src/share/vm/opto/matcher.cpp

Wed, 18 Sep 2013 14:34:56 -0700

author
goetz
date
Wed, 18 Sep 2013 14:34:56 -0700
changeset 6468
cfd05ec74089
parent 6462
e2722a66aba7
child 6472
2b8e28fdf503
permissions
-rw-r--r--

8024342: PPC64 (part 111): Support for C calling conventions that require 64-bit ints.
Summary: Some platforms, as ppc and s390x/zArch require that 32-bit ints are passed as 64-bit values to C functions. This change adds support to adapt the signature and to issue proper casts to c2-compiled stubs. The functions are used in generate_native_wrapper(). Adapt signature used by the compiler as in PhaseIdealLoop::intrinsify_fill().
Reviewed-by: kvn

duke@435 1 /*
drchase@5285 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "memory/allocation.inline.hpp"
stefank@2314 27 #include "opto/addnode.hpp"
stefank@2314 28 #include "opto/callnode.hpp"
stefank@2314 29 #include "opto/connode.hpp"
stefank@2314 30 #include "opto/idealGraphPrinter.hpp"
stefank@2314 31 #include "opto/matcher.hpp"
stefank@2314 32 #include "opto/memnode.hpp"
stefank@2314 33 #include "opto/opcodes.hpp"
stefank@2314 34 #include "opto/regmask.hpp"
stefank@2314 35 #include "opto/rootnode.hpp"
stefank@2314 36 #include "opto/runtime.hpp"
stefank@2314 37 #include "opto/type.hpp"
kvn@3882 38 #include "opto/vectornode.hpp"
stefank@2314 39 #include "runtime/atomic.hpp"
stefank@2314 40 #include "runtime/os.hpp"
stefank@2314 41 #ifdef TARGET_ARCH_MODEL_x86_32
stefank@2314 42 # include "adfiles/ad_x86_32.hpp"
stefank@2314 43 #endif
stefank@2314 44 #ifdef TARGET_ARCH_MODEL_x86_64
stefank@2314 45 # include "adfiles/ad_x86_64.hpp"
stefank@2314 46 #endif
stefank@2314 47 #ifdef TARGET_ARCH_MODEL_sparc
stefank@2314 48 # include "adfiles/ad_sparc.hpp"
stefank@2314 49 #endif
stefank@2314 50 #ifdef TARGET_ARCH_MODEL_zero
stefank@2314 51 # include "adfiles/ad_zero.hpp"
stefank@2314 52 #endif
roland@2683 53 #ifdef TARGET_ARCH_MODEL_arm
roland@2683 54 # include "adfiles/ad_arm.hpp"
roland@2683 55 #endif
goetz@6441 56 #ifdef TARGET_ARCH_MODEL_ppc_32
goetz@6441 57 # include "adfiles/ad_ppc_32.hpp"
goetz@6441 58 #endif
goetz@6441 59 #ifdef TARGET_ARCH_MODEL_ppc_64
goetz@6441 60 # include "adfiles/ad_ppc_64.hpp"
jcoomes@2993 61 #endif
duke@435 62
duke@435 63 OptoReg::Name OptoReg::c_frame_pointer;
duke@435 64
duke@435 65 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
duke@435 66 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
duke@435 67 RegMask Matcher::STACK_ONLY_mask;
duke@435 68 RegMask Matcher::c_frame_ptr_mask;
duke@435 69 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
duke@435 70 const uint Matcher::_end_rematerialize = _END_REMATERIALIZE;
duke@435 71
duke@435 72 //---------------------------Matcher-------------------------------------------
adlertz@5539 73 Matcher::Matcher()
adlertz@5539 74 : PhaseTransform( Phase::Ins_Select ),
duke@435 75 #ifdef ASSERT
duke@435 76 _old2new_map(C->comp_arena()),
never@657 77 _new2old_map(C->comp_arena()),
duke@435 78 #endif
kvn@603 79 _shared_nodes(C->comp_arena()),
duke@435 80 _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
duke@435 81 _swallowed(swallowed),
duke@435 82 _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
duke@435 83 _end_inst_chain_rule(_END_INST_CHAIN_RULE),
adlertz@5539 84 _must_clone(must_clone),
duke@435 85 _register_save_policy(register_save_policy),
duke@435 86 _c_reg_save_policy(c_reg_save_policy),
duke@435 87 _register_save_type(register_save_type),
duke@435 88 _ruleName(ruleName),
duke@435 89 _allocation_started(false),
duke@435 90 _states_arena(Chunk::medium_size),
duke@435 91 _visited(&_states_arena),
duke@435 92 _shared(&_states_arena),
duke@435 93 _dontcare(&_states_arena) {
duke@435 94 C->set_matcher(this);
duke@435 95
twisti@1572 96 idealreg2spillmask [Op_RegI] = NULL;
twisti@1572 97 idealreg2spillmask [Op_RegN] = NULL;
twisti@1572 98 idealreg2spillmask [Op_RegL] = NULL;
twisti@1572 99 idealreg2spillmask [Op_RegF] = NULL;
twisti@1572 100 idealreg2spillmask [Op_RegD] = NULL;
twisti@1572 101 idealreg2spillmask [Op_RegP] = NULL;
kvn@3882 102 idealreg2spillmask [Op_VecS] = NULL;
kvn@3882 103 idealreg2spillmask [Op_VecD] = NULL;
kvn@3882 104 idealreg2spillmask [Op_VecX] = NULL;
kvn@3882 105 idealreg2spillmask [Op_VecY] = NULL;
duke@435 106
twisti@1572 107 idealreg2debugmask [Op_RegI] = NULL;
twisti@1572 108 idealreg2debugmask [Op_RegN] = NULL;
twisti@1572 109 idealreg2debugmask [Op_RegL] = NULL;
twisti@1572 110 idealreg2debugmask [Op_RegF] = NULL;
twisti@1572 111 idealreg2debugmask [Op_RegD] = NULL;
twisti@1572 112 idealreg2debugmask [Op_RegP] = NULL;
kvn@3882 113 idealreg2debugmask [Op_VecS] = NULL;
kvn@3882 114 idealreg2debugmask [Op_VecD] = NULL;
kvn@3882 115 idealreg2debugmask [Op_VecX] = NULL;
kvn@3882 116 idealreg2debugmask [Op_VecY] = NULL;
twisti@1572 117
twisti@1572 118 idealreg2mhdebugmask[Op_RegI] = NULL;
twisti@1572 119 idealreg2mhdebugmask[Op_RegN] = NULL;
twisti@1572 120 idealreg2mhdebugmask[Op_RegL] = NULL;
twisti@1572 121 idealreg2mhdebugmask[Op_RegF] = NULL;
twisti@1572 122 idealreg2mhdebugmask[Op_RegD] = NULL;
twisti@1572 123 idealreg2mhdebugmask[Op_RegP] = NULL;
kvn@3882 124 idealreg2mhdebugmask[Op_VecS] = NULL;
kvn@3882 125 idealreg2mhdebugmask[Op_VecD] = NULL;
kvn@3882 126 idealreg2mhdebugmask[Op_VecX] = NULL;
kvn@3882 127 idealreg2mhdebugmask[Op_VecY] = NULL;
twisti@1572 128
kvn@651 129 debug_only(_mem_node = NULL;) // Ideal memory node consumed by mach node
duke@435 130 }
duke@435 131
duke@435 132 //------------------------------warp_incoming_stk_arg------------------------
duke@435 133 // This warps a VMReg into an OptoReg::Name
duke@435 134 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
duke@435 135 OptoReg::Name warped;
duke@435 136 if( reg->is_stack() ) { // Stack slot argument?
duke@435 137 warped = OptoReg::add(_old_SP, reg->reg2stack() );
duke@435 138 warped = OptoReg::add(warped, C->out_preserve_stack_slots());
duke@435 139 if( warped >= _in_arg_limit )
duke@435 140 _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
kvn@3882 141 if (!RegMask::can_represent_arg(warped)) {
duke@435 142 // the compiler cannot represent this method's calling sequence
duke@435 143 C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
duke@435 144 return OptoReg::Bad;
duke@435 145 }
duke@435 146 return warped;
duke@435 147 }
duke@435 148 return OptoReg::as_OptoReg(reg);
duke@435 149 }
duke@435 150
duke@435 151 //---------------------------compute_old_SP------------------------------------
duke@435 152 OptoReg::Name Compile::compute_old_SP() {
duke@435 153 int fixed = fixed_slots();
duke@435 154 int preserve = in_preserve_stack_slots();
duke@435 155 return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
duke@435 156 }
duke@435 157
duke@435 158
duke@435 159
duke@435 160 #ifdef ASSERT
duke@435 161 void Matcher::verify_new_nodes_only(Node* xroot) {
duke@435 162 // Make sure that the new graph only references new nodes
duke@435 163 ResourceMark rm;
duke@435 164 Unique_Node_List worklist;
duke@435 165 VectorSet visited(Thread::current()->resource_area());
duke@435 166 worklist.push(xroot);
duke@435 167 while (worklist.size() > 0) {
duke@435 168 Node* n = worklist.pop();
duke@435 169 visited <<= n->_idx;
duke@435 170 assert(C->node_arena()->contains(n), "dead node");
duke@435 171 for (uint j = 0; j < n->req(); j++) {
duke@435 172 Node* in = n->in(j);
duke@435 173 if (in != NULL) {
duke@435 174 assert(C->node_arena()->contains(in), "dead node");
duke@435 175 if (!visited.test(in->_idx)) {
duke@435 176 worklist.push(in);
duke@435 177 }
duke@435 178 }
duke@435 179 }
duke@435 180 }
duke@435 181 }
duke@435 182 #endif
duke@435 183
duke@435 184
duke@435 185 //---------------------------match---------------------------------------------
duke@435 186 void Matcher::match( ) {
kvn@1258 187 if( MaxLabelRootDepth < 100 ) { // Too small?
kvn@1258 188 assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
kvn@1258 189 MaxLabelRootDepth = 100;
kvn@1258 190 }
duke@435 191 // One-time initialization of some register masks.
duke@435 192 init_spill_mask( C->root()->in(1) );
duke@435 193 _return_addr_mask = return_addr();
duke@435 194 #ifdef _LP64
duke@435 195 // Pointers take 2 slots in 64-bit land
duke@435 196 _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
duke@435 197 #endif
duke@435 198
duke@435 199 // Map a Java-signature return type into return register-value
duke@435 200 // machine registers for 0, 1 and 2 returned values.
duke@435 201 const TypeTuple *range = C->tf()->range();
duke@435 202 if( range->cnt() > TypeFunc::Parms ) { // If not a void function
duke@435 203 // Get ideal-register return type
coleenp@4037 204 int ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
duke@435 205 // Get machine return register
duke@435 206 uint sop = C->start()->Opcode();
duke@435 207 OptoRegPair regs = return_value(ireg, false);
duke@435 208
duke@435 209 // And mask for same
duke@435 210 _return_value_mask = RegMask(regs.first());
duke@435 211 if( OptoReg::is_valid(regs.second()) )
duke@435 212 _return_value_mask.Insert(regs.second());
duke@435 213 }
duke@435 214
duke@435 215 // ---------------
duke@435 216 // Frame Layout
duke@435 217
duke@435 218 // Need the method signature to determine the incoming argument types,
duke@435 219 // because the types determine which registers the incoming arguments are
duke@435 220 // in, and this affects the matched code.
duke@435 221 const TypeTuple *domain = C->tf()->domain();
duke@435 222 uint argcnt = domain->cnt() - TypeFunc::Parms;
duke@435 223 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt );
duke@435 224 VMRegPair *vm_parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
duke@435 225 _parm_regs = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
duke@435 226 _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
duke@435 227 uint i;
duke@435 228 for( i = 0; i<argcnt; i++ ) {
duke@435 229 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
duke@435 230 }
duke@435 231
duke@435 232 // Pass array of ideal registers and length to USER code (from the AD file)
duke@435 233 // that will convert this to an array of register numbers.
duke@435 234 const StartNode *start = C->start();
duke@435 235 start->calling_convention( sig_bt, vm_parm_regs, argcnt );
duke@435 236 #ifdef ASSERT
duke@435 237 // Sanity check users' calling convention. Real handy while trying to
duke@435 238 // get the initial port correct.
duke@435 239 { for (uint i = 0; i<argcnt; i++) {
duke@435 240 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
duke@435 241 assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
duke@435 242 _parm_regs[i].set_bad();
duke@435 243 continue;
duke@435 244 }
duke@435 245 VMReg parm_reg = vm_parm_regs[i].first();
duke@435 246 assert(parm_reg->is_valid(), "invalid arg?");
duke@435 247 if (parm_reg->is_reg()) {
duke@435 248 OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
duke@435 249 assert(can_be_java_arg(opto_parm_reg) ||
duke@435 250 C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
duke@435 251 opto_parm_reg == inline_cache_reg(),
duke@435 252 "parameters in register must be preserved by runtime stubs");
duke@435 253 }
duke@435 254 for (uint j = 0; j < i; j++) {
duke@435 255 assert(parm_reg != vm_parm_regs[j].first(),
duke@435 256 "calling conv. must produce distinct regs");
duke@435 257 }
duke@435 258 }
duke@435 259 }
duke@435 260 #endif
duke@435 261
duke@435 262 // Do some initial frame layout.
duke@435 263
duke@435 264 // Compute the old incoming SP (may be called FP) as
duke@435 265 // OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
duke@435 266 _old_SP = C->compute_old_SP();
duke@435 267 assert( is_even(_old_SP), "must be even" );
duke@435 268
duke@435 269 // Compute highest incoming stack argument as
duke@435 270 // _old_SP + out_preserve_stack_slots + incoming argument size.
duke@435 271 _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
duke@435 272 assert( is_even(_in_arg_limit), "out_preserve must be even" );
duke@435 273 for( i = 0; i < argcnt; i++ ) {
duke@435 274 // Permit args to have no register
duke@435 275 _calling_convention_mask[i].Clear();
duke@435 276 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
duke@435 277 continue;
duke@435 278 }
duke@435 279 // calling_convention returns stack arguments as a count of
duke@435 280 // slots beyond OptoReg::stack0()/VMRegImpl::stack0. We need to convert this to
duke@435 281 // the allocators point of view, taking into account all the
duke@435 282 // preserve area, locks & pad2.
duke@435 283
duke@435 284 OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
duke@435 285 if( OptoReg::is_valid(reg1))
duke@435 286 _calling_convention_mask[i].Insert(reg1);
duke@435 287
duke@435 288 OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
duke@435 289 if( OptoReg::is_valid(reg2))
duke@435 290 _calling_convention_mask[i].Insert(reg2);
duke@435 291
duke@435 292 // Saved biased stack-slot register number
duke@435 293 _parm_regs[i].set_pair(reg2, reg1);
duke@435 294 }
duke@435 295
duke@435 296 // Finally, make sure the incoming arguments take up an even number of
duke@435 297 // words, in case the arguments or locals need to contain doubleword stack
duke@435 298 // slots. The rest of the system assumes that stack slot pairs (in
duke@435 299 // particular, in the spill area) which look aligned will in fact be
duke@435 300 // aligned relative to the stack pointer in the target machine. Double
duke@435 301 // stack slots will always be allocated aligned.
duke@435 302 _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
duke@435 303
duke@435 304 // Compute highest outgoing stack argument as
duke@435 305 // _new_SP + out_preserve_stack_slots + max(outgoing argument size).
