src/cpu/x86/vm/sharedRuntime_x86_32.cpp

Sat, 01 Sep 2012 13:25:18 -0400

author
coleenp
date
Sat, 01 Sep 2012 13:25:18 -0400
changeset 4037
da91efe96a93
parent 3969
1d7922586cf6
child 4051
8a02ca5e5576
permissions
-rw-r--r--

6964458: Reimplement class meta-data storage to use native memory
Summary: Remove PermGen, allocate meta-data in metaspace linked to class loaders, rewrite GC walking, rewrite and rename metadata to be C++ classes
Reviewed-by: jmasa, stefank, never, coleenp, kvn, brutisso, mgerdin, dholmes, jrose, twisti, roland
Contributed-by: jmasa <jon.masamitsu@oracle.com>, stefank <stefan.karlsson@oracle.com>, mgerdin <mikael.gerdin@oracle.com>, never <tom.rodriguez@oracle.com>

     1 /*
     2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "assembler_x86.inline.hpp"
    28 #include "code/debugInfoRec.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "interpreter/interpreter.hpp"
    32 #include "oops/compiledICHolder.hpp"
    33 #include "prims/jvmtiRedefineClassesTrace.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/vframeArray.hpp"
    36 #include "vmreg_x86.inline.hpp"
    37 #ifdef COMPILER1
    38 #include "c1/c1_Runtime1.hpp"
    39 #endif
    40 #ifdef COMPILER2
    41 #include "opto/runtime.hpp"
    42 #endif
    44 #define __ masm->
    46 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
    48 class RegisterSaver {
    49   enum { FPU_regs_live = 8 /*for the FPU stack*/+8/*eight more for XMM registers*/ };
    50   // Capture info about frame layout
    51   enum layout {
    52                 fpu_state_off = 0,
    53                 fpu_state_end = fpu_state_off+FPUStateSizeInWords-1,
    54                 st0_off, st0H_off,
    55                 st1_off, st1H_off,
    56                 st2_off, st2H_off,
    57                 st3_off, st3H_off,
    58                 st4_off, st4H_off,
    59                 st5_off, st5H_off,
    60                 st6_off, st6H_off,
    61                 st7_off, st7H_off,
    63                 xmm0_off, xmm0H_off,
    64                 xmm1_off, xmm1H_off,
    65                 xmm2_off, xmm2H_off,
    66                 xmm3_off, xmm3H_off,
    67                 xmm4_off, xmm4H_off,
    68                 xmm5_off, xmm5H_off,
    69                 xmm6_off, xmm6H_off,
    70                 xmm7_off, xmm7H_off,
    71                 flags_off,
    72                 rdi_off,
    73                 rsi_off,
    74                 ignore_off,  // extra copy of rbp,
    75                 rsp_off,
    76                 rbx_off,
    77                 rdx_off,
    78                 rcx_off,
    79                 rax_off,
    80                 // The frame sender code expects that rbp will be in the "natural" place and
    81                 // will override any oopMap setting for it. We must therefore force the layout
    82                 // so that it agrees with the frame sender code.
    83                 rbp_off,
    84                 return_off,      // slot for return address
    85                 reg_save_size };
    88   public:
    90   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
    91                                      int* total_frame_words, bool verify_fpu = true);
    92   static void restore_live_registers(MacroAssembler* masm);
    94   static int rax_offset() { return rax_off; }
    95   static int rbx_offset() { return rbx_off; }
    97   // Offsets into the register save area
    98   // Used by deoptimization when it is managing result register
    99   // values on its own
   101   static int raxOffset(void) { return rax_off; }
   102   static int rdxOffset(void) { return rdx_off; }
   103   static int rbxOffset(void) { return rbx_off; }
   104   static int xmm0Offset(void) { return xmm0_off; }
   105   // This really returns a slot in the fp save area, which one is not important
   106   static int fpResultOffset(void) { return st0_off; }
   108   // During deoptimization only the result register need to be restored
   109   // all the other values have already been extracted.
   111   static void restore_result_registers(MacroAssembler* masm);
   113 };
   115 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
   116                                            int* total_frame_words, bool verify_fpu) {
   118   int frame_size_in_bytes =  (reg_save_size + additional_frame_words) * wordSize;
   119   int frame_words = frame_size_in_bytes / wordSize;
   120   *total_frame_words = frame_words;
   122   assert(FPUStateSizeInWords == 27, "update stack layout");
   124   // save registers, fpu state, and flags
   125   // We assume caller has already has return address slot on the stack
   126   // We push epb twice in this sequence because we want the real rbp,
   127   // to be under the return like a normal enter and we want to use pusha
   128   // We push by hand instead of pusing push
   129   __ enter();
   130   __ pusha();
   131   __ pushf();
   132   __ subptr(rsp,FPU_regs_live*sizeof(jdouble)); // Push FPU registers space
   133   __ push_FPU_state();          // Save FPU state & init
   135   if (verify_fpu) {
   136     // Some stubs may have non standard FPU control word settings so
   137     // only check and reset the value when it required to be the
   138     // standard value.  The safepoint blob in particular can be used
   139     // in methods which are using the 24 bit control word for
   140     // optimized float math.
   142 #ifdef ASSERT
   143     // Make sure the control word has the expected value
   144     Label ok;
   145     __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
   146     __ jccb(Assembler::equal, ok);
   147     __ stop("corrupted control word detected");
   148     __ bind(ok);
   149 #endif
   151     // Reset the control word to guard against exceptions being unmasked
   152     // since fstp_d can cause FPU stack underflow exceptions.  Write it
   153     // into the on stack copy and then reload that to make sure that the
   154     // current and future values are correct.
   155     __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
   156   }
   158   __ frstor(Address(rsp, 0));
   159   if (!verify_fpu) {
   160     // Set the control word so that exceptions are masked for the
   161     // following code.
   162     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   163   }
   165   // Save the FPU registers in de-opt-able form
   167   __ fstp_d(Address(rsp, st0_off*wordSize)); // st(0)
   168   __ fstp_d(Address(rsp, st1_off*wordSize)); // st(1)
   169   __ fstp_d(Address(rsp, st2_off*wordSize)); // st(2)
   170   __ fstp_d(Address(rsp, st3_off*wordSize)); // st(3)
   171   __ fstp_d(Address(rsp, st4_off*wordSize)); // st(4)
   172   __ fstp_d(Address(rsp, st5_off*wordSize)); // st(5)
   173   __ fstp_d(Address(rsp, st6_off*wordSize)); // st(6)
   174   __ fstp_d(Address(rsp, st7_off*wordSize)); // st(7)
   176   if( UseSSE == 1 ) {           // Save the XMM state
   177     __ movflt(Address(rsp,xmm0_off*wordSize),xmm0);
   178     __ movflt(Address(rsp,xmm1_off*wordSize),xmm1);
   179     __ movflt(Address(rsp,xmm2_off*wordSize),xmm2);
   180     __ movflt(Address(rsp,xmm3_off*wordSize),xmm3);
   181     __ movflt(Address(rsp,xmm4_off*wordSize),xmm4);
   182     __ movflt(Address(rsp,xmm5_off*wordSize),xmm5);
   183     __ movflt(Address(rsp,xmm6_off*wordSize),xmm6);
   184     __ movflt(Address(rsp,xmm7_off*wordSize),xmm7);
   185   } else if( UseSSE >= 2 ) {
   186     __ movdbl(Address(rsp,xmm0_off*wordSize),xmm0);
   187     __ movdbl(Address(rsp,xmm1_off*wordSize),xmm1);
   188     __ movdbl(Address(rsp,xmm2_off*wordSize),xmm2);
   189     __ movdbl(Address(rsp,xmm3_off*wordSize),xmm3);
   190     __ movdbl(Address(rsp,xmm4_off*wordSize),xmm4);
   191     __ movdbl(Address(rsp,xmm5_off*wordSize),xmm5);
   192     __ movdbl(Address(rsp,xmm6_off*wordSize),xmm6);
   193     __ movdbl(Address(rsp,xmm7_off*wordSize),xmm7);
   194   }
   196   // Set an oopmap for the call site.  This oopmap will map all
   197   // oop-registers and debug-info registers as callee-saved.  This
   198   // will allow deoptimization at this safepoint to find all possible
   199   // debug-info recordings, as well as let GC find all oops.
   201   OopMapSet *oop_maps = new OopMapSet();
   202   OopMap* map =  new OopMap( frame_words, 0 );
   204 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
   206   map->set_callee_saved(STACK_OFFSET( rax_off), rax->as_VMReg());
   207   map->set_callee_saved(STACK_OFFSET( rcx_off), rcx->as_VMReg());
   208   map->set_callee_saved(STACK_OFFSET( rdx_off), rdx->as_VMReg());
   209   map->set_callee_saved(STACK_OFFSET( rbx_off), rbx->as_VMReg());
   210   // rbp, location is known implicitly, no oopMap
   211   map->set_callee_saved(STACK_OFFSET( rsi_off), rsi->as_VMReg());
   212   map->set_callee_saved(STACK_OFFSET( rdi_off), rdi->as_VMReg());
   213   map->set_callee_saved(STACK_OFFSET(st0_off), as_FloatRegister(0)->as_VMReg());
   214   map->set_callee_saved(STACK_OFFSET(st1_off), as_FloatRegister(1)->as_VMReg());
   215   map->set_callee_saved(STACK_OFFSET(st2_off), as_FloatRegister(2)->as_VMReg());
   216   map->set_callee_saved(STACK_OFFSET(st3_off), as_FloatRegister(3)->as_VMReg());
   217   map->set_callee_saved(STACK_OFFSET(st4_off), as_FloatRegister(4)->as_VMReg());
   218   map->set_callee_saved(STACK_OFFSET(st5_off), as_FloatRegister(5)->as_VMReg());
   219   map->set_callee_saved(STACK_OFFSET(st6_off), as_FloatRegister(6)->as_VMReg());
   220   map->set_callee_saved(STACK_OFFSET(st7_off), as_FloatRegister(7)->as_VMReg());
   221   map->set_callee_saved(STACK_OFFSET(xmm0_off), xmm0->as_VMReg());
   222   map->set_callee_saved(STACK_OFFSET(xmm1_off), xmm1->as_VMReg());
   223   map->set_callee_saved(STACK_OFFSET(xmm2_off), xmm2->as_VMReg());
   224   map->set_callee_saved(STACK_OFFSET(xmm3_off), xmm3->as_VMReg());
   225   map->set_callee_saved(STACK_OFFSET(xmm4_off), xmm4->as_VMReg());
   226   map->set_callee_saved(STACK_OFFSET(xmm5_off), xmm5->as_VMReg());
   227   map->set_callee_saved(STACK_OFFSET(xmm6_off), xmm6->as_VMReg());
   228   map->set_callee_saved(STACK_OFFSET(xmm7_off), xmm7->as_VMReg());
   229   // %%% This is really a waste but we'll keep things as they were for now
   230   if (true) {
   231 #define NEXTREG(x) (x)->as_VMReg()->next()
   232     map->set_callee_saved(STACK_OFFSET(st0H_off), NEXTREG(as_FloatRegister(0)));
   233     map->set_callee_saved(STACK_OFFSET(st1H_off), NEXTREG(as_FloatRegister(1)));
   234     map->set_callee_saved(STACK_OFFSET(st2H_off), NEXTREG(as_FloatRegister(2)));
   235     map->set_callee_saved(STACK_OFFSET(st3H_off), NEXTREG(as_FloatRegister(3)));
   236     map->set_callee_saved(STACK_OFFSET(st4H_off), NEXTREG(as_FloatRegister(4)));
   237     map->set_callee_saved(STACK_OFFSET(st5H_off), NEXTREG(as_FloatRegister(5)));
   238     map->set_callee_saved(STACK_OFFSET(st6H_off), NEXTREG(as_FloatRegister(6)));
   239     map->set_callee_saved(STACK_OFFSET(st7H_off), NEXTREG(as_FloatRegister(7)));
   240     map->set_callee_saved(STACK_OFFSET(xmm0H_off), NEXTREG(xmm0));
   241     map->set_callee_saved(STACK_OFFSET(xmm1H_off), NEXTREG(xmm1));
   242     map->set_callee_saved(STACK_OFFSET(xmm2H_off), NEXTREG(xmm2));
   243     map->set_callee_saved(STACK_OFFSET(xmm3H_off), NEXTREG(xmm3));
   244     map->set_callee_saved(STACK_OFFSET(xmm4H_off), NEXTREG(xmm4));
   245     map->set_callee_saved(STACK_OFFSET(xmm5H_off), NEXTREG(xmm5));
   246     map->set_callee_saved(STACK_OFFSET(xmm6H_off), NEXTREG(xmm6));
   247     map->set_callee_saved(STACK_OFFSET(xmm7H_off), NEXTREG(xmm7));
   248 #undef NEXTREG
   249 #undef STACK_OFFSET
   250   }
   252   return map;
   254 }
   256 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
   258   // Recover XMM & FPU state
   259   if( UseSSE == 1 ) {
   260     __ movflt(xmm0,Address(rsp,xmm0_off*wordSize));
   261     __ movflt(xmm1,Address(rsp,xmm1_off*wordSize));
   262     __ movflt(xmm2,Address(rsp,xmm2_off*wordSize));
   263     __ movflt(xmm3,Address(rsp,xmm3_off*wordSize));
   264     __ movflt(xmm4,Address(rsp,xmm4_off*wordSize));
   265     __ movflt(xmm5,Address(rsp,xmm5_off*wordSize));
   266     __ movflt(xmm6,Address(rsp,xmm6_off*wordSize));
   267     __ movflt(xmm7,Address(rsp,xmm7_off*wordSize));
   268   } else if( UseSSE >= 2 ) {
   269     __ movdbl(xmm0,Address(rsp,xmm0_off*wordSize));
   270     __ movdbl(xmm1,Address(rsp,xmm1_off*wordSize));
   271     __ movdbl(xmm2,Address(rsp,xmm2_off*wordSize));
   272     __ movdbl(xmm3,Address(rsp,xmm3_off*wordSize));
   273     __ movdbl(xmm4,Address(rsp,xmm4_off*wordSize));
   274     __ movdbl(xmm5,Address(rsp,xmm5_off*wordSize));
   275     __ movdbl(xmm6,Address(rsp,xmm6_off*wordSize));
   276     __ movdbl(xmm7,Address(rsp,xmm7_off*wordSize));
   277   }
   278   __ pop_FPU_state();
   279   __ addptr(rsp, FPU_regs_live*sizeof(jdouble)); // Pop FPU registers
   281   __ popf();
   282   __ popa();
   283   // Get the rbp, described implicitly by the frame sender code (no oopMap)
   284   __ pop(rbp);
   286 }
   288 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
   290   // Just restore result register. Only used by deoptimization. By
   291   // now any callee save register that needs to be restore to a c2
   292   // caller of the deoptee has been extracted into the vframeArray
   293   // and will be stuffed into the c2i adapter we create for later
   294   // restoration so only result registers need to be restored here.
