src/share/vm/opto/type.hpp

Sat, 01 Dec 2007 00:00:00 +0000

author
duke
date
Sat, 01 Dec 2007 00:00:00 +0000
changeset 435
a61af66fc99e
child 452
ff5961f4c095
permissions
-rw-r--r--

Initial load

duke@435 1 /*
duke@435 2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // Portions of code courtesy of Clifford Click
duke@435 26
duke@435 27 // Optimization - Graph Style
duke@435 28
duke@435 29
duke@435 30 // This class defines a Type lattice. The lattice is used in the constant
duke@435 31 // propagation algorithms, and for some type-checking of the iloc code.
duke@435 32 // Basic types include RSD's (lower bound, upper bound, stride for integers),
duke@435 33 // float & double precision constants, sets of data-labels and code-labels.
duke@435 34 // The complete lattice is described below. Subtypes have no relationship to
duke@435 35 // up or down in the lattice; that is entirely determined by the behavior of
duke@435 36 // the MEET/JOIN functions.
duke@435 37
duke@435 38 class Dict;
duke@435 39 class Type;
duke@435 40 class TypeD;
duke@435 41 class TypeF;
duke@435 42 class TypeInt;
duke@435 43 class TypeLong;
duke@435 44 class TypeAry;
duke@435 45 class TypeTuple;
duke@435 46 class TypePtr;
duke@435 47 class TypeRawPtr;
duke@435 48 class TypeOopPtr;
duke@435 49 class TypeInstPtr;
duke@435 50 class TypeAryPtr;
duke@435 51 class TypeKlassPtr;
duke@435 52
duke@435 53 //------------------------------Type-------------------------------------------
duke@435 54 // Basic Type object, represents a set of primitive Values.
duke@435 55 // Types are hash-cons'd into a private class dictionary, so only one of each
duke@435 56 // different kind of Type exists. Types are never modified after creation, so
duke@435 57 // all their interesting fields are constant.
duke@435 58 class Type {
duke@435 59 public:
duke@435 60 enum TYPES {
duke@435 61 Bad=0, // Type check
duke@435 62 Control, // Control of code (not in lattice)
duke@435 63 Top, // Top of the lattice
duke@435 64 Int, // Integer range (lo-hi)
duke@435 65 Long, // Long integer range (lo-hi)
duke@435 66 Half, // Placeholder half of doubleword
duke@435 67
duke@435 68 Tuple, // Method signature or object layout
duke@435 69 Array, // Array types
duke@435 70
duke@435 71 AnyPtr, // Any old raw, klass, inst, or array pointer
duke@435 72 RawPtr, // Raw (non-oop) pointers
duke@435 73 OopPtr, // Any and all Java heap entities
duke@435 74 InstPtr, // Instance pointers (non-array objects)
duke@435 75 AryPtr, // Array pointers
duke@435 76 KlassPtr, // Klass pointers
duke@435 77 // (Ptr order matters: See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
duke@435 78
duke@435 79 Function, // Function signature
duke@435 80 Abio, // Abstract I/O
duke@435 81 Return_Address, // Subroutine return address
duke@435 82 Memory, // Abstract store
duke@435 83 FloatTop, // No float value
duke@435 84 FloatCon, // Floating point constant
duke@435 85 FloatBot, // Any float value
duke@435 86 DoubleTop, // No double value
duke@435 87 DoubleCon, // Double precision constant
duke@435 88 DoubleBot, // Any double value
duke@435 89 Bottom, // Bottom of lattice
duke@435 90 lastype // Bogus ending type (not in lattice)
duke@435 91 };
duke@435 92
duke@435 93 // Signal values for offsets from a base pointer
duke@435 94 enum OFFSET_SIGNALS {
duke@435 95 OffsetTop = -2000000000, // undefined offset
duke@435 96 OffsetBot = -2000000001 // any possible offset
duke@435 97 };
duke@435 98
duke@435 99 // Min and max WIDEN values.
duke@435 100 enum WIDEN {
duke@435 101 WidenMin = 0,
duke@435 102 WidenMax = 3
duke@435 103 };
duke@435 104
duke@435 105 private:
duke@435 106 // Dictionary of types shared among compilations.
duke@435 107 static Dict* _shared_type_dict;
duke@435 108
duke@435 109 static int uhash( const Type *const t );
duke@435 110 // Structural equality check. Assumes that cmp() has already compared
duke@435 111 // the _base types and thus knows it can cast 't' appropriately.
duke@435 112 virtual bool eq( const Type *t ) const;
duke@435 113
duke@435 114 // Top-level hash-table of types
duke@435 115 static Dict *type_dict() {
duke@435 116 return Compile::current()->type_dict();
duke@435 117 }
duke@435 118
duke@435 119 // DUAL operation: reflect around lattice centerline. Used instead of
duke@435 120 // join to ensure my lattice is symmetric up and down. Dual is computed
duke@435 121 // lazily, on demand, and cached in _dual.
duke@435 122 const Type *_dual; // Cached dual value
duke@435 123 // Table for efficient dualing of base types
duke@435 124 static const TYPES dual_type[lastype];
duke@435 125
duke@435 126 protected:
duke@435 127 // Each class of type is also identified by its base.
duke@435 128 const TYPES _base; // Enum of Types type
duke@435 129
duke@435 130 Type( TYPES t ) : _dual(NULL), _base(t) {} // Simple types
duke@435 131 // ~Type(); // Use fast deallocation
duke@435 132 const Type *hashcons(); // Hash-cons the type
duke@435 133
duke@435 134 public:
duke@435 135
duke@435 136 inline void* operator new( size_t x ) {
duke@435 137 Compile* compile = Compile::current();
duke@435 138 compile->set_type_last_size(x);
duke@435 139 void *temp = compile->type_arena()->Amalloc_D(x);
duke@435 140 compile->set_type_hwm(temp);
duke@435 141 return temp;
duke@435 142 }
duke@435 143 inline void operator delete( void* ptr ) {
duke@435 144 Compile* compile = Compile::current();
duke@435 145 compile->type_arena()->Afree(ptr,compile->type_last_size());
duke@435 146 }
duke@435 147
duke@435 148 // Initialize the type system for a particular compilation.
duke@435 149 static void Initialize(Compile* compile);
duke@435 150
duke@435 151 // Initialize the types shared by all compilations.
duke@435 152 static void Initialize_shared(Compile* compile);
duke@435 153
duke@435 154 TYPES base() const {
duke@435 155 assert(_base > Bad && _base < lastype, "sanity");
duke@435 156 return _base;
duke@435 157 }
duke@435 158
duke@435 159 // Create a new hash-consd type
duke@435 160 static const Type *make(enum TYPES);
duke@435 161 // Test for equivalence of types
duke@435 162 static int cmp( const Type *const t1, const Type *const t2 );
duke@435 163 // Test for higher or equal in lattice
duke@435 164 int higher_equal( const Type *t ) const { return !cmp(meet(t),t); }
duke@435 165
duke@435 166 // MEET operation; lower in lattice.