duke@435 306 _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
duke@435 307 assert( is_even(_out_arg_limit), "out_preserve must be even" );
duke@435 308
kvn@3882 309 if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) {
duke@435 310 // the compiler cannot represent this method's calling sequence
duke@435 311 C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
duke@435 312 }
duke@435 313
duke@435 314 if (C->failing()) return; // bailed out on incoming arg failure
duke@435 315
duke@435 316 // ---------------
duke@435 317 // Collect roots of matcher trees. Every node for which
duke@435 318 // _shared[_idx] is cleared is guaranteed to not be shared, and thus
duke@435 319 // can be a valid interior of some tree.
duke@435 320 find_shared( C->root() );
duke@435 321 find_shared( C->top() );
duke@435 322
sla@5237 323 C->print_method(PHASE_BEFORE_MATCHING);
duke@435 324
kvn@1164 325 // Create new ideal node ConP #NULL even if it does exist in old space
kvn@1164 326 // to avoid false sharing if the corresponding mach node is not used.
kvn@1164 327 // The corresponding mach node is only used in rare cases for derived
kvn@1164 328 // pointers.
kvn@1164 329 Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
kvn@1164 330
duke@435 331 // Swap out to old-space; emptying new-space
duke@435 332 Arena *old = C->node_arena()->move_contents(C->old_arena());
duke@435 333
duke@435 334 // Save debug and profile information for nodes in old space:
duke@435 335 _old_node_note_array = C->node_note_array();
duke@435 336 if (_old_node_note_array != NULL) {
duke@435 337 C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
duke@435 338 (C->comp_arena(), _old_node_note_array->length(),
duke@435 339 0, NULL));
duke@435 340 }
duke@435 341
duke@435 342 // Pre-size the new_node table to avoid the need for range checks.
duke@435 343 grow_new_node_array(C->unique());
duke@435 344
duke@435 345 // Reset node counter so MachNodes start with _idx at 0
duke@435 346 int nodes = C->unique(); // save value
duke@435 347 C->set_unique(0);
bharadwaj@4315 348 C->reset_dead_node_list();
duke@435 349
duke@435 350 // Recursively match trees from old space into new space.
duke@435 351 // Correct leaves of new-space Nodes; they point to old-space.
duke@435 352 _visited.Clear(); // Clear visit bits for xform call
duke@435 353 C->set_cached_top_node(xform( C->top(), nodes ));
duke@435 354 if (!C->failing()) {
duke@435 355 Node* xroot = xform( C->root(), 1 );
duke@435 356 if (xroot == NULL) {
duke@435 357 Matcher::soft_match_failure(); // recursive matching process failed
duke@435 358 C->record_method_not_compilable("instruction match failed");
duke@435 359 } else {
duke@435 360 // During matching shared constants were attached to C->root()
duke@435 361 // because xroot wasn't available yet, so transfer the uses to
duke@435 362 // the xroot.
duke@435 363 for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
duke@435 364 Node* n = C->root()->fast_out(j);
duke@435 365 if (C->node_arena()->contains(n)) {
duke@435 366 assert(n->in(0) == C->root(), "should be control user");
duke@435 367 n->set_req(0, xroot);
duke@435 368 --j;
duke@435 369 --jmax;
duke@435 370 }
duke@435 371 }
duke@435 372
kvn@1164 373 // Generate new mach node for ConP #NULL
kvn@1164 374 assert(new_ideal_null != NULL, "sanity");
kvn@1164 375 _mach_null = match_tree(new_ideal_null);
kvn@1164 376 // Don't set control, it will confuse GCM since there are no uses.
kvn@1164 377 // The control will be set when this node is used first time
kvn@1164 378 // in find_base_for_derived().
kvn@1164 379 assert(_mach_null != NULL, "");
kvn@1164 380
duke@435 381 C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
kvn@1164 382
duke@435 383 #ifdef ASSERT
duke@435 384 verify_new_nodes_only(xroot);
duke@435 385 #endif
duke@435 386 }
duke@435 387 }
duke@435 388 if (C->top() == NULL || C->root() == NULL) {
duke@435 389 C->record_method_not_compilable("graph lost"); // %%% cannot happen?
duke@435 390 }
duke@435 391 if (C->failing()) {
duke@435 392 // delete old;
duke@435 393 old->destruct_contents();
duke@435 394 return;
duke@435 395 }
duke@435 396 assert( C->top(), "" );
duke@435 397 assert( C->root(), "" );
duke@435 398 validate_null_checks();
duke@435 399
duke@435 400 // Now smoke old-space
duke@435 401 NOT_DEBUG( old->destruct_contents() );
duke@435 402
duke@435 403 // ------------------------
duke@435 404 // Set up save-on-entry registers
duke@435 405 Fixup_Save_On_Entry( );
duke@435 406 }
duke@435 407
duke@435 408
duke@435 409 //------------------------------Fixup_Save_On_Entry----------------------------
duke@435 410 // The stated purpose of this routine is to take care of save-on-entry
duke@435 411 // registers. However, the overall goal of the Match phase is to convert into
duke@435 412 // machine-specific instructions which have RegMasks to guide allocation.
duke@435 413 // So what this procedure really does is put a valid RegMask on each input
duke@435 414 // to the machine-specific variations of all Return, TailCall and Halt
duke@435 415 // instructions. It also adds edgs to define the save-on-entry values (and of
duke@435 416 // course gives them a mask).
duke@435 417
duke@435 418 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
duke@435 419 RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
duke@435 420 // Do all the pre-defined register masks
duke@435 421 rms[TypeFunc::Control ] = RegMask::Empty;
duke@435 422 rms[TypeFunc::I_O ] = RegMask::Empty;
duke@435 423 rms[TypeFunc::Memory ] = RegMask::Empty;
duke@435 424 rms[TypeFunc::ReturnAdr] = ret_adr;
duke@435 425 rms[TypeFunc::FramePtr ] = fp;
duke@435 426 return rms;
duke@435 427 }
duke@435 428
duke@435 429 //---------------------------init_first_stack_mask-----------------------------
duke@435 430 // Create the initial stack mask used by values spilling to the stack.
duke@435 431 // Disallow any debug info in outgoing argument areas by setting the
duke@435 432 // initial mask accordingly.
duke@435 433 void Matcher::init_first_stack_mask() {
duke@435 434
duke@435 435 // Allocate storage for spill masks as masks for the appropriate load type.
kvn@3882 436 RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+4));
twisti@1572 437
twisti@1572 438 idealreg2spillmask [Op_RegN] = &rms[0];
twisti@1572 439 idealreg2spillmask [Op_RegI] = &rms[1];
twisti@1572 440 idealreg2spillmask [Op_RegL] = &rms[2];
twisti@1572 441 idealreg2spillmask [Op_RegF] = &rms[3];
twisti@1572 442 idealreg2spillmask [Op_RegD] = &rms[4];
twisti@1572 443 idealreg2spillmask [Op_RegP] = &rms[5];
twisti@1572 444
twisti@1572 445 idealreg2debugmask [Op_RegN] = &rms[6];
twisti@1572 446 idealreg2debugmask [Op_RegI] = &rms[7];
twisti@1572 447 idealreg2debugmask [Op_RegL] = &rms[8];
twisti@1572 448 idealreg2debugmask [Op_RegF] = &rms[9];
twisti@1572 449 idealreg2debugmask [Op_RegD] = &rms[10];
twisti@1572 450 idealreg2debugmask [Op_RegP] = &rms[11];
twisti@1572 451
twisti@1572 452 idealreg2mhdebugmask[Op_RegN] = &rms[12];
twisti@1572 453 idealreg2mhdebugmask[Op_RegI] = &rms[13];
twisti@1572 454 idealreg2mhdebugmask[Op_RegL] = &rms[14];
twisti@1572 455 idealreg2mhdebugmask[Op_RegF] = &rms[15];
twisti@1572 456 idealreg2mhdebugmask[Op_RegD] = &rms[16];
twisti@1572 457 idealreg2mhdebugmask[Op_RegP] = &rms[17];
duke@435 458
kvn@3882 459 idealreg2spillmask [Op_VecS] = &rms[18];
kvn@3882 460 idealreg2spillmask [Op_VecD] = &rms[19];
kvn@3882 461 idealreg2spillmask [Op_VecX] = &rms[20];
kvn@3882 462 idealreg2spillmask [Op_VecY] = &rms[21];
kvn@3882 463
duke@435 464 OptoReg::Name i;
duke@435 465
duke@435 466 // At first, start with the empty mask
duke@435 467 C->FIRST_STACK_mask().Clear();
duke@435 468
duke@435 469 // Add in the incoming argument area
duke@435 470 OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
duke@435 471 for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
duke@435 472 C->FIRST_STACK_mask().Insert(i);
duke@435 473
duke@435 474 // Add in all bits past the outgoing argument area
kvn@3882 475 guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
duke@435 476 "must be able to represent all call arguments in reg mask");
duke@435 477 init = _out_arg_limit;
duke@435 478 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
duke@435 479 C->FIRST_STACK_mask().Insert(i);
duke@435 480
duke@435 481 // Finally, set the "infinite stack" bit.
duke@435 482 C->FIRST_STACK_mask().set_AllStack();
duke@435 483
duke@435 484 // Make spill masks. Registers for their class, plus FIRST_STACK_mask.
kvn@3882 485 RegMask aligned_stack_mask = C->FIRST_STACK_mask();
kvn@3882 486 // Keep spill masks aligned.
kvn@3882 487 aligned_stack_mask.clear_to_pairs();
kvn@3882 488 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
kvn@3882 489
kvn@3882 490 *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
coleenp@548 491 #ifdef _LP64
coleenp@548 492 *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
coleenp@548 493 idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
kvn@3882 494 idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
kvn@3882 495 #else
kvn@3882 496 idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
coleenp@548 497 #endif
duke@435 498 *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
duke@435 499 idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
duke@435 500 *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
kvn@3882 501 idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
duke@435 502 *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
duke@435 503 idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
duke@435 504 *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
kvn@3882 505 idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
duke@435 506
kvn@3882 507 if (Matcher::vector_size_supported(T_BYTE,4)) {
kvn@3882 508 *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
kvn@3882 509 idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
kvn@3882 510 }
kvn@3882 511 if (Matcher::vector_size_supported(T_FLOAT,2)) {
kvn@3882 512 *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
kvn@3882 513 idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
kvn@3882 514 }
kvn@3882 515 if (Matcher::vector_size_supported(T_FLOAT,4)) {
kvn@3882 516 aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
kvn@3882 517 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
kvn@3882 518 *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
kvn@3882 519 idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
kvn@3882 520 }
kvn@3882 521 if (Matcher::vector_size_supported(T_FLOAT,8)) {
kvn@3882 522 aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
kvn@3882 523 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
kvn@3882 524 *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
kvn@3882 525 idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
kvn@3882 526 }
never@2085 527 if (UseFPUForSpilling) {
never@2085 528 // This mask logic assumes that the spill operations are
never@2085 529 // symmetric and that the registers involved are the same size.
never@2085 530 // On sparc for instance we may have to use 64 bit moves will
never@2085 531 // kill 2 registers when used with F0-F31.
never@2085 532 idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
never@2085 533 idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
never@2085 534 #ifdef _LP64
never@2085 535 idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
never@2085 536 idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
never@2085 537 idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
never@2085 538 idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
never@2085 539 #else
never@2085 540 idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
roland@3109 541 #ifdef ARM
roland@3109 542 // ARM has support for moving 64bit values between a pair of
roland@3109 543 // integer registers and a double register
roland@3109 544 idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
roland@3109 545 idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
roland@3109 546 #endif
never@2085 547 #endif
never@2085 548 }
never@2085 549
duke@435 550 // Make up debug masks. Any spill slot plus callee-save registers.
duke@435 551 // Caller-save registers are assumed to be trashable by the various
duke@435 552 // inline-cache fixup routines.
twisti@1572 553 *idealreg2debugmask [Op_RegN]= *idealreg2spillmask[Op_RegN];
twisti@1572 554 *idealreg2debugmask [Op_RegI]= *idealreg2spillmask[Op_RegI];
twisti@1572 555 *idealreg2debugmask [Op_RegL]= *idealreg2spillmask[Op_RegL];
twisti@1572 556 *idealreg2debugmask [Op_RegF]= *idealreg2spillmask[Op_RegF];
twisti@1572 557 *idealreg2debugmask [Op_RegD]= *idealreg2spillmask[Op_RegD];
twisti@1572 558 *idealreg2debugmask [Op_RegP]= *idealreg2spillmask[Op_RegP];
twisti@1572 559
twisti@1572 560 *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
twisti@1572 561 *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
twisti@1572 562 *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
twisti@1572 563 *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
twisti@1572 564 *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
twisti@1572 565 *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
duke@435 566
duke@435 567 // Prevent stub compilations from attempting to reference
duke@435 568 // callee-saved registers from debug info
duke@435 569 bool exclude_soe = !Compile::current()->is_method_compilation();
duke@435 570
duke@435 571 for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
duke@435 572 // registers the caller has to save do not work
duke@435 573 if( _register_save_policy[i] == 'C' ||
duke@435 574 _register_save_policy[i] == 'A' ||
duke@435 575 (_register_save_policy[i] == 'E' && exclude_soe) ) {
twisti@1572 576 idealreg2debugmask [Op_RegN]->Remove(i);
twisti@1572 577 idealreg2debugmask [Op_RegI]->Remove(i); // Exclude save-on-call
twisti@1572 578 idealreg2debugmask [Op_RegL]->Remove(i); // registers from debug
twisti@1572 579 idealreg2debugmask [Op_RegF]->Remove(i); // masks
twisti@1572 580 idealreg2debugmask [Op_RegD]->Remove(i);
twisti@1572 581 idealreg2debugmask [Op_RegP]->Remove(i);
twisti@1572 582
twisti@1572 583 idealreg2mhdebugmask[Op_RegN]->Remove(i);
twisti@1572 584 idealreg2mhdebugmask[Op_RegI]->Remove(i);
twisti@1572 585 idealreg2mhdebugmask[Op_RegL]->Remove(i);
twisti@1572 586 idealreg2mhdebugmask[Op_RegF]->Remove(i);
twisti@1572 587 idealreg2mhdebugmask[Op_RegD]->Remove(i);
twisti@1572 588 idealreg2mhdebugmask[Op_RegP]->Remove(i);
duke@435 589 }
duke@435 590 }
twisti@1572 591
twisti@1572 592 // Subtract the register we use to save the SP for MethodHandle
twisti@1572 593 // invokes to from the debug mask.
twisti@1572 594 const RegMask save_mask = method_handle_invoke_SP_save_mask();
twisti@1572 595 idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
twisti@1572 596 idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
twisti@1572 597 idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
twisti@1572 598 idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
twisti@1572 599 idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
twisti@1572 600 idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
duke@435 601 }
duke@435 602
duke@435 603 //---------------------------is_save_on_entry----------------------------------
duke@435 604 bool Matcher::is_save_on_entry( int reg ) {
duke@435 605 return
duke@435 606 _register_save_policy[reg] == 'E' ||
duke@435 607 _register_save_policy[reg] == 'A' || // Save-on-entry register?
duke@435 608 // Also save argument registers in the trampolining stubs
duke@435 609 (C->save_argument_registers() && is_spillable_arg(reg));
duke@435 610 }
duke@435 611
duke@435 612 //---------------------------Fixup_Save_On_Entry-------------------------------
duke@435 613 void Matcher::Fixup_Save_On_Entry( ) {
duke@435 614 init_first_stack_mask();
duke@435 615
duke@435 616 Node *root = C->root(); // Short name for root
duke@435 617 // Count number of save-on-entry registers.
