src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Mon, 03 May 2010 16:31:07 -0400

author
tonyp
date
Mon, 03 May 2010 16:31:07 -0400
changeset 1846
befdf73d6b82
parent 1833
314e17ca2c23
parent 1844
cff162798819
child 1907
c18cbe5936b8
child 1919
61b2245abf36
permissions
-rw-r--r--

Merge

duke@435 1 /*
twisti@1639 2 * Copyright 2000-2010 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 # include "incls/_precompiled.incl"
duke@435 26 # include "incls/_c1_LIRAssembler_x86.cpp.incl"
duke@435 27
duke@435 28
duke@435 29 // These masks are used to provide 128-bit aligned bitmasks to the XMM
duke@435 30 // instructions, to allow sign-masking or sign-bit flipping. They allow
duke@435 31 // fast versions of NegF/NegD and AbsF/AbsD.
duke@435 32
duke@435 33 // Note: 'double' and 'long long' have 32-bits alignment on x86.
duke@435 34 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
duke@435 35 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
duke@435 36 // of 128-bits operands for SSE instructions.
duke@435 37 jlong *operand = (jlong*)(((long)adr)&((long)(~0xF)));
duke@435 38 // Store the value to a 128-bits operand.
duke@435 39 operand[0] = lo;
duke@435 40 operand[1] = hi;
duke@435 41 return operand;
duke@435 42 }
duke@435 43
duke@435 44 // Buffer for 128-bits masks used by SSE instructions.
duke@435 45 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
duke@435 46
duke@435 47 // Static initialization during VM startup.
duke@435 48 static jlong *float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
duke@435 49 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
duke@435 50 static jlong *float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
duke@435 51 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
duke@435 52
duke@435 53
duke@435 54
duke@435 55 NEEDS_CLEANUP // remove this definitions ?
duke@435 56 const Register IC_Klass = rax; // where the IC klass is cached
duke@435 57 const Register SYNC_header = rax; // synchronization header
duke@435 58 const Register SHIFT_count = rcx; // where count for shift operations must be
duke@435 59
duke@435 60 #define __ _masm->
duke@435 61
duke@435 62
duke@435 63 static void select_different_registers(Register preserve,
duke@435 64 Register extra,
duke@435 65 Register &tmp1,
duke@435 66 Register &tmp2) {
duke@435 67 if (tmp1 == preserve) {
duke@435 68 assert_different_registers(tmp1, tmp2, extra);
duke@435 69 tmp1 = extra;
duke@435 70 } else if (tmp2 == preserve) {
duke@435 71 assert_different_registers(tmp1, tmp2, extra);
duke@435 72 tmp2 = extra;
duke@435 73 }
duke@435 74 assert_different_registers(preserve, tmp1, tmp2);
duke@435 75 }
duke@435 76
duke@435 77
duke@435 78
duke@435 79 static void select_different_registers(Register preserve,
duke@435 80 Register extra,
duke@435 81 Register &tmp1,
duke@435 82 Register &tmp2,
duke@435 83 Register &tmp3) {
duke@435 84 if (tmp1 == preserve) {
duke@435 85 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 86 tmp1 = extra;
duke@435 87 } else if (tmp2 == preserve) {
duke@435 88 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 89 tmp2 = extra;
duke@435 90 } else if (tmp3 == preserve) {
duke@435 91 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 92 tmp3 = extra;
duke@435 93 }
duke@435 94 assert_different_registers(preserve, tmp1, tmp2, tmp3);
duke@435 95 }
duke@435 96
duke@435 97
duke@435 98
duke@435 99 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
duke@435 100 if (opr->is_constant()) {
duke@435 101 LIR_Const* constant = opr->as_constant_ptr();
duke@435 102 switch (constant->type()) {
duke@435 103 case T_INT: {
duke@435 104 return true;
duke@435 105 }
duke@435 106
duke@435 107 default:
duke@435 108 return false;
duke@435 109 }
duke@435 110 }
duke@435 111 return false;
duke@435 112 }
duke@435 113
duke@435 114
duke@435 115 LIR_Opr LIR_Assembler::receiverOpr() {
never@739 116 return FrameMap::receiver_opr;
duke@435 117 }
duke@435 118
duke@435 119 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
duke@435 120 return receiverOpr();
duke@435 121 }
duke@435 122
duke@435 123 LIR_Opr LIR_Assembler::osrBufferPointer() {
never@739 124 return FrameMap::as_pointer_opr(receiverOpr()->as_register());
duke@435 125 }
duke@435 126
duke@435 127 //--------------fpu register translations-----------------------
duke@435 128
duke@435 129
duke@435 130 address LIR_Assembler::float_constant(float f) {
duke@435 131 address const_addr = __ float_constant(f);
duke@435 132 if (const_addr == NULL) {
duke@435 133 bailout("const section overflow");
duke@435 134 return __ code()->consts()->start();
duke@435 135 } else {
duke@435 136 return const_addr;
duke@435 137 }
duke@435 138 }
duke@435 139
duke@435 140
duke@435 141 address LIR_Assembler::double_constant(double d) {
duke@435 142 address const_addr = __ double_constant(d);
duke@435 143 if (const_addr == NULL) {
duke@435 144 bailout("const section overflow");
duke@435 145 return __ code()->consts()->start();
duke@435 146 } else {
duke@435 147 return const_addr;
duke@435 148 }
duke@435 149 }
duke@435 150
duke@435 151
duke@435 152 void LIR_Assembler::set_24bit_FPU() {
duke@435 153 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
duke@435 154 }
duke@435 155
duke@435 156 void LIR_Assembler::reset_FPU() {
duke@435 157 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 158 }
duke@435 159
duke@435 160 void LIR_Assembler::fpop() {
duke@435 161 __ fpop();
duke@435 162 }
duke@435 163
duke@435 164 void LIR_Assembler::fxch(int i) {
duke@435 165 __ fxch(i);
duke@435 166 }
duke@435 167
duke@435 168 void LIR_Assembler::fld(int i) {
duke@435 169 __ fld_s(i);
duke@435 170 }
duke@435 171
duke@435 172 void LIR_Assembler::ffree(int i) {
duke@435 173 __ ffree(i);
duke@435 174 }
duke@435 175
duke@435 176 void LIR_Assembler::breakpoint() {
duke@435 177 __ int3();
duke@435 178 }
duke@435 179
duke@435 180 void LIR_Assembler::push(LIR_Opr opr) {
duke@435 181 if (opr->is_single_cpu()) {
duke@435 182 __ push_reg(opr->as_register());
duke@435 183 } else if (opr->is_double_cpu()) {
never@739 184 NOT_LP64(__ push_reg(opr->as_register_hi()));
duke@435 185 __ push_reg(opr->as_register_lo());
duke@435 186 } else if (opr->is_stack()) {
duke@435 187 __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
duke@435 188 } else if (opr->is_constant()) {
duke@435 189 LIR_Const* const_opr = opr->as_constant_ptr();
duke@435 190 if (const_opr->type() == T_OBJECT) {
duke@435 191 __ push_oop(const_opr->as_jobject());
duke@435 192 } else if (const_opr->type() == T_INT) {
duke@435 193 __ push_jint(const_opr->as_jint());
duke@435 194 } else {
duke@435 195 ShouldNotReachHere();
duke@435 196 }
duke@435 197
duke@435 198 } else {
duke@435 199 ShouldNotReachHere();
duke@435 200 }
duke@435 201 }
duke@435 202
duke@435 203 void LIR_Assembler::pop(LIR_Opr opr) {
duke@435 204 if (opr->is_single_cpu()) {
never@739 205 __ pop_reg(opr->as_register());
duke@435 206 } else {
duke@435 207 ShouldNotReachHere();
duke@435 208 }
duke@435 209 }
duke@435 210
never@739 211 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
never@739 212 return addr->base()->is_illegal() && addr->index()->is_illegal();
never@739 213 }
never@739 214
duke@435 215 //-------------------------------------------
never@739 216
duke@435 217 Address LIR_Assembler::as_Address(LIR_Address* addr) {
never@739 218 return as_Address(addr, rscratch1);
never@739 219 }
never@739 220
never@739 221 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
duke@435 222 if (addr->base()->is_illegal()) {
duke@435 223 assert(addr->index()->is_illegal(), "must be illegal too");
never@739 224 AddressLiteral laddr((address)addr->disp(), relocInfo::none);
never@739 225 if (! __ reachable(laddr)) {
never@739 226 __ movptr(tmp, laddr.addr());
never@739 227 Address res(tmp, 0);
never@739 228 return res;
never@739 229 } else {
never@739 230 return __ as_Address(laddr);
never@739 231 }
duke@435 232 }
duke@435 233
never@739 234 Register base = addr->base()->as_pointer_register();
duke@435 235
duke@435 236 if (addr->index()->is_illegal()) {
duke@435 237 return Address( base, addr->disp());
never@739 238 } else if (addr->index()->is_cpu_register()) {
never@739 239 Register index = addr->index()->as_pointer_register();
duke@435 240 return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
duke@435 241 } else if (addr->index()->is_constant()) {
never@739 242 intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
never@739 243 assert(Assembler::is_simm32(addr_offset), "must be");
duke@435 244
duke@435 245 return Address(base, addr_offset);
duke@435 246 } else {
duke@435 247 Unimplemented();
duke@435 248 return Address();
duke@435 249 }
duke@435 250 }
duke@435 251
duke@435 252
duke@435 253 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
duke@435 254 Address base = as_Address(addr);
duke@435 255 return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
duke@435 256 }
duke@435 257
duke@435 258
duke@435 259 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
duke@435 260 return as_Address(addr);
duke@435 261 }
duke@435 262
duke@435 263
duke@435 264 void LIR_Assembler::osr_entry() {
duke@435 265 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
duke@435 266 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
duke@435 267 ValueStack* entry_state = osr_entry->state();
duke@435 268 int number_of_locks = entry_state->locks_size();
duke@435 269
duke@435 270 // we jump here if osr happens with the interpreter
duke@435 271 // state set up to continue at the beginning of the
duke@435 272 // loop that triggered osr - in particular, we have
duke@435 273 // the following registers setup:
duke@435 274 //
duke@435 275 // rcx: osr buffer
duke@435 276 //
duke@435 277
duke@435 278 // build frame
duke@435 279 ciMethod* m = compilation()->method();
duke@435 280 __ build_frame(initial_frame_size_in_bytes());
duke@435 281
duke@435 282 // OSR buffer is
duke@435 283 //
duke@435 284 // locals[nlocals-1..0]
duke@435 285 // monitors[0..number_of_locks]
duke@435 286 //
duke@435 287 // locals is a direct copy of the interpreter frame so in the osr buffer
duke@435 288 // so first slot in the local array is the last local from the interpreter
duke@435 289 // and last slot is local[0] (receiver) from the interpreter
duke@435 290 //
duke@435 291 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
duke@435 292 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
duke@435 293 // in the interpreter frame (the method lock if a sync method)
duke@435 294
duke@435 295 // Initialize monitors in the compiled activation.
duke@435 296 // rcx: pointer to osr buffer
duke@435 297 //
duke@435 298 // All other registers are dead at this point and the locals will be
duke@435 299 // copied into place by code emitted in the IR.
duke@435 300
never@739 301 Register OSR_buf = osrBufferPointer()->as_pointer_register();
duke@435 302 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
duke@435 303 int monitor_offset = BytesPerWord * method()->max_locals() +
roland@1495 304 (2 * BytesPerWord) * (number_of_locks - 1);
roland@1495 305 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
roland@1495 306 // the OSR buffer using 2 word entries: first the lock and then
roland@1495 307 // the oop.
duke@435 308 for (int i = 0; i < number_of_locks; i++) {
roland@1495 309 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
duke@435 310 #ifdef ASSERT
duke@435 311 // verify the interpreter's monitor has a non-null object
duke@435 312 {
duke@435 313 Label L;
roland@1495 314 __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
duke@435 315 __ jcc(Assembler::notZero, L);
duke@435 316 __ stop("locked object is NULL");
duke@435 317 __ bind(L);
duke@435 318 }
duke@435 319 #endif
roland@1495 320 __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
never@739 321 __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
roland@1495 322 __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
never@739 323 __ movptr(frame_map()->address_for_monitor_object(i), rbx);
duke@435 324 }
duke@435 325 }
duke@435 326 }
duke@435 327
duke@435 328
duke@435 329 // inline cache check; done before the frame is built.
duke@435 330 int LIR_Assembler::check_icache() {
duke@435 331 Register receiver = FrameMap::receiver_opr->as_register();
duke@435 332 Register ic_klass = IC_Klass;
never@739 333 const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
duke@435 334
duke@435 335 if (!VerifyOops) {
duke@435 336 // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
never@739 337 while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
duke@435 338 __ nop();
duke@435 339 }
duke@435 340 }
duke@435 341 int offset = __ offset();
duke@435 342 __ inline_cache_check(receiver, IC_Klass);
duke@435 343 assert(__ offset() % CodeEntryAlignment == 0 || VerifyOops, "alignment must be correct");
duke@435 344 if (VerifyOops) {
duke@435 345 // force alignment after the cache check.
duke@435 346 // It's been verified to be aligned if !VerifyOops
duke@435 347 __ align(CodeEntryAlignment);
duke@435 348 }
duke@435 349 return offset;
duke@435 350 }
duke@435 351
duke@435 352
duke@435 353 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
duke@435 354 jobject o = NULL;
duke@435 355 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
duke@435 356 __ movoop(reg, o);
duke@435 357 patching_epilog(patch, lir_patch_normal, reg, info);
duke@435 358 }
duke@435 359
duke@435 360
duke@435 361 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register new_hdr, int monitor_no, Register exception) {
duke@435 362 if (exception->is_valid()) {
duke@435 363 // preserve exception
duke@435 364 // note: the monitor_exit runtime call is a leaf routine
duke@435 365 // and cannot block => no GC can happen
duke@435 366 // The slow case (MonitorAccessStub) uses the first two stack slots
duke@435 367 // ([esp+0] and [esp+4]), therefore we store the exception at [esp+8]
never@739 368 __ movptr (Address(rsp, 2*wordSize), exception);
duke@435 369 }
duke@435 370
duke@435 371 Register obj_reg = obj_opr->as_register();
duke@435 372 Register lock_reg = lock_opr->as_register();
duke@435 373
duke@435 374 // setup registers (lock_reg must be rax, for lock_object)
duke@435 375 assert(obj_reg != SYNC_header && lock_reg != SYNC_header, "rax, must be available here");
duke@435 376 Register hdr = lock_reg;
duke@435 377 assert(new_hdr == SYNC_header, "wrong register");
duke@435 378 lock_reg = new_hdr;
duke@435 379 // compute pointer to BasicLock
duke@435 380 Address lock_addr = frame_map()->address_for_monitor_lock(monitor_no);
never@739 381 __ lea(lock_reg, lock_addr);
duke@435 382 // unlock object
duke@435 383 MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, true, monitor_no);
duke@435 384 // _slow_case_stubs->append(slow_case);
duke@435 385 // temporary fix: must be created after exceptionhandler, therefore as call stub
duke@435 386 _slow_case_stubs->append(slow_case);
duke@435 387 if (UseFastLocking) {
duke@435 388 // try inlined fast unlocking first, revert to slow locking if it fails
duke@435 389 // note: lock_reg points to the displaced header since the displaced header offset is 0!
duke@435 390 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 391 __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
duke@435 392 } else {
duke@435 393 // always do slow unlocking
duke@435 394 // note: the slow unlocking code could be inlined here, however if we use
duke@435 395 // slow unlocking, speed doesn't matter anyway and this solution is
duke@435 396 // simpler and requires less duplicated code - additionally, the
duke@435 397 // slow unlocking code is the same in either case which simplifies
duke@435 398 // debugging
duke@435 399 __ jmp(*slow_case->entry());
duke@435 400 }
duke@435 401 // done
duke@435 402 __ bind(*slow_case->continuation());
duke@435 403
duke@435 404 if (exception->is_valid()) {
duke@435 405 // restore exception
never@739 406 __ movptr (exception, Address(rsp, 2 * wordSize));
duke@435 407 }
duke@435 408 }
duke@435 409
duke@435 410 // This specifies the rsp decrement needed to build the frame
duke@435 411 int LIR_Assembler::initial_frame_size_in_bytes() {
duke@435 412 // if rounding, must let FrameMap know!
never@739 413
never@739 414 // The frame_map records size in slots (32bit word)
never@739 415
never@739 416 // subtract two words to account for return address and link
never@739 417 return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size;
duke@435 418 }
duke@435 419
duke@435 420
twisti@1639 421 int LIR_Assembler::emit_exception_handler() {
duke@435 422 // if the last instruction is a call (typically to do a throw which
duke@435 423 // is coming at the end after block reordering) the return address
duke@435 424 // must still point into the code area in order to avoid assertion
duke@435 425 // failures when searching for the corresponding bci => add a nop
duke@435 426 // (was bug 5/14/1999 - gri)
duke@435 427 __ nop();
duke@435 428
duke@435 429 // generate code for exception handler
duke@435 430 address handler_base = __ start_a_stub(exception_handler_size);
duke@435 431 if (handler_base == NULL) {
duke@435 432 // not enough space left for the handler
duke@435 433 bailout("exception handler overflow");
twisti@1639 434 return -1;
duke@435 435 }
twisti@1639 436
duke@435 437 int offset = code_offset();
duke@435 438
twisti@1730 439 // the exception oop and pc are in rax, and rdx
duke@435 440 // no other registers need to be preserved, so invalidate them
twisti@1730 441 __ invalidate_registers(false, true, true, false, true, true);
duke@435 442
duke@435 443 // check that there is really an exception
duke@435 444 __ verify_not_null_oop(rax);
duke@435 445
twisti@1730 446 // search an exception handler (rax: exception oop, rdx: throwing pc)
twisti@1730 447 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_nofpu_id)));
twisti@1730 448
twisti@1730 449 __ stop("should not reach here");
twisti@1730 450
duke@435 451 assert(code_offset() - offset <= exception_handler_size, "overflow");
duke@435 452 __ end_a_stub();
twisti@1639 453
twisti@1639 454 return offset;
duke@435 455 }
duke@435 456
twisti@1639 457
never@1813 458 // Emit the code to remove the frame from the stack in the exception
never@1813 459 // unwind path.
