src/share/vm/opto/type.hpp

Fri, 15 Jun 2012 01:25:19 -0700

author
kvn
date
Fri, 15 Jun 2012 01:25:19 -0700
changeset 3882
8c92982cbbc4
parent 3138
f6f3bb0ee072
child 4037
da91efe96a93
permissions
-rw-r--r--

7119644: Increase superword's vector size up to 256 bits
Summary: Increase vector size up to 256-bits for YMM AVX registers on x86.
Reviewed-by: never, twisti, roland

duke@435 1 /*
kvn@3882 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_OPTO_TYPE_HPP
stefank@2314 26 #define SHARE_VM_OPTO_TYPE_HPP
stefank@2314 27
stefank@2314 28 #include "libadt/port.hpp"
stefank@2314 29 #include "opto/adlcVMDeps.hpp"
stefank@2314 30 #include "runtime/handles.hpp"
stefank@2314 31
duke@435 32 // Portions of code courtesy of Clifford Click
duke@435 33
duke@435 34 // Optimization - Graph Style
duke@435 35
duke@435 36
duke@435 37 // This class defines a Type lattice. The lattice is used in the constant
duke@435 38 // propagation algorithms, and for some type-checking of the iloc code.
duke@435 39 // Basic types include RSD's (lower bound, upper bound, stride for integers),
duke@435 40 // float & double precision constants, sets of data-labels and code-labels.
duke@435 41 // The complete lattice is described below. Subtypes have no relationship to
duke@435 42 // up or down in the lattice; that is entirely determined by the behavior of
duke@435 43 // the MEET/JOIN functions.
duke@435 44
duke@435 45 class Dict;
duke@435 46 class Type;
duke@435 47 class TypeD;
duke@435 48 class TypeF;
duke@435 49 class TypeInt;
duke@435 50 class TypeLong;
coleenp@548 51 class TypeNarrowOop;
duke@435 52 class TypeAry;
duke@435 53 class TypeTuple;
kvn@3882 54 class TypeVect;
kvn@3882 55 class TypeVectS;
kvn@3882 56 class TypeVectD;
kvn@3882 57 class TypeVectX;
kvn@3882 58 class TypeVectY;
duke@435 59 class TypePtr;
duke@435 60 class TypeRawPtr;
duke@435 61 class TypeOopPtr;
duke@435 62 class TypeInstPtr;
duke@435 63 class TypeAryPtr;
duke@435 64 class TypeKlassPtr;
duke@435 65
duke@435 66 //------------------------------Type-------------------------------------------
duke@435 67 // Basic Type object, represents a set of primitive Values.
duke@435 68 // Types are hash-cons'd into a private class dictionary, so only one of each
duke@435 69 // different kind of Type exists. Types are never modified after creation, so
duke@435 70 // all their interesting fields are constant.
duke@435 71 class Type {
never@3138 72 friend class VMStructs;
never@3138 73
duke@435 74 public:
duke@435 75 enum TYPES {
duke@435 76 Bad=0, // Type check
duke@435 77 Control, // Control of code (not in lattice)
duke@435 78 Top, // Top of the lattice
duke@435 79 Int, // Integer range (lo-hi)
duke@435 80 Long, // Long integer range (lo-hi)
duke@435 81 Half, // Placeholder half of doubleword
coleenp@548 82 NarrowOop, // Compressed oop pointer
duke@435 83
duke@435 84 Tuple, // Method signature or object layout
duke@435 85 Array, // Array types
kvn@3882 86 VectorS, // 32bit Vector types
kvn@3882 87 VectorD, // 64bit Vector types
kvn@3882 88 VectorX, // 128bit Vector types
kvn@3882 89 VectorY, // 256bit Vector types
duke@435 90
duke@435 91 AnyPtr, // Any old raw, klass, inst, or array pointer
duke@435 92 RawPtr, // Raw (non-oop) pointers
duke@435 93 OopPtr, // Any and all Java heap entities
duke@435 94 InstPtr, // Instance pointers (non-array objects)
duke@435 95 AryPtr, // Array pointers
duke@435 96 KlassPtr, // Klass pointers
duke@435 97 // (Ptr order matters: See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
duke@435 98
duke@435 99 Function, // Function signature
duke@435 100 Abio, // Abstract I/O
duke@435 101 Return_Address, // Subroutine return address
duke@435 102 Memory, // Abstract store
duke@435 103 FloatTop, // No float value
duke@435 104 FloatCon, // Floating point constant
duke@435 105 FloatBot, // Any float value
duke@435 106 DoubleTop, // No double value
duke@435 107 DoubleCon, // Double precision constant
duke@435 108 DoubleBot, // Any double value
duke@435 109 Bottom, // Bottom of lattice
duke@435 110 lastype // Bogus ending type (not in lattice)
duke@435 111 };
duke@435 112
duke@435 113 // Signal values for offsets from a base pointer
duke@435 114 enum OFFSET_SIGNALS {
duke@435 115 OffsetTop = -2000000000, // undefined offset
duke@435 116 OffsetBot = -2000000001 // any possible offset
duke@435 117 };
duke@435 118
duke@435 119 // Min and max WIDEN values.
duke@435 120 enum WIDEN {
duke@435 121 WidenMin = 0,
duke@435 122 WidenMax = 3
duke@435 123 };
duke@435 124
duke@435 125 private:
duke@435 126 // Dictionary of types shared among compilations.
duke@435 127 static Dict* _shared_type_dict;
duke@435 128
duke@435 129 static int uhash( const Type *const t );
duke@435 130 // Structural equality check. Assumes that cmp() has already compared
duke@435 131 // the _base types and thus knows it can cast 't' appropriately.
duke@435 132 virtual bool eq( const Type *t ) const;
duke@435 133
duke@435 134 // Top-level hash-table of types
duke@435 135 static Dict *type_dict() {
duke@435 136 return Compile::current()->type_dict();
duke@435 137 }
duke@435 138
duke@435 139 // DUAL operation: reflect around lattice centerline. Used instead of
duke@435 140 // join to ensure my lattice is symmetric up and down. Dual is computed
duke@435 141 // lazily, on demand, and cached in _dual.
duke@435 142 const Type *_dual; // Cached dual value
duke@435 143 // Table for efficient dualing of base types
duke@435 144 static const TYPES dual_type[lastype];
duke@435 145
duke@435 146 protected:
duke@435 147 // Each class of type is also identified by its base.
duke@435 148 const TYPES _base; // Enum of Types type
duke@435 149
duke@435 150 Type( TYPES t ) : _dual(NULL), _base(t) {} // Simple types
duke@435 151 // ~Type(); // Use fast deallocation
duke@435 152 const Type *hashcons(); // Hash-cons the type
duke@435 153
duke@435 154 public:
duke@435 155
duke@435 156 inline void* operator new( size_t x ) {
duke@435 157 Compile* compile = Compile::current();
duke@435 158 compile->set_type_last_size(x);
duke@435 159 void *temp = compile->type_arena()->Amalloc_D(x);
duke@435 160 compile->set_type_hwm(temp);
duke@435 161 return temp;
duke@435 162 }
duke@435 163 inline void operator delete( void* ptr ) {
duke@435 164 Compile* compile = Compile::current();
duke@435 165 compile->type_arena()->Afree(ptr,compile->type_last_size());
duke@435 166 }
duke@435 167
duke@435 168 // Initialize the type system for a particular compilation.
duke@435 169 static void Initialize(Compile* compile);
duke@435 170
duke@435 171 // Initialize the types shared by all compilations.
duke@435 172 static void Initialize_shared(Compile* compile);
duke@435 173
duke@435 174 TYPES base() const {
duke@435 175 assert(_base > Bad && _base < lastype, "sanity");
duke@435 176 return _base;
duke@435 177 }
duke@435 178
duke@435 179 // Create a new hash-consd type
duke@435 180 static const Type *make(enum TYPES);
duke@435 181 // Test for equivalence of types
duke@435 182 static int cmp( const Type *const t1, const Type *const t2 );
duke@435 183 // Test for higher or equal in lattice
duke@435 184 int higher_equal( const Type *t ) const { return !cmp(meet(t),t); }
duke@435 185
duke@435 186 // MEET operation; lower in lattice.
duke@435 187 const Type *meet( const Type *t ) const;
duke@435 188 // WIDEN: 'widens' for Ints and other range types
never@1444 189 virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
duke@435 190 // NARROW: complement for widen, used by pessimistic phases
duke@435 191 virtual const Type *narrow( const Type *old ) const { return this; }
duke@435 192
duke@435 193 // DUAL operation: reflect around lattice centerline. Used instead of
duke@435 194 // join to ensure my lattice is symmetric up and down.