duke@435 618 uint soe_cnt = number_of_saved_registers();
duke@435 619 uint i;
duke@435 620
duke@435 621 // Find the procedure Start Node
duke@435 622 StartNode *start = C->start();
duke@435 623 assert( start, "Expect a start node" );
duke@435 624
duke@435 625 // Save argument registers in the trampolining stubs
duke@435 626 if( C->save_argument_registers() )
duke@435 627 for( i = 0; i < _last_Mach_Reg; i++ )
duke@435 628 if( is_spillable_arg(i) )
duke@435 629 soe_cnt++;
duke@435 630
duke@435 631 // Input RegMask array shared by all Returns.
duke@435 632 // The type for doubles and longs has a count of 2, but
duke@435 633 // there is only 1 returned value
duke@435 634 uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
duke@435 635 RegMask *ret_rms = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 636 // Returns have 0 or 1 returned values depending on call signature.
duke@435 637 // Return register is specified by return_value in the AD file.
duke@435 638 if (ret_edge_cnt > TypeFunc::Parms)
duke@435 639 ret_rms[TypeFunc::Parms+0] = _return_value_mask;
duke@435 640
duke@435 641 // Input RegMask array shared by all Rethrows.
duke@435 642 uint reth_edge_cnt = TypeFunc::Parms+1;
duke@435 643 RegMask *reth_rms = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 644 // Rethrow takes exception oop only, but in the argument 0 slot.
duke@435 645 reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
duke@435 646 #ifdef _LP64
duke@435 647 // Need two slots for ptrs in 64-bit land
duke@435 648 reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
duke@435 649 #endif
duke@435 650
duke@435 651 // Input RegMask array shared by all TailCalls
duke@435 652 uint tail_call_edge_cnt = TypeFunc::Parms+2;
duke@435 653 RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 654
duke@435 655 // Input RegMask array shared by all TailJumps
duke@435 656 uint tail_jump_edge_cnt = TypeFunc::Parms+2;
duke@435 657 RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 658
duke@435 659 // TailCalls have 2 returned values (target & moop), whose masks come
duke@435 660 // from the usual MachNode/MachOper mechanism. Find a sample
duke@435 661 // TailCall to extract these masks and put the correct masks into
duke@435 662 // the tail_call_rms array.
duke@435 663 for( i=1; i < root->req(); i++ ) {
duke@435 664 MachReturnNode *m = root->in(i)->as_MachReturn();
duke@435 665 if( m->ideal_Opcode() == Op_TailCall ) {
duke@435 666 tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
duke@435 667 tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
duke@435 668 break;
duke@435 669 }
duke@435 670 }
duke@435 671
duke@435 672 // TailJumps have 2 returned values (target & ex_oop), whose masks come
duke@435 673 // from the usual MachNode/MachOper mechanism. Find a sample
duke@435 674 // TailJump to extract these masks and put the correct masks into
duke@435 675 // the tail_jump_rms array.
duke@435 676 for( i=1; i < root->req(); i++ ) {
duke@435 677 MachReturnNode *m = root->in(i)->as_MachReturn();
duke@435 678 if( m->ideal_Opcode() == Op_TailJump ) {
duke@435 679 tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
duke@435 680 tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
duke@435 681 break;
duke@435 682 }
duke@435 683 }
duke@435 684
duke@435 685 // Input RegMask array shared by all Halts
duke@435 686 uint halt_edge_cnt = TypeFunc::Parms;
duke@435 687 RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 688
duke@435 689 // Capture the return input masks into each exit flavor
duke@435 690 for( i=1; i < root->req(); i++ ) {
duke@435 691 MachReturnNode *exit = root->in(i)->as_MachReturn();
duke@435 692 switch( exit->ideal_Opcode() ) {
duke@435 693 case Op_Return : exit->_in_rms = ret_rms; break;
duke@435 694 case Op_Rethrow : exit->_in_rms = reth_rms; break;
duke@435 695 case Op_TailCall : exit->_in_rms = tail_call_rms; break;
duke@435 696 case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
duke@435 697 case Op_Halt : exit->_in_rms = halt_rms; break;
duke@435 698 default : ShouldNotReachHere();
duke@435 699 }
duke@435 700 }
duke@435 701
duke@435 702 // Next unused projection number from Start.
duke@435 703 int proj_cnt = C->tf()->domain()->cnt();
duke@435 704
duke@435 705 // Do all the save-on-entry registers. Make projections from Start for
duke@435 706 // them, and give them a use at the exit points. To the allocator, they
duke@435 707 // look like incoming register arguments.
duke@435 708 for( i = 0; i < _last_Mach_Reg; i++ ) {
duke@435 709 if( is_save_on_entry(i) ) {
duke@435 710
duke@435 711 // Add the save-on-entry to the mask array
duke@435 712 ret_rms [ ret_edge_cnt] = mreg2regmask[i];
duke@435 713 reth_rms [ reth_edge_cnt] = mreg2regmask[i];
duke@435 714 tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
duke@435 715 tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
duke@435 716 // Halts need the SOE registers, but only in the stack as debug info.
duke@435 717 // A just-prior uncommon-trap or deoptimization will use the SOE regs.
duke@435 718 halt_rms [ halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
duke@435 719
duke@435 720 Node *mproj;
duke@435 721
duke@435 722 // Is this a RegF low half of a RegD? Double up 2 adjacent RegF's
duke@435 723 // into a single RegD.
duke@435 724 if( (i&1) == 0 &&
duke@435 725 _register_save_type[i ] == Op_RegF &&
duke@435 726 _register_save_type[i+1] == Op_RegF &&
duke@435 727 is_save_on_entry(i+1) ) {
duke@435 728 // Add other bit for double
duke@435 729 ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 730 reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 731 tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 732 tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 733 halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1));
kvn@4115 734 mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
duke@435 735 proj_cnt += 2; // Skip 2 for doubles
duke@435 736 }
duke@435 737 else if( (i&1) == 1 && // Else check for high half of double
duke@435 738 _register_save_type[i-1] == Op_RegF &&
duke@435 739 _register_save_type[i ] == Op_RegF &&
duke@435 740 is_save_on_entry(i-1) ) {
duke@435 741 ret_rms [ ret_edge_cnt] = RegMask::Empty;
duke@435 742 reth_rms [ reth_edge_cnt] = RegMask::Empty;
duke@435 743 tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
duke@435 744 tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
duke@435 745 halt_rms [ halt_edge_cnt] = RegMask::Empty;
duke@435 746 mproj = C->top();
duke@435 747 }
duke@435 748 // Is this a RegI low half of a RegL? Double up 2 adjacent RegI's
duke@435 749 // into a single RegL.
duke@435 750 else if( (i&1) == 0 &&
duke@435 751 _register_save_type[i ] == Op_RegI &&
duke@435 752 _register_save_type[i+1] == Op_RegI &&
duke@435 753 is_save_on_entry(i+1) ) {
duke@435 754 // Add other bit for long
duke@435 755 ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 756 reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 757 tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 758 tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 759 halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1));
kvn@4115 760 mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
duke@435 761 proj_cnt += 2; // Skip 2 for longs
duke@435 762 }
duke@435 763 else if( (i&1) == 1 && // Else check for high half of long
duke@435 764 _register_save_type[i-1] == Op_RegI &&
duke@435 765 _register_save_type[i ] == Op_RegI &&
duke@435 766 is_save_on_entry(i-1) ) {
duke@435 767 ret_rms [ ret_edge_cnt] = RegMask::Empty;
duke@435 768 reth_rms [ reth_edge_cnt] = RegMask::Empty;
duke@435 769 tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
duke@435 770 tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
duke@435 771 halt_rms [ halt_edge_cnt] = RegMask::Empty;
duke@435 772 mproj = C->top();
duke@435 773 } else {
duke@435 774 // Make a projection for it off the Start
kvn@4115 775 mproj = new (C) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
duke@435 776 }
duke@435 777
duke@435 778 ret_edge_cnt ++;
duke@435 779 reth_edge_cnt ++;
duke@435 780 tail_call_edge_cnt ++;
duke@435 781 tail_jump_edge_cnt ++;
duke@435 782 halt_edge_cnt ++;
duke@435 783
duke@435 784 // Add a use of the SOE register to all exit paths
duke@435 785 for( uint j=1; j < root->req(); j++ )
duke@435 786 root->in(j)->add_req(mproj);
duke@435 787 } // End of if a save-on-entry register
duke@435 788 } // End of for all machine registers
duke@435 789 }
duke@435 790
duke@435 791 //------------------------------init_spill_mask--------------------------------
duke@435 792 void Matcher::init_spill_mask( Node *ret ) {
duke@435 793 if( idealreg2regmask[Op_RegI] ) return; // One time only init
duke@435 794
duke@435 795 OptoReg::c_frame_pointer = c_frame_pointer();
duke@435 796 c_frame_ptr_mask = c_frame_pointer();
duke@435 797 #ifdef _LP64
duke@435 798 // pointers are twice as big
duke@435 799 c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
duke@435 800 #endif
duke@435 801
duke@435 802 // Start at OptoReg::stack0()
duke@435 803 STACK_ONLY_mask.Clear();
duke@435 804 OptoReg::Name init = OptoReg::stack2reg(0);
duke@435 805 // STACK_ONLY_mask is all stack bits
duke@435 806 OptoReg::Name i;
duke@435 807 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
duke@435 808 STACK_ONLY_mask.Insert(i);
duke@435 809 // Also set the "infinite stack" bit.
duke@435 810 STACK_ONLY_mask.set_AllStack();
duke@435 811
duke@435 812 // Copy the register names over into the shared world
duke@435 813 for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
duke@435 814 // SharedInfo::regName[i] = regName[i];
duke@435 815 // Handy RegMasks per machine register
duke@435 816 mreg2regmask[i].Insert(i);
duke@435 817 }
duke@435 818
duke@435 819 // Grab the Frame Pointer
duke@435 820 Node *fp = ret->in(TypeFunc::FramePtr);
duke@435 821 Node *mem = ret->in(TypeFunc::Memory);
duke@435 822 const TypePtr* atp = TypePtr::BOTTOM;
duke@435 823 // Share frame pointer while making spill ops
duke@435 824 set_shared(fp);
duke@435 825
duke@435 826 // Compute generic short-offset Loads
coleenp@548 827 #ifdef _LP64
kvn@4115 828 MachNode *spillCP = match_tree(new (C) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
coleenp@548 829 #endif
kvn@4115 830 MachNode *spillI = match_tree(new (C) LoadINode(NULL,mem,fp,atp));
kvn@4115 831 MachNode *spillL = match_tree(new (C) LoadLNode(NULL,mem,fp,atp));
kvn@4115 832 MachNode *spillF = match_tree(new (C) LoadFNode(NULL,mem,fp,atp));
kvn@4115 833 MachNode *spillD = match_tree(new (C) LoadDNode(NULL,mem,fp,atp));
kvn@4115 834 MachNode *spillP = match_tree(new (C) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
duke@435 835 assert(spillI != NULL && spillL != NULL && spillF != NULL &&
duke@435 836 spillD != NULL && spillP != NULL, "");
duke@435 837
duke@435 838 // Get the ADLC notion of the right regmask, for each basic type.
coleenp@548 839 #ifdef _LP64
coleenp@548 840 idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
coleenp@548 841 #endif
duke@435 842 idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
duke@435 843 idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
duke@435 844 idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
duke@435 845 idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
duke@435 846 idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
kvn@3882 847
kvn@3882 848 // Vector regmasks.
kvn@3882 849 if (Matcher::vector_size_supported(T_BYTE,4)) {
kvn@3882 850 TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
kvn@4115 851 MachNode *spillVectS = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS));
kvn@3882 852 idealreg2regmask[Op_VecS] = &spillVectS->out_RegMask();
kvn@3882 853 }
kvn@3882 854 if (Matcher::vector_size_supported(T_FLOAT,2)) {
kvn@4115 855 MachNode *spillVectD = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD));
kvn@3882 856 idealreg2regmask[Op_VecD] = &spillVectD->out_RegMask();
kvn@3882 857 }
kvn@3882 858 if (Matcher::vector_size_supported(T_FLOAT,4)) {
kvn@4115 859 MachNode *spillVectX = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX));
kvn@3882 860 idealreg2regmask[Op_VecX] = &spillVectX->out_RegMask();
kvn@3882 861 }
kvn@3882 862 if (Matcher::vector_size_supported(T_FLOAT,8)) {
kvn@4115 863 MachNode *spillVectY = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY));
kvn@3882 864 idealreg2regmask[Op_VecY] = &spillVectY->out_RegMask();
kvn@3882 865 }
duke@435 866 }
duke@435 867
duke@435 868 #ifdef ASSERT
duke@435 869 static void match_alias_type(Compile* C, Node* n, Node* m) {
duke@435 870 if (!VerifyAliases) return; // do not go looking for trouble by default
duke@435 871 const TypePtr* nat = n->adr_type();
duke@435 872 const TypePtr* mat = m->adr_type();
duke@435 873 int nidx = C->get_alias_index(nat);
duke@435 874 int midx = C->get_alias_index(mat);
duke@435 875 // Detune the assert for cases like (AndI 0xFF (LoadB p)).
duke@435 876 if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
duke@435 877 for (uint i = 1; i < n->req(); i++) {
duke@435 878 Node* n1 = n->in(i);
duke@435 879 const TypePtr* n1at = n1->adr_type();
duke@435 880 if (n1at != NULL) {
duke@435 881 nat = n1at;
duke@435 882 nidx = C->get_alias_index(n1at);
duke@435 883 }
duke@435 884 }
duke@435 885 }
duke@435 886 // %%% Kludgery. Instead, fix ideal adr_type methods for all these cases:
duke@435 887 if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
duke@435 888 switch (n->Opcode()) {
duke@435 889 case Op_PrefetchRead:
duke@435 890 case Op_PrefetchWrite:
kvn@3052 891 case Op_PrefetchAllocation:
duke@435 892 nidx = Compile::AliasIdxRaw;
duke@435 893 nat = TypeRawPtr::BOTTOM;
duke@435 894 break;
duke@435 895 }
duke@435 896 }
duke@435 897 if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
duke@435 898 switch (n->Opcode()) {
duke@435 899 case Op_ClearArray:
duke@435 900 midx = Compile::AliasIdxRaw;
duke@435 901 mat = TypeRawPtr::BOTTOM;
duke@435 902 break;
duke@435 903 }
duke@435 904 }
duke@435 905 if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
duke@435 906 switch (n->Opcode()) {
duke@435 907 case Op_Return:
duke@435 908 case Op_Rethrow:
duke@435 909 case Op_Halt:
duke@435 910 case Op_TailCall:
duke@435 911 case Op_TailJump:
duke@435 912 nidx = Compile::AliasIdxBot;
duke@435 913 nat = TypePtr::BOTTOM;
duke@435 914 break;
duke@435 915 }
duke@435 916 }
duke@435 917 if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
duke@435 918 switch (n->Opcode()) {
duke@435 919 case Op_StrComp:
cfang@1116 920 case Op_StrEquals:
cfang@1116 921 case Op_StrIndexOf:
rasbold@604 922 case Op_AryEq:
duke@435 923 case Op_MemBarVolatile:
duke@435 924 case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
kvn@4479 925 case Op_EncodeISOArray:
duke@435 926 nidx = Compile::AliasIdxTop;
duke@435 927 nat = NULL;
duke@435 928 break;
duke@435 929 }
duke@435 930 }
duke@435 931 if (nidx != midx) {
duke@435 932 if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
duke@435 933 tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
duke@435 934 n->dump();
duke@435 935 m->dump();
duke@435 936 }
duke@435 937 assert(C->subsume_loads() && C->must_alias(nat, midx),
duke@435 938 "must not lose alias info when matching");
duke@435 939 }
duke@435 940 }
duke@435 941 #endif
duke@435 942
duke@435 943
duke@435 944 //------------------------------MStack-----------------------------------------
duke@435 945 // State and MStack class used in xform() and find_shared() iterative methods.
