src/share/vm/opto/library_call.cpp

Tue, 25 Feb 2014 18:16:24 +0100

author
roland
date
Tue, 25 Feb 2014 18:16:24 +0100
changeset 6377
b8413a9cbb84
parent 6375
085b304a1cc5
child 6425
9ab9f254cfe2
permissions
-rw-r--r--

8031752: Failed speculative optimizations should be reattempted when root of compilation is different
Summary: support for speculative traps that keep track of the root of the compilation in which a trap occurs.
Reviewed-by: kvn, twisti

duke@435 1 /*
sla@5237 2 * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "classfile/vmSymbols.hpp"
twisti@2687 28 #include "compiler/compileBroker.hpp"
stefank@2314 29 #include "compiler/compileLog.hpp"
stefank@2314 30 #include "oops/objArrayKlass.hpp"
stefank@2314 31 #include "opto/addnode.hpp"
stefank@2314 32 #include "opto/callGenerator.hpp"
stefank@2314 33 #include "opto/cfgnode.hpp"
stefank@2314 34 #include "opto/idealKit.hpp"
rbackman@5791 35 #include "opto/mathexactnode.hpp"
stefank@2314 36 #include "opto/mulnode.hpp"
stefank@2314 37 #include "opto/parse.hpp"
stefank@2314 38 #include "opto/runtime.hpp"
stefank@2314 39 #include "opto/subnode.hpp"
stefank@2314 40 #include "prims/nativeLookup.hpp"
stefank@2314 41 #include "runtime/sharedRuntime.hpp"
sla@5237 42 #include "trace/traceMacros.hpp"
duke@435 43
duke@435 44 class LibraryIntrinsic : public InlineCallGenerator {
duke@435 45 // Extend the set of intrinsics known to the runtime:
duke@435 46 public:
duke@435 47 private:
duke@435 48 bool _is_virtual;
kvn@4205 49 bool _is_predicted;
shade@5798 50 bool _does_virtual_dispatch;
duke@435 51 vmIntrinsics::ID _intrinsic_id;
duke@435 52
duke@435 53 public:
shade@5798 54 LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, bool does_virtual_dispatch, vmIntrinsics::ID id)
duke@435 55 : InlineCallGenerator(m),
duke@435 56 _is_virtual(is_virtual),
kvn@4205 57 _is_predicted(is_predicted),
shade@5798 58 _does_virtual_dispatch(does_virtual_dispatch),
duke@435 59 _intrinsic_id(id)
duke@435 60 {
duke@435 61 }
duke@435 62 virtual bool is_intrinsic() const { return true; }
duke@435 63 virtual bool is_virtual() const { return _is_virtual; }
kvn@4205 64 virtual bool is_predicted() const { return _is_predicted; }
shade@5798 65 virtual bool does_virtual_dispatch() const { return _does_virtual_dispatch; }
roland@5981 66 virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);
kvn@4205 67 virtual Node* generate_predicate(JVMState* jvms);
duke@435 68 vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
duke@435 69 };
duke@435 70
duke@435 71
duke@435 72 // Local helper class for LibraryIntrinsic:
duke@435 73 class LibraryCallKit : public GraphKit {
duke@435 74 private:
twisti@4313 75 LibraryIntrinsic* _intrinsic; // the library intrinsic being called
twisti@4313 76 Node* _result; // the result node, if any
twisti@4313 77 int _reexecute_sp; // the stack pointer when bytecode needs to be reexecuted
duke@435 78
roland@4106 79 const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
roland@4106 80
duke@435 81 public:
twisti@4313 82 LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
twisti@4313 83 : GraphKit(jvms),
twisti@4313 84 _intrinsic(intrinsic),
twisti@4313 85 _result(NULL)
duke@435 86 {
twisti@4319 87 // Check if this is a root compile. In that case we don't have a caller.
twisti@4319 88 if (!jvms->has_method()) {
twisti@4319 89 _reexecute_sp = sp();
twisti@4319 90 } else {
twisti@4319 91 // Find out how many arguments the interpreter needs when deoptimizing
twisti@4319 92 // and save the stack pointer value so it can used by uncommon_trap.
twisti@4319 93 // We find the argument count by looking at the declared signature.
