in SSE2+ mode
duke@435 490 if (UseSSE >= 2) {
duke@435 491 __ verify_FPU(0, "c2i transition should have clean FPU stack");
duke@435 492 } else {
duke@435 493 __ empty_FPU_stack();
duke@435 494 }
duke@435 495 #endif /* COMPILER2 */
duke@435 496
duke@435 497 // VM needs caller's callsite
never@739 498 __ push(rax);
duke@435 499 // VM needs target method
never@739 500 __ push(rbx);
duke@435 501 __ verify_oop(rbx);
duke@435 502 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
never@739 503 __ addptr(rsp, 2*wordSize);
duke@435 504
duke@435 505 if (UseSSE == 1) {
duke@435 506 __ movflt(xmm0, Address(rsp, 0));
duke@435 507 __ movflt(xmm1, Address(rsp, wordSize));
never@739 508 __ addptr(rsp, 2*wordSize);
duke@435 509 }
duke@435 510 if (UseSSE >= 2) {
duke@435 511 __ movdbl(xmm0, Address(rsp, 0));
duke@435 512 __ movdbl(xmm1, Address(rsp, 2*wordSize));
never@739 513 __ addptr(rsp, 4*wordSize);
duke@435 514 }
duke@435 515
never@739 516 __ popf();
never@739 517 __ popa();
duke@435 518 __ bind(L);
duke@435 519 }
duke@435 520
duke@435 521
duke@435 522 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
twisti@1861 523 int next_off = st_off - Interpreter::stackElementSize;
twisti@1861 524 __ movdbl(Address(rsp, next_off), r);
duke@435 525 }
duke@435 526
duke@435 527 static void gen_c2i_adapter(MacroAssembler *masm,
duke@435 528 int total_args_passed,
duke@435 529 int comp_args_on_stack,
duke@435 530 const BasicType *sig_bt,
duke@435 531 const VMRegPair *regs,
duke@435 532 Label& skip_fixup) {
duke@435 533 // Before we get into the guts of the C2I adapter, see if we should be here
duke@435 534 // at all. We've come from compiled code and are attempting to jump to the
duke@435 535 // interpreter, which means the caller made a static call to get here
duke@435 536 // (vcalls always get a compiled target if there is one). Check for a
duke@435 537 // compiled target. If there is one, we need to patch the caller's call.
duke@435 538 patch_callers_callsite(masm);
duke@435 539
duke@435 540 __ bind(skip_fixup);
duke@435 541
duke@435 542 #ifdef COMPILER2
duke@435 543 // C2 may leave the stack dirty if not in SSE2+ mode
duke@435 544 if (UseSSE >= 2) {
duke@435 545 __ verify_FPU(0, "c2i transition should have clean FPU stack");
duke@435 546 } else {
duke@435 547 __ empty_FPU_stack();
duke@435 548 }
duke@435 549 #endif /* COMPILER2 */
duke@435 550
duke@435 551 // Since all args are passed on the stack, total_args_passed * interpreter_
duke@435 552 // stack_element_size is the
duke@435 553 // space we need.
twisti@1861 554 int extraspace = total_args_passed * Interpreter::stackElementSize;
duke@435 555
duke@435 556 // Get return address
never@739 557 __ pop(rax);
duke@435 558
duke@435 559 // set senderSP value
never@739 560 __ movptr(rsi, rsp);
never@739 561
never@739 562 __ subptr(rsp, extraspace);
duke@435 563
duke@435 564 // Now write the args into the outgoing interpreter space
duke@435 565 for (int i = 0; i < total_args_passed; i++) {
duke@435 566 if (sig_bt[i] == T_VOID) {
duke@435 567 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
duke@435 568 continue;
duke@435 569 }
duke@435 570
duke@435 571 // st_off points to lowest address on stack.
twisti@1861 572 int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize;
twisti@1861 573 int next_off = st_off - Interpreter::stackElementSize;
never@739 574
duke@435 575 // Say 4 args:
duke@435 576 // i st_off
duke@435 577 // 0 12 T_LONG
duke@435 578 // 1 8 T_VOID
duke@435 579 // 2 4 T_OBJECT
duke@435 580 // 3 0 T_BOOL
duke@435 581 VMReg r_1 = regs[i].first();
duke@435 582 VMReg r_2 = regs[i].second();
duke@435 583 if (!r_1->is_valid()) {
duke@435 584 assert(!r_2->is_valid(), "");
duke@435 585 continue;
duke@435 586 }
duke@435 587
duke@435 588 if (r_1->is_stack()) {
duke@435 589 // memory to memory use fpu stack top
duke@435 590 int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
duke@435 591
duke@435 592 if (!r_2->is_valid()) {
duke@435 593 __ movl(rdi, Address(rsp, ld_off));
never@739 594 __ movptr(Address(rsp, st_off), rdi);
duke@435 595 } else {
duke@435 596
duke@435 597 // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
duke@435 598 // st_off == MSW, st_off-wordSize == LSW
duke@435 599
never@739 600 __ movptr(rdi, Address(rsp, ld_off));
never@739 601 __ movptr(Address(rsp, next_off), rdi);
never@739 602 #ifndef _LP64
never@739 603 __ movptr(rdi, Address(rsp, ld_off + wordSize));
never@739 604 __ movptr(Address(rsp, st_off), rdi);
never@739 605 #else
never@739 606 #ifdef ASSERT
never@739 607 // Overwrite the unused slot with known junk
never@739 608 __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
never@739 609 __ movptr(Address(rsp, st_off), rax);
never@739 610 #endif /* ASSERT */
never@739 611 #endif // _LP64
duke@435 612 }
duke@435 613 } else if (r_1->is_Register()) {
duke@435 614 Register r = r_1->as_Register();
duke@435 615 if (!r_2->is_valid()) {
duke@435 616 __ movl(Address(rsp, st_off), r);
duke@435 617 } else {
duke@435 618 // long/double in gpr
never@739 619 NOT_LP64(ShouldNotReachHere());
never@739 620 // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
never@739 621 // T_DOUBLE and T_LONG use two slots in the interpreter
never@739 622 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
never@739 623 // long/double in gpr
never@739 624 #ifdef ASSERT
never@739 625 // Overwrite the unused slot with known junk
never@739 626 LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
never@739 627 __ movptr(Address(rsp, st_off), rax);
never@739 628 #endif /* ASSERT */
never@739 629 __ movptr(Address(rsp, next_off), r);
never@739 630 } else {
never@739 631 __ movptr(Address(rsp, st_off), r);
never@739 632 }
duke@435 633 }
duke@435 634 } else {
duke@435 635 assert(r_1->is_XMMRegister(), "");
duke@435 636 if (!r_2->is_valid()) {
duke@435 637 __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
duke@435 638 } else {
duke@435 639 assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
duke@435 640 move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
duke@435 641 }
duke@435 642 }
duke@435 643 }
duke@435 644
duke@435 645 // Schedule the branch target address early.
never@739 646 __ movptr(rcx, Address(rbx, in_bytes(methodOopDesc::interpreter_entry_offset())));
duke@435 647 // And repush original return address
never@739 648 __ push(rax);
duke@435 649 __ jmp(rcx);
duke@435 650 }
duke@435 651
duke@435 652
duke@435 653 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
twisti@1861 654 int next_val_off = ld_off - Interpreter::stackElementSize;
twisti@1861 655 __ movdbl(r, Address(saved_sp, next_val_off));
duke@435 656 }
duke@435 657
duke@435 658 static void gen_i2c_adapter(MacroAssembler *masm,
duke@435 659 int total_args_passed,
duke@435 660 int comp_args_on_stack,
duke@435 661 const BasicType *sig_bt,
duke@435 662 const VMRegPair *regs) {
duke@435 663
duke@435 664 // Note: rsi contains the senderSP on entry. We must preserve it since
duke@435 665 // we may do a i2c -> c2i transition if we lose a race where compiled
duke@435 666 // code goes non-entrant while we get args ready.
duke@435 667
duke@435 668 // Pick up the return address
never@739 669 __ movptr(rax, Address(rsp, 0));
duke@435 670
duke@435 671 // Must preserve original SP for loading incoming arguments because
duke@435 672 // we need to align the outgoing SP for compiled code.
never@739 673 __ movptr(rdi, rsp);
duke@435 674
duke@435 675 // Cut-out for having no stack args. Since up to 2 int/oop args are passed
duke@435 676 // in registers, we will occasionally have no stack args.
duke@435 677 int comp_words_on_stack = 0;
duke@435 678 if (comp_args_on_stack) {
duke@435 679 // Sig words on the stack are greater-than VMRegImpl::stack0. Those in
duke@435 680 // registers are below. By subtracting stack0, we either get a negative
duke@435 681 // number (all values in registers) or the maximum stack slot accessed.
duke@435 682 // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
duke@435 683 // Convert 4-byte stack slots to words.
duke@435 684 comp_words_on_stack = round_to(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
duke@435 685 // Round up to miminum stack alignment, in wordSize
duke@435 686 comp_words_on_stack = round_to(comp_words_on_stack, 2);
never@739 687 __ subptr(rsp, comp_words_on_stack * wordSize);
duke@435 688 }
duke@435 689
duke@435 690 // Align the outgoing SP
never@739 691 __ andptr(rsp, -(StackAlignmentInBytes));
duke@435 692
duke@435 693 // push the return address on the stack (note that pushing, rather
duke@435 694 // than storing it, yields the correct frame alignment for the callee)
never@739 695 __ push(rax);
duke@435 696
duke@435 697 // Put saved SP in another register
duke@435 698 const Register saved_sp = rax;
never@739 699 __ movptr(saved_sp, rdi);
duke@435 700
duke@435 701
duke@435 702 // Will jump to the compiled code just as if compiled code was doing it.
duke@435 703 // Pre-load the register-jump target early, to schedule it better.
never@739 704 __ movptr(rdi, Address(rbx, in_bytes(methodOopDesc::from_compiled_offset())));
duke@435 705
duke@435 706 // Now generate the shuffle code. Pick up all register args and move the
duke@435 707 // rest through the floating point stack top.
duke@435 708 for (int i = 0; i < total_args_passed; i++) {
duke@435 709 if (sig_bt[i] == T_VOID) {
duke@435 710 // Longs and doubles are passed in native word order, but misaligned
duke@435 711 // in the 32-bit build.
duke@435 712 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
duke@435 713 continue;
duke@435 714 }
duke@435 715
duke@435 716 // Pick up 0, 1 or 2 words from SP+offset.
duke@435 717
duke@435 718 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
duke@435 719 "scrambled load targets?");
duke@435 720 // Load in argument order going down.
twisti@1861 721 int ld_off = (total_args_passed - i) * Interpreter::stackElementSize;
duke@435 722 // Point to interpreter value (vs. tag)
twisti@1861 723 int next_off = ld_off - Interpreter::stackElementSize;
duke@435 724 //
duke@435 725 //
duke@435 726 //
duke@435 727 VMReg r_1 = regs[i].first();
duke@435 728 VMReg r_2 = regs[i].second();
duke@435 729 if (!r_1->is_valid()) {
duke@435 730 assert(!r_2->is_valid(), "");
duke@435 731 continue;
duke@435 732 }
duke@435 733 if (r_1->is_stack()) {
duke@435 734 // Convert stack slot to an SP offset (+ wordSize to account for return address )
duke@435 735 int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
duke@435 736
duke@435 737 // We can use rsi as a temp here because compiled code doesn't need rsi as an input
duke@435 738 // and if we end up going thru a c2i because of a miss a reasonable value of rsi
duke@435 739 // we be generated.
duke@435 740 if (!r_2->is_valid()) {
duke@435 741 // __ fld_s(Address(saved_sp, ld_off));
duke@435 742 // __ fstp_s(Address(rsp, st_off));
duke@435 743 __ movl(rsi, Address(saved_sp, ld_off));
never@739 744 __ movptr(Address(rsp, st_off), rsi);
duke@435 745 } else {
duke@435 746 // Interpreter local[n] == MSW, local[n+1] == LSW however locals
duke@435 747 // are accessed as negative so LSW is at LOW address
duke@435 748
duke@435 749 // ld_off is MSW so get LSW
duke@435 750 // st_off is LSW (i.e. reg.first())
duke@435 751 // __ fld_d(Address(saved_sp, next_off));
duke@435 752 // __ fstp_d(Address(rsp, st_off));
never@739 753 //
never@739 754 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
never@739 755 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
never@739 756 // So we must adjust where to pick up the data to match the interpreter.
never@739 757 //
never@739 758 // Interpreter local[n] == MSW, local[n+1] == LSW however locals
never@739 759 // are accessed as negative so LSW is at LOW address
never@739 760
never@739 761 // ld_off is MSW so get LSW
never@739 762 const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
never@739 763 next_off : ld_off;
never@739 764 __ movptr(rsi, Address(saved_sp, offset));
never@739 765 __ movptr(Address(rsp, st_off), rsi);
never@739 766 #ifndef _LP64
never@739 767 __ movptr(rsi, Address(saved_sp, ld_off));
never@739 768 __ movptr(Address(rsp, st_off + wordSize), rsi);
never@739 769 #endif // _LP64
duke@435 770 }
duke@435 771 } else if (r_1->is_Register()) { // Register argument
duke@435 772 Register r = r_1->as_Register();
duke@435 773 assert(r != rax, "must be different");
duke@435 774 if (r_2->is_valid()) {
never@739 775 //
never@739 776 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
never@739 777 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
never@739 778 // So we must adjust where to pick up the data to match the interpreter.
