src/share/vm/opto/type.hpp

Fri, 27 Sep 2013 08:39:19 +0200

author
rbackman
date
Fri, 27 Sep 2013 08:39:19 +0200
changeset 5791
c9ccd7b85f20
parent 5658
edb5ab0f3fe5
child 5991
b2ee5dc63353
permissions
-rw-r--r--

8024924: Intrinsify java.lang.Math.addExact
Reviewed-by: kvn, twisti

duke@435 1 /*
coleenp@5614 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_OPTO_TYPE_HPP
stefank@2314 26 #define SHARE_VM_OPTO_TYPE_HPP
stefank@2314 27
stefank@2314 28 #include "libadt/port.hpp"
stefank@2314 29 #include "opto/adlcVMDeps.hpp"
stefank@2314 30 #include "runtime/handles.hpp"
stefank@2314 31
duke@435 32 // Portions of code courtesy of Clifford Click
duke@435 33
duke@435 34 // Optimization - Graph Style
duke@435 35
duke@435 36
duke@435 37 // This class defines a Type lattice. The lattice is used in the constant
duke@435 38 // propagation algorithms, and for some type-checking of the iloc code.
duke@435 39 // Basic types include RSD's (lower bound, upper bound, stride for integers),
duke@435 40 // float & double precision constants, sets of data-labels and code-labels.
duke@435 41 // The complete lattice is described below. Subtypes have no relationship to
duke@435 42 // up or down in the lattice; that is entirely determined by the behavior of
duke@435 43 // the MEET/JOIN functions.
duke@435 44
duke@435 45 class Dict;
duke@435 46 class Type;
duke@435 47 class TypeD;
duke@435 48 class TypeF;
duke@435 49 class TypeInt;
duke@435 50 class TypeLong;
roland@4159 51 class TypeNarrowPtr;
roland@4159 52 class TypeNarrowOop;
roland@4159 53 class TypeNarrowKlass;
duke@435 54 class TypeAry;
duke@435 55 class TypeTuple;
kvn@3882 56 class TypeVect;
kvn@3882 57 class TypeVectS;
kvn@3882 58 class TypeVectD;
kvn@3882 59 class TypeVectX;
kvn@3882 60 class TypeVectY;
duke@435 61 class TypePtr;
duke@435 62 class TypeRawPtr;
duke@435 63 class TypeOopPtr;
duke@435 64 class TypeInstPtr;
duke@435 65 class TypeAryPtr;
duke@435 66 class TypeKlassPtr;
coleenp@4037 67 class TypeMetadataPtr;
duke@435 68
duke@435 69 //------------------------------Type-------------------------------------------
duke@435 70 // Basic Type object, represents a set of primitive Values.
duke@435 71 // Types are hash-cons'd into a private class dictionary, so only one of each
duke@435 72 // different kind of Type exists. Types are never modified after creation, so
duke@435 73 // all their interesting fields are constant.
duke@435 74 class Type {
never@3138 75 friend class VMStructs;
never@3138 76
duke@435 77 public:
duke@435 78 enum TYPES {
duke@435 79 Bad=0, // Type check
duke@435 80 Control, // Control of code (not in lattice)
duke@435 81 Top, // Top of the lattice
duke@435 82 Int, // Integer range (lo-hi)
duke@435 83 Long, // Long integer range (lo-hi)
duke@435 84 Half, // Placeholder half of doubleword
coleenp@548 85 NarrowOop, // Compressed oop pointer
roland@4159 86 NarrowKlass, // Compressed klass pointer
duke@435 87
duke@435 88 Tuple, // Method signature or object layout
duke@435 89 Array, // Array types
kvn@3882 90 VectorS, // 32bit Vector types
kvn@3882 91 VectorD, // 64bit Vector types
kvn@3882 92 VectorX, // 128bit Vector types
kvn@3882 93 VectorY, // 256bit Vector types
duke@435 94
duke@435 95 AnyPtr, // Any old raw, klass, inst, or array pointer
duke@435 96 RawPtr, // Raw (non-oop) pointers
duke@435 97 OopPtr, // Any and all Java heap entities
duke@435 98 InstPtr, // Instance pointers (non-array objects)
duke@435 99 AryPtr, // Array pointers
coleenp@4037 100 // (Ptr order matters: See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
coleenp@4037 101
coleenp@4037 102 MetadataPtr, // Generic metadata
duke@435 103 KlassPtr, // Klass pointers
duke@435 104
duke@435 105 Function, // Function signature
duke@435 106 Abio, // Abstract I/O
duke@435 107 Return_Address, // Subroutine return address
duke@435 108 Memory, // Abstract store
duke@435 109 FloatTop, // No float value
duke@435 110 FloatCon, // Floating point constant
duke@435 111 FloatBot, // Any float value
duke@435 112 DoubleTop, // No double value
duke@435 113 DoubleCon, // Double precision constant
duke@435 114 DoubleBot, // Any double value
duke@435 115 Bottom, // Bottom of lattice
duke@435 116 lastype // Bogus ending type (not in lattice)
duke@435 117 };
duke@435 118
duke@435 119 // Signal values for offsets from a base pointer
duke@435 120 enum OFFSET_SIGNALS {
duke@435 121 OffsetTop = -2000000000, // undefined offset
duke@435 122 OffsetBot = -2000000001 // any possible offset
duke@435 123 };
duke@435 124
duke@435 125 // Min and max WIDEN values.
duke@435 126 enum WIDEN {
duke@435 127 WidenMin = 0,
duke@435 128 WidenMax = 3
duke@435 129 };
duke@435 130
duke@435 131 private:
coleenp@4037 132 typedef struct {
coleenp@4037 133 const TYPES dual_type;
coleenp@4037 134 const BasicType basic_type;
coleenp@4037 135 const char* msg;
coleenp@4037 136 const bool isa_oop;
coleenp@4037 137 const int ideal_reg;
coleenp@4037 138 const relocInfo::relocType reloc;
coleenp@4037 139 } TypeInfo;
coleenp@4037 140
duke@435 141 // Dictionary of types shared among compilations.
duke@435 142 static Dict* _shared_type_dict;
coleenp@4037 143 static TypeInfo _type_info[];
duke@435 144
duke@435 145 static int uhash( const Type *const t );
duke@435 146 // Structural equality check. Assumes that cmp() has already compared
duke@435 147 // the _base types and thus knows it can cast 't' appropriately.
duke@435 148 virtual bool eq( const Type *t ) const;
duke@435 149
duke@435 150 // Top-level hash-table of types
duke@435 151 static Dict *type_dict() {
duke@435 152 return Compile::current()->type_dict();
duke@435 153 }
duke@435 154
duke@435 155 // DUAL operation: reflect around lattice centerline. Used instead of
duke@435 156 // join to ensure my lattice is symmetric up and down. Dual is computed
duke@435 157 // lazily, on demand, and cached in _dual.
duke@435 158 const Type *_dual; // Cached dual value
duke@435 159 // Table for efficient dualing of base types
duke@435 160 static const TYPES dual_type[lastype];
duke@435 161
duke@435 162 protected:
duke@435 163 // Each class of type is also identified by its base.
duke@435 164 const TYPES _base; // Enum of Types type
duke@435 165
duke@435 166 Type( TYPES t ) : _dual(NULL), _base(t) {} // Simple types
duke@435 167 // ~Type(); // Use fast deallocation
duke@435 168 const Type *hashcons(); // Hash-cons the type
duke@435 169
duke@435 170 public:
duke@435 171
coleenp@5614 172 inline void* operator new( size_t x ) throw() {
duke@435 173 Compile* compile = Compile::current();
duke@435 174 compile->set_type_last_size(x);
duke@435 175 void *temp = compile->type_arena()->Amalloc_D(x);
duke@435 176 compile->set_type_hwm(temp);
duke@435 177 return temp;
duke@435 178 }
duke@435 179 inline void operator delete( void* ptr ) {
duke@435 180 Compile* compile = Compile::current();
duke@435 181 compile->type_arena()->Afree(ptr,compile->type_last_size());
duke@435 182 }
duke@435 183
duke@435 184 // Initialize the type system for a particular compilation.
duke@435 185 static void Initialize(Compile* compile);
duke@435 186
duke@435 187 // Initialize the types shared by all compilations.
duke@435 188 static void Initialize_shared(Compile* compile);
duke@435 189
duke@435 190 TYPES base() const {
duke@435 191 assert(_base > Bad && _base < lastype, "sanity");
duke@435 192 return _base;
duke@435 193 }
duke@435 194
duke@435 195 // Create a new hash-consd type
duke@435 196 static const Type *make(enum TYPES);
duke@435 197 // Test for equivalence of types
duke@435 198 static int cmp( const Type *const t1, const Type *const t2 );
duke@435 199 // Test for higher or equal in lattice
duke@435 200 int higher_equal( const Type *t ) const { return !cmp(meet(t),t); }
duke@435 201
duke@435 202 // MEET operation; lower in lattice.
duke@435 203 const Type *meet( const Type *t ) const;
duke@435 204 // WIDEN: 'widens' for Ints and other range types
never@1444 205 virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
duke@435 206 // NARROW: complement for widen, used by pessimistic phases
duke@435 207 virtual const Type *narrow( const Type *old ) const { return this; }
duke@435 208
duke@435 209 // DUAL operation: reflect around lattice centerline. Used instead of
duke@435 210 // join to ensure my lattice is symmetric up and down.
duke@435 211 const Type *dual() const { return _dual; }
duke@435 212
duke@435 213 // Compute meet dependent on base type
duke@435 214 virtual const Type *xmeet( const Type *t ) const;
duke@435 215 virtual const Type *xdual() const; // Compute dual right now.
duke@435 216
duke@435 217 // JOIN operation; higher in lattice. Done by finding the dual of the
duke@435 218 // meet of the dual of the 2 inputs.
duke@435 219 const Type *join( const Type *t ) const {
duke@435 220 return dual()->meet(t->dual())->dual(); }
duke@435 221
duke@435 222 // Modified version of JOIN adapted to the needs Node::Value.
