src/share/vm/gc_interface/collectedHeap.cpp

Fri, 26 Aug 2011 08:52:22 -0700

author
kvn
date
Fri, 26 Aug 2011 08:52:22 -0700
changeset 3092
baf763f388e6
parent 2708
1d1603768966
child 3110
d968f546734e
permissions
-rw-r--r--

7059037: Use BIS for zeroing on T4
Summary: Use BIS for zeroing new allocated big (2Kb and more) objects and arrays.
Reviewed-by: never, twisti, ysr

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "gc_implementation/shared/vmGCOperations.hpp"
    28 #include "gc_interface/collectedHeap.hpp"
    29 #include "gc_interface/collectedHeap.inline.hpp"
    30 #include "oops/oop.inline.hpp"
    31 #include "runtime/init.hpp"
    32 #include "services/heapDumper.hpp"
    33 #ifdef TARGET_OS_FAMILY_linux
    34 # include "thread_linux.inline.hpp"
    35 #endif
    36 #ifdef TARGET_OS_FAMILY_solaris
    37 # include "thread_solaris.inline.hpp"
    38 #endif
    39 #ifdef TARGET_OS_FAMILY_windows
    40 # include "thread_windows.inline.hpp"
    41 #endif
    44 #ifdef ASSERT
    45 int CollectedHeap::_fire_out_of_memory_count = 0;
    46 #endif
    48 size_t CollectedHeap::_filler_array_max_size = 0;
    50 // Memory state functions.
    53 CollectedHeap::CollectedHeap() : _n_par_threads(0)
    55 {
    56   const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT));
    57   const size_t elements_per_word = HeapWordSize / sizeof(jint);
    58   _filler_array_max_size = align_object_size(filler_array_hdr_size() +
    59                                              max_len * elements_per_word);
    61   _barrier_set = NULL;
    62   _is_gc_active = false;
    63   _total_collections = _total_full_collections = 0;
    64   _gc_cause = _gc_lastcause = GCCause::_no_gc;
    65   NOT_PRODUCT(_promotion_failure_alot_count = 0;)
    66   NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;)
    68   if (UsePerfData) {
    69     EXCEPTION_MARK;
    71     // create the gc cause jvmstat counters
    72     _perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause",
    73                              80, GCCause::to_string(_gc_cause), CHECK);
    75     _perf_gc_lastcause =
    76                 PerfDataManager::create_string_variable(SUN_GC, "lastCause",
    77                              80, GCCause::to_string(_gc_lastcause), CHECK);
    78   }
    79   _defer_initial_card_mark = false; // strengthened by subclass in pre_initialize() below.
    80 }
    82 void CollectedHeap::pre_initialize() {
    83   // Used for ReduceInitialCardMarks (when COMPILER2 is used);
    84   // otherwise remains unused.
    85 #ifdef COMPILER2
    86   _defer_initial_card_mark =    ReduceInitialCardMarks && can_elide_tlab_store_barriers()
    87                              && (DeferInitialCardMark || card_mark_must_follow_store());
    88 #else
    89   assert(_defer_initial_card_mark == false, "Who would set it?");
    90 #endif
    91 }
    93 #ifndef PRODUCT
    94 void CollectedHeap::check_for_bad_heap_word_value(HeapWord* addr, size_t size) {
    95   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
    96     for (size_t slot = 0; slot < size; slot += 1) {
    97       assert((*(intptr_t*) (addr + slot)) != ((intptr_t) badHeapWordVal),
    98              "Found badHeapWordValue in post-allocation check");
    99     }
   100   }
   101 }
   103 void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size) {
   104   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
   105     for (size_t slot = 0; slot < size; slot += 1) {
   106       assert((*(intptr_t*) (addr + slot)) == ((intptr_t) badHeapWordVal),
   107              "Found non badHeapWordValue in pre-allocation check");
   108     }
   109   }
   110 }
   111 #endif // PRODUCT
   113 #ifdef ASSERT
   114 void CollectedHeap::check_for_valid_allocation_state() {
   115   Thread *thread = Thread::current();
   116   // How to choose between a pending exception and a potential
   117   // OutOfMemoryError?  Don't allow pending exceptions.
   118   // This is a VM policy failure, so how do we exhaustively test it?