never@739 779
never@739 780 const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
never@739 781 next_off : ld_off;
never@739 782
never@739 783 // this can be a misaligned move
never@739 784 __ movptr(r, Address(saved_sp, offset));
never@739 785 #ifndef _LP64
duke@435 786 assert(r_2->as_Register() != rax, "need another temporary register");
duke@435 787 // Remember r_1 is low address (and LSB on x86)
duke@435 788 // So r_2 gets loaded from high address regardless of the platform
never@739 789 __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
never@739 790 #endif // _LP64
duke@435 791 } else {
duke@435 792 __ movl(r, Address(saved_sp, ld_off));
duke@435 793 }
duke@435 794 } else {
duke@435 795 assert(r_1->is_XMMRegister(), "");
duke@435 796 if (!r_2->is_valid()) {
duke@435 797 __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
duke@435 798 } else {
duke@435 799 move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
duke@435 800 }
duke@435 801 }
duke@435 802 }
duke@435 803
duke@435 804 // 6243940 We might end up in handle_wrong_method if
duke@435 805 // the callee is deoptimized as we race thru here. If that
duke@435 806 // happens we don't want to take a safepoint because the
duke@435 807 // caller frame will look interpreted and arguments are now
duke@435 808 // "compiled" so it is much better to make this transition
duke@435 809 // invisible to the stack walking code. Unfortunately if
duke@435 810 // we try and find the callee by normal means a safepoint
duke@435 811 // is possible. So we stash the desired callee in the thread
duke@435 812 // and the vm will find there should this case occur.
duke@435 813
duke@435 814 __ get_thread(rax);
never@739 815 __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
duke@435 816
duke@435 817 // move methodOop to rax, in case we end up in an c2i adapter.
duke@435 818 // the c2i adapters expect methodOop in rax, (c2) because c2's
duke@435 819 // resolve stubs return the result (the method) in rax,.
duke@435 820 // I'd love to fix this.
never@739 821 __ mov(rax, rbx);
duke@435 822
duke@435 823 __ jmp(rdi);
duke@435 824 }
duke@435 825
duke@435 826 // ---------------------------------------------------------------
duke@435 827 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
duke@435 828 int total_args_passed,
duke@435 829 int comp_args_on_stack,
duke@435 830 const BasicType *sig_bt,
never@1622 831 const VMRegPair *regs,
never@1622 832 AdapterFingerPrint* fingerprint) {
duke@435 833 address i2c_entry = __ pc();
duke@435 834
duke@435 835 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
duke@435 836
duke@435 837 // -------------------------------------------------------------------------
duke@435 838 // Generate a C2I adapter. On entry we know rbx, holds the methodOop during calls
duke@435 839 // to the interpreter. The args start out packed in the compiled layout. They
duke@435 840 // need to be unpacked into the interpreter layout. This will almost always
duke@435 841 // require some stack space. We grow the current (compiled) stack, then repack
duke@435 842 // the args. We finally end in a jump to the generic interpreter entry point.
duke@435 843 // On exit from the interpreter, the interpreter will restore our SP (lest the
duke@435 844 // compiled code, which relys solely on SP and not EBP, get sick).
duke@435 845
duke@435 846 address c2i_unverified_entry = __ pc();
duke@435 847 Label skip_fixup;
duke@435 848
duke@435 849 Register holder = rax;
duke@435 850 Register receiver = rcx;
duke@435 851 Register temp = rbx;
duke@435 852
duke@435 853 {
duke@435 854
duke@435 855 Label missed;
duke@435 856
duke@435 857 __ verify_oop(holder);
never@739 858 __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
duke@435 859 __ verify_oop(temp);
duke@435 860
never@739 861 __ cmpptr(temp, Address(holder, compiledICHolderOopDesc::holder_klass_offset()));
never@739 862 __ movptr(rbx, Address(holder, compiledICHolderOopDesc::holder_method_offset()));
duke@435 863 __ jcc(Assembler::notEqual, missed);
duke@435 864 // Method might have been compiled since the call site was patched to
duke@435 865 // interpreted if that is the case treat it as a miss so we can get
duke@435 866 // the call site corrected.
never@739 867 __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
duke@435 868 __ jcc(Assembler::equal, skip_fixup);
duke@435 869
duke@435 870 __ bind(missed);
duke@435 871 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
duke@435 872 }
duke@435 873
duke@435 874 address c2i_entry = __ pc();
duke@435 875
duke@435 876 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
duke@435 877
duke@435 878 __ flush();
never@1622 879 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
duke@435 880 }
duke@435 881
duke@435 882 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
duke@435 883 VMRegPair *regs,
duke@435 884 int total_args_passed) {
duke@435 885 // We return the amount of VMRegImpl stack slots we need to reserve for all
duke@435 886 // the arguments NOT counting out_preserve_stack_slots.
duke@435 887
duke@435 888 uint stack = 0; // All arguments on stack
duke@435 889
duke@435 890 for( int i = 0; i < total_args_passed; i++) {
duke@435 891 // From the type and the argument number (count) compute the location
duke@435 892 switch( sig_bt[i] ) {
duke@435 893 case T_BOOLEAN:
duke@435 894 case T_CHAR:
duke@435 895 case T_FLOAT:
duke@435 896 case T_BYTE:
duke@435 897 case T_SHORT:
duke@435 898 case T_INT:
duke@435 899 case T_OBJECT:
duke@435 900 case T_ARRAY:
duke@435 901 case T_ADDRESS:
duke@435 902 regs[i].set1(VMRegImpl::stack2reg(stack++));
duke@435 903 break;
duke@435 904 case T_LONG:
duke@435 905 case T_DOUBLE: // The stack numbering is reversed from Java
duke@435 906 // Since C arguments do not get reversed, the ordering for
duke@435 907 // doubles on the stack must be opposite the Java convention
duke@435 908 assert(sig_bt[i+1] == T_VOID, "missing Half" );
duke@435 909 regs[i].set2(VMRegImpl::stack2reg(stack));
duke@435 910 stack += 2;
duke@435 911 break;
duke@435 912 case T_VOID: regs[i].set_bad(); break;
duke@435 913 default:
duke@435 914 ShouldNotReachHere();
duke@435 915 break;
duke@435 916 }
duke@435 917 }
duke@435 918 return stack;
duke@435 919 }
duke@435 920
duke@435 921 // A simple move of integer like type
duke@435 922 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 923 if (src.first()->is_stack()) {
duke@435 924 if (dst.first()->is_stack()) {
duke@435 925 // stack to stack
duke@435 926 // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
duke@435 927 // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
never@739 928 __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
never@739 929 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 930 } else {
duke@435 931 // stack to reg
never@739 932 __ movl2ptr(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
duke@435 933 }
duke@435 934 } else if (dst.first()->is_stack()) {
duke@435 935 // reg to stack
never@739 936 // no need to sign extend on 64bit
never@739 937 __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
duke@435 938 } else {
never@739 939 if (dst.first() != src.first()) {
never@739 940 __ mov(dst.first()->as_Register(), src.first()->as_Register());
never@739 941 }
duke@435 942 }
duke@435 943 }
duke@435 944
duke@435 945 // An oop arg. Must pass a handle not the oop itself
duke@435 946 static void object_move(MacroAssembler* masm,
duke@435 947 OopMap* map,
duke@435 948 int oop_handle_offset,
duke@435 949 int framesize_in_slots,
duke@435 950 VMRegPair src,
duke@435 951 VMRegPair dst,
duke@435 952 bool is_receiver,
duke@435 953 int* receiver_offset) {
duke@435 954
duke@435 955 // Because of the calling conventions we know that src can be a
duke@435 956 // register or a stack location. dst can only be a stack location.
duke@435 957
duke@435 958 assert(dst.first()->is_stack(), "must be stack");
duke@435 959 // must pass a handle. First figure out the location we use as a handle
duke@435 960
duke@435 961 if (src.first()->is_stack()) {
duke@435 962 // Oop is already on the stack as an argument
duke@435 963 Register rHandle = rax;
duke@435 964 Label nil;
never@739 965 __ xorptr(rHandle, rHandle);
never@739 966 __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
duke@435 967 __ jcc(Assembler::equal, nil);
never@739 968 __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
duke@435 969 __ bind(nil);
never@739 970 __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
duke@435 971
duke@435 972 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
duke@435 973 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
duke@435 974 if (is_receiver) {
duke@435 975 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
duke@435 976 }
duke@435 977 } else {
duke@435 978 // Oop is in an a register we must store it to the space we reserve
duke@435 979 // on the stack for oop_handles
duke@435 980 const Register rOop = src.first()->as_Register();
duke@435 981 const Register rHandle = rax;
duke@435 982 int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
duke@435 983 int offset = oop_slot*VMRegImpl::stack_slot_size;
duke@435 984 Label skip;
never@739 985 __ movptr(Address(rsp, offset), rOop);
duke@435 986 map->set_oop(VMRegImpl::stack2reg(oop_slot));
never@739 987 __ xorptr(rHandle, rHandle);
never@739 988 __ cmpptr(rOop, (int32_t)NULL_WORD);
duke@435 989 __ jcc(Assembler::equal, skip);
never@739 990 __ lea(rHandle, Address(rsp, offset));
duke@435 991 __ bind(skip);
duke@435 992 // Store the handle parameter
never@739 993 __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
duke@435 994 if (is_receiver) {
duke@435 995 *receiver_offset = offset;
duke@435 996 }
duke@435 997 }
duke@435 998 }
duke@435 999
duke@435 1000 // A float arg may have to do float reg int reg conversion
duke@435 1001 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1002 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
duke@435 1003
duke@435 1004 // Because of the calling convention we know that src is either a stack location
duke@435 1005 // or an xmm register. dst can only be a stack location.
duke@435 1006
duke@435 1007 assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
duke@435 1008
duke@435 1009 if (src.first()->is_stack()) {
duke@435 1010 __ movl(rax, Address(rbp, reg2offset_in(src.first())));
never@739 1011 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 1012 } else {
duke@435 1013 // reg to stack
duke@435 1014 __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
duke@435 1015 }
duke@435 1016 }
duke@435 1017
duke@435 1018 // A long move
duke@435 1019 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1020
duke@435 1021 // The only legal possibility for a long_move VMRegPair is:
duke@435 1022 // 1: two stack slots (possibly unaligned)
duke@435 1023 // as neither the java or C calling convention will use registers
duke@435 1024 // for longs.
duke@435 1025
duke@435 1026 if (src.first()->is_stack() && dst.first()->is_stack()) {
duke@435 1027 assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
never@739 1028 __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
never@739 1029 NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
never@739 1030 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
never@739 1031 NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
duke@435 1032 } else {
duke@435 1033 ShouldNotReachHere();
duke@435 1034 }
duke@435 1035 }
duke@435 1036
duke@435 1037 // A double move
duke@435 1038 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1039
duke@435 1040 // The only legal possibilities for a double_move VMRegPair are:
duke@435 1041 // The painful thing here is that like long_move a VMRegPair might be
duke@435 1042
duke@435 1043 // Because of the calling convention we know that src is either
duke@435 1044 // 1: a single physical register (xmm registers only)
duke@435 1045 // 2: two stack slots (possibly unaligned)
duke@435 1046 // dst can only be a pair of stack slots.
duke@435 1047
duke@435 1048 assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
duke@435 1049
duke@435 1050 if (src.first()->is_stack()) {
duke@435 1051 // source is all stack
never@739 1052 __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
never@739 1053 NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
never@739 1054 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
never@739 1055 NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
duke@435 1056 } else {
duke@435 1057 // reg to stack
duke@435 1058 // No worries about stack alignment
duke@435 1059 __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
duke@435 1060 }
duke@435 1061 }
duke@435 1062
duke@435 1063
duke@435 1064 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
duke@435 1065 // We always ignore the frame_slots arg and just use the space just below frame pointer
duke@435 1066 // which by this time is free to use
duke@435 1067 switch (ret_type) {
duke@435 1068 case T_FLOAT:
duke@435 1069 __ fstp_s(Address(rbp, -wordSize));
duke@435 1070 break;
duke@435 1071 case T_DOUBLE:
duke@435 1072 __ fstp_d(Address(rbp, -2*wordSize));
duke@435 1073 break;
duke@435 1074 case T_VOID: break;
duke@435 1075 case T_LONG:
never@739 1076 __ movptr(Address(rbp, -wordSize), rax);
never@739 1077 NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
duke@435 1078 break;
duke@435 1079 default: {
never@739 1080 __ movptr(Address(rbp, -wordSize), rax);
duke@435 1081 }
duke@435 1082 }
duke@435 1083 }
duke@435 1084
duke@435 1085 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
duke@435 1086 // We always ignore the frame_slots arg and just use the space just below frame pointer
duke@435 1087 // which by this time is free to use
duke@435 1088 switch (ret_type) {
duke@435 1089 case T_FLOAT:
duke@435 1090 __ fld_s(Address(rbp, -wordSize));
duke@435 1091 break;
duke@435 1092 case T_DOUBLE:
duke@435 1093 __ fld_d(Address(rbp, -2*wordSize));
duke@435 1094 break;
duke@435 1095 case T_LONG:
never@739 1096 __ movptr(rax, Address(rbp, -wordSize));
never@739 1097 NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
duke@435 1098 break;
duke@435 1099 case T_VOID: break;
duke@435 1100 default: {
never@739 1101 __ movptr(rax, Address(rbp, -wordSize));
duke@435 1102 }
duke@435 1103 }
duke@435 1104 }
duke@435 1105
duke@435 1106 // ---------------------------------------------------------------------------
duke@435 1107 // Generate a native wrapper for a given method. The method takes arguments
duke@435 1108 // in the Java compiled code convention, marshals them to the native
duke@435 1109 // convention (handlizes oops, etc), transitions to native, makes the call,
duke@435 1110 // returns to java state (possibly blocking), unhandlizes any result and
duke@435 1111 // returns.
duke@435 1112 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
duke@435 1113 methodHandle method,
twisti@2687 1114 int compile_id,
duke@435 1115 int total_in_args,
duke@435 1116 int comp_args_on_stack,
duke@435 1117 BasicType *in_sig_bt,
duke@435 1118 VMRegPair *in_regs,
duke@435 1119 BasicType ret_type) {
duke@435 1120
duke@435 1121 // An OopMap for lock (and class if static)
duke@435 1122 OopMapSet *oop_maps = new OopMapSet();
duke@435 1123
duke@435 1124 // We have received a description of where all the java arg are located
duke@435 1125 // on entry to the wrapper. We need to convert these args to where
duke@435 1126 // the jni function will expect them. To figure out where they go
duke@435 1127 // we convert the java signature to a C signature by inserting
duke@435 1128 // the hidden arguments as arg[0] and possibly arg[1] (static method)
duke@435 1129
duke@435 1130 int total_c_args = total_in_args + 1;
duke@435 1131 if (method->is_static()) {
duke@435 1132 total_c_args++;
duke@435 1133 }
duke@435 1134
duke@435 1135 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
duke@435 1136 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
duke@435 1137
duke@435 1138 int argc = 0;
duke@435 1139 out_sig_bt[argc++] = T_ADDRESS;
duke@435 1140 if (method->is_static()) {
duke@435 1141 out_sig_bt[argc++] = T_OBJECT;
duke@435 1142 }
duke@435 1143
duke@435 1144 int i;
duke@435 1145 for (i = 0; i < total_in_args ; i++ ) {
duke@435 1146 out_sig_bt[argc++] = in_sig_bt[i];
duke@435 1147 }
duke@435 1148
duke@435 1149
duke@435 1150 // Now figure out where the args must be stored and how much stack space
duke@435 1151 // they require (neglecting out_preserve_stack_slots but space for storing
duke@435 1152 // the 1st six register arguments). It's weird see int_stk_helper.