twisti@4319 94 bool ignored_will_link;
twisti@4319 95 ciSignature* declared_signature = NULL;
twisti@4319 96 ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
twisti@4319 97 const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
twisti@4319 98 _reexecute_sp = sp() + nargs; // "push" arguments back on stack
twisti@4319 99 }
duke@435 100 }
duke@435 101
twisti@4313 102 virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
twisti@4313 103
duke@435 104 ciMethod* caller() const { return jvms()->method(); }
duke@435 105 int bci() const { return jvms()->bci(); }
duke@435 106 LibraryIntrinsic* intrinsic() const { return _intrinsic; }
duke@435 107 vmIntrinsics::ID intrinsic_id() const { return _intrinsic->intrinsic_id(); }
duke@435 108 ciMethod* callee() const { return _intrinsic->method(); }
duke@435 109
duke@435 110 bool try_to_inline();
kvn@4205 111 Node* try_to_predicate();
duke@435 112
twisti@4313 113 void push_result() {
twisti@4313 114 // Push the result onto the stack.
twisti@4313 115 if (!stopped() && result() != NULL) {
twisti@4313 116 BasicType bt = result()->bottom_type()->basic_type();
twisti@4313 117 push_node(bt, result());
twisti@4313 118 }
twisti@4313 119 }
twisti@4313 120
twisti@4313 121 private:
twisti@4313 122 void fatal_unexpected_iid(vmIntrinsics::ID iid) {
twisti@4313 123 fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
twisti@4313 124 }
twisti@4313 125
twisti@4313 126 void set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
twisti@4313 127 void set_result(RegionNode* region, PhiNode* value);
twisti@4313 128 Node* result() { return _result; }
twisti@4313 129
twisti@4313 130 virtual int reexecute_sp() { return _reexecute_sp; }
twisti@4313 131
duke@435 132 // Helper functions to inline natives
duke@435 133 Node* generate_guard(Node* test, RegionNode* region, float true_prob);
duke@435 134 Node* generate_slow_guard(Node* test, RegionNode* region);
duke@435 135 Node* generate_fair_guard(Node* test, RegionNode* region);
duke@435 136 Node* generate_negative_guard(Node* index, RegionNode* region,
duke@435 137 // resulting CastII of index:
duke@435 138 Node* *pos_index = NULL);
duke@435 139 Node* generate_nonpositive_guard(Node* index, bool never_negative,
duke@435 140 // resulting CastII of index:
duke@435 141 Node* *pos_index = NULL);
duke@435 142 Node* generate_limit_guard(Node* offset, Node* subseq_length,
duke@435 143 Node* array_length,
duke@435 144 RegionNode* region);
duke@435 145 Node* generate_current_thread(Node* &tls_output);
duke@435 146 address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
iveresov@2606 147 bool disjoint_bases, const char* &name, bool dest_uninitialized);
duke@435 148 Node* load_mirror_from_klass(Node* klass);
duke@435 149 Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
duke@435 150 RegionNode* region, int null_path,
duke@435 151 int offset);
twisti@4313 152 Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
duke@435 153 RegionNode* region, int null_path) {
duke@435 154 int offset = java_lang_Class::klass_offset_in_bytes();
twisti@4313 155 return load_klass_from_mirror_common(mirror, never_see_null,
duke@435 156 region, null_path,
duke@435 157 offset);
duke@435 158 }
duke@435 159 Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
duke@435 160 RegionNode* region, int null_path) {
duke@435 161 int offset = java_lang_Class::array_klass_offset_in_bytes();
twisti@4313 162 return load_klass_from_mirror_common(mirror, never_see_null,
duke@435 163 region, null_path,
duke@435 164 offset);
duke@435 165 }
duke@435 166 Node* generate_access_flags_guard(Node* kls,
duke@435 167 int modifier_mask, int modifier_bits,
duke@435 168 RegionNode* region);
duke@435 169 Node* generate_interface_guard(Node* kls, RegionNode* region);
duke@435 170 Node* generate_array_guard(Node* kls, RegionNode* region) {
duke@435 171 return generate_array_guard_common(kls, region, false, false);
duke@435 172 }
duke@435 173 Node* generate_non_array_guard(Node* kls, RegionNode* region) {
duke@435 174 return generate_array_guard_common(kls, region, false, true);
duke@435 175 }