   295   //
   297   __ frstor(Address(rsp, 0));      // Restore fpu state
   299   // Recover XMM & FPU state
   300   if( UseSSE == 1 ) {
   301     __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
   302   } else if( UseSSE >= 2 ) {
   303     __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
   304   }
   305   __ movptr(rax, Address(rsp, rax_off*wordSize));
   306   __ movptr(rdx, Address(rsp, rdx_off*wordSize));
   307   // Pop all of the register save are off the stack except the return address
   308   __ addptr(rsp, return_off * wordSize);
   309 }
   311 // The java_calling_convention describes stack locations as ideal slots on
   312 // a frame with no abi restrictions. Since we must observe abi restrictions
   313 // (like the placement of the register window) the slots must be biased by
   314 // the following value.
   315 static int reg2offset_in(VMReg r) {
   316   // Account for saved rbp, and return address
   317   // This should really be in_preserve_stack_slots
   318   return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
   319 }
   321 static int reg2offset_out(VMReg r) {
   322   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
   323 }
   325 // ---------------------------------------------------------------------------
   326 // Read the array of BasicTypes from a signature, and compute where the
   327 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
   328 // quantities.  Values less than SharedInfo::stack0 are registers, those above
   329 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
   330 // as framesizes are fixed.
   331 // VMRegImpl::stack0 refers to the first slot 0(sp).
   332 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
   333 // up to RegisterImpl::number_of_registers) are the 32-bit
   334 // integer registers.
   336 // Pass first two oop/int args in registers ECX and EDX.
   337 // Pass first two float/double args in registers XMM0 and XMM1.
   338 // Doubles have precedence, so if you pass a mix of floats and doubles
   339 // the doubles will grab the registers before the floats will.
   341 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
   342 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
   343 // units regardless of build. Of course for i486 there is no 64 bit build
   346 // ---------------------------------------------------------------------------
   347 // The compiled Java calling convention.
   348 // Pass first two oop/int args in registers ECX and EDX.
   349 // Pass first two float/double args in registers XMM0 and XMM1.
   350 // Doubles have precedence, so if you pass a mix of floats and doubles
   351 // the doubles will grab the registers before the floats will.
   352 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
   353                                            VMRegPair *regs,
   354                                            int total_args_passed,
   355                                            int is_outgoing) {
   356   uint    stack = 0;          // Starting stack position for args on stack
   359   // Pass first two oop/int args in registers ECX and EDX.
   360   uint reg_arg0 = 9999;
   361   uint reg_arg1 = 9999;
   363   // Pass first two float/double args in registers XMM0 and XMM1.
   364   // Doubles have precedence, so if you pass a mix of floats and doubles
   365   // the doubles will grab the registers before the floats will.
   366   // CNC - TURNED OFF FOR non-SSE.
   367   //       On Intel we have to round all doubles (and most floats) at
   368   //       call sites by storing to the stack in any case.
   369   // UseSSE=0 ==> Don't Use ==> 9999+0
   370   // UseSSE=1 ==> Floats only ==> 9999+1
   371   // UseSSE>=2 ==> Floats or doubles ==> 9999+2
   372   enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
   373   uint fargs = (UseSSE>=2) ? 2 : UseSSE;
   374   uint freg_arg0 = 9999+fargs;
   375   uint freg_arg1 = 9999+fargs;
   377   // Pass doubles & longs aligned on the stack.  First count stack slots for doubles
   378   int i;
   379   for( i = 0; i < total_args_passed; i++) {
   380     if( sig_bt[i] == T_DOUBLE ) {
   381       // first 2 doubles go in registers
   382       if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
   383       else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
   384       else // Else double is passed low on the stack to be aligned.
   385         stack += 2;
   386     } else if( sig_bt[i] == T_LONG ) {
   387       stack += 2;
   388     }
   389   }
   390   int dstack = 0;             // Separate counter for placing doubles
   392   // Now pick where all else goes.
   393   for( i = 0; i < total_args_passed; i++) {
   394     // From the type and the argument number (count) compute the location
   395     switch( sig_bt[i] ) {
   396     case T_SHORT:
   397     case T_CHAR:
   398     case T_BYTE:
   399     case T_BOOLEAN:
   400     case T_INT:
   401     case T_ARRAY:
   402     case T_OBJECT:
   403     case T_ADDRESS:
   404       if( reg_arg0 == 9999 )  {
   405         reg_arg0 = i;
   406         regs[i].set1(rcx->as_VMReg());
   407       } else if( reg_arg1 == 9999 )  {
   408         reg_arg1 = i;
   409         regs[i].set1(rdx->as_VMReg());
   410       } else {
   411         regs[i].set1(VMRegImpl::stack2reg(stack++));
   412       }
   413       break;
   414     case T_FLOAT:
   415       if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
   416         freg_arg0 = i;
   417         regs[i].set1(xmm0->as_VMReg());
   418       } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
   419         freg_arg1 = i;
   420         regs[i].set1(xmm1->as_VMReg());
   421       } else {
   422         regs[i].set1(VMRegImpl::stack2reg(stack++));
   423       }
   424       break;
   425     case T_LONG:
   426       assert(sig_bt[i+1] == T_VOID, "missing Half" );
   427       regs[i].set2(VMRegImpl::stack2reg(dstack));
   428       dstack += 2;
   429       break;
   430     case T_DOUBLE:
   431       assert(sig_bt[i+1] == T_VOID, "missing Half" );
   432       if( freg_arg0 == (uint)i ) {
   433         regs[i].set2(xmm0->as_VMReg());
   434       } else if( freg_arg1 == (uint)i ) {
   435         regs[i].set2(xmm1->as_VMReg());
   436       } else {
   437         regs[i].set2(VMRegImpl::stack2reg(dstack));
   438         dstack += 2;
   439       }
   440       break;
   441     case T_VOID: regs[i].set_bad(); break;
   442       break;
   443     default:
   444       ShouldNotReachHere();
   445       break;
   446     }
   447   }
   449   // return value can be odd number of VMRegImpl stack slots make multiple of 2
   450   return round_to(stack, 2);
   451 }
   453 // Patch the callers callsite with entry to compiled code if it exists.
   454 static void patch_callers_callsite(MacroAssembler *masm) {
   455   Label L;
   456   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
   457   __ jcc(Assembler::equal, L);
   458   // Schedule the branch target address early.
   459   // Call into the VM to patch the caller, then jump to compiled callee
   460   // rax, isn't live so capture return address while we easily can
   461   __ movptr(rax, Address(rsp, 0));
   462   __ pusha();
   463   __ pushf();
   465   if (UseSSE == 1) {
   466     __ subptr(rsp, 2*wordSize);
   467     __ movflt(Address(rsp, 0), xmm0);
   468     __ movflt(Address(rsp, wordSize), xmm1);
   469   }
   470   if (UseSSE >= 2) {
   471     __ subptr(rsp, 4*wordSize);
   472     __ movdbl(Address(rsp, 0), xmm0);
   473     __ movdbl(Address(rsp, 2*wordSize), xmm1);
   474   }
   475 #ifdef COMPILER2
   476   // C2 may leave the stack dirty if not in SSE2+ mode
   477   if (UseSSE >= 2) {
   478     __ verify_FPU(0, "c2i transition should have clean FPU stack");
   479   } else {
   480     __ empty_FPU_stack();
   481   }
   482 #endif /* COMPILER2 */
   484   // VM needs caller's callsite
   485   __ push(rax);
   486   // VM needs target method
   487   __ push(rbx);
   488   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
   489   __ addptr(rsp, 2*wordSize);
   491   if (UseSSE == 1) {
   492     __ movflt(xmm0, Address(rsp, 0));
   493     __ movflt(xmm1, Address(rsp, wordSize));
   494     __ addptr(rsp, 2*wordSize);
   495   }
   496   if (UseSSE >= 2) {
   497     __ movdbl(xmm0, Address(rsp, 0));
   498     __ movdbl(xmm1, Address(rsp, 2*wordSize));
   499     __ addptr(rsp, 4*wordSize);
   500   }
   502   __ popf();
   503   __ popa();
   504   __ bind(L);
   505 }
   508 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
   509   int next_off = st_off - Interpreter::stackElementSize;
   510   __ movdbl(Address(rsp, next_off), r);
   511 }
   513 static void gen_c2i_adapter(MacroAssembler *masm,
   514                             int total_args_passed,
   515                             int comp_args_on_stack,
   516                             const BasicType *sig_bt,
   517                             const VMRegPair *regs,
   518                             Label& skip_fixup) {
   519   // Before we get into the guts of the C2I adapter, see if we should be here
   520   // at all.  We've come from compiled code and are attempting to jump to the
   521   // interpreter, which means the caller made a static call to get here
   522   // (vcalls always get a compiled target if there is one).  Check for a
   523   // compiled target.  If there is one, we need to patch the caller's call.
   524   patch_callers_callsite(masm);
   526   __ bind(skip_fixup);
   528 #ifdef COMPILER2
   529   // C2 may leave the stack dirty if not in SSE2+ mode
   530   if (UseSSE >= 2) {
   531     __ verify_FPU(0, "c2i transition should have clean FPU stack");
   532   } else {
   533     __ empty_FPU_stack();
   534   }
   535 #endif /* COMPILER2 */
   537   // Since all args are passed on the stack, total_args_passed * interpreter_
   538   // stack_element_size  is the
   539   // space we need.
   540   int extraspace = total_args_passed * Interpreter::stackElementSize;
   542   // Get return address
   543   __ pop(rax);
   545   // set senderSP value
   546   __ movptr(rsi, rsp);
   548   __ subptr(rsp, extraspace);
   550   // Now write the args into the outgoing interpreter space
   551   for (int i = 0; i < total_args_passed; i++) {
   552     if (sig_bt[i] == T_VOID) {
   553       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   554       continue;
   555     }
   557     // st_off points to lowest address on stack.
   558     int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize;
   559     int next_off = st_off - Interpreter::stackElementSize;
   561     // Say 4 args:
   562     // i   st_off
   563     // 0   12 T_LONG
   564     // 1    8 T_VOID
   565     // 2    4 T_OBJECT
   566     // 3    0 T_BOOL
   567     VMReg r_1 = regs[i].first();
   568     VMReg r_2 = regs[i].second();
   569     if (!r_1->is_valid()) {
   570       assert(!r_2->is_valid(), "");
   571       continue;
   572     }
   574     if (r_1->is_stack()) {
   575       // memory to memory use fpu stack top
   576       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
   578       if (!r_2->is_valid()) {
   579         __ movl(rdi, Address(rsp, ld_off));
   580         __ movptr(Address(rsp, st_off), rdi);
   581       } else {
   583         // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
   584         // st_off == MSW, st_off-wordSize == LSW
   586         __ movptr(rdi, Address(rsp, ld_off));
   587         __ movptr(Address(rsp, next_off), rdi);
   588 #ifndef _LP64
   589         __ movptr(rdi, Address(rsp, ld_off + wordSize));
   590         __ movptr(Address(rsp, st_off), rdi);
   591 #else
   592 #ifdef ASSERT
   593         // Overwrite the unused slot with known junk
   594         __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
   595         __ movptr(Address(rsp, st_off), rax);
   596 #endif /* ASSERT */
   597 #endif // _LP64
   598       }
   599     } else if (r_1->is_Register()) {
   600       Register r = r_1->as_Register();
   601       if (!r_2->is_valid()) {
   602         __ movl(Address(rsp, st_off), r);
   603       } else {
   604         // long/double in gpr
   605         NOT_LP64(ShouldNotReachHere());
   606         // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
   607         // T_DOUBLE and T_LONG use two slots in the interpreter
   608         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   609           // long/double in gpr
   610 #ifdef ASSERT
   611           // Overwrite the unused slot with known junk
   612           LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
   613           __ movptr(Address(rsp, st_off), rax);
   614 #endif /* ASSERT */
   615           __ movptr(Address(rsp, next_off), r);
   616         } else {
   617           __ movptr(Address(rsp, st_off), r);
   618         }
   619       }
   620     } else {
   621       assert(r_1->is_XMMRegister(), "");
   622       if (!r_2->is_valid()) {
   623         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
   624       } else {
   625         assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
   626         move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
   627       }
   628     }
   629   }
   631   // Schedule the branch target address early.
   632   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
   633   // And repush original return address
   634   __ push(rax);
   635   __ jmp(rcx);
   636 }
   639 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
   640   int next_val_off = ld_off - Interpreter::stackElementSize;
   641   __ movdbl(r, Address(saved_sp, next_val_off));
   642 }
   644 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
   645                         address code_start, address code_end,
   646                         Label& L_ok) {
   647   Label L_fail;
   648   __ lea(temp_reg, ExternalAddress(code_start));
   649   __ cmpptr(pc_reg, temp_reg);
   650   __ jcc(Assembler::belowEqual, L_fail);
   651   __ lea(temp_reg, ExternalAddress(code_end));
   652   __ cmpptr(pc_reg, temp_reg);
   653   __ jcc(Assembler::below, L_ok);
   654   __ bind(L_fail);
   655 }
   657 static void gen_i2c_adapter(MacroAssembler *masm,
   658                             int total_args_passed,
   659                             int comp_args_on_stack,
   660                             const BasicType *sig_bt,
   661                             const VMRegPair *regs) {
   663   // Note: rsi contains the senderSP on entry. We must preserve it since
   664   // we may do a i2c -> c2i transition if we lose a race where compiled
   665   // code goes non-entrant while we get args ready.
   667   // Adapters can be frameless because they do not require the caller
   668   // to perform additional cleanup work, such as correcting the stack pointer.
   669   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
   670   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
   671   // even if a callee has modified the stack pointer.
   672   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
   673   // routinely repairs its caller's stack pointer (from sender_sp, which is set
   674   // up via the senderSP register).
   675   // In other words, if *either* the caller or callee is interpreted, we can
   676   // get the stack pointer repaired after a call.
   677   // This is why c2i and i2c adapters cannot be indefinitely composed.
   678   // In particular, if a c2i adapter were to somehow call an i2c adapter,
   679   // both caller and callee would be compiled methods, and neither would
   680   // clean up the stack pointer changes performed by the two adapters.
   681   // If this happens, control eventually transfers back to the compiled
   682   // caller, but with an uncorrected stack, causing delayed havoc.
   684   // Pick up the return address
   685   __ movptr(rax, Address(rsp, 0));
   687   if (VerifyAdapterCalls &&
   688       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
   689     // So, let's test for cascading c2i/i2c adapters right now.
   690     //  assert(Interpreter::contains($return_addr) ||
   691     //         StubRoutines::contains($return_addr),
   692     //         "i2c adapter must return to an interpreter frame");
   693     __ block_comment("verify_i2c { ");
   694     Label L_ok;
   695     if (Interpreter::code() != NULL)
   696       range_check(masm, rax, rdi,
   697                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
   698                   L_ok);
   699     if (StubRoutines::code1() != NULL)
   700       range_check(masm, rax, rdi,
   701                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
   702                   L_ok);
   703     if (StubRoutines::code2() != NULL)
   704       range_check(masm, rax, rdi,
   705                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
   706                   L_ok);
   707     const char* msg = "i2c adapter must return to an interpreter frame";
   708     __ block_comment(msg);
   709     __ stop(msg);
   710     __ bind(L_ok);
   711     __ block_comment("} verify_i2ce ");
   712   }
   714   // Must preserve original SP for loading incoming arguments because
   715   // we need to align the outgoing SP for compiled code.