never@1813 460 int LIR_Assembler::emit_unwind_handler() {
never@1813 461 #ifndef PRODUCT
never@1813 462 if (CommentedAssembly) {
never@1813 463 _masm->block_comment("Unwind handler");
never@1813 464 }
never@1813 465 #endif
never@1813 466
never@1813 467 int offset = code_offset();
never@1813 468
never@1813 469 // Fetch the exception from TLS and clear out exception related thread state
never@1813 470 __ get_thread(rsi);
never@1813 471 __ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
never@1813 472 __ movptr(Address(rsi, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
never@1813 473 __ movptr(Address(rsi, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
never@1813 474
never@1813 475 __ bind(_unwind_handler_entry);
never@1813 476 __ verify_not_null_oop(rax);
never@1813 477 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 478 __ mov(rsi, rax); // Preserve the exception
never@1813 479 }
never@1813 480
never@1813 481 // Preform needed unlocking
never@1813 482 MonitorExitStub* stub = NULL;
never@1813 483 if (method()->is_synchronized()) {
never@1813 484 monitor_address(0, FrameMap::rax_opr);
never@1813 485 stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
never@1813 486 __ unlock_object(rdi, rbx, rax, *stub->entry());
never@1813 487 __ bind(*stub->continuation());
never@1813 488 }
never@1813 489
never@1813 490 if (compilation()->env()->dtrace_method_probes()) {
never@1813 491 __ movoop(Address(rsp, 0), method()->constant_encoding());
never@1813 492 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
never@1813 493 }
never@1813 494
never@1813 495 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 496 __ mov(rax, rsi); // Restore the exception
never@1813 497 }
never@1813 498
never@1813 499 // remove the activation and dispatch to the unwind handler
never@1813 500 __ remove_frame(initial_frame_size_in_bytes());
never@1813 501 __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
never@1813 502
never@1813 503 // Emit the slow path assembly
never@1813 504 if (stub != NULL) {
never@1813 505 stub->emit_code(this);
never@1813 506 }
never@1813 507
never@1813 508 return offset;
never@1813 509 }
never@1813 510
never@1813 511
twisti@1639 512 int LIR_Assembler::emit_deopt_handler() {
duke@435 513 // if the last instruction is a call (typically to do a throw which
duke@435 514 // is coming at the end after block reordering) the return address
duke@435 515 // must still point into the code area in order to avoid assertion
duke@435 516 // failures when searching for the corresponding bci => add a nop
duke@435 517 // (was bug 5/14/1999 - gri)
duke@435 518 __ nop();
duke@435 519
duke@435 520 // generate code for exception handler
duke@435 521 address handler_base = __ start_a_stub(deopt_handler_size);
duke@435 522 if (handler_base == NULL) {
duke@435 523 // not enough space left for the handler
duke@435 524 bailout("deopt handler overflow");
twisti@1639 525 return -1;
duke@435 526 }
twisti@1639 527
duke@435 528 int offset = code_offset();
duke@435 529 InternalAddress here(__ pc());
twisti@1730 530
duke@435 531 __ pushptr(here.addr());
duke@435 532 __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
twisti@1730 533
duke@435 534 assert(code_offset() - offset <= deopt_handler_size, "overflow");
duke@435 535 __ end_a_stub();
duke@435 536
twisti@1639 537 return offset;
duke@435 538 }
duke@435 539
duke@435 540
duke@435 541 // This is the fast version of java.lang.String.compare; it has not
duke@435 542 // OSR-entry and therefore, we generate a slow version for OSR's
duke@435 543 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
never@739 544 __ movptr (rbx, rcx); // receiver is in rcx
never@739 545 __ movptr (rax, arg1->as_register());
duke@435 546
duke@435 547 // Get addresses of first characters from both Strings
never@739 548 __ movptr (rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
never@739 549 __ movptr (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
never@739 550 __ lea (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
duke@435 551
duke@435 552
duke@435 553 // rbx, may be NULL
duke@435 554 add_debug_info_for_null_check_here(info);
never@739 555 __ movptr (rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
never@739 556 __ movptr (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
never@739 557 __ lea (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
duke@435 558
duke@435 559 // compute minimum length (in rax) and difference of lengths (on top of stack)
duke@435 560 if (VM_Version::supports_cmov()) {
never@739 561 __ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
never@739 562 __ movl (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
never@739 563 __ mov (rcx, rbx);
never@739 564 __ subptr (rbx, rax); // subtract lengths
never@739 565 __ push (rbx); // result
never@739 566 __ cmov (Assembler::lessEqual, rax, rcx);
duke@435 567 } else {
duke@435 568 Label L;
never@739 569 __ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
never@739 570 __ movl (rcx, Address(rax, java_lang_String::count_offset_in_bytes()));
never@739 571 __ mov (rax, rbx);
never@739 572 __ subptr (rbx, rcx);
never@739 573 __ push (rbx);
never@739 574 __ jcc (Assembler::lessEqual, L);
never@739 575 __ mov (rax, rcx);
duke@435 576 __ bind (L);
duke@435 577 }
duke@435 578 // is minimum length 0?
duke@435 579 Label noLoop, haveResult;
never@739 580 __ testptr (rax, rax);
duke@435 581 __ jcc (Assembler::zero, noLoop);
duke@435 582
duke@435 583 // compare first characters
jrose@1057 584 __ load_unsigned_short(rcx, Address(rdi, 0));
jrose@1057 585 __ load_unsigned_short(rbx, Address(rsi, 0));
duke@435 586 __ subl(rcx, rbx);
duke@435 587 __ jcc(Assembler::notZero, haveResult);
duke@435 588 // starting loop
duke@435 589 __ decrement(rax); // we already tested index: skip one
duke@435 590 __ jcc(Assembler::zero, noLoop);
duke@435 591
duke@435 592 // set rsi.edi to the end of the arrays (arrays have same length)
duke@435 593 // negate the index
duke@435 594
never@739 595 __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
never@739 596 __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
never@739 597 __ negptr(rax);
duke@435 598
duke@435 599 // compare the strings in a loop
duke@435 600
duke@435 601 Label loop;
duke@435 602 __ align(wordSize);
duke@435 603 __ bind(loop);
jrose@1057 604 __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
jrose@1057 605 __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
duke@435 606 __ subl(rcx, rbx);
duke@435 607 __ jcc(Assembler::notZero, haveResult);
duke@435 608 __ increment(rax);
duke@435 609 __ jcc(Assembler::notZero, loop);
duke@435 610
duke@435 611 // strings are equal up to min length
duke@435 612
duke@435 613 __ bind(noLoop);
never@739 614 __ pop(rax);
duke@435 615 return_op(LIR_OprFact::illegalOpr);
duke@435 616
duke@435 617 __ bind(haveResult);
duke@435 618 // leave instruction is going to discard the TOS value
never@739 619 __ mov (rax, rcx); // result of call is in rax,
duke@435 620 }
duke@435 621
duke@435 622
duke@435 623 void LIR_Assembler::return_op(LIR_Opr result) {
duke@435 624 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
duke@435 625 if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
duke@435 626 assert(result->fpu() == 0, "result must already be on TOS");
duke@435 627 }
duke@435 628
duke@435 629 // Pop the stack before the safepoint code
twisti@1730 630 __ remove_frame(initial_frame_size_in_bytes());
duke@435 631
duke@435 632 bool result_is_oop = result->is_valid() ? result->is_oop() : false;
duke@435 633
duke@435 634 // Note: we do not need to round double result; float result has the right precision
duke@435 635 // the poll sets the condition code, but no data registers
duke@435 636 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 637 relocInfo::poll_return_type);
never@739 638
never@739 639 // NOTE: the requires that the polling page be reachable else the reloc
never@739 640 // goes to the movq that loads the address and not the faulting instruction
never@739 641 // which breaks the signal handler code
never@739 642
duke@435 643 __ test32(rax, polling_page);
duke@435 644
duke@435 645 __ ret(0);
duke@435 646 }
duke@435 647
duke@435 648
duke@435 649 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 650 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 651 relocInfo::poll_type);
duke@435 652
duke@435 653 if (info != NULL) {
duke@435 654 add_debug_info_for_branch(info);
duke@435 655 } else {
duke@435 656 ShouldNotReachHere();
duke@435 657 }
duke@435 658
duke@435 659 int offset = __ offset();
never@739 660
never@739 661 // NOTE: the requires that the polling page be reachable else the reloc
never@739 662 // goes to the movq that loads the address and not the faulting instruction
never@739 663 // which breaks the signal handler code
never@739 664
duke@435 665 __ test32(rax, polling_page);
duke@435 666 return offset;
duke@435 667 }
duke@435 668
duke@435 669
duke@435 670 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
never@739 671 if (from_reg != to_reg) __ mov(to_reg, from_reg);
duke@435 672 }
duke@435 673
duke@435 674 void LIR_Assembler::swap_reg(Register a, Register b) {
never@739 675 __ xchgptr(a, b);
duke@435 676 }
duke@435 677
duke@435 678
duke@435 679 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
duke@435 680 assert(src->is_constant(), "should not call otherwise");
duke@435 681 assert(dest->is_register(), "should not call otherwise");
duke@435 682 LIR_Const* c = src->as_constant_ptr();
duke@435 683
duke@435 684 switch (c->type()) {
roland@1732 685 case T_INT:
roland@1732 686 case T_ADDRESS: {
duke@435 687 assert(patch_code == lir_patch_none, "no patching handled here");
duke@435 688 __ movl(dest->as_register(), c->as_jint());
duke@435 689 break;
duke@435 690 }
duke@435 691
duke@435 692 case T_LONG: {
duke@435 693 assert(patch_code == lir_patch_none, "no patching handled here");
never@739 694 #ifdef _LP64
never@739 695 __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
never@739 696 #else
never@739 697 __ movptr(dest->as_register_lo(), c->as_jint_lo());
never@739 698 __ movptr(dest->as_register_hi(), c->as_jint_hi());
never@739 699 #endif // _LP64
duke@435 700 break;
duke@435 701 }
duke@435 702
duke@435 703 case T_OBJECT: {
duke@435 704 if (patch_code != lir_patch_none) {
duke@435 705 jobject2reg_with_patching(dest->as_register(), info);
duke@435 706 } else {
duke@435 707 __ movoop(dest->as_register(), c->as_jobject());
duke@435 708 }
duke@435 709 break;
duke@435 710 }
duke@435 711
duke@435 712 case T_FLOAT: {
duke@435 713 if (dest->is_single_xmm()) {
duke@435 714 if (c->is_zero_float()) {
duke@435 715 __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
duke@435 716 } else {
duke@435 717 __ movflt(dest->as_xmm_float_reg(),
duke@435 718 InternalAddress(float_constant(c->as_jfloat())));
duke@435 719 }
duke@435 720 } else {
duke@435 721 assert(dest->is_single_fpu(), "must be");
duke@435 722 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 723 if (c->is_zero_float()) {
duke@435 724 __ fldz();
duke@435 725 } else if (c->is_one_float()) {
duke@435 726 __ fld1();
duke@435 727 } else {
duke@435 728 __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
duke@435 729 }
duke@435 730 }
duke@435 731 break;
duke@435 732 }
duke@435 733
duke@435 734 case T_DOUBLE: {
duke@435 735 if (dest->is_double_xmm()) {
duke@435 736 if (c->is_zero_double()) {
duke@435 737 __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
duke@435 738 } else {
duke@435 739 __ movdbl(dest->as_xmm_double_reg(),
duke@435 740 InternalAddress(double_constant(c->as_jdouble())));
duke@435 741 }
duke@435 742 } else {
duke@435 743 assert(dest->is_double_fpu(), "must be");
duke@435 744 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 745 if (c->is_zero_double()) {
duke@435 746 __ fldz();
duke@435 747 } else if (c->is_one_double()) {
duke@435 748 __ fld1();
duke@435 749 } else {
duke@435 750 __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
duke@435 751 }
duke@435 752 }
duke@435 753 break;
duke@435 754 }
duke@435 755
duke@435 756 default:
duke@435 757 ShouldNotReachHere();
duke@435 758 }
duke@435 759 }
duke@435 760
duke@435 761 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
duke@435 762 assert(src->is_constant(), "should not call otherwise");
duke@435 763 assert(dest->is_stack(), "should not call otherwise");
duke@435 764 LIR_Const* c = src->as_constant_ptr();
duke@435 765
duke@435 766 switch (c->type()) {
duke@435 767 case T_INT: // fall through
duke@435 768 case T_FLOAT:
roland@1732 769 case T_ADDRESS:
duke@435 770 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
duke@435 771 break;
duke@435 772
duke@435 773 case T_OBJECT:
duke@435 774 __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
duke@435 775 break;
duke@435 776
duke@435 777 case T_LONG: // fall through
duke@435 778 case T_DOUBLE:
never@739 779 #ifdef _LP64
never@739 780 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 781 lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
never@739 782 #else
never@739 783 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 784 lo_word_offset_in_bytes), c->as_jint_lo_bits());
never@739 785 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 786 hi_word_offset_in_bytes), c->as_jint_hi_bits());
never@739 787 #endif // _LP64
duke@435 788 break;
duke@435 789
duke@435 790 default:
duke@435 791 ShouldNotReachHere();
duke@435 792 }
duke@435 793 }
duke@435 794
duke@435 795 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
duke@435 796 assert(src->is_constant(), "should not call otherwise");
duke@435 797 assert(dest->is_address(), "should not call otherwise");
duke@435 798 LIR_Const* c = src->as_constant_ptr();
duke@435 799 LIR_Address* addr = dest->as_address_ptr();
duke@435 800
never@739 801 int null_check_here = code_offset();
duke@435 802 switch (type) {
duke@435 803 case T_INT: // fall through
duke@435 804 case T_FLOAT:
roland@1732 805 case T_ADDRESS:
duke@435 806 __ movl(as_Address(addr), c->as_jint_bits());
duke@435 807 break;
duke@435 808
duke@435 809 case T_OBJECT: // fall through
duke@435 810 case T_ARRAY:
duke@435 811 if (c->as_jobject() == NULL) {
xlu@947 812 __ movptr(as_Address(addr), NULL_WORD);
duke@435 813 } else {
never@739 814 if (is_literal_address(addr)) {
never@739 815 ShouldNotReachHere();
never@739 816 __ movoop(as_Address(addr, noreg), c->as_jobject());
never@739 817 } else {
roland@1495 818 #ifdef _LP64
roland@1495 819 __ movoop(rscratch1, c->as_jobject());
roland@1495 820 null_check_here = code_offset();
roland@1495 821 __ movptr(as_Address_lo(addr), rscratch1);
roland@1495 822 #else
never@739 823 __ movoop(as_Address(addr), c->as_jobject());
roland@1495 824 #endif
never@739 825 }
duke@435 826 }
duke@435 827 break;
duke@435 828
duke@435 829 case T_LONG: // fall through
duke@435 830 case T_DOUBLE:
never@739 831 #ifdef _LP64
never@739 832 if (is_literal_address(addr)) {
never@739 833 ShouldNotReachHere();
never@739 834 __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
never@739 835 } else {
never@739 836 __ movptr(r10, (intptr_t)c->as_jlong_bits());
never@739 837 null_check_here = code_offset();
never@739 838 __ movptr(as_Address_lo(addr), r10);
never@739 839 }
never@739 840 #else
never@739 841 // Always reachable in 32bit so this doesn't produce useless move literal
never@739 842 __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
never@739 843 __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
never@739 844 #endif // _LP64
duke@435 845 break;
duke@435 846
duke@435 847 case T_BOOLEAN: // fall through
duke@435 848 case T_BYTE:
duke@435 849 __ movb(as_Address(addr), c->as_jint() & 0xFF);
duke@435 850 break;
duke@435 851
duke@435 852 case T_CHAR: // fall through
duke@435 853 case T_SHORT:
duke@435 854 __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
duke@435 855 break;
duke@435 856
duke@435 857 default:
duke@435 858 ShouldNotReachHere();
duke@435 859 };
never@739 860
never@739 861 if (info != NULL) {
never@739 862 add_debug_info_for_null_check(null_check_here, info);
never@739 863 }
duke@435 864 }
duke@435 865
duke@435 866
duke@435 867 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
duke@435 868 assert(src->is_register(), "should not call otherwise");
duke@435 869 assert(dest->is_register(), "should not call otherwise");
duke@435 870
duke@435 871 // move between cpu-registers
duke@435 872 if (dest->is_single_cpu()) {
never@739 873 #ifdef _LP64
never@739 874 if (src->type() == T_LONG) {
never@739 875 // Can do LONG -> OBJECT
never@739 876 move_regs(src->as_register_lo(), dest->as_register());
never@739 877 return;
never@739 878 }
never@739 879 #endif
duke@435 880 assert(src->is_single_cpu(), "must match");
duke@435 881 if (src->type() == T_OBJECT) {
duke@435 882 __ verify_oop(src->as_register());
duke@435 883 }
duke@435 884 move_regs(src->as_register(), dest->as_register());
duke@435 885
duke@435 886 } else if (dest->is_double_cpu()) {
never@739 887 #ifdef _LP64
never@739 888 if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
never@739 889 // Surprising to me but we can see move of a long to t_object
never@739 890 __ verify_oop(src->as_register());
never@739 891 move_regs(src->as_register(), dest->as_register_lo());
never@739 892 return;
never@739 893 }
never@739 894 #endif
duke@435 895 assert(src->is_double_cpu(), "must match");
duke@435 896 Register f_lo = src->as_register_lo();
duke@435 897 Register f_hi = src->as_register_hi();
duke@435 898 Register t_lo = dest->as_register_lo();
duke@435 899 Register t_hi = dest->as_register_hi();
never@739 900 #ifdef _LP64
never@739 901 assert(f_hi == f_lo, "must be same");
never@739 902 assert(t_hi == t_lo, "must be same");
never@739 903 move_regs(f_lo, t_lo);
never@739 904 #else
duke@435 905 assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
duke@435 906
never@739 907
duke@435 908 if (f_lo == t_hi && f_hi == t_lo) {
duke@435 909 swap_reg(f_lo, f_hi);
duke@435 910 } else if (f_hi == t_lo) {
duke@435 911 assert(f_lo != t_hi, "overwriting register");
duke@435 912 move_regs(f_hi, t_hi);
duke@435 913 move_regs(f_lo, t_lo);
duke@435 914 } else {
duke@435 915 assert(f_hi != t_lo, "overwriting register");
duke@435 916 move_regs(f_lo, t_lo);
duke@435 917 move_regs(f_hi, t_hi);
duke@435 918 }
never@739 919 #endif // LP64
duke@435 920
duke@435 921 // special moves from fpu-register to xmm-register
duke@435 922 // necessary for method results
duke@435 923 } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
duke@435 924 __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
duke@435 925 __ fld_s(Address(rsp, 0));
duke@435 926 } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
duke@435 927 __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