   119   assert(!thread->has_pending_exception(),
   120          "shouldn't be allocating with pending exception");
   121   if (StrictSafepointChecks) {
   122     assert(thread->allow_allocation(),
   123            "Allocation done by thread for which allocation is blocked "
   124            "by No_Allocation_Verifier!");
   125     // Allocation of an oop can always invoke a safepoint,
   126     // hence, the true argument
   127     thread->check_for_valid_safepoint_state(true);
   128   }
   129 }
   130 #endif
   132 HeapWord* CollectedHeap::allocate_from_tlab_slow(Thread* thread, size_t size) {
   134   // Retain tlab and allocate object in shared space if
   135   // the amount free in the tlab is too large to discard.
   136   if (thread->tlab().free() > thread->tlab().refill_waste_limit()) {
   137     thread->tlab().record_slow_allocation(size);
   138     return NULL;
   139   }
   141   // Discard tlab and allocate a new one.
   142   // To minimize fragmentation, the last TLAB may be smaller than the rest.
   143   size_t new_tlab_size = thread->tlab().compute_size(size);
   145   thread->tlab().clear_before_allocation();
   147   if (new_tlab_size == 0) {
   148     return NULL;
   149   }
   151   // Allocate a new TLAB...
   152   HeapWord* obj = Universe::heap()->allocate_new_tlab(new_tlab_size);
   153   if (obj == NULL) {
   154     return NULL;
   155   }
   156   if (ZeroTLAB) {
   157     // ..and clear it.
   158     Copy::zero_to_words(obj, new_tlab_size);
   159   } else {
   160     // ...and zap just allocated object.
   161 #ifdef ASSERT
   162     // Skip mangling the space corresponding to the object header to
   163     // ensure that the returned space is not considered parsable by
   164     // any concurrent GC thread.
   165     size_t hdr_size = oopDesc::header_size();
   166     Copy::fill_to_words(obj + hdr_size, new_tlab_size - hdr_size, badHeapWordVal);
   167 #endif // ASSERT
   168   }
   169   thread->tlab().fill(obj, obj + size, new_tlab_size);
   170   return obj;
   171 }
   173 void CollectedHeap::flush_deferred_store_barrier(JavaThread* thread) {
   174   MemRegion deferred = thread->deferred_card_mark();
   175   if (!deferred.is_empty()) {
   176     assert(_defer_initial_card_mark, "Otherwise should be empty");
   177     {
   178       // Verify that the storage points to a parsable object in heap
   179       DEBUG_ONLY(oop old_obj = oop(deferred.start());)
   180       assert(is_in(old_obj), "Not in allocated heap");
   181       assert(!can_elide_initializing_store_barrier(old_obj),
   182              "Else should have been filtered in new_store_pre_barrier()");
   183       assert(!is_in_permanent(old_obj), "Sanity: not expected");
   184       assert(old_obj->is_oop(true), "Not an oop");
   185       assert(old_obj->is_parsable(), "Will not be concurrently parsable");
   186       assert(deferred.word_size() == (size_t)(old_obj->size()),
   187              "Mismatch: multiple objects?");
   188     }
   189     BarrierSet* bs = barrier_set();
   190     assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
   191     bs->write_region(deferred);
   192     // "Clear" the deferred_card_mark field
   193     thread->set_deferred_card_mark(MemRegion());
   194   }
   195   assert(thread->deferred_card_mark().is_empty(), "invariant");
   196 }
   198 // Helper for ReduceInitialCardMarks. For performance,
   199 // compiled code may elide card-marks for initializing stores
   200 // to a newly allocated object along the fast-path. We
   201 // compensate for such elided card-marks as follows:
   202 // (a) Generational, non-concurrent collectors, such as
   203 //     GenCollectedHeap(ParNew,DefNew,Tenured) and
   204 //     ParallelScavengeHeap(ParallelGC, ParallelOldGC)
   205 //     need the card-mark if and only if the region is
   206 //     in the old gen, and do not care if the card-mark
   207 //     succeeds or precedes the initializing stores themselves,
   208 //     so long as the card-mark is completed before the next
   209 //     scavenge. For all these cases, we can do a card mark
   210 //     at the point at which we do a slow path allocation
   211 //     in the old gen, i.e. in this call.
   212 // (b) GenCollectedHeap(ConcurrentMarkSweepGeneration) requires
   213 //     in addition that the card-mark for an old gen allocated
   214 //     object strictly follow any associated initializing stores.
   215 //     In these cases, the memRegion remembered below is
   216 //     used to card-mark the entire region either just before the next
   217 //     slow-path allocation by this thread or just before the next scavenge or
   218 //     CMS-associated safepoint, whichever of these events happens first.
   219 //     (The implicit assumption is that the object has been fully
   220 //     initialized by this point, a fact that we assert when doing the
   221 //     card-mark.)