duke@435 195 const Type *dual() const { return _dual; }
duke@435 196
duke@435 197 // Compute meet dependent on base type
duke@435 198 virtual const Type *xmeet( const Type *t ) const;
duke@435 199 virtual const Type *xdual() const; // Compute dual right now.
duke@435 200
duke@435 201 // JOIN operation; higher in lattice. Done by finding the dual of the
duke@435 202 // meet of the dual of the 2 inputs.
duke@435 203 const Type *join( const Type *t ) const {
duke@435 204 return dual()->meet(t->dual())->dual(); }
duke@435 205
duke@435 206 // Modified version of JOIN adapted to the needs Node::Value.
duke@435 207 // Normalizes all empty values to TOP. Does not kill _widen bits.
duke@435 208 // Currently, it also works around limitations involving interface types.
duke@435 209 virtual const Type *filter( const Type *kills ) const;
duke@435 210
kvn@1255 211 #ifdef ASSERT
kvn@1255 212 // One type is interface, the other is oop
kvn@1255 213 virtual bool interface_vs_oop(const Type *t) const;
kvn@1255 214 #endif
kvn@1255 215
coleenp@548 216 // Returns true if this pointer points at memory which contains a
kvn@598 217 // compressed oop references.
kvn@598 218 bool is_ptr_to_narrowoop() const;
coleenp@548 219
duke@435 220 // Convenience access
duke@435 221 float getf() const;
duke@435 222 double getd() const;
duke@435 223
duke@435 224 const TypeInt *is_int() const;
duke@435 225 const TypeInt *isa_int() const; // Returns NULL if not an Int
duke@435 226 const TypeLong *is_long() const;
duke@435 227 const TypeLong *isa_long() const; // Returns NULL if not a Long
duke@435 228 const TypeD *is_double_constant() const; // Asserts it is a DoubleCon
duke@435 229 const TypeD *isa_double_constant() const; // Returns NULL if not a DoubleCon
duke@435 230 const TypeF *is_float_constant() const; // Asserts it is a FloatCon
duke@435 231 const TypeF *isa_float_constant() const; // Returns NULL if not a FloatCon
duke@435 232 const TypeTuple *is_tuple() const; // Collection of fields, NOT a pointer
duke@435 233 const TypeAry *is_ary() const; // Array, NOT array pointer
kvn@3882 234 const TypeVect *is_vect() const; // Vector
kvn@3882 235 const TypeVect *isa_vect() const; // Returns NULL if not a Vector
duke@435 236 const TypePtr *is_ptr() const; // Asserts it is a ptr type
duke@435 237 const TypePtr *isa_ptr() const; // Returns NULL if not ptr type
coleenp@548 238 const TypeRawPtr *isa_rawptr() const; // NOT Java oop
coleenp@548 239 const TypeRawPtr *is_rawptr() const; // Asserts is rawptr
kvn@598 240 const TypeNarrowOop *is_narrowoop() const; // Java-style GC'd pointer
kvn@598 241 const TypeNarrowOop *isa_narrowoop() const; // Returns NULL if not oop ptr type
coleenp@548 242 const TypeOopPtr *isa_oopptr() const; // Returns NULL if not oop ptr type
coleenp@548 243 const TypeOopPtr *is_oopptr() const; // Java-style GC'd pointer
coleenp@548 244 const TypeKlassPtr *isa_klassptr() const; // Returns NULL if not KlassPtr
coleenp@548 245 const TypeKlassPtr *is_klassptr() const; // assert if not KlassPtr
coleenp@548 246 const TypeInstPtr *isa_instptr() const; // Returns NULL if not InstPtr
coleenp@548 247 const TypeInstPtr *is_instptr() const; // Instance
coleenp@548 248 const TypeAryPtr *isa_aryptr() const; // Returns NULL if not AryPtr
coleenp@548 249 const TypeAryPtr *is_aryptr() const; // Array oop
duke@435 250 virtual bool is_finite() const; // Has a finite value
duke@435 251 virtual bool is_nan() const; // Is not a number (NaN)
duke@435 252
kvn@656 253 // Returns this ptr type or the equivalent ptr type for this compressed pointer.
kvn@656 254 const TypePtr* make_ptr() const;
never@1262 255
never@1262 256 // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
never@1262 257 // Asserts if the underlying type is not an oopptr or narrowoop.
never@1262 258 const TypeOopPtr* make_oopptr() const;
never@1262 259
kvn@656 260 // Returns this compressed pointer or the equivalent compressed version
kvn@656 261 // of this pointer type.
kvn@656 262 const TypeNarrowOop* make_narrowoop() const;
kvn@656 263
duke@435 264 // Special test for register pressure heuristic
duke@435 265 bool is_floatingpoint() const; // True if Float or Double base type
duke@435 266
duke@435 267 // Do you have memory, directly or through a tuple?
duke@435 268 bool has_memory( ) const;
duke@435 269
duke@435 270 // Are you a pointer type or not?
duke@435 271 bool isa_oop_ptr() const;
duke@435 272
duke@435 273 // TRUE if type is a singleton
duke@435 274 virtual bool singleton(void) const;
duke@435 275
duke@435 276 // TRUE if type is above the lattice centerline, and is therefore vacuous
duke@435 277 virtual bool empty(void) const;
duke@435 278
duke@435 279 // Return a hash for this type. The hash function is public so ConNode
duke@435 280 // (constants) can hash on their constant, which is represented by a Type.
duke@435 281 virtual int hash() const;
duke@435 282
duke@435 283 // Map ideal registers (machine types) to ideal types
duke@435 284 static const Type *mreg2type[];
duke@435 285
duke@435 286 // Printing, statistics
duke@435 287 static const char * const msg[lastype]; // Printable strings
duke@435 288 #ifndef PRODUCT
duke@435 289 void dump_on(outputStream *st) const;
duke@435 290 void dump() const {
duke@435 291 dump_on(tty);
duke@435 292 }
duke@435 293 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 294 static void dump_stats();
duke@435 295 static void verify_lastype(); // Check that arrays match type enum
duke@435 296 #endif
duke@435 297 void typerr(const Type *t) const; // Mixing types error
duke@435 298
duke@435 299 // Create basic type
duke@435 300 static const Type* get_const_basic_type(BasicType type) {
duke@435 301 assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
duke@435 302 return _const_basic_type[type];
duke@435 303 }
duke@435 304
duke@435 305 // Mapping to the array element's basic type.
duke@435 306 BasicType array_element_basic_type() const;
duke@435 307
duke@435 308 // Create standard type for a ciType:
duke@435 309 static const Type* get_const_type(ciType* type);
duke@435 310
duke@435 311 // Create standard zero value:
duke@435 312 static const Type* get_zero_type(BasicType type) {
duke@435 313 assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
duke@435 314 return _zero_type[type];
duke@435 315 }
duke@435 316
duke@435 317 // Report if this is a zero value (not top).
duke@435 318 bool is_zero_type() const {
duke@435 319 BasicType type = basic_type();
duke@435 320 if (type == T_VOID || type >= T_CONFLICT)
duke@435 321 return false;
duke@435 322 else
duke@435 323 return (this == _zero_type[type]);
duke@435 324 }
duke@435 325
duke@435 326 // Convenience common pre-built types.
duke@435 327 static const Type *ABIO;
duke@435 328 static const Type *BOTTOM;
duke@435 329 static const Type *CONTROL;
duke@435 330 static const Type *DOUBLE;
duke@435 331 static const Type *FLOAT;
duke@435 332 static const Type *HALF;
duke@435 333 static const Type *MEMORY;
duke@435 334 static const Type *MULTI;
duke@435 335 static const Type *RETURN_ADDRESS;
duke@435 336 static const Type *TOP;
duke@435 337
duke@435 338 // Mapping from compiler type to VM BasicType
duke@435 339 BasicType basic_type() const { return _basic_type[_base]; }
duke@435 340
duke@435 341 // Mapping from CI type system to compiler type:
duke@435 342 static const Type* get_typeflow_type(ciType* type);
duke@435 343
duke@435 344 private:
duke@435 345 // support arrays
duke@435 346 static const BasicType _basic_type[];
duke@435 347 static const Type* _zero_type[T_CONFLICT+1];
duke@435 348 static const Type* _const_basic_type[T_CONFLICT+1];
duke@435 349 };
duke@435 350
duke@435 351 //------------------------------TypeF------------------------------------------
duke@435 352 // Class of Float-Constant Types.