duke@435 928 __ fld_d(Address(rsp, 0));
duke@435 929 } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
duke@435 930 __ fstp_s(Address(rsp, 0));
duke@435 931 __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
duke@435 932 } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
duke@435 933 __ fstp_d(Address(rsp, 0));
duke@435 934 __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
duke@435 935
duke@435 936 // move between xmm-registers
duke@435 937 } else if (dest->is_single_xmm()) {
duke@435 938 assert(src->is_single_xmm(), "must match");
duke@435 939 __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
duke@435 940 } else if (dest->is_double_xmm()) {
duke@435 941 assert(src->is_double_xmm(), "must match");
duke@435 942 __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
duke@435 943
duke@435 944 // move between fpu-registers (no instruction necessary because of fpu-stack)
duke@435 945 } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
duke@435 946 assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
duke@435 947 assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
duke@435 948 } else {
duke@435 949 ShouldNotReachHere();
duke@435 950 }
duke@435 951 }
duke@435 952
duke@435 953 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
duke@435 954 assert(src->is_register(), "should not call otherwise");
duke@435 955 assert(dest->is_stack(), "should not call otherwise");
duke@435 956
duke@435 957 if (src->is_single_cpu()) {
duke@435 958 Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 959 if (type == T_OBJECT || type == T_ARRAY) {
duke@435 960 __ verify_oop(src->as_register());
never@739 961 __ movptr (dst, src->as_register());
never@739 962 } else {
never@739 963 __ movl (dst, src->as_register());
duke@435 964 }
duke@435 965
duke@435 966 } else if (src->is_double_cpu()) {
duke@435 967 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 968 Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
never@739 969 __ movptr (dstLO, src->as_register_lo());
never@739 970 NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
duke@435 971
duke@435 972 } else if (src->is_single_xmm()) {
duke@435 973 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 974 __ movflt(dst_addr, src->as_xmm_float_reg());
duke@435 975
duke@435 976 } else if (src->is_double_xmm()) {
duke@435 977 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 978 __ movdbl(dst_addr, src->as_xmm_double_reg());
duke@435 979
duke@435 980 } else if (src->is_single_fpu()) {
duke@435 981 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 982 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 983 if (pop_fpu_stack) __ fstp_s (dst_addr);
duke@435 984 else __ fst_s (dst_addr);
duke@435 985
duke@435 986 } else if (src->is_double_fpu()) {
duke@435 987 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 988 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 989 if (pop_fpu_stack) __ fstp_d (dst_addr);
duke@435 990 else __ fst_d (dst_addr);
duke@435 991
duke@435 992 } else {
duke@435 993 ShouldNotReachHere();
duke@435 994 }
duke@435 995 }
duke@435 996
duke@435 997
duke@435 998 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool /* unaligned */) {
duke@435 999 LIR_Address* to_addr = dest->as_address_ptr();
duke@435 1000 PatchingStub* patch = NULL;
duke@435 1001
duke@435 1002 if (type == T_ARRAY || type == T_OBJECT) {
duke@435 1003 __ verify_oop(src->as_register());
duke@435 1004 }
duke@435 1005 if (patch_code != lir_patch_none) {
duke@435 1006 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
never@739 1007 Address toa = as_Address(to_addr);
never@739 1008 assert(toa.disp() != 0, "must have");
duke@435 1009 }
duke@435 1010 if (info != NULL) {
duke@435 1011 add_debug_info_for_null_check_here(info);
duke@435 1012 }
duke@435 1013
duke@435 1014 switch (type) {
duke@435 1015 case T_FLOAT: {
duke@435 1016 if (src->is_single_xmm()) {
duke@435 1017 __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
duke@435 1018 } else {
duke@435 1019 assert(src->is_single_fpu(), "must be");
duke@435 1020 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 1021 if (pop_fpu_stack) __ fstp_s(as_Address(to_addr));
duke@435 1022 else __ fst_s (as_Address(to_addr));
duke@435 1023 }
duke@435 1024 break;
duke@435 1025 }
duke@435 1026
duke@435 1027 case T_DOUBLE: {
duke@435 1028 if (src->is_double_xmm()) {
duke@435 1029 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
duke@435 1030 } else {
duke@435 1031 assert(src->is_double_fpu(), "must be");
duke@435 1032 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 1033 if (pop_fpu_stack) __ fstp_d(as_Address(to_addr));
duke@435 1034 else __ fst_d (as_Address(to_addr));
duke@435 1035 }
duke@435 1036 break;
duke@435 1037 }
duke@435 1038
duke@435 1039 case T_ADDRESS: // fall through
duke@435 1040 case T_ARRAY: // fall through
duke@435 1041 case T_OBJECT: // fall through
never@739 1042 #ifdef _LP64
never@739 1043 __ movptr(as_Address(to_addr), src->as_register());
never@739 1044 break;
never@739 1045 #endif // _LP64
duke@435 1046 case T_INT:
duke@435 1047 __ movl(as_Address(to_addr), src->as_register());
duke@435 1048 break;
duke@435 1049
duke@435 1050 case T_LONG: {
duke@435 1051 Register from_lo = src->as_register_lo();
duke@435 1052 Register from_hi = src->as_register_hi();
never@739 1053 #ifdef _LP64
never@739 1054 __ movptr(as_Address_lo(to_addr), from_lo);
never@739 1055 #else
duke@435 1056 Register base = to_addr->base()->as_register();
duke@435 1057 Register index = noreg;
duke@435 1058 if (to_addr->index()->is_register()) {
duke@435 1059 index = to_addr->index()->as_register();
duke@435 1060 }
duke@435 1061 if (base == from_lo || index == from_lo) {
duke@435 1062 assert(base != from_hi, "can't be");
duke@435 1063 assert(index == noreg || (index != base && index != from_hi), "can't handle this");
duke@435 1064 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 1065 if (patch != NULL) {
duke@435 1066 patching_epilog(patch, lir_patch_high, base, info);
duke@435 1067 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1068 patch_code = lir_patch_low;
duke@435 1069 }
duke@435 1070 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 1071 } else {
duke@435 1072 assert(index == noreg || (index != base && index != from_lo), "can't handle this");
duke@435 1073 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 1074 if (patch != NULL) {
duke@435 1075 patching_epilog(patch, lir_patch_low, base, info);
duke@435 1076 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1077 patch_code = lir_patch_high;
duke@435 1078 }
duke@435 1079 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 1080 }
never@739 1081 #endif // _LP64
duke@435 1082 break;
duke@435 1083 }
duke@435 1084
duke@435 1085 case T_BYTE: // fall through
duke@435 1086 case T_BOOLEAN: {
duke@435 1087 Register src_reg = src->as_register();
duke@435 1088 Address dst_addr = as_Address(to_addr);
duke@435 1089 assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1090 __ movb(dst_addr, src_reg);
duke@435 1091 break;
duke@435 1092 }
duke@435 1093
duke@435 1094 case T_CHAR: // fall through
duke@435 1095 case T_SHORT:
duke@435 1096 __ movw(as_Address(to_addr), src->as_register());
duke@435 1097 break;
duke@435 1098
duke@435 1099 default:
duke@435 1100 ShouldNotReachHere();
duke@435 1101 }
duke@435 1102
duke@435 1103 if (patch_code != lir_patch_none) {
duke@435 1104 patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
duke@435 1105 }
duke@435 1106 }
duke@435 1107
duke@435 1108
duke@435 1109 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1110 assert(src->is_stack(), "should not call otherwise");
duke@435 1111 assert(dest->is_register(), "should not call otherwise");
duke@435 1112
duke@435 1113 if (dest->is_single_cpu()) {
duke@435 1114 if (type == T_ARRAY || type == T_OBJECT) {
never@739 1115 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
duke@435 1116 __ verify_oop(dest->as_register());
never@739 1117 } else {
never@739 1118 __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
duke@435 1119 }
duke@435 1120
duke@435 1121 } else if (dest->is_double_cpu()) {
duke@435 1122 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 1123 Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
never@739 1124 __ movptr(dest->as_register_lo(), src_addr_LO);
never@739 1125 NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
duke@435 1126
duke@435 1127 } else if (dest->is_single_xmm()) {
duke@435 1128 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1129 __ movflt(dest->as_xmm_float_reg(), src_addr);
duke@435 1130
duke@435 1131 } else if (dest->is_double_xmm()) {
duke@435 1132 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1133 __ movdbl(dest->as_xmm_double_reg(), src_addr);
duke@435 1134
duke@435 1135 } else if (dest->is_single_fpu()) {
duke@435 1136 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1137 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1138 __ fld_s(src_addr);
duke@435 1139
duke@435 1140 } else if (dest->is_double_fpu()) {
duke@435 1141 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1142 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1143 __ fld_d(src_addr);
duke@435 1144
duke@435 1145 } else {
duke@435 1146 ShouldNotReachHere();
duke@435 1147 }
duke@435 1148 }
duke@435 1149
duke@435 1150
duke@435 1151 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1152 if (src->is_single_stack()) {
never@739 1153 if (type == T_OBJECT || type == T_ARRAY) {
never@739 1154 __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
never@739 1155 __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
never@739 1156 } else {
roland@1495 1157 #ifndef _LP64
never@739 1158 __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
never@739 1159 __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
roland@1495 1160 #else
roland@1495 1161 //no pushl on 64bits
roland@1495 1162 __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
roland@1495 1163 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
roland@1495 1164 #endif
never@739 1165 }
duke@435 1166
duke@435 1167 } else if (src->is_double_stack()) {
never@739 1168 #ifdef _LP64
never@739 1169 __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
never@739 1170 __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
never@739 1171 #else
duke@435 1172 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
never@739 1173 // push and pop the part at src + wordSize, adding wordSize for the previous push
never@756 1174 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
never@756 1175 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
duke@435 1176 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
never@739 1177 #endif // _LP64
duke@435 1178
duke@435 1179 } else {
duke@435 1180 ShouldNotReachHere();
duke@435 1181 }
duke@435 1182 }
duke@435 1183
duke@435 1184
duke@435 1185 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool /* unaligned */) {
duke@435 1186 assert(src->is_address(), "should not call otherwise");
duke@435 1187 assert(dest->is_register(), "should not call otherwise");
duke@435 1188
duke@435 1189 LIR_Address* addr = src->as_address_ptr();
duke@435 1190 Address from_addr = as_Address(addr);
duke@435 1191
duke@435 1192 switch (type) {
duke@435 1193 case T_BOOLEAN: // fall through
duke@435 1194 case T_BYTE: // fall through
duke@435 1195 case T_CHAR: // fall through
duke@435 1196 case T_SHORT:
duke@435 1197 if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
duke@435 1198 // on pre P6 processors we may get partial register stalls
duke@435 1199 // so blow away the value of to_rinfo before loading a
duke@435 1200 // partial word into it. Do it here so that it precedes
duke@435 1201 // the potential patch point below.
never@739 1202 __ xorptr(dest->as_register(), dest->as_register());
duke@435 1203 }
duke@435 1204 break;
duke@435 1205 }
duke@435 1206
duke@435 1207 PatchingStub* patch = NULL;
duke@435 1208 if (patch_code != lir_patch_none) {
duke@435 1209 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
never@739 1210 assert(from_addr.disp() != 0, "must have");
duke@435 1211 }
duke@435 1212 if (info != NULL) {
duke@435 1213 add_debug_info_for_null_check_here(info);
duke@435 1214 }
duke@435 1215
duke@435 1216 switch (type) {
duke@435 1217 case T_FLOAT: {
duke@435 1218 if (dest->is_single_xmm()) {
duke@435 1219 __ movflt(dest->as_xmm_float_reg(), from_addr);
duke@435 1220 } else {
duke@435 1221 assert(dest->is_single_fpu(), "must be");
duke@435 1222 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1223 __ fld_s(from_addr);
duke@435 1224 }
duke@435 1225 break;
duke@435 1226 }
duke@435 1227
duke@435 1228 case T_DOUBLE: {
duke@435 1229 if (dest->is_double_xmm()) {
duke@435 1230 __ movdbl(dest->as_xmm_double_reg(), from_addr);
duke@435 1231 } else {
duke@435 1232 assert(dest->is_double_fpu(), "must be");
duke@435 1233 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1234 __ fld_d(from_addr);
duke@435 1235 }
duke@435 1236 break;
duke@435 1237 }
duke@435 1238
duke@435 1239 case T_ADDRESS: // fall through
duke@435 1240 case T_OBJECT: // fall through
duke@435 1241 case T_ARRAY: // fall through
never@739 1242 #ifdef _LP64
never@739 1243 __ movptr(dest->as_register(), from_addr);
never@739 1244 break;
never@739 1245 #endif // _L64
duke@435 1246 case T_INT:
iveresov@1833 1247 __ movl(dest->as_register(), from_addr);
duke@435 1248 break;
duke@435 1249
duke@435 1250 case T_LONG: {
duke@435 1251 Register to_lo = dest->as_register_lo();
duke@435 1252 Register to_hi = dest->as_register_hi();
never@739 1253 #ifdef _LP64
never@739 1254 __ movptr(to_lo, as_Address_lo(addr));
never@739 1255 #else
duke@435 1256 Register base = addr->base()->as_register();
duke@435 1257 Register index = noreg;
duke@435 1258 if (addr->index()->is_register()) {
duke@435 1259 index = addr->index()->as_register();
duke@435 1260 }
duke@435 1261 if ((base == to_lo && index == to_hi) ||
duke@435 1262 (base == to_hi && index == to_lo)) {
duke@435 1263 // addresses with 2 registers are only formed as a result of
duke@435 1264 // array access so this code will never have to deal with
duke@435 1265 // patches or null checks.
duke@435 1266 assert(info == NULL && patch == NULL, "must be");
never@739 1267 __ lea(to_hi, as_Address(addr));
duke@435 1268 __ movl(to_lo, Address(to_hi, 0));
duke@435 1269 __ movl(to_hi, Address(to_hi, BytesPerWord));
duke@435 1270 } else if (base == to_lo || index == to_lo) {
duke@435 1271 assert(base != to_hi, "can't be");
duke@435 1272 assert(index == noreg || (index != base && index != to_hi), "can't handle this");
duke@435 1273 __ movl(to_hi, as_Address_hi(addr));
duke@435 1274 if (patch != NULL) {
duke@435 1275 patching_epilog(patch, lir_patch_high, base, info);
duke@435 1276 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1277 patch_code = lir_patch_low;
duke@435 1278 }
duke@435 1279 __ movl(to_lo, as_Address_lo(addr));
duke@435 1280 } else {
duke@435 1281 assert(index == noreg || (index != base && index != to_lo), "can't handle this");
duke@435 1282 __ movl(to_lo, as_Address_lo(addr));
duke@435 1283 if (patch != NULL) {
duke@435 1284 patching_epilog(patch, lir_patch_low, base, info);
duke@435 1285 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1286 patch_code = lir_patch_high;
duke@435 1287 }
duke@435 1288 __ movl(to_hi, as_Address_hi(addr));
duke@435 1289 }
never@739 1290 #endif // _LP64
duke@435 1291 break;
duke@435 1292 }
duke@435 1293
duke@435 1294 case T_BOOLEAN: // fall through
duke@435 1295 case T_BYTE: {
duke@435 1296 Register dest_reg = dest->as_register();
duke@435 1297 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1298 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1299 __ movsbl(dest_reg, from_addr);
duke@435 1300 } else {
duke@435 1301 __ movb(dest_reg, from_addr);
duke@435 1302 __ shll(dest_reg, 24);
duke@435 1303 __ sarl(dest_reg, 24);
duke@435 1304 }
duke@435 1305 break;
duke@435 1306 }
duke@435 1307
duke@435 1308 case T_CHAR: {
duke@435 1309 Register dest_reg = dest->as_register();
duke@435 1310 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1311 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1312 __ movzwl(dest_reg, from_addr);
duke@435 1313 } else {
duke@435 1314 __ movw(dest_reg, from_addr);
duke@435 1315 }
duke@435 1316 break;
duke@435 1317 }
duke@435 1318
duke@435 1319 case T_SHORT: {
duke@435 1320 Register dest_reg = dest->as_register();
duke@435 1321 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1322 __ movswl(dest_reg, from_addr);
duke@435 1323 } else {
duke@435 1324 __ movw(dest_reg, from_addr);
duke@435 1325 __ shll(dest_reg, 16);
duke@435 1326 __ sarl(dest_reg, 16);
duke@435 1327 }
duke@435 1328 break;
duke@435 1329 }
duke@435 1330
duke@435 1331 default:
duke@435 1332 ShouldNotReachHere();
duke@435 1333 }
duke@435 1334
duke@435 1335 if (patch != NULL) {
duke@435 1336 patching_epilog(patch, patch_code, addr->base()->as_register(), info);
duke@435 1337 }
duke@435 1338
duke@435 1339 if (type == T_ARRAY || type == T_OBJECT) {
duke@435 1340 __ verify_oop(dest->as_register());
duke@435 1341 }
duke@435 1342 }
duke@435 1343
duke@435 1344
duke@435 1345 void LIR_Assembler::prefetchr(LIR_Opr src) {
duke@435 1346 LIR_Address* addr = src->as_address_ptr();
duke@435 1347 Address from_addr = as_Address(addr);
duke@435 1348
duke@435 1349 if (VM_Version::supports_sse()) {
duke@435 1350 switch (ReadPrefetchInstr) {
duke@435 1351 case 0:
duke@435 1352 __ prefetchnta(from_addr); break;
duke@435 1353 case 1:
duke@435 1354 __ prefetcht0(from_addr); break;
duke@435 1355 case 2:
duke@435 1356 __ prefetcht2(from_addr); break;
duke@435 1357 default:
duke@435 1358 ShouldNotReachHere(); break;
duke@435 1359 }
duke@435 1360 } else if (VM_Version::supports_3dnow()) {
duke@435 1361 __ prefetchr(from_addr);
duke@435 1362 }
duke@435 1363 }
duke@435 1364
duke@435 1365
duke@435 1366 void LIR_Assembler::prefetchw(LIR_Opr src) {
duke@435 1367 LIR_Address* addr = src->as_address_ptr();
duke@435 1368 Address from_addr = as_Address(addr);
duke@435 1369
duke@435 1370 if (VM_Version::supports_sse()) {
duke@435 1371 switch (AllocatePrefetchInstr) {
duke@435 1372 case 0:
duke@435 1373 __ prefetchnta(from_addr); break;
duke@435 1374 case 1:
duke@435 1375 __ prefetcht0(from_addr); break;
duke@435 1376 case 2:
duke@435 1377 __ prefetcht2(from_addr); break;
duke@435 1378 case 3:
duke@435 1379 __ prefetchw(from_addr); break;
duke@435 1380 default:
duke@435 1381 ShouldNotReachHere(); break;
duke@435 1382 }
duke@435 1383 } else if (VM_Version::supports_3dnow()) {
duke@435 1384 __ prefetchw(from_addr);
duke@435 1385 }
duke@435 1386 }
duke@435 1387
duke@435 1388
duke@435 1389 NEEDS_CLEANUP; // This could be static?