duke@435 946 enum Node_State { Pre_Visit, // node has to be pre-visited
duke@435 947 Visit, // visit node
duke@435 948 Post_Visit, // post-visit node
duke@435 949 Alt_Post_Visit // alternative post-visit path
duke@435 950 };
duke@435 951
duke@435 952 class MStack: public Node_Stack {
duke@435 953 public:
duke@435 954 MStack(int size) : Node_Stack(size) { }
duke@435 955
duke@435 956 void push(Node *n, Node_State ns) {
duke@435 957 Node_Stack::push(n, (uint)ns);
duke@435 958 }
duke@435 959 void push(Node *n, Node_State ns, Node *parent, int indx) {
duke@435 960 ++_inode_top;
duke@435 961 if ((_inode_top + 1) >= _inode_max) grow();
duke@435 962 _inode_top->node = parent;
duke@435 963 _inode_top->indx = (uint)indx;
duke@435 964 ++_inode_top;
duke@435 965 _inode_top->node = n;
duke@435 966 _inode_top->indx = (uint)ns;
duke@435 967 }
duke@435 968 Node *parent() {
duke@435 969 pop();
duke@435 970 return node();
duke@435 971 }
duke@435 972 Node_State state() const {
duke@435 973 return (Node_State)index();
duke@435 974 }
duke@435 975 void set_state(Node_State ns) {
duke@435 976 set_index((uint)ns);
duke@435 977 }
duke@435 978 };
duke@435 979
duke@435 980
duke@435 981 //------------------------------xform------------------------------------------
duke@435 982 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
duke@435 983 // Node in new-space. Given a new-space Node, recursively walk his children.
duke@435 984 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
duke@435 985 Node *Matcher::xform( Node *n, int max_stack ) {
duke@435 986 // Use one stack to keep both: child's node/state and parent's node/index
duke@435 987 MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
duke@435 988 mstack.push(n, Visit, NULL, -1); // set NULL as parent to indicate root
duke@435 989
duke@435 990 while (mstack.is_nonempty()) {
drchase@5285 991 C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions");
drchase@5285 992 if (C->failing()) return NULL;
duke@435 993 n = mstack.node(); // Leave node on stack
duke@435 994 Node_State nstate = mstack.state();
duke@435 995 if (nstate == Visit) {
duke@435 996 mstack.set_state(Post_Visit);
duke@435 997 Node *oldn = n;
duke@435 998 // Old-space or new-space check
duke@435 999 if (!C->node_arena()->contains(n)) {
duke@435 1000 // Old space!
duke@435 1001 Node* m;
duke@435 1002 if (has_new_node(n)) { // Not yet Label/Reduced
duke@435 1003 m = new_node(n);
duke@435 1004 } else {
duke@435 1005 if (!is_dontcare(n)) { // Matcher can match this guy
duke@435 1006 // Calls match special. They match alone with no children.
duke@435 1007 // Their children, the incoming arguments, match normally.
duke@435 1008 m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
duke@435 1009 if (C->failing()) return NULL;
duke@435 1010 if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
duke@435 1011 } else { // Nothing the matcher cares about
duke@435 1012 if( n->is_Proj() && n->in(0)->is_Multi()) { // Projections?
duke@435 1013 // Convert to machine-dependent projection
duke@435 1014 m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
never@657 1015 #ifdef ASSERT
never@657 1016 _new2old_map.map(m->_idx, n);
never@657 1017 #endif
duke@435 1018 if (m->in(0) != NULL) // m might be top
kvn@803 1019 collect_null_checks(m, n);
duke@435 1020 } else { // Else just a regular 'ol guy
duke@435 1021 m = n->clone(); // So just clone into new-space
never@657 1022 #ifdef ASSERT
never@657 1023 _new2old_map.map(m->_idx, n);
never@657 1024 #endif
duke@435 1025 // Def-Use edges will be added incrementally as Uses
duke@435 1026 // of this node are matched.
duke@435 1027 assert(m->outcnt() == 0, "no Uses of this clone yet");
duke@435 1028 }
duke@435 1029 }
duke@435 1030
duke@435 1031 set_new_node(n, m); // Map old to new
duke@435 1032 if (_old_node_note_array != NULL) {
duke@435 1033 Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
duke@435 1034 n->_idx);
duke@435 1035 C->set_node_notes_at(m->_idx, nn);
duke@435 1036 }
duke@435 1037 debug_only(match_alias_type(C, n, m));
duke@435 1038 }
duke@435 1039 n = m; // n is now a new-space node
duke@435 1040 mstack.set_node(n);
duke@435 1041 }
duke@435 1042
duke@435 1043 // New space!
duke@435 1044 if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
duke@435 1045
duke@435 1046 int i;
duke@435 1047 // Put precedence edges on stack first (match them last).
duke@435 1048 for (i = oldn->req(); (uint)i < oldn->len(); i++) {
duke@435 1049 Node *m = oldn->in(i);
duke@435 1050 if (m == NULL) break;
duke@435 1051 // set -1 to call add_prec() instead of set_req() during Step1
duke@435 1052 mstack.push(m, Visit, n, -1);
duke@435 1053 }
duke@435 1054
duke@435 1055 // For constant debug info, I'd rather have unmatched constants.
duke@435 1056 int cnt = n->req();
duke@435 1057 JVMState* jvms = n->jvms();
duke@435 1058 int debug_cnt = jvms ? jvms->debug_start() : cnt;
duke@435 1059
duke@435 1060 // Now do only debug info. Clone constants rather than matching.
duke@435 1061 // Constants are represented directly in the debug info without
duke@435 1062 // the need for executable machine instructions.
duke@435 1063 // Monitor boxes are also represented directly.
duke@435 1064 for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
duke@435 1065 Node *m = n->in(i); // Get input
duke@435 1066 int op = m->Opcode();
duke@435 1067 assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
roland@4159 1068 if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass ||
duke@435 1069 op == Op_ConF || op == Op_ConD || op == Op_ConL
duke@435 1070 // || op == Op_BoxLock // %%%% enable this and remove (+++) in chaitin.cpp
duke@435 1071 ) {
duke@435 1072 m = m->clone();
never@657 1073 #ifdef ASSERT
never@657 1074 _new2old_map.map(m->_idx, n);
never@657 1075 #endif
twisti@1040 1076 mstack.push(m, Post_Visit, n, i); // Don't need to visit
duke@435 1077 mstack.push(m->in(0), Visit, m, 0);
duke@435 1078 } else {
duke@435 1079 mstack.push(m, Visit, n, i);
duke@435 1080 }
duke@435 1081 }
duke@435 1082
duke@435 1083 // And now walk his children, and convert his inputs to new-space.
duke@435 1084 for( ; i >= 0; --i ) { // For all normal inputs do
duke@435 1085 Node *m = n->in(i); // Get input
duke@435 1086 if(m != NULL)
duke@435 1087 mstack.push(m, Visit, n, i);
duke@435 1088 }
duke@435 1089
duke@435 1090 }
duke@435 1091 else if (nstate == Post_Visit) {
duke@435 1092 // Set xformed input
duke@435 1093 Node *p = mstack.parent();
duke@435 1094 if (p != NULL) { // root doesn't have parent
duke@435 1095 int i = (int)mstack.index();
duke@435 1096 if (i >= 0)
duke@435 1097 p->set_req(i, n); // required input
duke@435 1098 else if (i == -1)
duke@435 1099 p->add_prec(n); // precedence input
duke@435 1100 else
duke@435 1101 ShouldNotReachHere();
duke@435 1102 }
duke@435 1103 mstack.pop(); // remove processed node from stack
duke@435 1104 }
duke@435 1105 else {
duke@435 1106 ShouldNotReachHere();
duke@435 1107 }
duke@435 1108 } // while (mstack.is_nonempty())
duke@435 1109 return n; // Return new-space Node
duke@435 1110 }
duke@435 1111
duke@435 1112 //------------------------------warp_outgoing_stk_arg------------------------
duke@435 1113 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
duke@435 1114 // Convert outgoing argument location to a pre-biased stack offset
duke@435 1115 if (reg->is_stack()) {
duke@435 1116 OptoReg::Name warped = reg->reg2stack();
duke@435 1117 // Adjust the stack slot offset to be the register number used
duke@435 1118 // by the allocator.
duke@435 1119 warped = OptoReg::add(begin_out_arg_area, warped);
duke@435 1120 // Keep track of the largest numbered stack slot used for an arg.
duke@435 1121 // Largest used slot per call-site indicates the amount of stack
duke@435 1122 // that is killed by the call.
duke@435 1123 if( warped >= out_arg_limit_per_call )
duke@435 1124 out_arg_limit_per_call = OptoReg::add(warped,1);
kvn@3882 1125 if (!RegMask::can_represent_arg(warped)) {
duke@435 1126 C->record_method_not_compilable_all_tiers("unsupported calling sequence");
duke@435 1127 return OptoReg::Bad;
duke@435 1128 }
duke@435 1129 return warped;
duke@435 1130 }
duke@435 1131 return OptoReg::as_OptoReg(reg);
duke@435 1132 }
duke@435 1133
duke@435 1134
duke@435 1135 //------------------------------match_sfpt-------------------------------------
duke@435 1136 // Helper function to match call instructions. Calls match special.
duke@435 1137 // They match alone with no children. Their children, the incoming
duke@435 1138 // arguments, match normally.
duke@435 1139 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
duke@435 1140 MachSafePointNode *msfpt = NULL;
duke@435 1141 MachCallNode *mcall = NULL;
duke@435 1142 uint cnt;
duke@435 1143 // Split out case for SafePoint vs Call
duke@435 1144 CallNode *call;
duke@435 1145 const TypeTuple *domain;
duke@435 1146 ciMethod* method = NULL;
twisti@1572 1147 bool is_method_handle_invoke = false; // for special kill effects
duke@435 1148 if( sfpt->is_Call() ) {
duke@435 1149 call = sfpt->as_Call();
duke@435 1150 domain = call->tf()->domain();
duke@435 1151 cnt = domain->cnt();
duke@435 1152
duke@435 1153 // Match just the call, nothing else
duke@435 1154 MachNode *m = match_tree(call);
duke@435 1155 if (C->failing()) return NULL;
duke@435 1156 if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
duke@435 1157
duke@435 1158 // Copy data from the Ideal SafePoint to the machine version
duke@435 1159 mcall = m->as_MachCall();
duke@435 1160
duke@435 1161 mcall->set_tf( call->tf());
duke@435 1162 mcall->set_entry_point(call->entry_point());
duke@435 1163 mcall->set_cnt( call->cnt());
duke@435 1164
duke@435 1165 if( mcall->is_MachCallJava() ) {
duke@435 1166 MachCallJavaNode *mcall_java = mcall->as_MachCallJava();
duke@435 1167 const CallJavaNode *call_java = call->as_CallJava();
duke@435 1168 method = call_java->method();
duke@435 1169 mcall_java->_method = method;
duke@435 1170 mcall_java->_bci = call_java->_bci;
duke@435 1171 mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
twisti@1572 1172 is_method_handle_invoke = call_java->is_method_handle_invoke();
twisti@1572 1173 mcall_java->_method_handle_invoke = is_method_handle_invoke;
never@3105 1174 if (is_method_handle_invoke) {
never@3105 1175 C->set_has_method_handle_invokes(true);
never@3105 1176 }
duke@435 1177 if( mcall_java->is_MachCallStaticJava() )
duke@435 1178 mcall_java->as_MachCallStaticJava()->_name =
duke@435 1179 call_java->as_CallStaticJava()->_name;
duke@435 1180 if( mcall_java->is_MachCallDynamicJava() )
duke@435 1181 mcall_java->as_MachCallDynamicJava()->_vtable_index =
duke@435 1182 call_java->as_CallDynamicJava()->_vtable_index;
duke@435 1183 }
duke@435 1184 else if( mcall->is_MachCallRuntime() ) {
duke@435 1185 mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
duke@435 1186 }
duke@435 1187 msfpt = mcall;
duke@435 1188 }
duke@435 1189 // This is a non-call safepoint
duke@435 1190 else {
duke@435 1191 call = NULL;
duke@435 1192 domain = NULL;
duke@435 1193 MachNode *mn = match_tree(sfpt);
duke@435 1194 if (C->failing()) return NULL;
duke@435 1195 msfpt = mn->as_MachSafePoint();
duke@435 1196 cnt = TypeFunc::Parms;
duke@435 1197 }
duke@435 1198
duke@435 1199 // Advertise the correct memory effects (for anti-dependence computation).
duke@435 1200 msfpt->set_adr_type(sfpt->adr_type());
duke@435 1201
duke@435 1202 // Allocate a private array of RegMasks. These RegMasks are not shared.
duke@435 1203 msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
duke@435 1204 // Empty them all.
duke@435 1205 memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
duke@435 1206
duke@435 1207 // Do all the pre-defined non-Empty register masks
duke@435 1208 msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
duke@435 1209 msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
duke@435 1210
duke@435 1211 // Place first outgoing argument can possibly be put.
duke@435 1212 OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
duke@435 1213 assert( is_even(begin_out_arg_area), "" );
duke@435 1214 // Compute max outgoing register number per call site.
duke@435 1215 OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
duke@435 1216 // Calls to C may hammer extra stack slots above and beyond any arguments.
duke@435 1217 // These are usually backing store for register arguments for varargs.
duke@435 1218 if( call != NULL && call->is_CallRuntime() )
duke@435 1219 out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
duke@435 1220
duke@435 1221
duke@435 1222 // Do the normal argument list (parameters) register masks
duke@435 1223 int argcnt = cnt - TypeFunc::Parms;
duke@435 1224 if( argcnt > 0 ) { // Skip it all if we have no args
duke@435 1225 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt );
duke@435 1226 VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
duke@435 1227 int i;
duke@435 1228 for( i = 0; i < argcnt; i++ ) {
duke@435 1229 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
duke@435 1230 }
duke@435 1231 // V-call to pick proper calling convention
duke@435 1232 call->calling_convention( sig_bt, parm_regs, argcnt );
duke@435 1233
duke@435 1234 #ifdef ASSERT
duke@435 1235 // Sanity check users' calling convention. Really handy during
duke@435 1236 // the initial porting effort. Fairly expensive otherwise.