duke@435 1153 //
duke@435 1154 int out_arg_slots;
duke@435 1155 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
duke@435 1156
duke@435 1157 // Compute framesize for the wrapper. We need to handlize all oops in
duke@435 1158 // registers a max of 2 on x86.
duke@435 1159
duke@435 1160 // Calculate the total number of stack slots we will need.
duke@435 1161
duke@435 1162 // First count the abi requirement plus all of the outgoing args
duke@435 1163 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
duke@435 1164
duke@435 1165 // Now the space for the inbound oop handle area
duke@435 1166
duke@435 1167 int oop_handle_offset = stack_slots;
duke@435 1168 stack_slots += 2*VMRegImpl::slots_per_word;
duke@435 1169
duke@435 1170 // Now any space we need for handlizing a klass if static method
duke@435 1171
duke@435 1172 int klass_slot_offset = 0;
duke@435 1173 int klass_offset = -1;
duke@435 1174 int lock_slot_offset = 0;
duke@435 1175 bool is_static = false;
duke@435 1176 int oop_temp_slot_offset = 0;
duke@435 1177
duke@435 1178 if (method->is_static()) {
duke@435 1179 klass_slot_offset = stack_slots;
duke@435 1180 stack_slots += VMRegImpl::slots_per_word;
duke@435 1181 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
duke@435 1182 is_static = true;
duke@435 1183 }
duke@435 1184
duke@435 1185 // Plus a lock if needed
duke@435 1186
duke@435 1187 if (method->is_synchronized()) {
duke@435 1188 lock_slot_offset = stack_slots;
duke@435 1189 stack_slots += VMRegImpl::slots_per_word;
duke@435 1190 }
duke@435 1191
duke@435 1192 // Now a place (+2) to save return values or temp during shuffling
duke@435 1193 // + 2 for return address (which we own) and saved rbp,
duke@435 1194 stack_slots += 4;
duke@435 1195
duke@435 1196 // Ok The space we have allocated will look like:
duke@435 1197 //
duke@435 1198 //
duke@435 1199 // FP-> | |
duke@435 1200 // |---------------------|
duke@435 1201 // | 2 slots for moves |
duke@435 1202 // |---------------------|
duke@435 1203 // | lock box (if sync) |
duke@435 1204 // |---------------------| <- lock_slot_offset (-lock_slot_rbp_offset)
duke@435 1205 // | klass (if static) |
duke@435 1206 // |---------------------| <- klass_slot_offset
duke@435 1207 // | oopHandle area |
duke@435 1208 // |---------------------| <- oop_handle_offset (a max of 2 registers)
duke@435 1209 // | outbound memory |
duke@435 1210 // | based arguments |
duke@435 1211 // | |
duke@435 1212 // |---------------------|
duke@435 1213 // | |
duke@435 1214 // SP-> | out_preserved_slots |
duke@435 1215 //
duke@435 1216 //
duke@435 1217 // ****************************************************************************
duke@435 1218 // WARNING - on Windows Java Natives use pascal calling convention and pop the
duke@435 1219 // arguments off of the stack after the jni call. Before the call we can use
duke@435 1220 // instructions that are SP relative. After the jni call we switch to FP
duke@435 1221 // relative instructions instead of re-adjusting the stack on windows.
duke@435 1222 // ****************************************************************************
duke@435 1223
duke@435 1224
duke@435 1225 // Now compute actual number of stack words we need rounding to make
duke@435 1226 // stack properly aligned.
xlu@959 1227 stack_slots = round_to(stack_slots, StackAlignmentInSlots);
duke@435 1228
duke@435 1229 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
duke@435 1230
duke@435 1231 intptr_t start = (intptr_t)__ pc();
duke@435 1232
duke@435 1233 // First thing make an ic check to see if we should even be here
duke@435 1234
duke@435 1235 // We are free to use all registers as temps without saving them and
duke@435 1236 // restoring them except rbp,. rbp, is the only callee save register
duke@435 1237 // as far as the interpreter and the compiler(s) are concerned.
duke@435 1238
duke@435 1239
duke@435 1240 const Register ic_reg = rax;
duke@435 1241 const Register receiver = rcx;
duke@435 1242 Label hit;
duke@435 1243 Label exception_pending;
duke@435 1244
duke@435 1245
duke@435 1246 __ verify_oop(receiver);
never@739 1247 __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
duke@435 1248 __ jcc(Assembler::equal, hit);
duke@435 1249
duke@435 1250 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
duke@435 1251
duke@435 1252 // verified entry must be aligned for code patching.
duke@435 1253 // and the first 5 bytes must be in the same cache line
duke@435 1254 // if we align at 8 then we will be sure 5 bytes are in the same line
duke@435 1255 __ align(8);
duke@435 1256
duke@435 1257 __ bind(hit);
duke@435 1258
duke@435 1259 int vep_offset = ((intptr_t)__ pc()) - start;
duke@435 1260
duke@435 1261 #ifdef COMPILER1
duke@435 1262 if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
duke@435 1263 // Object.hashCode can pull the hashCode from the header word
duke@435 1264 // instead of doing a full VM transition once it's been computed.
duke@435 1265 // Since hashCode is usually polymorphic at call sites we can't do
duke@435 1266 // this optimization at the call site without a lot of work.
duke@435 1267 Label slowCase;
duke@435 1268 Register receiver = rcx;
duke@435 1269 Register result = rax;
never@739 1270 __ movptr(result, Address(receiver, oopDesc::mark_offset_in_bytes()));
duke@435 1271
duke@435 1272 // check if locked
never@739 1273 __ testptr(result, markOopDesc::unlocked_value);
duke@435 1274 __ jcc (Assembler::zero, slowCase);
duke@435 1275
duke@435 1276 if (UseBiasedLocking) {
duke@435 1277 // Check if biased and fall through to runtime if so
never@739 1278 __ testptr(result, markOopDesc::biased_lock_bit_in_place);
duke@435 1279 __ jcc (Assembler::notZero, slowCase);
duke@435 1280 }
duke@435 1281
duke@435 1282 // get hash
never@739 1283 __ andptr(result, markOopDesc::hash_mask_in_place);
duke@435 1284 // test if hashCode exists
duke@435 1285 __ jcc (Assembler::zero, slowCase);
never@739 1286 __ shrptr(result, markOopDesc::hash_shift);
duke@435 1287 __ ret(0);
duke@435 1288 __ bind (slowCase);
duke@435 1289 }
duke@435 1290 #endif // COMPILER1
duke@435 1291
duke@435 1292 // The instruction at the verified entry point must be 5 bytes or longer
duke@435 1293 // because it can be patched on the fly by make_non_entrant. The stack bang
duke@435 1294 // instruction fits that requirement.
duke@435 1295
duke@435 1296 // Generate stack overflow check
duke@435 1297
duke@435 1298 if (UseStackBanging) {
duke@435 1299 __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
duke@435 1300 } else {
duke@435 1301 // need a 5 byte instruction to allow MT safe patching to non-entrant
duke@435 1302 __ fat_nop();
duke@435 1303 }
duke@435 1304
duke@435 1305 // Generate a new frame for the wrapper.
duke@435 1306 __ enter();
duke@435 1307 // -2 because return address is already present and so is saved rbp,
never@739 1308 __ subptr(rsp, stack_size - 2*wordSize);
duke@435 1309
duke@435 1310 // Frame is now completed as far a size and linkage.
duke@435 1311
duke@435 1312 int frame_complete = ((intptr_t)__ pc()) - start;
duke@435 1313
duke@435 1314 // Calculate the difference between rsp and rbp,. We need to know it
duke@435 1315 // after the native call because on windows Java Natives will pop
duke@435 1316 // the arguments and it is painful to do rsp relative addressing
duke@435 1317 // in a platform independent way. So after the call we switch to
duke@435 1318 // rbp, relative addressing.
duke@435 1319
duke@435 1320 int fp_adjustment = stack_size - 2*wordSize;
duke@435 1321
duke@435 1322 #ifdef COMPILER2
duke@435 1323 // C2 may leave the stack dirty if not in SSE2+ mode
duke@435 1324 if (UseSSE >= 2) {
duke@435 1325 __ verify_FPU(0, "c2i transition should have clean FPU stack");
duke@435 1326 } else {
duke@435 1327 __ empty_FPU_stack();
duke@435 1328 }
duke@435 1329 #endif /* COMPILER2 */
duke@435 1330
duke@435 1331 // Compute the rbp, offset for any slots used after the jni call
duke@435 1332
duke@435 1333 int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
duke@435 1334 int oop_temp_slot_rbp_offset = (oop_temp_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
duke@435 1335
duke@435 1336 // We use rdi as a thread pointer because it is callee save and
duke@435 1337 // if we load it once it is usable thru the entire wrapper
duke@435 1338 const Register thread = rdi;
duke@435 1339
duke@435 1340 // We use rsi as the oop handle for the receiver/klass
duke@435 1341 // It is callee save so it survives the call to native
duke@435 1342
duke@435 1343 const Register oop_handle_reg = rsi;
duke@435 1344
duke@435 1345 __ get_thread(thread);
duke@435 1346
duke@435 1347
duke@435 1348 //
duke@435 1349 // We immediately shuffle the arguments so that any vm call we have to
duke@435 1350 // make from here on out (sync slow path, jvmti, etc.) we will have
duke@435 1351 // captured the oops from our caller and have a valid oopMap for
duke@435 1352 // them.
duke@435 1353
duke@435 1354 // -----------------
duke@435 1355 // The Grand Shuffle
duke@435 1356 //
duke@435 1357 // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
duke@435 1358 // and, if static, the class mirror instead of a receiver. This pretty much
duke@435 1359 // guarantees that register layout will not match (and x86 doesn't use reg
duke@435 1360 // parms though amd does). Since the native abi doesn't use register args
duke@435 1361 // and the java conventions does we don't have to worry about collisions.
duke@435 1362 // All of our moved are reg->stack or stack->stack.
duke@435 1363 // We ignore the extra arguments during the shuffle and handle them at the
duke@435 1364 // last moment. The shuffle is described by the two calling convention
duke@435 1365 // vectors we have in our possession. We simply walk the java vector to
duke@435 1366 // get the source locations and the c vector to get the destinations.
duke@435 1367
duke@435 1368 int c_arg = method->is_static() ? 2 : 1 ;
duke@435 1369
duke@435 1370 // Record rsp-based slot for receiver on stack for non-static methods
duke@435 1371 int receiver_offset = -1;
duke@435 1372
duke@435 1373 // This is a trick. We double the stack slots so we can claim
duke@435 1374 // the oops in the caller's frame. Since we are sure to have
duke@435 1375 // more args than the caller doubling is enough to make
duke@435 1376 // sure we can capture all the incoming oop args from the
duke@435 1377 // caller.
duke@435 1378 //
duke@435 1379 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
duke@435 1380
duke@435 1381 // Mark location of rbp,
duke@435 1382 // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
duke@435 1383
duke@435 1384 // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
duke@435 1385 // Are free to temporaries if we have to do stack to steck moves.
duke@435 1386 // All inbound args are referenced based on rbp, and all outbound args via rsp.
duke@435 1387
duke@435 1388 for (i = 0; i < total_in_args ; i++, c_arg++ ) {
duke@435 1389 switch (in_sig_bt[i]) {
duke@435 1390 case T_ARRAY:
duke@435 1391 case T_OBJECT:
duke@435 1392 object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
duke@435 1393 ((i == 0) && (!is_static)),
duke@435 1394 &receiver_offset);
duke@435 1395 break;
duke@435 1396 case T_VOID:
duke@435 1397 break;
duke@435 1398
duke@435 1399 case T_FLOAT:
duke@435 1400 float_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 1401 break;
duke@435 1402
duke@435 1403 case T_DOUBLE:
duke@435 1404 assert( i + 1 < total_in_args &&
duke@435 1405 in_sig_bt[i + 1] == T_VOID &&
duke@435 1406 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
duke@435 1407 double_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 1408 break;
duke@435 1409
duke@435 1410 case T_LONG :
duke@435 1411 long_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 1412 break;
duke@435 1413
duke@435 1414 case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
duke@435 1415
duke@435 1416 default:
duke@435 1417 simple_move32(masm, in_regs[i], out_regs[c_arg]);
duke@435 1418 }
duke@435 1419 }
duke@435 1420
duke@435 1421 // Pre-load a static method's oop into rsi. Used both by locking code and
duke@435 1422 // the normal JNI call code.
duke@435 1423 if (method->is_static()) {
duke@435 1424
duke@435 1425 // load opp into a register
duke@435 1426 __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
duke@435 1427
duke@435 1428 // Now handlize the static class mirror it's known not-null.
never@739 1429 __ movptr(Address(rsp, klass_offset), oop_handle_reg);
duke@435 1430 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
duke@435 1431
duke@435 1432 // Now get the handle
never@739 1433 __ lea(oop_handle_reg, Address(rsp, klass_offset));
duke@435 1434 // store the klass handle as second argument
never@739 1435 __ movptr(Address(rsp, wordSize), oop_handle_reg);
duke@435 1436 }
duke@435 1437
duke@435 1438 // Change state to native (we save the return address in the thread, since it might not
duke@435 1439 // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
duke@435 1440 // points into the right code segment. It does not have to be the correct return pc.