duke@435 167 const Type *meet( const Type *t ) const;
duke@435 168 // WIDEN: 'widens' for Ints and other range types
duke@435 169 virtual const Type *widen( const Type *old ) const { return this; }
duke@435 170 // NARROW: complement for widen, used by pessimistic phases
duke@435 171 virtual const Type *narrow( const Type *old ) const { return this; }
duke@435 172
duke@435 173 // DUAL operation: reflect around lattice centerline. Used instead of
duke@435 174 // join to ensure my lattice is symmetric up and down.
duke@435 175 const Type *dual() const { return _dual; }
duke@435 176
duke@435 177 // Compute meet dependent on base type
duke@435 178 virtual const Type *xmeet( const Type *t ) const;
duke@435 179 virtual const Type *xdual() const; // Compute dual right now.
duke@435 180
duke@435 181 // JOIN operation; higher in lattice. Done by finding the dual of the
duke@435 182 // meet of the dual of the 2 inputs.
duke@435 183 const Type *join( const Type *t ) const {
duke@435 184 return dual()->meet(t->dual())->dual(); }
duke@435 185
duke@435 186 // Modified version of JOIN adapted to the needs Node::Value.
duke@435 187 // Normalizes all empty values to TOP. Does not kill _widen bits.
duke@435 188 // Currently, it also works around limitations involving interface types.
duke@435 189 virtual const Type *filter( const Type *kills ) const;
duke@435 190
duke@435 191 // Convenience access
duke@435 192 float getf() const;
duke@435 193 double getd() const;
duke@435 194
duke@435 195 const TypeInt *is_int() const;
duke@435 196 const TypeInt *isa_int() const; // Returns NULL if not an Int
duke@435 197 const TypeLong *is_long() const;
duke@435 198 const TypeLong *isa_long() const; // Returns NULL if not a Long
duke@435 199 const TypeD *is_double_constant() const; // Asserts it is a DoubleCon
duke@435 200 const TypeD *isa_double_constant() const; // Returns NULL if not a DoubleCon
duke@435 201 const TypeF *is_float_constant() const; // Asserts it is a FloatCon
duke@435 202 const TypeF *isa_float_constant() const; // Returns NULL if not a FloatCon
duke@435 203 const TypeTuple *is_tuple() const; // Collection of fields, NOT a pointer
duke@435 204 const TypeAry *is_ary() const; // Array, NOT array pointer
duke@435 205 const TypePtr *is_ptr() const; // Asserts it is a ptr type
duke@435 206 const TypePtr *isa_ptr() const; // Returns NULL if not ptr type
duke@435 207 const TypeRawPtr *is_rawptr() const; // NOT Java oop
duke@435 208 const TypeOopPtr *isa_oopptr() const; // Returns NULL if not ptr type
duke@435 209 const TypeKlassPtr *isa_klassptr() const; // Returns NULL if not KlassPtr
duke@435 210 const TypeKlassPtr *is_klassptr() const; // assert if not KlassPtr
duke@435 211 const TypeOopPtr *is_oopptr() const; // Java-style GC'd pointer
duke@435 212 const TypeInstPtr *isa_instptr() const; // Returns NULL if not InstPtr
duke@435 213 const TypeInstPtr *is_instptr() const; // Instance
duke@435 214 const TypeAryPtr *isa_aryptr() const; // Returns NULL if not AryPtr
duke@435 215 const TypeAryPtr *is_aryptr() const; // Array oop
duke@435 216 virtual bool is_finite() const; // Has a finite value
duke@435 217 virtual bool is_nan() const; // Is not a number (NaN)
duke@435 218
duke@435 219 // Special test for register pressure heuristic
duke@435 220 bool is_floatingpoint() const; // True if Float or Double base type
duke@435 221
duke@435 222 // Do you have memory, directly or through a tuple?
duke@435 223 bool has_memory( ) const;
duke@435 224
duke@435 225 // Are you a pointer type or not?
duke@435 226 bool isa_oop_ptr() const;
duke@435 227
duke@435 228 // TRUE if type is a singleton
duke@435 229 virtual bool singleton(void) const;
duke@435 230
duke@435 231 // TRUE if type is above the lattice centerline, and is therefore vacuous
duke@435 232 virtual bool empty(void) const;
duke@435 233
duke@435 234 // Return a hash for this type. The hash function is public so ConNode
duke@435 235 // (constants) can hash on their constant, which is represented by a Type.
duke@435 236 virtual int hash() const;
duke@435 237
duke@435 238 // Map ideal registers (machine types) to ideal types
duke@435 239 static const Type *mreg2type[];
duke@435 240
duke@435 241 // Printing, statistics
duke@435 242 static const char * const msg[lastype]; // Printable strings
duke@435 243 #ifndef PRODUCT
duke@435 244 void dump_on(outputStream *st) const;
duke@435 245 void dump() const {
duke@435 246 dump_on(tty);
duke@435 247 }
duke@435 248 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 249 static void dump_stats();
duke@435 250 static void verify_lastype(); // Check that arrays match type enum
duke@435 251 #endif
duke@435 252 void typerr(const Type *t) const; // Mixing types error
duke@435 253
duke@435 254 // Create basic type
duke@435 255 static const Type* get_const_basic_type(BasicType type) {
duke@435 256 assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
duke@435 257 return _const_basic_type[type];
duke@435 258 }
duke@435 259
duke@435 260 // Mapping to the array element's basic type.
duke@435 261 BasicType array_element_basic_type() const;
duke@435 262
duke@435 263 // Create standard type for a ciType:
duke@435 264 static const Type* get_const_type(ciType* type);
duke@435 265
duke@435 266 // Create standard zero value:
duke@435 267 static const Type* get_zero_type(BasicType type) {
duke@435 268 assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
duke@435 269 return _zero_type[type];
duke@435 270 }
duke@435 271
duke@435 272 // Report if this is a zero value (not top).
duke@435 273 bool is_zero_type() const {
duke@435 274 BasicType type = basic_type();
duke@435 275 if (type == T_VOID || type >= T_CONFLICT)
duke@435 276 return false;
duke@435 277 else
duke@435 278 return (this == _zero_type[type]);
duke@435 279 }
duke@435 280
duke@435 281 // Convenience common pre-built types.