duke@435 223 // Normalizes all empty values to TOP. Does not kill _widen bits.
duke@435 224 // Currently, it also works around limitations involving interface types.
duke@435 225 virtual const Type *filter( const Type *kills ) const;
duke@435 226
kvn@1255 227 #ifdef ASSERT
kvn@1255 228 // One type is interface, the other is oop
kvn@1255 229 virtual bool interface_vs_oop(const Type *t) const;
kvn@1255 230 #endif
kvn@1255 231
coleenp@548 232 // Returns true if this pointer points at memory which contains a
kvn@598 233 // compressed oop references.
kvn@598 234 bool is_ptr_to_narrowoop() const;
roland@4159 235 bool is_ptr_to_narrowklass() const;
coleenp@548 236
kvn@5110 237 bool is_ptr_to_boxing_obj() const;
kvn@5110 238
kvn@5110 239
duke@435 240 // Convenience access
duke@435 241 float getf() const;
duke@435 242 double getd() const;
duke@435 243
duke@435 244 const TypeInt *is_int() const;
duke@435 245 const TypeInt *isa_int() const; // Returns NULL if not an Int
duke@435 246 const TypeLong *is_long() const;
duke@435 247 const TypeLong *isa_long() const; // Returns NULL if not a Long
twisti@4313 248 const TypeD *isa_double() const; // Returns NULL if not a Double{Top,Con,Bot}
duke@435 249 const TypeD *is_double_constant() const; // Asserts it is a DoubleCon
duke@435 250 const TypeD *isa_double_constant() const; // Returns NULL if not a DoubleCon
twisti@4313 251 const TypeF *isa_float() const; // Returns NULL if not a Float{Top,Con,Bot}
duke@435 252 const TypeF *is_float_constant() const; // Asserts it is a FloatCon
duke@435 253 const TypeF *isa_float_constant() const; // Returns NULL if not a FloatCon
duke@435 254 const TypeTuple *is_tuple() const; // Collection of fields, NOT a pointer
duke@435 255 const TypeAry *is_ary() const; // Array, NOT array pointer
kvn@3882 256 const TypeVect *is_vect() const; // Vector
kvn@3882 257 const TypeVect *isa_vect() const; // Returns NULL if not a Vector
duke@435 258 const TypePtr *is_ptr() const; // Asserts it is a ptr type
duke@435 259 const TypePtr *isa_ptr() const; // Returns NULL if not ptr type
coleenp@548 260 const TypeRawPtr *isa_rawptr() const; // NOT Java oop
coleenp@548 261 const TypeRawPtr *is_rawptr() const; // Asserts is rawptr
kvn@598 262 const TypeNarrowOop *is_narrowoop() const; // Java-style GC'd pointer
kvn@598 263 const TypeNarrowOop *isa_narrowoop() const; // Returns NULL if not oop ptr type
roland@4159 264 const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
roland@4159 265 const TypeNarrowKlass *isa_narrowklass() const;// Returns NULL if not oop ptr type
coleenp@548 266 const TypeOopPtr *isa_oopptr() const; // Returns NULL if not oop ptr type
coleenp@548 267 const TypeOopPtr *is_oopptr() const; // Java-style GC'd pointer
coleenp@548 268 const TypeInstPtr *isa_instptr() const; // Returns NULL if not InstPtr
coleenp@548 269 const TypeInstPtr *is_instptr() const; // Instance
coleenp@548 270 const TypeAryPtr *isa_aryptr() const; // Returns NULL if not AryPtr
coleenp@548 271 const TypeAryPtr *is_aryptr() const; // Array oop
coleenp@4037 272
coleenp@4037 273 const TypeMetadataPtr *isa_metadataptr() const; // Returns NULL if not oop ptr type
coleenp@4037 274 const TypeMetadataPtr *is_metadataptr() const; // Java-style GC'd pointer
coleenp@4037 275 const TypeKlassPtr *isa_klassptr() const; // Returns NULL if not KlassPtr
coleenp@4037 276 const TypeKlassPtr *is_klassptr() const; // assert if not KlassPtr
coleenp@4037 277
duke@435 278 virtual bool is_finite() const; // Has a finite value
duke@435 279 virtual bool is_nan() const; // Is not a number (NaN)
duke@435 280
kvn@656 281 // Returns this ptr type or the equivalent ptr type for this compressed pointer.
kvn@656 282 const TypePtr* make_ptr() const;
never@1262 283
never@1262 284 // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
never@1262 285 // Asserts if the underlying type is not an oopptr or narrowoop.
never@1262 286 const TypeOopPtr* make_oopptr() const;
never@1262 287
kvn@656 288 // Returns this compressed pointer or the equivalent compressed version
kvn@656 289 // of this pointer type.
kvn@656 290 const TypeNarrowOop* make_narrowoop() const;
kvn@656 291
roland@4159 292 // Returns this compressed klass pointer or the equivalent
roland@4159 293 // compressed version of this pointer type.
roland@4159 294 const TypeNarrowKlass* make_narrowklass() const;
roland@4159 295
duke@435 296 // Special test for register pressure heuristic
duke@435 297 bool is_floatingpoint() const; // True if Float or Double base type
duke@435 298
duke@435 299 // Do you have memory, directly or through a tuple?
duke@435 300 bool has_memory( ) const;
duke@435 301
duke@435 302 // TRUE if type is a singleton
duke@435 303 virtual bool singleton(void) const;
duke@435 304
duke@435 305 // TRUE if type is above the lattice centerline, and is therefore vacuous
duke@435 306 virtual bool empty(void) const;
duke@435 307
duke@435 308 // Return a hash for this type. The hash function is public so ConNode
duke@435 309 // (constants) can hash on their constant, which is represented by a Type.
duke@435 310 virtual int hash() const;
duke@435 311
duke@435 312 // Map ideal registers (machine types) to ideal types
duke@435 313 static const Type *mreg2type[];
duke@435 314
duke@435 315 // Printing, statistics
duke@435 316 #ifndef PRODUCT
duke@435 317 void dump_on(outputStream *st) const;
duke@435 318 void dump() const {
duke@435 319 dump_on(tty);
duke@435 320 }
duke@435 321 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 322 static void dump_stats();
duke@435 323 #endif
duke@435 324 void typerr(const Type *t) const; // Mixing types error
duke@435 325
duke@435 326 // Create basic type
duke@435 327 static const Type* get_const_basic_type(BasicType type) {
duke@435 328 assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
duke@435 329 return _const_basic_type[type];
duke@435 330 }
duke@435 331
duke@435 332 // Mapping to the array element's basic type.
duke@435 333 BasicType array_element_basic_type() const;
duke@435 334
duke@435 335 // Create standard type for a ciType:
duke@435 336 static const Type* get_const_type(ciType* type);
duke@435 337
duke@435 338 // Create standard zero value:
duke@435 339 static const Type* get_zero_type(BasicType type) {
duke@435 340 assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
duke@435 341 return _zero_type[type];
duke@435 342 }
duke@435 343
duke@435 344 // Report if this is a zero value (not top).
duke@435 345 bool is_zero_type() const {
duke@435 346 BasicType type = basic_type();
duke@435 347 if (type == T_VOID || type >= T_CONFLICT)
duke@435 348 return false;
duke@435 349 else
duke@435 350 return (this == _zero_type[type]);
duke@435 351 }
duke@435 352
duke@435 353 // Convenience common pre-built types.
duke@435 354 static const Type *ABIO;
duke@435 355 static const Type *BOTTOM;
duke@435 356 static const Type *CONTROL;
duke@435 357 static const Type *DOUBLE;
duke@435 358 static const Type *FLOAT;
duke@435 359 static const Type *HALF;
duke@435 360 static const Type *MEMORY;
duke@435 361 static const Type *MULTI;
duke@435 362 static const Type *RETURN_ADDRESS;
duke@435 363 static const Type *TOP;
duke@435 364
duke@435 365 // Mapping from compiler type to VM BasicType
coleenp@4037 366 BasicType basic_type() const { return _type_info[_base].basic_type; }
coleenp@4037 367 int ideal_reg() const { return _type_info[_base].ideal_reg; }
coleenp@4037 368 const char* msg() const { return _type_info[_base].msg; }
coleenp@4037 369 bool isa_oop_ptr() const { return _type_info[_base].isa_oop; }
coleenp@4037 370 relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
duke@435 371
duke@435 372 // Mapping from CI type system to compiler type:
duke@435 373 static const Type* get_typeflow_type(ciType* type);
duke@435 374
vlivanov@5658 375 static const Type* make_from_constant(ciConstant constant,
vlivanov@5658 376 bool require_constant = false,
vlivanov@5658 377 bool is_autobox_cache = false);
vlivanov@5658 378
duke@435 379 private:
duke@435 380 // support arrays
duke@435 381 static const BasicType _basic_type[];
duke@435 382 static const Type* _zero_type[T_CONFLICT+1];
duke@435 383 static const Type* _const_basic_type[T_CONFLICT+1];
duke@435 384 };
duke@435 385
duke@435 386 //------------------------------TypeF------------------------------------------
duke@435 387 // Class of Float-Constant Types.
duke@435 388 class TypeF : public Type {
duke@435 389 TypeF( float f ) : Type(FloatCon), _f(f) {};
duke@435 390 public:
duke@435 391 virtual bool eq( const Type *t ) const;
duke@435 392 virtual int hash() const; // Type specific hashing
duke@435 393 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 394 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 395 public:
duke@435 396 const float _f; // Float constant
duke@435 397
duke@435 398 static const TypeF *make(float f);
duke@435 399
duke@435 400 virtual bool is_finite() const; // Has a finite value
duke@435 401 virtual bool is_nan() const; // Is not a number (NaN)
duke@435 402
duke@435 403 virtual const Type *xmeet( const Type *t ) const;
duke@435 404 virtual const Type *xdual() const; // Compute dual right now.
duke@435 405 // Convenience common pre-built types.