duke@435 353 class TypeF : public Type {
duke@435 354 TypeF( float f ) : Type(FloatCon), _f(f) {};
duke@435 355 public:
duke@435 356 virtual bool eq( const Type *t ) const;
duke@435 357 virtual int hash() const; // Type specific hashing
duke@435 358 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 359 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 360 public:
duke@435 361 const float _f; // Float constant
duke@435 362
duke@435 363 static const TypeF *make(float f);
duke@435 364
duke@435 365 virtual bool is_finite() const; // Has a finite value
duke@435 366 virtual bool is_nan() const; // Is not a number (NaN)
duke@435 367
duke@435 368 virtual const Type *xmeet( const Type *t ) const;
duke@435 369 virtual const Type *xdual() const; // Compute dual right now.
duke@435 370 // Convenience common pre-built types.
duke@435 371 static const TypeF *ZERO; // positive zero only
duke@435 372 static const TypeF *ONE;
duke@435 373 #ifndef PRODUCT
duke@435 374 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 375 #endif
duke@435 376 };
duke@435 377
duke@435 378 //------------------------------TypeD------------------------------------------
duke@435 379 // Class of Double-Constant Types.
duke@435 380 class TypeD : public Type {
duke@435 381 TypeD( double d ) : Type(DoubleCon), _d(d) {};
duke@435 382 public:
duke@435 383 virtual bool eq( const Type *t ) const;
duke@435 384 virtual int hash() const; // Type specific hashing
duke@435 385 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 386 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 387 public:
duke@435 388 const double _d; // Double constant
duke@435 389
duke@435 390 static const TypeD *make(double d);
duke@435 391
duke@435 392 virtual bool is_finite() const; // Has a finite value
duke@435 393 virtual bool is_nan() const; // Is not a number (NaN)
duke@435 394
duke@435 395 virtual const Type *xmeet( const Type *t ) const;
duke@435 396 virtual const Type *xdual() const; // Compute dual right now.
duke@435 397 // Convenience common pre-built types.
duke@435 398 static const TypeD *ZERO; // positive zero only
duke@435 399 static const TypeD *ONE;
duke@435 400 #ifndef PRODUCT
duke@435 401 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 402 #endif
duke@435 403 };
duke@435 404
duke@435 405 //------------------------------TypeInt----------------------------------------
duke@435 406 // Class of integer ranges, the set of integers between a lower bound and an
duke@435 407 // upper bound, inclusive.
duke@435 408 class TypeInt : public Type {
duke@435 409 TypeInt( jint lo, jint hi, int w );
duke@435 410 public:
duke@435 411 virtual bool eq( const Type *t ) const;
duke@435 412 virtual int hash() const; // Type specific hashing
duke@435 413 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 414 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 415 public:
duke@435 416 const jint _lo, _hi; // Lower bound, upper bound
duke@435 417 const short _widen; // Limit on times we widen this sucker
duke@435 418
duke@435 419 static const TypeInt *make(jint lo);
duke@435 420 // must always specify w
duke@435 421 static const TypeInt *make(jint lo, jint hi, int w);
duke@435 422
duke@435 423 // Check for single integer
duke@435 424 int is_con() const { return _lo==_hi; }
duke@435 425 bool is_con(int i) const { return is_con() && _lo == i; }
duke@435 426 jint get_con() const { assert( is_con(), "" ); return _lo; }
duke@435 427
duke@435 428 virtual bool is_finite() const; // Has a finite value
duke@435 429
duke@435 430 virtual const Type *xmeet( const Type *t ) const;
duke@435 431 virtual const Type *xdual() const; // Compute dual right now.
never@1444 432 virtual const Type *widen( const Type *t, const Type* limit_type ) const;
duke@435 433 virtual const Type *narrow( const Type *t ) const;
duke@435 434 // Do not kill _widen bits.
duke@435 435 virtual const Type *filter( const Type *kills ) const;
duke@435 436 // Convenience common pre-built types.
duke@435 437 static const TypeInt *MINUS_1;
duke@435 438 static const TypeInt *ZERO;
duke@435 439 static const TypeInt *ONE;
duke@435 440 static const TypeInt *BOOL;
duke@435 441 static const TypeInt *CC;
duke@435 442 static const TypeInt *CC_LT; // [-1] == MINUS_1
duke@435 443 static const TypeInt *CC_GT; // [1] == ONE
duke@435 444 static const TypeInt *CC_EQ; // [0] == ZERO
duke@435 445 static const TypeInt *CC_LE; // [-1,0]
duke@435 446 static const TypeInt *CC_GE; // [0,1] == BOOL (!)
duke@435 447 static const TypeInt *BYTE;
twisti@1059 448 static const TypeInt *UBYTE;
duke@435 449 static const TypeInt *CHAR;
duke@435 450 static const TypeInt *SHORT;
duke@435 451 static const TypeInt *POS;
duke@435 452 static const TypeInt *POS1;
duke@435 453 static const TypeInt *INT;
duke@435 454 static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
duke@435 455 #ifndef PRODUCT
duke@435 456 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 457 #endif
duke@435 458 };
duke@435 459
duke@435 460
duke@435 461 //------------------------------TypeLong---------------------------------------
duke@435 462 // Class of long integer ranges, the set of integers between a lower bound and
duke@435 463 // an upper bound, inclusive.
duke@435 464 class TypeLong : public Type {
duke@435 465 TypeLong( jlong lo, jlong hi, int w );
duke@435 466 public:
duke@435 467 virtual bool eq( const Type *t ) const;
duke@435 468 virtual int hash() const; // Type specific hashing
duke@435 469 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 470 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 471 public:
duke@435 472 const jlong _lo, _hi; // Lower bound, upper bound
duke@435 473 const short _widen; // Limit on times we widen this sucker
duke@435 474
duke@435 475 static const TypeLong *make(jlong lo);
duke@435 476 // must always specify w
duke@435 477 static const TypeLong *make(jlong lo, jlong hi, int w);
duke@435 478
duke@435 479 // Check for single integer
duke@435 480 int is_con() const { return _lo==_hi; }
rasbold@580 481 bool is_con(int i) const { return is_con() && _lo == i; }
duke@435 482 jlong get_con() const { assert( is_con(), "" ); return _lo; }
duke@435 483
duke@435 484 virtual bool is_finite() const; // Has a finite value
duke@435 485
duke@435 486 virtual const Type *xmeet( const Type *t ) const;
duke@435 487 virtual const Type *xdual() const; // Compute dual right now.
never@1444 488 virtual const Type *widen( const Type *t, const Type* limit_type ) const;
duke@435 489 virtual const Type *narrow( const Type *t ) const;
duke@435 490 // Do not kill _widen bits.
duke@435 491 virtual const Type *filter( const Type *kills ) const;
duke@435 492 // Convenience common pre-built types.
duke@435 493 static const TypeLong *MINUS_1;
duke@435 494 static const TypeLong *ZERO;
duke@435 495 static const TypeLong *ONE;
duke@435 496 static const TypeLong *POS;
duke@435 497 static const TypeLong *LONG;
duke@435 498 static const TypeLong *INT; // 32-bit subrange [min_jint..max_jint]
duke@435 499 static const TypeLong *UINT; // 32-bit unsigned [0..max_juint]
duke@435 500 #ifndef PRODUCT
duke@435 501 virtual void dump2( Dict &d, uint, outputStream *st ) const;// Specialized per-Type dumping
duke@435 502 #endif
duke@435 503 };
duke@435 504
duke@435 505 //------------------------------TypeTuple--------------------------------------
duke@435 506 // Class of Tuple Types, essentially type collections for function signatures
duke@435 507 // and class layouts. It happens to also be a fast cache for the HotSpot
duke@435 508 // signature types.