duke@435 1441 // We use the same pc/oopMap repeatedly when we call out
duke@435 1442
duke@435 1443 intptr_t the_pc = (intptr_t) __ pc();
duke@435 1444 oop_maps->add_gc_map(the_pc - start, map);
duke@435 1445
duke@435 1446 __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
duke@435 1447
duke@435 1448
duke@435 1449 // We have all of the arguments setup at this point. We must not touch any register
duke@435 1450 // argument registers at this point (what if we save/restore them there are no oop?
duke@435 1451
duke@435 1452 {
duke@435 1453 SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
duke@435 1454 __ movoop(rax, JNIHandles::make_local(method()));
duke@435 1455 __ call_VM_leaf(
duke@435 1456 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
duke@435 1457 thread, rax);
duke@435 1458 }
duke@435 1459
dcubed@1045 1460 // RedefineClasses() tracing support for obsolete method entry
dcubed@1045 1461 if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
dcubed@1045 1462 __ movoop(rax, JNIHandles::make_local(method()));
dcubed@1045 1463 __ call_VM_leaf(
dcubed@1045 1464 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
dcubed@1045 1465 thread, rax);
dcubed@1045 1466 }
dcubed@1045 1467
duke@435 1468 // These are register definitions we need for locking/unlocking
duke@435 1469 const Register swap_reg = rax; // Must use rax, for cmpxchg instruction
duke@435 1470 const Register obj_reg = rcx; // Will contain the oop
duke@435 1471 const Register lock_reg = rdx; // Address of compiler lock object (BasicLock)
duke@435 1472
duke@435 1473 Label slow_path_lock;
duke@435 1474 Label lock_done;
duke@435 1475
duke@435 1476 // Lock a synchronized method
duke@435 1477 if (method->is_synchronized()) {
duke@435 1478
duke@435 1479
duke@435 1480 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
duke@435 1481
duke@435 1482 // Get the handle (the 2nd argument)
never@739 1483 __ movptr(oop_handle_reg, Address(rsp, wordSize));
duke@435 1484
duke@435 1485 // Get address of the box
duke@435 1486
never@739 1487 __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
duke@435 1488
duke@435 1489 // Load the oop from the handle
never@739 1490 __ movptr(obj_reg, Address(oop_handle_reg, 0));
duke@435 1491
duke@435 1492 if (UseBiasedLocking) {
duke@435 1493 // Note that oop_handle_reg is trashed during this call
duke@435 1494 __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
duke@435 1495 }
duke@435 1496
duke@435 1497 // Load immediate 1 into swap_reg %rax,
never@739 1498 __ movptr(swap_reg, 1);
duke@435 1499
duke@435 1500 // Load (object->mark() | 1) into swap_reg %rax,
never@739 1501 __ orptr(swap_reg, Address(obj_reg, 0));
duke@435 1502
duke@435 1503 // Save (object->mark() | 1) into BasicLock's displaced header
never@739 1504 __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
duke@435 1505
duke@435 1506 if (os::is_MP()) {
duke@435 1507 __ lock();
duke@435 1508 }
duke@435 1509
duke@435 1510 // src -> dest iff dest == rax, else rax, <- dest
duke@435 1511 // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
never@739 1512 __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
duke@435 1513 __ jcc(Assembler::equal, lock_done);
duke@435 1514
duke@435 1515 // Test if the oopMark is an obvious stack pointer, i.e.,
duke@435 1516 // 1) (mark & 3) == 0, and
duke@435 1517 // 2) rsp <= mark < mark + os::pagesize()
duke@435 1518 // These 3 tests can be done by evaluating the following
duke@435 1519 // expression: ((mark - rsp) & (3 - os::vm_page_size())),
duke@435 1520 // assuming both stack pointer and pagesize have their
duke@435 1521 // least significant 2 bits clear.
duke@435 1522 // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
duke@435 1523
never@739 1524 __ subptr(swap_reg, rsp);
never@739 1525 __ andptr(swap_reg, 3 - os::vm_page_size());
duke@435 1526
duke@435 1527 // Save the test result, for recursive case, the result is zero
never@739 1528 __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
duke@435 1529 __ jcc(Assembler::notEqual, slow_path_lock);
duke@435 1530 // Slow path will re-enter here
duke@435 1531 __ bind(lock_done);
duke@435 1532
duke@435 1533 if (UseBiasedLocking) {
duke@435 1534 // Re-fetch oop_handle_reg as we trashed it above
never@739 1535 __ movptr(oop_handle_reg, Address(rsp, wordSize));
duke@435 1536 }
duke@435 1537 }
duke@435 1538
duke@435 1539
duke@435 1540 // Finally just about ready to make the JNI call
duke@435 1541
duke@435 1542
duke@435 1543 // get JNIEnv* which is first argument to native
duke@435 1544
never@739 1545 __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
never@739 1546 __ movptr(Address(rsp, 0), rdx);
duke@435 1547
duke@435 1548 // Now set thread in native
duke@435 1549 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
duke@435 1550
duke@435 1551 __ call(RuntimeAddress(method->native_function()));
duke@435 1552
duke@435 1553 // WARNING - on Windows Java Natives use pascal calling convention and pop the
duke@435 1554 // arguments off of the stack. We could just re-adjust the stack pointer here
duke@435 1555 // and continue to do SP relative addressing but we instead switch to FP
duke@435 1556 // relative addressing.
duke@435 1557
duke@435 1558 // Unpack native results.
duke@435 1559 switch (ret_type) {
duke@435 1560 case T_BOOLEAN: __ c2bool(rax); break;
never@739 1561 case T_CHAR : __ andptr(rax, 0xFFFF); break;
duke@435 1562 case T_BYTE : __ sign_extend_byte (rax); break;
duke@435 1563 case T_SHORT : __ sign_extend_short(rax); break;
duke@435 1564 case T_INT : /* nothing to do */ break;
duke@435 1565 case T_DOUBLE :
duke@435 1566 case T_FLOAT :
duke@435 1567 // Result is in st0 we'll save as needed
duke@435 1568 break;
duke@435 1569 case T_ARRAY: // Really a handle
duke@435 1570 case T_OBJECT: // Really a handle
duke@435 1571 break; // can't de-handlize until after safepoint check
duke@435 1572 case T_VOID: break;
duke@435 1573 case T_LONG: break;
duke@435 1574 default : ShouldNotReachHere();
duke@435 1575 }
duke@435 1576
duke@435 1577 // Switch thread to "native transition" state before reading the synchronization state.
duke@435 1578 // This additional state is necessary because reading and testing the synchronization
duke@435 1579 // state is not atomic w.r.t. GC, as this scenario demonstrates:
duke@435 1580 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
duke@435 1581 // VM thread changes sync state to synchronizing and suspends threads for GC.
duke@435 1582 // Thread A is resumed to finish this native method, but doesn't block here since it
duke@435 1583 // didn't see any synchronization is progress, and escapes.
duke@435 1584 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
duke@435 1585
duke@435 1586 if(os::is_MP()) {
duke@435 1587 if (UseMembar) {
never@739 1588 // Force this write out before the read below
never@739 1589 __ membar(Assembler::Membar_mask_bits(
never@739 1590 Assembler::LoadLoad | Assembler::LoadStore |
never@739 1591 Assembler::StoreLoad | Assembler::StoreStore));
duke@435 1592 } else {
duke@435 1593 // Write serialization page so VM thread can do a pseudo remote membar.
duke@435 1594 // We use the current thread pointer to calculate a thread specific
duke@435 1595 // offset to write to within the page. This minimizes bus traffic
duke@435 1596 // due to cache line collision.
duke@435 1597 __ serialize_memory(thread, rcx);
duke@435 1598 }
duke@435 1599 }
duke@435 1600
duke@435 1601 if (AlwaysRestoreFPU) {
duke@435 1602 // Make sure the control word is correct.
duke@435 1603 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 1604 }
duke@435 1605
duke@435 1606 // check for safepoint operation in progress and/or pending suspend requests
duke@435 1607 { Label Continue;
duke@435 1608
duke@435 1609 __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
duke@435 1610 SafepointSynchronize::_not_synchronized);
duke@435 1611
duke@435 1612 Label L;
duke@435 1613 __ jcc(Assembler::notEqual, L);
duke@435 1614 __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
duke@435 1615 __ jcc(Assembler::equal, Continue);
duke@435 1616 __ bind(L);
duke@435 1617
duke@435 1618 // Don't use call_VM as it will see a possible pending exception and forward it
duke@435 1619 // and never return here preventing us from clearing _last_native_pc down below.
duke@435 1620 // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
duke@435 1621 // preserved and correspond to the bcp/locals pointers. So we do a runtime call
duke@435 1622 // by hand.
duke@435 1623 //
duke@435 1624 save_native_result(masm, ret_type, stack_slots);
never@739 1625 __ push(thread);
duke@435 1626 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
duke@435 1627 JavaThread::check_special_condition_for_native_trans)));
duke@435 1628 __ increment(rsp, wordSize);
duke@435 1629 // Restore any method result value
duke@435 1630 restore_native_result(masm, ret_type, stack_slots);
duke@435 1631
duke@435 1632 __ bind(Continue);
duke@435 1633 }
duke@435 1634
duke@435 1635 // change thread state
duke@435 1636 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
duke@435 1637
duke@435 1638 Label reguard;
duke@435 1639 Label reguard_done;
duke@435 1640 __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
duke@435 1641 __ jcc(Assembler::equal, reguard);
duke@435 1642
duke@435 1643 // slow path reguard re-enters here
duke@435 1644 __ bind(reguard_done);
duke@435 1645
duke@435 1646 // Handle possible exception (will unlock if necessary)
duke@435 1647
duke@435 1648 // native result if any is live
duke@435 1649
duke@435 1650 // Unlock
duke@435 1651 Label slow_path_unlock;
duke@435 1652 Label unlock_done;
duke@435 1653 if (method->is_synchronized()) {
duke@435 1654
duke@435 1655 Label done;
duke@435 1656
duke@435 1657 // Get locked oop from the handle we passed to jni
never@739 1658 __ movptr(obj_reg, Address(oop_handle_reg, 0));
duke@435 1659
duke@435 1660 if (UseBiasedLocking) {
duke@435 1661 __ biased_locking_exit(obj_reg, rbx, done);
duke@435 1662 }
duke@435 1663
duke@435 1664 // Simple recursive lock?
duke@435 1665
never@739 1666 __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
duke@435 1667 __ jcc(Assembler::equal, done);
duke@435 1668
duke@435 1669 // Must save rax, if if it is live now because cmpxchg must use it
duke@435 1670 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
duke@435 1671 save_native_result(masm, ret_type, stack_slots);
duke@435 1672 }
duke@435 1673
duke@435 1674 // get old displaced header
never@739 1675 __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
duke@435 1676
duke@435 1677 // get address of the stack lock
never@739 1678 __ lea(rax, Address(rbp, lock_slot_rbp_offset));
duke@435 1679
duke@435 1680 // Atomic swap old header if oop still contains the stack lock
duke@435 1681 if (os::is_MP()) {
duke@435 1682 __ lock();
duke@435 1683 }
duke@435 1684
duke@435 1685 // src -> dest iff dest == rax, else rax, <- dest
duke@435 1686 // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
never@739 1687 __ cmpxchgptr(rbx, Address(obj_reg, 0));
duke@435 1688 __ jcc(Assembler::notEqual, slow_path_unlock);
duke@435 1689
duke@435 1690 // slow path re-enters here
duke@435 1691 __ bind(unlock_done);
duke@435 1692 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
duke@435 1693 restore_native_result(masm, ret_type, stack_slots);
duke@435 1694 }
duke@435 1695
duke@435 1696 __ bind(done);
duke@435 1697
duke@435 1698 }
duke@435 1699
duke@435 1700 {
duke@435 1701 SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
duke@435 1702 // Tell dtrace about this method exit
duke@435 1703 save_native_result(masm, ret_type, stack_slots);
duke@435 1704 __ movoop(rax, JNIHandles::make_local(method()));
duke@435 1705 __ call_VM_leaf(
duke@435 1706 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
duke@435 1707 thread, rax);
duke@435 1708 restore_native_result(masm, ret_type, stack_slots);
duke@435 1709 }
duke@435 1710
duke@435 1711 // We can finally stop using that last_Java_frame we setup ages ago
duke@435 1712
duke@435 1713 __ reset_last_Java_frame(thread, false, true);
duke@435 1714
duke@435 1715 // Unpack oop result
duke@435 1716 if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
duke@435 1717 Label L;
never@739 1718 __ cmpptr(rax, (int32_t)NULL_WORD);
duke@435 1719 __ jcc(Assembler::equal, L);
never@739 1720 __ movptr(rax, Address(rax, 0));
duke@435 1721 __ bind(L);
duke@435 1722 __ verify_oop(rax);
duke@435 1723 }
duke@435 1724
duke@435 1725 // reset handle block
never@739 1726 __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
never@739 1727
xlu@947 1728 __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
duke@435 1729
duke@435 1730 // Any exception pending?