duke@435 406 static const TypeF *ZERO; // positive zero only
duke@435 407 static const TypeF *ONE;
duke@435 408 #ifndef PRODUCT
duke@435 409 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 410 #endif
duke@435 411 };
duke@435 412
duke@435 413 //------------------------------TypeD------------------------------------------
duke@435 414 // Class of Double-Constant Types.
duke@435 415 class TypeD : public Type {
duke@435 416 TypeD( double d ) : Type(DoubleCon), _d(d) {};
duke@435 417 public:
duke@435 418 virtual bool eq( const Type *t ) const;
duke@435 419 virtual int hash() const; // Type specific hashing
duke@435 420 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 421 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 422 public:
duke@435 423 const double _d; // Double constant
duke@435 424
duke@435 425 static const TypeD *make(double d);
duke@435 426
duke@435 427 virtual bool is_finite() const; // Has a finite value
duke@435 428 virtual bool is_nan() const; // Is not a number (NaN)
duke@435 429
duke@435 430 virtual const Type *xmeet( const Type *t ) const;
duke@435 431 virtual const Type *xdual() const; // Compute dual right now.
duke@435 432 // Convenience common pre-built types.
duke@435 433 static const TypeD *ZERO; // positive zero only
duke@435 434 static const TypeD *ONE;
duke@435 435 #ifndef PRODUCT
duke@435 436 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 437 #endif
duke@435 438 };
duke@435 439
duke@435 440 //------------------------------TypeInt----------------------------------------
duke@435 441 // Class of integer ranges, the set of integers between a lower bound and an
duke@435 442 // upper bound, inclusive.
duke@435 443 class TypeInt : public Type {
duke@435 444 TypeInt( jint lo, jint hi, int w );
duke@435 445 public:
duke@435 446 virtual bool eq( const Type *t ) const;
duke@435 447 virtual int hash() const; // Type specific hashing
duke@435 448 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 449 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 450 public:
duke@435 451 const jint _lo, _hi; // Lower bound, upper bound
duke@435 452 const short _widen; // Limit on times we widen this sucker
duke@435 453
duke@435 454 static const TypeInt *make(jint lo);
duke@435 455 // must always specify w
duke@435 456 static const TypeInt *make(jint lo, jint hi, int w);
duke@435 457
duke@435 458 // Check for single integer
duke@435 459 int is_con() const { return _lo==_hi; }
duke@435 460 bool is_con(int i) const { return is_con() && _lo == i; }
duke@435 461 jint get_con() const { assert( is_con(), "" ); return _lo; }
duke@435 462
duke@435 463 virtual bool is_finite() const; // Has a finite value
duke@435 464
duke@435 465 virtual const Type *xmeet( const Type *t ) const;
duke@435 466 virtual const Type *xdual() const; // Compute dual right now.
never@1444 467 virtual const Type *widen( const Type *t, const Type* limit_type ) const;
duke@435 468 virtual const Type *narrow( const Type *t ) const;
duke@435 469 // Do not kill _widen bits.
duke@435 470 virtual const Type *filter( const Type *kills ) const;
duke@435 471 // Convenience common pre-built types.
duke@435 472 static const TypeInt *MINUS_1;
duke@435 473 static const TypeInt *ZERO;
duke@435 474 static const TypeInt *ONE;
duke@435 475 static const TypeInt *BOOL;
duke@435 476 static const TypeInt *CC;
duke@435 477 static const TypeInt *CC_LT; // [-1] == MINUS_1
duke@435 478 static const TypeInt *CC_GT; // [1] == ONE
duke@435 479 static const TypeInt *CC_EQ; // [0] == ZERO
duke@435 480 static const TypeInt *CC_LE; // [-1,0]
duke@435 481 static const TypeInt *CC_GE; // [0,1] == BOOL (!)
duke@435 482 static const TypeInt *BYTE;
twisti@1059 483 static const TypeInt *UBYTE;
duke@435 484 static const TypeInt *CHAR;
duke@435 485 static const TypeInt *SHORT;
duke@435 486 static const TypeInt *POS;
duke@435 487 static const TypeInt *POS1;
duke@435 488 static const TypeInt *INT;
duke@435 489 static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
duke@435 490 #ifndef PRODUCT
duke@435 491 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 492 #endif
duke@435 493 };
duke@435 494
duke@435 495
duke@435 496 //------------------------------TypeLong---------------------------------------
duke@435 497 // Class of long integer ranges, the set of integers between a lower bound and
duke@435 498 // an upper bound, inclusive.
duke@435 499 class TypeLong : public Type {
duke@435 500 TypeLong( jlong lo, jlong hi, int w );
duke@435 501 public:
duke@435 502 virtual bool eq( const Type *t ) const;
duke@435 503 virtual int hash() const; // Type specific hashing
duke@435 504 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 505 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 506 public:
duke@435 507 const jlong _lo, _hi; // Lower bound, upper bound
duke@435 508 const short _widen; // Limit on times we widen this sucker
duke@435 509
duke@435 510 static const TypeLong *make(jlong lo);
duke@435 511 // must always specify w
duke@435 512 static const TypeLong *make(jlong lo, jlong hi, int w);
duke@435 513
duke@435 514 // Check for single integer
duke@435 515 int is_con() const { return _lo==_hi; }
rasbold@580 516 bool is_con(int i) const { return is_con() && _lo == i; }
duke@435 517 jlong get_con() const { assert( is_con(), "" ); return _lo; }
duke@435 518
duke@435 519 virtual bool is_finite() const; // Has a finite value
duke@435 520
duke@435 521 virtual const Type *xmeet( const Type *t ) const;
duke@435 522 virtual const Type *xdual() const; // Compute dual right now.
never@1444 523 virtual const Type *widen( const Type *t, const Type* limit_type ) const;
duke@435 524 virtual const Type *narrow( const Type *t ) const;
duke@435 525 // Do not kill _widen bits.
duke@435 526 virtual const Type *filter( const Type *kills ) const;
duke@435 527 // Convenience common pre-built types.
duke@435 528 static const TypeLong *MINUS_1;
duke@435 529 static const TypeLong *ZERO;
duke@435 530 static const TypeLong *ONE;
duke@435 531 static const TypeLong *POS;
duke@435 532 static const TypeLong *LONG;
duke@435 533 static const TypeLong *INT; // 32-bit subrange [min_jint..max_jint]
duke@435 534 static const TypeLong *UINT; // 32-bit unsigned [0..max_juint]
duke@435 535 #ifndef PRODUCT
duke@435 536 virtual void dump2( Dict &d, uint, outputStream *st ) const;// Specialized per-Type dumping
duke@435 537 #endif
duke@435 538 };
duke@435 539
duke@435 540 //------------------------------TypeTuple--------------------------------------
duke@435 541 // Class of Tuple Types, essentially type collections for function signatures
duke@435 542 // and class layouts. It happens to also be a fast cache for the HotSpot
duke@435 543 // signature types.
duke@435 544 class TypeTuple : public Type {
duke@435 545 TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
duke@435 546 public:
duke@435 547 virtual bool eq( const Type *t ) const;
duke@435 548 virtual int hash() const; // Type specific hashing
duke@435 549 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 550 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 551
duke@435 552 public:
duke@435 553 const uint _cnt; // Count of fields
duke@435 554 const Type ** const _fields; // Array of field types
duke@435 555
duke@435 556 // Accessors:
duke@435 557 uint cnt() const { return _cnt; }
duke@435 558 const Type* field_at(uint i) const {
duke@435 559 assert(i < _cnt, "oob");
duke@435 560 return _fields[i];
duke@435 561 }
duke@435 562 void set_field_at(uint i, const Type* t) {
duke@435 563 assert(i < _cnt, "oob");
duke@435 564 _fields[i] = t;
duke@435 565 }
duke@435 566
duke@435 567 static const TypeTuple *make( uint cnt, const Type **fields );
duke@435 568 static const TypeTuple *make_range(ciSignature *sig);
duke@435 569 static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
duke@435 570
duke@435 571 // Subroutine call type with space allocated for argument types
duke@435 572 static const Type **fields( uint arg_cnt );
duke@435 573
duke@435 574 virtual const Type *xmeet( const Type *t ) const;
duke@435 575 virtual const Type *xdual() const; // Compute dual right now.
duke@435 576 // Convenience common pre-built types.
duke@435 577 static const TypeTuple *IFBOTH;
duke@435 578 static const TypeTuple *IFFALSE;
duke@435 579 static const TypeTuple *IFTRUE;
duke@435 580 static const TypeTuple *IFNEITHER;
duke@435 581 static const TypeTuple *LOOPBODY;
duke@435 582 static const TypeTuple *MEMBAR;
duke@435 583 static const TypeTuple *STORECONDITIONAL;
duke@435 584 static const TypeTuple *START_I2C;
duke@435 585 static const TypeTuple *INT_PAIR;
duke@435 586 static const TypeTuple *LONG_PAIR;
rbackman@5791 587 static const TypeTuple *INT_CC_PAIR;
duke@435 588 #ifndef PRODUCT
duke@435 589 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
duke@435 590 #endif
duke@435 591 };
duke@435 592
duke@435 593 //------------------------------TypeAry----------------------------------------
duke@435 594 // Class of Array Types
duke@435 595 class TypeAry : public Type {
vlivanov@5658 596 TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array),
vlivanov@5658 597 _elem(elem), _size(size), _stable(stable) {}
duke@435 598 public:
duke@435 599 virtual bool eq( const Type *t ) const;
duke@435 600 virtual int hash() const; // Type specific hashing
duke@435 601 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 602 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 603
duke@435 604 private:
duke@435 605 const Type *_elem; // Element type of array
duke@435 606 const TypeInt *_size; // Elements in array
vlivanov@5658 607 const bool _stable; // Are elements @Stable?
duke@435 608 friend class TypeAryPtr;
duke@435 609
duke@435 610 public:
vlivanov@5658 611 static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false);
duke@435 612
duke@435 613 virtual const Type *xmeet( const Type *t ) const;
duke@435 614 virtual const Type *xdual() const; // Compute dual right now.