duke@435 1237 { for (int i = 0; i<argcnt; i++) {
duke@435 1238 if( !parm_regs[i].first()->is_valid() &&
duke@435 1239 !parm_regs[i].second()->is_valid() ) continue;
duke@435 1240 VMReg reg1 = parm_regs[i].first();
duke@435 1241 VMReg reg2 = parm_regs[i].second();
duke@435 1242 for (int j = 0; j < i; j++) {
duke@435 1243 if( !parm_regs[j].first()->is_valid() &&
duke@435 1244 !parm_regs[j].second()->is_valid() ) continue;
duke@435 1245 VMReg reg3 = parm_regs[j].first();
duke@435 1246 VMReg reg4 = parm_regs[j].second();
duke@435 1247 if( !reg1->is_valid() ) {
duke@435 1248 assert( !reg2->is_valid(), "valid halvsies" );
duke@435 1249 } else if( !reg3->is_valid() ) {
duke@435 1250 assert( !reg4->is_valid(), "valid halvsies" );
duke@435 1251 } else {
duke@435 1252 assert( reg1 != reg2, "calling conv. must produce distinct regs");
duke@435 1253 assert( reg1 != reg3, "calling conv. must produce distinct regs");
duke@435 1254 assert( reg1 != reg4, "calling conv. must produce distinct regs");
duke@435 1255 assert( reg2 != reg3, "calling conv. must produce distinct regs");
duke@435 1256 assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
duke@435 1257 assert( reg3 != reg4, "calling conv. must produce distinct regs");
duke@435 1258 }
duke@435 1259 }
duke@435 1260 }
duke@435 1261 }
duke@435 1262 #endif
duke@435 1263
duke@435 1264 // Visit each argument. Compute its outgoing register mask.
duke@435 1265 // Return results now can have 2 bits returned.
duke@435 1266 // Compute max over all outgoing arguments both per call-site
duke@435 1267 // and over the entire method.
duke@435 1268 for( i = 0; i < argcnt; i++ ) {
duke@435 1269 // Address of incoming argument mask to fill in
duke@435 1270 RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
duke@435 1271 if( !parm_regs[i].first()->is_valid() &&
duke@435 1272 !parm_regs[i].second()->is_valid() ) {
duke@435 1273 continue; // Avoid Halves
duke@435 1274 }
duke@435 1275 // Grab first register, adjust stack slots and insert in mask.
duke@435 1276 OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
duke@435 1277 if (OptoReg::is_valid(reg1))
duke@435 1278 rm->Insert( reg1 );
duke@435 1279 // Grab second register (if any), adjust stack slots and insert in mask.
duke@435 1280 OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
duke@435 1281 if (OptoReg::is_valid(reg2))
duke@435 1282 rm->Insert( reg2 );
duke@435 1283 } // End of for all arguments
duke@435 1284
duke@435 1285 // Compute number of stack slots needed to restore stack in case of
duke@435 1286 // Pascal-style argument popping.
duke@435 1287 mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
duke@435 1288 }
duke@435 1289
duke@435 1290 // Compute the max stack slot killed by any call. These will not be
duke@435 1291 // available for debug info, and will be used to adjust FIRST_STACK_mask
duke@435 1292 // after all call sites have been visited.
duke@435 1293 if( _out_arg_limit < out_arg_limit_per_call)
duke@435 1294 _out_arg_limit = out_arg_limit_per_call;
duke@435 1295
duke@435 1296 if (mcall) {
duke@435 1297 // Kill the outgoing argument area, including any non-argument holes and
duke@435 1298 // any legacy C-killed slots. Use Fat-Projections to do the killing.
duke@435 1299 // Since the max-per-method covers the max-per-call-site and debug info
duke@435 1300 // is excluded on the max-per-method basis, debug info cannot land in
duke@435 1301 // this killed area.
duke@435 1302 uint r_cnt = mcall->tf()->range()->cnt();
kvn@4115 1303 MachProjNode *proj = new (C) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
kvn@3882 1304 if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
duke@435 1305 C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
duke@435 1306 } else {
duke@435 1307 for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
duke@435 1308 proj->_rout.Insert(OptoReg::Name(i));
duke@435 1309 }
adlertz@5539 1310 if (proj->_rout.is_NotEmpty()) {
adlertz@5539 1311 push_projection(proj);
adlertz@5539 1312 }
duke@435 1313 }
duke@435 1314 // Transfer the safepoint information from the call to the mcall
duke@435 1315 // Move the JVMState list
duke@435 1316 msfpt->set_jvms(sfpt->jvms());
duke@435 1317 for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
duke@435 1318 jvms->set_map(sfpt);
duke@435 1319 }
duke@435 1320
duke@435 1321 // Debug inputs begin just after the last incoming parameter
duke@435 1322 assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
duke@435 1323 (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
duke@435 1324
duke@435 1325 // Move the OopMap
duke@435 1326 msfpt->_oop_map = sfpt->_oop_map;
duke@435 1327
duke@435 1328 // Registers killed by the call are set in the local scheduling pass
duke@435 1329 // of Global Code Motion.
duke@435 1330 return msfpt;
duke@435 1331 }
duke@435 1332
duke@435 1333 //---------------------------match_tree----------------------------------------
duke@435 1334 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce. Used as part
duke@435 1335 // of the whole-sale conversion from Ideal to Mach Nodes. Also used for
duke@435 1336 // making GotoNodes while building the CFG and in init_spill_mask() to identify
duke@435 1337 // a Load's result RegMask for memoization in idealreg2regmask[]
duke@435 1338 MachNode *Matcher::match_tree( const Node *n ) {
duke@435 1339 assert( n->Opcode() != Op_Phi, "cannot match" );
duke@435 1340 assert( !n->is_block_start(), "cannot match" );
duke@435 1341 // Set the mark for all locally allocated State objects.
duke@435 1342 // When this call returns, the _states_arena arena will be reset
duke@435 1343 // freeing all State objects.
duke@435 1344 ResourceMark rm( &_states_arena );
duke@435 1345
duke@435 1346 LabelRootDepth = 0;
duke@435 1347
duke@435 1348 // StoreNodes require their Memory input to match any LoadNodes
duke@435 1349 Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
kvn@651 1350 #ifdef ASSERT
kvn@651 1351 Node* save_mem_node = _mem_node;
kvn@651 1352 _mem_node = n->is_Store() ? (Node*)n : NULL;
kvn@651 1353 #endif
duke@435 1354 // State object for root node of match tree
duke@435 1355 // Allocate it on _states_arena - stack allocation can cause stack overflow.
duke@435 1356 State *s = new (&_states_arena) State;
duke@435 1357 s->_kids[0] = NULL;
duke@435 1358 s->_kids[1] = NULL;
duke@435 1359 s->_leaf = (Node*)n;
duke@435 1360 // Label the input tree, allocating labels from top-level arena
duke@435 1361 Label_Root( n, s, n->in(0), mem );
duke@435 1362 if (C->failing()) return NULL;
duke@435 1363
duke@435 1364 // The minimum cost match for the whole tree is found at the root State
duke@435 1365 uint mincost = max_juint;
duke@435 1366 uint cost = max_juint;
duke@435 1367 uint i;
duke@435 1368 for( i = 0; i < NUM_OPERANDS; i++ ) {
duke@435 1369 if( s->valid(i) && // valid entry and
duke@435 1370 s->_cost[i] < cost && // low cost and
duke@435 1371 s->_rule[i] >= NUM_OPERANDS ) // not an operand
duke@435 1372 cost = s->_cost[mincost=i];
duke@435 1373 }
duke@435 1374 if (mincost == max_juint) {
duke@435 1375 #ifndef PRODUCT
duke@435 1376 tty->print("No matching rule for:");
duke@435 1377 s->dump();
duke@435 1378 #endif
duke@435 1379 Matcher::soft_match_failure();
duke@435 1380 return NULL;
duke@435 1381 }
duke@435 1382 // Reduce input tree based upon the state labels to machine Nodes
duke@435 1383 MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
duke@435 1384 #ifdef ASSERT
duke@435 1385 _old2new_map.map(n->_idx, m);
never@657 1386 _new2old_map.map(m->_idx, (Node*)n);
duke@435 1387 #endif
duke@435 1388
duke@435 1389 // Add any Matcher-ignored edges
duke@435 1390 uint cnt = n->req();
duke@435 1391 uint start = 1;
duke@435 1392 if( mem != (Node*)1 ) start = MemNode::Memory+1;
kvn@603 1393 if( n->is_AddP() ) {
duke@435 1394 assert( mem == (Node*)1, "" );
duke@435 1395 start = AddPNode::Base+1;
duke@435 1396 }
duke@435 1397 for( i = start; i < cnt; i++ ) {
duke@435 1398 if( !n->match_edge(i) ) {
duke@435 1399 if( i < m->req() )
duke@435 1400 m->ins_req( i, n->in(i) );
duke@435 1401 else
duke@435 1402 m->add_req( n->in(i) );
duke@435 1403 }
duke@435 1404 }
duke@435 1405
kvn@651 1406 debug_only( _mem_node = save_mem_node; )
duke@435 1407 return m;
duke@435 1408 }
duke@435 1409
duke@435 1410
duke@435 1411 //------------------------------match_into_reg---------------------------------
duke@435 1412 // Choose to either match this Node in a register or part of the current
duke@435 1413 // match tree. Return true for requiring a register and false for matching
duke@435 1414 // as part of the current match tree.
duke@435 1415 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
duke@435 1416
duke@435 1417 const Type *t = m->bottom_type();
duke@435 1418
kvn@3390 1419 if (t->singleton()) {
duke@435 1420 // Never force constants into registers. Allow them to match as
duke@435 1421 // constants or registers. Copies of the same value will share
kvn@603 1422 // the same register. See find_shared_node.
duke@435 1423 return false;
duke@435 1424 } else { // Not a constant
duke@435 1425 // Stop recursion if they have different Controls.
kvn@3390 1426 Node* m_control = m->in(0);
kvn@3390 1427 // Control of load's memory can post-dominates load's control.
kvn@3390 1428 // So use it since load can't float above its memory.
kvn@3390 1429 Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL;
kvn@3390 1430 if (control && m_control && control != m_control && control != mem_control) {
duke@435 1431
duke@435 1432 // Actually, we can live with the most conservative control we
duke@435 1433 // find, if it post-dominates the others. This allows us to
duke@435 1434 // pick up load/op/store trees where the load can float a little
duke@435 1435 // above the store.
duke@435 1436 Node *x = control;
kvn@3390 1437 const uint max_scan = 6; // Arbitrary scan cutoff
duke@435 1438 uint j;
kvn@3390 1439 for (j=0; j<max_scan; j++) {
kvn@3390 1440 if (x->is_Region()) // Bail out at merge points
duke@435 1441 return true;
duke@435 1442 x = x->in(0);
kvn@3390 1443 if (x == m_control) // Does 'control' post-dominate
duke@435 1444 break; // m->in(0)? If so, we can use it
kvn@3390 1445 if (x == mem_control) // Does 'control' post-dominate
kvn@3390 1446 break; // mem_control? If so, we can use it
duke@435 1447 }
kvn@3390 1448 if (j == max_scan) // No post-domination before scan end?
duke@435 1449 return true; // Then break the match tree up
duke@435 1450 }
roland@4159 1451 if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) ||
roland@4159 1452 (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) {
coleenp@548 1453 // These are commonly used in address expressions and can
kvn@603 1454 // efficiently fold into them on X64 in some cases.
kvn@603 1455 return false;
coleenp@548 1456 }
duke@435 1457 }
duke@435 1458
twisti@1040 1459 // Not forceable cloning. If shared, put it into a register.
duke@435 1460 return shared;
duke@435 1461 }
duke@435 1462
duke@435 1463
duke@435 1464 //------------------------------Instruction Selection--------------------------
duke@435 1465 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
duke@435 1466 // ideal nodes to machine instructions. Trees are delimited by shared Nodes,
duke@435 1467 // things the Matcher does not match (e.g., Memory), and things with different
duke@435 1468 // Controls (hence forced into different blocks). We pass in the Control
duke@435 1469 // selected for this entire State tree.
duke@435 1470
duke@435 1471 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
duke@435 1472 // Store and the Load must have identical Memories (as well as identical
duke@435 1473 // pointers). Since the Matcher does not have anything for Memory (and
duke@435 1474 // does not handle DAGs), I have to match the Memory input myself. If the
duke@435 1475 // Tree root is a Store, I require all Loads to have the identical memory.
duke@435 1476 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
duke@435 1477 // Since Label_Root is a recursive function, its possible that we might run
duke@435 1478 // out of stack space. See bugs 6272980 & 6227033 for more info.
duke@435 1479 LabelRootDepth++;
duke@435 1480 if (LabelRootDepth > MaxLabelRootDepth) {
duke@435 1481 C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
duke@435 1482 return NULL;
duke@435 1483 }
duke@435 1484 uint care = 0; // Edges matcher cares about
duke@435 1485 uint cnt = n->req();
duke@435 1486 uint i = 0;
duke@435 1487
duke@435 1488 // Examine children for memory state
duke@435 1489 // Can only subsume a child into your match-tree if that child's memory state
duke@435 1490 // is not modified along the path to another input.
duke@435 1491 // It is unsafe even if the other inputs are separate roots.
duke@435 1492 Node *input_mem = NULL;
duke@435 1493 for( i = 1; i < cnt; i++ ) {
duke@435 1494 if( !n->match_edge(i) ) continue;
duke@435 1495 Node *m = n->in(i); // Get ith input
duke@435 1496 assert( m, "expect non-null children" );
duke@435 1497 if( m->is_Load() ) {
duke@435 1498 if( input_mem == NULL ) {
duke@435 1499 input_mem = m->in(MemNode::Memory);
duke@435 1500 } else if( input_mem != m->in(MemNode::Memory) ) {
duke@435 1501 input_mem = NodeSentinel;
duke@435 1502 }
duke@435 1503 }
duke@435 1504 }
duke@435 1505
duke@435 1506 for( i = 1; i < cnt; i++ ){// For my children
duke@435 1507 if( !n->match_edge(i) ) continue;
duke@435 1508 Node *m = n->in(i); // Get ith input
duke@435 1509 // Allocate states out of a private arena
duke@435 1510 State *s = new (&_states_arena) State;
duke@435 1511 svec->_kids[care++] = s;
duke@435 1512 assert( care <= 2, "binary only for now" );
duke@435 1513
duke@435 1514 // Recursively label the State tree.
duke@435 1515 s->_kids[0] = NULL;
duke@435 1516 s->_kids[1] = NULL;
duke@435 1517 s->_leaf = m;
duke@435 1518
duke@435 1519 // Check for leaves of the State Tree; things that cannot be a part of
duke@435 1520 // the current tree. If it finds any, that value is matched as a
duke@435 1521 // register operand. If not, then the normal matching is used.
duke@435 1522 if( match_into_reg(n, m, control, i, is_shared(m)) ||
duke@435 1523 //
duke@435 1524 // Stop recursion if this is LoadNode and the root of this tree is a
duke@435 1525 // StoreNode and the load & store have different memories.
duke@435 1526 ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
duke@435 1527 // Can NOT include the match of a subtree when its memory state
duke@435 1528 // is used by any of the other subtrees
duke@435 1529 (input_mem == NodeSentinel) ) {
duke@435 1530 #ifndef PRODUCT
duke@435 1531 // Print when we exclude matching due to different memory states at input-loads
duke@435 1532 if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
duke@435 1533 && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
duke@435 1534 tty->print_cr("invalid input_mem");
duke@435 1535 }
duke@435 1536 #endif
duke@435 1537 // Switch to a register-only opcode; this value must be in a register
duke@435 1538 // and cannot be subsumed as part of a larger instruction.