duke@435 509 class TypeTuple : public Type {
duke@435 510 TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
duke@435 511 public:
duke@435 512 virtual bool eq( const Type *t ) const;
duke@435 513 virtual int hash() const; // Type specific hashing
duke@435 514 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 515 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 516
duke@435 517 public:
duke@435 518 const uint _cnt; // Count of fields
duke@435 519 const Type ** const _fields; // Array of field types
duke@435 520
duke@435 521 // Accessors:
duke@435 522 uint cnt() const { return _cnt; }
duke@435 523 const Type* field_at(uint i) const {
duke@435 524 assert(i < _cnt, "oob");
duke@435 525 return _fields[i];
duke@435 526 }
duke@435 527 void set_field_at(uint i, const Type* t) {
duke@435 528 assert(i < _cnt, "oob");
duke@435 529 _fields[i] = t;
duke@435 530 }
duke@435 531
duke@435 532 static const TypeTuple *make( uint cnt, const Type **fields );
duke@435 533 static const TypeTuple *make_range(ciSignature *sig);
duke@435 534 static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
duke@435 535
duke@435 536 // Subroutine call type with space allocated for argument types
duke@435 537 static const Type **fields( uint arg_cnt );
duke@435 538
duke@435 539 virtual const Type *xmeet( const Type *t ) const;
duke@435 540 virtual const Type *xdual() const; // Compute dual right now.
duke@435 541 // Convenience common pre-built types.
duke@435 542 static const TypeTuple *IFBOTH;
duke@435 543 static const TypeTuple *IFFALSE;
duke@435 544 static const TypeTuple *IFTRUE;
duke@435 545 static const TypeTuple *IFNEITHER;
duke@435 546 static const TypeTuple *LOOPBODY;
duke@435 547 static const TypeTuple *MEMBAR;
duke@435 548 static const TypeTuple *STORECONDITIONAL;
duke@435 549 static const TypeTuple *START_I2C;
duke@435 550 static const TypeTuple *INT_PAIR;
duke@435 551 static const TypeTuple *LONG_PAIR;
duke@435 552 #ifndef PRODUCT
duke@435 553 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
duke@435 554 #endif
duke@435 555 };
duke@435 556
duke@435 557 //------------------------------TypeAry----------------------------------------
duke@435 558 // Class of Array Types
duke@435 559 class TypeAry : public Type {
duke@435 560 TypeAry( const Type *elem, const TypeInt *size) : Type(Array),
duke@435 561 _elem(elem), _size(size) {}
duke@435 562 public:
duke@435 563 virtual bool eq( const Type *t ) const;
duke@435 564 virtual int hash() const; // Type specific hashing
duke@435 565 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 566 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 567
duke@435 568 private:
duke@435 569 const Type *_elem; // Element type of array
duke@435 570 const TypeInt *_size; // Elements in array
duke@435 571 friend class TypeAryPtr;
duke@435 572
duke@435 573 public:
duke@435 574 static const TypeAry *make( const Type *elem, const TypeInt *size);
duke@435 575
duke@435 576 virtual const Type *xmeet( const Type *t ) const;
duke@435 577 virtual const Type *xdual() const; // Compute dual right now.
duke@435 578 bool ary_must_be_exact() const; // true if arrays of such are never generic
kvn@1255 579 #ifdef ASSERT
kvn@1255 580 // One type is interface, the other is oop
kvn@1255 581 virtual bool interface_vs_oop(const Type *t) const;
kvn@1255 582 #endif
duke@435 583 #ifndef PRODUCT
duke@435 584 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
duke@435 585 #endif
duke@435 586 };
duke@435 587
kvn@3882 588 //------------------------------TypeVect---------------------------------------
kvn@3882 589 // Class of Vector Types
kvn@3882 590 class TypeVect : public Type {
kvn@3882 591 const Type* _elem; // Vector's element type
kvn@3882 592 const uint _length; // Elements in vector (power of 2)
kvn@3882 593
kvn@3882 594 protected:
kvn@3882 595 TypeVect(TYPES t, const Type* elem, uint length) : Type(t),
kvn@3882 596 _elem(elem), _length(length) {}
kvn@3882 597
kvn@3882 598 public:
kvn@3882 599 const Type* element_type() const { return _elem; }
kvn@3882 600 BasicType element_basic_type() const { return _elem->array_element_basic_type(); }
kvn@3882 601 uint length() const { return _length; }
kvn@3882 602 uint length_in_bytes() const {
kvn@3882 603 return _length * type2aelembytes(element_basic_type());
kvn@3882 604 }
kvn@3882 605
kvn@3882 606 virtual bool eq(const Type *t) const;
kvn@3882 607 virtual int hash() const; // Type specific hashing
kvn@3882 608 virtual bool singleton(void) const; // TRUE if type is a singleton
kvn@3882 609 virtual bool empty(void) const; // TRUE if type is vacuous
kvn@3882 610
kvn@3882 611 static const TypeVect *make(const BasicType elem_bt, uint length) {
kvn@3882 612 // Use bottom primitive type.
kvn@3882 613 return make(get_const_basic_type(elem_bt), length);
kvn@3882 614 }
kvn@3882 615 // Used directly by Replicate nodes to construct singleton vector.
kvn@3882 616 static const TypeVect *make(const Type* elem, uint length);
kvn@3882 617
kvn@3882 618 virtual const Type *xmeet( const Type *t) const;
kvn@3882 619 virtual const Type *xdual() const; // Compute dual right now.
kvn@3882 620
kvn@3882 621 static const TypeVect *VECTS;
kvn@3882 622 static const TypeVect *VECTD;
kvn@3882 623 static const TypeVect *VECTX;
kvn@3882 624 static const TypeVect *VECTY;
kvn@3882 625
kvn@3882 626 #ifndef PRODUCT
kvn@3882 627 virtual void dump2(Dict &d, uint, outputStream *st) const; // Specialized per-Type dumping
kvn@3882 628 #endif
kvn@3882 629 };
kvn@3882 630
kvn@3882 631 class TypeVectS : public TypeVect {
kvn@3882 632 friend class TypeVect;
kvn@3882 633 TypeVectS(const Type* elem, uint length) : TypeVect(VectorS, elem, length) {}
kvn@3882 634 };
kvn@3882 635
kvn@3882 636 class TypeVectD : public TypeVect {
kvn@3882 637 friend class TypeVect;
kvn@3882 638 TypeVectD(const Type* elem, uint length) : TypeVect(VectorD, elem, length) {}
kvn@3882 639 };
kvn@3882 640
kvn@3882 641 class TypeVectX : public TypeVect {
kvn@3882 642 friend class TypeVect;
kvn@3882 643 TypeVectX(const Type* elem, uint length) : TypeVect(VectorX, elem, length) {}
kvn@3882 644 };
kvn@3882 645
kvn@3882 646 class TypeVectY : public TypeVect {
kvn@3882 647 friend class TypeVect;
kvn@3882 648 TypeVectY(const Type* elem, uint length) : TypeVect(VectorY, elem, length) {}
kvn@3882 649 };
kvn@3882 650
duke@435 651 //------------------------------TypePtr----------------------------------------
duke@435 652 // Class of machine Pointer Types: raw data, instances or arrays.
duke@435 653 // If the _base enum is AnyPtr, then this refers to all of the above.
duke@435 654 // Otherwise the _base will indicate which subset of pointers is affected,
duke@435 655 // and the class will be inherited from.
duke@435 656 class TypePtr : public Type {
coleenp@548 657 friend class TypeNarrowOop;
duke@435 658 public:
duke@435 659 enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
duke@435 660 protected:
duke@435 661 TypePtr( TYPES t, PTR ptr, int offset ) : Type(t), _ptr(ptr), _offset(offset) {}
duke@435 662 virtual bool eq( const Type *t ) const;
duke@435 663 virtual int hash() const; // Type specific hashing
duke@435 664 static const PTR ptr_meet[lastPTR][lastPTR];
duke@435 665 static const PTR ptr_dual[lastPTR];
duke@435 666 static const char * const ptr_msg[lastPTR];
duke@435 667
duke@435 668 public:
duke@435 669 const int _offset; // Offset into oop, with TOP & BOT
duke@435 670 const PTR _ptr; // Pointer equivalence class
duke@435 671
duke@435 672 const int offset() const { return _offset; }
duke@435 673 const PTR ptr() const { return _ptr; }
duke@435 674
duke@435 675 static const TypePtr *make( TYPES t, PTR ptr, int offset );
duke@435 676
duke@435 677 // Return a 'ptr' version of this type
duke@435 678 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 679
duke@435 680 virtual intptr_t get_con() const;
duke@435 681
kvn@741 682 int xadd_offset( intptr_t offset ) const;
kvn@741 683 virtual const TypePtr *add_offset( intptr_t offset ) const;
duke@435 684
duke@435 685 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 686 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 687 virtual const Type *xmeet( const Type *t ) const;
duke@435 688 int meet_offset( int offset ) const;
duke@435 689 int dual_offset( ) const;
duke@435 690 virtual const Type *xdual() const; // Compute dual right now.