duke@435 615 bool ary_must_be_exact() const; // true if arrays of such are never generic
kvn@1255 616 #ifdef ASSERT
kvn@1255 617 // One type is interface, the other is oop
kvn@1255 618 virtual bool interface_vs_oop(const Type *t) const;
kvn@1255 619 #endif
duke@435 620 #ifndef PRODUCT
duke@435 621 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
duke@435 622 #endif
duke@435 623 };
duke@435 624
kvn@3882 625 //------------------------------TypeVect---------------------------------------
kvn@3882 626 // Class of Vector Types
kvn@3882 627 class TypeVect : public Type {
kvn@3882 628 const Type* _elem; // Vector's element type
kvn@3882 629 const uint _length; // Elements in vector (power of 2)
kvn@3882 630
kvn@3882 631 protected:
kvn@3882 632 TypeVect(TYPES t, const Type* elem, uint length) : Type(t),
kvn@3882 633 _elem(elem), _length(length) {}
kvn@3882 634
kvn@3882 635 public:
kvn@3882 636 const Type* element_type() const { return _elem; }
kvn@3882 637 BasicType element_basic_type() const { return _elem->array_element_basic_type(); }
kvn@3882 638 uint length() const { return _length; }
kvn@3882 639 uint length_in_bytes() const {
kvn@3882 640 return _length * type2aelembytes(element_basic_type());
kvn@3882 641 }
kvn@3882 642
kvn@3882 643 virtual bool eq(const Type *t) const;
kvn@3882 644 virtual int hash() const; // Type specific hashing
kvn@3882 645 virtual bool singleton(void) const; // TRUE if type is a singleton
kvn@3882 646 virtual bool empty(void) const; // TRUE if type is vacuous
kvn@3882 647
kvn@3882 648 static const TypeVect *make(const BasicType elem_bt, uint length) {
kvn@3882 649 // Use bottom primitive type.
kvn@3882 650 return make(get_const_basic_type(elem_bt), length);
kvn@3882 651 }
kvn@3882 652 // Used directly by Replicate nodes to construct singleton vector.
kvn@3882 653 static const TypeVect *make(const Type* elem, uint length);
kvn@3882 654
kvn@3882 655 virtual const Type *xmeet( const Type *t) const;
kvn@3882 656 virtual const Type *xdual() const; // Compute dual right now.
kvn@3882 657
kvn@3882 658 static const TypeVect *VECTS;
kvn@3882 659 static const TypeVect *VECTD;
kvn@3882 660 static const TypeVect *VECTX;
kvn@3882 661 static const TypeVect *VECTY;
kvn@3882 662
kvn@3882 663 #ifndef PRODUCT
kvn@3882 664 virtual void dump2(Dict &d, uint, outputStream *st) const; // Specialized per-Type dumping
kvn@3882 665 #endif
kvn@3882 666 };
kvn@3882 667
kvn@3882 668 class TypeVectS : public TypeVect {
kvn@3882 669 friend class TypeVect;
kvn@3882 670 TypeVectS(const Type* elem, uint length) : TypeVect(VectorS, elem, length) {}
kvn@3882 671 };
kvn@3882 672
kvn@3882 673 class TypeVectD : public TypeVect {
kvn@3882 674 friend class TypeVect;
kvn@3882 675 TypeVectD(const Type* elem, uint length) : TypeVect(VectorD, elem, length) {}
kvn@3882 676 };
kvn@3882 677
kvn@3882 678 class TypeVectX : public TypeVect {
kvn@3882 679 friend class TypeVect;
kvn@3882 680 TypeVectX(const Type* elem, uint length) : TypeVect(VectorX, elem, length) {}
kvn@3882 681 };
kvn@3882 682
kvn@3882 683 class TypeVectY : public TypeVect {
kvn@3882 684 friend class TypeVect;
kvn@3882 685 TypeVectY(const Type* elem, uint length) : TypeVect(VectorY, elem, length) {}
kvn@3882 686 };
kvn@3882 687
duke@435 688 //------------------------------TypePtr----------------------------------------
duke@435 689 // Class of machine Pointer Types: raw data, instances or arrays.
duke@435 690 // If the _base enum is AnyPtr, then this refers to all of the above.
duke@435 691 // Otherwise the _base will indicate which subset of pointers is affected,
duke@435 692 // and the class will be inherited from.
duke@435 693 class TypePtr : public Type {
roland@4159 694 friend class TypeNarrowPtr;
duke@435 695 public:
duke@435 696 enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
duke@435 697 protected:
duke@435 698 TypePtr( TYPES t, PTR ptr, int offset ) : Type(t), _ptr(ptr), _offset(offset) {}
duke@435 699 virtual bool eq( const Type *t ) const;
duke@435 700 virtual int hash() const; // Type specific hashing
duke@435 701 static const PTR ptr_meet[lastPTR][lastPTR];
duke@435 702 static const PTR ptr_dual[lastPTR];
duke@435 703 static const char * const ptr_msg[lastPTR];
duke@435 704
duke@435 705 public:
duke@435 706 const int _offset; // Offset into oop, with TOP & BOT
duke@435 707 const PTR _ptr; // Pointer equivalence class
duke@435 708
duke@435 709 const int offset() const { return _offset; }
duke@435 710 const PTR ptr() const { return _ptr; }
duke@435 711
duke@435 712 static const TypePtr *make( TYPES t, PTR ptr, int offset );
duke@435 713
duke@435 714 // Return a 'ptr' version of this type
duke@435 715 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 716
duke@435 717 virtual intptr_t get_con() const;
duke@435 718
kvn@741 719 int xadd_offset( intptr_t offset ) const;
kvn@741 720 virtual const TypePtr *add_offset( intptr_t offset ) const;
duke@435 721
duke@435 722 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 723 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 724 virtual const Type *xmeet( const Type *t ) const;
duke@435 725 int meet_offset( int offset ) const;
duke@435 726 int dual_offset( ) const;
duke@435 727 virtual const Type *xdual() const; // Compute dual right now.
duke@435 728
duke@435 729 // meet, dual and join over pointer equivalence sets
duke@435 730 PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
duke@435 731 PTR dual_ptr() const { return ptr_dual[ptr()]; }
duke@435 732
duke@435 733 // This is textually confusing unless one recalls that
duke@435 734 // join(t) == dual()->meet(t->dual())->dual().
duke@435 735 PTR join_ptr( const PTR in_ptr ) const {
duke@435 736 return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
duke@435 737 }
duke@435 738
duke@435 739 // Tests for relation to centerline of type lattice:
duke@435 740 static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
duke@435 741 static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
duke@435 742 // Convenience common pre-built types.
duke@435 743 static const TypePtr *NULL_PTR;
duke@435 744 static const TypePtr *NOTNULL;
duke@435 745 static const TypePtr *BOTTOM;
duke@435 746 #ifndef PRODUCT
duke@435 747 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 748 #endif
duke@435 749 };
duke@435 750
duke@435 751 //------------------------------TypeRawPtr-------------------------------------
duke@435 752 // Class of raw pointers, pointers to things other than Oops. Examples
duke@435 753 // include the stack pointer, top of heap, card-marking area, handles, etc.
duke@435 754 class TypeRawPtr : public TypePtr {
duke@435 755 protected:
duke@435 756 TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
duke@435 757 public:
duke@435 758 virtual bool eq( const Type *t ) const;
duke@435 759 virtual int hash() const; // Type specific hashing
duke@435 760
duke@435 761 const address _bits; // Constant value, if applicable
duke@435 762
duke@435 763 static const TypeRawPtr *make( PTR ptr );
duke@435 764 static const TypeRawPtr *make( address bits );
duke@435 765
duke@435 766 // Return a 'ptr' version of this type
duke@435 767 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 768
duke@435 769 virtual intptr_t get_con() const;
duke@435 770
kvn@741 771 virtual const TypePtr *add_offset( intptr_t offset ) const;
duke@435 772
duke@435 773 virtual const Type *xmeet( const Type *t ) const;
duke@435 774 virtual const Type *xdual() const; // Compute dual right now.
duke@435 775 // Convenience common pre-built types.
duke@435 776 static const TypeRawPtr *BOTTOM;
duke@435 777 static const TypeRawPtr *NOTNULL;
duke@435 778 #ifndef PRODUCT
duke@435 779 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 780 #endif
duke@435 781 };
duke@435 782
duke@435 783 //------------------------------TypeOopPtr-------------------------------------
duke@435 784 // Some kind of oop (Java pointer), either klass or instance or array.
duke@435 785 class TypeOopPtr : public TypePtr {
duke@435 786 protected:
kvn@598 787 TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
duke@435 788 public:
duke@435 789 virtual bool eq( const Type *t ) const;
duke@435 790 virtual int hash() const; // Type specific hashing
duke@435 791 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 792 enum {
kvn@658 793 InstanceTop = -1, // undefined instance
kvn@658 794 InstanceBot = 0 // any possible instance
duke@435 795 };
duke@435 796 protected:
duke@435 797
duke@435 798 // Oop is NULL, unless this is a constant oop.
duke@435 799 ciObject* _const_oop; // Constant oop
duke@435 800 // If _klass is NULL, then so is _sig. This is an unloaded klass.
duke@435 801 ciKlass* _klass; // Klass object
duke@435 802 // Does the type exclude subclasses of the klass? (Inexact == polymorphic.)
duke@435 803 bool _klass_is_exact;
kvn@598 804 bool _is_ptr_to_narrowoop;
roland@4159 805 bool _is_ptr_to_narrowklass;
kvn@5110 806 bool _is_ptr_to_boxed_value;
duke@435 807
kvn@658 808 // If not InstanceTop or InstanceBot, indicates that this is
kvn@658 809 // a particular instance of this type which is distinct.
kvn@658 810 // This is the the node index of the allocation node creating this instance.
kvn@658 811 int _instance_id;
duke@435 812
duke@435 813 static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
duke@435 814
kvn@658 815 int dual_instance_id() const;
kvn@658 816 int meet_instance_id(int uid) const;
duke@435 817
duke@435 818 public:
duke@435 819 // Creates a type given a klass. Correctly handles multi-dimensional arrays
duke@435 820 // Respects UseUniqueSubclasses.