never@739 1731 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
duke@435 1732 __ jcc(Assembler::notEqual, exception_pending);
duke@435 1733
duke@435 1734
duke@435 1735 // no exception, we're almost done
duke@435 1736
duke@435 1737 // check that only result value is on FPU stack
duke@435 1738 __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
duke@435 1739
duke@435 1740 // Fixup floating pointer results so that result looks like a return from a compiled method
duke@435 1741 if (ret_type == T_FLOAT) {
duke@435 1742 if (UseSSE >= 1) {
duke@435 1743 // Pop st0 and store as float and reload into xmm register
duke@435 1744 __ fstp_s(Address(rbp, -4));
duke@435 1745 __ movflt(xmm0, Address(rbp, -4));
duke@435 1746 }
duke@435 1747 } else if (ret_type == T_DOUBLE) {
duke@435 1748 if (UseSSE >= 2) {
duke@435 1749 // Pop st0 and store as double and reload into xmm register
duke@435 1750 __ fstp_d(Address(rbp, -8));
duke@435 1751 __ movdbl(xmm0, Address(rbp, -8));
duke@435 1752 }
duke@435 1753 }
duke@435 1754
duke@435 1755 // Return
duke@435 1756
duke@435 1757 __ leave();
duke@435 1758 __ ret(0);
duke@435 1759
duke@435 1760 // Unexpected paths are out of line and go here
duke@435 1761
duke@435 1762 // Slow path locking & unlocking
duke@435 1763 if (method->is_synchronized()) {
duke@435 1764
duke@435 1765 // BEGIN Slow path lock
duke@435 1766
duke@435 1767 __ bind(slow_path_lock);
duke@435 1768
duke@435 1769 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
duke@435 1770 // args are (oop obj, BasicLock* lock, JavaThread* thread)
never@739 1771 __ push(thread);
never@739 1772 __ push(lock_reg);
never@739 1773 __ push(obj_reg);
duke@435 1774 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
never@739 1775 __ addptr(rsp, 3*wordSize);
duke@435 1776
duke@435 1777 #ifdef ASSERT
duke@435 1778 { Label L;
never@739 1779 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
duke@435 1780 __ jcc(Assembler::equal, L);
duke@435 1781 __ stop("no pending exception allowed on exit from monitorenter");
duke@435 1782 __ bind(L);
duke@435 1783 }
duke@435 1784 #endif
duke@435 1785 __ jmp(lock_done);
duke@435 1786
duke@435 1787 // END Slow path lock
duke@435 1788
duke@435 1789 // BEGIN Slow path unlock
duke@435 1790 __ bind(slow_path_unlock);
duke@435 1791
duke@435 1792 // Slow path unlock
duke@435 1793
duke@435 1794 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
duke@435 1795 save_native_result(masm, ret_type, stack_slots);
duke@435 1796 }
duke@435 1797 // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
duke@435 1798
never@739 1799 __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
xlu@947 1800 __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
duke@435 1801
duke@435 1802
duke@435 1803 // should be a peal
duke@435 1804 // +wordSize because of the push above
never@739 1805 __ lea(rax, Address(rbp, lock_slot_rbp_offset));
never@739 1806 __ push(rax);
never@739 1807
never@739 1808 __ push(obj_reg);
duke@435 1809 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
never@739 1810 __ addptr(rsp, 2*wordSize);
duke@435 1811 #ifdef ASSERT
duke@435 1812 {
duke@435 1813 Label L;
never@739 1814 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
duke@435 1815 __ jcc(Assembler::equal, L);
duke@435 1816 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
duke@435 1817 __ bind(L);
duke@435 1818 }
duke@435 1819 #endif /* ASSERT */
duke@435 1820
never@739 1821 __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
duke@435 1822
duke@435 1823 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
duke@435 1824 restore_native_result(masm, ret_type, stack_slots);
duke@435 1825 }
duke@435 1826 __ jmp(unlock_done);
duke@435 1827 // END Slow path unlock
duke@435 1828
duke@435 1829 }
duke@435 1830
duke@435 1831 // SLOW PATH Reguard the stack if needed
duke@435 1832
duke@435 1833 __ bind(reguard);
duke@435 1834 save_native_result(masm, ret_type, stack_slots);
duke@435 1835 {
duke@435 1836 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
duke@435 1837 }
duke@435 1838 restore_native_result(masm, ret_type, stack_slots);
duke@435 1839 __ jmp(reguard_done);
duke@435 1840
duke@435 1841
duke@435 1842 // BEGIN EXCEPTION PROCESSING
duke@435 1843
duke@435 1844 // Forward the exception
duke@435 1845 __ bind(exception_pending);
duke@435 1846
duke@435 1847 // remove possible return value from FPU register stack
duke@435 1848 __ empty_FPU_stack();
duke@435 1849
duke@435 1850 // pop our frame
duke@435 1851 __ leave();
duke@435 1852 // and forward the exception
duke@435 1853 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 1854
duke@435 1855 __ flush();
duke@435 1856
duke@435 1857 nmethod *nm = nmethod::new_native_nmethod(method,
twisti@2687 1858 compile_id,
duke@435 1859 masm->code(),
duke@435 1860 vep_offset,
duke@435 1861 frame_complete,
duke@435 1862 stack_slots / VMRegImpl::slots_per_word,
duke@435 1863 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
duke@435 1864 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
duke@435 1865 oop_maps);
duke@435 1866 return nm;
duke@435 1867
duke@435 1868 }
duke@435 1869
kamg@551 1870 #ifdef HAVE_DTRACE_H
kamg@551 1871 // ---------------------------------------------------------------------------
kamg@551 1872 // Generate a dtrace nmethod for a given signature. The method takes arguments
kamg@551 1873 // in the Java compiled code convention, marshals them to the native
kamg@551 1874 // abi and then leaves nops at the position you would expect to call a native
kamg@551 1875 // function. When the probe is enabled the nops are replaced with a trap
kamg@551 1876 // instruction that dtrace inserts and the trace will cause a notification
kamg@551 1877 // to dtrace.
kamg@551 1878 //
kamg@551 1879 // The probes are only able to take primitive types and java/lang/String as
kamg@551 1880 // arguments. No other java types are allowed. Strings are converted to utf8
kamg@551 1881 // strings so that from dtrace point of view java strings are converted to C
kamg@551 1882 // strings. There is an arbitrary fixed limit on the total space that a method
kamg@551 1883 // can use for converting the strings. (256 chars per string in the signature).
kamg@551 1884 // So any java string larger then this is truncated.
kamg@551 1885
kamg@551 1886 nmethod *SharedRuntime::generate_dtrace_nmethod(
kamg@551 1887 MacroAssembler *masm, methodHandle method) {
kamg@551 1888
kamg@551 1889 // generate_dtrace_nmethod is guarded by a mutex so we are sure to
kamg@551 1890 // be single threaded in this method.
kamg@551 1891 assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
kamg@551 1892
kamg@551 1893 // Fill in the signature array, for the calling-convention call.
kamg@551 1894 int total_args_passed = method->size_of_parameters();
kamg@551 1895
kamg@551 1896 BasicType* in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
kamg@551 1897 VMRegPair *in_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
kamg@551 1898
kamg@551 1899 // The signature we are going to use for the trap that dtrace will see
kamg@551 1900 // java/lang/String is converted. We drop "this" and any other object
kamg@551 1901 // is converted to NULL. (A one-slot java/lang/Long object reference
kamg@551 1902 // is converted to a two-slot long, which is why we double the allocation).
kamg@551 1903 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
kamg@551 1904 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
kamg@551 1905
kamg@551 1906 int i=0;
kamg@551 1907 int total_strings = 0;
kamg@551 1908 int first_arg_to_pass = 0;
kamg@551 1909 int total_c_args = 0;
kamg@551 1910
kamg@551 1911 if( !method->is_static() ) { // Pass in receiver first
kamg@551 1912 in_sig_bt[i++] = T_OBJECT;
kamg@551 1913 first_arg_to_pass = 1;
kamg@551 1914 }
kamg@551 1915
kamg@551 1916 // We need to convert the java args to where a native (non-jni) function
kamg@551 1917 // would expect them. To figure out where they go we convert the java
kamg@551 1918 // signature to a C signature.
kamg@551 1919
kamg@551 1920 SignatureStream ss(method->signature());
kamg@551 1921 for ( ; !ss.at_return_type(); ss.next()) {
kamg@551 1922 BasicType bt = ss.type();
kamg@551 1923 in_sig_bt[i++] = bt; // Collect remaining bits of signature
kamg@551 1924 out_sig_bt[total_c_args++] = bt;
kamg@551 1925 if( bt == T_OBJECT) {
coleenp@2497 1926 Symbol* s = ss.as_symbol_or_null(); // symbol is created
kamg@551 1927 if (s == vmSymbols::java_lang_String()) {
kamg@551 1928 total_strings++;
kamg@551 1929 out_sig_bt[total_c_args-1] = T_ADDRESS;
kamg@551 1930 } else if (s == vmSymbols::java_lang_Boolean() ||
kamg@551 1931 s == vmSymbols::java_lang_Character() ||
kamg@551 1932 s == vmSymbols::java_lang_Byte() ||
kamg@551 1933 s == vmSymbols::java_lang_Short() ||
kamg@551 1934 s == vmSymbols::java_lang_Integer() ||
kamg@551 1935 s == vmSymbols::java_lang_Float()) {
kamg@551 1936 out_sig_bt[total_c_args-1] = T_INT;
kamg@551 1937 } else if (s == vmSymbols::java_lang_Long() ||
kamg@551 1938 s == vmSymbols::java_lang_Double()) {
kamg@551 1939 out_sig_bt[total_c_args-1] = T_LONG;
kamg@551 1940 out_sig_bt[total_c_args++] = T_VOID;
kamg@551 1941 }
kamg@551 1942 } else if ( bt == T_LONG || bt == T_DOUBLE ) {
kamg@551 1943 in_sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
kamg@551 1944 out_sig_bt[total_c_args++] = T_VOID;
kamg@551 1945 }
kamg@551 1946 }
kamg@551 1947
kamg@551 1948 assert(i==total_args_passed, "validly parsed signature");
kamg@551 1949
kamg@551 1950 // Now get the compiled-Java layout as input arguments
kamg@551 1951 int comp_args_on_stack;
kamg@551 1952 comp_args_on_stack = SharedRuntime::java_calling_convention(
kamg@551 1953 in_sig_bt, in_regs, total_args_passed, false);
kamg@551 1954
kamg@551 1955 // Now figure out where the args must be stored and how much stack space
kamg@551 1956 // they require (neglecting out_preserve_stack_slots).
kamg@551 1957
kamg@551 1958 int out_arg_slots;
kamg@551 1959 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
kamg@551 1960
kamg@551 1961 // Calculate the total number of stack slots we will need.
kamg@551 1962
kamg@551 1963 // First count the abi requirement plus all of the outgoing args
kamg@551 1964 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
kamg@551 1965
kamg@551 1966 // Now space for the string(s) we must convert
kamg@551 1967
kamg@551 1968 int* string_locs = NEW_RESOURCE_ARRAY(int, total_strings + 1);
kamg@551 1969 for (i = 0; i < total_strings ; i++) {
kamg@551 1970 string_locs[i] = stack_slots;
kamg@551 1971 stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
kamg@551 1972 }
kamg@551 1973
kamg@551 1974 // + 2 for return address (which we own) and saved rbp,
kamg@551 1975
kamg@551 1976 stack_slots += 2;
kamg@551 1977
kamg@551 1978 // Ok The space we have allocated will look like:
kamg@551 1979 //
kamg@551 1980 //
kamg@551 1981 // FP-> | |
kamg@551 1982 // |---------------------|
kamg@551 1983 // | string[n] |
kamg@551 1984 // |---------------------| <- string_locs[n]
kamg@551 1985 // | string[n-1] |
kamg@551 1986 // |---------------------| <- string_locs[n-1]
kamg@551 1987 // | ... |
kamg@551 1988 // | ... |
kamg@551 1989 // |---------------------| <- string_locs[1]
kamg@551 1990 // | string[0] |
kamg@551 1991 // |---------------------| <- string_locs[0]
kamg@551 1992 // | outbound memory |
kamg@551 1993 // | based arguments |
kamg@551 1994 // | |
kamg@551 1995 // |---------------------|
kamg@551 1996 // | |
kamg@551 1997 // SP-> | out_preserved_slots |
kamg@551 1998 //
kamg@551 1999 //
kamg@551 2000
kamg@551 2001 // Now compute actual number of stack words we need rounding to make
kamg@551 2002 // stack properly aligned.
kamg@551 2003 stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
kamg@551 2004
kamg@551 2005 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
kamg@551 2006
kamg@551 2007 intptr_t start = (intptr_t)__ pc();
kamg@551 2008
kamg@551 2009 // First thing make an ic check to see if we should even be here
kamg@551 2010
kamg@551 2011 // We are free to use all registers as temps without saving them and
kamg@551 2012 // restoring them except rbp. rbp, is the only callee save register
kamg@551 2013 // as far as the interpreter and the compiler(s) are concerned.
kamg@551 2014
kamg@551 2015 const Register ic_reg = rax;
kamg@551 2016 const Register receiver = rcx;
kamg@551 2017 Label hit;
kamg@551 2018 Label exception_pending;
kamg@551 2019
kamg@551 2020
kamg@551 2021 __ verify_oop(receiver);
kamg@551 2022 __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
kamg@551 2023 __ jcc(Assembler::equal, hit);
kamg@551 2024
kamg@551 2025 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
kamg@551 2026
kamg@551 2027 // verified entry must be aligned for code patching.
kamg@551 2028 // and the first 5 bytes must be in the same cache line
kamg@551 2029 // if we align at 8 then we will be sure 5 bytes are in the same line
kamg@551 2030 __ align(8);
kamg@551 2031
kamg@551 2032 __ bind(hit);
kamg@551 2033
kamg@551 2034 int vep_offset = ((intptr_t)__ pc()) - start;
kamg@551 2035
kamg@551 2036
kamg@551 2037 // The instruction at the verified entry point must be 5 bytes or longer
kamg@551 2038 // because it can be patched on the fly by make_non_entrant. The stack bang
kamg@551 2039 // instruction fits that requirement.
kamg@551 2040
kamg@551 2041 // Generate stack overflow check
kamg@551 2042
kamg@551 2043
kamg@551 2044 if (UseStackBanging) {
kamg@551 2045 if (stack_size <= StackShadowPages*os::vm_page_size()) {
kamg@551 2046 __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
kamg@551 2047 } else {
kamg@551 2048 __ movl(rax, stack_size);
kamg@551 2049 __ bang_stack_size(rax, rbx);
kamg@551 2050 }
kamg@551 2051 } else {
kamg@551 2052 // need a 5 byte instruction to allow MT safe patching to non-entrant
kamg@551 2053 __ fat_nop();
kamg@551 2054 }
kamg@551 2055
kamg@551 2056 assert(((int)__ pc() - start - vep_offset) >= 5,
kamg@551 2057 "valid size for make_non_entrant");
kamg@551 2058
kamg@551 2059 // Generate a new frame for the wrapper.
kamg@551 2060 __ enter();
kamg@551 2061
kamg@551 2062 // -2 because return address is already present and so is saved rbp,
kamg@551 2063 if (stack_size - 2*wordSize != 0) {
kamg@551 2064 __ subl(rsp, stack_size - 2*wordSize);
kamg@551 2065 }
kamg@551 2066
kamg@551 2067 // Frame is now completed as far a size and linkage.