duke@435 691
duke@435 692 // meet, dual and join over pointer equivalence sets
duke@435 693 PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
duke@435 694 PTR dual_ptr() const { return ptr_dual[ptr()]; }
duke@435 695
duke@435 696 // This is textually confusing unless one recalls that
duke@435 697 // join(t) == dual()->meet(t->dual())->dual().
duke@435 698 PTR join_ptr( const PTR in_ptr ) const {
duke@435 699 return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
duke@435 700 }
duke@435 701
duke@435 702 // Tests for relation to centerline of type lattice:
duke@435 703 static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
duke@435 704 static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
duke@435 705 // Convenience common pre-built types.
duke@435 706 static const TypePtr *NULL_PTR;
duke@435 707 static const TypePtr *NOTNULL;
duke@435 708 static const TypePtr *BOTTOM;
duke@435 709 #ifndef PRODUCT
duke@435 710 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 711 #endif
duke@435 712 };
duke@435 713
duke@435 714 //------------------------------TypeRawPtr-------------------------------------
duke@435 715 // Class of raw pointers, pointers to things other than Oops. Examples
duke@435 716 // include the stack pointer, top of heap, card-marking area, handles, etc.
duke@435 717 class TypeRawPtr : public TypePtr {
duke@435 718 protected:
duke@435 719 TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
duke@435 720 public:
duke@435 721 virtual bool eq( const Type *t ) const;
duke@435 722 virtual int hash() const; // Type specific hashing
duke@435 723
duke@435 724 const address _bits; // Constant value, if applicable
duke@435 725
duke@435 726 static const TypeRawPtr *make( PTR ptr );
duke@435 727 static const TypeRawPtr *make( address bits );
duke@435 728
duke@435 729 // Return a 'ptr' version of this type
duke@435 730 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 731
duke@435 732 virtual intptr_t get_con() const;
duke@435 733
kvn@741 734 virtual const TypePtr *add_offset( intptr_t offset ) const;
duke@435 735
duke@435 736 virtual const Type *xmeet( const Type *t ) const;
duke@435 737 virtual const Type *xdual() const; // Compute dual right now.
duke@435 738 // Convenience common pre-built types.
duke@435 739 static const TypeRawPtr *BOTTOM;
duke@435 740 static const TypeRawPtr *NOTNULL;
duke@435 741 #ifndef PRODUCT
duke@435 742 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 743 #endif
duke@435 744 };
duke@435 745
duke@435 746 //------------------------------TypeOopPtr-------------------------------------
duke@435 747 // Some kind of oop (Java pointer), either klass or instance or array.
duke@435 748 class TypeOopPtr : public TypePtr {
duke@435 749 protected:
kvn@598 750 TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
duke@435 751 public:
duke@435 752 virtual bool eq( const Type *t ) const;
duke@435 753 virtual int hash() const; // Type specific hashing
duke@435 754 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 755 enum {
kvn@658 756 InstanceTop = -1, // undefined instance
kvn@658 757 InstanceBot = 0 // any possible instance
duke@435 758 };
duke@435 759 protected:
duke@435 760
duke@435 761 // Oop is NULL, unless this is a constant oop.
duke@435 762 ciObject* _const_oop; // Constant oop
duke@435 763 // If _klass is NULL, then so is _sig. This is an unloaded klass.
duke@435 764 ciKlass* _klass; // Klass object
duke@435 765 // Does the type exclude subclasses of the klass? (Inexact == polymorphic.)
duke@435 766 bool _klass_is_exact;
kvn@598 767 bool _is_ptr_to_narrowoop;
duke@435 768
kvn@658 769 // If not InstanceTop or InstanceBot, indicates that this is
kvn@658 770 // a particular instance of this type which is distinct.
kvn@658 771 // This is the the node index of the allocation node creating this instance.
kvn@658 772 int _instance_id;
duke@435 773
duke@435 774 static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
duke@435 775
kvn@658 776 int dual_instance_id() const;
kvn@658 777 int meet_instance_id(int uid) const;
duke@435 778
duke@435 779 public:
duke@435 780 // Creates a type given a klass. Correctly handles multi-dimensional arrays
duke@435 781 // Respects UseUniqueSubclasses.
duke@435 782 // If the klass is final, the resulting type will be exact.
duke@435 783 static const TypeOopPtr* make_from_klass(ciKlass* klass) {
duke@435 784 return make_from_klass_common(klass, true, false);
duke@435 785 }
duke@435 786 // Same as before, but will produce an exact type, even if
duke@435 787 // the klass is not final, as long as it has exactly one implementation.
duke@435 788 static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
duke@435 789 return make_from_klass_common(klass, true, true);
duke@435 790 }
duke@435 791 // Same as before, but does not respects UseUniqueSubclasses.
duke@435 792 // Use this only for creating array element types.
duke@435 793 static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
duke@435 794 return make_from_klass_common(klass, false, false);
duke@435 795 }
duke@435 796 // Creates a singleton type given an object.
jrose@1424 797 // If the object cannot be rendered as a constant,
jrose@1424 798 // may return a non-singleton type.
jrose@1424 799 // If require_constant, produce a NULL if a singleton is not possible.
jrose@1424 800 static const TypeOopPtr* make_from_constant(ciObject* o, bool require_constant = false);
duke@435 801
duke@435 802 // Make a generic (unclassed) pointer to an oop.
kvn@1427 803 static const TypeOopPtr* make(PTR ptr, int offset, int instance_id);
duke@435 804
duke@435 805 ciObject* const_oop() const { return _const_oop; }
duke@435 806 virtual ciKlass* klass() const { return _klass; }
duke@435 807 bool klass_is_exact() const { return _klass_is_exact; }
kvn@598 808
kvn@598 809 // Returns true if this pointer points at memory which contains a
kvn@598 810 // compressed oop references.
kvn@598 811 bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
kvn@598 812
kvn@658 813 bool is_known_instance() const { return _instance_id > 0; }
kvn@658 814 int instance_id() const { return _instance_id; }
kvn@658 815 bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
duke@435 816
duke@435 817 virtual intptr_t get_con() const;
duke@435 818
duke@435 819 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 820
duke@435 821 virtual const Type *cast_to_exactness(bool klass_is_exact) const;
duke@435 822
kvn@658 823 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
duke@435 824
duke@435 825 // corresponding pointer to klass, for a given instance
duke@435 826 const TypeKlassPtr* as_klass_type() const;
duke@435 827
kvn@741 828 virtual const TypePtr *add_offset( intptr_t offset ) const;
duke@435 829
duke@435 830 virtual const Type *xmeet( const Type *t ) const;
duke@435 831 virtual const Type *xdual() const; // Compute dual right now.
duke@435 832
duke@435 833 // Do not allow interface-vs.-noninterface joins to collapse to top.
duke@435 834 virtual const Type *filter( const Type *kills ) const;
duke@435 835
duke@435 836 // Convenience common pre-built type.
duke@435 837 static const TypeOopPtr *BOTTOM;
duke@435 838 #ifndef PRODUCT
duke@435 839 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 840 #endif
duke@435 841 };
duke@435 842
duke@435 843 //------------------------------TypeInstPtr------------------------------------
duke@435 844 // Class of Java object pointers, pointing either to non-array Java instances
duke@435 845 // or to a klassOop (including array klasses).
duke@435 846 class TypeInstPtr : public TypeOopPtr {
duke@435 847 TypeInstPtr( PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
duke@435 848 virtual bool eq( const Type *t ) const;
duke@435 849 virtual int hash() const; // Type specific hashing
duke@435 850
duke@435 851 ciSymbol* _name; // class name
duke@435 852
duke@435 853 public:
duke@435 854 ciSymbol* name() const { return _name; }
duke@435 855
duke@435 856 bool is_loaded() const { return _klass->is_loaded(); }
duke@435 857
duke@435 858 // Make a pointer to a constant oop.
duke@435 859 static const TypeInstPtr *make(ciObject* o) {
duke@435 860 return make(TypePtr::Constant, o->klass(), true, o, 0);
duke@435 861 }
duke@435 862
duke@435 863 // Make a pointer to a constant oop with offset.
duke@435 864 static const TypeInstPtr *make(ciObject* o, int offset) {
duke@435 865 return make(TypePtr::Constant, o->klass(), true, o, offset);
duke@435 866 }
duke@435 867
duke@435 868 // Make a pointer to some value of type klass.