duke@435 1539 s->DFA( m->ideal_reg(), m );
duke@435 1540
duke@435 1541 } else {
duke@435 1542 // If match tree has no control and we do, adopt it for entire tree
duke@435 1543 if( control == NULL && m->in(0) != NULL && m->req() > 1 )
duke@435 1544 control = m->in(0); // Pick up control
duke@435 1545 // Else match as a normal part of the match tree.
duke@435 1546 control = Label_Root(m,s,control,mem);
duke@435 1547 if (C->failing()) return NULL;
duke@435 1548 }
duke@435 1549 }
duke@435 1550
duke@435 1551
duke@435 1552 // Call DFA to match this node, and return
duke@435 1553 svec->DFA( n->Opcode(), n );
duke@435 1554
duke@435 1555 #ifdef ASSERT
duke@435 1556 uint x;
duke@435 1557 for( x = 0; x < _LAST_MACH_OPER; x++ )
duke@435 1558 if( svec->valid(x) )
duke@435 1559 break;
duke@435 1560
duke@435 1561 if (x >= _LAST_MACH_OPER) {
duke@435 1562 n->dump();
duke@435 1563 svec->dump();
duke@435 1564 assert( false, "bad AD file" );
duke@435 1565 }
duke@435 1566 #endif
duke@435 1567 return control;
duke@435 1568 }
duke@435 1569
duke@435 1570
duke@435 1571 // Con nodes reduced using the same rule can share their MachNode
duke@435 1572 // which reduces the number of copies of a constant in the final
duke@435 1573 // program. The register allocator is free to split uses later to
duke@435 1574 // split live ranges.
kvn@603 1575 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
roland@4159 1576 if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL;
duke@435 1577
duke@435 1578 // See if this Con has already been reduced using this rule.
kvn@603 1579 if (_shared_nodes.Size() <= leaf->_idx) return NULL;
kvn@603 1580 MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
duke@435 1581 if (last != NULL && rule == last->rule()) {
kvn@603 1582 // Don't expect control change for DecodeN
roland@4159 1583 if (leaf->is_DecodeNarrowPtr())
kvn@603 1584 return last;
duke@435 1585 // Get the new space root.
duke@435 1586 Node* xroot = new_node(C->root());
duke@435 1587 if (xroot == NULL) {
duke@435 1588 // This shouldn't happen give the order of matching.
duke@435 1589 return NULL;
duke@435 1590 }
duke@435 1591
duke@435 1592 // Shared constants need to have their control be root so they
duke@435 1593 // can be scheduled properly.
duke@435 1594 Node* control = last->in(0);
duke@435 1595 if (control != xroot) {
duke@435 1596 if (control == NULL || control == C->root()) {
duke@435 1597 last->set_req(0, xroot);
duke@435 1598 } else {
duke@435 1599 assert(false, "unexpected control");
duke@435 1600 return NULL;
duke@435 1601 }
duke@435 1602 }
duke@435 1603 return last;
duke@435 1604 }
duke@435 1605 return NULL;
duke@435 1606 }
duke@435 1607
duke@435 1608
duke@435 1609 //------------------------------ReduceInst-------------------------------------
duke@435 1610 // Reduce a State tree (with given Control) into a tree of MachNodes.
duke@435 1611 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
duke@435 1612 // complicated machine Nodes. Each MachNode covers some tree of Ideal Nodes.
duke@435 1613 // Each MachNode has a number of complicated MachOper operands; each
duke@435 1614 // MachOper also covers a further tree of Ideal Nodes.
duke@435 1615
duke@435 1616 // The root of the Ideal match tree is always an instruction, so we enter
duke@435 1617 // the recursion here. After building the MachNode, we need to recurse
duke@435 1618 // the tree checking for these cases:
duke@435 1619 // (1) Child is an instruction -
duke@435 1620 // Build the instruction (recursively), add it as an edge.
duke@435 1621 // Build a simple operand (register) to hold the result of the instruction.
duke@435 1622 // (2) Child is an interior part of an instruction -
duke@435 1623 // Skip over it (do nothing)
duke@435 1624 // (3) Child is the start of a operand -
duke@435 1625 // Build the operand, place it inside the instruction
duke@435 1626 // Call ReduceOper.
duke@435 1627 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
duke@435 1628 assert( rule >= NUM_OPERANDS, "called with operand rule" );
duke@435 1629
kvn@603 1630 MachNode* shared_node = find_shared_node(s->_leaf, rule);
kvn@603 1631 if (shared_node != NULL) {
kvn@603 1632 return shared_node;
duke@435 1633 }
duke@435 1634
duke@435 1635 // Build the object to represent this state & prepare for recursive calls
duke@435 1636 MachNode *mach = s->MachNodeGenerator( rule, C );
duke@435 1637 mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
duke@435 1638 assert( mach->_opnds[0] != NULL, "Missing result operand" );
duke@435 1639 Node *leaf = s->_leaf;
duke@435 1640 // Check for instruction or instruction chain rule
duke@435 1641 if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
never@744 1642 assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
never@744 1643 "duplicating node that's already been matched");
duke@435 1644 // Instruction
duke@435 1645 mach->add_req( leaf->in(0) ); // Set initial control
duke@435 1646 // Reduce interior of complex instruction
duke@435 1647 ReduceInst_Interior( s, rule, mem, mach, 1 );
duke@435 1648 } else {
duke@435 1649 // Instruction chain rules are data-dependent on their inputs
duke@435 1650 mach->add_req(0); // Set initial control to none
duke@435 1651 ReduceInst_Chain_Rule( s, rule, mem, mach );
duke@435 1652 }
duke@435 1653
duke@435 1654 // If a Memory was used, insert a Memory edge
kvn@651 1655 if( mem != (Node*)1 ) {
duke@435 1656 mach->ins_req(MemNode::Memory,mem);
kvn@651 1657 #ifdef ASSERT
kvn@651 1658 // Verify adr type after matching memory operation
kvn@651 1659 const MachOper* oper = mach->memory_operand();
kvn@1286 1660 if (oper != NULL && oper != (MachOper*)-1) {
kvn@651 1661 // It has a unique memory operand. Find corresponding ideal mem node.
kvn@651 1662 Node* m = NULL;
kvn@651 1663 if (leaf->is_Mem()) {
kvn@651 1664 m = leaf;
kvn@651 1665 } else {
kvn@651 1666 m = _mem_node;
kvn@651 1667 assert(m != NULL && m->is_Mem(), "expecting memory node");
kvn@651 1668 }
kvn@803 1669 const Type* mach_at = mach->adr_type();
kvn@803 1670 // DecodeN node consumed by an address may have different type
kvn@803 1671 // then its input. Don't compare types for such case.
kvn@1077 1672 if (m->adr_type() != mach_at &&
roland@4159 1673 (m->in(MemNode::Address)->is_DecodeNarrowPtr() ||
kvn@1077 1674 m->in(MemNode::Address)->is_AddP() &&
roland@4159 1675 m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr() ||
kvn@1077 1676 m->in(MemNode::Address)->is_AddP() &&
kvn@1077 1677 m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
roland@4159 1678 m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr())) {
kvn@803 1679 mach_at = m->adr_type();
kvn@803 1680 }
kvn@803 1681 if (m->adr_type() != mach_at) {
kvn@651 1682 m->dump();
kvn@651 1683 tty->print_cr("mach:");
kvn@651 1684 mach->dump(1);
kvn@651 1685 }
kvn@803 1686 assert(m->adr_type() == mach_at, "matcher should not change adr type");
kvn@651 1687 }
kvn@651 1688 #endif
kvn@651 1689 }
duke@435 1690
duke@435 1691 // If the _leaf is an AddP, insert the base edge
adlertz@5539 1692 if (leaf->is_AddP()) {
duke@435 1693 mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
adlertz@5539 1694 }
duke@435 1695
adlertz@5539 1696 uint number_of_projections_prior = number_of_projections();
duke@435 1697
duke@435 1698 // Perform any 1-to-many expansions required
adlertz@5539 1699 MachNode *ex = mach->Expand(s, _projection_list, mem);
adlertz@5539 1700 if (ex != mach) {
duke@435 1701 assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
duke@435 1702 if( ex->in(1)->is_Con() )
duke@435 1703 ex->in(1)->set_req(0, C->root());
duke@435 1704 // Remove old node from the graph
duke@435 1705 for( uint i=0; i<mach->req(); i++ ) {
duke@435 1706 mach->set_req(i,NULL);
duke@435 1707 }
never@657 1708 #ifdef ASSERT
never@657 1709 _new2old_map.map(ex->_idx, s->_leaf);
never@657 1710 #endif
duke@435 1711 }
duke@435 1712
duke@435 1713 // PhaseChaitin::fixup_spills will sometimes generate spill code
duke@435 1714 // via the matcher. By the time, nodes have been wired into the CFG,
duke@435 1715 // and any further nodes generated by expand rules will be left hanging
duke@435 1716 // in space, and will not get emitted as output code. Catch this.
duke@435 1717 // Also, catch any new register allocation constraints ("projections")
duke@435 1718 // generated belatedly during spill code generation.
duke@435 1719 if (_allocation_started) {
duke@435 1720 guarantee(ex == mach, "no expand rules during spill generation");
adlertz@5539 1721 guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation");
duke@435 1722 }
duke@435 1723
roland@4159 1724 if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) {
duke@435 1725 // Record the con for sharing
kvn@603 1726 _shared_nodes.map(leaf->_idx, ex);
duke@435 1727 }
duke@435 1728
duke@435 1729 return ex;
duke@435 1730 }
duke@435 1731
duke@435 1732 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
duke@435 1733 // 'op' is what I am expecting to receive
duke@435 1734 int op = _leftOp[rule];
duke@435 1735 // Operand type to catch childs result
duke@435 1736 // This is what my child will give me.
duke@435 1737 int opnd_class_instance = s->_rule[op];
duke@435 1738 // Choose between operand class or not.
twisti@1040 1739 // This is what I will receive.
duke@435 1740 int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
duke@435 1741 // New rule for child. Chase operand classes to get the actual rule.
duke@435 1742 int newrule = s->_rule[catch_op];
duke@435 1743
duke@435 1744 if( newrule < NUM_OPERANDS ) {
duke@435 1745 // Chain from operand or operand class, may be output of shared node
duke@435 1746 assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
duke@435 1747 "Bad AD file: Instruction chain rule must chain from operand");
duke@435 1748 // Insert operand into array of operands for this instruction
duke@435 1749 mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
duke@435 1750
duke@435 1751 ReduceOper( s, newrule, mem, mach );
duke@435 1752 } else {
duke@435 1753 // Chain from the result of an instruction
duke@435 1754 assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
duke@435 1755 mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
duke@435 1756 Node *mem1 = (Node*)1;
kvn@651 1757 debug_only(Node *save_mem_node = _mem_node;)
duke@435 1758 mach->add_req( ReduceInst(s, newrule, mem1) );
kvn@651 1759 debug_only(_mem_node = save_mem_node;)
duke@435 1760 }
duke@435 1761 return;
duke@435 1762 }
duke@435 1763
duke@435 1764
duke@435 1765 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
duke@435 1766 if( s->_leaf->is_Load() ) {
duke@435 1767 Node *mem2 = s->_leaf->in(MemNode::Memory);
duke@435 1768 assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
kvn@651 1769 debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
duke@435 1770 mem = mem2;
duke@435 1771 }
duke@435 1772 if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
duke@435 1773 if( mach->in(0) == NULL )
duke@435 1774 mach->set_req(0, s->_leaf->in(0));
duke@435 1775 }
duke@435 1776
duke@435 1777 // Now recursively walk the state tree & add operand list.
duke@435 1778 for( uint i=0; i<2; i++ ) { // binary tree
duke@435 1779 State *newstate = s->_kids[i];
duke@435 1780 if( newstate == NULL ) break; // Might only have 1 child
duke@435 1781 // 'op' is what I am expecting to receive
duke@435 1782 int op;
duke@435 1783 if( i == 0 ) {
duke@435 1784 op = _leftOp[rule];
duke@435 1785 } else {
duke@435 1786 op = _rightOp[rule];
duke@435 1787 }
duke@435 1788 // Operand type to catch childs result
duke@435 1789 // This is what my child will give me.
duke@435 1790 int opnd_class_instance = newstate->_rule[op];
duke@435 1791 // Choose between operand class or not.
duke@435 1792 // This is what I will receive.
duke@435 1793 int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
duke@435 1794 // New rule for child. Chase operand classes to get the actual rule.
duke@435 1795 int newrule = newstate->_rule[catch_op];
duke@435 1796
duke@435 1797 if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
duke@435 1798 // Operand/operandClass
duke@435 1799 // Insert operand into array of operands for this instruction
duke@435 1800 mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
duke@435 1801 ReduceOper( newstate, newrule, mem, mach );
duke@435 1802
duke@435 1803 } else { // Child is internal operand or new instruction
duke@435 1804 if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
duke@435 1805 // internal operand --> call ReduceInst_Interior
duke@435 1806 // Interior of complex instruction. Do nothing but recurse.
duke@435 1807 num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
duke@435 1808 } else {
duke@435 1809 // instruction --> call build operand( ) to catch result
duke@435 1810 // --> ReduceInst( newrule )
duke@435 1811 mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
duke@435 1812 Node *mem1 = (Node*)1;
kvn@651 1813 debug_only(Node *save_mem_node = _mem_node;)
duke@435 1814 mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
kvn@651 1815 debug_only(_mem_node = save_mem_node;)
duke@435 1816 }
duke@435 1817 }
duke@435 1818 assert( mach->_opnds[num_opnds-1], "" );
duke@435 1819 }
duke@435 1820 return num_opnds;
duke@435 1821 }
duke@435 1822
duke@435 1823 // This routine walks the interior of possible complex operands.
duke@435 1824 // At each point we check our children in the match tree:
duke@435 1825 // (1) No children -
duke@435 1826 // We are a leaf; add _leaf field as an input to the MachNode
duke@435 1827 // (2) Child is an internal operand -
duke@435 1828 // Skip over it ( do nothing )
duke@435 1829 // (3) Child is an instruction -
duke@435 1830 // Call ReduceInst recursively and
duke@435 1831 // and instruction as an input to the MachNode
duke@435 1832 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
duke@435 1833 assert( rule < _LAST_MACH_OPER, "called with operand rule" );
duke@435 1834 State *kid = s->_kids[0];
duke@435 1835 assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
duke@435 1836
duke@435 1837 // Leaf? And not subsumed?
duke@435 1838 if( kid == NULL && !_swallowed[rule] ) {
duke@435 1839 mach->add_req( s->_leaf ); // Add leaf pointer
duke@435 1840 return; // Bail out
duke@435 1841 }
duke@435 1842
duke@435 1843 if( s->_leaf->is_Load() ) {
duke@435 1844 assert( mem == (Node*)1, "multiple Memories being matched at once?" );
duke@435 1845 mem = s->_leaf->in(MemNode::Memory);
kvn@651 1846 debug_only(_mem_node = s->_leaf;)
duke@435 1847 }
duke@435 1848 if( s->_leaf->in(0) && s->_leaf->req() > 1) {
duke@435 1849 if( !mach->in(0) )
duke@435 1850 mach->set_req(0,s->_leaf->in(0));
duke@435 1851 else {
duke@435 1852 assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
duke@435 1853 }
duke@435 1854 }
duke@435 1855
duke@435 1856 for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) { // binary tree
duke@435 1857 int newrule;
sla@5237 1858 if( i == 0)
duke@435 1859 newrule = kid->_rule[_leftOp[rule]];
duke@435 1860 else
duke@435 1861 newrule = kid->_rule[_rightOp[rule]];
duke@435 1862
duke@435 1863 if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
duke@435 1864 // Internal operand; recurse but do nothing else
duke@435 1865 ReduceOper( kid, newrule, mem, mach );
duke@435 1866
duke@435 1867 } else { // Child is a new instruction
duke@435 1868 // Reduce the instruction, and add a direct pointer from this
duke@435 1869 // machine instruction to the newly reduced one.