kamg@551 2068
kamg@551 2069 int frame_complete = ((intptr_t)__ pc()) - start;
kamg@551 2070
kamg@551 2071 // First thing we do store all the args as if we are doing the call.
kamg@551 2072 // Since the C calling convention is stack based that ensures that
kamg@551 2073 // all the Java register args are stored before we need to convert any
kamg@551 2074 // string we might have.
kamg@551 2075
kamg@551 2076 int sid = 0;
kamg@551 2077 int c_arg, j_arg;
kamg@551 2078 int string_reg = 0;
kamg@551 2079
kamg@551 2080 for (j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 2081 j_arg < total_args_passed ; j_arg++, c_arg++ ) {
kamg@551 2082
kamg@551 2083 VMRegPair src = in_regs[j_arg];
kamg@551 2084 VMRegPair dst = out_regs[c_arg];
kamg@551 2085 assert(dst.first()->is_stack() || in_sig_bt[j_arg] == T_VOID,
kamg@551 2086 "stack based abi assumed");
kamg@551 2087
kamg@551 2088 switch (in_sig_bt[j_arg]) {
kamg@551 2089
kamg@551 2090 case T_ARRAY:
kamg@551 2091 case T_OBJECT:
kamg@551 2092 if (out_sig_bt[c_arg] == T_ADDRESS) {
kamg@551 2093 // Any register based arg for a java string after the first
kamg@551 2094 // will be destroyed by the call to get_utf so we store
kamg@551 2095 // the original value in the location the utf string address
kamg@551 2096 // will eventually be stored.
kamg@551 2097 if (src.first()->is_reg()) {
kamg@551 2098 if (string_reg++ != 0) {
kamg@551 2099 simple_move32(masm, src, dst);
kamg@551 2100 }
kamg@551 2101 }
kamg@551 2102 } else if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
kamg@551 2103 // need to unbox a one-word value
kamg@551 2104 Register in_reg = rax;
kamg@551 2105 if ( src.first()->is_reg() ) {
kamg@551 2106 in_reg = src.first()->as_Register();
kamg@551 2107 } else {
kamg@551 2108 simple_move32(masm, src, in_reg->as_VMReg());
kamg@551 2109 }
kamg@551 2110 Label skipUnbox;
kamg@551 2111 __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
kamg@551 2112 if ( out_sig_bt[c_arg] == T_LONG ) {
kamg@551 2113 __ movl(Address(rsp, reg2offset_out(dst.second())), NULL_WORD);
kamg@551 2114 }
kamg@551 2115 __ testl(in_reg, in_reg);
kamg@551 2116 __ jcc(Assembler::zero, skipUnbox);
kamg@551 2117 assert(dst.first()->is_stack() &&
kamg@551 2118 (!dst.second()->is_valid() || dst.second()->is_stack()),
kamg@551 2119 "value(s) must go into stack slots");
kvn@600 2120
kvn@600 2121 BasicType bt = out_sig_bt[c_arg];
kvn@600 2122 int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
kvn@600 2123 if ( bt == T_LONG ) {
kamg@551 2124 __ movl(rbx, Address(in_reg,
kamg@551 2125 box_offset + VMRegImpl::stack_slot_size));
kamg@551 2126 __ movl(Address(rsp, reg2offset_out(dst.second())), rbx);
kamg@551 2127 }
kamg@551 2128 __ movl(in_reg, Address(in_reg, box_offset));
kamg@551 2129 __ movl(Address(rsp, reg2offset_out(dst.first())), in_reg);
kamg@551 2130 __ bind(skipUnbox);
kamg@551 2131 } else {
kamg@551 2132 // Convert the arg to NULL
kamg@551 2133 __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
kamg@551 2134 }
kamg@551 2135 if (out_sig_bt[c_arg] == T_LONG) {
kamg@551 2136 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 2137 ++c_arg; // Move over the T_VOID To keep the loop indices in sync
kamg@551 2138 }
kamg@551 2139 break;
kamg@551 2140
kamg@551 2141 case T_VOID:
kamg@551 2142 break;
kamg@551 2143
kamg@551 2144 case T_FLOAT:
kamg@551 2145 float_move(masm, src, dst);
kamg@551 2146 break;
kamg@551 2147
kamg@551 2148 case T_DOUBLE:
kamg@551 2149 assert( j_arg + 1 < total_args_passed &&
kamg@551 2150 in_sig_bt[j_arg + 1] == T_VOID, "bad arg list");
kamg@551 2151 double_move(masm, src, dst);
kamg@551 2152 break;
kamg@551 2153
kamg@551 2154 case T_LONG :
kamg@551 2155 long_move(masm, src, dst);
kamg@551 2156 break;
kamg@551 2157
kamg@551 2158 case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
kamg@551 2159
kamg@551 2160 default:
kamg@551 2161 simple_move32(masm, src, dst);
kamg@551 2162 }
kamg@551 2163 }
kamg@551 2164
kamg@551 2165 // Now we must convert any string we have to utf8
kamg@551 2166 //
kamg@551 2167
kamg@551 2168 for (sid = 0, j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 2169 sid < total_strings ; j_arg++, c_arg++ ) {
kamg@551 2170
kamg@551 2171 if (out_sig_bt[c_arg] == T_ADDRESS) {
kamg@551 2172
kamg@551 2173 Address utf8_addr = Address(
kamg@551 2174 rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
kamg@551 2175 __ leal(rax, utf8_addr);
kamg@551 2176
kamg@551 2177 // The first string we find might still be in the original java arg
kamg@551 2178 // register
kamg@551 2179 VMReg orig_loc = in_regs[j_arg].first();
kamg@551 2180 Register string_oop;
kamg@551 2181
kamg@551 2182 // This is where the argument will eventually reside
kamg@551 2183 Address dest = Address(rsp, reg2offset_out(out_regs[c_arg].first()));
kamg@551 2184
kamg@551 2185 if (sid == 1 && orig_loc->is_reg()) {
kamg@551 2186 string_oop = orig_loc->as_Register();
kamg@551 2187 assert(string_oop != rax, "smashed arg");
kamg@551 2188 } else {
kamg@551 2189
kamg@551 2190 if (orig_loc->is_reg()) {
kamg@551 2191 // Get the copy of the jls object
kamg@551 2192 __ movl(rcx, dest);
kamg@551 2193 } else {
kamg@551 2194 // arg is still in the original location
kamg@551 2195 __ movl(rcx, Address(rbp, reg2offset_in(orig_loc)));
kamg@551 2196 }
kamg@551 2197 string_oop = rcx;
kamg@551 2198
kamg@551 2199 }
kamg@551 2200 Label nullString;
kamg@551 2201 __ movl(dest, NULL_WORD);
kamg@551 2202 __ testl(string_oop, string_oop);
kamg@551 2203 __ jcc(Assembler::zero, nullString);
kamg@551 2204
kamg@551 2205 // Now we can store the address of the utf string as the argument
kamg@551 2206 __ movl(dest, rax);
kamg@551 2207
kamg@551 2208 // And do the conversion
kamg@551 2209 __ call_VM_leaf(CAST_FROM_FN_PTR(
kamg@551 2210 address, SharedRuntime::get_utf), string_oop, rax);
kamg@551 2211 __ bind(nullString);
kamg@551 2212 }
kamg@551 2213
kamg@551 2214 if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
kamg@551 2215 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 2216 ++c_arg; // Move over the T_VOID To keep the loop indices in sync
kamg@551 2217 }
kamg@551 2218 }
kamg@551 2219
kamg@551 2220
kamg@551 2221 // Ok now we are done. Need to place the nop that dtrace wants in order to
kamg@551 2222 // patch in the trap
kamg@551 2223
kamg@551 2224 int patch_offset = ((intptr_t)__ pc()) - start;
kamg@551 2225
kamg@551 2226 __ nop();
kamg@551 2227
kamg@551 2228
kamg@551 2229 // Return
kamg@551 2230
kamg@551 2231 __ leave();
kamg@551 2232 __ ret(0);
kamg@551 2233
kamg@551 2234 __ flush();
kamg@551 2235
kamg@551 2236 nmethod *nm = nmethod::new_dtrace_nmethod(
kamg@551 2237 method, masm->code(), vep_offset, patch_offset, frame_complete,
kamg@551 2238 stack_slots / VMRegImpl::slots_per_word);
kamg@551 2239 return nm;
kamg@551 2240
kamg@551 2241 }
kamg@551 2242
kamg@551 2243 #endif // HAVE_DTRACE_H
kamg@551 2244
duke@435 2245 // this function returns the adjust size (in number of words) to a c2i adapter
duke@435 2246 // activation for use during deoptimization
duke@435 2247 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
twisti@1861 2248 return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
duke@435 2249 }
duke@435 2250
duke@435 2251
duke@435 2252 uint SharedRuntime::out_preserve_stack_slots() {
duke@435 2253 return 0;
duke@435 2254 }
duke@435 2255
duke@435 2256
duke@435 2257 //------------------------------generate_deopt_blob----------------------------
duke@435 2258 void SharedRuntime::generate_deopt_blob() {
duke@435 2259 // allocate space for the code
duke@435 2260 ResourceMark rm;
duke@435 2261 // setup code generation tools
duke@435 2262 CodeBuffer buffer("deopt_blob", 1024, 1024);
duke@435 2263 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 2264 int frame_size_in_words;
duke@435 2265 OopMap* map = NULL;
duke@435 2266 // Account for the extra args we place on the stack
duke@435 2267 // by the time we call fetch_unroll_info
duke@435 2268 const int additional_words = 2; // deopt kind, thread
duke@435 2269
duke@435 2270 OopMapSet *oop_maps = new OopMapSet();
duke@435 2271
duke@435 2272 // -------------
duke@435 2273 // This code enters when returning to a de-optimized nmethod. A return
duke@435 2274 // address has been pushed on the the stack, and return values are in
duke@435 2275 // registers.
duke@435 2276 // If we are doing a normal deopt then we were called from the patched
duke@435 2277 // nmethod from the point we returned to the nmethod. So the return
duke@435 2278 // address on the stack is wrong by NativeCall::instruction_size
duke@435 2279 // We will adjust the value to it looks like we have the original return
duke@435 2280 // address on the stack (like when we eagerly deoptimized).
duke@435 2281 // In the case of an exception pending with deoptimized then we enter
duke@435 2282 // with a return address on the stack that points after the call we patched
duke@435 2283 // into the exception handler. We have the following register state:
duke@435 2284 // rax,: exception
duke@435 2285 // rbx,: exception handler
duke@435 2286 // rdx: throwing pc
duke@435 2287 // So in this case we simply jam rdx into the useless return address and
duke@435 2288 // the stack looks just like we want.
duke@435 2289 //
duke@435 2290 // At this point we need to de-opt. We save the argument return
duke@435 2291 // registers. We call the first C routine, fetch_unroll_info(). This
duke@435 2292 // routine captures the return values and returns a structure which
duke@435 2293 // describes the current frame size and the sizes of all replacement frames.
duke@435 2294 // The current frame is compiled code and may contain many inlined
duke@435 2295 // functions, each with their own JVM state. We pop the current frame, then
duke@435 2296 // push all the new frames. Then we call the C routine unpack_frames() to
duke@435 2297 // populate these frames. Finally unpack_frames() returns us the new target
duke@435 2298 // address. Notice that callee-save registers are BLOWN here; they have
duke@435 2299 // already been captured in the vframeArray at the time the return PC was
duke@435 2300 // patched.
duke@435 2301 address start = __ pc();
duke@435 2302 Label cont;
duke@435 2303
duke@435 2304 // Prolog for non exception case!
duke@435 2305
duke@435 2306 // Save everything in sight.
duke@435 2307
cfang@1361 2308 map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
duke@435 2309 // Normal deoptimization
never@739 2310 __ push(Deoptimization::Unpack_deopt);
duke@435 2311 __ jmp(cont);
duke@435 2312
duke@435 2313 int reexecute_offset = __ pc() - start;
duke@435 2314
duke@435 2315 // Reexecute case
duke@435 2316 // return address is the pc describes what bci to do re-execute at
duke@435 2317
duke@435 2318 // No need to update map as each call to save_live_registers will produce identical oopmap
cfang@1361 2319 (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
duke@435 2320
never@739 2321 __ push(Deoptimization::Unpack_reexecute);
duke@435 2322 __ jmp(cont);
duke@435 2323
duke@435 2324 int exception_offset = __ pc() - start;
duke@435 2325
duke@435 2326 // Prolog for exception case
duke@435 2327
duke@435 2328 // all registers are dead at this entry point, except for rax, and
duke@435 2329 // rdx which contain the exception oop and exception pc
duke@435 2330 // respectively. Set them in TLS and fall thru to the
duke@435 2331 // unpack_with_exception_in_tls entry point.
duke@435 2332
duke@435 2333 __ get_thread(rdi);
never@739 2334 __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
never@739 2335 __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
duke@435 2336
duke@435 2337 int exception_in_tls_offset = __ pc() - start;
duke@435 2338
duke@435 2339 // new implementation because exception oop is now passed in JavaThread
duke@435 2340
duke@435 2341 // Prolog for exception case
duke@435 2342 // All registers must be preserved because they might be used by LinearScan
duke@435 2343 // Exceptiop oop and throwing PC are passed in JavaThread
duke@435 2344 // tos: stack at point of call to method that threw the exception (i.e. only
duke@435 2345 // args are on the stack, no return address)
duke@435 2346
duke@435 2347 // make room on stack for the return address
duke@435 2348 // It will be patched later with the throwing pc. The correct value is not
duke@435 2349 // available now because loading it from memory would destroy registers.
never@739 2350 __ push(0);
duke@435 2351
duke@435 2352 // Save everything in sight.