   716   __ movptr(rdi, rsp);
   718   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
   719   // in registers, we will occasionally have no stack args.
   720   int comp_words_on_stack = 0;
   721   if (comp_args_on_stack) {
   722     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
   723     // registers are below.  By subtracting stack0, we either get a negative
   724     // number (all values in registers) or the maximum stack slot accessed.
   725     // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
   726     // Convert 4-byte stack slots to words.
   727     comp_words_on_stack = round_to(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
   728     // Round up to miminum stack alignment, in wordSize
   729     comp_words_on_stack = round_to(comp_words_on_stack, 2);
   730     __ subptr(rsp, comp_words_on_stack * wordSize);
   731   }
   733   // Align the outgoing SP
   734   __ andptr(rsp, -(StackAlignmentInBytes));
   736   // push the return address on the stack (note that pushing, rather
   737   // than storing it, yields the correct frame alignment for the callee)
   738   __ push(rax);
   740   // Put saved SP in another register
   741   const Register saved_sp = rax;
   742   __ movptr(saved_sp, rdi);
   745   // Will jump to the compiled code just as if compiled code was doing it.
   746   // Pre-load the register-jump target early, to schedule it better.
   747   __ movptr(rdi, Address(rbx, in_bytes(Method::from_compiled_offset())));
   749   // Now generate the shuffle code.  Pick up all register args and move the
   750   // rest through the floating point stack top.
   751   for (int i = 0; i < total_args_passed; i++) {
   752     if (sig_bt[i] == T_VOID) {
   753       // Longs and doubles are passed in native word order, but misaligned
   754       // in the 32-bit build.
   755       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   756       continue;
   757     }
   759     // Pick up 0, 1 or 2 words from SP+offset.
   761     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
   762             "scrambled load targets?");
   763     // Load in argument order going down.
   764     int ld_off = (total_args_passed - i) * Interpreter::stackElementSize;
   765     // Point to interpreter value (vs. tag)
   766     int next_off = ld_off - Interpreter::stackElementSize;
   767     //
   768     //
   769     //
   770     VMReg r_1 = regs[i].first();
   771     VMReg r_2 = regs[i].second();
   772     if (!r_1->is_valid()) {
   773       assert(!r_2->is_valid(), "");
   774       continue;
   775     }
   776     if (r_1->is_stack()) {
   777       // Convert stack slot to an SP offset (+ wordSize to account for return address )
   778       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
   780       // We can use rsi as a temp here because compiled code doesn't need rsi as an input
   781       // and if we end up going thru a c2i because of a miss a reasonable value of rsi
   782       // we be generated.
   783       if (!r_2->is_valid()) {
   784         // __ fld_s(Address(saved_sp, ld_off));
   785         // __ fstp_s(Address(rsp, st_off));
   786         __ movl(rsi, Address(saved_sp, ld_off));
   787         __ movptr(Address(rsp, st_off), rsi);
   788       } else {
   789         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
   790         // are accessed as negative so LSW is at LOW address
   792         // ld_off is MSW so get LSW
   793         // st_off is LSW (i.e. reg.first())
   794         // __ fld_d(Address(saved_sp, next_off));
   795         // __ fstp_d(Address(rsp, st_off));
   796         //
   797         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   798         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   799         // So we must adjust where to pick up the data to match the interpreter.
   800         //
   801         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
   802         // are accessed as negative so LSW is at LOW address
   804         // ld_off is MSW so get LSW
   805         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   806                            next_off : ld_off;
   807         __ movptr(rsi, Address(saved_sp, offset));
   808         __ movptr(Address(rsp, st_off), rsi);
   809 #ifndef _LP64
   810         __ movptr(rsi, Address(saved_sp, ld_off));
   811         __ movptr(Address(rsp, st_off + wordSize), rsi);
   812 #endif // _LP64
   813       }
   814     } else if (r_1->is_Register()) {  // Register argument
   815       Register r = r_1->as_Register();
   816       assert(r != rax, "must be different");
   817       if (r_2->is_valid()) {
   818         //
   819         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   820         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   821         // So we must adjust where to pick up the data to match the interpreter.
   823         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   824                            next_off : ld_off;
   826         // this can be a misaligned move
   827         __ movptr(r, Address(saved_sp, offset));
   828 #ifndef _LP64
   829         assert(r_2->as_Register() != rax, "need another temporary register");
   830         // Remember r_1 is low address (and LSB on x86)
   831         // So r_2 gets loaded from high address regardless of the platform
   832         __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
   833 #endif // _LP64
   834       } else {
   835         __ movl(r, Address(saved_sp, ld_off));
   836       }
   837     } else {
   838       assert(r_1->is_XMMRegister(), "");
   839       if (!r_2->is_valid()) {
   840         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
   841       } else {
   842         move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
   843       }
   844     }
   845   }
   847   // 6243940 We might end up in handle_wrong_method if
   848   // the callee is deoptimized as we race thru here. If that
   849   // happens we don't want to take a safepoint because the
   850   // caller frame will look interpreted and arguments are now
   851   // "compiled" so it is much better to make this transition
   852   // invisible to the stack walking code. Unfortunately if
   853   // we try and find the callee by normal means a safepoint
   854   // is possible. So we stash the desired callee in the thread
   855   // and the vm will find there should this case occur.
   857   __ get_thread(rax);
   858   __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
   860   // move Method* to rax, in case we end up in an c2i adapter.
   861   // the c2i adapters expect Method* in rax, (c2) because c2's
   862   // resolve stubs return the result (the method) in rax,.
   863   // I'd love to fix this.
   864   __ mov(rax, rbx);
   866   __ jmp(rdi);
   867 }
   869 // ---------------------------------------------------------------
   870 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
   871                                                             int total_args_passed,
   872                                                             int comp_args_on_stack,
   873                                                             const BasicType *sig_bt,
   874                                                             const VMRegPair *regs,
   875                                                             AdapterFingerPrint* fingerprint) {
   876   address i2c_entry = __ pc();
   878   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
   880   // -------------------------------------------------------------------------
   881   // Generate a C2I adapter.  On entry we know rbx, holds the Method* during calls
   882   // to the interpreter.  The args start out packed in the compiled layout.  They
   883   // need to be unpacked into the interpreter layout.  This will almost always
   884   // require some stack space.  We grow the current (compiled) stack, then repack
   885   // the args.  We  finally end in a jump to the generic interpreter entry point.
   886   // On exit from the interpreter, the interpreter will restore our SP (lest the
   887   // compiled code, which relys solely on SP and not EBP, get sick).
   889   address c2i_unverified_entry = __ pc();
   890   Label skip_fixup;
   892   Register holder = rax;
   893   Register receiver = rcx;
   894   Register temp = rbx;
   896   {
   898     Label missed;
   899     __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
   900     __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
   901     __ movptr(rbx, Address(holder, CompiledICHolder::holder_method_offset()));
   902     __ jcc(Assembler::notEqual, missed);
   903     // Method might have been compiled since the call site was patched to
   904     // interpreted if that is the case treat it as a miss so we can get
   905     // the call site corrected.
   906     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
   907     __ jcc(Assembler::equal, skip_fixup);
   909     __ bind(missed);
   910     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
   911   }
   913   address c2i_entry = __ pc();
   915   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
   917   __ flush();
   918   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
   919 }
   921 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
   922                                          VMRegPair *regs,
   923                                          int total_args_passed) {
   924 // We return the amount of VMRegImpl stack slots we need to reserve for all
   925 // the arguments NOT counting out_preserve_stack_slots.
   927   uint    stack = 0;        // All arguments on stack
   929   for( int i = 0; i < total_args_passed; i++) {
   930     // From the type and the argument number (count) compute the location
   931     switch( sig_bt[i] ) {
   932     case T_BOOLEAN:
   933     case T_CHAR:
   934     case T_FLOAT:
   935     case T_BYTE:
   936     case T_SHORT:
   937     case T_INT:
   938     case T_OBJECT:
   939     case T_ARRAY:
   940     case T_ADDRESS:
   941       regs[i].set1(VMRegImpl::stack2reg(stack++));
   942       break;
   943     case T_LONG:
   944     case T_DOUBLE: // The stack numbering is reversed from Java
   945       // Since C arguments do not get reversed, the ordering for
   946       // doubles on the stack must be opposite the Java convention
   947       assert(sig_bt[i+1] == T_VOID, "missing Half" );
   948       regs[i].set2(VMRegImpl::stack2reg(stack));
   949       stack += 2;
   950       break;
   951     case T_VOID: regs[i].set_bad(); break;
   952     default:
   953       ShouldNotReachHere();
   954       break;
   955     }
   956   }
   957   return stack;
   958 }
   960 // A simple move of integer like type
   961 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
   962   if (src.first()->is_stack()) {
   963     if (dst.first()->is_stack()) {
   964       // stack to stack
   965       // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
   966       // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
   967       __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
   968       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
   969     } else {
   970       // stack to reg
   971       __ movl2ptr(dst.first()->as_Register(),  Address(rbp, reg2offset_in(src.first())));
   972     }
   973   } else if (dst.first()->is_stack()) {
   974     // reg to stack
   975     // no need to sign extend on 64bit
   976     __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
   977   } else {
   978     if (dst.first() != src.first()) {
   979       __ mov(dst.first()->as_Register(), src.first()->as_Register());
   980     }
   981   }
   982 }
   984 // An oop arg. Must pass a handle not the oop itself
   985 static void object_move(MacroAssembler* masm,
   986                         OopMap* map,
   987                         int oop_handle_offset,
   988                         int framesize_in_slots,
   989                         VMRegPair src,
   990                         VMRegPair dst,
   991                         bool is_receiver,
   992                         int* receiver_offset) {
   994   // Because of the calling conventions we know that src can be a
   995   // register or a stack location. dst can only be a stack location.
   997   assert(dst.first()->is_stack(), "must be stack");
   998   // must pass a handle. First figure out the location we use as a handle
  1000   if (src.first()->is_stack()) {
  1001     // Oop is already on the stack as an argument
  1002     Register rHandle = rax;
  1003     Label nil;
  1004     __ xorptr(rHandle, rHandle);
  1005     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
  1006     __ jcc(Assembler::equal, nil);
  1007     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
  1008     __ bind(nil);
  1009     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
  1011     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1012     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
  1013     if (is_receiver) {
  1014       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
  1016   } else {
  1017     // Oop is in an a register we must store it to the space we reserve
  1018     // on the stack for oop_handles
  1019     const Register rOop = src.first()->as_Register();
  1020     const Register rHandle = rax;
  1021     int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
  1022     int offset = oop_slot*VMRegImpl::stack_slot_size;
  1023     Label skip;
  1024     __ movptr(Address(rsp, offset), rOop);
  1025     map->set_oop(VMRegImpl::stack2reg(oop_slot));
  1026     __ xorptr(rHandle, rHandle);
  1027     __ cmpptr(rOop, (int32_t)NULL_WORD);
  1028     __ jcc(Assembler::equal, skip);
  1029     __ lea(rHandle, Address(rsp, offset));
  1030     __ bind(skip);
  1031     // Store the handle parameter
  1032     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
  1033     if (is_receiver) {
  1034       *receiver_offset = offset;
  1039 // A float arg may have to do float reg int reg conversion
  1040 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1041   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
  1043   // Because of the calling convention we know that src is either a stack location
  1044   // or an xmm register. dst can only be a stack location.
  1046   assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
  1048   if (src.first()->is_stack()) {
  1049     __ movl(rax, Address(rbp, reg2offset_in(src.first())));
  1050     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1051   } else {
  1052     // reg to stack
  1053     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1057 // A long move
  1058 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1060   // The only legal possibility for a long_move VMRegPair is:
  1061   // 1: two stack slots (possibly unaligned)
  1062   // as neither the java  or C calling convention will use registers
  1063   // for longs.
  1065   if (src.first()->is_stack() && dst.first()->is_stack()) {
  1066     assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
  1067     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
  1068     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
  1069     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1070     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
  1071   } else {
  1072     ShouldNotReachHere();
  1076 // A double move
  1077 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1079   // The only legal possibilities for a double_move VMRegPair are:
  1080   // The painful thing here is that like long_move a VMRegPair might be
  1082   // Because of the calling convention we know that src is either
  1083   //   1: a single physical register (xmm registers only)
  1084   //   2: two stack slots (possibly unaligned)
  1085   // dst can only be a pair of stack slots.
  1087   assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
  1089   if (src.first()->is_stack()) {
  1090     // source is all stack
  1091     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
  1092     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
  1093     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1094     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
  1095   } else {
  1096     // reg to stack
  1097     // No worries about stack alignment
  1098     __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1103 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1104   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1105   // which by this time is free to use
  1106   switch (ret_type) {
  1107   case T_FLOAT:
  1108     __ fstp_s(Address(rbp, -wordSize));
  1109     break;
  1110   case T_DOUBLE:
  1111     __ fstp_d(Address(rbp, -2*wordSize));
  1112     break;
  1113   case T_VOID:  break;
  1114   case T_LONG:
  1115     __ movptr(Address(rbp, -wordSize), rax);
  1116     NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
  1117     break;
  1118   default: {
  1119     __ movptr(Address(rbp, -wordSize), rax);
  1124 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1125   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1126   // which by this time is free to use
  1127   switch (ret_type) {
  1128   case T_FLOAT:
  1129     __ fld_s(Address(rbp, -wordSize));
  1130     break;
  1131   case T_DOUBLE:
  1132     __ fld_d(Address(rbp, -2*wordSize));
  1133     break;
  1134   case T_LONG:
  1135     __ movptr(rax, Address(rbp, -wordSize));
  1136     NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
  1137     break;
  1138   case T_VOID:  break;
  1139   default: {
  1140     __ movptr(rax, Address(rbp, -wordSize));
  1146 static void save_or_restore_arguments(MacroAssembler* masm,
  1147                                       const int stack_slots,
  1148                                       const int total_in_args,
  1149                                       const int arg_save_area,
  1150                                       OopMap* map,
  1151                                       VMRegPair* in_regs,
  1152                                       BasicType* in_sig_bt) {
  1153   // if map is non-NULL then the code should store the values,
  1154   // otherwise it should load them.