duke@435 176 Node* generate_objArray_guard(Node* kls, RegionNode* region) {
duke@435 177 return generate_array_guard_common(kls, region, true, false);
duke@435 178 }
duke@435 179 Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
duke@435 180 return generate_array_guard_common(kls, region, true, true);
duke@435 181 }
duke@435 182 Node* generate_array_guard_common(Node* kls, RegionNode* region,
duke@435 183 bool obj_array, bool not_array);
duke@435 184 Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
duke@435 185 CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
duke@435 186 bool is_virtual = false, bool is_static = false);
duke@435 187 CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
duke@435 188 return generate_method_call(method_id, false, true);
duke@435 189 }
duke@435 190 CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
duke@435 191 return generate_method_call(method_id, true, false);
duke@435 192 }
kvn@4205 193 Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
duke@435 194
kvn@3760 195 Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
kvn@3760 196 Node* make_string_method_node(int opcode, Node* str1, Node* str2);
duke@435 197 bool inline_string_compareTo();
duke@435 198 bool inline_string_indexOf();
duke@435 199 Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
cfang@1116 200 bool inline_string_equals();
twisti@4313 201 Node* round_double_node(Node* n);
duke@435 202 bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
duke@435 203 bool inline_math_native(vmIntrinsics::ID id);
duke@435 204 bool inline_trig(vmIntrinsics::ID id);
twisti@4313 205 bool inline_math(vmIntrinsics::ID id);
rbackman@6375 206 template <typename OverflowOp>
rbackman@6375 207 bool inline_math_overflow(Node* arg1, Node* arg2);
rbackman@6375 208 void inline_math_mathExact(Node* math, Node* test);
rbackman@5997 209 bool inline_math_addExactI(bool is_increment);
rbackman@5997 210 bool inline_math_addExactL(bool is_increment);
rbackman@5997 211 bool inline_math_multiplyExactI();
rbackman@5997 212 bool inline_math_multiplyExactL();
rbackman@5997 213 bool inline_math_negateExactI();
rbackman@5997 214 bool inline_math_negateExactL();
rbackman@5997 215 bool inline_math_subtractExactI(bool is_decrement);
rbackman@5997 216 bool inline_math_subtractExactL(bool is_decrement);
twisti@4313 217 bool inline_exp();
twisti@4313 218 bool inline_pow();
roland@3908 219 void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
duke@435 220 bool inline_min_max(vmIntrinsics::ID id);
duke@435 221 Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
duke@435 222 // This returns Type::AnyPtr, RawPtr, or OopPtr.
duke@435 223 int classify_unsafe_addr(Node* &base, Node* &offset);
duke@435 224 Node* make_unsafe_address(Node* base, Node* offset);
johnc@2781 225 // Helper for inline_unsafe_access.
johnc@2781 226 // Generates the guards that check whether the result of
johnc@2781 227 // Unsafe.getObject should be recorded in an SATB log buffer.
twisti@4313 228 void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
duke@435 229 bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
duke@435 230 bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
rbackman@5546 231 static bool klass_needs_init_guard(Node* kls);
duke@435 232 bool inline_unsafe_allocate();
duke@435 233 bool inline_unsafe_copyMemory();
duke@435 234 bool inline_native_currentThread();
rbackman@3709 235 #ifdef TRACE_HAVE_INTRINSICS
rbackman@3709 236 bool inline_native_classID();
rbackman@3709 237 bool inline_native_threadID();
rbackman@3709 238 #endif
rbackman@3709 239 bool inline_native_time_funcs(address method, const char* funcName);
duke@435 240 bool inline_native_isInterrupted();
duke@435 241 bool inline_native_Class_query(vmIntrinsics::ID id);
duke@435 242 bool inline_native_subtype_check();
duke@435 243
duke@435 244 bool inline_native_newArray();
duke@435 245 bool inline_native_getLength();
duke@435 246 bool inline_array_copyOf(bool is_copyOfRange);
rasbold@604 247 bool inline_array_equals();
kvn@1268 248 void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
duke@435 249 bool inline_native_clone(bool is_virtual);