duke@435 1390 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
kvn@464 1391 int elem_size = type2aelembytes(type);
duke@435 1392 switch (elem_size) {
duke@435 1393 case 1: return Address::times_1;
duke@435 1394 case 2: return Address::times_2;
duke@435 1395 case 4: return Address::times_4;
duke@435 1396 case 8: return Address::times_8;
duke@435 1397 }
duke@435 1398 ShouldNotReachHere();
duke@435 1399 return Address::no_scale;
duke@435 1400 }
duke@435 1401
duke@435 1402
duke@435 1403 void LIR_Assembler::emit_op3(LIR_Op3* op) {
duke@435 1404 switch (op->code()) {
duke@435 1405 case lir_idiv:
duke@435 1406 case lir_irem:
duke@435 1407 arithmetic_idiv(op->code(),
duke@435 1408 op->in_opr1(),
duke@435 1409 op->in_opr2(),
duke@435 1410 op->in_opr3(),
duke@435 1411 op->result_opr(),
duke@435 1412 op->info());
duke@435 1413 break;
duke@435 1414 default: ShouldNotReachHere(); break;
duke@435 1415 }
duke@435 1416 }
duke@435 1417
duke@435 1418 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
duke@435 1419 #ifdef ASSERT
duke@435 1420 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
duke@435 1421 if (op->block() != NULL) _branch_target_blocks.append(op->block());
duke@435 1422 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
duke@435 1423 #endif
duke@435 1424
duke@435 1425 if (op->cond() == lir_cond_always) {
duke@435 1426 if (op->info() != NULL) add_debug_info_for_branch(op->info());
duke@435 1427 __ jmp (*(op->label()));
duke@435 1428 } else {
duke@435 1429 Assembler::Condition acond = Assembler::zero;
duke@435 1430 if (op->code() == lir_cond_float_branch) {
duke@435 1431 assert(op->ublock() != NULL, "must have unordered successor");
duke@435 1432 __ jcc(Assembler::parity, *(op->ublock()->label()));
duke@435 1433 switch(op->cond()) {
duke@435 1434 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1435 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1436 case lir_cond_less: acond = Assembler::below; break;
duke@435 1437 case lir_cond_lessEqual: acond = Assembler::belowEqual; break;
duke@435 1438 case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
duke@435 1439 case lir_cond_greater: acond = Assembler::above; break;
duke@435 1440 default: ShouldNotReachHere();
duke@435 1441 }
duke@435 1442 } else {
duke@435 1443 switch (op->cond()) {
duke@435 1444 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1445 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1446 case lir_cond_less: acond = Assembler::less; break;
duke@435 1447 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 1448 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
duke@435 1449 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 1450 case lir_cond_belowEqual: acond = Assembler::belowEqual; break;
duke@435 1451 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break;
duke@435 1452 default: ShouldNotReachHere();
duke@435 1453 }
duke@435 1454 }
duke@435 1455 __ jcc(acond,*(op->label()));
duke@435 1456 }
duke@435 1457 }
duke@435 1458
duke@435 1459 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
duke@435 1460 LIR_Opr src = op->in_opr();
duke@435 1461 LIR_Opr dest = op->result_opr();
duke@435 1462
duke@435 1463 switch (op->bytecode()) {
duke@435 1464 case Bytecodes::_i2l:
never@739 1465 #ifdef _LP64
never@739 1466 __ movl2ptr(dest->as_register_lo(), src->as_register());
never@739 1467 #else
duke@435 1468 move_regs(src->as_register(), dest->as_register_lo());
duke@435 1469 move_regs(src->as_register(), dest->as_register_hi());
duke@435 1470 __ sarl(dest->as_register_hi(), 31);
never@739 1471 #endif // LP64
duke@435 1472 break;
duke@435 1473
duke@435 1474 case Bytecodes::_l2i:
duke@435 1475 move_regs(src->as_register_lo(), dest->as_register());
duke@435 1476 break;
duke@435 1477
duke@435 1478 case Bytecodes::_i2b:
duke@435 1479 move_regs(src->as_register(), dest->as_register());
duke@435 1480 __ sign_extend_byte(dest->as_register());
duke@435 1481 break;
duke@435 1482
duke@435 1483 case Bytecodes::_i2c:
duke@435 1484 move_regs(src->as_register(), dest->as_register());
duke@435 1485 __ andl(dest->as_register(), 0xFFFF);
duke@435 1486 break;
duke@435 1487
duke@435 1488 case Bytecodes::_i2s:
duke@435 1489 move_regs(src->as_register(), dest->as_register());
duke@435 1490 __ sign_extend_short(dest->as_register());
duke@435 1491 break;
duke@435 1492
duke@435 1493
duke@435 1494 case Bytecodes::_f2d:
duke@435 1495 case Bytecodes::_d2f:
duke@435 1496 if (dest->is_single_xmm()) {
duke@435 1497 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
duke@435 1498 } else if (dest->is_double_xmm()) {
duke@435 1499 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
duke@435 1500 } else {
duke@435 1501 assert(src->fpu() == dest->fpu(), "register must be equal");
duke@435 1502 // do nothing (float result is rounded later through spilling)
duke@435 1503 }
duke@435 1504 break;
duke@435 1505
duke@435 1506 case Bytecodes::_i2f:
duke@435 1507 case Bytecodes::_i2d:
duke@435 1508 if (dest->is_single_xmm()) {
never@739 1509 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
duke@435 1510 } else if (dest->is_double_xmm()) {
never@739 1511 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
duke@435 1512 } else {
duke@435 1513 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1514 __ movl(Address(rsp, 0), src->as_register());
duke@435 1515 __ fild_s(Address(rsp, 0));
duke@435 1516 }
duke@435 1517 break;
duke@435 1518
duke@435 1519 case Bytecodes::_f2i:
duke@435 1520 case Bytecodes::_d2i:
duke@435 1521 if (src->is_single_xmm()) {
never@739 1522 __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
duke@435 1523 } else if (src->is_double_xmm()) {
never@739 1524 __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
duke@435 1525 } else {
duke@435 1526 assert(src->fpu() == 0, "input must be on TOS");
duke@435 1527 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
duke@435 1528 __ fist_s(Address(rsp, 0));
duke@435 1529 __ movl(dest->as_register(), Address(rsp, 0));
duke@435 1530 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 1531 }
duke@435 1532
duke@435 1533 // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
duke@435 1534 assert(op->stub() != NULL, "stub required");
duke@435 1535 __ cmpl(dest->as_register(), 0x80000000);
duke@435 1536 __ jcc(Assembler::equal, *op->stub()->entry());
duke@435 1537 __ bind(*op->stub()->continuation());
duke@435 1538 break;
duke@435 1539
duke@435 1540 case Bytecodes::_l2f:
duke@435 1541 case Bytecodes::_l2d:
duke@435 1542 assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
duke@435 1543 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1544
never@739 1545 __ movptr(Address(rsp, 0), src->as_register_lo());
never@739 1546 NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
duke@435 1547 __ fild_d(Address(rsp, 0));
duke@435 1548 // float result is rounded later through spilling
duke@435 1549 break;
duke@435 1550
duke@435 1551 case Bytecodes::_f2l:
duke@435 1552 case Bytecodes::_d2l:
duke@435 1553 assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
duke@435 1554 assert(src->fpu() == 0, "input must be on TOS");
never@739 1555 assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
duke@435 1556
duke@435 1557 // instruction sequence too long to inline it here
duke@435 1558 {
duke@435 1559 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
duke@435 1560 }
duke@435 1561 break;
duke@435 1562
duke@435 1563 default: ShouldNotReachHere();
duke@435 1564 }
duke@435 1565 }
duke@435 1566
duke@435 1567 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
duke@435 1568 if (op->init_check()) {
duke@435 1569 __ cmpl(Address(op->klass()->as_register(),
duke@435 1570 instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)),
duke@435 1571 instanceKlass::fully_initialized);
duke@435 1572 add_debug_info_for_null_check_here(op->stub()->info());
duke@435 1573 __ jcc(Assembler::notEqual, *op->stub()->entry());
duke@435 1574 }
duke@435 1575 __ allocate_object(op->obj()->as_register(),
duke@435 1576 op->tmp1()->as_register(),
duke@435 1577 op->tmp2()->as_register(),
duke@435 1578 op->header_size(),
duke@435 1579 op->object_size(),
duke@435 1580 op->klass()->as_register(),
duke@435 1581 *op->stub()->entry());
duke@435 1582 __ bind(*op->stub()->continuation());
duke@435 1583 }
duke@435 1584
duke@435 1585 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
duke@435 1586 if (UseSlowPath ||
duke@435 1587 (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
duke@435 1588 (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
duke@435 1589 __ jmp(*op->stub()->entry());
duke@435 1590 } else {
duke@435 1591 Register len = op->len()->as_register();
duke@435 1592 Register tmp1 = op->tmp1()->as_register();
duke@435 1593 Register tmp2 = op->tmp2()->as_register();
duke@435 1594 Register tmp3 = op->tmp3()->as_register();
duke@435 1595 if (len == tmp1) {
duke@435 1596 tmp1 = tmp3;
duke@435 1597 } else if (len == tmp2) {
duke@435 1598 tmp2 = tmp3;
duke@435 1599 } else if (len == tmp3) {
duke@435 1600 // everything is ok
duke@435 1601 } else {
never@739 1602 __ mov(tmp3, len);
duke@435 1603 }
duke@435 1604 __ allocate_array(op->obj()->as_register(),
duke@435 1605 len,
duke@435 1606 tmp1,
duke@435 1607 tmp2,
duke@435 1608 arrayOopDesc::header_size(op->type()),
duke@435 1609 array_element_size(op->type()),
duke@435 1610 op->klass()->as_register(),
duke@435 1611 *op->stub()->entry());
duke@435 1612 }
duke@435 1613 __ bind(*op->stub()->continuation());
duke@435 1614 }
duke@435 1615
duke@435 1616
duke@435 1617
duke@435 1618 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
duke@435 1619 LIR_Code code = op->code();
duke@435 1620 if (code == lir_store_check) {
duke@435 1621 Register value = op->object()->as_register();
duke@435 1622 Register array = op->array()->as_register();
duke@435 1623 Register k_RInfo = op->tmp1()->as_register();
duke@435 1624 Register klass_RInfo = op->tmp2()->as_register();
duke@435 1625 Register Rtmp1 = op->tmp3()->as_register();
duke@435 1626
duke@435 1627 CodeStub* stub = op->stub();
duke@435 1628 Label done;
never@739 1629 __ cmpptr(value, (int32_t)NULL_WORD);
duke@435 1630 __ jcc(Assembler::equal, done);
duke@435 1631 add_debug_info_for_null_check_here(op->info_for_exception());
never@739 1632 __ movptr(k_RInfo, Address(array, oopDesc::klass_offset_in_bytes()));
never@739 1633 __ movptr(klass_RInfo, Address(value, oopDesc::klass_offset_in_bytes()));
duke@435 1634
duke@435 1635 // get instance klass
never@739 1636 __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
jrose@1079 1637 // perform the fast part of the checking logic
jrose@1079 1638 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, &done, stub->entry(), NULL);
jrose@1079 1639 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
never@739 1640 __ push(klass_RInfo);
never@739 1641 __ push(k_RInfo);
duke@435 1642 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1643 __ pop(klass_RInfo);
never@739 1644 __ pop(k_RInfo);
never@739 1645 // result is a boolean
duke@435 1646 __ cmpl(k_RInfo, 0);
duke@435 1647 __ jcc(Assembler::equal, *stub->entry());
duke@435 1648 __ bind(done);
duke@435 1649 } else if (op->code() == lir_checkcast) {
duke@435 1650 // we always need a stub for the failure case.
duke@435 1651 CodeStub* stub = op->stub();
duke@435 1652 Register obj = op->object()->as_register();
duke@435 1653 Register k_RInfo = op->tmp1()->as_register();
duke@435 1654 Register klass_RInfo = op->tmp2()->as_register();
duke@435 1655 Register dst = op->result_opr()->as_register();
duke@435 1656 ciKlass* k = op->klass();
duke@435 1657 Register Rtmp1 = noreg;
duke@435 1658
duke@435 1659 Label done;
duke@435 1660 if (obj == k_RInfo) {
duke@435 1661 k_RInfo = dst;
duke@435 1662 } else if (obj == klass_RInfo) {
duke@435 1663 klass_RInfo = dst;
duke@435 1664 }
duke@435 1665 if (k->is_loaded()) {
duke@435 1666 select_different_registers(obj, dst, k_RInfo, klass_RInfo);
duke@435 1667 } else {
duke@435 1668 Rtmp1 = op->tmp3()->as_register();
duke@435 1669 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
duke@435 1670 }
duke@435 1671
duke@435 1672 assert_different_registers(obj, k_RInfo, klass_RInfo);
duke@435 1673 if (!k->is_loaded()) {
duke@435 1674 jobject2reg_with_patching(k_RInfo, op->info_for_patch());
duke@435 1675 } else {
never@739 1676 #ifdef _LP64
jrose@1424 1677 __ movoop(k_RInfo, k->constant_encoding());
never@739 1678 #else
duke@435 1679 k_RInfo = noreg;
never@739 1680 #endif // _LP64
duke@435 1681 }
duke@435 1682 assert(obj != k_RInfo, "must be different");
never@739 1683 __ cmpptr(obj, (int32_t)NULL_WORD);
duke@435 1684 if (op->profiled_method() != NULL) {
duke@435 1685 ciMethod* method = op->profiled_method();
duke@435 1686 int bci = op->profiled_bci();
duke@435 1687
duke@435 1688 Label profile_done;
duke@435 1689 __ jcc(Assembler::notEqual, profile_done);
duke@435 1690 // Object is null; update methodDataOop
duke@435 1691 ciMethodData* md = method->method_data();
duke@435 1692 if (md == NULL) {
duke@435 1693 bailout("out of memory building methodDataOop");
duke@435 1694 return;
duke@435 1695 }
duke@435 1696 ciProfileData* data = md->bci_to_data(bci);
duke@435 1697 assert(data != NULL, "need data for checkcast");
duke@435 1698 assert(data->is_BitData(), "need BitData for checkcast");
duke@435 1699 Register mdo = klass_RInfo;
jrose@1424 1700 __ movoop(mdo, md->constant_encoding());
duke@435 1701 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
duke@435 1702 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
duke@435 1703 __ orl(data_addr, header_bits);
duke@435 1704 __ jmp(done);
duke@435 1705 __ bind(profile_done);
duke@435 1706 } else {
duke@435 1707 __ jcc(Assembler::equal, done);
duke@435 1708 }
duke@435 1709 __ verify_oop(obj);
duke@435 1710
duke@435 1711 if (op->fast_check()) {
duke@435 1712 // get object classo
duke@435 1713 // not a safepoint as obj null check happens earlier
duke@435 1714 if (k->is_loaded()) {
never@739 1715 #ifdef _LP64
never@739 1716 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
never@739 1717 #else
jrose@1424 1718 __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
never@739 1719 #endif // _LP64
duke@435 1720 } else {
never@739 1721 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
duke@435 1722
duke@435 1723 }
duke@435 1724 __ jcc(Assembler::notEqual, *stub->entry());
duke@435 1725 __ bind(done);
duke@435 1726 } else {
duke@435 1727 // get object class
duke@435 1728 // not a safepoint as obj null check happens earlier
never@739 1729 __ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
duke@435 1730 if (k->is_loaded()) {
duke@435 1731 // See if we get an immediate positive hit
never@739 1732 #ifdef _LP64
never@739 1733 __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
never@739 1734 #else
jrose@1424 1735 __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
never@739 1736 #endif // _LP64
duke@435 1737 if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
duke@435 1738 __ jcc(Assembler::notEqual, *stub->entry());
duke@435 1739 } else {
duke@435 1740 // See if we get an immediate positive hit
duke@435 1741 __ jcc(Assembler::equal, done);
duke@435 1742 // check for self
never@739 1743 #ifdef _LP64
never@739 1744 __ cmpptr(klass_RInfo, k_RInfo);
never@739 1745 #else
jrose@1424 1746 __ cmpoop(klass_RInfo, k->constant_encoding());
never@739 1747 #endif // _LP64
duke@435 1748 __ jcc(Assembler::equal, done);
duke@435 1749
never@739 1750 __ push(klass_RInfo);
never@739 1751 #ifdef _LP64
never@739 1752 __ push(k_RInfo);
never@739 1753 #else
jrose@1424 1754 __ pushoop(k->constant_encoding());
never@739 1755 #endif // _LP64
duke@435 1756 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1757 __ pop(klass_RInfo);
never@739 1758 __ pop(klass_RInfo);
never@739 1759 // result is a boolean
duke@435 1760 __ cmpl(klass_RInfo, 0);
duke@435 1761 __ jcc(Assembler::equal, *stub->entry());
duke@435 1762 }
duke@435 1763 __ bind(done);
duke@435 1764 } else {
jrose@1079 1765 // perform the fast part of the checking logic
jrose@1079 1766 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, &done, stub->entry(), NULL);
jrose@1079 1767 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
never@739 1768 __ push(klass_RInfo);
never@739 1769 __ push(k_RInfo);
duke@435 1770 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1771 __ pop(klass_RInfo);
never@739 1772 __ pop(k_RInfo);
never@739 1773 // result is a boolean
duke@435 1774 __ cmpl(k_RInfo, 0);
duke@435 1775 __ jcc(Assembler::equal, *stub->entry());
duke@435 1776 __ bind(done);
duke@435 1777 }
duke@435 1778
duke@435 1779 }
duke@435 1780 if (dst != obj) {
never@739 1781 __ mov(dst, obj);
duke@435 1782 }
duke@435 1783 } else if (code == lir_instanceof) {
duke@435 1784 Register obj = op->object()->as_register();
duke@435 1785 Register k_RInfo = op->tmp1()->as_register();
duke@435 1786 Register klass_RInfo = op->tmp2()->as_register();
duke@435 1787 Register dst = op->result_opr()->as_register();
duke@435 1788 ciKlass* k = op->klass();
duke@435 1789
duke@435 1790 Label done;
duke@435 1791 Label zero;
duke@435 1792 Label one;
duke@435 1793 if (obj == k_RInfo) {
duke@435 1794 k_RInfo = klass_RInfo;
duke@435 1795 klass_RInfo = obj;
duke@435 1796 }
duke@435 1797 // patching may screw with our temporaries on sparc,
duke@435 1798 // so let's do it before loading the class
duke@435 1799 if (!k->is_loaded()) {
duke@435 1800 jobject2reg_with_patching(k_RInfo, op->info_for_patch());
never@739 1801 } else {
jrose@1424 1802 LP64_ONLY(__ movoop(k_RInfo, k->constant_encoding()));
duke@435 1803 }
duke@435 1804 assert(obj != k_RInfo, "must be different");
duke@435 1805
duke@435 1806 __ verify_oop(obj);
duke@435 1807 if (op->fast_check()) {