duke@435 2353
duke@435 2354 // No need to update map as each call to save_live_registers will produce identical oopmap
cfang@1361 2355 (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
duke@435 2356
duke@435 2357 // Now it is safe to overwrite any register
duke@435 2358
duke@435 2359 // store the correct deoptimization type
never@739 2360 __ push(Deoptimization::Unpack_exception);
duke@435 2361
duke@435 2362 // load throwing pc from JavaThread and patch it as the return address
duke@435 2363 // of the current frame. Then clear the field in JavaThread
duke@435 2364 __ get_thread(rdi);
never@739 2365 __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
never@739 2366 __ movptr(Address(rbp, wordSize), rdx);
xlu@947 2367 __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
duke@435 2368
duke@435 2369 #ifdef ASSERT
duke@435 2370 // verify that there is really an exception oop in JavaThread
never@739 2371 __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
duke@435 2372 __ verify_oop(rax);
duke@435 2373
duke@435 2374 // verify that there is no pending exception
duke@435 2375 Label no_pending_exception;
never@739 2376 __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
never@739 2377 __ testptr(rax, rax);
duke@435 2378 __ jcc(Assembler::zero, no_pending_exception);
duke@435 2379 __ stop("must not have pending exception here");
duke@435 2380 __ bind(no_pending_exception);
duke@435 2381 #endif
duke@435 2382
duke@435 2383 __ bind(cont);
duke@435 2384
duke@435 2385 // Compiled code leaves the floating point stack dirty, empty it.
duke@435 2386 __ empty_FPU_stack();
duke@435 2387
duke@435 2388
duke@435 2389 // Call C code. Need thread and this frame, but NOT official VM entry
duke@435 2390 // crud. We cannot block on this call, no GC can happen.
duke@435 2391 __ get_thread(rcx);
never@739 2392 __ push(rcx);
duke@435 2393 // fetch_unroll_info needs to call last_java_frame()
duke@435 2394 __ set_last_Java_frame(rcx, noreg, noreg, NULL);
duke@435 2395
duke@435 2396 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
duke@435 2397
duke@435 2398 // Need to have an oopmap that tells fetch_unroll_info where to
duke@435 2399 // find any register it might need.
duke@435 2400
duke@435 2401 oop_maps->add_gc_map( __ pc()-start, map);
duke@435 2402
duke@435 2403 // Discard arg to fetch_unroll_info
never@739 2404 __ pop(rcx);
duke@435 2405
duke@435 2406 __ get_thread(rcx);
duke@435 2407 __ reset_last_Java_frame(rcx, false, false);
duke@435 2408
duke@435 2409 // Load UnrollBlock into EDI
never@739 2410 __ mov(rdi, rax);
duke@435 2411
duke@435 2412 // Move the unpack kind to a safe place in the UnrollBlock because
duke@435 2413 // we are very short of registers
duke@435 2414
duke@435 2415 Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
duke@435 2416 // retrieve the deopt kind from where we left it.
never@739 2417 __ pop(rax);
duke@435 2418 __ movl(unpack_kind, rax); // save the unpack_kind value
duke@435 2419
duke@435 2420 Label noException;
duke@435 2421 __ cmpl(rax, Deoptimization::Unpack_exception); // Was exception pending?
duke@435 2422 __ jcc(Assembler::notEqual, noException);
never@739 2423 __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
never@739 2424 __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
xlu@947 2425 __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
xlu@947 2426 __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
duke@435 2427
duke@435 2428 __ verify_oop(rax);
duke@435 2429
duke@435 2430 // Overwrite the result registers with the exception results.
never@739 2431 __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
never@739 2432 __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
duke@435 2433
duke@435 2434 __ bind(noException);
duke@435 2435
duke@435 2436 // Stack is back to only having register save data on the stack.
duke@435 2437 // Now restore the result registers. Everything else is either dead or captured
duke@435 2438 // in the vframeArray.
duke@435 2439
duke@435 2440 RegisterSaver::restore_result_registers(masm);
duke@435 2441
cfang@1361 2442 // Non standard control word may be leaked out through a safepoint blob, and we can
cfang@1361 2443 // deopt at a poll point with the non standard control word. However, we should make
cfang@1361 2444 // sure the control word is correct after restore_result_registers.
cfang@1361 2445 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
cfang@1361 2446
duke@435 2447 // All of the register save area has been popped of the stack. Only the
duke@435 2448 // return address remains.
duke@435 2449
duke@435 2450 // Pop all the frames we must move/replace.
duke@435 2451 //
duke@435 2452 // Frame picture (youngest to oldest)
duke@435 2453 // 1: self-frame (no frame link)
duke@435 2454 // 2: deopting frame (no frame link)
duke@435 2455 // 3: caller of deopting frame (could be compiled/interpreted).
duke@435 2456 //
duke@435 2457 // Note: by leaving the return address of self-frame on the stack
duke@435 2458 // and using the size of frame 2 to adjust the stack
duke@435 2459 // when we are done the return to frame 3 will still be on the stack.
duke@435 2460
duke@435 2461 // Pop deoptimized frame
never@739 2462 __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
duke@435 2463
duke@435 2464 // sp should be pointing at the return address to the caller (3)
duke@435 2465
duke@435 2466 // Stack bang to make sure there's enough room for these interpreter frames.
duke@435 2467 if (UseStackBanging) {
duke@435 2468 __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
duke@435 2469 __ bang_stack_size(rbx, rcx);
duke@435 2470 }
duke@435 2471
duke@435 2472 // Load array of frame pcs into ECX
never@739 2473 __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
never@739 2474
never@739 2475 __ pop(rsi); // trash the old pc
duke@435 2476
duke@435 2477 // Load array of frame sizes into ESI
never@739 2478 __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
duke@435 2479
duke@435 2480 Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
duke@435 2481
duke@435 2482 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
duke@435 2483 __ movl(counter, rbx);
duke@435 2484
duke@435 2485 // Pick up the initial fp we should save
never@739 2486 __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
duke@435 2487
duke@435 2488 // Now adjust the caller's stack to make up for the extra locals
duke@435 2489 // but record the original sp so that we can save it in the skeletal interpreter
duke@435 2490 // frame and the stack walking of interpreter_sender will get the unextended sp
duke@435 2491 // value and not the "real" sp value.
duke@435 2492
duke@435 2493 Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
never@739 2494 __ movptr(sp_temp, rsp);
never@739 2495 __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
never@739 2496 __ subptr(rsp, rbx);
duke@435 2497
duke@435 2498 // Push interpreter frames in a loop
duke@435 2499 Label loop;
duke@435 2500 __ bind(loop);
never@739 2501 __ movptr(rbx, Address(rsi, 0)); // Load frame size
duke@435 2502 #ifdef CC_INTERP
never@739 2503 __ subptr(rbx, 4*wordSize); // we'll push pc and ebp by hand and
duke@435 2504 #ifdef ASSERT
never@739 2505 __ push(0xDEADDEAD); // Make a recognizable pattern
never@739 2506 __ push(0xDEADDEAD);
duke@435 2507 #else /* ASSERT */
never@739 2508 __ subptr(rsp, 2*wordSize); // skip the "static long no_param"
duke@435 2509 #endif /* ASSERT */
duke@435 2510 #else /* CC_INTERP */
never@739 2511 __ subptr(rbx, 2*wordSize); // we'll push pc and rbp, by hand
duke@435 2512 #endif /* CC_INTERP */
never@739 2513 __ pushptr(Address(rcx, 0)); // save return address
duke@435 2514 __ enter(); // save old & set new rbp,
never@739 2515 __ subptr(rsp, rbx); // Prolog!
never@739 2516 __ movptr(rbx, sp_temp); // sender's sp
duke@435 2517 #ifdef CC_INTERP
never@739 2518 __ movptr(Address(rbp,
duke@435 2519 -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
duke@435 2520 rbx); // Make it walkable
duke@435 2521 #else /* CC_INTERP */
duke@435 2522 // This value is corrected by layout_activation_impl
xlu@947 2523 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
never@739 2524 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
duke@435 2525 #endif /* CC_INTERP */
never@739 2526 __ movptr(sp_temp, rsp); // pass to next frame
never@739 2527 __ addptr(rsi, wordSize); // Bump array pointer (sizes)
never@739 2528 __ addptr(rcx, wordSize); // Bump array pointer (pcs)
never@739 2529 __ decrementl(counter); // decrement counter
duke@435 2530 __ jcc(Assembler::notZero, loop);
never@739 2531 __ pushptr(Address(rcx, 0)); // save final return address
duke@435 2532
duke@435 2533 // Re-push self-frame
duke@435 2534 __ enter(); // save old & set new rbp,
duke@435 2535
duke@435 2536 // Return address and rbp, are in place
duke@435 2537 // We'll push additional args later. Just allocate a full sized
duke@435 2538 // register save area
never@739 2539 __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
duke@435 2540
duke@435 2541 // Restore frame locals after moving the frame
never@739 2542 __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
never@739 2543 __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
duke@435 2544 __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize)); // Pop float stack and store in local
duke@435 2545 if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
duke@435 2546 if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
duke@435 2547
duke@435 2548 // Set up the args to unpack_frame
duke@435 2549
duke@435 2550 __ pushl(unpack_kind); // get the unpack_kind value
duke@435 2551 __ get_thread(rcx);
never@739 2552 __ push(rcx);
duke@435 2553
duke@435 2554 // set last_Java_sp, last_Java_fp
duke@435 2555 __ set_last_Java_frame(rcx, noreg, rbp, NULL);
duke@435 2556
duke@435 2557 // Call C code. Need thread but NOT official VM entry
duke@435 2558 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 2559 // restore return values to their stack-slots with the new SP.
duke@435 2560 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
duke@435 2561 // Set an oopmap for the call site
duke@435 2562 oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
duke@435 2563
duke@435 2564 // rax, contains the return result type
never@739 2565 __ push(rax);
duke@435 2566
duke@435 2567 __ get_thread(rcx);
duke@435 2568 __ reset_last_Java_frame(rcx, false, false);
duke@435 2569
duke@435 2570 // Collect return values
never@739 2571 __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
never@739 2572 __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
duke@435 2573
duke@435 2574 // Clear floating point stack before returning to interpreter
duke@435 2575 __ empty_FPU_stack();
duke@435 2576
duke@435 2577 // Check if we should push the float or double return value.
duke@435 2578 Label results_done, yes_double_value;
duke@435 2579 __ cmpl(Address(rsp, 0), T_DOUBLE);
duke@435 2580 __ jcc (Assembler::zero, yes_double_value);
duke@435 2581 __ cmpl(Address(rsp, 0), T_FLOAT);
duke@435 2582 __ jcc (Assembler::notZero, results_done);
duke@435 2583
duke@435 2584 // return float value as expected by interpreter
duke@435 2585 if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
duke@435 2586 else __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
duke@435 2587 __ jmp(results_done);
duke@435 2588
duke@435 2589 // return double value as expected by interpreter
duke@435 2590 __ bind(yes_double_value);
duke@435 2591 if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
duke@435 2592 else __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
duke@435 2593
duke@435 2594 __ bind(results_done);
duke@435 2595
duke@435 2596 // Pop self-frame.
duke@435 2597 __ leave(); // Epilog!
duke@435 2598
duke@435 2599 // Jump to interpreter
duke@435 2600 __ ret(0);
duke@435 2601
duke@435 2602 // -------------
duke@435 2603 // make sure all code is generated
duke@435 2604 masm->flush();
duke@435 2605
duke@435 2606 _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
duke@435 2607 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
duke@435 2608 }
duke@435 2609
duke@435 2610
duke@435 2611 #ifdef COMPILER2
duke@435 2612 //------------------------------generate_uncommon_trap_blob--------------------
duke@435 2613 void SharedRuntime::generate_uncommon_trap_blob() {
duke@435 2614 // allocate space for the code
duke@435 2615 ResourceMark rm;
duke@435 2616 // setup code generation tools
duke@435 2617 CodeBuffer buffer("uncommon_trap_blob", 512, 512);
duke@435 2618 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 2619
duke@435 2620 enum frame_layout {
duke@435 2621 arg0_off, // thread sp + 0 // Arg location for
duke@435 2622 arg1_off, // unloaded_class_index sp + 1 // calling C
duke@435 2623 // The frame sender code expects that rbp will be in the "natural" place and
duke@435 2624 // will override any oopMap setting for it. We must therefore force the layout
duke@435 2625 // so that it agrees with the frame sender code.
duke@435 2626 rbp_off, // callee saved register sp + 2
duke@435 2627 return_off, // slot for return address sp + 3
duke@435 2628 framesize
duke@435 2629 };
duke@435 2630
duke@435 2631 address start = __ pc();
duke@435 2632 // Push self-frame.
never@739 2633 __ subptr(rsp, return_off*wordSize); // Epilog!
duke@435 2634
duke@435 2635 // rbp, is an implicitly saved callee saved register (i.e. the calling
duke@435 2636 // convention will save restore it in prolog/epilog) Other than that
duke@435 2637 // there are no callee save registers no that adapter frames are gone.
never@739 2638 __ movptr(Address(rsp, rbp_off*wordSize), rbp);
duke@435 2639
duke@435 2640 // Clear the floating point exception stack
duke@435 2641 __ empty_FPU_stack();
duke@435 2642
duke@435 2643 // set last_Java_sp
duke@435 2644 __ get_thread(rdx);
duke@435 2645 __ set_last_Java_frame(rdx, noreg, noreg, NULL);
duke@435 2646
duke@435 2647 // Call C code. Need thread but NOT official VM entry
duke@435 2648 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 2649 // capture callee-saved registers as well as return values.
never@739 2650 __ movptr(Address(rsp, arg0_off*wordSize), rdx);
duke@435 2651 // argument already in ECX
duke@435 2652 __ movl(Address(rsp, arg1_off*wordSize),rcx);
duke@435 2653 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
duke@435 2654
duke@435 2655 // Set an oopmap for the call site
duke@435 2656 OopMapSet *oop_maps = new OopMapSet();
duke@435 2657 OopMap* map = new OopMap( framesize, 0 );
duke@435 2658 // No oopMap for rbp, it is known implicitly
duke@435 2659
duke@435 2660 oop_maps->add_gc_map( __ pc()-start, map);
duke@435 2661
duke@435 2662 __ get_thread(rcx);
duke@435 2663
duke@435 2664 __ reset_last_Java_frame(rcx, false, false);
duke@435 2665
duke@435 2666 // Load UnrollBlock into EDI
never@739 2667 __ movptr(rdi, rax);
duke@435 2668
duke@435 2669 // Pop all the frames we must move/replace.
duke@435 2670 //
duke@435 2671 // Frame picture (youngest to oldest)
duke@435 2672 // 1: self-frame (no frame link)
duke@435 2673 // 2: deopting frame (no frame link)
duke@435 2674 // 3: caller of deopting frame (could be compiled/interpreted).