duke@435 282 static const Type *ABIO;
duke@435 283 static const Type *BOTTOM;
duke@435 284 static const Type *CONTROL;
duke@435 285 static const Type *DOUBLE;
duke@435 286 static const Type *FLOAT;
duke@435 287 static const Type *HALF;
duke@435 288 static const Type *MEMORY;
duke@435 289 static const Type *MULTI;
duke@435 290 static const Type *RETURN_ADDRESS;
duke@435 291 static const Type *TOP;
duke@435 292
duke@435 293 // Mapping from compiler type to VM BasicType
duke@435 294 BasicType basic_type() const { return _basic_type[_base]; }
duke@435 295
duke@435 296 // Mapping from CI type system to compiler type:
duke@435 297 static const Type* get_typeflow_type(ciType* type);
duke@435 298
duke@435 299 private:
duke@435 300 // support arrays
duke@435 301 static const BasicType _basic_type[];
duke@435 302 static const Type* _zero_type[T_CONFLICT+1];
duke@435 303 static const Type* _const_basic_type[T_CONFLICT+1];
duke@435 304 };
duke@435 305
duke@435 306 //------------------------------TypeF------------------------------------------
duke@435 307 // Class of Float-Constant Types.
duke@435 308 class TypeF : public Type {
duke@435 309 TypeF( float f ) : Type(FloatCon), _f(f) {};
duke@435 310 public:
duke@435 311 virtual bool eq( const Type *t ) const;
duke@435 312 virtual int hash() const; // Type specific hashing
duke@435 313 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 314 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 315 public:
duke@435 316 const float _f; // Float constant
duke@435 317
duke@435 318 static const TypeF *make(float f);
duke@435 319
duke@435 320 virtual bool is_finite() const; // Has a finite value
duke@435 321 virtual bool is_nan() const; // Is not a number (NaN)
duke@435 322
duke@435 323 virtual const Type *xmeet( const Type *t ) const;
duke@435 324 virtual const Type *xdual() const; // Compute dual right now.
duke@435 325 // Convenience common pre-built types.
duke@435 326 static const TypeF *ZERO; // positive zero only
duke@435 327 static const TypeF *ONE;
duke@435 328 #ifndef PRODUCT
duke@435 329 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 330 #endif
duke@435 331 };
duke@435 332
duke@435 333 //------------------------------TypeD------------------------------------------
duke@435 334 // Class of Double-Constant Types.
duke@435 335 class TypeD : public Type {
duke@435 336 TypeD( double d ) : Type(DoubleCon), _d(d) {};
duke@435 337 public:
duke@435 338 virtual bool eq( const Type *t ) const;
duke@435 339 virtual int hash() const; // Type specific hashing
duke@435 340 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 341 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 342 public:
duke@435 343 const double _d; // Double constant
duke@435 344
duke@435 345 static const TypeD *make(double d);
duke@435 346
duke@435 347 virtual bool is_finite() const; // Has a finite value
duke@435 348 virtual bool is_nan() const; // Is not a number (NaN)
duke@435 349
duke@435 350 virtual const Type *xmeet( const Type *t ) const;
duke@435 351 virtual const Type *xdual() const; // Compute dual right now.
duke@435 352 // Convenience common pre-built types.
duke@435 353 static const TypeD *ZERO; // positive zero only
duke@435 354 static const TypeD *ONE;
duke@435 355 #ifndef PRODUCT
duke@435 356 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 357 #endif
duke@435 358 };
duke@435 359
duke@435 360 //------------------------------TypeInt----------------------------------------
duke@435 361 // Class of integer ranges, the set of integers between a lower bound and an
duke@435 362 // upper bound, inclusive.
duke@435 363 class TypeInt : public Type {
duke@435 364 TypeInt( jint lo, jint hi, int w );
duke@435 365 public:
duke@435 366 virtual bool eq( const Type *t ) const;
duke@435 367 virtual int hash() const; // Type specific hashing
duke@435 368 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 369 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 370 public:
duke@435 371 const jint _lo, _hi; // Lower bound, upper bound
duke@435 372 const short _widen; // Limit on times we widen this sucker
duke@435 373
duke@435 374 static const TypeInt *make(jint lo);
duke@435 375 // must always specify w
duke@435 376 static const TypeInt *make(jint lo, jint hi, int w);
duke@435 377
duke@435 378 // Check for single integer
duke@435 379 int is_con() const { return _lo==_hi; }
duke@435 380 bool is_con(int i) const { return is_con() && _lo == i; }
duke@435 381 jint get_con() const { assert( is_con(), "" ); return _lo; }
duke@435 382
duke@435 383 virtual bool is_finite() const; // Has a finite value
duke@435 384
duke@435 385 virtual const Type *xmeet( const Type *t ) const;
duke@435 386 virtual const Type *xdual() const; // Compute dual right now.
duke@435 387 virtual const Type *widen( const Type *t ) const;
duke@435 388 virtual const Type *narrow( const Type *t ) const;
duke@435 389 // Do not kill _widen bits.
duke@435 390 virtual const Type *filter( const Type *kills ) const;
duke@435 391 // Convenience common pre-built types.
duke@435 392 static const TypeInt *MINUS_1;
duke@435 393 static const TypeInt *ZERO;
duke@435 394 static const TypeInt *ONE;
duke@435 395 static const TypeInt *BOOL;
duke@435 396 static const TypeInt *CC;
duke@435 397 static const TypeInt *CC_LT; // [-1] == MINUS_1
duke@435 398 static const TypeInt *CC_GT; // [1] == ONE
duke@435 399 static const TypeInt *CC_EQ; // [0] == ZERO
duke@435 400 static const TypeInt *CC_LE; // [-1,0]
duke@435 401 static const TypeInt *CC_GE; // [0,1] == BOOL (!)
duke@435 402 static const TypeInt *BYTE;
duke@435 403 static const TypeInt *CHAR;
duke@435 404 static const TypeInt *SHORT;
duke@435 405 static const TypeInt *POS;
duke@435 406 static const TypeInt *POS1;
duke@435 407 static const TypeInt *INT;
duke@435 408 static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
duke@435 409 #ifndef PRODUCT
duke@435 410 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 411 #endif
duke@435 412 };
duke@435 413
duke@435 414
duke@435 415 //------------------------------TypeLong---------------------------------------
duke@435 416 // Class of long integer ranges, the set of integers between a lower bound and
duke@435 417 // an upper bound, inclusive.