  1155   int handle_index = 0;
  1156   // Save down double word first
  1157   for ( int i = 0; i < total_in_args; i++) {
  1158     if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
  1159       int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
  1160       int offset = slot * VMRegImpl::stack_slot_size;
  1161       handle_index += 2;
  1162       assert(handle_index <= stack_slots, "overflow");
  1163       if (map != NULL) {
  1164         __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
  1165       } else {
  1166         __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
  1169     if (in_regs[i].first()->is_Register() && in_sig_bt[i] == T_LONG) {
  1170       int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
  1171       int offset = slot * VMRegImpl::stack_slot_size;
  1172       handle_index += 2;
  1173       assert(handle_index <= stack_slots, "overflow");
  1174       if (map != NULL) {
  1175         __ movl(Address(rsp, offset), in_regs[i].first()->as_Register());
  1176         if (in_regs[i].second()->is_Register()) {
  1177           __ movl(Address(rsp, offset + 4), in_regs[i].second()->as_Register());
  1179       } else {
  1180         __ movl(in_regs[i].first()->as_Register(), Address(rsp, offset));
  1181         if (in_regs[i].second()->is_Register()) {
  1182           __ movl(in_regs[i].second()->as_Register(), Address(rsp, offset + 4));
  1187   // Save or restore single word registers
  1188   for ( int i = 0; i < total_in_args; i++) {
  1189     if (in_regs[i].first()->is_Register()) {
  1190       int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
  1191       int offset = slot * VMRegImpl::stack_slot_size;
  1192       assert(handle_index <= stack_slots, "overflow");
  1193       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
  1194         map->set_oop(VMRegImpl::stack2reg(slot));;
  1197       // Value is in an input register pass we must flush it to the stack
  1198       const Register reg = in_regs[i].first()->as_Register();
  1199       switch (in_sig_bt[i]) {
  1200         case T_ARRAY:
  1201           if (map != NULL) {
  1202             __ movptr(Address(rsp, offset), reg);
  1203           } else {
  1204             __ movptr(reg, Address(rsp, offset));
  1206           break;
  1207         case T_BOOLEAN:
  1208         case T_CHAR:
  1209         case T_BYTE:
  1210         case T_SHORT:
  1211         case T_INT:
  1212           if (map != NULL) {
  1213             __ movl(Address(rsp, offset), reg);
  1214           } else {
  1215             __ movl(reg, Address(rsp, offset));
  1217           break;
  1218         case T_OBJECT:
  1219         default: ShouldNotReachHere();
  1221     } else if (in_regs[i].first()->is_XMMRegister()) {
  1222       if (in_sig_bt[i] == T_FLOAT) {
  1223         int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
  1224         int offset = slot * VMRegImpl::stack_slot_size;
  1225         assert(handle_index <= stack_slots, "overflow");
  1226         if (map != NULL) {
  1227           __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
  1228         } else {
  1229           __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
  1232     } else if (in_regs[i].first()->is_stack()) {
  1233       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
  1234         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1235         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
  1241 // Check GC_locker::needs_gc and enter the runtime if it's true.  This
  1242 // keeps a new JNI critical region from starting until a GC has been
  1243 // forced.  Save down any oops in registers and describe them in an
  1244 // OopMap.
  1245 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
  1246                                                Register thread,
  1247                                                int stack_slots,
  1248                                                int total_c_args,
  1249                                                int total_in_args,
  1250                                                int arg_save_area,
  1251                                                OopMapSet* oop_maps,
  1252                                                VMRegPair* in_regs,
  1253                                                BasicType* in_sig_bt) {
  1254   __ block_comment("check GC_locker::needs_gc");
  1255   Label cont;
  1256   __ cmp8(ExternalAddress((address)GC_locker::needs_gc_address()), false);
  1257   __ jcc(Assembler::equal, cont);
  1259   // Save down any incoming oops and call into the runtime to halt for a GC
  1261   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1263   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1264                             arg_save_area, map, in_regs, in_sig_bt);
  1266   address the_pc = __ pc();
  1267   oop_maps->add_gc_map( __ offset(), map);
  1268   __ set_last_Java_frame(thread, rsp, noreg, the_pc);
  1270   __ block_comment("block_for_jni_critical");
  1271   __ push(thread);
  1272   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
  1273   __ increment(rsp, wordSize);
  1275   __ get_thread(thread);
  1276   __ reset_last_Java_frame(thread, false, true);
  1278   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1279                             arg_save_area, NULL, in_regs, in_sig_bt);
  1281   __ bind(cont);
  1282 #ifdef ASSERT
  1283   if (StressCriticalJNINatives) {
  1284     // Stress register saving
  1285     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1286     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1287                               arg_save_area, map, in_regs, in_sig_bt);
  1288     // Destroy argument registers
  1289     for (int i = 0; i < total_in_args - 1; i++) {
  1290       if (in_regs[i].first()->is_Register()) {
  1291         const Register reg = in_regs[i].first()->as_Register();
  1292         __ xorptr(reg, reg);
  1293       } else if (in_regs[i].first()->is_XMMRegister()) {
  1294         __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
  1295       } else if (in_regs[i].first()->is_FloatRegister()) {
  1296         ShouldNotReachHere();
  1297       } else if (in_regs[i].first()->is_stack()) {
  1298         // Nothing to do
  1299       } else {
  1300         ShouldNotReachHere();
  1302       if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
  1303         i++;
  1307     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1308                               arg_save_area, NULL, in_regs, in_sig_bt);
  1310 #endif
  1313 // Unpack an array argument into a pointer to the body and the length
  1314 // if the array is non-null, otherwise pass 0 for both.
  1315 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
  1316   Register tmp_reg = rax;
  1317   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
  1318          "possible collision");
  1319   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
  1320          "possible collision");
  1322   // Pass the length, ptr pair
  1323   Label is_null, done;
  1324   VMRegPair tmp(tmp_reg->as_VMReg());
  1325   if (reg.first()->is_stack()) {
  1326     // Load the arg up from the stack
  1327     simple_move32(masm, reg, tmp);
  1328     reg = tmp;
  1330   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
  1331   __ jccb(Assembler::equal, is_null);
  1332   __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
  1333   simple_move32(masm, tmp, body_arg);
  1334   // load the length relative to the body.
  1335   __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
  1336                            arrayOopDesc::base_offset_in_bytes(in_elem_type)));
  1337   simple_move32(masm, tmp, length_arg);
  1338   __ jmpb(done);
  1339   __ bind(is_null);
  1340   // Pass zeros
  1341   __ xorptr(tmp_reg, tmp_reg);
  1342   simple_move32(masm, tmp, body_arg);
  1343   simple_move32(masm, tmp, length_arg);
  1344   __ bind(done);
  1347 static void verify_oop_args(MacroAssembler* masm,
  1348                             int total_args_passed,
  1349                             const BasicType* sig_bt,
  1350                             const VMRegPair* regs) {
  1351   Register temp_reg = rbx;  // not part of any compiled calling seq
  1352   if (VerifyOops) {
  1353     for (int i = 0; i < total_args_passed; i++) {
  1354       if (sig_bt[i] == T_OBJECT ||
  1355           sig_bt[i] == T_ARRAY) {
  1356         VMReg r = regs[i].first();
  1357         assert(r->is_valid(), "bad oop arg");
  1358         if (r->is_stack()) {
  1359           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
  1360           __ verify_oop(temp_reg);
  1361         } else {
  1362           __ verify_oop(r->as_Register());
  1369 static void gen_special_dispatch(MacroAssembler* masm,
  1370                                  int total_args_passed,
  1371                                  int comp_args_on_stack,
  1372                                  vmIntrinsics::ID special_dispatch,
  1373                                  const BasicType* sig_bt,
  1374                                  const VMRegPair* regs) {
  1375   verify_oop_args(masm, total_args_passed, sig_bt, regs);
  1377   // Now write the args into the outgoing interpreter space
  1378   bool     has_receiver   = false;
  1379   Register receiver_reg   = noreg;
  1380   int      member_arg_pos = -1;
  1381   Register member_reg     = noreg;
  1382   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(special_dispatch);
  1383   if (ref_kind != 0) {
  1384     member_arg_pos = total_args_passed - 1;  // trailing MemberName argument
  1385     member_reg = rbx;  // known to be free at this point
  1386     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
  1387   } else if (special_dispatch == vmIntrinsics::_invokeBasic) {
  1388     has_receiver = true;
  1389   } else {
  1390     guarantee(false, err_msg("special_dispatch=%d", special_dispatch));
  1393   if (member_reg != noreg) {
  1394     // Load the member_arg into register, if necessary.
  1395     assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
  1396     assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
  1397     VMReg r = regs[member_arg_pos].first();
  1398     assert(r->is_valid(), "bad member arg");
  1399     if (r->is_stack()) {
  1400       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
  1401     } else {
  1402       // no data motion is needed
  1403       member_reg = r->as_Register();
  1407   if (has_receiver) {
  1408     // Make sure the receiver is loaded into a register.
  1409     assert(total_args_passed > 0, "oob");
  1410     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
  1411     VMReg r = regs[0].first();
  1412     assert(r->is_valid(), "bad receiver arg");
  1413     if (r->is_stack()) {
  1414       // Porting note:  This assumes that compiled calling conventions always
  1415       // pass the receiver oop in a register.  If this is not true on some
  1416       // platform, pick a temp and load the receiver from stack.
  1417       assert(false, "receiver always in a register");
  1418       receiver_reg = rcx;  // known to be free at this point
  1419       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
  1420     } else {
  1421       // no data motion is needed
  1422       receiver_reg = r->as_Register();
  1426   // Figure out which address we are really jumping to:
  1427   MethodHandles::generate_method_handle_dispatch(masm, special_dispatch,
  1428                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
  1431 // ---------------------------------------------------------------------------
  1432 // Generate a native wrapper for a given method.  The method takes arguments
  1433 // in the Java compiled code convention, marshals them to the native
  1434 // convention (handlizes oops, etc), transitions to native, makes the call,
  1435 // returns to java state (possibly blocking), unhandlizes any result and
  1436 // returns.
  1437 //
  1438 // Critical native functions are a shorthand for the use of
  1439 // GetPrimtiveArrayCritical and disallow the use of any other JNI
  1440 // functions.  The wrapper is expected to unpack the arguments before
  1441 // passing them to the callee and perform checks before and after the
  1442 // native call to ensure that they GC_locker
  1443 // lock_critical/unlock_critical semantics are followed.  Some other
  1444 // parts of JNI setup are skipped like the tear down of the JNI handle
  1445 // block and the check for pending exceptions it's impossible for them
  1446 // to be thrown.
  1447 //
  1448 // They are roughly structured like this:
  1449 //    if (GC_locker::needs_gc())
  1450 //      SharedRuntime::block_for_jni_critical();
  1451 //    tranistion to thread_in_native
  1452 //    unpack arrray arguments and call native entry point
  1453 //    check for safepoint in progress
  1454 //    check if any thread suspend flags are set
  1455 //      call into JVM and possible unlock the JNI critical
  1456 //      if a GC was suppressed while in the critical native.
  1457 //    transition back to thread_in_Java
  1458 //    return to caller
  1459 //
  1460 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
  1461                                                 methodHandle method,
  1462                                                 int compile_id,
  1463                                                 int total_in_args,
  1464                                                 int comp_args_on_stack,
  1465                                                 BasicType* in_sig_bt,
  1466                                                 VMRegPair* in_regs,
  1467                                                 BasicType ret_type) {
  1468   if (method->is_method_handle_intrinsic()) {
  1469     vmIntrinsics::ID iid = method->intrinsic_id();
  1470     intptr_t start = (intptr_t)__ pc();
  1471     int vep_offset = ((intptr_t)__ pc()) - start;
  1472     gen_special_dispatch(masm,
  1473                          total_in_args,
  1474                          comp_args_on_stack,
  1475                          method->intrinsic_id(),
  1476                          in_sig_bt,
  1477                          in_regs);
  1478     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
  1479     __ flush();
  1480     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
  1481     return nmethod::new_native_nmethod(method,
  1482                                        compile_id,
  1483                                        masm->code(),
  1484                                        vep_offset,
  1485                                        frame_complete,
  1486                                        stack_slots / VMRegImpl::slots_per_word,
  1487                                        in_ByteSize(-1),
  1488                                        in_ByteSize(-1),
  1489                                        (OopMapSet*)NULL);
  1491   bool is_critical_native = true;
  1492   address native_func = method->critical_native_function();
  1493   if (native_func == NULL) {
  1494     native_func = method->native_function();
  1495     is_critical_native = false;
  1497   assert(native_func != NULL, "must have function");
  1499   // An OopMap for lock (and class if static)
  1500   OopMapSet *oop_maps = new OopMapSet();
  1502   // We have received a description of where all the java arg are located
  1503   // on entry to the wrapper. We need to convert these args to where
  1504   // the jni function will expect them. To figure out where they go
  1505   // we convert the java signature to a C signature by inserting
  1506   // the hidden arguments as arg[0] and possibly arg[1] (static method)
  1508   int total_c_args = total_in_args;
  1509   if (!is_critical_native) {
  1510     total_c_args += 1;
  1511     if (method->is_static()) {
  1512       total_c_args++;
  1514   } else {
  1515     for (int i = 0; i < total_in_args; i++) {
  1516       if (in_sig_bt[i] == T_ARRAY) {
  1517         total_c_args++;
  1522   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
  1523   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
  1524   BasicType* in_elem_bt = NULL;
  1526   int argc = 0;
  1527   if (!is_critical_native) {
  1528     out_sig_bt[argc++] = T_ADDRESS;
  1529     if (method->is_static()) {
  1530       out_sig_bt[argc++] = T_OBJECT;
  1533     for (int i = 0; i < total_in_args ; i++ ) {
  1534       out_sig_bt[argc++] = in_sig_bt[i];
  1536   } else {
  1537     Thread* THREAD = Thread::current();
  1538     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
  1539     SignatureStream ss(method->signature());
  1540     for (int i = 0; i < total_in_args ; i++ ) {
  1541       if (in_sig_bt[i] == T_ARRAY) {
  1542         // Arrays are passed as int, elem* pair
  1543         out_sig_bt[argc++] = T_INT;
  1544         out_sig_bt[argc++] = T_ADDRESS;
  1545         Symbol* atype = ss.as_symbol(CHECK_NULL);
  1546         const char* at = atype->as_C_string();
  1547         if (strlen(at) == 2) {
  1548           assert(at[0] == '[', "must be");
  1549           switch (at[1]) {
  1550             case 'B': in_elem_bt[i]  = T_BYTE; break;
  1551             case 'C': in_elem_bt[i]  = T_CHAR; break;
  1552             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
  1553             case 'F': in_elem_bt[i]  = T_FLOAT; break;
  1554             case 'I': in_elem_bt[i]  = T_INT; break;
  1555             case 'J': in_elem_bt[i]  = T_LONG; break;
  1556             case 'S': in_elem_bt[i]  = T_SHORT; break;
  1557             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
  1558             default: ShouldNotReachHere();
  1561       } else {
  1562         out_sig_bt[argc++] = in_sig_bt[i];
  1563         in_elem_bt[i] = T_VOID;
  1565       if (in_sig_bt[i] != T_VOID) {
  1566         assert(in_sig_bt[i] == ss.type(), "must match");
  1567         ss.next();
  1572   // Now figure out where the args must be stored and how much stack space
  1573   // they require.
  1574   int out_arg_slots;
  1575   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  1577   // Compute framesize for the wrapper.  We need to handlize all oops in
  1578   // registers a max of 2 on x86.
  1580   // Calculate the total number of stack slots we will need.
  1582   // First count the abi requirement plus all of the outgoing args
  1583   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  1585   // Now the space for the inbound oop handle area
  1586   int total_save_slots = 2 * VMRegImpl::slots_per_word; // 2 arguments passed in registers
  1587   if (is_critical_native) {
  1588     // Critical natives may have to call out so they need a save area
  1589     // for register arguments.