duke@435 821 // If the klass is final, the resulting type will be exact.
duke@435 822 static const TypeOopPtr* make_from_klass(ciKlass* klass) {
duke@435 823 return make_from_klass_common(klass, true, false);
duke@435 824 }
duke@435 825 // Same as before, but will produce an exact type, even if
duke@435 826 // the klass is not final, as long as it has exactly one implementation.
duke@435 827 static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
duke@435 828 return make_from_klass_common(klass, true, true);
duke@435 829 }
duke@435 830 // Same as before, but does not respects UseUniqueSubclasses.
duke@435 831 // Use this only for creating array element types.
duke@435 832 static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
duke@435 833 return make_from_klass_common(klass, false, false);
duke@435 834 }
duke@435 835 // Creates a singleton type given an object.
jrose@1424 836 // If the object cannot be rendered as a constant,
jrose@1424 837 // may return a non-singleton type.
jrose@1424 838 // If require_constant, produce a NULL if a singleton is not possible.
kvn@5110 839 static const TypeOopPtr* make_from_constant(ciObject* o,
kvn@5110 840 bool require_constant = false,
kvn@5110 841 bool not_null_elements = false);
duke@435 842
duke@435 843 // Make a generic (unclassed) pointer to an oop.
kvn@1427 844 static const TypeOopPtr* make(PTR ptr, int offset, int instance_id);
duke@435 845
duke@435 846 ciObject* const_oop() const { return _const_oop; }
duke@435 847 virtual ciKlass* klass() const { return _klass; }
duke@435 848 bool klass_is_exact() const { return _klass_is_exact; }
kvn@598 849
kvn@598 850 // Returns true if this pointer points at memory which contains a
kvn@598 851 // compressed oop references.
kvn@598 852 bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
roland@4159 853 bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
kvn@5110 854 bool is_ptr_to_boxed_value() const { return _is_ptr_to_boxed_value; }
kvn@658 855 bool is_known_instance() const { return _instance_id > 0; }
kvn@658 856 int instance_id() const { return _instance_id; }
kvn@658 857 bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
duke@435 858
duke@435 859 virtual intptr_t get_con() const;
duke@435 860
duke@435 861 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 862
duke@435 863 virtual const Type *cast_to_exactness(bool klass_is_exact) const;
duke@435 864
kvn@658 865 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
duke@435 866
duke@435 867 // corresponding pointer to klass, for a given instance
duke@435 868 const TypeKlassPtr* as_klass_type() const;
duke@435 869
kvn@741 870 virtual const TypePtr *add_offset( intptr_t offset ) const;
duke@435 871
duke@435 872 virtual const Type *xmeet( const Type *t ) const;
duke@435 873 virtual const Type *xdual() const; // Compute dual right now.
duke@435 874
duke@435 875 // Do not allow interface-vs.-noninterface joins to collapse to top.
duke@435 876 virtual const Type *filter( const Type *kills ) const;
duke@435 877
duke@435 878 // Convenience common pre-built type.
duke@435 879 static const TypeOopPtr *BOTTOM;
duke@435 880 #ifndef PRODUCT
duke@435 881 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 882 #endif
duke@435 883 };
duke@435 884
duke@435 885 //------------------------------TypeInstPtr------------------------------------
duke@435 886 // Class of Java object pointers, pointing either to non-array Java instances
coleenp@4037 887 // or to a Klass* (including array klasses).
duke@435 888 class TypeInstPtr : public TypeOopPtr {
duke@435 889 TypeInstPtr( PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
duke@435 890 virtual bool eq( const Type *t ) const;
duke@435 891 virtual int hash() const; // Type specific hashing
duke@435 892
duke@435 893 ciSymbol* _name; // class name
duke@435 894
duke@435 895 public:
duke@435 896 ciSymbol* name() const { return _name; }
duke@435 897
duke@435 898 bool is_loaded() const { return _klass->is_loaded(); }
duke@435 899
duke@435 900 // Make a pointer to a constant oop.
duke@435 901 static const TypeInstPtr *make(ciObject* o) {
duke@435 902 return make(TypePtr::Constant, o->klass(), true, o, 0);
duke@435 903 }
duke@435 904 // Make a pointer to a constant oop with offset.
duke@435 905 static const TypeInstPtr *make(ciObject* o, int offset) {
duke@435 906 return make(TypePtr::Constant, o->klass(), true, o, offset);
duke@435 907 }
duke@435 908
duke@435 909 // Make a pointer to some value of type klass.
duke@435 910 static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
duke@435 911 return make(ptr, klass, false, NULL, 0);
duke@435 912 }
duke@435 913
duke@435 914 // Make a pointer to some non-polymorphic value of exactly type klass.
duke@435 915 static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
duke@435 916 return make(ptr, klass, true, NULL, 0);
duke@435 917 }
duke@435 918
duke@435 919 // Make a pointer to some value of type klass with offset.
duke@435 920 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
duke@435 921 return make(ptr, klass, false, NULL, offset);
duke@435 922 }
duke@435 923
duke@435 924 // Make a pointer to an oop.
kvn@658 925 static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot );
duke@435 926
kvn@5110 927 /** Create constant type for a constant boxed value */
kvn@5110 928 const Type* get_const_boxed_value() const;
kvn@5110 929
duke@435 930 // If this is a java.lang.Class constant, return the type for it or NULL.
duke@435 931 // Pass to Type::get_const_type to turn it to a type, which will usually
duke@435 932 // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
duke@435 933 ciType* java_mirror_type() const;
duke@435 934
duke@435 935 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 936
duke@435 937 virtual const Type *cast_to_exactness(bool klass_is_exact) const;
duke@435 938
kvn@658 939 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
duke@435 940
kvn@741 941 virtual const TypePtr *add_offset( intptr_t offset ) const;
duke@435 942
duke@435 943 virtual const Type *xmeet( const Type *t ) const;
duke@435 944 virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
duke@435 945 virtual const Type *xdual() const; // Compute dual right now.
duke@435 946
duke@435 947 // Convenience common pre-built types.
duke@435 948 static const TypeInstPtr *NOTNULL;
duke@435 949 static const TypeInstPtr *BOTTOM;
duke@435 950 static const TypeInstPtr *MIRROR;
duke@435 951 static const TypeInstPtr *MARK;
duke@435 952 static const TypeInstPtr *KLASS;
duke@435 953 #ifndef PRODUCT
duke@435 954 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
duke@435 955 #endif
duke@435 956 };
duke@435 957
duke@435 958 //------------------------------TypeAryPtr-------------------------------------
duke@435 959 // Class of Java array pointers
duke@435 960 class TypeAryPtr : public TypeOopPtr {
kvn@5110 961 TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
kvn@5110 962 int offset, int instance_id, bool is_autobox_cache )
kvn@5110 963 : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id),
kvn@5110 964 _ary(ary),
kvn@5110 965 _is_autobox_cache(is_autobox_cache)
kvn@5110 966 {
kvn@2116 967 #ifdef ASSERT
kvn@2116 968 if (k != NULL) {
kvn@2116 969 // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
kvn@2116 970 ciKlass* ck = compute_klass(true);
kvn@2147 971 if (k != ck) {
kvn@2116 972 this->dump(); tty->cr();
kvn@2116 973 tty->print(" k: ");
kvn@2116 974 k->print(); tty->cr();
kvn@2116 975 tty->print("ck: ");
kvn@2116 976 if (ck != NULL) ck->print();
kvn@2116 977 else tty->print("<NULL>");
kvn@2116 978 tty->cr();
kvn@2116 979 assert(false, "unexpected TypeAryPtr::_klass");
kvn@2116 980 }
kvn@2116 981 }
kvn@2116 982 #endif
kvn@2116 983 }
duke@435 984 virtual bool eq( const Type *t ) const;
duke@435 985 virtual int hash() const; // Type specific hashing
duke@435 986 const TypeAry *_ary; // Array we point into
kvn@5110 987 const bool _is_autobox_cache;
duke@435 988
kvn@2116 989 ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
kvn@2116 990
duke@435 991 public:
duke@435 992 // Accessors
duke@435 993 ciKlass* klass() const;
duke@435 994 const TypeAry* ary() const { return _ary; }
duke@435 995 const Type* elem() const { return _ary->_elem; }
duke@435 996 const TypeInt* size() const { return _ary->_size; }
vlivanov@5658 997 bool is_stable() const { return _ary->_stable; }
duke@435 998
kvn@5110 999 bool is_autobox_cache() const { return _is_autobox_cache; }
kvn@5110 1000
kvn@658 1001 static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot);
duke@435 1002 // Constant pointer to array
kvn@5110 1003 static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot, bool is_autobox_cache = false);
duke@435 1004
duke@435 1005 // Return a 'ptr' version of this type
duke@435 1006 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 1007
duke@435 1008 virtual const Type *cast_to_exactness(bool klass_is_exact) const;
duke@435 1009
kvn@658 1010 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
duke@435 1011
duke@435 1012 virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
rasbold@801 1013 virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
duke@435 1014
duke@435 1015 virtual bool empty(void) const; // TRUE if type is vacuous
kvn@741 1016 virtual const TypePtr *add_offset( intptr_t offset ) const;
duke@435 1017
duke@435 1018 virtual const Type *xmeet( const Type *t ) const;
duke@435 1019 virtual const Type *xdual() const; // Compute dual right now.
duke@435 1020
vlivanov@5658 1021 const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
vlivanov@5658 1022 int stable_dimension() const;
vlivanov@5658 1023
duke@435 1024 // Convenience common pre-built types.