duke@435 1870 Node *mem1 = (Node*)1;
kvn@651 1871 debug_only(Node *save_mem_node = _mem_node;)
duke@435 1872 mach->add_req( ReduceInst( kid, newrule, mem1 ) );
kvn@651 1873 debug_only(_mem_node = save_mem_node;)
duke@435 1874 }
duke@435 1875 }
duke@435 1876 }
duke@435 1877
duke@435 1878
duke@435 1879 // -------------------------------------------------------------------------
duke@435 1880 // Java-Java calling convention
duke@435 1881 // (what you use when Java calls Java)
duke@435 1882
duke@435 1883 //------------------------------find_receiver----------------------------------
duke@435 1884 // For a given signature, return the OptoReg for parameter 0.
duke@435 1885 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
duke@435 1886 VMRegPair regs;
duke@435 1887 BasicType sig_bt = T_OBJECT;
duke@435 1888 calling_convention(&sig_bt, &regs, 1, is_outgoing);
duke@435 1889 // Return argument 0 register. In the LP64 build pointers
duke@435 1890 // take 2 registers, but the VM wants only the 'main' name.
duke@435 1891 return OptoReg::as_OptoReg(regs.first());
duke@435 1892 }
duke@435 1893
duke@435 1894 // A method-klass-holder may be passed in the inline_cache_reg
duke@435 1895 // and then expanded into the inline_cache_reg and a method_oop register
duke@435 1896 // defined in ad_<arch>.cpp
duke@435 1897
duke@435 1898
duke@435 1899 //------------------------------find_shared------------------------------------
duke@435 1900 // Set bits if Node is shared or otherwise a root
duke@435 1901 void Matcher::find_shared( Node *n ) {
duke@435 1902 // Allocate stack of size C->unique() * 2 to avoid frequent realloc
duke@435 1903 MStack mstack(C->unique() * 2);
kvn@1021 1904 // Mark nodes as address_visited if they are inputs to an address expression
kvn@1021 1905 VectorSet address_visited(Thread::current()->resource_area());
duke@435 1906 mstack.push(n, Visit); // Don't need to pre-visit root node
duke@435 1907 while (mstack.is_nonempty()) {
duke@435 1908 n = mstack.node(); // Leave node on stack
duke@435 1909 Node_State nstate = mstack.state();
kvn@1021 1910 uint nop = n->Opcode();
duke@435 1911 if (nstate == Pre_Visit) {
kvn@1021 1912 if (address_visited.test(n->_idx)) { // Visited in address already?
kvn@1021 1913 // Flag as visited and shared now.
kvn@1021 1914 set_visited(n);
kvn@1021 1915 }
duke@435 1916 if (is_visited(n)) { // Visited already?
duke@435 1917 // Node is shared and has no reason to clone. Flag it as shared.
duke@435 1918 // This causes it to match into a register for the sharing.
duke@435 1919 set_shared(n); // Flag as shared and
duke@435 1920 mstack.pop(); // remove node from stack
duke@435 1921 continue;
duke@435 1922 }
duke@435 1923 nstate = Visit; // Not already visited; so visit now
duke@435 1924 }
duke@435 1925 if (nstate == Visit) {
duke@435 1926 mstack.set_state(Post_Visit);
duke@435 1927 set_visited(n); // Flag as visited now
duke@435 1928 bool mem_op = false;
duke@435 1929
kvn@1021 1930 switch( nop ) { // Handle some opcodes special
duke@435 1931 case Op_Phi: // Treat Phis as shared roots
duke@435 1932 case Op_Parm:
duke@435 1933 case Op_Proj: // All handled specially during matching
kvn@498 1934 case Op_SafePointScalarObject:
duke@435 1935 set_shared(n);
duke@435 1936 set_dontcare(n);
duke@435 1937 break;
duke@435 1938 case Op_If:
duke@435 1939 case Op_CountedLoopEnd:
duke@435 1940 mstack.set_state(Alt_Post_Visit); // Alternative way
duke@435 1941 // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)). Helps
duke@435 1942 // with matching cmp/branch in 1 instruction. The Matcher needs the
duke@435 1943 // Bool and CmpX side-by-side, because it can only get at constants
duke@435 1944 // that are at the leaves of Match trees, and the Bool's condition acts
duke@435 1945 // as a constant here.
duke@435 1946 mstack.push(n->in(1), Visit); // Clone the Bool
duke@435 1947 mstack.push(n->in(0), Pre_Visit); // Visit control input
duke@435 1948 continue; // while (mstack.is_nonempty())
duke@435 1949 case Op_ConvI2D: // These forms efficiently match with a prior
duke@435 1950 case Op_ConvI2F: // Load but not a following Store
duke@435 1951 if( n->in(1)->is_Load() && // Prior load
duke@435 1952 n->outcnt() == 1 && // Not already shared
duke@435 1953 n->unique_out()->is_Store() ) // Following store
duke@435 1954 set_shared(n); // Force it to be a root
duke@435 1955 break;
duke@435 1956 case Op_ReverseBytesI:
duke@435 1957 case Op_ReverseBytesL:
duke@435 1958 if( n->in(1)->is_Load() && // Prior load
duke@435 1959 n->outcnt() == 1 ) // Not already shared
duke@435 1960 set_shared(n); // Force it to be a root
duke@435 1961 break;
duke@435 1962 case Op_BoxLock: // Cant match until we get stack-regs in ADLC
duke@435 1963 case Op_IfFalse:
duke@435 1964 case Op_IfTrue:
duke@435 1965 case Op_MachProj:
duke@435 1966 case Op_MergeMem:
duke@435 1967 case Op_Catch:
duke@435 1968 case Op_CatchProj:
duke@435 1969 case Op_CProj:
duke@435 1970 case Op_JumpProj:
duke@435 1971 case Op_JProj:
duke@435 1972 case Op_NeverBranch:
duke@435 1973 set_dontcare(n);
duke@435 1974 break;
duke@435 1975 case Op_Jump:
kvn@3260 1976 mstack.push(n->in(1), Pre_Visit); // Switch Value (could be shared)
duke@435 1977 mstack.push(n->in(0), Pre_Visit); // Visit Control input
duke@435 1978 continue; // while (mstack.is_nonempty())
duke@435 1979 case Op_StrComp:
cfang@1116 1980 case Op_StrEquals:
cfang@1116 1981 case Op_StrIndexOf:
rasbold@604 1982 case Op_AryEq:
kvn@4479 1983 case Op_EncodeISOArray:
duke@435 1984 set_shared(n); // Force result into register (it will be anyways)
duke@435 1985 break;
duke@435 1986 case Op_ConP: { // Convert pointers above the centerline to NUL
duke@435 1987 TypeNode *tn = n->as_Type(); // Constants derive from type nodes
duke@435 1988 const TypePtr* tp = tn->type()->is_ptr();
duke@435 1989 if (tp->_ptr == TypePtr::AnyNull) {
duke@435 1990 tn->set_type(TypePtr::NULL_PTR);
duke@435 1991 }
duke@435 1992 break;
duke@435 1993 }
kvn@598 1994 case Op_ConN: { // Convert narrow pointers above the centerline to NUL
kvn@598 1995 TypeNode *tn = n->as_Type(); // Constants derive from type nodes
kvn@656 1996 const TypePtr* tp = tn->type()->make_ptr();
kvn@656 1997 if (tp && tp->_ptr == TypePtr::AnyNull) {
kvn@598 1998 tn->set_type(TypeNarrowOop::NULL_PTR);
kvn@598 1999 }
kvn@598 2000 break;
kvn@598 2001 }
duke@435 2002 case Op_Binary: // These are introduced in the Post_Visit state.
duke@435 2003 ShouldNotReachHere();
duke@435 2004 break;
duke@435 2005 case Op_ClearArray:
duke@435 2006 case Op_SafePoint:
duke@435 2007 mem_op = true;
duke@435 2008 break;
kvn@1496 2009 default:
kvn@1496 2010 if( n->is_Store() ) {
kvn@1496 2011 // Do match stores, despite no ideal reg
kvn@1496 2012 mem_op = true;
kvn@1496 2013 break;
kvn@1496 2014 }
kvn@1496 2015 if( n->is_Mem() ) { // Loads and LoadStores
kvn@1496 2016 mem_op = true;
kvn@1496 2017 // Loads must be root of match tree due to prior load conflict
kvn@1496 2018 if( C->subsume_loads() == false )
kvn@1496 2019 set_shared(n);
duke@435 2020 }
duke@435 2021 // Fall into default case
duke@435 2022 if( !n->ideal_reg() )
duke@435 2023 set_dontcare(n); // Unmatchable Nodes
duke@435 2024 } // end_switch
duke@435 2025
duke@435 2026 for(int i = n->req() - 1; i >= 0; --i) { // For my children
duke@435 2027 Node *m = n->in(i); // Get ith input
duke@435 2028 if (m == NULL) continue; // Ignore NULLs
duke@435 2029 uint mop = m->Opcode();
duke@435 2030
duke@435 2031 // Must clone all producers of flags, or we will not match correctly.
duke@435 2032 // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
duke@435 2033 // then it will match into an ideal Op_RegFlags. Alas, the fp-flags
duke@435 2034 // are also there, so we may match a float-branch to int-flags and
duke@435 2035 // expect the allocator to haul the flags from the int-side to the
duke@435 2036 // fp-side. No can do.
duke@435 2037 if( _must_clone[mop] ) {
duke@435 2038 mstack.push(m, Visit);
duke@435 2039 continue; // for(int i = ...)
duke@435 2040 }
duke@435 2041
roland@4159 2042 if( mop == Op_AddP && m->in(AddPNode::Base)->is_DecodeNarrowPtr()) {
kvn@1496 2043 // Bases used in addresses must be shared but since
kvn@1496 2044 // they are shared through a DecodeN they may appear
kvn@1496 2045 // to have a single use so force sharing here.
kvn@1496 2046 set_shared(m->in(AddPNode::Base)->in(1));
kvn@1496 2047 }
kvn@1496 2048
kvn@1496 2049 // Clone addressing expressions as they are "free" in memory access instructions
duke@435 2050 if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
kvn@1021 2051 // Some inputs for address expression are not put on stack
kvn@1021 2052 // to avoid marking them as shared and forcing them into register
kvn@1021 2053 // if they are used only in address expressions.
kvn@1021 2054 // But they should be marked as shared if there are other uses
kvn@1021 2055 // besides address expressions.
kvn@1021 2056
duke@435 2057 Node *off = m->in(AddPNode::Offset);
kvn@1021 2058 if( off->is_Con() &&
kvn@1021 2059 // When there are other uses besides address expressions
kvn@1021 2060 // put it on stack and mark as shared.
kvn@1021 2061 !is_visited(m) ) {
kvn@1021 2062 address_visited.test_set(m->_idx); // Flag as address_visited
duke@435 2063 Node *adr = m->in(AddPNode::Address);
duke@435 2064
duke@435 2065 // Intel, ARM and friends can handle 2 adds in addressing mode
kvn@603 2066 if( clone_shift_expressions && adr->is_AddP() &&
duke@435 2067 // AtomicAdd is not an addressing expression.
duke@435 2068 // Cheap to find it by looking for screwy base.
kvn@1021 2069 !adr->in(AddPNode::Base)->is_top() &&
kvn@1021 2070 // Are there other uses besides address expressions?
kvn@1021 2071 !is_visited(adr) ) {
kvn@1021 2072 address_visited.set(adr->_idx); // Flag as address_visited
duke@435 2073 Node *shift = adr->in(AddPNode::Offset);
duke@435 2074 // Check for shift by small constant as well
duke@435 2075 if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
kvn@1021 2076 shift->in(2)->get_int() <= 3 &&
kvn@1021 2077 // Are there other uses besides address expressions?
kvn@1021 2078 !is_visited(shift) ) {
kvn@1021 2079 address_visited.set(shift->_idx); // Flag as address_visited
duke@435 2080 mstack.push(shift->in(2), Visit);
kvn@1021 2081 Node *conv = shift->in(1);
duke@435 2082 #ifdef _LP64
duke@435 2083 // Allow Matcher to match the rule which bypass
duke@435 2084 // ConvI2L operation for an array index on LP64
duke@435 2085 // if the index value is positive.
kvn@1021 2086 if( conv->Opcode() == Op_ConvI2L &&
kvn@1021 2087 conv->as_Type()->type()->is_long()->_lo >= 0 &&
kvn@1021 2088 // Are there other uses besides address expressions?
kvn@1021 2089 !is_visited(conv) ) {
kvn@1021 2090 address_visited.set(conv->_idx); // Flag as address_visited
kvn@1021 2091 mstack.push(conv->in(1), Pre_Visit);
duke@435 2092 } else
duke@435 2093 #endif
kvn@1021 2094 mstack.push(conv, Pre_Visit);
duke@435 2095 } else {
duke@435 2096 mstack.push(shift, Pre_Visit);
duke@435 2097 }
duke@435 2098 mstack.push(adr->in(AddPNode::Address), Pre_Visit);
duke@435 2099 mstack.push(adr->in(AddPNode::Base), Pre_Visit);
duke@435 2100 } else { // Sparc, Alpha, PPC and friends
duke@435 2101 mstack.push(adr, Pre_Visit);
duke@435 2102 }
duke@435 2103
duke@435 2104 // Clone X+offset as it also folds into most addressing expressions
duke@435 2105 mstack.push(off, Visit);
duke@435 2106 mstack.push(m->in(AddPNode::Base), Pre_Visit);
duke@435 2107 continue; // for(int i = ...)
duke@435 2108 } // if( off->is_Con() )
duke@435 2109 } // if( mem_op &&
duke@435 2110 mstack.push(m, Pre_Visit);
duke@435 2111 } // for(int i = ...)
duke@435 2112 }
duke@435 2113 else if (nstate == Alt_Post_Visit) {
duke@435 2114 mstack.pop(); // Remove node from stack
duke@435 2115 // We cannot remove the Cmp input from the Bool here, as the Bool may be
duke@435 2116 // shared and all users of the Bool need to move the Cmp in parallel.
duke@435 2117 // This leaves both the Bool and the If pointing at the Cmp. To
duke@435 2118 // prevent the Matcher from trying to Match the Cmp along both paths
duke@435 2119 // BoolNode::match_edge always returns a zero.
duke@435 2120
duke@435 2121 // We reorder the Op_If in a pre-order manner, so we can visit without
twisti@1040 2122 // accidentally sharing the Cmp (the Bool and the If make 2 users).