  1590     int double_slots = 0;
  1591     int single_slots = 0;
  1592     for ( int i = 0; i < total_in_args; i++) {
  1593       if (in_regs[i].first()->is_Register()) {
  1594         const Register reg = in_regs[i].first()->as_Register();
  1595         switch (in_sig_bt[i]) {
  1596           case T_ARRAY:  // critical array (uses 2 slots on LP64)
  1597           case T_BOOLEAN:
  1598           case T_BYTE:
  1599           case T_SHORT:
  1600           case T_CHAR:
  1601           case T_INT:  single_slots++; break;
  1602           case T_LONG: double_slots++; break;
  1603           default:  ShouldNotReachHere();
  1605       } else if (in_regs[i].first()->is_XMMRegister()) {
  1606         switch (in_sig_bt[i]) {
  1607           case T_FLOAT:  single_slots++; break;
  1608           case T_DOUBLE: double_slots++; break;
  1609           default:  ShouldNotReachHere();
  1611       } else if (in_regs[i].first()->is_FloatRegister()) {
  1612         ShouldNotReachHere();
  1615     total_save_slots = double_slots * 2 + single_slots;
  1616     // align the save area
  1617     if (double_slots != 0) {
  1618       stack_slots = round_to(stack_slots, 2);
  1622   int oop_handle_offset = stack_slots;
  1623   stack_slots += total_save_slots;
  1625   // Now any space we need for handlizing a klass if static method
  1627   int klass_slot_offset = 0;
  1628   int klass_offset = -1;
  1629   int lock_slot_offset = 0;
  1630   bool is_static = false;
  1632   if (method->is_static()) {
  1633     klass_slot_offset = stack_slots;
  1634     stack_slots += VMRegImpl::slots_per_word;
  1635     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
  1636     is_static = true;
  1639   // Plus a lock if needed
  1641   if (method->is_synchronized()) {
  1642     lock_slot_offset = stack_slots;
  1643     stack_slots += VMRegImpl::slots_per_word;
  1646   // Now a place (+2) to save return values or temp during shuffling
  1647   // + 2 for return address (which we own) and saved rbp,
  1648   stack_slots += 4;
  1650   // Ok The space we have allocated will look like:
  1651   //
  1652   //
  1653   // FP-> |                     |
  1654   //      |---------------------|
  1655   //      | 2 slots for moves   |
  1656   //      |---------------------|
  1657   //      | lock box (if sync)  |
  1658   //      |---------------------| <- lock_slot_offset  (-lock_slot_rbp_offset)
  1659   //      | klass (if static)   |
  1660   //      |---------------------| <- klass_slot_offset
  1661   //      | oopHandle area      |
  1662   //      |---------------------| <- oop_handle_offset (a max of 2 registers)
  1663   //      | outbound memory     |
  1664   //      | based arguments     |
  1665   //      |                     |
  1666   //      |---------------------|
  1667   //      |                     |
  1668   // SP-> | out_preserved_slots |
  1669   //
  1670   //
  1671   // ****************************************************************************
  1672   // WARNING - on Windows Java Natives use pascal calling convention and pop the
  1673   // arguments off of the stack after the jni call. Before the call we can use
  1674   // instructions that are SP relative. After the jni call we switch to FP
  1675   // relative instructions instead of re-adjusting the stack on windows.
  1676   // ****************************************************************************
  1679   // Now compute actual number of stack words we need rounding to make
  1680   // stack properly aligned.
  1681   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
  1683   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  1685   intptr_t start = (intptr_t)__ pc();
  1687   // First thing make an ic check to see if we should even be here
  1689   // We are free to use all registers as temps without saving them and
  1690   // restoring them except rbp. rbp is the only callee save register
  1691   // as far as the interpreter and the compiler(s) are concerned.
  1694   const Register ic_reg = rax;
  1695   const Register receiver = rcx;
  1696   Label hit;
  1697   Label exception_pending;
  1699   __ verify_oop(receiver);
  1700   __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
  1701   __ jcc(Assembler::equal, hit);
  1703   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1705   // verified entry must be aligned for code patching.
  1706   // and the first 5 bytes must be in the same cache line
  1707   // if we align at 8 then we will be sure 5 bytes are in the same line
  1708   __ align(8);
  1710   __ bind(hit);
  1712   int vep_offset = ((intptr_t)__ pc()) - start;
  1714 #ifdef COMPILER1
  1715   if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
  1716     // Object.hashCode can pull the hashCode from the header word
  1717     // instead of doing a full VM transition once it's been computed.
  1718     // Since hashCode is usually polymorphic at call sites we can't do
  1719     // this optimization at the call site without a lot of work.
  1720     Label slowCase;
  1721     Register receiver = rcx;
  1722     Register result = rax;
  1723     __ movptr(result, Address(receiver, oopDesc::mark_offset_in_bytes()));
  1725     // check if locked
  1726     __ testptr(result, markOopDesc::unlocked_value);
  1727     __ jcc (Assembler::zero, slowCase);
  1729     if (UseBiasedLocking) {
  1730       // Check if biased and fall through to runtime if so
  1731       __ testptr(result, markOopDesc::biased_lock_bit_in_place);
  1732       __ jcc (Assembler::notZero, slowCase);
  1735     // get hash
  1736     __ andptr(result, markOopDesc::hash_mask_in_place);
  1737     // test if hashCode exists
  1738     __ jcc  (Assembler::zero, slowCase);
  1739     __ shrptr(result, markOopDesc::hash_shift);
  1740     __ ret(0);
  1741     __ bind (slowCase);
  1743 #endif // COMPILER1
  1745   // The instruction at the verified entry point must be 5 bytes or longer
  1746   // because it can be patched on the fly by make_non_entrant. The stack bang
  1747   // instruction fits that requirement.
  1749   // Generate stack overflow check
  1751   if (UseStackBanging) {
  1752     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  1753   } else {
  1754     // need a 5 byte instruction to allow MT safe patching to non-entrant
  1755     __ fat_nop();
  1758   // Generate a new frame for the wrapper.
  1759   __ enter();
  1760   // -2 because return address is already present and so is saved rbp
  1761   __ subptr(rsp, stack_size - 2*wordSize);
  1763   // Frame is now completed as far as size and linkage.
  1764   int frame_complete = ((intptr_t)__ pc()) - start;
  1766   // Calculate the difference between rsp and rbp,. We need to know it
  1767   // after the native call because on windows Java Natives will pop
  1768   // the arguments and it is painful to do rsp relative addressing
  1769   // in a platform independent way. So after the call we switch to
  1770   // rbp, relative addressing.
  1772   int fp_adjustment = stack_size - 2*wordSize;
  1774 #ifdef COMPILER2
  1775   // C2 may leave the stack dirty if not in SSE2+ mode
  1776   if (UseSSE >= 2) {
  1777     __ verify_FPU(0, "c2i transition should have clean FPU stack");
  1778   } else {
  1779     __ empty_FPU_stack();
  1781 #endif /* COMPILER2 */
  1783   // Compute the rbp, offset for any slots used after the jni call
  1785   int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
  1787   // We use rdi as a thread pointer because it is callee save and
  1788   // if we load it once it is usable thru the entire wrapper
  1789   const Register thread = rdi;
  1791   // We use rsi as the oop handle for the receiver/klass
  1792   // It is callee save so it survives the call to native
  1794   const Register oop_handle_reg = rsi;
  1796   __ get_thread(thread);
  1798   if (is_critical_native) {
  1799     check_needs_gc_for_critical_native(masm, thread, stack_slots, total_c_args, total_in_args,
  1800                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
  1803   //
  1804   // We immediately shuffle the arguments so that any vm call we have to
  1805   // make from here on out (sync slow path, jvmti, etc.) we will have
  1806   // captured the oops from our caller and have a valid oopMap for
  1807   // them.
  1809   // -----------------
  1810   // The Grand Shuffle
  1811   //
  1812   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
  1813   // and, if static, the class mirror instead of a receiver.  This pretty much
  1814   // guarantees that register layout will not match (and x86 doesn't use reg
  1815   // parms though amd does).  Since the native abi doesn't use register args
  1816   // and the java conventions does we don't have to worry about collisions.
  1817   // All of our moved are reg->stack or stack->stack.
  1818   // We ignore the extra arguments during the shuffle and handle them at the
  1819   // last moment. The shuffle is described by the two calling convention
  1820   // vectors we have in our possession. We simply walk the java vector to
  1821   // get the source locations and the c vector to get the destinations.
  1823   int c_arg = is_critical_native ? 0 : (method->is_static() ? 2 : 1 );
  1825   // Record rsp-based slot for receiver on stack for non-static methods
  1826   int receiver_offset = -1;
  1828   // This is a trick. We double the stack slots so we can claim
  1829   // the oops in the caller's frame. Since we are sure to have
  1830   // more args than the caller doubling is enough to make
  1831   // sure we can capture all the incoming oop args from the
  1832   // caller.
  1833   //
  1834   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1836   // Mark location of rbp,
  1837   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
  1839   // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
  1840   // Are free to temporaries if we have to do  stack to steck moves.
  1841   // All inbound args are referenced based on rbp, and all outbound args via rsp.
  1843   for (int i = 0; i < total_in_args ; i++, c_arg++ ) {
  1844     switch (in_sig_bt[i]) {
  1845       case T_ARRAY:
  1846         if (is_critical_native) {
  1847           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
  1848           c_arg++;
  1849           break;
  1851       case T_OBJECT:
  1852         assert(!is_critical_native, "no oop arguments");
  1853         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
  1854                     ((i == 0) && (!is_static)),
  1855                     &receiver_offset);
  1856         break;
  1857       case T_VOID:
  1858         break;
  1860       case T_FLOAT:
  1861         float_move(masm, in_regs[i], out_regs[c_arg]);
  1862           break;
  1864       case T_DOUBLE:
  1865         assert( i + 1 < total_in_args &&
  1866                 in_sig_bt[i + 1] == T_VOID &&
  1867                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  1868         double_move(masm, in_regs[i], out_regs[c_arg]);
  1869         break;
  1871       case T_LONG :
  1872         long_move(masm, in_regs[i], out_regs[c_arg]);
  1873         break;
  1875       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  1877       default:
  1878         simple_move32(masm, in_regs[i], out_regs[c_arg]);
  1882   // Pre-load a static method's oop into rsi.  Used both by locking code and
  1883   // the normal JNI call code.
  1884   if (method->is_static() && !is_critical_native) {
  1886     //  load opp into a register
  1887     __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
  1889     // Now handlize the static class mirror it's known not-null.
  1890     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
  1891     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
  1893     // Now get the handle
  1894     __ lea(oop_handle_reg, Address(rsp, klass_offset));
  1895     // store the klass handle as second argument
  1896     __ movptr(Address(rsp, wordSize), oop_handle_reg);
  1899   // Change state to native (we save the return address in the thread, since it might not
  1900   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
  1901   // points into the right code segment. It does not have to be the correct return pc.
  1902   // We use the same pc/oopMap repeatedly when we call out
  1904   intptr_t the_pc = (intptr_t) __ pc();
  1905   oop_maps->add_gc_map(the_pc - start, map);
  1907   __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
  1910   // We have all of the arguments setup at this point. We must not touch any register
  1911   // argument registers at this point (what if we save/restore them there are no oop?
  1914     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
  1915     __ mov_metadata(rax, method());
  1916     __ call_VM_leaf(
  1917          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  1918          thread, rax);
  1921   // RedefineClasses() tracing support for obsolete method entry
  1922   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  1923     __ mov_metadata(rax, method());
  1924     __ call_VM_leaf(
  1925          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  1926          thread, rax);
  1929   // These are register definitions we need for locking/unlocking
  1930   const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
  1931   const Register obj_reg  = rcx;  // Will contain the oop
  1932   const Register lock_reg = rdx;  // Address of compiler lock object (BasicLock)
  1934   Label slow_path_lock;
  1935   Label lock_done;
  1937   // Lock a synchronized method
  1938   if (method->is_synchronized()) {
  1939     assert(!is_critical_native, "unhandled");
  1942     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
  1944     // Get the handle (the 2nd argument)
  1945     __ movptr(oop_handle_reg, Address(rsp, wordSize));
  1947     // Get address of the box
  1949     __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
  1951     // Load the oop from the handle
  1952     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  1954     if (UseBiasedLocking) {
  1955       // Note that oop_handle_reg is trashed during this call
  1956       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
  1959     // Load immediate 1 into swap_reg %rax,
  1960     __ movptr(swap_reg, 1);
  1962     // Load (object->mark() | 1) into swap_reg %rax,
  1963     __ orptr(swap_reg, Address(obj_reg, 0));
  1965     // Save (object->mark() | 1) into BasicLock's displaced header
  1966     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  1968     if (os::is_MP()) {
  1969       __ lock();
  1972     // src -> dest iff dest == rax, else rax, <- dest
  1973     // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
  1974     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
  1975     __ jcc(Assembler::equal, lock_done);
  1977     // Test if the oopMark is an obvious stack pointer, i.e.,
  1978     //  1) (mark & 3) == 0, and
  1979     //  2) rsp <= mark < mark + os::pagesize()
  1980     // These 3 tests can be done by evaluating the following
  1981     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
  1982     // assuming both stack pointer and pagesize have their
  1983     // least significant 2 bits clear.
  1984     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
  1986     __ subptr(swap_reg, rsp);
  1987     __ andptr(swap_reg, 3 - os::vm_page_size());
  1989     // Save the test result, for recursive case, the result is zero
  1990     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  1991     __ jcc(Assembler::notEqual, slow_path_lock);
  1992     // Slow path will re-enter here
  1993     __ bind(lock_done);
  1995     if (UseBiasedLocking) {
  1996       // Re-fetch oop_handle_reg as we trashed it above
  1997       __ movptr(oop_handle_reg, Address(rsp, wordSize));
  2002   // Finally just about ready to make the JNI call
  2005   // get JNIEnv* which is first argument to native
  2006   if (!is_critical_native) {
  2007     __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
  2008     __ movptr(Address(rsp, 0), rdx);
  2011   // Now set thread in native
  2012   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
  2014   __ call(RuntimeAddress(native_func));
  2016   // WARNING - on Windows Java Natives use pascal calling convention and pop the
  2017   // arguments off of the stack. We could just re-adjust the stack pointer here
  2018   // and continue to do SP relative addressing but we instead switch to FP
  2019   // relative addressing.
  2021   // Unpack native results.
  2022   switch (ret_type) {
  2023   case T_BOOLEAN: __ c2bool(rax);            break;
  2024   case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
  2025   case T_BYTE   : __ sign_extend_byte (rax); break;
  2026   case T_SHORT  : __ sign_extend_short(rax); break;
  2027   case T_INT    : /* nothing to do */        break;
  2028   case T_DOUBLE :
  2029   case T_FLOAT  :
  2030     // Result is in st0 we'll save as needed
  2031     break;
  2032   case T_ARRAY:                 // Really a handle
  2033   case T_OBJECT:                // Really a handle
  2034       break; // can't de-handlize until after safepoint check
  2035   case T_VOID: break;
  2036   case T_LONG: break;
  2037   default       : ShouldNotReachHere();
  2040   // Switch thread to "native transition" state before reading the synchronization state.