duke@435 1025 static const TypeAryPtr *RANGE;
duke@435 1026 static const TypeAryPtr *OOPS;
kvn@598 1027 static const TypeAryPtr *NARROWOOPS;
duke@435 1028 static const TypeAryPtr *BYTES;
duke@435 1029 static const TypeAryPtr *SHORTS;
duke@435 1030 static const TypeAryPtr *CHARS;
duke@435 1031 static const TypeAryPtr *INTS;
duke@435 1032 static const TypeAryPtr *LONGS;
duke@435 1033 static const TypeAryPtr *FLOATS;
duke@435 1034 static const TypeAryPtr *DOUBLES;
duke@435 1035 // selects one of the above:
duke@435 1036 static const TypeAryPtr *get_array_body_type(BasicType elem) {
duke@435 1037 assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
duke@435 1038 return _array_body_type[elem];
duke@435 1039 }
duke@435 1040 static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
duke@435 1041 // sharpen the type of an int which is used as an array size
kvn@1255 1042 #ifdef ASSERT
kvn@1255 1043 // One type is interface, the other is oop
kvn@1255 1044 virtual bool interface_vs_oop(const Type *t) const;
kvn@1255 1045 #endif
duke@435 1046 #ifndef PRODUCT
duke@435 1047 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
duke@435 1048 #endif
duke@435 1049 };
duke@435 1050
coleenp@4037 1051 //------------------------------TypeMetadataPtr-------------------------------------
coleenp@4037 1052 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
coleenp@4037 1053 class TypeMetadataPtr : public TypePtr {
coleenp@4037 1054 protected:
coleenp@4037 1055 TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
coleenp@4037 1056 public:
coleenp@4037 1057 virtual bool eq( const Type *t ) const;
coleenp@4037 1058 virtual int hash() const; // Type specific hashing
coleenp@4037 1059 virtual bool singleton(void) const; // TRUE if type is a singleton
coleenp@4037 1060
coleenp@4037 1061 private:
coleenp@4037 1062 ciMetadata* _metadata;
coleenp@4037 1063
coleenp@4037 1064 public:
coleenp@4037 1065 static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
coleenp@4037 1066
coleenp@4037 1067 static const TypeMetadataPtr* make(ciMethod* m);
coleenp@4037 1068 static const TypeMetadataPtr* make(ciMethodData* m);
coleenp@4037 1069
coleenp@4037 1070 ciMetadata* metadata() const { return _metadata; }
coleenp@4037 1071
coleenp@4037 1072 virtual const Type *cast_to_ptr_type(PTR ptr) const;
coleenp@4037 1073
coleenp@4037 1074 virtual const TypePtr *add_offset( intptr_t offset ) const;
coleenp@4037 1075
coleenp@4037 1076 virtual const Type *xmeet( const Type *t ) const;
coleenp@4037 1077 virtual const Type *xdual() const; // Compute dual right now.
coleenp@4037 1078
coleenp@4037 1079 virtual intptr_t get_con() const;
coleenp@4037 1080
coleenp@4037 1081 // Do not allow interface-vs.-noninterface joins to collapse to top.
coleenp@4037 1082 virtual const Type *filter( const Type *kills ) const;
coleenp@4037 1083
coleenp@4037 1084 // Convenience common pre-built types.
coleenp@4037 1085 static const TypeMetadataPtr *BOTTOM;
coleenp@4037 1086
coleenp@4037 1087 #ifndef PRODUCT
coleenp@4037 1088 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
coleenp@4037 1089 #endif
coleenp@4037 1090 };
coleenp@4037 1091
duke@435 1092 //------------------------------TypeKlassPtr-----------------------------------
duke@435 1093 // Class of Java Klass pointers
coleenp@4037 1094 class TypeKlassPtr : public TypePtr {
duke@435 1095 TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
duke@435 1096
coleenp@4037 1097 public:
duke@435 1098 virtual bool eq( const Type *t ) const;
duke@435 1099 virtual int hash() const; // Type specific hashing
coleenp@4037 1100 virtual bool singleton(void) const; // TRUE if type is a singleton
coleenp@4037 1101 private:
coleenp@4037 1102
coleenp@4037 1103 static const TypeKlassPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
coleenp@4037 1104
coleenp@4037 1105 ciKlass* _klass;
coleenp@4037 1106
coleenp@4037 1107 // Does the type exclude subclasses of the klass? (Inexact == polymorphic.)
coleenp@4037 1108 bool _klass_is_exact;
duke@435 1109
duke@435 1110 public:
coleenp@4037 1111 ciSymbol* name() const { return klass()->name(); }
duke@435 1112
coleenp@4037 1113 ciKlass* klass() const { return _klass; }
coleenp@4037 1114 bool klass_is_exact() const { return _klass_is_exact; }
coleenp@4037 1115
coleenp@4037 1116 bool is_loaded() const { return klass()->is_loaded(); }
coleenp@4037 1117
coleenp@4037 1118 // Creates a type given a klass. Correctly handles multi-dimensional arrays
coleenp@4037 1119 // Respects UseUniqueSubclasses.
coleenp@4037 1120 // If the klass is final, the resulting type will be exact.
coleenp@4037 1121 static const TypeKlassPtr* make_from_klass(ciKlass* klass) {
coleenp@4037 1122 return make_from_klass_common(klass, true, false);
coleenp@4037 1123 }
coleenp@4037 1124 // Same as before, but will produce an exact type, even if
coleenp@4037 1125 // the klass is not final, as long as it has exactly one implementation.
coleenp@4037 1126 static const TypeKlassPtr* make_from_klass_unique(ciKlass* klass) {
coleenp@4037 1127 return make_from_klass_common(klass, true, true);
coleenp@4037 1128 }
coleenp@4037 1129 // Same as before, but does not respects UseUniqueSubclasses.
coleenp@4037 1130 // Use this only for creating array element types.
coleenp@4037 1131 static const TypeKlassPtr* make_from_klass_raw(ciKlass* klass) {
coleenp@4037 1132 return make_from_klass_common(klass, false, false);
coleenp@4037 1133 }
coleenp@4037 1134
coleenp@4037 1135 // Make a generic (unclassed) pointer to metadata.
coleenp@4037 1136 static const TypeKlassPtr* make(PTR ptr, int offset);
never@990 1137
duke@435 1138 // ptr to klass 'k'
duke@435 1139 static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
duke@435 1140 // ptr to klass 'k' with offset
duke@435 1141 static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
duke@435 1142 // ptr to klass 'k' or sub-klass
duke@435 1143 static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
duke@435 1144
duke@435 1145 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 1146
duke@435 1147 virtual const Type *cast_to_exactness(bool klass_is_exact) const;
duke@435 1148
duke@435 1149 // corresponding pointer to instance, for a given class
duke@435 1150 const TypeOopPtr* as_instance_type() const;
duke@435 1151
kvn@741 1152 virtual const TypePtr *add_offset( intptr_t offset ) const;
duke@435 1153 virtual const Type *xmeet( const Type *t ) const;
duke@435 1154 virtual const Type *xdual() const; // Compute dual right now.
duke@435 1155
coleenp@4037 1156 virtual intptr_t get_con() const;
coleenp@4037 1157
duke@435 1158 // Convenience common pre-built types.
duke@435 1159 static const TypeKlassPtr* OBJECT; // Not-null object klass or below
duke@435 1160 static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
duke@435 1161 #ifndef PRODUCT
duke@435 1162 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
duke@435 1163 #endif
duke@435 1164 };
duke@435 1165
roland@4159 1166 class TypeNarrowPtr : public Type {
coleenp@548 1167 protected:
never@1262 1168 const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
coleenp@548 1169
roland@4159 1170 TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): _ptrtype(ptrtype),
roland@4159 1171 Type(t) {
never@1262 1172 assert(ptrtype->offset() == 0 ||
never@1262 1173 ptrtype->offset() == OffsetBot ||
never@1262 1174 ptrtype->offset() == OffsetTop, "no real offsets");
coleenp@548 1175 }
roland@4159 1176
roland@4159 1177 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
roland@4159 1178 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
roland@4159 1179 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
roland@4159 1180 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
coleenp@548 1181 public:
coleenp@548 1182 virtual bool eq( const Type *t ) const;
coleenp@548 1183 virtual int hash() const; // Type specific hashing
coleenp@548 1184 virtual bool singleton(void) const; // TRUE if type is a singleton
coleenp@548 1185
coleenp@548 1186 virtual const Type *xmeet( const Type *t ) const;
coleenp@548 1187 virtual const Type *xdual() const; // Compute dual right now.
coleenp@548 1188
coleenp@548 1189 virtual intptr_t get_con() const;
coleenp@548 1190
coleenp@548 1191 // Do not allow interface-vs.-noninterface joins to collapse to top.
coleenp@548 1192 virtual const Type *filter( const Type *kills ) const;
coleenp@548 1193
coleenp@548 1194 virtual bool empty(void) const; // TRUE if type is vacuous
coleenp@548 1195
roland@4159 1196 // returns the equivalent ptr type for this compressed pointer
roland@4159 1197 const TypePtr *get_ptrtype() const {
roland@4159 1198 return _ptrtype;
roland@4159 1199 }
roland@4159 1200
roland@4159 1201 #ifndef PRODUCT
roland@4159 1202 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
roland@4159 1203 #endif
roland@4159 1204 };
roland@4159 1205
roland@4159 1206 //------------------------------TypeNarrowOop----------------------------------
roland@4159 1207 // A compressed reference to some kind of Oop. This type wraps around
roland@4159 1208 // a preexisting TypeOopPtr and forwards most of it's operations to
roland@4159 1209 // the underlying type. It's only real purpose is to track the
roland@4159 1210 // oopness of the compressed oop value when we expose the conversion
roland@4159 1211 // between the normal and the compressed form.