duke@435 869 static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
duke@435 870 return make(ptr, klass, false, NULL, 0);
duke@435 871 }
duke@435 872
duke@435 873 // Make a pointer to some non-polymorphic value of exactly type klass.
duke@435 874 static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
duke@435 875 return make(ptr, klass, true, NULL, 0);
duke@435 876 }
duke@435 877
duke@435 878 // Make a pointer to some value of type klass with offset.
duke@435 879 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
duke@435 880 return make(ptr, klass, false, NULL, offset);
duke@435 881 }
duke@435 882
duke@435 883 // Make a pointer to an oop.
kvn@658 884 static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot );
duke@435 885
duke@435 886 // If this is a java.lang.Class constant, return the type for it or NULL.
duke@435 887 // Pass to Type::get_const_type to turn it to a type, which will usually
duke@435 888 // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
duke@435 889 ciType* java_mirror_type() const;
duke@435 890
duke@435 891 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 892
duke@435 893 virtual const Type *cast_to_exactness(bool klass_is_exact) const;
duke@435 894
kvn@658 895 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
duke@435 896
kvn@741 897 virtual const TypePtr *add_offset( intptr_t offset ) const;
duke@435 898
duke@435 899 virtual const Type *xmeet( const Type *t ) const;
duke@435 900 virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
duke@435 901 virtual const Type *xdual() const; // Compute dual right now.
duke@435 902
duke@435 903 // Convenience common pre-built types.
duke@435 904 static const TypeInstPtr *NOTNULL;
duke@435 905 static const TypeInstPtr *BOTTOM;
duke@435 906 static const TypeInstPtr *MIRROR;
duke@435 907 static const TypeInstPtr *MARK;
duke@435 908 static const TypeInstPtr *KLASS;
duke@435 909 #ifndef PRODUCT
duke@435 910 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
duke@435 911 #endif
duke@435 912 };
duke@435 913
duke@435 914 //------------------------------TypeAryPtr-------------------------------------
duke@435 915 // Class of Java array pointers
duke@435 916 class TypeAryPtr : public TypeOopPtr {
kvn@2116 917 TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id), _ary(ary) {
kvn@2116 918 #ifdef ASSERT
kvn@2116 919 if (k != NULL) {
kvn@2116 920 // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
kvn@2116 921 ciKlass* ck = compute_klass(true);
kvn@2147 922 if (k != ck) {
kvn@2116 923 this->dump(); tty->cr();
kvn@2116 924 tty->print(" k: ");
kvn@2116 925 k->print(); tty->cr();
kvn@2116 926 tty->print("ck: ");
kvn@2116 927 if (ck != NULL) ck->print();
kvn@2116 928 else tty->print("<NULL>");
kvn@2116 929 tty->cr();
kvn@2116 930 assert(false, "unexpected TypeAryPtr::_klass");
kvn@2116 931 }
kvn@2116 932 }
kvn@2116 933 #endif
kvn@2116 934 }
duke@435 935 virtual bool eq( const Type *t ) const;
duke@435 936 virtual int hash() const; // Type specific hashing
duke@435 937 const TypeAry *_ary; // Array we point into
duke@435 938
kvn@2116 939 ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
kvn@2116 940
duke@435 941 public:
duke@435 942 // Accessors
duke@435 943 ciKlass* klass() const;
duke@435 944 const TypeAry* ary() const { return _ary; }
duke@435 945 const Type* elem() const { return _ary->_elem; }
duke@435 946 const TypeInt* size() const { return _ary->_size; }
duke@435 947
kvn@658 948 static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot);
duke@435 949 // Constant pointer to array
kvn@658 950 static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot);
duke@435 951
duke@435 952 // Return a 'ptr' version of this type
duke@435 953 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 954
duke@435 955 virtual const Type *cast_to_exactness(bool klass_is_exact) const;
duke@435 956
kvn@658 957 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
duke@435 958
duke@435 959 virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
rasbold@801 960 virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
duke@435 961
duke@435 962 virtual bool empty(void) const; // TRUE if type is vacuous
kvn@741 963 virtual const TypePtr *add_offset( intptr_t offset ) const;
duke@435 964
duke@435 965 virtual const Type *xmeet( const Type *t ) const;
duke@435 966 virtual const Type *xdual() const; // Compute dual right now.
duke@435 967
duke@435 968 // Convenience common pre-built types.
duke@435 969 static const TypeAryPtr *RANGE;
duke@435 970 static const TypeAryPtr *OOPS;
kvn@598 971 static const TypeAryPtr *NARROWOOPS;
duke@435 972 static const TypeAryPtr *BYTES;
duke@435 973 static const TypeAryPtr *SHORTS;
duke@435 974 static const TypeAryPtr *CHARS;
duke@435 975 static const TypeAryPtr *INTS;
duke@435 976 static const TypeAryPtr *LONGS;
duke@435 977 static const TypeAryPtr *FLOATS;
duke@435 978 static const TypeAryPtr *DOUBLES;
duke@435 979 // selects one of the above:
duke@435 980 static const TypeAryPtr *get_array_body_type(BasicType elem) {
duke@435 981 assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
duke@435 982 return _array_body_type[elem];
duke@435 983 }
duke@435 984 static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
duke@435 985 // sharpen the type of an int which is used as an array size
kvn@1255 986 #ifdef ASSERT
kvn@1255 987 // One type is interface, the other is oop
kvn@1255 988 virtual bool interface_vs_oop(const Type *t) const;
kvn@1255 989 #endif
duke@435 990 #ifndef PRODUCT
duke@435 991 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
duke@435 992 #endif
duke@435 993 };
duke@435 994
duke@435 995 //------------------------------TypeKlassPtr-----------------------------------
duke@435 996 // Class of Java Klass pointers
duke@435 997 class TypeKlassPtr : public TypeOopPtr {
duke@435 998 TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
duke@435 999
duke@435 1000 virtual bool eq( const Type *t ) const;
duke@435 1001 virtual int hash() const; // Type specific hashing
duke@435 1002
duke@435 1003 public:
duke@435 1004 ciSymbol* name() const { return _klass->name(); }
duke@435 1005
never@990 1006 bool is_loaded() const { return _klass->is_loaded(); }
never@990 1007
duke@435 1008 // ptr to klass 'k'
duke@435 1009 static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
duke@435 1010 // ptr to klass 'k' with offset
duke@435 1011 static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
duke@435 1012 // ptr to klass 'k' or sub-klass
duke@435 1013 static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
duke@435 1014
duke@435 1015 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 1016
duke@435 1017 virtual const Type *cast_to_exactness(bool klass_is_exact) const;
duke@435 1018
duke@435 1019 // corresponding pointer to instance, for a given class
duke@435 1020 const TypeOopPtr* as_instance_type() const;
duke@435 1021
kvn@741 1022 virtual const TypePtr *add_offset( intptr_t offset ) const;
duke@435 1023 virtual const Type *xmeet( const Type *t ) const;
duke@435 1024 virtual const Type *xdual() const; // Compute dual right now.
duke@435 1025
duke@435 1026 // Convenience common pre-built types.
duke@435 1027 static const TypeKlassPtr* OBJECT; // Not-null object klass or below
duke@435 1028 static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
duke@435 1029 #ifndef PRODUCT
duke@435 1030 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
duke@435 1031 #endif
duke@435 1032 };
duke@435 1033
kvn@598 1034 //------------------------------TypeNarrowOop----------------------------------
coleenp@548 1035 // A compressed reference to some kind of Oop. This type wraps around
coleenp@548 1036 // a preexisting TypeOopPtr and forwards most of it's operations to
coleenp@548 1037 // the underlying type. It's only real purpose is to track the
coleenp@548 1038 // oopness of the compressed oop value when we expose the conversion
coleenp@548 1039 // between the normal and the compressed form.
coleenp@548 1040 class TypeNarrowOop : public Type {
coleenp@548 1041 protected:
never@1262 1042 const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
coleenp@548 1043
never@1262 1044 TypeNarrowOop( const TypePtr* ptrtype): Type(NarrowOop),
never@1262 1045 _ptrtype(ptrtype) {
never@1262 1046 assert(ptrtype->offset() == 0 ||
never@1262 1047 ptrtype->offset() == OffsetBot ||
never@1262 1048 ptrtype->offset() == OffsetTop, "no real offsets");
coleenp@548 1049 }
coleenp@548 1050 public:
coleenp@548 1051 virtual bool eq( const Type *t ) const;
coleenp@548 1052 virtual int hash() const; // Type specific hashing
coleenp@548 1053 virtual bool singleton(void) const; // TRUE if type is a singleton
coleenp@548 1054
coleenp@548 1055 virtual const Type *xmeet( const Type *t ) const;
coleenp@548 1056 virtual const Type *xdual() const; // Compute dual right now.