  2041   // This additional state is necessary because reading and testing the synchronization
  2042   // state is not atomic w.r.t. GC, as this scenario demonstrates:
  2043   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  2044   //     VM thread changes sync state to synchronizing and suspends threads for GC.
  2045   //     Thread A is resumed to finish this native method, but doesn't block here since it
  2046   //     didn't see any synchronization is progress, and escapes.
  2047   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
  2049   if(os::is_MP()) {
  2050     if (UseMembar) {
  2051       // Force this write out before the read below
  2052       __ membar(Assembler::Membar_mask_bits(
  2053            Assembler::LoadLoad | Assembler::LoadStore |
  2054            Assembler::StoreLoad | Assembler::StoreStore));
  2055     } else {
  2056       // Write serialization page so VM thread can do a pseudo remote membar.
  2057       // We use the current thread pointer to calculate a thread specific
  2058       // offset to write to within the page. This minimizes bus traffic
  2059       // due to cache line collision.
  2060       __ serialize_memory(thread, rcx);
  2064   if (AlwaysRestoreFPU) {
  2065     // Make sure the control word is correct.
  2066     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  2069   Label after_transition;
  2071   // check for safepoint operation in progress and/or pending suspend requests
  2072   { Label Continue;
  2074     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
  2075              SafepointSynchronize::_not_synchronized);
  2077     Label L;
  2078     __ jcc(Assembler::notEqual, L);
  2079     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
  2080     __ jcc(Assembler::equal, Continue);
  2081     __ bind(L);
  2083     // Don't use call_VM as it will see a possible pending exception and forward it
  2084     // and never return here preventing us from clearing _last_native_pc down below.
  2085     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
  2086     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
  2087     // by hand.
  2088     //
  2089     save_native_result(masm, ret_type, stack_slots);
  2090     __ push(thread);
  2091     if (!is_critical_native) {
  2092       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
  2093                                               JavaThread::check_special_condition_for_native_trans)));
  2094     } else {
  2095       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
  2096                                               JavaThread::check_special_condition_for_native_trans_and_transition)));
  2098     __ increment(rsp, wordSize);
  2099     // Restore any method result value
  2100     restore_native_result(masm, ret_type, stack_slots);
  2102     if (is_critical_native) {
  2103       // The call above performed the transition to thread_in_Java so
  2104       // skip the transition logic below.
  2105       __ jmpb(after_transition);
  2108     __ bind(Continue);
  2111   // change thread state
  2112   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
  2113   __ bind(after_transition);
  2115   Label reguard;
  2116   Label reguard_done;
  2117   __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  2118   __ jcc(Assembler::equal, reguard);
  2120   // slow path reguard  re-enters here
  2121   __ bind(reguard_done);
  2123   // Handle possible exception (will unlock if necessary)
  2125   // native result if any is live
  2127   // Unlock
  2128   Label slow_path_unlock;
  2129   Label unlock_done;
  2130   if (method->is_synchronized()) {
  2132     Label done;
  2134     // Get locked oop from the handle we passed to jni
  2135     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  2137     if (UseBiasedLocking) {
  2138       __ biased_locking_exit(obj_reg, rbx, done);
  2141     // Simple recursive lock?
  2143     __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
  2144     __ jcc(Assembler::equal, done);
  2146     // Must save rax, if if it is live now because cmpxchg must use it
  2147     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  2148       save_native_result(masm, ret_type, stack_slots);
  2151     //  get old displaced header
  2152     __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
  2154     // get address of the stack lock
  2155     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
  2157     // Atomic swap old header if oop still contains the stack lock
  2158     if (os::is_MP()) {
  2159     __ lock();
  2162     // src -> dest iff dest == rax, else rax, <- dest
  2163     // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
  2164     __ cmpxchgptr(rbx, Address(obj_reg, 0));
  2165     __ jcc(Assembler::notEqual, slow_path_unlock);
  2167     // slow path re-enters here
  2168     __ bind(unlock_done);
  2169     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  2170       restore_native_result(masm, ret_type, stack_slots);
  2173     __ bind(done);
  2178     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
  2179     // Tell dtrace about this method exit
  2180     save_native_result(masm, ret_type, stack_slots);
  2181     __ mov_metadata(rax, method());
  2182     __ call_VM_leaf(
  2183          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  2184          thread, rax);
  2185     restore_native_result(masm, ret_type, stack_slots);
  2188   // We can finally stop using that last_Java_frame we setup ages ago
  2190   __ reset_last_Java_frame(thread, false, true);
  2192   // Unpack oop result
  2193   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
  2194       Label L;
  2195       __ cmpptr(rax, (int32_t)NULL_WORD);
  2196       __ jcc(Assembler::equal, L);
  2197       __ movptr(rax, Address(rax, 0));
  2198       __ bind(L);
  2199       __ verify_oop(rax);
  2202   if (!is_critical_native) {
  2203     // reset handle block
  2204     __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
  2205     __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
  2207     // Any exception pending?
  2208     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  2209     __ jcc(Assembler::notEqual, exception_pending);
  2212   // no exception, we're almost done
  2214   // check that only result value is on FPU stack
  2215   __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
  2217   // Fixup floating pointer results so that result looks like a return from a compiled method
  2218   if (ret_type == T_FLOAT) {
  2219     if (UseSSE >= 1) {
  2220       // Pop st0 and store as float and reload into xmm register
  2221       __ fstp_s(Address(rbp, -4));
  2222       __ movflt(xmm0, Address(rbp, -4));
  2224   } else if (ret_type == T_DOUBLE) {
  2225     if (UseSSE >= 2) {
  2226       // Pop st0 and store as double and reload into xmm register
  2227       __ fstp_d(Address(rbp, -8));
  2228       __ movdbl(xmm0, Address(rbp, -8));
  2232   // Return
  2234   __ leave();
  2235   __ ret(0);
  2237   // Unexpected paths are out of line and go here
  2239   // Slow path locking & unlocking
  2240   if (method->is_synchronized()) {
  2242     // BEGIN Slow path lock
  2244     __ bind(slow_path_lock);
  2246     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
  2247     // args are (oop obj, BasicLock* lock, JavaThread* thread)
  2248     __ push(thread);
  2249     __ push(lock_reg);
  2250     __ push(obj_reg);
  2251     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
  2252     __ addptr(rsp, 3*wordSize);
  2254 #ifdef ASSERT
  2255     { Label L;
  2256     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
  2257     __ jcc(Assembler::equal, L);
  2258     __ stop("no pending exception allowed on exit from monitorenter");
  2259     __ bind(L);
  2261 #endif
  2262     __ jmp(lock_done);
  2264     // END Slow path lock
  2266     // BEGIN Slow path unlock
  2267     __ bind(slow_path_unlock);
  2269     // Slow path unlock
  2271     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  2272       save_native_result(masm, ret_type, stack_slots);
  2274     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
  2276     __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
  2277     __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
  2280     // should be a peal
  2281     // +wordSize because of the push above
  2282     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
  2283     __ push(rax);
  2285     __ push(obj_reg);
  2286     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
  2287     __ addptr(rsp, 2*wordSize);
  2288 #ifdef ASSERT
  2290       Label L;
  2291       __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  2292       __ jcc(Assembler::equal, L);
  2293       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
  2294       __ bind(L);
  2296 #endif /* ASSERT */
  2298     __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
  2300     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  2301       restore_native_result(masm, ret_type, stack_slots);
  2303     __ jmp(unlock_done);
  2304     // END Slow path unlock
  2308   // SLOW PATH Reguard the stack if needed
  2310   __ bind(reguard);
  2311   save_native_result(masm, ret_type, stack_slots);
  2313     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  2315   restore_native_result(masm, ret_type, stack_slots);
  2316   __ jmp(reguard_done);
  2319   // BEGIN EXCEPTION PROCESSING
  2321   if (!is_critical_native) {
  2322     // Forward  the exception
  2323     __ bind(exception_pending);
  2325     // remove possible return value from FPU register stack
  2326     __ empty_FPU_stack();
  2328     // pop our frame
  2329     __ leave();
  2330     // and forward the exception
  2331     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2334   __ flush();
  2336   nmethod *nm = nmethod::new_native_nmethod(method,
  2337                                             compile_id,
  2338                                             masm->code(),
  2339                                             vep_offset,
  2340                                             frame_complete,
  2341                                             stack_slots / VMRegImpl::slots_per_word,
  2342                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
  2343                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
  2344                                             oop_maps);
  2346   if (is_critical_native) {
  2347     nm->set_lazy_critical_native(true);
  2350   return nm;
  2354 #ifdef HAVE_DTRACE_H
  2355 // ---------------------------------------------------------------------------
  2356 // Generate a dtrace nmethod for a given signature.  The method takes arguments
  2357 // in the Java compiled code convention, marshals them to the native
  2358 // abi and then leaves nops at the position you would expect to call a native
  2359 // function. When the probe is enabled the nops are replaced with a trap
  2360 // instruction that dtrace inserts and the trace will cause a notification
  2361 // to dtrace.
  2362 //
  2363 // The probes are only able to take primitive types and java/lang/String as
  2364 // arguments.  No other java types are allowed. Strings are converted to utf8
  2365 // strings so that from dtrace point of view java strings are converted to C
  2366 // strings. There is an arbitrary fixed limit on the total space that a method
  2367 // can use for converting the strings. (256 chars per string in the signature).
  2368 // So any java string larger then this is truncated.
  2370 nmethod *SharedRuntime::generate_dtrace_nmethod(
  2371     MacroAssembler *masm, methodHandle method) {
  2373   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
  2374   // be single threaded in this method.
  2375   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
  2377   // Fill in the signature array, for the calling-convention call.
  2378   int total_args_passed = method->size_of_parameters();
  2380   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2381   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2383   // The signature we are going to use for the trap that dtrace will see
  2384   // java/lang/String is converted. We drop "this" and any other object
  2385   // is converted to NULL.  (A one-slot java/lang/Long object reference
  2386   // is converted to a two-slot long, which is why we double the allocation).
  2387   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
  2388   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
  2390   int i=0;
  2391   int total_strings = 0;
  2392   int first_arg_to_pass = 0;
  2393   int total_c_args = 0;
  2395   if( !method->is_static() ) {  // Pass in receiver first
  2396     in_sig_bt[i++] = T_OBJECT;
  2397     first_arg_to_pass = 1;
  2400   // We need to convert the java args to where a native (non-jni) function
  2401   // would expect them. To figure out where they go we convert the java
  2402   // signature to a C signature.
  2404   SignatureStream ss(method->signature());
  2405   for ( ; !ss.at_return_type(); ss.next()) {
  2406     BasicType bt = ss.type();
  2407     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
  2408     out_sig_bt[total_c_args++] = bt;
  2409     if( bt == T_OBJECT) {
  2410       Symbol* s = ss.as_symbol_or_null();   // symbol is created
  2411       if (s == vmSymbols::java_lang_String()) {
  2412         total_strings++;
  2413         out_sig_bt[total_c_args-1] = T_ADDRESS;
  2414       } else if (s == vmSymbols::java_lang_Boolean() ||
  2415                  s == vmSymbols::java_lang_Character() ||
  2416                  s == vmSymbols::java_lang_Byte() ||
  2417                  s == vmSymbols::java_lang_Short() ||
  2418                  s == vmSymbols::java_lang_Integer() ||
  2419                  s == vmSymbols::java_lang_Float()) {
  2420         out_sig_bt[total_c_args-1] = T_INT;
  2421       } else if (s == vmSymbols::java_lang_Long() ||
  2422                  s == vmSymbols::java_lang_Double()) {
  2423         out_sig_bt[total_c_args-1] = T_LONG;
  2424         out_sig_bt[total_c_args++] = T_VOID;
  2426     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
  2427       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2428       out_sig_bt[total_c_args++] = T_VOID;
  2432   assert(i==total_args_passed, "validly parsed signature");
  2434   // Now get the compiled-Java layout as input arguments
  2435   int comp_args_on_stack;
  2436   comp_args_on_stack = SharedRuntime::java_calling_convention(
  2437       in_sig_bt, in_regs, total_args_passed, false);
  2439   // Now figure out where the args must be stored and how much stack space
  2440   // they require (neglecting out_preserve_stack_slots).
  2442   int out_arg_slots;
  2443   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  2445   // Calculate the total number of stack slots we will need.
  2447   // First count the abi requirement plus all of the outgoing args
  2448   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  2450   // Now space for the string(s) we must convert
  2452   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
  2453   for (i = 0; i < total_strings ; i++) {
  2454     string_locs[i] = stack_slots;
  2455     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
  2458   // + 2 for return address (which we own) and saved rbp,
  2460   stack_slots += 2;
  2462   // Ok The space we have allocated will look like:
  2463   //
  2464   //
  2465   // FP-> |                     |
  2466   //      |---------------------|
  2467   //      | string[n]           |
  2468   //      |---------------------| <- string_locs[n]
  2469   //      | string[n-1]         |
  2470   //      |---------------------| <- string_locs[n-1]
  2471   //      | ...                 |
  2472   //      | ...                 |
  2473   //      |---------------------| <- string_locs[1]
  2474   //      | string[0]           |
  2475   //      |---------------------| <- string_locs[0]
  2476   //      | outbound memory     |
  2477   //      | based arguments     |
  2478   //      |                     |
  2479   //      |---------------------|
  2480   //      |                     |
  2481   // SP-> | out_preserved_slots |
  2482   //
  2483   //
  2485   // Now compute actual number of stack words we need rounding to make
  2486   // stack properly aligned.
  2487   stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
  2489   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  2491   intptr_t start = (intptr_t)__ pc();
  2493   // First thing make an ic check to see if we should even be here
  2495   // We are free to use all registers as temps without saving them and
  2496   // restoring them except rbp. rbp, is the only callee save register
  2497   // as far as the interpreter and the compiler(s) are concerned.
  2499   const Register ic_reg = rax;
  2500   const Register receiver = rcx;
  2501   Label hit;
  2502   Label exception_pending;
  2505   __ verify_oop(receiver);
  2506   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
  2507   __ jcc(Assembler::equal, hit);
  2509   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  2511   // verified entry must be aligned for code patching.
  2512   // and the first 5 bytes must be in the same cache line
  2513   // if we align at 8 then we will be sure 5 bytes are in the same line
  2514   __ align(8);
  2516   __ bind(hit);
  2518   int vep_offset = ((intptr_t)__ pc()) - start;
  2521   // The instruction at the verified entry point must be 5 bytes or longer
  2522   // because it can be patched on the fly by make_non_entrant. The stack bang
  2523   // instruction fits that requirement.
  2525   // Generate stack overflow check
  2528   if (UseStackBanging) {
  2529     if (stack_size <= StackShadowPages*os::vm_page_size()) {
  2530       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  2531     } else {
  2532       __ movl(rax, stack_size);
  2533       __ bang_stack_size(rax, rbx);
  2535   } else {
  2536     // need a 5 byte instruction to allow MT safe patching to non-entrant
  2537     __ fat_nop();
  2540   assert(((int)__ pc() - start - vep_offset) >= 5,
  2541          "valid size for make_non_entrant");
  2543   // Generate a new frame for the wrapper.