never@739 1808 __ cmpptr(obj, (int32_t)NULL_WORD);
duke@435 1809 __ jcc(Assembler::equal, zero);
duke@435 1810 // get object class
duke@435 1811 // not a safepoint as obj null check happens earlier
never@739 1812 if (LP64_ONLY(false &&) k->is_loaded()) {
jrose@1424 1813 NOT_LP64(__ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding()));
duke@435 1814 k_RInfo = noreg;
duke@435 1815 } else {
never@739 1816 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
duke@435 1817
duke@435 1818 }
duke@435 1819 __ jcc(Assembler::equal, one);
duke@435 1820 } else {
duke@435 1821 // get object class
duke@435 1822 // not a safepoint as obj null check happens earlier
never@739 1823 __ cmpptr(obj, (int32_t)NULL_WORD);
duke@435 1824 __ jcc(Assembler::equal, zero);
never@739 1825 __ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
never@739 1826
never@739 1827 #ifndef _LP64
duke@435 1828 if (k->is_loaded()) {
duke@435 1829 // See if we get an immediate positive hit
jrose@1424 1830 __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
duke@435 1831 __ jcc(Assembler::equal, one);
duke@435 1832 if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() == k->super_check_offset()) {
duke@435 1833 // check for self
jrose@1424 1834 __ cmpoop(klass_RInfo, k->constant_encoding());
duke@435 1835 __ jcc(Assembler::equal, one);
never@739 1836 __ push(klass_RInfo);
jrose@1424 1837 __ pushoop(k->constant_encoding());
duke@435 1838 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1839 __ pop(klass_RInfo);
never@739 1840 __ pop(dst);
duke@435 1841 __ jmp(done);
duke@435 1842 }
jrose@1079 1843 }
jrose@1079 1844 else // next block is unconditional if LP64:
never@739 1845 #endif // LP64
jrose@1079 1846 {
duke@435 1847 assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers");
duke@435 1848
jrose@1079 1849 // perform the fast part of the checking logic
jrose@1079 1850 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, dst, &one, &zero, NULL);
jrose@1079 1851 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
never@739 1852 __ push(klass_RInfo);
never@739 1853 __ push(k_RInfo);
duke@435 1854 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1855 __ pop(klass_RInfo);
never@739 1856 __ pop(dst);
duke@435 1857 __ jmp(done);
duke@435 1858 }
duke@435 1859 }
duke@435 1860 __ bind(zero);
never@739 1861 __ xorptr(dst, dst);
duke@435 1862 __ jmp(done);
duke@435 1863 __ bind(one);
never@739 1864 __ movptr(dst, 1);
duke@435 1865 __ bind(done);
duke@435 1866 } else {
duke@435 1867 ShouldNotReachHere();
duke@435 1868 }
duke@435 1869
duke@435 1870 }
duke@435 1871
duke@435 1872
duke@435 1873 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
never@739 1874 if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
duke@435 1875 assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
duke@435 1876 assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
duke@435 1877 assert(op->new_value()->as_register_lo() == rbx, "wrong register");
duke@435 1878 assert(op->new_value()->as_register_hi() == rcx, "wrong register");
duke@435 1879 Register addr = op->addr()->as_register();
duke@435 1880 if (os::is_MP()) {
duke@435 1881 __ lock();
duke@435 1882 }
never@739 1883 NOT_LP64(__ cmpxchg8(Address(addr, 0)));
never@739 1884
never@739 1885 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
never@739 1886 NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
never@739 1887 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
duke@435 1888 Register newval = op->new_value()->as_register();
duke@435 1889 Register cmpval = op->cmp_value()->as_register();
duke@435 1890 assert(cmpval == rax, "wrong register");
duke@435 1891 assert(newval != NULL, "new val must be register");
duke@435 1892 assert(cmpval != newval, "cmp and new values must be in different registers");
duke@435 1893 assert(cmpval != addr, "cmp and addr must be in different registers");
duke@435 1894 assert(newval != addr, "new value and addr must be in different registers");
duke@435 1895 if (os::is_MP()) {
duke@435 1896 __ lock();
duke@435 1897 }
never@739 1898 if ( op->code() == lir_cas_obj) {
never@739 1899 __ cmpxchgptr(newval, Address(addr, 0));
never@739 1900 } else if (op->code() == lir_cas_int) {
never@739 1901 __ cmpxchgl(newval, Address(addr, 0));
never@739 1902 } else {
never@739 1903 LP64_ONLY(__ cmpxchgq(newval, Address(addr, 0)));
never@739 1904 }
never@739 1905 #ifdef _LP64
never@739 1906 } else if (op->code() == lir_cas_long) {
never@739 1907 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
never@739 1908 Register newval = op->new_value()->as_register_lo();
never@739 1909 Register cmpval = op->cmp_value()->as_register_lo();
never@739 1910 assert(cmpval == rax, "wrong register");
never@739 1911 assert(newval != NULL, "new val must be register");
never@739 1912 assert(cmpval != newval, "cmp and new values must be in different registers");
never@739 1913 assert(cmpval != addr, "cmp and addr must be in different registers");
never@739 1914 assert(newval != addr, "new value and addr must be in different registers");
never@739 1915 if (os::is_MP()) {
never@739 1916 __ lock();
never@739 1917 }
never@739 1918 __ cmpxchgq(newval, Address(addr, 0));
never@739 1919 #endif // _LP64
duke@435 1920 } else {
duke@435 1921 Unimplemented();
duke@435 1922 }
duke@435 1923 }
duke@435 1924
duke@435 1925
duke@435 1926 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
duke@435 1927 Assembler::Condition acond, ncond;
duke@435 1928 switch (condition) {
duke@435 1929 case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break;
duke@435 1930 case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break;
duke@435 1931 case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break;
duke@435 1932 case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break;
duke@435 1933 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break;
duke@435 1934 case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break;
duke@435 1935 case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break;
duke@435 1936 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break;
duke@435 1937 default: ShouldNotReachHere();
duke@435 1938 }
duke@435 1939
duke@435 1940 if (opr1->is_cpu_register()) {
duke@435 1941 reg2reg(opr1, result);
duke@435 1942 } else if (opr1->is_stack()) {
duke@435 1943 stack2reg(opr1, result, result->type());
duke@435 1944 } else if (opr1->is_constant()) {
duke@435 1945 const2reg(opr1, result, lir_patch_none, NULL);
duke@435 1946 } else {
duke@435 1947 ShouldNotReachHere();
duke@435 1948 }
duke@435 1949
duke@435 1950 if (VM_Version::supports_cmov() && !opr2->is_constant()) {
duke@435 1951 // optimized version that does not require a branch
duke@435 1952 if (opr2->is_single_cpu()) {
duke@435 1953 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
never@739 1954 __ cmov(ncond, result->as_register(), opr2->as_register());
duke@435 1955 } else if (opr2->is_double_cpu()) {
duke@435 1956 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
duke@435 1957 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
never@739 1958 __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
never@739 1959 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
duke@435 1960 } else if (opr2->is_single_stack()) {
duke@435 1961 __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 1962 } else if (opr2->is_double_stack()) {
never@739 1963 __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
never@739 1964 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
duke@435 1965 } else {
duke@435 1966 ShouldNotReachHere();
duke@435 1967 }
duke@435 1968
duke@435 1969 } else {
duke@435 1970 Label skip;
duke@435 1971 __ jcc (acond, skip);
duke@435 1972 if (opr2->is_cpu_register()) {
duke@435 1973 reg2reg(opr2, result);
duke@435 1974 } else if (opr2->is_stack()) {
duke@435 1975 stack2reg(opr2, result, result->type());
duke@435 1976 } else if (opr2->is_constant()) {
duke@435 1977 const2reg(opr2, result, lir_patch_none, NULL);
duke@435 1978 } else {
duke@435 1979 ShouldNotReachHere();
duke@435 1980 }
duke@435 1981 __ bind(skip);
duke@435 1982 }
duke@435 1983 }
duke@435 1984
duke@435 1985
duke@435 1986 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
duke@435 1987 assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
duke@435 1988
duke@435 1989 if (left->is_single_cpu()) {
duke@435 1990 assert(left == dest, "left and dest must be equal");
duke@435 1991 Register lreg = left->as_register();
duke@435 1992
duke@435 1993 if (right->is_single_cpu()) {
duke@435 1994 // cpu register - cpu register
duke@435 1995 Register rreg = right->as_register();
duke@435 1996 switch (code) {
duke@435 1997 case lir_add: __ addl (lreg, rreg); break;
duke@435 1998 case lir_sub: __ subl (lreg, rreg); break;
duke@435 1999 case lir_mul: __ imull(lreg, rreg); break;
duke@435 2000 default: ShouldNotReachHere();
duke@435 2001 }
duke@435 2002
duke@435 2003 } else if (right->is_stack()) {
duke@435 2004 // cpu register - stack
duke@435 2005 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2006 switch (code) {
duke@435 2007 case lir_add: __ addl(lreg, raddr); break;
duke@435 2008 case lir_sub: __ subl(lreg, raddr); break;
duke@435 2009 default: ShouldNotReachHere();
duke@435 2010 }
duke@435 2011
duke@435 2012 } else if (right->is_constant()) {
duke@435 2013 // cpu register - constant
duke@435 2014 jint c = right->as_constant_ptr()->as_jint();
duke@435 2015 switch (code) {
duke@435 2016 case lir_add: {
duke@435 2017 __ increment(lreg, c);
duke@435 2018 break;
duke@435 2019 }
duke@435 2020 case lir_sub: {
duke@435 2021 __ decrement(lreg, c);
duke@435 2022 break;
duke@435 2023 }
duke@435 2024 default: ShouldNotReachHere();
duke@435 2025 }
duke@435 2026
duke@435 2027 } else {
duke@435 2028 ShouldNotReachHere();
duke@435 2029 }
duke@435 2030
duke@435 2031 } else if (left->is_double_cpu()) {
duke@435 2032 assert(left == dest, "left and dest must be equal");
duke@435 2033 Register lreg_lo = left->as_register_lo();
duke@435 2034 Register lreg_hi = left->as_register_hi();
duke@435 2035
duke@435 2036 if (right->is_double_cpu()) {
duke@435 2037 // cpu register - cpu register
duke@435 2038 Register rreg_lo = right->as_register_lo();
duke@435 2039 Register rreg_hi = right->as_register_hi();
never@739 2040 NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
never@739 2041 LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
duke@435 2042 switch (code) {
duke@435 2043 case lir_add:
never@739 2044 __ addptr(lreg_lo, rreg_lo);
never@739 2045 NOT_LP64(__ adcl(lreg_hi, rreg_hi));
duke@435 2046 break;
duke@435 2047 case lir_sub:
never@739 2048 __ subptr(lreg_lo, rreg_lo);
never@739 2049 NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
duke@435 2050 break;
duke@435 2051 case lir_mul:
never@739 2052 #ifdef _LP64
never@739 2053 __ imulq(lreg_lo, rreg_lo);
never@739 2054 #else
duke@435 2055 assert(lreg_lo == rax && lreg_hi == rdx, "must be");
duke@435 2056 __ imull(lreg_hi, rreg_lo);
duke@435 2057 __ imull(rreg_hi, lreg_lo);
duke@435 2058 __ addl (rreg_hi, lreg_hi);
duke@435 2059 __ mull (rreg_lo);
duke@435 2060 __ addl (lreg_hi, rreg_hi);
never@739 2061 #endif // _LP64
duke@435 2062 break;
duke@435 2063 default:
duke@435 2064 ShouldNotReachHere();
duke@435 2065 }
duke@435 2066
duke@435 2067 } else if (right->is_constant()) {
duke@435 2068 // cpu register - constant
never@739 2069 #ifdef _LP64
never@739 2070 jlong c = right->as_constant_ptr()->as_jlong_bits();
never@739 2071 __ movptr(r10, (intptr_t) c);
never@739 2072 switch (code) {
never@739 2073 case lir_add:
never@739 2074 __ addptr(lreg_lo, r10);
never@739 2075 break;
never@739 2076 case lir_sub:
never@739 2077 __ subptr(lreg_lo, r10);
never@739 2078 break;
never@739 2079 default:
never@739 2080 ShouldNotReachHere();
never@739 2081 }
never@739 2082 #else
duke@435 2083 jint c_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 2084 jint c_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 2085 switch (code) {
duke@435 2086 case lir_add:
never@739 2087 __ addptr(lreg_lo, c_lo);
duke@435 2088 __ adcl(lreg_hi, c_hi);
duke@435 2089 break;
duke@435 2090 case lir_sub:
never@739 2091 __ subptr(lreg_lo, c_lo);
duke@435 2092 __ sbbl(lreg_hi, c_hi);
duke@435 2093 break;
duke@435 2094 default:
duke@435 2095 ShouldNotReachHere();
duke@435 2096 }
never@739 2097 #endif // _LP64
duke@435 2098
duke@435 2099 } else {
duke@435 2100 ShouldNotReachHere();
duke@435 2101 }
duke@435 2102
duke@435 2103 } else if (left->is_single_xmm()) {
duke@435 2104 assert(left == dest, "left and dest must be equal");
duke@435 2105 XMMRegister lreg = left->as_xmm_float_reg();
duke@435 2106
duke@435 2107 if (right->is_single_xmm()) {
duke@435 2108 XMMRegister rreg = right->as_xmm_float_reg();
duke@435 2109 switch (code) {
duke@435 2110 case lir_add: __ addss(lreg, rreg); break;
duke@435 2111 case lir_sub: __ subss(lreg, rreg); break;
duke@435 2112 case lir_mul_strictfp: // fall through
duke@435 2113 case lir_mul: __ mulss(lreg, rreg); break;
duke@435 2114 case lir_div_strictfp: // fall through
duke@435 2115 case lir_div: __ divss(lreg, rreg); break;
duke@435 2116 default: ShouldNotReachHere();
duke@435 2117 }
duke@435 2118 } else {
duke@435 2119 Address raddr;
duke@435 2120 if (right->is_single_stack()) {
duke@435 2121 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2122 } else if (right->is_constant()) {
duke@435 2123 // hack for now
duke@435 2124 raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
duke@435 2125 } else {
duke@435 2126 ShouldNotReachHere();
duke@435 2127 }
duke@435 2128 switch (code) {
duke@435 2129 case lir_add: __ addss(lreg, raddr); break;
duke@435 2130 case lir_sub: __ subss(lreg, raddr); break;
duke@435 2131 case lir_mul_strictfp: // fall through
duke@435 2132 case lir_mul: __ mulss(lreg, raddr); break;
duke@435 2133 case lir_div_strictfp: // fall through
duke@435 2134 case lir_div: __ divss(lreg, raddr); break;
duke@435 2135 default: ShouldNotReachHere();
duke@435 2136 }
duke@435 2137 }
duke@435 2138
duke@435 2139 } else if (left->is_double_xmm()) {
duke@435 2140 assert(left == dest, "left and dest must be equal");
duke@435 2141
duke@435 2142 XMMRegister lreg = left->as_xmm_double_reg();
duke@435 2143 if (right->is_double_xmm()) {
duke@435 2144 XMMRegister rreg = right->as_xmm_double_reg();
duke@435 2145 switch (code) {
duke@435 2146 case lir_add: __ addsd(lreg, rreg); break;
duke@435 2147 case lir_sub: __ subsd(lreg, rreg); break;
duke@435 2148 case lir_mul_strictfp: // fall through
duke@435 2149 case lir_mul: __ mulsd(lreg, rreg); break;
duke@435 2150 case lir_div_strictfp: // fall through
duke@435 2151 case lir_div: __ divsd(lreg, rreg); break;
duke@435 2152 default: ShouldNotReachHere();
duke@435 2153 }
duke@435 2154 } else {
duke@435 2155 Address raddr;
duke@435 2156 if (right->is_double_stack()) {
duke@435 2157 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 2158 } else if (right->is_constant()) {
duke@435 2159 // hack for now
duke@435 2160 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 2161 } else {
duke@435 2162 ShouldNotReachHere();
duke@435 2163 }
duke@435 2164 switch (code) {
duke@435 2165 case lir_add: __ addsd(lreg, raddr); break;
duke@435 2166 case lir_sub: __ subsd(lreg, raddr); break;
duke@435 2167 case lir_mul_strictfp: // fall through
duke@435 2168 case lir_mul: __ mulsd(lreg, raddr); break;
duke@435 2169 case lir_div_strictfp: // fall through
duke@435 2170 case lir_div: __ divsd(lreg, raddr); break;
duke@435 2171 default: ShouldNotReachHere();
duke@435 2172 }
duke@435 2173 }
duke@435 2174
duke@435 2175 } else if (left->is_single_fpu()) {
duke@435 2176 assert(dest->is_single_fpu(), "fpu stack allocation required");
duke@435 2177
duke@435 2178 if (right->is_single_fpu()) {
duke@435 2179 arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
duke@435 2180
duke@435 2181 } else {
duke@435 2182 assert(left->fpu_regnr() == 0, "left must be on TOS");
duke@435 2183 assert(dest->fpu_regnr() == 0, "dest must be on TOS");
duke@435 2184
duke@435 2185 Address raddr;
duke@435 2186 if (right->is_single_stack()) {
duke@435 2187 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2188 } else if (right->is_constant()) {
duke@435 2189 address const_addr = float_constant(right->as_jfloat());
duke@435 2190 assert(const_addr != NULL, "incorrect float/double constant maintainance");
duke@435 2191 // hack for now
duke@435 2192 raddr = __ as_Address(InternalAddress(const_addr));
duke@435 2193 } else {
duke@435 2194 ShouldNotReachHere();
duke@435 2195 }
duke@435 2196
duke@435 2197 switch (code) {
duke@435 2198 case lir_add: __ fadd_s(raddr); break;
duke@435 2199 case lir_sub: __ fsub_s(raddr); break;
duke@435 2200 case lir_mul_strictfp: // fall through
duke@435 2201 case lir_mul: __ fmul_s(raddr); break;
duke@435 2202 case lir_div_strictfp: // fall through
duke@435 2203 case lir_div: __ fdiv_s(raddr); break;
duke@435 2204 default: ShouldNotReachHere();
duke@435 2205 }
duke@435 2206 }
duke@435 2207
duke@435 2208 } else if (left->is_double_fpu()) {
duke@435 2209 assert(dest->is_double_fpu(), "fpu stack allocation required");
duke@435 2210
duke@435 2211 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2212 // Double values require special handling for strictfp mul/div on x86
duke@435 2213 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
duke@435 2214 __ fmulp(left->fpu_regnrLo() + 1);
duke@435 2215 }
duke@435 2216
duke@435 2217 if (right->is_double_fpu()) {
duke@435 2218 arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
duke@435 2219
duke@435 2220 } else {
duke@435 2221 assert(left->fpu_regnrLo() == 0, "left must be on TOS");
duke@435 2222 assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