duke@435 250 bool inline_native_Reflection_getCallerClass();
duke@435 251 // Helper function for inlining native object hash method
duke@435 252 bool inline_native_hashcode(bool is_virtual, bool is_static);
duke@435 253 bool inline_native_getClass();
duke@435 254
duke@435 255 // Helper functions for inlining arraycopy
duke@435 256 bool inline_arraycopy();
duke@435 257 void generate_arraycopy(const TypePtr* adr_type,
duke@435 258 BasicType basic_elem_type,
duke@435 259 Node* src, Node* src_offset,
duke@435 260 Node* dest, Node* dest_offset,
duke@435 261 Node* copy_length,
duke@435 262 bool disjoint_bases = false,
duke@435 263 bool length_never_negative = false,
duke@435 264 RegionNode* slow_region = NULL);
duke@435 265 AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
duke@435 266 RegionNode* slow_region);
duke@435 267 void generate_clear_array(const TypePtr* adr_type,
duke@435 268 Node* dest,
duke@435 269 BasicType basic_elem_type,
duke@435 270 Node* slice_off,
duke@435 271 Node* slice_len,
duke@435 272 Node* slice_end);
duke@435 273 bool generate_block_arraycopy(const TypePtr* adr_type,
duke@435 274 BasicType basic_elem_type,
duke@435 275 AllocateNode* alloc,
duke@435 276 Node* src, Node* src_offset,
duke@435 277 Node* dest, Node* dest_offset,
iveresov@2606 278 Node* dest_size, bool dest_uninitialized);
duke@435 279 void generate_slow_arraycopy(const TypePtr* adr_type,
duke@435 280 Node* src, Node* src_offset,
duke@435 281 Node* dest, Node* dest_offset,
iveresov@2606 282 Node* copy_length, bool dest_uninitialized);
duke@435 283 Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
duke@435 284 Node* dest_elem_klass,
duke@435 285 Node* src, Node* src_offset,
duke@435 286 Node* dest, Node* dest_offset,
iveresov@2606 287 Node* copy_length, bool dest_uninitialized);
duke@435 288 Node* generate_generic_arraycopy(const TypePtr* adr_type,
duke@435 289 Node* src, Node* src_offset,
duke@435 290 Node* dest, Node* dest_offset,
iveresov@2606 291 Node* copy_length, bool dest_uninitialized);
duke@435 292 void generate_unchecked_arraycopy(const TypePtr* adr_type,
duke@435 293 BasicType basic_elem_type,
duke@435 294 bool disjoint_bases,
duke@435 295 Node* src, Node* src_offset,
duke@435 296 Node* dest, Node* dest_offset,
iveresov@2606 297 Node* copy_length, bool dest_uninitialized);
roland@4106 298 typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
roland@4106 299 bool inline_unsafe_load_store(BasicType type, LoadStoreKind kind);
duke@435 300 bool inline_unsafe_ordered_store(BasicType type);
kvn@4361 301 bool inline_unsafe_fence(vmIntrinsics::ID id);
duke@435 302 bool inline_fp_conversions(vmIntrinsics::ID id);
twisti@4313 303 bool inline_number_methods(vmIntrinsics::ID id);
johnc@2781 304 bool inline_reference_get();
kvn@4205 305 bool inline_aescrypt_Block(vmIntrinsics::ID id);
kvn@4205 306 bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
kvn@4205 307 Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
kvn@4205 308 Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
kvn@6312 309 Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
kvn@4479 310 bool inline_encodeISOArray();
drchase@5353 311 bool inline_updateCRC32();
drchase@5353 312 bool inline_updateBytesCRC32();
drchase@5353 313 bool inline_updateByteBufferCRC32();
duke@435 314 };
duke@435 315
duke@435 316
duke@435 317 //---------------------------make_vm_intrinsic----------------------------
duke@435 318 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
duke@435 319 vmIntrinsics::ID id = m->intrinsic_id();
duke@435 320 assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
duke@435 321
duke@435 322 if (DisableIntrinsic[0] != '\0'
duke@435 323 && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
duke@435 324 // disabled by a user request on the command line:
duke@435 325 // example: -XX:DisableIntrinsic=_hashCode,_getClass
duke@435 326 return NULL;
duke@435 327 }
duke@435 328
duke@435 329 if (!m->is_loaded()) {
duke@435 330 // do not attempt to inline unloaded methods
duke@435 331 return NULL;
duke@435 332 }
duke@435 333
duke@435 334 // Only a few intrinsics implement a virtual dispatch.