roland@4159 1212 class TypeNarrowOop : public TypeNarrowPtr {
roland@4159 1213 protected:
roland@4159 1214 TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
roland@4159 1215 }
roland@4159 1216
roland@4159 1217 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
roland@4159 1218 return t->isa_narrowoop();
roland@4159 1219 }
roland@4159 1220
roland@4159 1221 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
roland@4159 1222 return t->is_narrowoop();
roland@4159 1223 }
roland@4159 1224
roland@4159 1225 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
roland@4159 1226 return new TypeNarrowOop(t);
roland@4159 1227 }
roland@4159 1228
roland@4159 1229 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
roland@4159 1230 return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
roland@4159 1231 }
roland@4159 1232
roland@4159 1233 public:
roland@4159 1234
coleenp@548 1235 static const TypeNarrowOop *make( const TypePtr* type);
coleenp@548 1236
jcoomes@2661 1237 static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
jcoomes@2661 1238 return make(TypeOopPtr::make_from_constant(con, require_constant));
coleenp@548 1239 }
coleenp@548 1240
roland@4159 1241 static const TypeNarrowOop *BOTTOM;
roland@4159 1242 static const TypeNarrowOop *NULL_PTR;
roland@4159 1243
roland@4159 1244 #ifndef PRODUCT
roland@4159 1245 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
roland@4159 1246 #endif
roland@4159 1247 };
roland@4159 1248
roland@4159 1249 //------------------------------TypeNarrowKlass----------------------------------
roland@4159 1250 // A compressed reference to klass pointer. This type wraps around a
roland@4159 1251 // preexisting TypeKlassPtr and forwards most of it's operations to
roland@4159 1252 // the underlying type.
roland@4159 1253 class TypeNarrowKlass : public TypeNarrowPtr {
roland@4159 1254 protected:
roland@4159 1255 TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
coleenp@548 1256 }
coleenp@548 1257
roland@4159 1258 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
roland@4159 1259 return t->isa_narrowklass();
roland@4159 1260 }
roland@4159 1261
roland@4159 1262 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
roland@4159 1263 return t->is_narrowklass();
roland@4159 1264 }
roland@4159 1265
roland@4159 1266 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
roland@4159 1267 return new TypeNarrowKlass(t);
roland@4159 1268 }
roland@4159 1269
roland@4159 1270 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
roland@4159 1271 return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
roland@4159 1272 }
roland@4159 1273
roland@4159 1274 public:
roland@4159 1275 static const TypeNarrowKlass *make( const TypePtr* type);
roland@4159 1276
roland@4159 1277 // static const TypeNarrowKlass *BOTTOM;
roland@4159 1278 static const TypeNarrowKlass *NULL_PTR;
coleenp@548 1279
coleenp@548 1280 #ifndef PRODUCT
coleenp@548 1281 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
coleenp@548 1282 #endif
coleenp@548 1283 };
coleenp@548 1284
duke@435 1285 //------------------------------TypeFunc---------------------------------------
duke@435 1286 // Class of Array Types
duke@435 1287 class TypeFunc : public Type {
duke@435 1288 TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function), _domain(domain), _range(range) {}
duke@435 1289 virtual bool eq( const Type *t ) const;
duke@435 1290 virtual int hash() const; // Type specific hashing
duke@435 1291 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 1292 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 1293 public:
duke@435 1294 // Constants are shared among ADLC and VM
duke@435 1295 enum { Control = AdlcVMDeps::Control,
duke@435 1296 I_O = AdlcVMDeps::I_O,
duke@435 1297 Memory = AdlcVMDeps::Memory,
duke@435 1298 FramePtr = AdlcVMDeps::FramePtr,
duke@435 1299 ReturnAdr = AdlcVMDeps::ReturnAdr,
duke@435 1300 Parms = AdlcVMDeps::Parms
duke@435 1301 };
duke@435 1302
duke@435 1303 const TypeTuple* const _domain; // Domain of inputs
duke@435 1304 const TypeTuple* const _range; // Range of results
duke@435 1305
duke@435 1306 // Accessors:
duke@435 1307 const TypeTuple* domain() const { return _domain; }
duke@435 1308 const TypeTuple* range() const { return _range; }
duke@435 1309
duke@435 1310 static const TypeFunc *make(ciMethod* method);
duke@435 1311 static const TypeFunc *make(ciSignature signature, const Type* extra);
duke@435 1312 static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
duke@435 1313
duke@435 1314 virtual const Type *xmeet( const Type *t ) const;
duke@435 1315 virtual const Type *xdual() const; // Compute dual right now.
duke@435 1316
duke@435 1317 BasicType return_type() const;
duke@435 1318
duke@435 1319 #ifndef PRODUCT
duke@435 1320 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
duke@435 1321 #endif
duke@435 1322 // Convenience common pre-built types.
duke@435 1323 };
duke@435 1324
duke@435 1325 //------------------------------accessors--------------------------------------
kvn@598 1326 inline bool Type::is_ptr_to_narrowoop() const {
kvn@598 1327 #ifdef _LP64
kvn@598 1328 return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
kvn@598 1329 #else
kvn@598 1330 return false;
kvn@598 1331 #endif
kvn@598 1332 }
kvn@598 1333
roland@4159 1334 inline bool Type::is_ptr_to_narrowklass() const {
roland@4159 1335 #ifdef _LP64
roland@4159 1336 return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowklass_nv());
roland@4159 1337 #else
roland@4159 1338 return false;
roland@4159 1339 #endif
roland@4159 1340 }
roland@4159 1341
duke@435 1342 inline float Type::getf() const {
duke@435 1343 assert( _base == FloatCon, "Not a FloatCon" );
duke@435 1344 return ((TypeF*)this)->_f;
duke@435 1345 }
duke@435 1346
duke@435 1347 inline double Type::getd() const {
duke@435 1348 assert( _base == DoubleCon, "Not a DoubleCon" );
duke@435 1349 return ((TypeD*)this)->_d;
duke@435 1350 }
duke@435 1351
duke@435 1352 inline const TypeInt *Type::is_int() const {
duke@435 1353 assert( _base == Int, "Not an Int" );
duke@435 1354 return (TypeInt*)this;
duke@435 1355 }
duke@435 1356
duke@435 1357 inline const TypeInt *Type::isa_int() const {
duke@435 1358 return ( _base == Int ? (TypeInt*)this : NULL);
duke@435 1359 }
duke@435 1360
duke@435 1361 inline const TypeLong *Type::is_long() const {
duke@435 1362 assert( _base == Long, "Not a Long" );
duke@435 1363 return (TypeLong*)this;
duke@435 1364 }
duke@435 1365
duke@435 1366 inline const TypeLong *Type::isa_long() const {
duke@435 1367 return ( _base == Long ? (TypeLong*)this : NULL);
duke@435 1368 }
duke@435 1369
twisti@4313 1370 inline const TypeF *Type::isa_float() const {
twisti@4313 1371 return ((_base == FloatTop ||
twisti@4313 1372 _base == FloatCon ||
twisti@4313 1373 _base == FloatBot) ? (TypeF*)this : NULL);
twisti@4313 1374 }
twisti@4313 1375
twisti@4313 1376 inline const TypeF *Type::is_float_constant() const {
twisti@4313 1377 assert( _base == FloatCon, "Not a Float" );
twisti@4313 1378 return (TypeF*)this;
twisti@4313 1379 }
twisti@4313 1380
twisti@4313 1381 inline const TypeF *Type::isa_float_constant() const {
twisti@4313 1382 return ( _base == FloatCon ? (TypeF*)this : NULL);
twisti@4313 1383 }
twisti@4313 1384
twisti@4313 1385 inline const TypeD *Type::isa_double() const {
twisti@4313 1386 return ((_base == DoubleTop ||
twisti@4313 1387 _base == DoubleCon ||
twisti@4313 1388 _base == DoubleBot) ? (TypeD*)this : NULL);
twisti@4313 1389 }
twisti@4313 1390
twisti@4313 1391 inline const TypeD *Type::is_double_constant() const {
twisti@4313 1392 assert( _base == DoubleCon, "Not a Double" );
twisti@4313 1393 return (TypeD*)this;
twisti@4313 1394 }
twisti@4313 1395
twisti@4313 1396 inline const TypeD *Type::isa_double_constant() const {
twisti@4313 1397 return ( _base == DoubleCon ? (TypeD*)this : NULL);
twisti@4313 1398 }
twisti@4313 1399
duke@435 1400 inline const TypeTuple *Type::is_tuple() const {
duke@435 1401 assert( _base == Tuple, "Not a Tuple" );
duke@435 1402 return (TypeTuple*)this;
duke@435 1403 }
duke@435 1404
duke@435 1405 inline const TypeAry *Type::is_ary() const {
duke@435 1406 assert( _base == Array , "Not an Array" );
duke@435 1407 return (TypeAry*)this;
duke@435 1408 }
duke@435 1409
kvn@3882 1410 inline const TypeVect *Type::is_vect() const {
kvn@3882 1411 assert( _base >= VectorS && _base <= VectorY, "Not a Vector" );
kvn@3882 1412 return (TypeVect*)this;
kvn@3882 1413 }
kvn@3882 1414
kvn@3882 1415 inline const TypeVect *Type::isa_vect() const {
kvn@3882 1416 return (_base >= VectorS && _base <= VectorY) ? (TypeVect*)this : NULL;
kvn@3882 1417 }
kvn@3882 1418
duke@435 1419 inline const TypePtr *Type::is_ptr() const {
duke@435 1420 // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
duke@435 1421 assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
duke@435 1422 return (TypePtr*)this;
duke@435 1423 }
duke@435 1424
duke@435 1425 inline const TypePtr *Type::isa_ptr() const {
duke@435 1426 // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
duke@435 1427 return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
duke@435 1428 }
duke@435 1429
duke@435 1430 inline const TypeOopPtr *Type::is_oopptr() const {
duke@435 1431 // OopPtr is the first and KlassPtr the last, with no non-oops between.
coleenp@4037 1432 assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
duke@435 1433 return (TypeOopPtr*)this;
duke@435 1434 }
duke@435 1435
duke@435 1436 inline const TypeOopPtr *Type::isa_oopptr() const {
duke@435 1437 // OopPtr is the first and KlassPtr the last, with no non-oops between.