duke@435 2223
duke@435 2224 Address raddr;
duke@435 2225 if (right->is_double_stack()) {
duke@435 2226 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 2227 } else if (right->is_constant()) {
duke@435 2228 // hack for now
duke@435 2229 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 2230 } else {
duke@435 2231 ShouldNotReachHere();
duke@435 2232 }
duke@435 2233
duke@435 2234 switch (code) {
duke@435 2235 case lir_add: __ fadd_d(raddr); break;
duke@435 2236 case lir_sub: __ fsub_d(raddr); break;
duke@435 2237 case lir_mul_strictfp: // fall through
duke@435 2238 case lir_mul: __ fmul_d(raddr); break;
duke@435 2239 case lir_div_strictfp: // fall through
duke@435 2240 case lir_div: __ fdiv_d(raddr); break;
duke@435 2241 default: ShouldNotReachHere();
duke@435 2242 }
duke@435 2243 }
duke@435 2244
duke@435 2245 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2246 // Double values require special handling for strictfp mul/div on x86
duke@435 2247 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
duke@435 2248 __ fmulp(dest->fpu_regnrLo() + 1);
duke@435 2249 }
duke@435 2250
duke@435 2251 } else if (left->is_single_stack() || left->is_address()) {
duke@435 2252 assert(left == dest, "left and dest must be equal");
duke@435 2253
duke@435 2254 Address laddr;
duke@435 2255 if (left->is_single_stack()) {
duke@435 2256 laddr = frame_map()->address_for_slot(left->single_stack_ix());
duke@435 2257 } else if (left->is_address()) {
duke@435 2258 laddr = as_Address(left->as_address_ptr());
duke@435 2259 } else {
duke@435 2260 ShouldNotReachHere();
duke@435 2261 }
duke@435 2262
duke@435 2263 if (right->is_single_cpu()) {
duke@435 2264 Register rreg = right->as_register();
duke@435 2265 switch (code) {
duke@435 2266 case lir_add: __ addl(laddr, rreg); break;
duke@435 2267 case lir_sub: __ subl(laddr, rreg); break;
duke@435 2268 default: ShouldNotReachHere();
duke@435 2269 }
duke@435 2270 } else if (right->is_constant()) {
duke@435 2271 jint c = right->as_constant_ptr()->as_jint();
duke@435 2272 switch (code) {
duke@435 2273 case lir_add: {
never@739 2274 __ incrementl(laddr, c);
duke@435 2275 break;
duke@435 2276 }
duke@435 2277 case lir_sub: {
never@739 2278 __ decrementl(laddr, c);
duke@435 2279 break;
duke@435 2280 }
duke@435 2281 default: ShouldNotReachHere();
duke@435 2282 }
duke@435 2283 } else {
duke@435 2284 ShouldNotReachHere();
duke@435 2285 }
duke@435 2286
duke@435 2287 } else {
duke@435 2288 ShouldNotReachHere();
duke@435 2289 }
duke@435 2290 }
duke@435 2291
duke@435 2292 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
duke@435 2293 assert(pop_fpu_stack || (left_index == dest_index || right_index == dest_index), "invalid LIR");
duke@435 2294 assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
duke@435 2295 assert(left_index == 0 || right_index == 0, "either must be on top of stack");
duke@435 2296
duke@435 2297 bool left_is_tos = (left_index == 0);
duke@435 2298 bool dest_is_tos = (dest_index == 0);
duke@435 2299 int non_tos_index = (left_is_tos ? right_index : left_index);
duke@435 2300
duke@435 2301 switch (code) {
duke@435 2302 case lir_add:
duke@435 2303 if (pop_fpu_stack) __ faddp(non_tos_index);
duke@435 2304 else if (dest_is_tos) __ fadd (non_tos_index);
duke@435 2305 else __ fadda(non_tos_index);
duke@435 2306 break;
duke@435 2307
duke@435 2308 case lir_sub:
duke@435 2309 if (left_is_tos) {
duke@435 2310 if (pop_fpu_stack) __ fsubrp(non_tos_index);
duke@435 2311 else if (dest_is_tos) __ fsub (non_tos_index);
duke@435 2312 else __ fsubra(non_tos_index);
duke@435 2313 } else {
duke@435 2314 if (pop_fpu_stack) __ fsubp (non_tos_index);
duke@435 2315 else if (dest_is_tos) __ fsubr (non_tos_index);
duke@435 2316 else __ fsuba (non_tos_index);
duke@435 2317 }
duke@435 2318 break;
duke@435 2319
duke@435 2320 case lir_mul_strictfp: // fall through
duke@435 2321 case lir_mul:
duke@435 2322 if (pop_fpu_stack) __ fmulp(non_tos_index);
duke@435 2323 else if (dest_is_tos) __ fmul (non_tos_index);
duke@435 2324 else __ fmula(non_tos_index);
duke@435 2325 break;
duke@435 2326
duke@435 2327 case lir_div_strictfp: // fall through
duke@435 2328 case lir_div:
duke@435 2329 if (left_is_tos) {
duke@435 2330 if (pop_fpu_stack) __ fdivrp(non_tos_index);
duke@435 2331 else if (dest_is_tos) __ fdiv (non_tos_index);
duke@435 2332 else __ fdivra(non_tos_index);
duke@435 2333 } else {
duke@435 2334 if (pop_fpu_stack) __ fdivp (non_tos_index);
duke@435 2335 else if (dest_is_tos) __ fdivr (non_tos_index);
duke@435 2336 else __ fdiva (non_tos_index);
duke@435 2337 }
duke@435 2338 break;
duke@435 2339
duke@435 2340 case lir_rem:
duke@435 2341 assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
duke@435 2342 __ fremr(noreg);
duke@435 2343 break;
duke@435 2344
duke@435 2345 default:
duke@435 2346 ShouldNotReachHere();
duke@435 2347 }
duke@435 2348 }
duke@435 2349
duke@435 2350
duke@435 2351 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
duke@435 2352 if (value->is_double_xmm()) {
duke@435 2353 switch(code) {
duke@435 2354 case lir_abs :
duke@435 2355 {
duke@435 2356 if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
duke@435 2357 __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
duke@435 2358 }
duke@435 2359 __ andpd(dest->as_xmm_double_reg(),
duke@435 2360 ExternalAddress((address)double_signmask_pool));
duke@435 2361 }
duke@435 2362 break;
duke@435 2363
duke@435 2364 case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
duke@435 2365 // all other intrinsics are not available in the SSE instruction set, so FPU is used
duke@435 2366 default : ShouldNotReachHere();
duke@435 2367 }
duke@435 2368
duke@435 2369 } else if (value->is_double_fpu()) {
duke@435 2370 assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
duke@435 2371 switch(code) {
duke@435 2372 case lir_log : __ flog() ; break;
duke@435 2373 case lir_log10 : __ flog10() ; break;
duke@435 2374 case lir_abs : __ fabs() ; break;
duke@435 2375 case lir_sqrt : __ fsqrt(); break;
duke@435 2376 case lir_sin :
duke@435 2377 // Should consider not saving rbx, if not necessary
duke@435 2378 __ trigfunc('s', op->as_Op2()->fpu_stack_size());
duke@435 2379 break;
duke@435 2380 case lir_cos :
duke@435 2381 // Should consider not saving rbx, if not necessary
duke@435 2382 assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
duke@435 2383 __ trigfunc('c', op->as_Op2()->fpu_stack_size());
duke@435 2384 break;
duke@435 2385 case lir_tan :
duke@435 2386 // Should consider not saving rbx, if not necessary
duke@435 2387 __ trigfunc('t', op->as_Op2()->fpu_stack_size());
duke@435 2388 break;
duke@435 2389 default : ShouldNotReachHere();
duke@435 2390 }
duke@435 2391 } else {
duke@435 2392 Unimplemented();
duke@435 2393 }
duke@435 2394 }
duke@435 2395
duke@435 2396 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
duke@435 2397 // assert(left->destroys_register(), "check");
duke@435 2398 if (left->is_single_cpu()) {
duke@435 2399 Register reg = left->as_register();
duke@435 2400 if (right->is_constant()) {
duke@435 2401 int val = right->as_constant_ptr()->as_jint();
duke@435 2402 switch (code) {
duke@435 2403 case lir_logic_and: __ andl (reg, val); break;
duke@435 2404 case lir_logic_or: __ orl (reg, val); break;
duke@435 2405 case lir_logic_xor: __ xorl (reg, val); break;
duke@435 2406 default: ShouldNotReachHere();
duke@435 2407 }
duke@435 2408 } else if (right->is_stack()) {
duke@435 2409 // added support for stack operands
duke@435 2410 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2411 switch (code) {
duke@435 2412 case lir_logic_and: __ andl (reg, raddr); break;
duke@435 2413 case lir_logic_or: __ orl (reg, raddr); break;
duke@435 2414 case lir_logic_xor: __ xorl (reg, raddr); break;
duke@435 2415 default: ShouldNotReachHere();
duke@435 2416 }
duke@435 2417 } else {
duke@435 2418 Register rright = right->as_register();
duke@435 2419 switch (code) {
never@739 2420 case lir_logic_and: __ andptr (reg, rright); break;
never@739 2421 case lir_logic_or : __ orptr (reg, rright); break;
never@739 2422 case lir_logic_xor: __ xorptr (reg, rright); break;
duke@435 2423 default: ShouldNotReachHere();
duke@435 2424 }
duke@435 2425 }
duke@435 2426 move_regs(reg, dst->as_register());
duke@435 2427 } else {
duke@435 2428 Register l_lo = left->as_register_lo();
duke@435 2429 Register l_hi = left->as_register_hi();
duke@435 2430 if (right->is_constant()) {
never@739 2431 #ifdef _LP64
never@739 2432 __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
never@739 2433 switch (code) {
never@739 2434 case lir_logic_and:
never@739 2435 __ andq(l_lo, rscratch1);
never@739 2436 break;
never@739 2437 case lir_logic_or:
never@739 2438 __ orq(l_lo, rscratch1);
never@739 2439 break;
never@739 2440 case lir_logic_xor:
never@739 2441 __ xorq(l_lo, rscratch1);
never@739 2442 break;
never@739 2443 default: ShouldNotReachHere();
never@739 2444 }
never@739 2445 #else
duke@435 2446 int r_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 2447 int r_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 2448 switch (code) {
duke@435 2449 case lir_logic_and:
duke@435 2450 __ andl(l_lo, r_lo);
duke@435 2451 __ andl(l_hi, r_hi);
duke@435 2452 break;
duke@435 2453 case lir_logic_or:
duke@435 2454 __ orl(l_lo, r_lo);
duke@435 2455 __ orl(l_hi, r_hi);
duke@435 2456 break;
duke@435 2457 case lir_logic_xor:
duke@435 2458 __ xorl(l_lo, r_lo);
duke@435 2459 __ xorl(l_hi, r_hi);
duke@435 2460 break;
duke@435 2461 default: ShouldNotReachHere();
duke@435 2462 }
never@739 2463 #endif // _LP64
duke@435 2464 } else {
duke@435 2465 Register r_lo = right->as_register_lo();
duke@435 2466 Register r_hi = right->as_register_hi();
duke@435 2467 assert(l_lo != r_hi, "overwriting registers");
duke@435 2468 switch (code) {
duke@435 2469 case lir_logic_and:
never@739 2470 __ andptr(l_lo, r_lo);
never@739 2471 NOT_LP64(__ andptr(l_hi, r_hi);)
duke@435 2472 break;
duke@435 2473 case lir_logic_or:
never@739 2474 __ orptr(l_lo, r_lo);
never@739 2475 NOT_LP64(__ orptr(l_hi, r_hi);)
duke@435 2476 break;
duke@435 2477 case lir_logic_xor:
never@739 2478 __ xorptr(l_lo, r_lo);
never@739 2479 NOT_LP64(__ xorptr(l_hi, r_hi);)
duke@435 2480 break;
duke@435 2481 default: ShouldNotReachHere();
duke@435 2482 }
duke@435 2483 }
duke@435 2484
duke@435 2485 Register dst_lo = dst->as_register_lo();
duke@435 2486 Register dst_hi = dst->as_register_hi();
duke@435 2487
never@739 2488 #ifdef _LP64
never@739 2489 move_regs(l_lo, dst_lo);
never@739 2490 #else
duke@435 2491 if (dst_lo == l_hi) {
duke@435 2492 assert(dst_hi != l_lo, "overwriting registers");
duke@435 2493 move_regs(l_hi, dst_hi);
duke@435 2494 move_regs(l_lo, dst_lo);
duke@435 2495 } else {
duke@435 2496 assert(dst_lo != l_hi, "overwriting registers");
duke@435 2497 move_regs(l_lo, dst_lo);
duke@435 2498 move_regs(l_hi, dst_hi);
duke@435 2499 }
never@739 2500 #endif // _LP64
duke@435 2501 }
duke@435 2502 }
duke@435 2503
duke@435 2504
duke@435 2505 // we assume that rax, and rdx can be overwritten
duke@435 2506 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
duke@435 2507
duke@435 2508 assert(left->is_single_cpu(), "left must be register");
duke@435 2509 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant");
duke@435 2510 assert(result->is_single_cpu(), "result must be register");
duke@435 2511
duke@435 2512 // assert(left->destroys_register(), "check");
duke@435 2513 // assert(right->destroys_register(), "check");
duke@435 2514
duke@435 2515 Register lreg = left->as_register();
duke@435 2516 Register dreg = result->as_register();
duke@435 2517
duke@435 2518 if (right->is_constant()) {
duke@435 2519 int divisor = right->as_constant_ptr()->as_jint();
duke@435 2520 assert(divisor > 0 && is_power_of_2(divisor), "must be");
duke@435 2521 if (code == lir_idiv) {
duke@435 2522 assert(lreg == rax, "must be rax,");
duke@435 2523 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2524 __ cdql(); // sign extend into rdx:rax
duke@435 2525 if (divisor == 2) {
duke@435 2526 __ subl(lreg, rdx);
duke@435 2527 } else {
duke@435 2528 __ andl(rdx, divisor - 1);
duke@435 2529 __ addl(lreg, rdx);
duke@435 2530 }
duke@435 2531 __ sarl(lreg, log2_intptr(divisor));
duke@435 2532 move_regs(lreg, dreg);
duke@435 2533 } else if (code == lir_irem) {
duke@435 2534 Label done;
never@739 2535 __ mov(dreg, lreg);
duke@435 2536 __ andl(dreg, 0x80000000 | (divisor - 1));
duke@435 2537 __ jcc(Assembler::positive, done);
duke@435 2538 __ decrement(dreg);
duke@435 2539 __ orl(dreg, ~(divisor - 1));
duke@435 2540 __ increment(dreg);
duke@435 2541 __ bind(done);
duke@435 2542 } else {
duke@435 2543 ShouldNotReachHere();
duke@435 2544 }
duke@435 2545 } else {
duke@435 2546 Register rreg = right->as_register();
duke@435 2547 assert(lreg == rax, "left register must be rax,");
duke@435 2548 assert(rreg != rdx, "right register must not be rdx");
duke@435 2549 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2550
duke@435 2551 move_regs(lreg, rax);
duke@435 2552
duke@435 2553 int idivl_offset = __ corrected_idivl(rreg);
duke@435 2554 add_debug_info_for_div0(idivl_offset, info);
duke@435 2555 if (code == lir_irem) {
duke@435 2556 move_regs(rdx, dreg); // result is in rdx
duke@435 2557 } else {
duke@435 2558 move_regs(rax, dreg);
duke@435 2559 }
duke@435 2560 }
duke@435 2561 }
duke@435 2562
duke@435 2563
duke@435 2564 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
duke@435 2565 if (opr1->is_single_cpu()) {
duke@435 2566 Register reg1 = opr1->as_register();
duke@435 2567 if (opr2->is_single_cpu()) {
duke@435 2568 // cpu register - cpu register
never@739 2569 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
never@739 2570 __ cmpptr(reg1, opr2->as_register());
never@739 2571 } else {
never@739 2572 assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
never@739 2573 __ cmpl(reg1, opr2->as_register());
never@739 2574 }
duke@435 2575 } else if (opr2->is_stack()) {
duke@435 2576 // cpu register - stack
never@739 2577 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
never@739 2578 __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
never@739 2579 } else {
never@739 2580 __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
never@739 2581 }
duke@435 2582 } else if (opr2->is_constant()) {
duke@435 2583 // cpu register - constant
duke@435 2584 LIR_Const* c = opr2->as_constant_ptr();
duke@435 2585 if (c->type() == T_INT) {
duke@435 2586 __ cmpl(reg1, c->as_jint());
never@739 2587 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2588 // In 64bit oops are single register
duke@435 2589 jobject o = c->as_jobject();
duke@435 2590 if (o == NULL) {
never@739 2591 __ cmpptr(reg1, (int32_t)NULL_WORD);
duke@435 2592 } else {
never@739 2593 #ifdef _LP64
never@739 2594 __ movoop(rscratch1, o);
never@739 2595 __ cmpptr(reg1, rscratch1);
never@739 2596 #else
duke@435 2597 __ cmpoop(reg1, c->as_jobject());
never@739 2598 #endif // _LP64
duke@435 2599 }
duke@435 2600 } else {
duke@435 2601 ShouldNotReachHere();
duke@435 2602 }
duke@435 2603 // cpu register - address
duke@435 2604 } else if (opr2->is_address()) {
duke@435 2605 if (op->info() != NULL) {
duke@435 2606 add_debug_info_for_null_check_here(op->info());
duke@435 2607 }
duke@435 2608 __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2609 } else {
duke@435 2610 ShouldNotReachHere();
duke@435 2611 }
duke@435 2612
duke@435 2613 } else if(opr1->is_double_cpu()) {
duke@435 2614 Register xlo = opr1->as_register_lo();
duke@435 2615 Register xhi = opr1->as_register_hi();
duke@435 2616 if (opr2->is_double_cpu()) {
never@739 2617 #ifdef _LP64
never@739 2618 __ cmpptr(xlo, opr2->as_register_lo());
never@739 2619 #else
duke@435 2620 // cpu register - cpu register
duke@435 2621 Register ylo = opr2->as_register_lo();
duke@435 2622 Register yhi = opr2->as_register_hi();
duke@435 2623 __ subl(xlo, ylo);
duke@435 2624 __ sbbl(xhi, yhi);
duke@435 2625 if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
duke@435 2626 __ orl(xhi, xlo);
duke@435 2627 }
never@739 2628 #endif // _LP64
duke@435 2629 } else if (opr2->is_constant()) {
duke@435 2630 // cpu register - constant 0
duke@435 2631 assert(opr2->as_jlong() == (jlong)0, "only handles zero");
never@739 2632 #ifdef _LP64
never@739 2633 __ cmpptr(xlo, (int32_t)opr2->as_jlong());
never@739 2634 #else
duke@435 2635 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
duke@435 2636 __ orl(xhi, xlo);
never@739 2637 #endif // _LP64
duke@435 2638 } else {
duke@435 2639 ShouldNotReachHere();
duke@435 2640 }
duke@435 2641
duke@435 2642 } else if (opr1->is_single_xmm()) {
duke@435 2643 XMMRegister reg1 = opr1->as_xmm_float_reg();
duke@435 2644 if (opr2->is_single_xmm()) {
duke@435 2645 // xmm register - xmm register
duke@435 2646 __ ucomiss(reg1, opr2->as_xmm_float_reg());
duke@435 2647 } else if (opr2->is_stack()) {
duke@435 2648 // xmm register - stack
duke@435 2649 __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 2650 } else if (opr2->is_constant()) {
duke@435 2651 // xmm register - constant
duke@435 2652 __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
duke@435 2653 } else if (opr2->is_address()) {
duke@435 2654 // xmm register - address
duke@435 2655 if (op->info() != NULL) {
duke@435 2656 add_debug_info_for_null_check_here(op->info());
duke@435 2657 }
duke@435 2658 __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2659 } else {
duke@435 2660 ShouldNotReachHere();
duke@435 2661 }
duke@435 2662
duke@435 2663 } else if (opr1->is_double_xmm()) {
duke@435 2664 XMMRegister reg1 = opr1->as_xmm_double_reg();
duke@435 2665 if (opr2->is_double_xmm()) {
duke@435 2666 // xmm register - xmm register
duke@435 2667 __ ucomisd(reg1, opr2->as_xmm_double_reg());
duke@435 2668 } else if (opr2->is_stack()) {