duke@435 418 class TypeLong : public Type {
duke@435 419 TypeLong( jlong lo, jlong hi, int w );
duke@435 420 public:
duke@435 421 virtual bool eq( const Type *t ) const;
duke@435 422 virtual int hash() const; // Type specific hashing
duke@435 423 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 424 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 425 public:
duke@435 426 const jlong _lo, _hi; // Lower bound, upper bound
duke@435 427 const short _widen; // Limit on times we widen this sucker
duke@435 428
duke@435 429 static const TypeLong *make(jlong lo);
duke@435 430 // must always specify w
duke@435 431 static const TypeLong *make(jlong lo, jlong hi, int w);
duke@435 432
duke@435 433 // Check for single integer
duke@435 434 int is_con() const { return _lo==_hi; }
duke@435 435 jlong get_con() const { assert( is_con(), "" ); return _lo; }
duke@435 436
duke@435 437 virtual bool is_finite() const; // Has a finite value
duke@435 438
duke@435 439 virtual const Type *xmeet( const Type *t ) const;
duke@435 440 virtual const Type *xdual() const; // Compute dual right now.
duke@435 441 virtual const Type *widen( const Type *t ) const;
duke@435 442 virtual const Type *narrow( const Type *t ) const;
duke@435 443 // Do not kill _widen bits.
duke@435 444 virtual const Type *filter( const Type *kills ) const;
duke@435 445 // Convenience common pre-built types.
duke@435 446 static const TypeLong *MINUS_1;
duke@435 447 static const TypeLong *ZERO;
duke@435 448 static const TypeLong *ONE;
duke@435 449 static const TypeLong *POS;
duke@435 450 static const TypeLong *LONG;
duke@435 451 static const TypeLong *INT; // 32-bit subrange [min_jint..max_jint]
duke@435 452 static const TypeLong *UINT; // 32-bit unsigned [0..max_juint]
duke@435 453 #ifndef PRODUCT
duke@435 454 virtual void dump2( Dict &d, uint, outputStream *st ) const;// Specialized per-Type dumping
duke@435 455 #endif
duke@435 456 };
duke@435 457
duke@435 458 //------------------------------TypeTuple--------------------------------------
duke@435 459 // Class of Tuple Types, essentially type collections for function signatures
duke@435 460 // and class layouts. It happens to also be a fast cache for the HotSpot
duke@435 461 // signature types.
duke@435 462 class TypeTuple : public Type {
duke@435 463 TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
duke@435 464 public:
duke@435 465 virtual bool eq( const Type *t ) const;
duke@435 466 virtual int hash() const; // Type specific hashing
duke@435 467 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 468 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 469
duke@435 470 public:
duke@435 471 const uint _cnt; // Count of fields
duke@435 472 const Type ** const _fields; // Array of field types
duke@435 473
duke@435 474 // Accessors:
duke@435 475 uint cnt() const { return _cnt; }
duke@435 476 const Type* field_at(uint i) const {
duke@435 477 assert(i < _cnt, "oob");
duke@435 478 return _fields[i];
duke@435 479 }
duke@435 480 void set_field_at(uint i, const Type* t) {
duke@435 481 assert(i < _cnt, "oob");
duke@435 482 _fields[i] = t;
duke@435 483 }
duke@435 484
duke@435 485 static const TypeTuple *make( uint cnt, const Type **fields );
duke@435 486 static const TypeTuple *make_range(ciSignature *sig);
duke@435 487 static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
duke@435 488
duke@435 489 // Subroutine call type with space allocated for argument types
duke@435 490 static const Type **fields( uint arg_cnt );
duke@435 491
duke@435 492 virtual const Type *xmeet( const Type *t ) const;
duke@435 493 virtual const Type *xdual() const; // Compute dual right now.
duke@435 494 // Convenience common pre-built types.
duke@435 495 static const TypeTuple *IFBOTH;
duke@435 496 static const TypeTuple *IFFALSE;
duke@435 497 static const TypeTuple *IFTRUE;
duke@435 498 static const TypeTuple *IFNEITHER;
duke@435 499 static const TypeTuple *LOOPBODY;
duke@435 500 static const TypeTuple *MEMBAR;
duke@435 501 static const TypeTuple *STORECONDITIONAL;
duke@435 502 static const TypeTuple *START_I2C;
duke@435 503 static const TypeTuple *INT_PAIR;
duke@435 504 static const TypeTuple *LONG_PAIR;
duke@435 505 #ifndef PRODUCT
duke@435 506 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
duke@435 507 #endif
duke@435 508 };
duke@435 509
duke@435 510 //------------------------------TypeAry----------------------------------------
duke@435 511 // Class of Array Types
duke@435 512 class TypeAry : public Type {
duke@435 513 TypeAry( const Type *elem, const TypeInt *size) : Type(Array),
duke@435 514 _elem(elem), _size(size) {}
duke@435 515 public:
duke@435 516 virtual bool eq( const Type *t ) const;
duke@435 517 virtual int hash() const; // Type specific hashing
duke@435 518 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 519 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 520
duke@435 521 private:
duke@435 522 const Type *_elem; // Element type of array
duke@435 523 const TypeInt *_size; // Elements in array
duke@435 524 friend class TypeAryPtr;
duke@435 525
duke@435 526 public:
duke@435 527 static const TypeAry *make( const Type *elem, const TypeInt *size);
duke@435 528
duke@435 529 virtual const Type *xmeet( const Type *t ) const;
duke@435 530 virtual const Type *xdual() const; // Compute dual right now.
duke@435 531 bool ary_must_be_exact() const; // true if arrays of such are never generic
duke@435 532 #ifndef PRODUCT
duke@435 533 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
duke@435 534 #endif
duke@435 535 };
duke@435 536
duke@435 537 //------------------------------TypePtr----------------------------------------
duke@435 538 // Class of machine Pointer Types: raw data, instances or arrays.
duke@435 539 // If the _base enum is AnyPtr, then this refers to all of the above.
duke@435 540 // Otherwise the _base will indicate which subset of pointers is affected,
duke@435 541 // and the class will be inherited from.
duke@435 542 class TypePtr : public Type {
duke@435 543 public:
duke@435 544 enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
duke@435 545 protected:
duke@435 546 TypePtr( TYPES t, PTR ptr, int offset ) : Type(t), _ptr(ptr), _offset(offset) {}
duke@435 547 virtual bool eq( const Type *t ) const;
duke@435 548 virtual int hash() const; // Type specific hashing
duke@435 549 static const PTR ptr_meet[lastPTR][lastPTR];
duke@435 550 static const PTR ptr_dual[lastPTR];
duke@435 551 static const char * const ptr_msg[lastPTR];
duke@435 552
duke@435 553 public:
duke@435 554 const int _offset; // Offset into oop, with TOP & BOT
duke@435 555 const PTR _ptr; // Pointer equivalence class
duke@435 556
duke@435 557 const int offset() const { return _offset; }
duke@435 558 const PTR ptr() const { return _ptr; }
duke@435 559
duke@435 560 static const TypePtr *make( TYPES t, PTR ptr, int offset );
duke@435 561
duke@435 562 // Return a 'ptr' version of this type
duke@435 563 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 564
duke@435 565 virtual intptr_t get_con() const;
duke@435 566
duke@435 567 virtual const TypePtr *add_offset( int offset ) const;
duke@435 568
duke@435 569 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 570 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 571 virtual const Type *xmeet( const Type *t ) const;
duke@435 572 int meet_offset( int offset ) const;
duke@435 573 int dual_offset( ) const;
duke@435 574 virtual const Type *xdual() const; // Compute dual right now.