  2544   __ enter();
  2546   // -2 because return address is already present and so is saved rbp,
  2547   if (stack_size - 2*wordSize != 0) {
  2548     __ subl(rsp, stack_size - 2*wordSize);
  2551   // Frame is now completed as far a size and linkage.
  2553   int frame_complete = ((intptr_t)__ pc()) - start;
  2555   // First thing we do store all the args as if we are doing the call.
  2556   // Since the C calling convention is stack based that ensures that
  2557   // all the Java register args are stored before we need to convert any
  2558   // string we might have.
  2560   int sid = 0;
  2561   int c_arg, j_arg;
  2562   int string_reg = 0;
  2564   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2565        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2567     VMRegPair src = in_regs[j_arg];
  2568     VMRegPair dst = out_regs[c_arg];
  2569     assert(dst.first()->is_stack() || in_sig_bt[j_arg] == T_VOID,
  2570            "stack based abi assumed");
  2572     switch (in_sig_bt[j_arg]) {
  2574       case T_ARRAY:
  2575       case T_OBJECT:
  2576         if (out_sig_bt[c_arg] == T_ADDRESS) {
  2577           // Any register based arg for a java string after the first
  2578           // will be destroyed by the call to get_utf so we store
  2579           // the original value in the location the utf string address
  2580           // will eventually be stored.
  2581           if (src.first()->is_reg()) {
  2582             if (string_reg++ != 0) {
  2583               simple_move32(masm, src, dst);
  2586         } else if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  2587           // need to unbox a one-word value
  2588           Register in_reg = rax;
  2589           if ( src.first()->is_reg() ) {
  2590             in_reg = src.first()->as_Register();
  2591           } else {
  2592             simple_move32(masm, src, in_reg->as_VMReg());
  2594           Label skipUnbox;
  2595           __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
  2596           if ( out_sig_bt[c_arg] == T_LONG ) {
  2597             __ movl(Address(rsp, reg2offset_out(dst.second())), NULL_WORD);
  2599           __ testl(in_reg, in_reg);
  2600           __ jcc(Assembler::zero, skipUnbox);
  2601           assert(dst.first()->is_stack() &&
  2602                  (!dst.second()->is_valid() || dst.second()->is_stack()),
  2603                  "value(s) must go into stack slots");
  2605           BasicType bt = out_sig_bt[c_arg];
  2606           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  2607           if ( bt == T_LONG ) {
  2608             __ movl(rbx, Address(in_reg,
  2609                                  box_offset + VMRegImpl::stack_slot_size));
  2610             __ movl(Address(rsp, reg2offset_out(dst.second())), rbx);
  2612           __ movl(in_reg,  Address(in_reg, box_offset));
  2613           __ movl(Address(rsp, reg2offset_out(dst.first())), in_reg);
  2614           __ bind(skipUnbox);
  2615         } else {
  2616           // Convert the arg to NULL
  2617           __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
  2619         if (out_sig_bt[c_arg] == T_LONG) {
  2620           assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2621           ++c_arg; // Move over the T_VOID To keep the loop indices in sync
  2623         break;
  2625       case T_VOID:
  2626         break;
  2628       case T_FLOAT:
  2629         float_move(masm, src, dst);
  2630         break;
  2632       case T_DOUBLE:
  2633         assert( j_arg + 1 < total_args_passed &&
  2634                 in_sig_bt[j_arg + 1] == T_VOID, "bad arg list");
  2635         double_move(masm, src, dst);
  2636         break;
  2638       case T_LONG :
  2639         long_move(masm, src, dst);
  2640         break;
  2642       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  2644       default:
  2645         simple_move32(masm, src, dst);
  2649   // Now we must convert any string we have to utf8
  2650   //
  2652   for (sid = 0, j_arg = first_arg_to_pass, c_arg = 0 ;
  2653        sid < total_strings ; j_arg++, c_arg++ ) {
  2655     if (out_sig_bt[c_arg] == T_ADDRESS) {
  2657       Address utf8_addr = Address(
  2658           rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
  2659       __ leal(rax, utf8_addr);
  2661       // The first string we find might still be in the original java arg
  2662       // register
  2663       VMReg orig_loc = in_regs[j_arg].first();
  2664       Register string_oop;
  2666       // This is where the argument will eventually reside
  2667       Address dest = Address(rsp, reg2offset_out(out_regs[c_arg].first()));
  2669       if (sid == 1 && orig_loc->is_reg()) {
  2670         string_oop = orig_loc->as_Register();
  2671         assert(string_oop != rax, "smashed arg");
  2672       } else {
  2674         if (orig_loc->is_reg()) {
  2675           // Get the copy of the jls object
  2676           __ movl(rcx, dest);
  2677         } else {
  2678           // arg is still in the original location
  2679           __ movl(rcx, Address(rbp, reg2offset_in(orig_loc)));
  2681         string_oop = rcx;
  2684       Label nullString;
  2685       __ movl(dest, NULL_WORD);
  2686       __ testl(string_oop, string_oop);
  2687       __ jcc(Assembler::zero, nullString);
  2689       // Now we can store the address of the utf string as the argument
  2690       __ movl(dest, rax);
  2692       // And do the conversion
  2693       __ call_VM_leaf(CAST_FROM_FN_PTR(
  2694              address, SharedRuntime::get_utf), string_oop, rax);
  2695       __ bind(nullString);
  2698     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  2699       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2700       ++c_arg; // Move over the T_VOID To keep the loop indices in sync
  2705   // Ok now we are done. Need to place the nop that dtrace wants in order to
  2706   // patch in the trap
  2708   int patch_offset = ((intptr_t)__ pc()) - start;
  2710   __ nop();
  2713   // Return
  2715   __ leave();
  2716   __ ret(0);
  2718   __ flush();
  2720   nmethod *nm = nmethod::new_dtrace_nmethod(
  2721       method, masm->code(), vep_offset, patch_offset, frame_complete,
  2722       stack_slots / VMRegImpl::slots_per_word);
  2723   return nm;
  2727 #endif // HAVE_DTRACE_H
  2729 // this function returns the adjust size (in number of words) to a c2i adapter
  2730 // activation for use during deoptimization
  2731 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
  2732   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
  2736 uint SharedRuntime::out_preserve_stack_slots() {
  2737   return 0;
  2741 //------------------------------generate_deopt_blob----------------------------
  2742 void SharedRuntime::generate_deopt_blob() {
  2743   // allocate space for the code
  2744   ResourceMark rm;
  2745   // setup code generation tools
  2746   CodeBuffer   buffer("deopt_blob", 1024, 1024);
  2747   MacroAssembler* masm = new MacroAssembler(&buffer);
  2748   int frame_size_in_words;
  2749   OopMap* map = NULL;
  2750   // Account for the extra args we place on the stack
  2751   // by the time we call fetch_unroll_info
  2752   const int additional_words = 2; // deopt kind, thread
  2754   OopMapSet *oop_maps = new OopMapSet();
  2756   // -------------
  2757   // This code enters when returning to a de-optimized nmethod.  A return
  2758   // address has been pushed on the the stack, and return values are in
  2759   // registers.
  2760   // If we are doing a normal deopt then we were called from the patched
  2761   // nmethod from the point we returned to the nmethod. So the return
  2762   // address on the stack is wrong by NativeCall::instruction_size
  2763   // We will adjust the value to it looks like we have the original return
  2764   // address on the stack (like when we eagerly deoptimized).
  2765   // In the case of an exception pending with deoptimized then we enter
  2766   // with a return address on the stack that points after the call we patched
  2767   // into the exception handler. We have the following register state:
  2768   //    rax,: exception
  2769   //    rbx,: exception handler
  2770   //    rdx: throwing pc
  2771   // So in this case we simply jam rdx into the useless return address and
  2772   // the stack looks just like we want.
  2773   //
  2774   // At this point we need to de-opt.  We save the argument return
  2775   // registers.  We call the first C routine, fetch_unroll_info().  This
  2776   // routine captures the return values and returns a structure which
  2777   // describes the current frame size and the sizes of all replacement frames.
  2778   // The current frame is compiled code and may contain many inlined
  2779   // functions, each with their own JVM state.  We pop the current frame, then
  2780   // push all the new frames.  Then we call the C routine unpack_frames() to
  2781   // populate these frames.  Finally unpack_frames() returns us the new target
  2782   // address.  Notice that callee-save registers are BLOWN here; they have
  2783   // already been captured in the vframeArray at the time the return PC was
  2784   // patched.
  2785   address start = __ pc();
  2786   Label cont;
  2788   // Prolog for non exception case!
  2790   // Save everything in sight.
  2792   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
  2793   // Normal deoptimization
  2794   __ push(Deoptimization::Unpack_deopt);
  2795   __ jmp(cont);
  2797   int reexecute_offset = __ pc() - start;
  2799   // Reexecute case
  2800   // return address is the pc describes what bci to do re-execute at
  2802   // No need to update map as each call to save_live_registers will produce identical oopmap
  2803   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
  2805   __ push(Deoptimization::Unpack_reexecute);
  2806   __ jmp(cont);
  2808   int exception_offset = __ pc() - start;
  2810   // Prolog for exception case
  2812   // all registers are dead at this entry point, except for rax, and
  2813   // rdx which contain the exception oop and exception pc
  2814   // respectively.  Set them in TLS and fall thru to the
  2815   // unpack_with_exception_in_tls entry point.
  2817   __ get_thread(rdi);
  2818   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
  2819   __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
  2821   int exception_in_tls_offset = __ pc() - start;
  2823   // new implementation because exception oop is now passed in JavaThread
  2825   // Prolog for exception case
  2826   // All registers must be preserved because they might be used by LinearScan
  2827   // Exceptiop oop and throwing PC are passed in JavaThread
  2828   // tos: stack at point of call to method that threw the exception (i.e. only
  2829   // args are on the stack, no return address)
  2831   // make room on stack for the return address
  2832   // It will be patched later with the throwing pc. The correct value is not
  2833   // available now because loading it from memory would destroy registers.
  2834   __ push(0);
  2836   // Save everything in sight.
  2838   // No need to update map as each call to save_live_registers will produce identical oopmap
  2839   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
  2841   // Now it is safe to overwrite any register
  2843   // store the correct deoptimization type
  2844   __ push(Deoptimization::Unpack_exception);
  2846   // load throwing pc from JavaThread and patch it as the return address
  2847   // of the current frame. Then clear the field in JavaThread
  2848   __ get_thread(rdi);
  2849   __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
  2850   __ movptr(Address(rbp, wordSize), rdx);
  2851   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
  2853 #ifdef ASSERT
  2854   // verify that there is really an exception oop in JavaThread
  2855   __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
  2856   __ verify_oop(rax);
  2858   // verify that there is no pending exception
  2859   Label no_pending_exception;
  2860   __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
  2861   __ testptr(rax, rax);
  2862   __ jcc(Assembler::zero, no_pending_exception);
  2863   __ stop("must not have pending exception here");
  2864   __ bind(no_pending_exception);
  2865 #endif
  2867   __ bind(cont);
  2869   // Compiled code leaves the floating point stack dirty, empty it.
  2870   __ empty_FPU_stack();
  2873   // Call C code.  Need thread and this frame, but NOT official VM entry
  2874   // crud.  We cannot block on this call, no GC can happen.
  2875   __ get_thread(rcx);
  2876   __ push(rcx);
  2877   // fetch_unroll_info needs to call last_java_frame()
  2878   __ set_last_Java_frame(rcx, noreg, noreg, NULL);
  2880   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
  2882   // Need to have an oopmap that tells fetch_unroll_info where to
  2883   // find any register it might need.
  2885   oop_maps->add_gc_map( __ pc()-start, map);
  2887   // Discard arg to fetch_unroll_info
  2888   __ pop(rcx);
  2890   __ get_thread(rcx);
  2891   __ reset_last_Java_frame(rcx, false, false);
  2893   // Load UnrollBlock into EDI
  2894   __ mov(rdi, rax);
  2896   // Move the unpack kind to a safe place in the UnrollBlock because
  2897   // we are very short of registers
  2899   Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
  2900   // retrieve the deopt kind from where we left it.
  2901   __ pop(rax);
  2902   __ movl(unpack_kind, rax);                      // save the unpack_kind value
  2904    Label noException;
  2905   __ cmpl(rax, Deoptimization::Unpack_exception);   // Was exception pending?
  2906   __ jcc(Assembler::notEqual, noException);
  2907   __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
  2908   __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
  2909   __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
  2910   __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
  2912   __ verify_oop(rax);
  2914   // Overwrite the result registers with the exception results.
  2915   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
  2916   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
  2918   __ bind(noException);
  2920   // Stack is back to only having register save data on the stack.
  2921   // Now restore the result registers. Everything else is either dead or captured
  2922   // in the vframeArray.
  2924   RegisterSaver::restore_result_registers(masm);
  2926   // Non standard control word may be leaked out through a safepoint blob, and we can
  2927   // deopt at a poll point with the non standard control word. However, we should make
  2928   // sure the control word is correct after restore_result_registers.
  2929   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  2931   // All of the register save area has been popped of the stack. Only the
  2932   // return address remains.
  2934   // Pop all the frames we must move/replace.
  2935   //
  2936   // Frame picture (youngest to oldest)
  2937   // 1: self-frame (no frame link)
  2938   // 2: deopting frame  (no frame link)
  2939   // 3: caller of deopting frame (could be compiled/interpreted).
  2940   //
  2941   // Note: by leaving the return address of self-frame on the stack
  2942   // and using the size of frame 2 to adjust the stack
  2943   // when we are done the return to frame 3 will still be on the stack.
  2945   // Pop deoptimized frame
  2946   __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
  2948   // sp should be pointing at the return address to the caller (3)
  2950   // Stack bang to make sure there's enough room for these interpreter frames.
  2951   if (UseStackBanging) {
  2952     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  2953     __ bang_stack_size(rbx, rcx);
  2956   // Load array of frame pcs into ECX
  2957   __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  2959   __ pop(rsi); // trash the old pc
  2961   // Load array of frame sizes into ESI
  2962   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
  2964   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
  2966   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
  2967   __ movl(counter, rbx);
  2969   // Pick up the initial fp we should save
  2970   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
  2972   // Now adjust the caller's stack to make up for the extra locals
  2973   // but record the original sp so that we can save it in the skeletal interpreter
  2974   // frame and the stack walking of interpreter_sender will get the unextended sp
  2975   // value and not the "real" sp value.
  2977   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
  2978   __ movptr(sp_temp, rsp);
  2979   __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
  2980   __ subptr(rsp, rbx);
  2982   // Push interpreter frames in a loop
  2983   Label loop;
  2984   __ bind(loop);
  2985   __ movptr(rbx, Address(rsi, 0));      // Load frame size
  2986 #ifdef CC_INTERP
  2987   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
  2988 #ifdef ASSERT
  2989   __ push(0xDEADDEAD);                  // Make a recognizable pattern
  2990   __ push(0xDEADDEAD);
  2991 #else /* ASSERT */
  2992   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
  2993 #endif /* ASSERT */
  2994 #else /* CC_INTERP */
  2995   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
  2996 #endif /* CC_INTERP */
  2997   __ pushptr(Address(rcx, 0));          // save return address
  2998   __ enter();                           // save old & set new rbp,
  2999   __ subptr(rsp, rbx);                  // Prolog!