duke@435 2669 // xmm register - stack
duke@435 2670 __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
duke@435 2671 } else if (opr2->is_constant()) {
duke@435 2672 // xmm register - constant
duke@435 2673 __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
duke@435 2674 } else if (opr2->is_address()) {
duke@435 2675 // xmm register - address
duke@435 2676 if (op->info() != NULL) {
duke@435 2677 add_debug_info_for_null_check_here(op->info());
duke@435 2678 }
duke@435 2679 __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
duke@435 2680 } else {
duke@435 2681 ShouldNotReachHere();
duke@435 2682 }
duke@435 2683
duke@435 2684 } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
duke@435 2685 assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
duke@435 2686 assert(opr2->is_fpu_register(), "both must be registers");
duke@435 2687 __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2688
duke@435 2689 } else if (opr1->is_address() && opr2->is_constant()) {
never@739 2690 LIR_Const* c = opr2->as_constant_ptr();
never@739 2691 #ifdef _LP64
never@739 2692 if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2693 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
never@739 2694 __ movoop(rscratch1, c->as_jobject());
never@739 2695 }
never@739 2696 #endif // LP64
duke@435 2697 if (op->info() != NULL) {
duke@435 2698 add_debug_info_for_null_check_here(op->info());
duke@435 2699 }
duke@435 2700 // special case: address - constant
duke@435 2701 LIR_Address* addr = opr1->as_address_ptr();
duke@435 2702 if (c->type() == T_INT) {
duke@435 2703 __ cmpl(as_Address(addr), c->as_jint());
never@739 2704 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2705 #ifdef _LP64
never@739 2706 // %%% Make this explode if addr isn't reachable until we figure out a
never@739 2707 // better strategy by giving noreg as the temp for as_Address
never@739 2708 __ cmpptr(rscratch1, as_Address(addr, noreg));
never@739 2709 #else
duke@435 2710 __ cmpoop(as_Address(addr), c->as_jobject());
never@739 2711 #endif // _LP64
duke@435 2712 } else {
duke@435 2713 ShouldNotReachHere();
duke@435 2714 }
duke@435 2715
duke@435 2716 } else {
duke@435 2717 ShouldNotReachHere();
duke@435 2718 }
duke@435 2719 }
duke@435 2720
duke@435 2721 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
duke@435 2722 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
duke@435 2723 if (left->is_single_xmm()) {
duke@435 2724 assert(right->is_single_xmm(), "must match");
duke@435 2725 __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2726 } else if (left->is_double_xmm()) {
duke@435 2727 assert(right->is_double_xmm(), "must match");
duke@435 2728 __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2729
duke@435 2730 } else {
duke@435 2731 assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
duke@435 2732 assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
duke@435 2733
duke@435 2734 assert(left->fpu() == 0, "left must be on TOS");
duke@435 2735 __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
duke@435 2736 op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2737 }
duke@435 2738 } else {
duke@435 2739 assert(code == lir_cmp_l2i, "check");
never@739 2740 #ifdef _LP64
iveresov@1804 2741 Label done;
iveresov@1804 2742 Register dest = dst->as_register();
iveresov@1804 2743 __ cmpptr(left->as_register_lo(), right->as_register_lo());
iveresov@1804 2744 __ movl(dest, -1);
iveresov@1804 2745 __ jccb(Assembler::less, done);
iveresov@1804 2746 __ set_byte_if_not_zero(dest);
iveresov@1804 2747 __ movzbl(dest, dest);
iveresov@1804 2748 __ bind(done);
never@739 2749 #else
duke@435 2750 __ lcmp2int(left->as_register_hi(),
duke@435 2751 left->as_register_lo(),
duke@435 2752 right->as_register_hi(),
duke@435 2753 right->as_register_lo());
duke@435 2754 move_regs(left->as_register_hi(), dst->as_register());
never@739 2755 #endif // _LP64
duke@435 2756 }
duke@435 2757 }
duke@435 2758
duke@435 2759
duke@435 2760 void LIR_Assembler::align_call(LIR_Code code) {
duke@435 2761 if (os::is_MP()) {
duke@435 2762 // make sure that the displacement word of the call ends up word aligned
duke@435 2763 int offset = __ offset();
duke@435 2764 switch (code) {
duke@435 2765 case lir_static_call:
duke@435 2766 case lir_optvirtual_call:
twisti@1730 2767 case lir_dynamic_call:
duke@435 2768 offset += NativeCall::displacement_offset;
duke@435 2769 break;
duke@435 2770 case lir_icvirtual_call:
duke@435 2771 offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
duke@435 2772 break;
duke@435 2773 case lir_virtual_call: // currently, sparc-specific for niagara
duke@435 2774 default: ShouldNotReachHere();
duke@435 2775 }
duke@435 2776 while (offset++ % BytesPerWord != 0) {
duke@435 2777 __ nop();
duke@435 2778 }
duke@435 2779 }
duke@435 2780 }
duke@435 2781
duke@435 2782
twisti@1730 2783 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
duke@435 2784 assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2785 "must be aligned");
twisti@1730 2786 __ call(AddressLiteral(op->addr(), rtype));
twisti@1730 2787 add_call_info(code_offset(), op->info(), op->is_method_handle_invoke());
duke@435 2788 }
duke@435 2789
duke@435 2790
twisti@1730 2791 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
duke@435 2792 RelocationHolder rh = virtual_call_Relocation::spec(pc());
duke@435 2793 __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
duke@435 2794 assert(!os::is_MP() ||
duke@435 2795 (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2796 "must be aligned");
twisti@1730 2797 __ call(AddressLiteral(op->addr(), rh));
twisti@1730 2798 add_call_info(code_offset(), op->info(), op->is_method_handle_invoke());
duke@435 2799 }
duke@435 2800
duke@435 2801
duke@435 2802 /* Currently, vtable-dispatch is only enabled for sparc platforms */
twisti@1730 2803 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
duke@435 2804 ShouldNotReachHere();
duke@435 2805 }
duke@435 2806
twisti@1730 2807
twisti@1736 2808 void LIR_Assembler::preserve_SP(LIR_OpJavaCall* op) {
twisti@1736 2809 __ movptr(FrameMap::method_handle_invoke_SP_save_opr()->as_register(), rsp);
twisti@1730 2810 }
twisti@1730 2811
twisti@1730 2812
twisti@1736 2813 void LIR_Assembler::restore_SP(LIR_OpJavaCall* op) {
twisti@1736 2814 __ movptr(rsp, FrameMap::method_handle_invoke_SP_save_opr()->as_register());
twisti@1730 2815 }
twisti@1730 2816
twisti@1730 2817
duke@435 2818 void LIR_Assembler::emit_static_call_stub() {
duke@435 2819 address call_pc = __ pc();
duke@435 2820 address stub = __ start_a_stub(call_stub_size);
duke@435 2821 if (stub == NULL) {
duke@435 2822 bailout("static call stub overflow");
duke@435 2823 return;
duke@435 2824 }
duke@435 2825
duke@435 2826 int start = __ offset();
duke@435 2827 if (os::is_MP()) {
duke@435 2828 // make sure that the displacement word of the call ends up word aligned
duke@435 2829 int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
duke@435 2830 while (offset++ % BytesPerWord != 0) {
duke@435 2831 __ nop();
duke@435 2832 }
duke@435 2833 }
duke@435 2834 __ relocate(static_stub_Relocation::spec(call_pc));
duke@435 2835 __ movoop(rbx, (jobject)NULL);
duke@435 2836 // must be set to -1 at code generation time
duke@435 2837 assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
never@739 2838 // On 64bit this will die since it will take a movq & jmp, must be only a jmp
never@739 2839 __ jump(RuntimeAddress(__ pc()));
duke@435 2840
jcoomes@1844 2841 assert(__ offset() - start <= call_stub_size, "stub too big");
duke@435 2842 __ end_a_stub();
duke@435 2843 }
duke@435 2844
duke@435 2845
never@1813 2846 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
duke@435 2847 assert(exceptionOop->as_register() == rax, "must match");
never@1813 2848 assert(exceptionPC->as_register() == rdx, "must match");
duke@435 2849
duke@435 2850 // exception object is not added to oop map by LinearScan
duke@435 2851 // (LinearScan assumes that no oops are in fixed registers)
duke@435 2852 info->add_register_oop(exceptionOop);
duke@435 2853 Runtime1::StubID unwind_id;
duke@435 2854
never@1813 2855 // get current pc information
never@1813 2856 // pc is only needed if the method has an exception handler, the unwind code does not need it.
never@1813 2857 int pc_for_athrow_offset = __ offset();
never@1813 2858 InternalAddress pc_for_athrow(__ pc());
never@1813 2859 __ lea(exceptionPC->as_register(), pc_for_athrow);
never@1813 2860 add_call_info(pc_for_athrow_offset, info); // for exception handler
never@1813 2861
never@1813 2862 __ verify_not_null_oop(rax);
never@1813 2863 // search an exception handler (rax: exception oop, rdx: throwing pc)
never@1813 2864 if (compilation()->has_fpu_code()) {
never@1813 2865 unwind_id = Runtime1::handle_exception_id;
duke@435 2866 } else {
never@1813 2867 unwind_id = Runtime1::handle_exception_nofpu_id;
duke@435 2868 }
never@1813 2869 __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
duke@435 2870
duke@435 2871 // enough room for two byte trap
duke@435 2872 __ nop();
duke@435 2873 }
duke@435 2874
duke@435 2875
never@1813 2876 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
never@1813 2877 assert(exceptionOop->as_register() == rax, "must match");
never@1813 2878
never@1813 2879 __ jmp(_unwind_handler_entry);
never@1813 2880 }
never@1813 2881
never@1813 2882
duke@435 2883 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
duke@435 2884
duke@435 2885 // optimized version for linear scan:
duke@435 2886 // * count must be already in ECX (guaranteed by LinearScan)
duke@435 2887 // * left and dest must be equal
duke@435 2888 // * tmp must be unused
duke@435 2889 assert(count->as_register() == SHIFT_count, "count must be in ECX");
duke@435 2890 assert(left == dest, "left and dest must be equal");
duke@435 2891 assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
duke@435 2892
duke@435 2893 if (left->is_single_cpu()) {
duke@435 2894 Register value = left->as_register();
duke@435 2895 assert(value != SHIFT_count, "left cannot be ECX");
duke@435 2896
duke@435 2897 switch (code) {
duke@435 2898 case lir_shl: __ shll(value); break;
duke@435 2899 case lir_shr: __ sarl(value); break;
duke@435 2900 case lir_ushr: __ shrl(value); break;
duke@435 2901 default: ShouldNotReachHere();
duke@435 2902 }
duke@435 2903 } else if (left->is_double_cpu()) {
duke@435 2904 Register lo = left->as_register_lo();
duke@435 2905 Register hi = left->as_register_hi();
duke@435 2906 assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
never@739 2907 #ifdef _LP64
never@739 2908 switch (code) {
never@739 2909 case lir_shl: __ shlptr(lo); break;
never@739 2910 case lir_shr: __ sarptr(lo); break;
never@739 2911 case lir_ushr: __ shrptr(lo); break;
never@739 2912 default: ShouldNotReachHere();
never@739 2913 }
never@739 2914 #else
duke@435 2915
duke@435 2916 switch (code) {
duke@435 2917 case lir_shl: __ lshl(hi, lo); break;
duke@435 2918 case lir_shr: __ lshr(hi, lo, true); break;
duke@435 2919 case lir_ushr: __ lshr(hi, lo, false); break;
duke@435 2920 default: ShouldNotReachHere();
duke@435 2921 }
never@739 2922 #endif // LP64
duke@435 2923 } else {
duke@435 2924 ShouldNotReachHere();
duke@435 2925 }
duke@435 2926 }
duke@435 2927
duke@435 2928
duke@435 2929 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
duke@435 2930 if (dest->is_single_cpu()) {
duke@435 2931 // first move left into dest so that left is not destroyed by the shift
duke@435 2932 Register value = dest->as_register();
duke@435 2933 count = count & 0x1F; // Java spec
duke@435 2934
duke@435 2935 move_regs(left->as_register(), value);
duke@435 2936 switch (code) {
duke@435 2937 case lir_shl: __ shll(value, count); break;
duke@435 2938 case lir_shr: __ sarl(value, count); break;
duke@435 2939 case lir_ushr: __ shrl(value, count); break;
duke@435 2940 default: ShouldNotReachHere();
duke@435 2941 }
duke@435 2942 } else if (dest->is_double_cpu()) {
never@739 2943 #ifndef _LP64
duke@435 2944 Unimplemented();
never@739 2945 #else
never@739 2946 // first move left into dest so that left is not destroyed by the shift
never@739 2947 Register value = dest->as_register_lo();
never@739 2948 count = count & 0x1F; // Java spec
never@739 2949
never@739 2950 move_regs(left->as_register_lo(), value);
never@739 2951 switch (code) {
never@739 2952 case lir_shl: __ shlptr(value, count); break;
never@739 2953 case lir_shr: __ sarptr(value, count); break;
never@739 2954 case lir_ushr: __ shrptr(value, count); break;
never@739 2955 default: ShouldNotReachHere();
never@739 2956 }
never@739 2957 #endif // _LP64
duke@435 2958 } else {
duke@435 2959 ShouldNotReachHere();
duke@435 2960 }
duke@435 2961 }
duke@435 2962
duke@435 2963
duke@435 2964 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
duke@435 2965 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 2966 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 2967 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
never@739 2968 __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
duke@435 2969 }
duke@435 2970
duke@435 2971
duke@435 2972 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) {
duke@435 2973 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 2974 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 2975 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
never@739 2976 __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
duke@435 2977 }
duke@435 2978
duke@435 2979
duke@435 2980 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
duke@435 2981 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 2982 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 2983 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
duke@435 2984 __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
duke@435 2985 }
duke@435 2986
duke@435 2987
duke@435 2988 // This code replaces a call to arraycopy; no exception may
duke@435 2989 // be thrown in this code, they must be thrown in the System.arraycopy
duke@435 2990 // activation frame; we could save some checks if this would not be the case
duke@435 2991 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
duke@435 2992 ciArrayKlass* default_type = op->expected_type();
duke@435 2993 Register src = op->src()->as_register();
duke@435 2994 Register dst = op->dst()->as_register();
duke@435 2995 Register src_pos = op->src_pos()->as_register();
duke@435 2996 Register dst_pos = op->dst_pos()->as_register();
duke@435 2997 Register length = op->length()->as_register();
duke@435 2998 Register tmp = op->tmp()->as_register();
duke@435 2999
duke@435 3000 CodeStub* stub = op->stub();
duke@435 3001 int flags = op->flags();
duke@435 3002 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
duke@435 3003 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
duke@435 3004
duke@435 3005 // if we don't know anything or it's an object array, just go through the generic arraycopy
duke@435 3006 if (default_type == NULL) {
duke@435 3007 Label done;
duke@435 3008 // save outgoing arguments on stack in case call to System.arraycopy is needed
duke@435 3009 // HACK ALERT. This code used to push the parameters in a hardwired fashion
duke@435 3010 // for interpreter calling conventions. Now we have to do it in new style conventions.
duke@435 3011 // For the moment until C1 gets the new register allocator I just force all the
duke@435 3012 // args to the right place (except the register args) and then on the back side
duke@435 3013 // reload the register args properly if we go slow path. Yuck
duke@435 3014
duke@435 3015 // These are proper for the calling convention
duke@435 3016
duke@435 3017 store_parameter(length, 2);
duke@435 3018 store_parameter(dst_pos, 1);
duke@435 3019 store_parameter(dst, 0);
duke@435 3020
duke@435 3021 // these are just temporary placements until we need to reload
duke@435 3022 store_parameter(src_pos, 3);
duke@435 3023 store_parameter(src, 4);
never@739 3024 NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
never@739 3025
never@739 3026 address entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
duke@435 3027
duke@435 3028 // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
never@739 3029 #ifdef _LP64
never@739 3030 // The arguments are in java calling convention so we can trivially shift them to C
never@739 3031 // convention
never@739 3032 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
never@739 3033 __ mov(c_rarg0, j_rarg0);
never@739 3034 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
never@739 3035 __ mov(c_rarg1, j_rarg1);
never@739 3036 assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
never@739 3037 __ mov(c_rarg2, j_rarg2);
never@739 3038 assert_different_registers(c_rarg3, j_rarg4);
never@739 3039 __ mov(c_rarg3, j_rarg3);
never@739 3040 #ifdef _WIN64
never@739 3041 // Allocate abi space for args but be sure to keep stack aligned
never@739 3042 __ subptr(rsp, 6*wordSize);
never@739 3043 store_parameter(j_rarg4, 4);
never@739 3044 __ call(RuntimeAddress(entry));
never@739 3045 __ addptr(rsp, 6*wordSize);
never@739 3046 #else
never@739 3047 __ mov(c_rarg4, j_rarg4);
never@739 3048 __ call(RuntimeAddress(entry));
never@739 3049 #endif // _WIN64
never@739 3050 #else
never@739 3051 __ push(length);
never@739 3052 __ push(dst_pos);
never@739 3053 __ push(dst);
never@739 3054 __ push(src_pos);
never@739 3055 __ push(src);
duke@435 3056 __ call_VM_leaf(entry, 5); // removes pushed parameter from the stack
duke@435 3057
never@739 3058 #endif // _LP64
never@739 3059
duke@435 3060 __ cmpl(rax, 0);
duke@435 3061 __ jcc(Assembler::equal, *stub->continuation());
duke@435 3062
duke@435 3063 // Reload values from the stack so they are where the stub
duke@435 3064 // expects them.