coleenp@4037 1438 return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : NULL;
duke@435 1439 }
duke@435 1440
coleenp@548 1441 inline const TypeRawPtr *Type::isa_rawptr() const {
coleenp@548 1442 return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
coleenp@548 1443 }
coleenp@548 1444
duke@435 1445 inline const TypeRawPtr *Type::is_rawptr() const {
duke@435 1446 assert( _base == RawPtr, "Not a raw pointer" );
duke@435 1447 return (TypeRawPtr*)this;
duke@435 1448 }
duke@435 1449
duke@435 1450 inline const TypeInstPtr *Type::isa_instptr() const {
duke@435 1451 return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
duke@435 1452 }
duke@435 1453
duke@435 1454 inline const TypeInstPtr *Type::is_instptr() const {
duke@435 1455 assert( _base == InstPtr, "Not an object pointer" );
duke@435 1456 return (TypeInstPtr*)this;
duke@435 1457 }
duke@435 1458
duke@435 1459 inline const TypeAryPtr *Type::isa_aryptr() const {
duke@435 1460 return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
duke@435 1461 }
duke@435 1462
duke@435 1463 inline const TypeAryPtr *Type::is_aryptr() const {
duke@435 1464 assert( _base == AryPtr, "Not an array pointer" );
duke@435 1465 return (TypeAryPtr*)this;
duke@435 1466 }
duke@435 1467
coleenp@548 1468 inline const TypeNarrowOop *Type::is_narrowoop() const {
coleenp@548 1469 // OopPtr is the first and KlassPtr the last, with no non-oops between.
coleenp@548 1470 assert(_base == NarrowOop, "Not a narrow oop" ) ;
coleenp@548 1471 return (TypeNarrowOop*)this;
coleenp@548 1472 }
coleenp@548 1473
coleenp@548 1474 inline const TypeNarrowOop *Type::isa_narrowoop() const {
coleenp@548 1475 // OopPtr is the first and KlassPtr the last, with no non-oops between.
coleenp@548 1476 return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
coleenp@548 1477 }
coleenp@548 1478
roland@4159 1479 inline const TypeNarrowKlass *Type::is_narrowklass() const {
roland@4159 1480 assert(_base == NarrowKlass, "Not a narrow oop" ) ;
roland@4159 1481 return (TypeNarrowKlass*)this;
roland@4159 1482 }
roland@4159 1483
roland@4159 1484 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
roland@4159 1485 return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : NULL;
roland@4159 1486 }
roland@4159 1487
coleenp@4037 1488 inline const TypeMetadataPtr *Type::is_metadataptr() const {
coleenp@4037 1489 // MetadataPtr is the first and CPCachePtr the last
coleenp@4037 1490 assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
coleenp@4037 1491 return (TypeMetadataPtr*)this;
coleenp@4037 1492 }
coleenp@4037 1493
coleenp@4037 1494 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
coleenp@4037 1495 return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : NULL;
coleenp@4037 1496 }
coleenp@4037 1497
duke@435 1498 inline const TypeKlassPtr *Type::isa_klassptr() const {
duke@435 1499 return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
duke@435 1500 }
duke@435 1501
duke@435 1502 inline const TypeKlassPtr *Type::is_klassptr() const {
duke@435 1503 assert( _base == KlassPtr, "Not a klass pointer" );
duke@435 1504 return (TypeKlassPtr*)this;
duke@435 1505 }
duke@435 1506
kvn@656 1507 inline const TypePtr* Type::make_ptr() const {
never@1262 1508 return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
roland@4159 1509 ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
roland@4159 1510 (isa_ptr() ? is_ptr() : NULL));
kvn@656 1511 }
kvn@656 1512
never@1262 1513 inline const TypeOopPtr* Type::make_oopptr() const {
never@1262 1514 return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->is_oopptr() : is_oopptr();
never@1262 1515 }
never@1262 1516
kvn@656 1517 inline const TypeNarrowOop* Type::make_narrowoop() const {
kvn@656 1518 return (_base == NarrowOop) ? is_narrowoop() :
kvn@656 1519 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
kvn@656 1520 }
kvn@656 1521
roland@4159 1522 inline const TypeNarrowKlass* Type::make_narrowklass() const {
roland@4159 1523 return (_base == NarrowKlass) ? is_narrowklass() :
roland@4159 1524 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : NULL);
roland@4159 1525 }
roland@4159 1526
duke@435 1527 inline bool Type::is_floatingpoint() const {
duke@435 1528 if( (_base == FloatCon) || (_base == FloatBot) ||
duke@435 1529 (_base == DoubleCon) || (_base == DoubleBot) )
duke@435 1530 return true;
duke@435 1531 return false;
duke@435 1532 }
duke@435 1533
kvn@5110 1534 inline bool Type::is_ptr_to_boxing_obj() const {
kvn@5110 1535 const TypeInstPtr* tp = isa_instptr();
kvn@5110 1536 return (tp != NULL) && (tp->offset() == 0) &&
kvn@5110 1537 tp->klass()->is_instance_klass() &&
kvn@5110 1538 tp->klass()->as_instance_klass()->is_box_klass();
kvn@5110 1539 }
kvn@5110 1540
duke@435 1541
duke@435 1542 // ===============================================================
duke@435 1543 // Things that need to be 64-bits in the 64-bit build but
duke@435 1544 // 32-bits in the 32-bit build. Done this way to get full
duke@435 1545 // optimization AND strong typing.
duke@435 1546 #ifdef _LP64
duke@435 1547
duke@435 1548 // For type queries and asserts
duke@435 1549 #define is_intptr_t is_long
duke@435 1550 #define isa_intptr_t isa_long
duke@435 1551 #define find_intptr_t_type find_long_type
duke@435 1552 #define find_intptr_t_con find_long_con
duke@435 1553 #define TypeX TypeLong
duke@435 1554 #define Type_X Type::Long
duke@435 1555 #define TypeX_X TypeLong::LONG
duke@435 1556 #define TypeX_ZERO TypeLong::ZERO
duke@435 1557 // For 'ideal_reg' machine registers
duke@435 1558 #define Op_RegX Op_RegL
duke@435 1559 // For phase->intcon variants
duke@435 1560 #define MakeConX longcon
duke@435 1561 #define ConXNode ConLNode
duke@435 1562 // For array index arithmetic
duke@435 1563 #define MulXNode MulLNode
duke@435 1564 #define AndXNode AndLNode
duke@435 1565 #define OrXNode OrLNode
duke@435 1566 #define CmpXNode CmpLNode
duke@435 1567 #define SubXNode SubLNode
duke@435 1568 #define LShiftXNode LShiftLNode
duke@435 1569 // For object size computation:
duke@435 1570 #define AddXNode AddLNode
never@452 1571 #define RShiftXNode RShiftLNode
duke@435 1572 // For card marks and hashcodes
duke@435 1573 #define URShiftXNode URShiftLNode
kvn@855 1574 // UseOptoBiasInlining
kvn@855 1575 #define XorXNode XorLNode
kvn@855 1576 #define StoreXConditionalNode StoreLConditionalNode
duke@435 1577 // Opcodes
duke@435 1578 #define Op_LShiftX Op_LShiftL
duke@435 1579 #define Op_AndX Op_AndL
duke@435 1580 #define Op_AddX Op_AddL
duke@435 1581 #define Op_SubX Op_SubL
kvn@1286 1582 #define Op_XorX Op_XorL
kvn@1286 1583 #define Op_URShiftX Op_URShiftL
duke@435 1584 // conversions
duke@435 1585 #define ConvI2X(x) ConvI2L(x)
duke@435 1586 #define ConvL2X(x) (x)
duke@435 1587 #define ConvX2I(x) ConvL2I(x)
duke@435 1588 #define ConvX2L(x) (x)
duke@435 1589
duke@435 1590 #else
duke@435 1591
duke@435 1592 // For type queries and asserts
duke@435 1593 #define is_intptr_t is_int
duke@435 1594 #define isa_intptr_t isa_int
duke@435 1595 #define find_intptr_t_type find_int_type
duke@435 1596 #define find_intptr_t_con find_int_con
duke@435 1597 #define TypeX TypeInt
duke@435 1598 #define Type_X Type::Int
duke@435 1599 #define TypeX_X TypeInt::INT
duke@435 1600 #define TypeX_ZERO TypeInt::ZERO
duke@435 1601 // For 'ideal_reg' machine registers
duke@435 1602 #define Op_RegX Op_RegI
duke@435 1603 // For phase->intcon variants
duke@435 1604 #define MakeConX intcon
duke@435 1605 #define ConXNode ConINode
duke@435 1606 // For array index arithmetic
duke@435 1607 #define MulXNode MulINode
duke@435 1608 #define AndXNode AndINode
duke@435 1609 #define OrXNode OrINode
duke@435 1610 #define CmpXNode CmpINode
duke@435 1611 #define SubXNode SubINode
duke@435 1612 #define LShiftXNode LShiftINode
duke@435 1613 // For object size computation:
duke@435 1614 #define AddXNode AddINode
never@452 1615 #define RShiftXNode RShiftINode
duke@435 1616 // For card marks and hashcodes
duke@435 1617 #define URShiftXNode URShiftINode
kvn@855 1618 // UseOptoBiasInlining
kvn@855 1619 #define XorXNode XorINode
kvn@855 1620 #define StoreXConditionalNode StoreIConditionalNode
duke@435 1621 // Opcodes
duke@435 1622 #define Op_LShiftX Op_LShiftI
duke@435 1623 #define Op_AndX Op_AndI
duke@435 1624 #define Op_AddX Op_AddI
duke@435 1625 #define Op_SubX Op_SubI
kvn@1286 1626 #define Op_XorX Op_XorI
kvn@1286 1627 #define Op_URShiftX Op_URShiftI
duke@435 1628 // conversions
duke@435 1629 #define ConvI2X(x) (x)
duke@435 1630 #define ConvL2X(x) ConvL2I(x)
duke@435 1631 #define ConvX2I(x) (x)
duke@435 1632 #define ConvX2L(x) ConvI2L(x)
duke@435 1633
duke@435 1634 #endif
stefank@2314 1635
stefank@2314 1636 #endif // SHARE_VM_OPTO_TYPE_HPP

mercurial