coleenp@548 1057
coleenp@548 1058 virtual intptr_t get_con() const;
coleenp@548 1059
coleenp@548 1060 // Do not allow interface-vs.-noninterface joins to collapse to top.
coleenp@548 1061 virtual const Type *filter( const Type *kills ) const;
coleenp@548 1062
coleenp@548 1063 virtual bool empty(void) const; // TRUE if type is vacuous
coleenp@548 1064
coleenp@548 1065 static const TypeNarrowOop *make( const TypePtr* type);
coleenp@548 1066
jcoomes@2661 1067 static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
jcoomes@2661 1068 return make(TypeOopPtr::make_from_constant(con, require_constant));
coleenp@548 1069 }
coleenp@548 1070
kvn@656 1071 // returns the equivalent ptr type for this compressed pointer
never@1262 1072 const TypePtr *get_ptrtype() const {
never@1262 1073 return _ptrtype;
coleenp@548 1074 }
coleenp@548 1075
coleenp@548 1076 static const TypeNarrowOop *BOTTOM;
coleenp@548 1077 static const TypeNarrowOop *NULL_PTR;
coleenp@548 1078
coleenp@548 1079 #ifndef PRODUCT
coleenp@548 1080 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
coleenp@548 1081 #endif
coleenp@548 1082 };
coleenp@548 1083
duke@435 1084 //------------------------------TypeFunc---------------------------------------
duke@435 1085 // Class of Array Types
duke@435 1086 class TypeFunc : public Type {
duke@435 1087 TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function), _domain(domain), _range(range) {}
duke@435 1088 virtual bool eq( const Type *t ) const;
duke@435 1089 virtual int hash() const; // Type specific hashing
duke@435 1090 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 1091 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 1092 public:
duke@435 1093 // Constants are shared among ADLC and VM
duke@435 1094 enum { Control = AdlcVMDeps::Control,
duke@435 1095 I_O = AdlcVMDeps::I_O,
duke@435 1096 Memory = AdlcVMDeps::Memory,
duke@435 1097 FramePtr = AdlcVMDeps::FramePtr,
duke@435 1098 ReturnAdr = AdlcVMDeps::ReturnAdr,
duke@435 1099 Parms = AdlcVMDeps::Parms
duke@435 1100 };
duke@435 1101
duke@435 1102 const TypeTuple* const _domain; // Domain of inputs
duke@435 1103 const TypeTuple* const _range; // Range of results
duke@435 1104
duke@435 1105 // Accessors:
duke@435 1106 const TypeTuple* domain() const { return _domain; }
duke@435 1107 const TypeTuple* range() const { return _range; }
duke@435 1108
duke@435 1109 static const TypeFunc *make(ciMethod* method);
duke@435 1110 static const TypeFunc *make(ciSignature signature, const Type* extra);
duke@435 1111 static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
duke@435 1112
duke@435 1113 virtual const Type *xmeet( const Type *t ) const;
duke@435 1114 virtual const Type *xdual() const; // Compute dual right now.
duke@435 1115
duke@435 1116 BasicType return_type() const;
duke@435 1117
duke@435 1118 #ifndef PRODUCT
duke@435 1119 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
duke@435 1120 void print_flattened() const; // Print a 'flattened' signature
duke@435 1121 #endif
duke@435 1122 // Convenience common pre-built types.
duke@435 1123 };
duke@435 1124
duke@435 1125 //------------------------------accessors--------------------------------------
kvn@598 1126 inline bool Type::is_ptr_to_narrowoop() const {
kvn@598 1127 #ifdef _LP64
kvn@598 1128 return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
kvn@598 1129 #else
kvn@598 1130 return false;
kvn@598 1131 #endif
kvn@598 1132 }
kvn@598 1133
duke@435 1134 inline float Type::getf() const {
duke@435 1135 assert( _base == FloatCon, "Not a FloatCon" );
duke@435 1136 return ((TypeF*)this)->_f;
duke@435 1137 }
duke@435 1138
duke@435 1139 inline double Type::getd() const {
duke@435 1140 assert( _base == DoubleCon, "Not a DoubleCon" );
duke@435 1141 return ((TypeD*)this)->_d;
duke@435 1142 }
duke@435 1143
duke@435 1144 inline const TypeF *Type::is_float_constant() const {
duke@435 1145 assert( _base == FloatCon, "Not a Float" );
duke@435 1146 return (TypeF*)this;
duke@435 1147 }
duke@435 1148
duke@435 1149 inline const TypeF *Type::isa_float_constant() const {
duke@435 1150 return ( _base == FloatCon ? (TypeF*)this : NULL);
duke@435 1151 }
duke@435 1152
duke@435 1153 inline const TypeD *Type::is_double_constant() const {
duke@435 1154 assert( _base == DoubleCon, "Not a Double" );
duke@435 1155 return (TypeD*)this;
duke@435 1156 }
duke@435 1157
duke@435 1158 inline const TypeD *Type::isa_double_constant() const {
duke@435 1159 return ( _base == DoubleCon ? (TypeD*)this : NULL);
duke@435 1160 }
duke@435 1161
duke@435 1162 inline const TypeInt *Type::is_int() const {
duke@435 1163 assert( _base == Int, "Not an Int" );
duke@435 1164 return (TypeInt*)this;
duke@435 1165 }
duke@435 1166
duke@435 1167 inline const TypeInt *Type::isa_int() const {
duke@435 1168 return ( _base == Int ? (TypeInt*)this : NULL);
duke@435 1169 }
duke@435 1170
duke@435 1171 inline const TypeLong *Type::is_long() const {
duke@435 1172 assert( _base == Long, "Not a Long" );
duke@435 1173 return (TypeLong*)this;
duke@435 1174 }
duke@435 1175
duke@435 1176 inline const TypeLong *Type::isa_long() const {
duke@435 1177 return ( _base == Long ? (TypeLong*)this : NULL);
duke@435 1178 }
duke@435 1179
duke@435 1180 inline const TypeTuple *Type::is_tuple() const {
duke@435 1181 assert( _base == Tuple, "Not a Tuple" );
duke@435 1182 return (TypeTuple*)this;
duke@435 1183 }
duke@435 1184
duke@435 1185 inline const TypeAry *Type::is_ary() const {
duke@435 1186 assert( _base == Array , "Not an Array" );
duke@435 1187 return (TypeAry*)this;
duke@435 1188 }
duke@435 1189
kvn@3882 1190 inline const TypeVect *Type::is_vect() const {
kvn@3882 1191 assert( _base >= VectorS && _base <= VectorY, "Not a Vector" );
kvn@3882 1192 return (TypeVect*)this;
kvn@3882 1193 }
kvn@3882 1194
kvn@3882 1195 inline const TypeVect *Type::isa_vect() const {
kvn@3882 1196 return (_base >= VectorS && _base <= VectorY) ? (TypeVect*)this : NULL;
kvn@3882 1197 }
kvn@3882 1198
duke@435 1199 inline const TypePtr *Type::is_ptr() const {
duke@435 1200 // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
duke@435 1201 assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
duke@435 1202 return (TypePtr*)this;
duke@435 1203 }
duke@435 1204
duke@435 1205 inline const TypePtr *Type::isa_ptr() const {
duke@435 1206 // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
duke@435 1207 return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
duke@435 1208 }
duke@435 1209
duke@435 1210 inline const TypeOopPtr *Type::is_oopptr() const {
duke@435 1211 // OopPtr is the first and KlassPtr the last, with no non-oops between.
duke@435 1212 assert(_base >= OopPtr && _base <= KlassPtr, "Not a Java pointer" ) ;
duke@435 1213 return (TypeOopPtr*)this;
duke@435 1214 }
duke@435 1215
duke@435 1216 inline const TypeOopPtr *Type::isa_oopptr() const {
duke@435 1217 // OopPtr is the first and KlassPtr the last, with no non-oops between.