   222 // (c) G1CollectedHeap(G1) uses two kinds of write barriers. When a
   223 //     G1 concurrent marking is in progress an SATB (pre-write-)barrier is
   224 //     is used to remember the pre-value of any store. Initializing
   225 //     stores will not need this barrier, so we need not worry about
   226 //     compensating for the missing pre-barrier here. Turning now
   227 //     to the post-barrier, we note that G1 needs a RS update barrier
   228 //     which simply enqueues a (sequence of) dirty cards which may
   229 //     optionally be refined by the concurrent update threads. Note
   230 //     that this barrier need only be applied to a non-young write,
   231 //     but, like in CMS, because of the presence of concurrent refinement
   232 //     (much like CMS' precleaning), must strictly follow the oop-store.
   233 //     Thus, using the same protocol for maintaining the intended
   234 //     invariants turns out, serendepitously, to be the same for both
   235 //     G1 and CMS.
   236 //
   237 // For any future collector, this code should be reexamined with
   238 // that specific collector in mind, and the documentation above suitably
   239 // extended and updated.
   240 oop CollectedHeap::new_store_pre_barrier(JavaThread* thread, oop new_obj) {
   241   // If a previous card-mark was deferred, flush it now.
   242   flush_deferred_store_barrier(thread);
   243   if (can_elide_initializing_store_barrier(new_obj)) {
   244     // The deferred_card_mark region should be empty
   245     // following the flush above.
   246     assert(thread->deferred_card_mark().is_empty(), "Error");
   247   } else {
   248     MemRegion mr((HeapWord*)new_obj, new_obj->size());
   249     assert(!mr.is_empty(), "Error");
   250     if (_defer_initial_card_mark) {
   251       // Defer the card mark
   252       thread->set_deferred_card_mark(mr);
   253     } else {
   254       // Do the card mark
   255       BarrierSet* bs = barrier_set();
   256       assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
   257       bs->write_region(mr);
   258     }
   259   }
   260   return new_obj;
   261 }
   263 size_t CollectedHeap::filler_array_hdr_size() {
   264   return size_t(align_object_offset(arrayOopDesc::header_size(T_INT))); // align to Long
   265 }
   267 size_t CollectedHeap::filler_array_min_size() {
   268   return align_object_size(filler_array_hdr_size()); // align to MinObjAlignment
   269 }
   271 size_t CollectedHeap::filler_array_max_size() {
   272   return _filler_array_max_size;
   273 }
   275 #ifdef ASSERT
   276 void CollectedHeap::fill_args_check(HeapWord* start, size_t words)
   277 {
   278   assert(words >= min_fill_size(), "too small to fill");
   279   assert(words % MinObjAlignment == 0, "unaligned size");
   280   assert(Universe::heap()->is_in_reserved(start), "not in heap");
   281   assert(Universe::heap()->is_in_reserved(start + words - 1), "not in heap");
   282 }
   284 void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap)
   285 {
   286   if (ZapFillerObjects && zap) {
   287     Copy::fill_to_words(start + filler_array_hdr_size(),
   288                         words - filler_array_hdr_size(), 0XDEAFBABE);
   289   }
   290 }
   291 #endif // ASSERT
   293 void
   294 CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap)
   295 {
   296   assert(words >= filler_array_min_size(), "too small for an array");
   297   assert(words <= filler_array_max_size(), "too big for a single object");
   299   const size_t payload_size = words - filler_array_hdr_size();
   300   const size_t len = payload_size * HeapWordSize / sizeof(jint);
   302   // Set the length first for concurrent GC.
   303   ((arrayOop)start)->set_length((int)len);
   304   post_allocation_setup_common(Universe::intArrayKlassObj(), start, words);
   305   DEBUG_ONLY(zap_filler_array(start, words, zap);)
   306 }
   308 void
   309 CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap)
   310 {
   311   assert(words <= filler_array_max_size(), "too big for a single object");
   313   if (words >= filler_array_min_size()) {
   314     fill_with_array(start, words, zap);
   315   } else if (words > 0) {
   316     assert(words == min_fill_size(), "unaligned size");
   317     post_allocation_setup_common(SystemDictionary::Object_klass(), start,
   318                                  words);
   319   }
   320 }
   322 void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap)
   323 {
   324   DEBUG_ONLY(fill_args_check(start, words);)
   325   HandleMark hm;  // Free handles before leaving.
   326   fill_with_object_impl(start, words, zap);
   327 }
   329 void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap)
   330 {
   331   DEBUG_ONLY(fill_args_check(start, words);)
   332   HandleMark hm;  // Free handles before leaving.
   334 #ifdef _LP64
   335   // A single array can fill ~8G, so multiple objects are needed only in 64-bit.