duke@435 575
duke@435 576 // meet, dual and join over pointer equivalence sets
duke@435 577 PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
duke@435 578 PTR dual_ptr() const { return ptr_dual[ptr()]; }
duke@435 579
duke@435 580 // This is textually confusing unless one recalls that
duke@435 581 // join(t) == dual()->meet(t->dual())->dual().
duke@435 582 PTR join_ptr( const PTR in_ptr ) const {
duke@435 583 return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
duke@435 584 }
duke@435 585
duke@435 586 // Tests for relation to centerline of type lattice:
duke@435 587 static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
duke@435 588 static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
duke@435 589 // Convenience common pre-built types.
duke@435 590 static const TypePtr *NULL_PTR;
duke@435 591 static const TypePtr *NOTNULL;
duke@435 592 static const TypePtr *BOTTOM;
duke@435 593 #ifndef PRODUCT
duke@435 594 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 595 #endif
duke@435 596 };
duke@435 597
duke@435 598 //------------------------------TypeRawPtr-------------------------------------
duke@435 599 // Class of raw pointers, pointers to things other than Oops. Examples
duke@435 600 // include the stack pointer, top of heap, card-marking area, handles, etc.
duke@435 601 class TypeRawPtr : public TypePtr {
duke@435 602 protected:
duke@435 603 TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
duke@435 604 public:
duke@435 605 virtual bool eq( const Type *t ) const;
duke@435 606 virtual int hash() const; // Type specific hashing
duke@435 607
duke@435 608 const address _bits; // Constant value, if applicable
duke@435 609
duke@435 610 static const TypeRawPtr *make( PTR ptr );
duke@435 611 static const TypeRawPtr *make( address bits );
duke@435 612
duke@435 613 // Return a 'ptr' version of this type
duke@435 614 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 615
duke@435 616 virtual intptr_t get_con() const;
duke@435 617
duke@435 618 virtual const TypePtr *add_offset( int offset ) const;
duke@435 619
duke@435 620 virtual const Type *xmeet( const Type *t ) const;
duke@435 621 virtual const Type *xdual() const; // Compute dual right now.
duke@435 622 // Convenience common pre-built types.
duke@435 623 static const TypeRawPtr *BOTTOM;
duke@435 624 static const TypeRawPtr *NOTNULL;
duke@435 625 #ifndef PRODUCT
duke@435 626 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 627 #endif
duke@435 628 };
duke@435 629
duke@435 630 //------------------------------TypeOopPtr-------------------------------------
duke@435 631 // Some kind of oop (Java pointer), either klass or instance or array.
duke@435 632 class TypeOopPtr : public TypePtr {
duke@435 633 protected:
duke@435 634 TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id ) : TypePtr(t, ptr, offset), _const_oop(o), _klass(k), _klass_is_exact(xk), _instance_id(instance_id) { }
duke@435 635 public:
duke@435 636 virtual bool eq( const Type *t ) const;
duke@435 637 virtual int hash() const; // Type specific hashing
duke@435 638 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 639 enum {
duke@435 640 UNKNOWN_INSTANCE = 0
duke@435 641 };
duke@435 642 protected:
duke@435 643
duke@435 644 int xadd_offset( int offset ) const;
duke@435 645 // Oop is NULL, unless this is a constant oop.
duke@435 646 ciObject* _const_oop; // Constant oop
duke@435 647 // If _klass is NULL, then so is _sig. This is an unloaded klass.
duke@435 648 ciKlass* _klass; // Klass object
duke@435 649 // Does the type exclude subclasses of the klass? (Inexact == polymorphic.)
duke@435 650 bool _klass_is_exact;
duke@435 651
duke@435 652 int _instance_id; // if not UNKNOWN_INSTANCE, indicates that this is a particular instance
duke@435 653 // of this type which is distinct. This is the the node index of the
duke@435 654 // node creating this instance
duke@435 655
duke@435 656 static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
duke@435 657
duke@435 658 int dual_instance() const { return -_instance_id; }
duke@435 659 int meet_instance(int uid) const;
duke@435 660
duke@435 661 public:
duke@435 662 // Creates a type given a klass. Correctly handles multi-dimensional arrays
duke@435 663 // Respects UseUniqueSubclasses.
duke@435 664 // If the klass is final, the resulting type will be exact.
duke@435 665 static const TypeOopPtr* make_from_klass(ciKlass* klass) {
duke@435 666 return make_from_klass_common(klass, true, false);
duke@435 667 }
duke@435 668 // Same as before, but will produce an exact type, even if
duke@435 669 // the klass is not final, as long as it has exactly one implementation.
duke@435 670 static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
duke@435 671 return make_from_klass_common(klass, true, true);
duke@435 672 }
duke@435 673 // Same as before, but does not respects UseUniqueSubclasses.
duke@435 674 // Use this only for creating array element types.
duke@435 675 static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
duke@435 676 return make_from_klass_common(klass, false, false);
duke@435 677 }
duke@435 678 // Creates a singleton type given an object.
duke@435 679 static const TypeOopPtr* make_from_constant(ciObject* o);
duke@435 680
duke@435 681 // Make a generic (unclassed) pointer to an oop.
duke@435 682 static const TypeOopPtr* make(PTR ptr, int offset);
duke@435 683
duke@435 684 ciObject* const_oop() const { return _const_oop; }
duke@435 685 virtual ciKlass* klass() const { return _klass; }
duke@435 686 bool klass_is_exact() const { return _klass_is_exact; }
duke@435 687 bool is_instance() const { return _instance_id != UNKNOWN_INSTANCE; }
duke@435 688 uint instance_id() const { return _instance_id; }
duke@435 689
duke@435 690 virtual intptr_t get_con() const;
duke@435 691
duke@435 692 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 693
duke@435 694 virtual const Type *cast_to_exactness(bool klass_is_exact) const;
duke@435 695
duke@435 696 virtual const TypeOopPtr *cast_to_instance(int instance_id) const;
duke@435 697
duke@435 698 // corresponding pointer to klass, for a given instance
duke@435 699 const TypeKlassPtr* as_klass_type() const;
duke@435 700
duke@435 701 virtual const TypePtr *add_offset( int offset ) const;
duke@435 702
duke@435 703 virtual const Type *xmeet( const Type *t ) const;
duke@435 704 virtual const Type *xdual() const; // Compute dual right now.