  3000   __ movptr(rbx, sp_temp);              // sender's sp
  3001 #ifdef CC_INTERP
  3002   __ movptr(Address(rbp,
  3003                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  3004           rbx); // Make it walkable
  3005 #else /* CC_INTERP */
  3006   // This value is corrected by layout_activation_impl
  3007   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
  3008   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
  3009 #endif /* CC_INTERP */
  3010   __ movptr(sp_temp, rsp);              // pass to next frame
  3011   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
  3012   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
  3013   __ decrementl(counter);             // decrement counter
  3014   __ jcc(Assembler::notZero, loop);
  3015   __ pushptr(Address(rcx, 0));          // save final return address
  3017   // Re-push self-frame
  3018   __ enter();                           // save old & set new rbp,
  3020   //  Return address and rbp, are in place
  3021   // We'll push additional args later. Just allocate a full sized
  3022   // register save area
  3023   __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
  3025   // Restore frame locals after moving the frame
  3026   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
  3027   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
  3028   __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize));   // Pop float stack and store in local
  3029   if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
  3030   if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
  3032   // Set up the args to unpack_frame
  3034   __ pushl(unpack_kind);                     // get the unpack_kind value
  3035   __ get_thread(rcx);
  3036   __ push(rcx);
  3038   // set last_Java_sp, last_Java_fp
  3039   __ set_last_Java_frame(rcx, noreg, rbp, NULL);
  3041   // Call C code.  Need thread but NOT official VM entry
  3042   // crud.  We cannot block on this call, no GC can happen.  Call should
  3043   // restore return values to their stack-slots with the new SP.
  3044   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  3045   // Set an oopmap for the call site
  3046   oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
  3048   // rax, contains the return result type
  3049   __ push(rax);
  3051   __ get_thread(rcx);
  3052   __ reset_last_Java_frame(rcx, false, false);
  3054   // Collect return values
  3055   __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
  3056   __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
  3058   // Clear floating point stack before returning to interpreter
  3059   __ empty_FPU_stack();
  3061   // Check if we should push the float or double return value.
  3062   Label results_done, yes_double_value;
  3063   __ cmpl(Address(rsp, 0), T_DOUBLE);
  3064   __ jcc (Assembler::zero, yes_double_value);
  3065   __ cmpl(Address(rsp, 0), T_FLOAT);
  3066   __ jcc (Assembler::notZero, results_done);
  3068   // return float value as expected by interpreter
  3069   if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
  3070   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
  3071   __ jmp(results_done);
  3073   // return double value as expected by interpreter
  3074   __ bind(yes_double_value);
  3075   if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
  3076   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
  3078   __ bind(results_done);
  3080   // Pop self-frame.
  3081   __ leave();                              // Epilog!
  3083   // Jump to interpreter
  3084   __ ret(0);
  3086   // -------------
  3087   // make sure all code is generated
  3088   masm->flush();
  3090   _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
  3091   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
  3095 #ifdef COMPILER2
  3096 //------------------------------generate_uncommon_trap_blob--------------------
  3097 void SharedRuntime::generate_uncommon_trap_blob() {
  3098   // allocate space for the code
  3099   ResourceMark rm;
  3100   // setup code generation tools
  3101   CodeBuffer   buffer("uncommon_trap_blob", 512, 512);
  3102   MacroAssembler* masm = new MacroAssembler(&buffer);
  3104   enum frame_layout {
  3105     arg0_off,      // thread                     sp + 0 // Arg location for
  3106     arg1_off,      // unloaded_class_index       sp + 1 // calling C
  3107     // The frame sender code expects that rbp will be in the "natural" place and
  3108     // will override any oopMap setting for it. We must therefore force the layout
  3109     // so that it agrees with the frame sender code.
  3110     rbp_off,       // callee saved register      sp + 2
  3111     return_off,    // slot for return address    sp + 3
  3112     framesize
  3113   };
  3115   address start = __ pc();
  3116   // Push self-frame.
  3117   __ subptr(rsp, return_off*wordSize);     // Epilog!
  3119   // rbp, is an implicitly saved callee saved register (i.e. the calling
  3120   // convention will save restore it in prolog/epilog) Other than that
  3121   // there are no callee save registers no that adapter frames are gone.
  3122   __ movptr(Address(rsp, rbp_off*wordSize), rbp);
  3124   // Clear the floating point exception stack
  3125   __ empty_FPU_stack();
  3127   // set last_Java_sp
  3128   __ get_thread(rdx);
  3129   __ set_last_Java_frame(rdx, noreg, noreg, NULL);
  3131   // Call C code.  Need thread but NOT official VM entry
  3132   // crud.  We cannot block on this call, no GC can happen.  Call should
  3133   // capture callee-saved registers as well as return values.
  3134   __ movptr(Address(rsp, arg0_off*wordSize), rdx);
  3135   // argument already in ECX
  3136   __ movl(Address(rsp, arg1_off*wordSize),rcx);
  3137   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
  3139   // Set an oopmap for the call site
  3140   OopMapSet *oop_maps = new OopMapSet();
  3141   OopMap* map =  new OopMap( framesize, 0 );
  3142   // No oopMap for rbp, it is known implicitly
  3144   oop_maps->add_gc_map( __ pc()-start, map);
  3146   __ get_thread(rcx);
  3148   __ reset_last_Java_frame(rcx, false, false);
  3150   // Load UnrollBlock into EDI
  3151   __ movptr(rdi, rax);
  3153   // Pop all the frames we must move/replace.
  3154   //
  3155   // Frame picture (youngest to oldest)
  3156   // 1: self-frame (no frame link)
  3157   // 2: deopting frame  (no frame link)
  3158   // 3: caller of deopting frame (could be compiled/interpreted).
  3160   // Pop self-frame.  We have no frame, and must rely only on EAX and ESP.
  3161   __ addptr(rsp,(framesize-1)*wordSize);     // Epilog!
  3163   // Pop deoptimized frame
  3164   __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
  3165   __ addptr(rsp, rcx);
  3167   // sp should be pointing at the return address to the caller (3)
  3169   // Stack bang to make sure there's enough room for these interpreter frames.
  3170   if (UseStackBanging) {
  3171     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  3172     __ bang_stack_size(rbx, rcx);
  3176   // Load array of frame pcs into ECX
  3177   __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  3179   __ pop(rsi); // trash the pc
  3181   // Load array of frame sizes into ESI
  3182   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
  3184   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
  3186   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
  3187   __ movl(counter, rbx);
  3189   // Pick up the initial fp we should save
  3190   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
  3192   // Now adjust the caller's stack to make up for the extra locals
  3193   // but record the original sp so that we can save it in the skeletal interpreter
  3194   // frame and the stack walking of interpreter_sender will get the unextended sp
  3195   // value and not the "real" sp value.
  3197   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
  3198   __ movptr(sp_temp, rsp);
  3199   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
  3200   __ subptr(rsp, rbx);
  3202   // Push interpreter frames in a loop
  3203   Label loop;
  3204   __ bind(loop);
  3205   __ movptr(rbx, Address(rsi, 0));      // Load frame size
  3206 #ifdef CC_INTERP
  3207   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
  3208 #ifdef ASSERT
  3209   __ push(0xDEADDEAD);                  // Make a recognizable pattern
  3210   __ push(0xDEADDEAD);                  // (parm to RecursiveInterpreter...)
  3211 #else /* ASSERT */
  3212   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
  3213 #endif /* ASSERT */
  3214 #else /* CC_INTERP */
  3215   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
  3216 #endif /* CC_INTERP */
  3217   __ pushptr(Address(rcx, 0));          // save return address
  3218   __ enter();                           // save old & set new rbp,
  3219   __ subptr(rsp, rbx);                  // Prolog!
  3220   __ movptr(rbx, sp_temp);              // sender's sp
  3221 #ifdef CC_INTERP
  3222   __ movptr(Address(rbp,
  3223                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  3224           rbx); // Make it walkable
  3225 #else /* CC_INTERP */
  3226   // This value is corrected by layout_activation_impl
  3227   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
  3228   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
  3229 #endif /* CC_INTERP */
  3230   __ movptr(sp_temp, rsp);              // pass to next frame
  3231   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
  3232   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
  3233   __ decrementl(counter);             // decrement counter
  3234   __ jcc(Assembler::notZero, loop);
  3235   __ pushptr(Address(rcx, 0));            // save final return address
  3237   // Re-push self-frame
  3238   __ enter();                           // save old & set new rbp,
  3239   __ subptr(rsp, (framesize-2) * wordSize);   // Prolog!
  3242   // set last_Java_sp, last_Java_fp
  3243   __ get_thread(rdi);
  3244   __ set_last_Java_frame(rdi, noreg, rbp, NULL);
  3246   // Call C code.  Need thread but NOT official VM entry
  3247   // crud.  We cannot block on this call, no GC can happen.  Call should
  3248   // restore return values to their stack-slots with the new SP.
  3249   __ movptr(Address(rsp,arg0_off*wordSize),rdi);
  3250   __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
  3251   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  3252   // Set an oopmap for the call site
  3253   oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
  3255   __ get_thread(rdi);
  3256   __ reset_last_Java_frame(rdi, true, false);
  3258   // Pop self-frame.
  3259   __ leave();     // Epilog!
  3261   // Jump to interpreter
  3262   __ ret(0);
  3264   // -------------
  3265   // make sure all code is generated
  3266   masm->flush();
  3268    _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
  3270 #endif // COMPILER2
  3272 //------------------------------generate_handler_blob------
  3273 //
  3274 // Generate a special Compile2Runtime blob that saves all registers,
  3275 // setup oopmap, and calls safepoint code to stop the compiled code for
  3276 // a safepoint.
  3277 //
  3278 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, bool cause_return) {
  3280   // Account for thread arg in our frame
  3281   const int additional_words = 1;
  3282   int frame_size_in_words;
  3284   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3286   ResourceMark rm;
  3287   OopMapSet *oop_maps = new OopMapSet();
  3288   OopMap* map;
  3290   // allocate space for the code
  3291   // setup code generation tools
  3292   CodeBuffer   buffer("handler_blob", 1024, 512);
  3293   MacroAssembler* masm = new MacroAssembler(&buffer);
  3295   const Register java_thread = rdi; // callee-saved for VC++
  3296   address start   = __ pc();
  3297   address call_pc = NULL;
  3299   // If cause_return is true we are at a poll_return and there is
  3300   // the return address on the stack to the caller on the nmethod
  3301   // that is safepoint. We can leave this return on the stack and
  3302   // effectively complete the return and safepoint in the caller.
  3303   // Otherwise we push space for a return address that the safepoint
  3304   // handler will install later to make the stack walking sensible.
  3305   if( !cause_return )
  3306     __ push(rbx);                // Make room for return address (or push it again)
  3308   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
  3310   // The following is basically a call_VM. However, we need the precise
  3311   // address of the call in order to generate an oopmap. Hence, we do all the
  3312   // work ourselves.
  3314   // Push thread argument and setup last_Java_sp
  3315   __ get_thread(java_thread);
  3316   __ push(java_thread);
  3317   __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
  3319   // if this was not a poll_return then we need to correct the return address now.
  3320   if( !cause_return ) {
  3321     __ movptr(rax, Address(java_thread, JavaThread::saved_exception_pc_offset()));
  3322     __ movptr(Address(rbp, wordSize), rax);
  3325   // do the call
  3326   __ call(RuntimeAddress(call_ptr));
  3328   // Set an oopmap for the call site.  This oopmap will map all
  3329   // oop-registers and debug-info registers as callee-saved.  This
  3330   // will allow deoptimization at this safepoint to find all possible
  3331   // debug-info recordings, as well as let GC find all oops.
  3333   oop_maps->add_gc_map( __ pc() - start, map);
  3335   // Discard arg
  3336   __ pop(rcx);
  3338   Label noException;
  3340   // Clear last_Java_sp again
  3341   __ get_thread(java_thread);
  3342   __ reset_last_Java_frame(java_thread, false, false);
  3344   __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  3345   __ jcc(Assembler::equal, noException);
  3347   // Exception pending
  3349   RegisterSaver::restore_live_registers(masm);
  3351   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  3353   __ bind(noException);
  3355   // Normal exit, register restoring and exit
  3356   RegisterSaver::restore_live_registers(masm);
  3358   __ ret(0);
  3360   // make sure all code is generated
  3361   masm->flush();
  3363   // Fill-out other meta info
  3364   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
  3367 //
  3368 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
  3369 //
  3370 // Generate a stub that calls into vm to find out the proper destination
  3371 // of a java call. All the argument registers are live at this point
  3372 // but since this is generic code we don't know what they are and the caller
  3373 // must do any gc of the args.
  3374 //
  3375 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
  3376   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3378   // allocate space for the code
  3379   ResourceMark rm;
  3381   CodeBuffer buffer(name, 1000, 512);
  3382   MacroAssembler* masm                = new MacroAssembler(&buffer);
  3384   int frame_size_words;
  3385   enum frame_layout {
  3386                 thread_off,
  3387                 extra_words };
  3389   OopMapSet *oop_maps = new OopMapSet();
  3390   OopMap* map = NULL;
  3392   int start = __ offset();
  3394   map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
  3396   int frame_complete = __ offset();
  3398   const Register thread = rdi;
  3399   __ get_thread(rdi);
  3401   __ push(thread);
  3402   __ set_last_Java_frame(thread, noreg, rbp, NULL);
  3404   __ call(RuntimeAddress(destination));
  3407   // Set an oopmap for the call site.
  3408   // We need this not only for callee-saved registers, but also for volatile
  3409   // registers that the compiler might be keeping live across a safepoint.
  3411   oop_maps->add_gc_map( __ offset() - start, map);
  3413   // rax, contains the address we are going to jump to assuming no exception got installed
  3415   __ addptr(rsp, wordSize);
  3417   // clear last_Java_sp
  3418   __ reset_last_Java_frame(thread, true, false);
  3419   // check for pending exceptions
  3420   Label pending;
  3421   __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  3422   __ jcc(Assembler::notEqual, pending);
  3424   // get the returned Method*
  3425   __ get_vm_result_2(rbx, thread);
  3426   __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
  3428   __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
  3430   RegisterSaver::restore_live_registers(masm);
  3432   // We are back the the original state on entry and ready to go.
  3434   __ jmp(rax);
  3436   // Pending exception after the safepoint
  3438   __ bind(pending);
  3440   RegisterSaver::restore_live_registers(masm);
  3442   // exception pending => remove activation and forward to exception handler
  3444   __ get_thread(thread);
  3445   __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
  3446   __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
  3447   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  3449   // -------------
  3450   // make sure all code is generated
  3451   masm->flush();
  3453   // return the  blob
  3454   // frame_size_words or bytes??
  3455   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);

mercurial