   336   // First fill with arrays, ensuring that any remaining space is big enough to
   337   // fill.  The remainder is filled with a single object.
   338   const size_t min = min_fill_size();
   339   const size_t max = filler_array_max_size();
   340   while (words > max) {
   341     const size_t cur = words - max >= min ? max : max - min;
   342     fill_with_array(start, cur, zap);
   343     start += cur;
   344     words -= cur;
   345   }
   346 #endif
   348   fill_with_object_impl(start, words, zap);
   349 }
   351 HeapWord* CollectedHeap::allocate_new_tlab(size_t size) {
   352   guarantee(false, "thread-local allocation buffers not supported");
   353   return NULL;
   354 }
   356 void CollectedHeap::ensure_parsability(bool retire_tlabs) {
   357   // The second disjunct in the assertion below makes a concession
   358   // for the start-up verification done while the VM is being
   359   // created. Callers be careful that you know that mutators
   360   // aren't going to interfere -- for instance, this is permissible
   361   // if we are still single-threaded and have either not yet
   362   // started allocating (nothing much to verify) or we have
   363   // started allocating but are now a full-fledged JavaThread
   364   // (and have thus made our TLAB's) available for filling.
   365   assert(SafepointSynchronize::is_at_safepoint() ||
   366          !is_init_completed(),
   367          "Should only be called at a safepoint or at start-up"
   368          " otherwise concurrent mutator activity may make heap "
   369          " unparsable again");
   370   const bool use_tlab = UseTLAB;
   371   const bool deferred = _defer_initial_card_mark;
   372   // The main thread starts allocating via a TLAB even before it
   373   // has added itself to the threads list at vm boot-up.
   374   assert(!use_tlab || Threads::first() != NULL,
   375          "Attempt to fill tlabs before main thread has been added"
   376          " to threads list is doomed to failure!");
   377   for (JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
   378      if (use_tlab) thread->tlab().make_parsable(retire_tlabs);
   379 #ifdef COMPILER2
   380      // The deferred store barriers must all have been flushed to the
   381      // card-table (or other remembered set structure) before GC starts
   382      // processing the card-table (or other remembered set).
   383      if (deferred) flush_deferred_store_barrier(thread);
   384 #else
   385      assert(!deferred, "Should be false");
   386      assert(thread->deferred_card_mark().is_empty(), "Should be empty");
   387 #endif
   388   }
   389 }
   391 void CollectedHeap::accumulate_statistics_all_tlabs() {
   392   if (UseTLAB) {
   393     assert(SafepointSynchronize::is_at_safepoint() ||
   394          !is_init_completed(),
   395          "should only accumulate statistics on tlabs at safepoint");
   397     ThreadLocalAllocBuffer::accumulate_statistics_before_gc();
   398   }
   399 }
   401 void CollectedHeap::resize_all_tlabs() {
   402   if (UseTLAB) {
   403     assert(SafepointSynchronize::is_at_safepoint() ||
   404          !is_init_completed(),
   405          "should only resize tlabs at safepoint");
   407     ThreadLocalAllocBuffer::resize_all_tlabs();
   408   }
   409 }
   411 void CollectedHeap::pre_full_gc_dump() {
   412   if (HeapDumpBeforeFullGC) {
   413     TraceTime tt("Heap Dump: ", PrintGCDetails, false, gclog_or_tty);
   414     // We are doing a "major" collection and a heap dump before
   415     // major collection has been requested.
   416     HeapDumper::dump_heap();
   417   }
   418   if (PrintClassHistogramBeforeFullGC) {
   419     TraceTime tt("Class Histogram: ", PrintGCDetails, true, gclog_or_tty);
   420     VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */, false /* ! prologue */);
   421     inspector.doit();
   422   }
   423 }
   425 void CollectedHeap::post_full_gc_dump() {
   426   if (HeapDumpAfterFullGC) {
   427     TraceTime tt("Heap Dump", PrintGCDetails, false, gclog_or_tty);
   428     HeapDumper::dump_heap();
   429   }
   430   if (PrintClassHistogramAfterFullGC) {
   431     TraceTime tt("Class Histogram", PrintGCDetails, true, gclog_or_tty);
   432     VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */, false /* ! prologue */);
   433     inspector.doit();
   434   }
   435 }

mercurial