duke@435 2675
duke@435 2676 // Pop self-frame. We have no frame, and must rely only on EAX and ESP.
never@739 2677 __ addptr(rsp,(framesize-1)*wordSize); // Epilog!
duke@435 2678
duke@435 2679 // Pop deoptimized frame
never@739 2680 __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
never@739 2681 __ addptr(rsp, rcx);
duke@435 2682
duke@435 2683 // sp should be pointing at the return address to the caller (3)
duke@435 2684
duke@435 2685 // Stack bang to make sure there's enough room for these interpreter frames.
duke@435 2686 if (UseStackBanging) {
duke@435 2687 __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
duke@435 2688 __ bang_stack_size(rbx, rcx);
duke@435 2689 }
duke@435 2690
duke@435 2691
duke@435 2692 // Load array of frame pcs into ECX
duke@435 2693 __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
duke@435 2694
never@739 2695 __ pop(rsi); // trash the pc
duke@435 2696
duke@435 2697 // Load array of frame sizes into ESI
never@739 2698 __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
duke@435 2699
duke@435 2700 Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
duke@435 2701
duke@435 2702 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
duke@435 2703 __ movl(counter, rbx);
duke@435 2704
duke@435 2705 // Pick up the initial fp we should save
never@739 2706 __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
duke@435 2707
duke@435 2708 // Now adjust the caller's stack to make up for the extra locals
duke@435 2709 // but record the original sp so that we can save it in the skeletal interpreter
duke@435 2710 // frame and the stack walking of interpreter_sender will get the unextended sp
duke@435 2711 // value and not the "real" sp value.
duke@435 2712
duke@435 2713 Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
never@739 2714 __ movptr(sp_temp, rsp);
never@739 2715 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
never@739 2716 __ subptr(rsp, rbx);
duke@435 2717
duke@435 2718 // Push interpreter frames in a loop
duke@435 2719 Label loop;
duke@435 2720 __ bind(loop);
never@739 2721 __ movptr(rbx, Address(rsi, 0)); // Load frame size
duke@435 2722 #ifdef CC_INTERP
never@739 2723 __ subptr(rbx, 4*wordSize); // we'll push pc and ebp by hand and
duke@435 2724 #ifdef ASSERT
never@739 2725 __ push(0xDEADDEAD); // Make a recognizable pattern
never@739 2726 __ push(0xDEADDEAD); // (parm to RecursiveInterpreter...)
duke@435 2727 #else /* ASSERT */
never@739 2728 __ subptr(rsp, 2*wordSize); // skip the "static long no_param"
duke@435 2729 #endif /* ASSERT */
duke@435 2730 #else /* CC_INTERP */
never@739 2731 __ subptr(rbx, 2*wordSize); // we'll push pc and rbp, by hand
duke@435 2732 #endif /* CC_INTERP */
never@739 2733 __ pushptr(Address(rcx, 0)); // save return address
duke@435 2734 __ enter(); // save old & set new rbp,
never@739 2735 __ subptr(rsp, rbx); // Prolog!
never@739 2736 __ movptr(rbx, sp_temp); // sender's sp
duke@435 2737 #ifdef CC_INTERP
never@739 2738 __ movptr(Address(rbp,
duke@435 2739 -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
duke@435 2740 rbx); // Make it walkable
duke@435 2741 #else /* CC_INTERP */
duke@435 2742 // This value is corrected by layout_activation_impl
xlu@947 2743 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
never@739 2744 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
duke@435 2745 #endif /* CC_INTERP */
never@739 2746 __ movptr(sp_temp, rsp); // pass to next frame
never@739 2747 __ addptr(rsi, wordSize); // Bump array pointer (sizes)
never@739 2748 __ addptr(rcx, wordSize); // Bump array pointer (pcs)
never@739 2749 __ decrementl(counter); // decrement counter
duke@435 2750 __ jcc(Assembler::notZero, loop);
never@739 2751 __ pushptr(Address(rcx, 0)); // save final return address
duke@435 2752
duke@435 2753 // Re-push self-frame
duke@435 2754 __ enter(); // save old & set new rbp,
never@739 2755 __ subptr(rsp, (framesize-2) * wordSize); // Prolog!
duke@435 2756
duke@435 2757
duke@435 2758 // set last_Java_sp, last_Java_fp
duke@435 2759 __ get_thread(rdi);
duke@435 2760 __ set_last_Java_frame(rdi, noreg, rbp, NULL);
duke@435 2761
duke@435 2762 // Call C code. Need thread but NOT official VM entry
duke@435 2763 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 2764 // restore return values to their stack-slots with the new SP.
never@739 2765 __ movptr(Address(rsp,arg0_off*wordSize),rdi);
duke@435 2766 __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
duke@435 2767 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
duke@435 2768 // Set an oopmap for the call site
duke@435 2769 oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
duke@435 2770
duke@435 2771 __ get_thread(rdi);
duke@435 2772 __ reset_last_Java_frame(rdi, true, false);
duke@435 2773
duke@435 2774 // Pop self-frame.
duke@435 2775 __ leave(); // Epilog!
duke@435 2776
duke@435 2777 // Jump to interpreter
duke@435 2778 __ ret(0);
duke@435 2779
duke@435 2780 // -------------
duke@435 2781 // make sure all code is generated
duke@435 2782 masm->flush();
duke@435 2783
duke@435 2784 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
duke@435 2785 }
duke@435 2786 #endif // COMPILER2
duke@435 2787
duke@435 2788 //------------------------------generate_handler_blob------
duke@435 2789 //
duke@435 2790 // Generate a special Compile2Runtime blob that saves all registers,
duke@435 2791 // setup oopmap, and calls safepoint code to stop the compiled code for
duke@435 2792 // a safepoint.
duke@435 2793 //
duke@435 2794 static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
duke@435 2795
duke@435 2796 // Account for thread arg in our frame
duke@435 2797 const int additional_words = 1;
duke@435 2798 int frame_size_in_words;
duke@435 2799
duke@435 2800 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
duke@435 2801
duke@435 2802 ResourceMark rm;
duke@435 2803 OopMapSet *oop_maps = new OopMapSet();
duke@435 2804 OopMap* map;
duke@435 2805
duke@435 2806 // allocate space for the code
duke@435 2807 // setup code generation tools
duke@435 2808 CodeBuffer buffer("handler_blob", 1024, 512);
duke@435 2809 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 2810
duke@435 2811 const Register java_thread = rdi; // callee-saved for VC++
duke@435 2812 address start = __ pc();
duke@435 2813 address call_pc = NULL;
duke@435 2814
duke@435 2815 // If cause_return is true we are at a poll_return and there is
duke@435 2816 // the return address on the stack to the caller on the nmethod
duke@435 2817 // that is safepoint. We can leave this return on the stack and
duke@435 2818 // effectively complete the return and safepoint in the caller.
duke@435 2819 // Otherwise we push space for a return address that the safepoint
duke@435 2820 // handler will install later to make the stack walking sensible.
duke@435 2821 if( !cause_return )
never@739 2822 __ push(rbx); // Make room for return address (or push it again)
duke@435 2823
duke@435 2824 map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
duke@435 2825
duke@435 2826 // The following is basically a call_VM. However, we need the precise
duke@435 2827 // address of the call in order to generate an oopmap. Hence, we do all the
duke@435 2828 // work ourselves.
duke@435 2829
duke@435 2830 // Push thread argument and setup last_Java_sp
duke@435 2831 __ get_thread(java_thread);
never@739 2832 __ push(java_thread);
duke@435 2833 __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
duke@435 2834
duke@435 2835 // if this was not a poll_return then we need to correct the return address now.
duke@435 2836 if( !cause_return ) {
never@739 2837 __ movptr(rax, Address(java_thread, JavaThread::saved_exception_pc_offset()));
never@739 2838 __ movptr(Address(rbp, wordSize), rax);
duke@435 2839 }
duke@435 2840
duke@435 2841 // do the call
duke@435 2842 __ call(RuntimeAddress(call_ptr));
duke@435 2843
duke@435 2844 // Set an oopmap for the call site. This oopmap will map all
duke@435 2845 // oop-registers and debug-info registers as callee-saved. This
duke@435 2846 // will allow deoptimization at this safepoint to find all possible
duke@435 2847 // debug-info recordings, as well as let GC find all oops.
duke@435 2848
duke@435 2849 oop_maps->add_gc_map( __ pc() - start, map);
duke@435 2850
duke@435 2851 // Discard arg
never@739 2852 __ pop(rcx);
duke@435 2853
duke@435 2854 Label noException;
duke@435 2855
duke@435 2856 // Clear last_Java_sp again
duke@435 2857 __ get_thread(java_thread);
duke@435 2858 __ reset_last_Java_frame(java_thread, false, false);
duke@435 2859
never@739 2860 __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 2861 __ jcc(Assembler::equal, noException);
duke@435 2862
duke@435 2863 // Exception pending
duke@435 2864
duke@435 2865 RegisterSaver::restore_live_registers(masm);
duke@435 2866
duke@435 2867 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 2868
duke@435 2869 __ bind(noException);
duke@435 2870
duke@435 2871 // Normal exit, register restoring and exit
duke@435 2872 RegisterSaver::restore_live_registers(masm);
duke@435 2873
duke@435 2874 __ ret(0);
duke@435 2875
duke@435 2876 // make sure all code is generated
duke@435 2877 masm->flush();
duke@435 2878
duke@435 2879 // Fill-out other meta info
duke@435 2880 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
duke@435 2881 }
duke@435 2882
duke@435 2883 //
duke@435 2884 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
duke@435 2885 //
duke@435 2886 // Generate a stub that calls into vm to find out the proper destination
duke@435 2887 // of a java call. All the argument registers are live at this point
duke@435 2888 // but since this is generic code we don't know what they are and the caller
duke@435 2889 // must do any gc of the args.
duke@435 2890 //
duke@435 2891 static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
duke@435 2892 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
duke@435 2893
duke@435 2894 // allocate space for the code
duke@435 2895 ResourceMark rm;
duke@435 2896
duke@435 2897 CodeBuffer buffer(name, 1000, 512);
duke@435 2898 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 2899
duke@435 2900 int frame_size_words;
duke@435 2901 enum frame_layout {
duke@435 2902 thread_off,
duke@435 2903 extra_words };
duke@435 2904
duke@435 2905 OopMapSet *oop_maps = new OopMapSet();
duke@435 2906 OopMap* map = NULL;
duke@435 2907
duke@435 2908 int start = __ offset();
duke@435 2909
duke@435 2910 map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
duke@435 2911
duke@435 2912 int frame_complete = __ offset();
duke@435 2913
duke@435 2914 const Register thread = rdi;
duke@435 2915 __ get_thread(rdi);
duke@435 2916
never@739 2917 __ push(thread);
duke@435 2918 __ set_last_Java_frame(thread, noreg, rbp, NULL);
duke@435 2919
duke@435 2920 __ call(RuntimeAddress(destination));
duke@435 2921
duke@435 2922
duke@435 2923 // Set an oopmap for the call site.
duke@435 2924 // We need this not only for callee-saved registers, but also for volatile
duke@435 2925 // registers that the compiler might be keeping live across a safepoint.
duke@435 2926
duke@435 2927 oop_maps->add_gc_map( __ offset() - start, map);
duke@435 2928
duke@435 2929 // rax, contains the address we are going to jump to assuming no exception got installed
duke@435 2930
never@739 2931 __ addptr(rsp, wordSize);
duke@435 2932
duke@435 2933 // clear last_Java_sp
duke@435 2934 __ reset_last_Java_frame(thread, true, false);
duke@435 2935 // check for pending exceptions
duke@435 2936 Label pending;
never@739 2937 __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 2938 __ jcc(Assembler::notEqual, pending);
duke@435 2939
duke@435 2940 // get the returned methodOop
never@739 2941 __ movptr(rbx, Address(thread, JavaThread::vm_result_offset()));
never@739 2942 __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
never@739 2943
never@739 2944 __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
duke@435 2945
duke@435 2946 RegisterSaver::restore_live_registers(masm);
duke@435 2947
duke@435 2948 // We are back the the original state on entry and ready to go.
duke@435 2949
duke@435 2950 __ jmp(rax);
duke@435 2951
duke@435 2952 // Pending exception after the safepoint
duke@435 2953
duke@435 2954 __ bind(pending);
duke@435 2955
duke@435 2956 RegisterSaver::restore_live_registers(masm);
duke@435 2957
duke@435 2958 // exception pending => remove activation and forward to exception handler
duke@435 2959
duke@435 2960 __ get_thread(thread);
xlu@947 2961 __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
never@739 2962 __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
duke@435 2963 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 2964
duke@435 2965 // -------------
duke@435 2966 // make sure all code is generated
duke@435 2967 masm->flush();
duke@435 2968
duke@435 2969 // return the blob
duke@435 2970 // frame_size_words or bytes??
duke@435 2971 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
duke@435 2972 }
duke@435 2973
duke@435 2974 void SharedRuntime::generate_stubs() {
duke@435 2975
duke@435 2976 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
duke@435 2977 "wrong_method_stub");
duke@435 2978
duke@435 2979 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
duke@435 2980 "ic_miss_stub");
duke@435 2981
duke@435 2982 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
duke@435 2983 "resolve_opt_virtual_call");
duke@435 2984
duke@435 2985 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
duke@435 2986 "resolve_virtual_call");
duke@435 2987
duke@435 2988 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
duke@435 2989 "resolve_static_call");
duke@435 2990
duke@435 2991 _polling_page_safepoint_handler_blob =
duke@435 2992 generate_handler_blob(CAST_FROM_FN_PTR(address,
duke@435 2993 SafepointSynchronize::handle_polling_page_exception), false);
duke@435 2994
duke@435 2995 _polling_page_return_handler_blob =
duke@435 2996 generate_handler_blob(CAST_FROM_FN_PTR(address,
duke@435 2997 SafepointSynchronize::handle_polling_page_exception), true);
duke@435 2998
duke@435 2999 generate_deopt_blob();
duke@435 3000 #ifdef COMPILER2
duke@435 3001 generate_uncommon_trap_blob();
duke@435 3002 #endif // COMPILER2
duke@435 3003 }

mercurial