duke@435 705
duke@435 706 // Do not allow interface-vs.-noninterface joins to collapse to top.
duke@435 707 virtual const Type *filter( const Type *kills ) const;
duke@435 708
duke@435 709 // Convenience common pre-built type.
duke@435 710 static const TypeOopPtr *BOTTOM;
duke@435 711 #ifndef PRODUCT
duke@435 712 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 713 #endif
duke@435 714 };
duke@435 715
duke@435 716 //------------------------------TypeInstPtr------------------------------------
duke@435 717 // Class of Java object pointers, pointing either to non-array Java instances
duke@435 718 // or to a klassOop (including array klasses).
duke@435 719 class TypeInstPtr : public TypeOopPtr {
duke@435 720 TypeInstPtr( PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
duke@435 721 virtual bool eq( const Type *t ) const;
duke@435 722 virtual int hash() const; // Type specific hashing
duke@435 723
duke@435 724 ciSymbol* _name; // class name
duke@435 725
duke@435 726 public:
duke@435 727 ciSymbol* name() const { return _name; }
duke@435 728
duke@435 729 bool is_loaded() const { return _klass->is_loaded(); }
duke@435 730
duke@435 731 // Make a pointer to a constant oop.
duke@435 732 static const TypeInstPtr *make(ciObject* o) {
duke@435 733 return make(TypePtr::Constant, o->klass(), true, o, 0);
duke@435 734 }
duke@435 735
duke@435 736 // Make a pointer to a constant oop with offset.
duke@435 737 static const TypeInstPtr *make(ciObject* o, int offset) {
duke@435 738 return make(TypePtr::Constant, o->klass(), true, o, offset);
duke@435 739 }
duke@435 740
duke@435 741 // Make a pointer to some value of type klass.
duke@435 742 static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
duke@435 743 return make(ptr, klass, false, NULL, 0);
duke@435 744 }
duke@435 745
duke@435 746 // Make a pointer to some non-polymorphic value of exactly type klass.
duke@435 747 static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
duke@435 748 return make(ptr, klass, true, NULL, 0);
duke@435 749 }
duke@435 750
duke@435 751 // Make a pointer to some value of type klass with offset.
duke@435 752 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
duke@435 753 return make(ptr, klass, false, NULL, offset);
duke@435 754 }
duke@435 755
duke@435 756 // Make a pointer to an oop.
duke@435 757 static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = 0 );
duke@435 758
duke@435 759 // If this is a java.lang.Class constant, return the type for it or NULL.
duke@435 760 // Pass to Type::get_const_type to turn it to a type, which will usually
duke@435 761 // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
duke@435 762 ciType* java_mirror_type() const;
duke@435 763
duke@435 764 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 765
duke@435 766 virtual const Type *cast_to_exactness(bool klass_is_exact) const;
duke@435 767
duke@435 768 virtual const TypeOopPtr *cast_to_instance(int instance_id) const;
duke@435 769
duke@435 770 virtual const TypePtr *add_offset( int offset ) const;
duke@435 771
duke@435 772 virtual const Type *xmeet( const Type *t ) const;
duke@435 773 virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
duke@435 774 virtual const Type *xdual() const; // Compute dual right now.
duke@435 775
duke@435 776 // Convenience common pre-built types.
duke@435 777 static const TypeInstPtr *NOTNULL;
duke@435 778 static const TypeInstPtr *BOTTOM;
duke@435 779 static const TypeInstPtr *MIRROR;
duke@435 780 static const TypeInstPtr *MARK;
duke@435 781 static const TypeInstPtr *KLASS;
duke@435 782 #ifndef PRODUCT
duke@435 783 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
duke@435 784 #endif
duke@435 785 };
duke@435 786
duke@435 787 //------------------------------TypeAryPtr-------------------------------------
duke@435 788 // Class of Java array pointers
duke@435 789 class TypeAryPtr : public TypeOopPtr {
duke@435 790 TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id), _ary(ary) {};
duke@435 791 virtual bool eq( const Type *t ) const;
duke@435 792 virtual int hash() const; // Type specific hashing
duke@435 793 const TypeAry *_ary; // Array we point into
duke@435 794
duke@435 795 public:
duke@435 796 // Accessors
duke@435 797 ciKlass* klass() const;
duke@435 798 const TypeAry* ary() const { return _ary; }
duke@435 799 const Type* elem() const { return _ary->_elem; }
duke@435 800 const TypeInt* size() const { return _ary->_size; }
duke@435 801
duke@435 802 static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = 0);
duke@435 803 // Constant pointer to array
duke@435 804 static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = 0);
duke@435 805
duke@435 806 // Convenience
duke@435 807 static const TypeAryPtr *make(ciObject* o);
duke@435 808
duke@435 809 // Return a 'ptr' version of this type
duke@435 810 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 811
duke@435 812 virtual const Type *cast_to_exactness(bool klass_is_exact) const;
duke@435 813
duke@435 814 virtual const TypeOopPtr *cast_to_instance(int instance_id) const;
duke@435 815
duke@435 816 virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
duke@435 817
duke@435 818 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 819 virtual const TypePtr *add_offset( int offset ) const;
duke@435 820
duke@435 821 virtual const Type *xmeet( const Type *t ) const;
duke@435 822 virtual const Type *xdual() const; // Compute dual right now.
duke@435 823
duke@435 824 // Convenience common pre-built types.