never@739 3065 __ movptr (dst, Address(rsp, 0*BytesPerWord));
never@739 3066 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord));
never@739 3067 __ movptr (length, Address(rsp, 2*BytesPerWord));
never@739 3068 __ movptr (src_pos, Address(rsp, 3*BytesPerWord));
never@739 3069 __ movptr (src, Address(rsp, 4*BytesPerWord));
duke@435 3070 __ jmp(*stub->entry());
duke@435 3071
duke@435 3072 __ bind(*stub->continuation());
duke@435 3073 return;
duke@435 3074 }
duke@435 3075
duke@435 3076 assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
duke@435 3077
kvn@464 3078 int elem_size = type2aelembytes(basic_type);
duke@435 3079 int shift_amount;
duke@435 3080 Address::ScaleFactor scale;
duke@435 3081
duke@435 3082 switch (elem_size) {
duke@435 3083 case 1 :
duke@435 3084 shift_amount = 0;
duke@435 3085 scale = Address::times_1;
duke@435 3086 break;
duke@435 3087 case 2 :
duke@435 3088 shift_amount = 1;
duke@435 3089 scale = Address::times_2;
duke@435 3090 break;
duke@435 3091 case 4 :
duke@435 3092 shift_amount = 2;
duke@435 3093 scale = Address::times_4;
duke@435 3094 break;
duke@435 3095 case 8 :
duke@435 3096 shift_amount = 3;
duke@435 3097 scale = Address::times_8;
duke@435 3098 break;
duke@435 3099 default:
duke@435 3100 ShouldNotReachHere();
duke@435 3101 }
duke@435 3102
duke@435 3103 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
duke@435 3104 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
duke@435 3105 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
duke@435 3106 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
duke@435 3107
never@739 3108 // length and pos's are all sign extended at this point on 64bit
never@739 3109
duke@435 3110 // test for NULL
duke@435 3111 if (flags & LIR_OpArrayCopy::src_null_check) {
never@739 3112 __ testptr(src, src);
duke@435 3113 __ jcc(Assembler::zero, *stub->entry());
duke@435 3114 }
duke@435 3115 if (flags & LIR_OpArrayCopy::dst_null_check) {
never@739 3116 __ testptr(dst, dst);
duke@435 3117 __ jcc(Assembler::zero, *stub->entry());
duke@435 3118 }
duke@435 3119
duke@435 3120 // check if negative
duke@435 3121 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
duke@435 3122 __ testl(src_pos, src_pos);
duke@435 3123 __ jcc(Assembler::less, *stub->entry());
duke@435 3124 }
duke@435 3125 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
duke@435 3126 __ testl(dst_pos, dst_pos);
duke@435 3127 __ jcc(Assembler::less, *stub->entry());
duke@435 3128 }
duke@435 3129 if (flags & LIR_OpArrayCopy::length_positive_check) {
duke@435 3130 __ testl(length, length);
duke@435 3131 __ jcc(Assembler::less, *stub->entry());
duke@435 3132 }
duke@435 3133
duke@435 3134 if (flags & LIR_OpArrayCopy::src_range_check) {
never@739 3135 __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
duke@435 3136 __ cmpl(tmp, src_length_addr);
duke@435 3137 __ jcc(Assembler::above, *stub->entry());
duke@435 3138 }
duke@435 3139 if (flags & LIR_OpArrayCopy::dst_range_check) {
never@739 3140 __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
duke@435 3141 __ cmpl(tmp, dst_length_addr);
duke@435 3142 __ jcc(Assembler::above, *stub->entry());
duke@435 3143 }
duke@435 3144
duke@435 3145 if (flags & LIR_OpArrayCopy::type_check) {
never@739 3146 __ movptr(tmp, src_klass_addr);
never@739 3147 __ cmpptr(tmp, dst_klass_addr);
duke@435 3148 __ jcc(Assembler::notEqual, *stub->entry());
duke@435 3149 }
duke@435 3150
duke@435 3151 #ifdef ASSERT
duke@435 3152 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
duke@435 3153 // Sanity check the known type with the incoming class. For the
duke@435 3154 // primitive case the types must match exactly with src.klass and
duke@435 3155 // dst.klass each exactly matching the default type. For the
duke@435 3156 // object array case, if no type check is needed then either the
duke@435 3157 // dst type is exactly the expected type and the src type is a
duke@435 3158 // subtype which we can't check or src is the same array as dst
duke@435 3159 // but not necessarily exactly of type default_type.
duke@435 3160 Label known_ok, halt;
jrose@1424 3161 __ movoop(tmp, default_type->constant_encoding());
duke@435 3162 if (basic_type != T_OBJECT) {
never@739 3163 __ cmpptr(tmp, dst_klass_addr);
duke@435 3164 __ jcc(Assembler::notEqual, halt);
never@739 3165 __ cmpptr(tmp, src_klass_addr);
duke@435 3166 __ jcc(Assembler::equal, known_ok);
duke@435 3167 } else {
never@739 3168 __ cmpptr(tmp, dst_klass_addr);
duke@435 3169 __ jcc(Assembler::equal, known_ok);
never@739 3170 __ cmpptr(src, dst);
duke@435 3171 __ jcc(Assembler::equal, known_ok);
duke@435 3172 }
duke@435 3173 __ bind(halt);
duke@435 3174 __ stop("incorrect type information in arraycopy");
duke@435 3175 __ bind(known_ok);
duke@435 3176 }
duke@435 3177 #endif
duke@435 3178
never@739 3179 if (shift_amount > 0 && basic_type != T_OBJECT) {
never@739 3180 __ shlptr(length, shift_amount);
never@739 3181 }
never@739 3182
never@739 3183 #ifdef _LP64
never@739 3184 assert_different_registers(c_rarg0, dst, dst_pos, length);
roland@1495 3185 __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
never@739 3186 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
never@739 3187 assert_different_registers(c_rarg1, length);
roland@1495 3188 __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
never@739 3189 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
never@739 3190 __ mov(c_rarg2, length);
never@739 3191
never@739 3192 #else
never@739 3193 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 3194 store_parameter(tmp, 0);
never@739 3195 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 3196 store_parameter(tmp, 1);
duke@435 3197 store_parameter(length, 2);
never@739 3198 #endif // _LP64
duke@435 3199 if (basic_type == T_OBJECT) {
duke@435 3200 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy), 0);
duke@435 3201 } else {
duke@435 3202 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy), 0);
duke@435 3203 }
duke@435 3204
duke@435 3205 __ bind(*stub->continuation());
duke@435 3206 }
duke@435 3207
duke@435 3208
duke@435 3209 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
duke@435 3210 Register obj = op->obj_opr()->as_register(); // may not be an oop
duke@435 3211 Register hdr = op->hdr_opr()->as_register();
duke@435 3212 Register lock = op->lock_opr()->as_register();
duke@435 3213 if (!UseFastLocking) {
duke@435 3214 __ jmp(*op->stub()->entry());
duke@435 3215 } else if (op->code() == lir_lock) {
duke@435 3216 Register scratch = noreg;
duke@435 3217 if (UseBiasedLocking) {
duke@435 3218 scratch = op->scratch_opr()->as_register();
duke@435 3219 }
duke@435 3220 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 3221 // add debug info for NullPointerException only if one is possible
duke@435 3222 int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
duke@435 3223 if (op->info() != NULL) {
duke@435 3224 add_debug_info_for_null_check(null_check_offset, op->info());
duke@435 3225 }
duke@435 3226 // done
duke@435 3227 } else if (op->code() == lir_unlock) {
duke@435 3228 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 3229 __ unlock_object(hdr, obj, lock, *op->stub()->entry());
duke@435 3230 } else {
duke@435 3231 Unimplemented();
duke@435 3232 }
duke@435 3233 __ bind(*op->stub()->continuation());
duke@435 3234 }
duke@435 3235
duke@435 3236
duke@435 3237 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
duke@435 3238 ciMethod* method = op->profiled_method();
duke@435 3239 int bci = op->profiled_bci();
duke@435 3240
duke@435 3241 // Update counter for all call types
duke@435 3242 ciMethodData* md = method->method_data();
duke@435 3243 if (md == NULL) {
duke@435 3244 bailout("out of memory building methodDataOop");
duke@435 3245 return;
duke@435 3246 }
duke@435 3247 ciProfileData* data = md->bci_to_data(bci);
duke@435 3248 assert(data->is_CounterData(), "need CounterData for calls");
duke@435 3249 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
duke@435 3250 Register mdo = op->mdo()->as_register();
jrose@1424 3251 __ movoop(mdo, md->constant_encoding());
duke@435 3252 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
duke@435 3253 Bytecodes::Code bc = method->java_code_at_bci(bci);
duke@435 3254 // Perform additional virtual call profiling for invokevirtual and
duke@435 3255 // invokeinterface bytecodes
duke@435 3256 if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
duke@435 3257 Tier1ProfileVirtualCalls) {
duke@435 3258 assert(op->recv()->is_single_cpu(), "recv must be allocated");
duke@435 3259 Register recv = op->recv()->as_register();
duke@435 3260 assert_different_registers(mdo, recv);
duke@435 3261 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
duke@435 3262 ciKlass* known_klass = op->known_holder();
duke@435 3263 if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) {
duke@435 3264 // We know the type that will be seen at this call site; we can
duke@435 3265 // statically update the methodDataOop rather than needing to do
duke@435 3266 // dynamic tests on the receiver type
duke@435 3267
duke@435 3268 // NOTE: we should probably put a lock around this search to
duke@435 3269 // avoid collisions by concurrent compilations
duke@435 3270 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
duke@435 3271 uint i;
duke@435 3272 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3273 ciKlass* receiver = vc_data->receiver(i);
duke@435 3274 if (known_klass->equals(receiver)) {
duke@435 3275 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
duke@435 3276 __ addl(data_addr, DataLayout::counter_increment);
duke@435 3277 return;
duke@435 3278 }
duke@435 3279 }
duke@435 3280
duke@435 3281 // Receiver type not found in profile data; select an empty slot
duke@435 3282
duke@435 3283 // Note that this is less efficient than it should be because it
duke@435 3284 // always does a write to the receiver part of the
duke@435 3285 // VirtualCallData rather than just the first time
duke@435 3286 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3287 ciKlass* receiver = vc_data->receiver(i);
duke@435 3288 if (receiver == NULL) {
duke@435 3289 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
jrose@1424 3290 __ movoop(recv_addr, known_klass->constant_encoding());
duke@435 3291 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
duke@435 3292 __ addl(data_addr, DataLayout::counter_increment);
duke@435 3293 return;
duke@435 3294 }
duke@435 3295 }
duke@435 3296 } else {
never@739 3297 __ movptr(recv, Address(recv, oopDesc::klass_offset_in_bytes()));
duke@435 3298 Label update_done;
duke@435 3299 uint i;
duke@435 3300 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3301 Label next_test;
duke@435 3302 // See if the receiver is receiver[n].
never@739 3303 __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))));
duke@435 3304 __ jcc(Assembler::notEqual, next_test);
duke@435 3305 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
duke@435 3306 __ addl(data_addr, DataLayout::counter_increment);
duke@435 3307 __ jmp(update_done);
duke@435 3308 __ bind(next_test);
duke@435 3309 }
duke@435 3310
duke@435 3311 // Didn't find receiver; find next empty slot and fill it in
duke@435 3312 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3313 Label next_test;
duke@435 3314 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
never@739 3315 __ cmpptr(recv_addr, (int32_t)NULL_WORD);
duke@435 3316 __ jcc(Assembler::notEqual, next_test);
never@739 3317 __ movptr(recv_addr, recv);
duke@435 3318 __ movl(Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))), DataLayout::counter_increment);
kvn@1641 3319 __ jmp(update_done);
duke@435 3320 __ bind(next_test);
duke@435 3321 }
kvn@1641 3322 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 3323 // Increment total counter to indicate polymorphic case.
kvn@1641 3324 __ addl(counter_addr, DataLayout::counter_increment);
duke@435 3325
duke@435 3326 __ bind(update_done);
duke@435 3327 }
kvn@1641 3328 } else {
kvn@1641 3329 // Static call
kvn@1641 3330 __ addl(counter_addr, DataLayout::counter_increment);
duke@435 3331 }
duke@435 3332 }
duke@435 3333
duke@435 3334
duke@435 3335 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
duke@435 3336 Unimplemented();
duke@435 3337 }
duke@435 3338
duke@435 3339
duke@435 3340 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
never@739 3341 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
duke@435 3342 }
duke@435 3343
duke@435 3344
duke@435 3345 void LIR_Assembler::align_backward_branch_target() {
duke@435 3346 __ align(BytesPerWord);
duke@435 3347 }
duke@435 3348
duke@435 3349
duke@435 3350 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
duke@435 3351 if (left->is_single_cpu()) {
duke@435 3352 __ negl(left->as_register());
duke@435 3353 move_regs(left->as_register(), dest->as_register());
duke@435 3354
duke@435 3355 } else if (left->is_double_cpu()) {
duke@435 3356 Register lo = left->as_register_lo();
never@739 3357 #ifdef _LP64
never@739 3358 Register dst = dest->as_register_lo();
never@739 3359 __ movptr(dst, lo);
never@739 3360 __ negptr(dst);
never@739 3361 #else
duke@435 3362 Register hi = left->as_register_hi();
duke@435 3363 __ lneg(hi, lo);
duke@435 3364 if (dest->as_register_lo() == hi) {
duke@435 3365 assert(dest->as_register_hi() != lo, "destroying register");
duke@435 3366 move_regs(hi, dest->as_register_hi());
duke@435 3367 move_regs(lo, dest->as_register_lo());
duke@435 3368 } else {
duke@435 3369 move_regs(lo, dest->as_register_lo());
duke@435 3370 move_regs(hi, dest->as_register_hi());
duke@435 3371 }
never@739 3372 #endif // _LP64
duke@435 3373
duke@435 3374 } else if (dest->is_single_xmm()) {
duke@435 3375 if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
duke@435 3376 __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
duke@435 3377 }
duke@435 3378 __ xorps(dest->as_xmm_float_reg(),
duke@435 3379 ExternalAddress((address)float_signflip_pool));
duke@435 3380
duke@435 3381 } else if (dest->is_double_xmm()) {
duke@435 3382 if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
duke@435 3383 __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
duke@435 3384 }
duke@435 3385 __ xorpd(dest->as_xmm_double_reg(),
duke@435 3386 ExternalAddress((address)double_signflip_pool));
duke@435 3387
duke@435 3388 } else if (left->is_single_fpu() || left->is_double_fpu()) {
duke@435 3389 assert(left->fpu() == 0, "arg must be on TOS");
duke@435 3390 assert(dest->fpu() == 0, "dest must be TOS");
duke@435 3391 __ fchs();
duke@435 3392
duke@435 3393 } else {
duke@435 3394 ShouldNotReachHere();
duke@435 3395 }
duke@435 3396 }
duke@435 3397
duke@435 3398
duke@435 3399 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
duke@435 3400 assert(addr->is_address() && dest->is_register(), "check");
never@739 3401 Register reg;
never@739 3402 reg = dest->as_pointer_register();
never@739 3403 __ lea(reg, as_Address(addr->as_address_ptr()));
duke@435 3404 }
duke@435 3405
duke@435 3406
duke@435 3407
duke@435 3408 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 3409 assert(!tmp->is_valid(), "don't need temporary");
duke@435 3410 __ call(RuntimeAddress(dest));
duke@435 3411 if (info != NULL) {
duke@435 3412 add_call_info_here(info);
duke@435 3413 }
duke@435 3414 }
duke@435 3415
duke@435 3416
duke@435 3417 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
duke@435 3418 assert(type == T_LONG, "only for volatile long fields");
duke@435 3419
duke@435 3420 if (info != NULL) {
duke@435 3421 add_debug_info_for_null_check_here(info);
duke@435 3422 }
duke@435 3423
duke@435 3424 if (src->is_double_xmm()) {
duke@435 3425 if (dest->is_double_cpu()) {
never@739 3426 #ifdef _LP64
never@739 3427 __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
never@739 3428 #else
never@739 3429 __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
duke@435 3430 __ psrlq(src->as_xmm_double_reg(), 32);
never@739 3431 __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
never@739 3432 #endif // _LP64
duke@435 3433 } else if (dest->is_double_stack()) {
duke@435 3434 __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
duke@435 3435 } else if (dest->is_address()) {
duke@435 3436 __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
duke@435 3437 } else {
duke@435 3438 ShouldNotReachHere();
duke@435 3439 }
duke@435 3440
duke@435 3441 } else if (dest->is_double_xmm()) {
duke@435 3442 if (src->is_double_stack()) {
duke@435 3443 __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3444 } else if (src->is_address()) {
duke@435 3445 __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
duke@435 3446 } else {
duke@435 3447 ShouldNotReachHere();
duke@435 3448 }
duke@435 3449
duke@435 3450 } else if (src->is_double_fpu()) {
duke@435 3451 assert(src->fpu_regnrLo() == 0, "must be TOS");
duke@435 3452 if (dest->is_double_stack()) {
duke@435 3453 __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
duke@435 3454 } else if (dest->is_address()) {
duke@435 3455 __ fistp_d(as_Address(dest->as_address_ptr()));
duke@435 3456 } else {
duke@435 3457 ShouldNotReachHere();
duke@435 3458 }
duke@435 3459
duke@435 3460 } else if (dest->is_double_fpu()) {
duke@435 3461 assert(dest->fpu_regnrLo() == 0, "must be TOS");
duke@435 3462 if (src->is_double_stack()) {
duke@435 3463 __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3464 } else if (src->is_address()) {
duke@435 3465 __ fild_d(as_Address(src->as_address_ptr()));
duke@435 3466 } else {
duke@435 3467 ShouldNotReachHere();
duke@435 3468 }
duke@435 3469 } else {
duke@435 3470 ShouldNotReachHere();
duke@435 3471 }
duke@435 3472 }
duke@435 3473
duke@435 3474
duke@435 3475 void LIR_Assembler::membar() {
never@739 3476 // QQQ sparc TSO uses this,
never@739 3477 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
duke@435 3478 }
duke@435 3479
duke@435 3480 void LIR_Assembler::membar_acquire() {
duke@435 3481 // No x86 machines currently require load fences
duke@435 3482 // __ load_fence();
duke@435 3483 }
duke@435 3484
duke@435 3485 void LIR_Assembler::membar_release() {
duke@435 3486 // No x86 machines currently require store fences
duke@435 3487 // __ store_fence();
duke@435 3488 }
duke@435 3489
duke@435 3490 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
duke@435 3491 assert(result_reg->is_register(), "check");
never@739 3492 #ifdef _LP64
never@739 3493 // __ get_thread(result_reg->as_register_lo());
never@739 3494 __ mov(result_reg->as_register(), r15_thread);
never@739 3495 #else
duke@435 3496 __ get_thread(result_reg->as_register());
never@739 3497 #endif // _LP64
duke@435 3498 }
duke@435 3499
duke@435 3500
duke@435 3501 void LIR_Assembler::peephole(LIR_List*) {
duke@435 3502 // do nothing for now
duke@435 3503 }
duke@435 3504
duke@435 3505
duke@435 3506 #undef __

mercurial