duke@435 1218 return (_base >= OopPtr && _base <= KlassPtr) ? (TypeOopPtr*)this : NULL;
duke@435 1219 }
duke@435 1220
coleenp@548 1221 inline const TypeRawPtr *Type::isa_rawptr() const {
coleenp@548 1222 return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
coleenp@548 1223 }
coleenp@548 1224
duke@435 1225 inline const TypeRawPtr *Type::is_rawptr() const {
duke@435 1226 assert( _base == RawPtr, "Not a raw pointer" );
duke@435 1227 return (TypeRawPtr*)this;
duke@435 1228 }
duke@435 1229
duke@435 1230 inline const TypeInstPtr *Type::isa_instptr() const {
duke@435 1231 return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
duke@435 1232 }
duke@435 1233
duke@435 1234 inline const TypeInstPtr *Type::is_instptr() const {
duke@435 1235 assert( _base == InstPtr, "Not an object pointer" );
duke@435 1236 return (TypeInstPtr*)this;
duke@435 1237 }
duke@435 1238
duke@435 1239 inline const TypeAryPtr *Type::isa_aryptr() const {
duke@435 1240 return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
duke@435 1241 }
duke@435 1242
duke@435 1243 inline const TypeAryPtr *Type::is_aryptr() const {
duke@435 1244 assert( _base == AryPtr, "Not an array pointer" );
duke@435 1245 return (TypeAryPtr*)this;
duke@435 1246 }
duke@435 1247
coleenp@548 1248 inline const TypeNarrowOop *Type::is_narrowoop() const {
coleenp@548 1249 // OopPtr is the first and KlassPtr the last, with no non-oops between.
coleenp@548 1250 assert(_base == NarrowOop, "Not a narrow oop" ) ;
coleenp@548 1251 return (TypeNarrowOop*)this;
coleenp@548 1252 }
coleenp@548 1253
coleenp@548 1254 inline const TypeNarrowOop *Type::isa_narrowoop() const {
coleenp@548 1255 // OopPtr is the first and KlassPtr the last, with no non-oops between.
coleenp@548 1256 return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
coleenp@548 1257 }
coleenp@548 1258
duke@435 1259 inline const TypeKlassPtr *Type::isa_klassptr() const {
duke@435 1260 return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
duke@435 1261 }
duke@435 1262
duke@435 1263 inline const TypeKlassPtr *Type::is_klassptr() const {
duke@435 1264 assert( _base == KlassPtr, "Not a klass pointer" );
duke@435 1265 return (TypeKlassPtr*)this;
duke@435 1266 }
duke@435 1267
kvn@656 1268 inline const TypePtr* Type::make_ptr() const {
never@1262 1269 return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
kvn@656 1270 (isa_ptr() ? is_ptr() : NULL);
kvn@656 1271 }
kvn@656 1272
never@1262 1273 inline const TypeOopPtr* Type::make_oopptr() const {
never@1262 1274 return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->is_oopptr() : is_oopptr();
never@1262 1275 }
never@1262 1276
kvn@656 1277 inline const TypeNarrowOop* Type::make_narrowoop() const {
kvn@656 1278 return (_base == NarrowOop) ? is_narrowoop() :
kvn@656 1279 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
kvn@656 1280 }
kvn@656 1281
duke@435 1282 inline bool Type::is_floatingpoint() const {
duke@435 1283 if( (_base == FloatCon) || (_base == FloatBot) ||
duke@435 1284 (_base == DoubleCon) || (_base == DoubleBot) )
duke@435 1285 return true;
duke@435 1286 return false;
duke@435 1287 }
duke@435 1288
duke@435 1289
duke@435 1290 // ===============================================================
duke@435 1291 // Things that need to be 64-bits in the 64-bit build but
duke@435 1292 // 32-bits in the 32-bit build. Done this way to get full
duke@435 1293 // optimization AND strong typing.
duke@435 1294 #ifdef _LP64
duke@435 1295
duke@435 1296 // For type queries and asserts
duke@435 1297 #define is_intptr_t is_long
duke@435 1298 #define isa_intptr_t isa_long
duke@435 1299 #define find_intptr_t_type find_long_type
duke@435 1300 #define find_intptr_t_con find_long_con
duke@435 1301 #define TypeX TypeLong
duke@435 1302 #define Type_X Type::Long
duke@435 1303 #define TypeX_X TypeLong::LONG
duke@435 1304 #define TypeX_ZERO TypeLong::ZERO
duke@435 1305 // For 'ideal_reg' machine registers
duke@435 1306 #define Op_RegX Op_RegL
duke@435 1307 // For phase->intcon variants
duke@435 1308 #define MakeConX longcon
duke@435 1309 #define ConXNode ConLNode
duke@435 1310 // For array index arithmetic
duke@435 1311 #define MulXNode MulLNode
duke@435 1312 #define AndXNode AndLNode
duke@435 1313 #define OrXNode OrLNode
duke@435 1314 #define CmpXNode CmpLNode
duke@435 1315 #define SubXNode SubLNode
duke@435 1316 #define LShiftXNode LShiftLNode
duke@435 1317 // For object size computation:
duke@435 1318 #define AddXNode AddLNode
never@452 1319 #define RShiftXNode RShiftLNode
duke@435 1320 // For card marks and hashcodes
duke@435 1321 #define URShiftXNode URShiftLNode
kvn@855 1322 // UseOptoBiasInlining
kvn@855 1323 #define XorXNode XorLNode
kvn@855 1324 #define StoreXConditionalNode StoreLConditionalNode
duke@435 1325 // Opcodes
duke@435 1326 #define Op_LShiftX Op_LShiftL
duke@435 1327 #define Op_AndX Op_AndL
duke@435 1328 #define Op_AddX Op_AddL
duke@435 1329 #define Op_SubX Op_SubL
kvn@1286 1330 #define Op_XorX Op_XorL
kvn@1286 1331 #define Op_URShiftX Op_URShiftL
duke@435 1332 // conversions
duke@435 1333 #define ConvI2X(x) ConvI2L(x)
duke@435 1334 #define ConvL2X(x) (x)
duke@435 1335 #define ConvX2I(x) ConvL2I(x)
duke@435 1336 #define ConvX2L(x) (x)
duke@435 1337
duke@435 1338 #else
duke@435 1339
duke@435 1340 // For type queries and asserts
duke@435 1341 #define is_intptr_t is_int
duke@435 1342 #define isa_intptr_t isa_int
duke@435 1343 #define find_intptr_t_type find_int_type
duke@435 1344 #define find_intptr_t_con find_int_con
duke@435 1345 #define TypeX TypeInt
duke@435 1346 #define Type_X Type::Int
duke@435 1347 #define TypeX_X TypeInt::INT
duke@435 1348 #define TypeX_ZERO TypeInt::ZERO
duke@435 1349 // For 'ideal_reg' machine registers
duke@435 1350 #define Op_RegX Op_RegI
duke@435 1351 // For phase->intcon variants
duke@435 1352 #define MakeConX intcon
duke@435 1353 #define ConXNode ConINode
duke@435 1354 // For array index arithmetic
duke@435 1355 #define MulXNode MulINode
duke@435 1356 #define AndXNode AndINode
duke@435 1357 #define OrXNode OrINode
duke@435 1358 #define CmpXNode CmpINode
duke@435 1359 #define SubXNode SubINode
duke@435 1360 #define LShiftXNode LShiftINode
duke@435 1361 // For object size computation:
duke@435 1362 #define AddXNode AddINode
never@452 1363 #define RShiftXNode RShiftINode
duke@435 1364 // For card marks and hashcodes
duke@435 1365 #define URShiftXNode URShiftINode
kvn@855 1366 // UseOptoBiasInlining
kvn@855 1367 #define XorXNode XorINode
kvn@855 1368 #define StoreXConditionalNode StoreIConditionalNode
duke@435 1369 // Opcodes
duke@435 1370 #define Op_LShiftX Op_LShiftI
duke@435 1371 #define Op_AndX Op_AndI
duke@435 1372 #define Op_AddX Op_AddI
duke@435 1373 #define Op_SubX Op_SubI
kvn@1286 1374 #define Op_XorX Op_XorI
kvn@1286 1375 #define Op_URShiftX Op_URShiftI
duke@435 1376 // conversions
duke@435 1377 #define ConvI2X(x) (x)
duke@435 1378 #define ConvL2X(x) ConvL2I(x)
duke@435 1379 #define ConvX2I(x) (x)
duke@435 1380 #define ConvX2L(x) ConvI2L(x)
duke@435 1381
duke@435 1382 #endif
stefank@2314 1383
stefank@2314 1384 #endif // SHARE_VM_OPTO_TYPE_HPP

mercurial