duke@435 825 static const TypeAryPtr *RANGE;
duke@435 826 static const TypeAryPtr *OOPS;
duke@435 827 static const TypeAryPtr *BYTES;
duke@435 828 static const TypeAryPtr *SHORTS;
duke@435 829 static const TypeAryPtr *CHARS;
duke@435 830 static const TypeAryPtr *INTS;
duke@435 831 static const TypeAryPtr *LONGS;
duke@435 832 static const TypeAryPtr *FLOATS;
duke@435 833 static const TypeAryPtr *DOUBLES;
duke@435 834 // selects one of the above:
duke@435 835 static const TypeAryPtr *get_array_body_type(BasicType elem) {
duke@435 836 assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
duke@435 837 return _array_body_type[elem];
duke@435 838 }
duke@435 839 static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
duke@435 840 // sharpen the type of an int which is used as an array size
duke@435 841 static const TypeInt* narrow_size_type(const TypeInt* size, BasicType elem);
duke@435 842 #ifndef PRODUCT
duke@435 843 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
duke@435 844 #endif
duke@435 845 };
duke@435 846
duke@435 847 //------------------------------TypeKlassPtr-----------------------------------
duke@435 848 // Class of Java Klass pointers
duke@435 849 class TypeKlassPtr : public TypeOopPtr {
duke@435 850 TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
duke@435 851
duke@435 852 virtual bool eq( const Type *t ) const;
duke@435 853 virtual int hash() const; // Type specific hashing
duke@435 854
duke@435 855 public:
duke@435 856 ciSymbol* name() const { return _klass->name(); }
duke@435 857
duke@435 858 // ptr to klass 'k'
duke@435 859 static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
duke@435 860 // ptr to klass 'k' with offset
duke@435 861 static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
duke@435 862 // ptr to klass 'k' or sub-klass
duke@435 863 static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
duke@435 864
duke@435 865 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 866
duke@435 867 virtual const Type *cast_to_exactness(bool klass_is_exact) const;
duke@435 868
duke@435 869 // corresponding pointer to instance, for a given class
duke@435 870 const TypeOopPtr* as_instance_type() const;
duke@435 871
duke@435 872 virtual const TypePtr *add_offset( int offset ) const;
duke@435 873 virtual const Type *xmeet( const Type *t ) const;
duke@435 874 virtual const Type *xdual() const; // Compute dual right now.
duke@435 875
duke@435 876 // Convenience common pre-built types.
duke@435 877 static const TypeKlassPtr* OBJECT; // Not-null object klass or below
duke@435 878 static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
duke@435 879 #ifndef PRODUCT
duke@435 880 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
duke@435 881 #endif
duke@435 882 };
duke@435 883
duke@435 884 //------------------------------TypeFunc---------------------------------------
duke@435 885 // Class of Array Types
duke@435 886 class TypeFunc : public Type {
duke@435 887 TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function), _domain(domain), _range(range) {}
duke@435 888 virtual bool eq( const Type *t ) const;
duke@435 889 virtual int hash() const; // Type specific hashing
duke@435 890 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 891 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 892 public:
duke@435 893 // Constants are shared among ADLC and VM
duke@435 894 enum { Control = AdlcVMDeps::Control,
duke@435 895 I_O = AdlcVMDeps::I_O,
duke@435 896 Memory = AdlcVMDeps::Memory,
duke@435 897 FramePtr = AdlcVMDeps::FramePtr,
duke@435 898 ReturnAdr = AdlcVMDeps::ReturnAdr,
duke@435 899 Parms = AdlcVMDeps::Parms
duke@435 900 };
duke@435 901
duke@435 902 const TypeTuple* const _domain; // Domain of inputs
duke@435 903 const TypeTuple* const _range; // Range of results
duke@435 904
duke@435 905 // Accessors:
duke@435 906 const TypeTuple* domain() const { return _domain; }
duke@435 907 const TypeTuple* range() const { return _range; }
duke@435 908
duke@435 909 static const TypeFunc *make(ciMethod* method);
duke@435 910 static const TypeFunc *make(ciSignature signature, const Type* extra);
duke@435 911 static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
duke@435 912
duke@435 913 virtual const Type *xmeet( const Type *t ) const;
duke@435 914 virtual const Type *xdual() const; // Compute dual right now.
duke@435 915
duke@435 916 BasicType return_type() const;
duke@435 917
duke@435 918 #ifndef PRODUCT
duke@435 919 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
duke@435 920 void print_flattened() const; // Print a 'flattened' signature
duke@435 921 #endif
duke@435 922 // Convenience common pre-built types.
duke@435 923 };
duke@435 924
duke@435 925 //------------------------------accessors--------------------------------------
duke@435 926 inline float Type::getf() const {
duke@435 927 assert( _base == FloatCon, "Not a FloatCon" );
duke@435 928 return ((TypeF*)this)->_f;
duke@435 929 }
duke@435 930
duke@435 931 inline double Type::getd() const {
duke@435 932 assert( _base == DoubleCon, "Not a DoubleCon" );
duke@435 933 return ((TypeD*)this)->_d;
duke@435 934 }
duke@435 935
duke@435 936 inline const TypeF *Type::is_float_constant() const {
duke@435 937 assert( _base == FloatCon, "Not a Float" );
duke@435 938 return (TypeF*)this;
duke@435 939 }
duke@435 940
duke@435 941 inline const TypeF *Type::isa_float_constant() const {
duke@435 942 return ( _base == FloatCon ? (TypeF*)this : NULL);
duke@435 943 }
duke@435 944
duke@435 945 inline const TypeD *Type::is_double_constant() const {
duke@435 946 assert( _base == DoubleCon, "Not a Double" );
duke@435 947 return (TypeD*)this;
duke@435 948 }
duke@435 949
duke@435 950 inline const TypeD *Type::isa_double_constant() const {
duke@435 951 return ( _base == DoubleCon ? (TypeD*)this : NULL);
duke@435 952 }
duke@435 953
duke@435 954 inline const TypeInt *Type::is_int() const {
duke@435 955 assert( _base == Int, "Not an Int" );
duke@435 956 return (TypeInt*)this;
duke@435 957 }
duke@435 958
duke@435 959 inline const TypeInt *Type::isa_int() const {
duke@435 960 return ( _base == Int ? (TypeInt*)this : NULL);
duke@435 961 }
duke@435 962
duke@435 963 inline const TypeLong *Type::is_long() const {
duke@435 964 assert( _base == Long, "Not a Long" );
duke@435 965 return (TypeLong*)this;
duke@435 966 }
duke@435 967
duke@435 968 inline const TypeLong *Type::isa_long() const {
duke@435 969 return ( _base == Long ? (TypeLong*)this : NULL);
duke@435 970 }
duke@435 971
duke@435 972 inline const TypeTuple *Type::is_tuple() const {
duke@435 973 assert( _base == Tuple, "Not a Tuple" );
duke@435 974 return (TypeTuple*)this;
duke@435 975 }
duke@435 976
duke@435 977 inline const TypeAry *Type::is_ary() const {
duke@435 978 assert( _base == Array , "Not an Array" );
duke@435 979 return (TypeAry*)this;
duke@435 980 }
duke@435 981
duke@435 982 inline const TypePtr *Type::is_ptr() const {
duke@435 983 // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
duke@435 984 assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
duke@435 985 return (TypePtr*)this;
duke@435 986 }
duke@435 987
duke@435 988 inline const TypePtr *Type::isa_ptr() const {
duke@435 989 // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
duke@435 990 return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
duke@435 991 }
duke@435 992
duke@435 993 inline const TypeOopPtr *Type::is_oopptr() const {
duke@435 994 // OopPtr is the first and KlassPtr the last, with no non-oops between.