duke@435 335 // They are expensive calls which are also frequently overridden.
duke@435 336 if (is_virtual) {
duke@435 337 switch (id) {
duke@435 338 case vmIntrinsics::_hashCode:
duke@435 339 case vmIntrinsics::_clone:
duke@435 340 // OK, Object.hashCode and Object.clone intrinsics come in both flavors
duke@435 341 break;
duke@435 342 default:
duke@435 343 return NULL;
duke@435 344 }
duke@435 345 }
duke@435 346
duke@435 347 // -XX:-InlineNatives disables nearly all intrinsics:
duke@435 348 if (!InlineNatives) {
duke@435 349 switch (id) {
duke@435 350 case vmIntrinsics::_indexOf:
duke@435 351 case vmIntrinsics::_compareTo:
cfang@1116 352 case vmIntrinsics::_equals:
rasbold@604 353 case vmIntrinsics::_equalsC:
roland@4106 354 case vmIntrinsics::_getAndAddInt:
roland@4106 355 case vmIntrinsics::_getAndAddLong:
roland@4106 356 case vmIntrinsics::_getAndSetInt:
roland@4106 357 case vmIntrinsics::_getAndSetLong:
roland@4106 358 case vmIntrinsics::_getAndSetObject:
kvn@4361 359 case vmIntrinsics::_loadFence:
kvn@4361 360 case vmIntrinsics::_storeFence:
kvn@4361 361 case vmIntrinsics::_fullFence:
duke@435 362 break; // InlineNatives does not control String.compareTo
kvn@4002 363 case vmIntrinsics::_Reference_get:
kvn@4002 364 break; // InlineNatives does not control Reference.get
duke@435 365 default:
duke@435 366 return NULL;
duke@435 367 }
duke@435 368 }
duke@435 369
kvn@4205 370 bool is_predicted = false;
shade@5798 371 bool does_virtual_dispatch = false;
kvn@4205 372
duke@435 373 switch (id) {
duke@435 374 case vmIntrinsics::_compareTo:
duke@435 375 if (!SpecialStringCompareTo) return NULL;
twisti@4313 376 if (!Matcher::match_rule_supported(Op_StrComp)) return NULL;
duke@435 377 break;
duke@435 378 case vmIntrinsics::_indexOf:
duke@435 379 if (!SpecialStringIndexOf) return NULL;
duke@435 380 break;
cfang@1116 381 case vmIntrinsics::_equals:
cfang@1116 382 if (!SpecialStringEquals) return NULL;
twisti@4313 383 if (!Matcher::match_rule_supported(Op_StrEquals)) return NULL;
cfang@1116 384 break;
rasbold@604 385 case vmIntrinsics::_equalsC:
rasbold@604 386 if (!SpecialArraysEquals) return NULL;
twisti@4313 387 if (!Matcher::match_rule_supported(Op_AryEq)) return NULL;
rasbold@604 388 break;
duke@435 389 case vmIntrinsics::_arraycopy:
duke@435 390 if (!InlineArrayCopy) return NULL;
duke@435 391 break;
duke@435 392 case vmIntrinsics::_copyMemory:
duke@435 393 if (StubRoutines::unsafe_arraycopy() == NULL) return NULL;
duke@435 394 if (!InlineArrayCopy) return NULL;
duke@435 395 break;
duke@435 396 case vmIntrinsics::_hashCode:
duke@435 397 if (!InlineObjectHash) return NULL;
shade@5798 398 does_virtual_dispatch = true;
duke@435 399 break;
duke@435 400 case vmIntrinsics::_clone:
shade@5798 401 does_virtual_dispatch = true;
duke@435 402 case vmIntrinsics::_copyOf:
duke@435 403 case vmIntrinsics::_copyOfRange:
duke@435 404 if (!InlineObjectCopy) return NULL;
duke@435 405 // These also use the arraycopy intrinsic mechanism:
duke@435 406 if (!InlineArrayCopy) return NULL;
duke@435 407 break;
kvn@4479 408 case vmIntrinsics::_encodeISOArray:
kvn@4479 409 if (!SpecialEncodeISOArray) return NULL;
kvn@4479 410 if (!Matcher::match_rule_supported(Op_EncodeISOArray)) return NULL;
kvn@4479 411 break;
duke@435 412 case vmIntrinsics::_checkIndex:
duke@435 413 // We do not intrinsify this. The optimizer does fine with it.