duke@435 2123 n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
duke@435 2124 }
duke@435 2125 else if (nstate == Post_Visit) {
duke@435 2126 mstack.pop(); // Remove node from stack
duke@435 2127
duke@435 2128 // Now hack a few special opcodes
duke@435 2129 switch( n->Opcode() ) { // Handle some opcodes special
duke@435 2130 case Op_StorePConditional:
kvn@855 2131 case Op_StoreIConditional:
duke@435 2132 case Op_StoreLConditional:
duke@435 2133 case Op_CompareAndSwapI:
duke@435 2134 case Op_CompareAndSwapL:
coleenp@548 2135 case Op_CompareAndSwapP:
coleenp@548 2136 case Op_CompareAndSwapN: { // Convert trinary to binary-tree
duke@435 2137 Node *newval = n->in(MemNode::ValueIn );
roland@4106 2138 Node *oldval = n->in(LoadStoreConditionalNode::ExpectedIn);
kvn@4115 2139 Node *pair = new (C) BinaryNode( oldval, newval );
duke@435 2140 n->set_req(MemNode::ValueIn,pair);
roland@4106 2141 n->del_req(LoadStoreConditionalNode::ExpectedIn);
duke@435 2142 break;
duke@435 2143 }
duke@435 2144 case Op_CMoveD: // Convert trinary to binary-tree
duke@435 2145 case Op_CMoveF:
duke@435 2146 case Op_CMoveI:
duke@435 2147 case Op_CMoveL:
kvn@599 2148 case Op_CMoveN:
duke@435 2149 case Op_CMoveP: {
duke@435 2150 // Restructure into a binary tree for Matching. It's possible that
duke@435 2151 // we could move this code up next to the graph reshaping for IfNodes
duke@435 2152 // or vice-versa, but I do not want to debug this for Ladybird.
duke@435 2153 // 10/2/2000 CNC.
kvn@4115 2154 Node *pair1 = new (C) BinaryNode(n->in(1),n->in(1)->in(1));
duke@435 2155 n->set_req(1,pair1);
kvn@4115 2156 Node *pair2 = new (C) BinaryNode(n->in(2),n->in(3));
duke@435 2157 n->set_req(2,pair2);
duke@435 2158 n->del_req(3);
duke@435 2159 break;
duke@435 2160 }
kvn@2877 2161 case Op_LoopLimit: {
kvn@4115 2162 Node *pair1 = new (C) BinaryNode(n->in(1),n->in(2));
kvn@2877 2163 n->set_req(1,pair1);
kvn@2877 2164 n->set_req(2,n->in(3));
kvn@2877 2165 n->del_req(3);
kvn@2877 2166 break;
kvn@2877 2167 }
kvn@1421 2168 case Op_StrEquals: {
kvn@4115 2169 Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3));
kvn@1421 2170 n->set_req(2,pair1);
kvn@1421 2171 n->set_req(3,n->in(4));
kvn@1421 2172 n->del_req(4);
kvn@1421 2173 break;
kvn@1421 2174 }
kvn@1421 2175 case Op_StrComp:
kvn@1421 2176 case Op_StrIndexOf: {
kvn@4115 2177 Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3));
kvn@1421 2178 n->set_req(2,pair1);
kvn@4115 2179 Node *pair2 = new (C) BinaryNode(n->in(4),n->in(5));
kvn@1421 2180 n->set_req(3,pair2);
kvn@1421 2181 n->del_req(5);
kvn@1421 2182 n->del_req(4);
kvn@1421 2183 break;
kvn@1421 2184 }
kvn@4479 2185 case Op_EncodeISOArray: {
kvn@4479 2186 // Restructure into a binary tree for Matching.
kvn@4479 2187 Node* pair = new (C) BinaryNode(n->in(3), n->in(4));
kvn@4479 2188 n->set_req(3, pair);
kvn@4479 2189 n->del_req(4);
kvn@4479 2190 break;
kvn@4479 2191 }
duke@435 2192 default:
duke@435 2193 break;
duke@435 2194 }
duke@435 2195 }
duke@435 2196 else {
duke@435 2197 ShouldNotReachHere();
duke@435 2198 }
duke@435 2199 } // end of while (mstack.is_nonempty())
duke@435 2200 }
duke@435 2201
duke@435 2202 #ifdef ASSERT
duke@435 2203 // machine-independent root to machine-dependent root
duke@435 2204 void Matcher::dump_old2new_map() {
duke@435 2205 _old2new_map.dump();
duke@435 2206 }
duke@435 2207 #endif
duke@435 2208
duke@435 2209 //---------------------------collect_null_checks-------------------------------
duke@435 2210 // Find null checks in the ideal graph; write a machine-specific node for
duke@435 2211 // it. Used by later implicit-null-check handling. Actually collects
duke@435 2212 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
duke@435 2213 // value being tested.
kvn@803 2214 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
duke@435 2215 Node *iff = proj->in(0);
duke@435 2216 if( iff->Opcode() == Op_If ) {
duke@435 2217 // During matching If's have Bool & Cmp side-by-side
duke@435 2218 BoolNode *b = iff->in(1)->as_Bool();
duke@435 2219 Node *cmp = iff->in(2);
coleenp@548 2220 int opc = cmp->Opcode();
coleenp@548 2221 if (opc != Op_CmpP && opc != Op_CmpN) return;
duke@435 2222
coleenp@548 2223 const Type* ct = cmp->in(2)->bottom_type();
coleenp@548 2224 if (ct == TypePtr::NULL_PTR ||
coleenp@548 2225 (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
coleenp@548 2226
kvn@803 2227 bool push_it = false;
coleenp@548 2228 if( proj->Opcode() == Op_IfTrue ) {
coleenp@548 2229 extern int all_null_checks_found;
coleenp@548 2230 all_null_checks_found++;
coleenp@548 2231 if( b->_test._test == BoolTest::ne ) {
kvn@803 2232 push_it = true;
coleenp@548 2233 }
coleenp@548 2234 } else {
coleenp@548 2235 assert( proj->Opcode() == Op_IfFalse, "" );
coleenp@548 2236 if( b->_test._test == BoolTest::eq ) {
kvn@803 2237 push_it = true;
duke@435 2238 }
duke@435 2239 }
kvn@803 2240 if( push_it ) {
kvn@803 2241 _null_check_tests.push(proj);
kvn@803 2242 Node* val = cmp->in(1);
kvn@803 2243 #ifdef _LP64
kvn@1930 2244 if (val->bottom_type()->isa_narrowoop() &&
kvn@1930 2245 !Matcher::narrow_oop_use_complex_address()) {
kvn@803 2246 //
kvn@803 2247 // Look for DecodeN node which should be pinned to orig_proj.
kvn@803 2248 // On platforms (Sparc) which can not handle 2 adds
kvn@803 2249 // in addressing mode we have to keep a DecodeN node and
kvn@803 2250 // use it to do implicit NULL check in address.
kvn@803 2251 //
kvn@803 2252 // DecodeN node was pinned to non-null path (orig_proj) during
kvn@803 2253 // CastPP transformation in final_graph_reshaping_impl().
kvn@803 2254 //
kvn@803 2255 uint cnt = orig_proj->outcnt();
kvn@803 2256 for (uint i = 0; i < orig_proj->outcnt(); i++) {
kvn@803 2257 Node* d = orig_proj->raw_out(i);
kvn@803 2258 if (d->is_DecodeN() && d->in(1) == val) {
kvn@803 2259 val = d;
kvn@803 2260 val->set_req(0, NULL); // Unpin now.
kvn@1930 2261 // Mark this as special case to distinguish from
kvn@1930 2262 // a regular case: CmpP(DecodeN, NULL).
kvn@1930 2263 val = (Node*)(((intptr_t)val) | 1);
kvn@803 2264 break;
kvn@803 2265 }
kvn@803 2266 }
kvn@803 2267 }
kvn@803 2268 #endif
kvn@803 2269 _null_check_tests.push(val);
kvn@803 2270 }
duke@435 2271 }
duke@435 2272 }
duke@435 2273 }
duke@435 2274
duke@435 2275 //---------------------------validate_null_checks------------------------------
duke@435 2276 // Its possible that the value being NULL checked is not the root of a match
duke@435 2277 // tree. If so, I cannot use the value in an implicit null check.
duke@435 2278 void Matcher::validate_null_checks( ) {
duke@435 2279 uint cnt = _null_check_tests.size();
duke@435 2280 for( uint i=0; i < cnt; i+=2 ) {
duke@435 2281 Node *test = _null_check_tests[i];
duke@435 2282 Node *val = _null_check_tests[i+1];
kvn@1930 2283 bool is_decoden = ((intptr_t)val) & 1;
kvn@1930 2284 val = (Node*)(((intptr_t)val) & ~1);
duke@435 2285 if (has_new_node(val)) {
kvn@1930 2286 Node* new_val = new_node(val);
kvn@1930 2287 if (is_decoden) {
roland@4159 2288 assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity");
kvn@1930 2289 // Note: new_val may have a control edge if
kvn@1930 2290 // the original ideal node DecodeN was matched before
kvn@1930 2291 // it was unpinned in Matcher::collect_null_checks().
kvn@1930 2292 // Unpin the mach node and mark it.
kvn@1930 2293 new_val->set_req(0, NULL);
kvn@1930 2294 new_val = (Node*)(((intptr_t)new_val) | 1);
kvn@1930 2295 }
duke@435 2296 // Is a match-tree root, so replace with the matched value
kvn@1930 2297 _null_check_tests.map(i+1, new_val);
duke@435 2298 } else {
duke@435 2299 // Yank from candidate list
duke@435 2300 _null_check_tests.map(i+1,_null_check_tests[--cnt]);
duke@435 2301 _null_check_tests.map(i,_null_check_tests[--cnt]);
duke@435 2302 _null_check_tests.pop();
duke@435 2303 _null_check_tests.pop();
duke@435 2304 i-=2;
duke@435 2305 }
duke@435 2306 }
duke@435 2307 }
duke@435 2308
duke@435 2309 // Used by the DFA in dfa_xxx.cpp. Check for a following barrier or
duke@435 2310 // atomic instruction acting as a store_load barrier without any
duke@435 2311 // intervening volatile load, and thus we don't need a barrier here.
duke@435 2312 // We retain the Node to act as a compiler ordering barrier.
kvn@5437 2313 bool Matcher::post_store_load_barrier(const Node* vmb) {
kvn@5437 2314 Compile* C = Compile::current();
kvn@5437 2315 assert(vmb->is_MemBar(), "");
kvn@5437 2316 assert(vmb->Opcode() != Op_MemBarAcquire, "");
kvn@5437 2317 const MemBarNode* membar = vmb->as_MemBar();
duke@435 2318
kvn@5437 2319 // Get the Ideal Proj node, ctrl, that can be used to iterate forward
kvn@5437 2320 Node* ctrl = NULL;
kvn@5437 2321 for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) {
kvn@5437 2322 Node* p = membar->fast_out(i);
kvn@5437 2323 assert(p->is_Proj(), "only projections here");
kvn@5437 2324 if ((p->as_Proj()->_con == TypeFunc::Control) &&
kvn@5437 2325 !C->node_arena()->contains(p)) { // Unmatched old-space only
kvn@5437 2326 ctrl = p;
duke@435 2327 break;
kvn@5437 2328 }
duke@435 2329 }
kvn@5437 2330 assert((ctrl != NULL), "missing control projection");
duke@435 2331
kvn@5437 2332 for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) {
duke@435 2333 Node *x = ctrl->fast_out(j);
duke@435 2334 int xop = x->Opcode();
duke@435 2335
duke@435 2336 // We don't need current barrier if we see another or a lock
duke@435 2337 // before seeing volatile load.
duke@435 2338 //
duke@435 2339 // Op_Fastunlock previously appeared in the Op_* list below.
duke@435 2340 // With the advent of 1-0 lock operations we're no longer guaranteed
duke@435 2341 // that a monitor exit operation contains a serializing instruction.
duke@435 2342
duke@435 2343 if (xop == Op_MemBarVolatile ||
duke@435 2344 xop == Op_CompareAndSwapL ||
duke@435 2345 xop == Op_CompareAndSwapP ||
coleenp@548 2346 xop == Op_CompareAndSwapN ||
kvn@5437 2347 xop == Op_CompareAndSwapI) {
duke@435 2348 return true;
kvn@5437 2349 }
kvn@5437 2350
kvn@5437 2351 // Op_FastLock previously appeared in the Op_* list above.
kvn@5437 2352 // With biased locking we're no longer guaranteed that a monitor
kvn@5437 2353 // enter operation contains a serializing instruction.
kvn@5437 2354 if ((xop == Op_FastLock) && !UseBiasedLocking) {
kvn@5437 2355 return true;
kvn@5437 2356 }
duke@435 2357
duke@435 2358 if (x->is_MemBar()) {
duke@435 2359 // We must retain this membar if there is an upcoming volatile
kvn@5437 2360 // load, which will be followed by acquire membar.
kvn@5437 2361 if (xop == Op_MemBarAcquire) {
duke@435 2362 return false;
kvn@5437 2363 } else {
kvn@5437 2364 // For other kinds of barriers, check by pretending we
kvn@5437 2365 // are them, and seeing if we can be removed.
kvn@5437 2366 return post_store_load_barrier(x->as_MemBar());
kvn@5437 2367 }
duke@435 2368 }
duke@435 2369
kvn@5437 2370 // probably not necessary to check for these
kvn@5437 2371 if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) {
kvn@5437 2372 return false;
duke@435 2373 }
duke@435 2374 }
duke@435 2375 return false;
duke@435 2376 }
duke@435 2377
duke@435 2378 //=============================================================================
duke@435 2379 //---------------------------State---------------------------------------------
duke@435 2380 State::State(void) {
duke@435 2381 #ifdef ASSERT
duke@435 2382 _id = 0;
duke@435 2383 _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
duke@435 2384 _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
duke@435 2385 //memset(_cost, -1, sizeof(_cost));
duke@435 2386 //memset(_rule, -1, sizeof(_rule));
duke@435 2387 #endif
duke@435 2388 memset(_valid, 0, sizeof(_valid));
duke@435 2389 }
duke@435 2390
duke@435 2391 #ifdef ASSERT
duke@435 2392 State::~State() {
duke@435 2393 _id = 99;
duke@435 2394 _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
duke@435 2395 _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
duke@435 2396 memset(_cost, -3, sizeof(_cost));
duke@435 2397 memset(_rule, -3, sizeof(_rule));
duke@435 2398 }
duke@435 2399 #endif
duke@435 2400
duke@435 2401 #ifndef PRODUCT
duke@435 2402 //---------------------------dump----------------------------------------------
duke@435 2403 void State::dump() {
duke@435 2404 tty->print("\n");
duke@435 2405 dump(0);
duke@435 2406 }
duke@435 2407
duke@435 2408 void State::dump(int depth) {
duke@435 2409 for( int j = 0; j < depth; j++ )
duke@435 2410 tty->print(" ");
duke@435 2411 tty->print("--N: ");
duke@435 2412 _leaf->dump();
duke@435 2413 uint i;
duke@435 2414 for( i = 0; i < _LAST_MACH_OPER; i++ )
duke@435 2415 // Check for valid entry
duke@435 2416 if( valid(i) ) {
duke@435 2417 for( int j = 0; j < depth; j++ )
duke@435 2418 tty->print(" ");
duke@435 2419 assert(_cost[i] != max_juint, "cost must be a valid value");
duke@435 2420 assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
duke@435 2421 tty->print_cr("%s %d %s",
duke@435 2422 ruleName[i], _cost[i], ruleName[_rule[i]] );
duke@435 2423 }
duke@435 2424 tty->print_cr("");
duke@435 2425
duke@435 2426 for( i=0; i<2; i++ )
duke@435 2427 if( _kids[i] )
duke@435 2428 _kids[i]->dump(depth+1);
duke@435 2429 }
duke@435 2430 #endif

mercurial