duke@435 995 assert(_base >= OopPtr && _base <= KlassPtr, "Not a Java pointer" ) ;
duke@435 996 return (TypeOopPtr*)this;
duke@435 997 }
duke@435 998
duke@435 999 inline const TypeOopPtr *Type::isa_oopptr() const {
duke@435 1000 // OopPtr is the first and KlassPtr the last, with no non-oops between.
duke@435 1001 return (_base >= OopPtr && _base <= KlassPtr) ? (TypeOopPtr*)this : NULL;
duke@435 1002 }
duke@435 1003
duke@435 1004 inline const TypeRawPtr *Type::is_rawptr() const {
duke@435 1005 assert( _base == RawPtr, "Not a raw pointer" );
duke@435 1006 return (TypeRawPtr*)this;
duke@435 1007 }
duke@435 1008
duke@435 1009 inline const TypeInstPtr *Type::isa_instptr() const {
duke@435 1010 return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
duke@435 1011 }
duke@435 1012
duke@435 1013 inline const TypeInstPtr *Type::is_instptr() const {
duke@435 1014 assert( _base == InstPtr, "Not an object pointer" );
duke@435 1015 return (TypeInstPtr*)this;
duke@435 1016 }
duke@435 1017
duke@435 1018 inline const TypeAryPtr *Type::isa_aryptr() const {
duke@435 1019 return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
duke@435 1020 }
duke@435 1021
duke@435 1022 inline const TypeAryPtr *Type::is_aryptr() const {
duke@435 1023 assert( _base == AryPtr, "Not an array pointer" );
duke@435 1024 return (TypeAryPtr*)this;
duke@435 1025 }
duke@435 1026
duke@435 1027 inline const TypeKlassPtr *Type::isa_klassptr() const {
duke@435 1028 return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
duke@435 1029 }
duke@435 1030
duke@435 1031 inline const TypeKlassPtr *Type::is_klassptr() const {
duke@435 1032 assert( _base == KlassPtr, "Not a klass pointer" );
duke@435 1033 return (TypeKlassPtr*)this;
duke@435 1034 }
duke@435 1035
duke@435 1036 inline bool Type::is_floatingpoint() const {
duke@435 1037 if( (_base == FloatCon) || (_base == FloatBot) ||
duke@435 1038 (_base == DoubleCon) || (_base == DoubleBot) )
duke@435 1039 return true;
duke@435 1040 return false;
duke@435 1041 }
duke@435 1042
duke@435 1043
duke@435 1044 // ===============================================================
duke@435 1045 // Things that need to be 64-bits in the 64-bit build but
duke@435 1046 // 32-bits in the 32-bit build. Done this way to get full
duke@435 1047 // optimization AND strong typing.
duke@435 1048 #ifdef _LP64
duke@435 1049
duke@435 1050 // For type queries and asserts
duke@435 1051 #define is_intptr_t is_long
duke@435 1052 #define isa_intptr_t isa_long
duke@435 1053 #define find_intptr_t_type find_long_type
duke@435 1054 #define find_intptr_t_con find_long_con
duke@435 1055 #define TypeX TypeLong
duke@435 1056 #define Type_X Type::Long
duke@435 1057 #define TypeX_X TypeLong::LONG
duke@435 1058 #define TypeX_ZERO TypeLong::ZERO
duke@435 1059 // For 'ideal_reg' machine registers
duke@435 1060 #define Op_RegX Op_RegL
duke@435 1061 // For phase->intcon variants
duke@435 1062 #define MakeConX longcon
duke@435 1063 #define ConXNode ConLNode
duke@435 1064 // For array index arithmetic
duke@435 1065 #define MulXNode MulLNode
duke@435 1066 #define AndXNode AndLNode
duke@435 1067 #define OrXNode OrLNode
duke@435 1068 #define CmpXNode CmpLNode
duke@435 1069 #define SubXNode SubLNode
duke@435 1070 #define LShiftXNode LShiftLNode
duke@435 1071 // For object size computation:
duke@435 1072 #define AddXNode AddLNode
duke@435 1073 // For card marks and hashcodes
duke@435 1074 #define URShiftXNode URShiftLNode
duke@435 1075 // Opcodes
duke@435 1076 #define Op_LShiftX Op_LShiftL
duke@435 1077 #define Op_AndX Op_AndL
duke@435 1078 #define Op_AddX Op_AddL
duke@435 1079 #define Op_SubX Op_SubL
duke@435 1080 // conversions
duke@435 1081 #define ConvI2X(x) ConvI2L(x)
duke@435 1082 #define ConvL2X(x) (x)
duke@435 1083 #define ConvX2I(x) ConvL2I(x)
duke@435 1084 #define ConvX2L(x) (x)
duke@435 1085
duke@435 1086 #else
duke@435 1087
duke@435 1088 // For type queries and asserts
duke@435 1089 #define is_intptr_t is_int
duke@435 1090 #define isa_intptr_t isa_int
duke@435 1091 #define find_intptr_t_type find_int_type
duke@435 1092 #define find_intptr_t_con find_int_con
duke@435 1093 #define TypeX TypeInt
duke@435 1094 #define Type_X Type::Int
duke@435 1095 #define TypeX_X TypeInt::INT
duke@435 1096 #define TypeX_ZERO TypeInt::ZERO
duke@435 1097 // For 'ideal_reg' machine registers
duke@435 1098 #define Op_RegX Op_RegI
duke@435 1099 // For phase->intcon variants
duke@435 1100 #define MakeConX intcon
duke@435 1101 #define ConXNode ConINode
duke@435 1102 // For array index arithmetic
duke@435 1103 #define MulXNode MulINode
duke@435 1104 #define AndXNode AndINode
duke@435 1105 #define OrXNode OrINode
duke@435 1106 #define CmpXNode CmpINode
duke@435 1107 #define SubXNode SubINode
duke@435 1108 #define LShiftXNode LShiftINode
duke@435 1109 // For object size computation:
duke@435 1110 #define AddXNode AddINode
duke@435 1111 // For card marks and hashcodes
duke@435 1112 #define URShiftXNode URShiftINode
duke@435 1113 // Opcodes
duke@435 1114 #define Op_LShiftX Op_LShiftI
duke@435 1115 #define Op_AndX Op_AndI
duke@435 1116 #define Op_AddX Op_AddI
duke@435 1117 #define Op_SubX Op_SubI
duke@435 1118 // conversions
duke@435 1119 #define ConvI2X(x) (x)
duke@435 1120 #define ConvL2X(x) ConvL2I(x)
duke@435 1121 #define ConvX2I(x) (x)
duke@435 1122 #define ConvX2L(x) ConvI2L(x)
duke@435 1123
duke@435 1124 #endif

mercurial