duke@435 414 return NULL;
duke@435 415
duke@435 416 case vmIntrinsics::_getCallerClass:
duke@435 417 if (!UseNewReflection) return NULL;
duke@435 418 if (!InlineReflectionGetCallerClass) return NULL;
twisti@4866 419 if (SystemDictionary::reflect_CallerSensitive_klass() == NULL) return NULL;
duke@435 420 break;
duke@435 421
twisti@1078 422 case vmIntrinsics::_bitCount_i:
never@3637 423 if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
never@3631 424 break;
never@3631 425
twisti@1078 426 case vmIntrinsics::_bitCount_l:
never@3637 427 if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
never@3631 428 break;
never@3631 429
never@3631 430 case vmIntrinsics::_numberOfLeadingZeros_i:
never@3631 431 if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
never@3631 432 break;
never@3631 433
never@3631 434 case vmIntrinsics::_numberOfLeadingZeros_l:
never@3631 435 if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
never@3631 436 break;
never@3631 437
never@3631 438 case vmIntrinsics::_numberOfTrailingZeros_i:
never@3631 439 if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
never@3631 440 break;
never@3631 441
never@3631 442 case vmIntrinsics::_numberOfTrailingZeros_l:
never@3631 443 if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
twisti@1078 444 break;
twisti@1078 445
twisti@4313 446 case vmIntrinsics::_reverseBytes_c:
roland@4357 447 if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
twisti@4313 448 break;
twisti@4313 449 case vmIntrinsics::_reverseBytes_s:
roland@4357 450 if (!Matcher::match_rule_supported(Op_ReverseBytesS)) return NULL;
twisti@4313 451 break;
twisti@4313 452 case vmIntrinsics::_reverseBytes_i:
roland@4357 453 if (!Matcher::match_rule_supported(Op_ReverseBytesI)) return NULL;
twisti@4313 454 break;
twisti@4313 455 case vmIntrinsics::_reverseBytes_l:
roland@4357 456 if (!Matcher::match_rule_supported(Op_ReverseBytesL)) return NULL;
twisti@4313 457 break;
twisti@4313 458
johnc@2781 459 case vmIntrinsics::_Reference_get:
kvn@4002 460 // Use the intrinsic version of Reference.get() so that the value in
kvn@4002 461 // the referent field can be registered by the G1 pre-barrier code.
kvn@4002 462 // Also add memory barrier to prevent commoning reads from this field
kvn@4002 463 // across safepoint since GC can change it value.
johnc@2781 464 break;
johnc@2781 465
roland@4106 466 case vmIntrinsics::_compareAndSwapObject:
roland@4106 467 #ifdef _LP64
roland@4106 468 if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
roland@4106 469 #endif
roland@4106 470 break;
roland@4106 471
roland@4106 472 case vmIntrinsics::_compareAndSwapLong:
roland@4106 473 if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
roland@4106 474 break;
roland@4106 475
roland@4106 476 case vmIntrinsics::_getAndAddInt:
roland@4106 477 if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
roland@4106 478 break;
roland@4106 479
roland@4106 480 case vmIntrinsics::_getAndAddLong:
roland@4106 481 if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
roland@4106 482 break;
roland@4106 483
roland@4106 484 case vmIntrinsics::_getAndSetInt:
roland@4106 485 if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
roland@4106 486 break;
roland@4106 487
roland@4106 488 case vmIntrinsics::_getAndSetLong:
roland@4106 489 if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
roland@4106 490 break;
roland@4106 491
roland@4106 492 case vmIntrinsics::_getAndSetObject:
roland@4106 493 #ifdef _LP64
roland@4106 494 if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
roland@4106 495 if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
roland@4106 496 break;
roland@4106 497 #else
roland@4106 498 if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
roland@4106 499 break;
roland@4106 500 #endif
roland@4106 501
kvn@4205 502 case vmIntrinsics::_aescrypt_encryptBlock:
kvn@4205 503 case vmIntrinsics::_aescrypt_decryptBlock:
kvn@4205 504 if (!UseAESIntrinsics) return NULL;
kvn@4205 505 break;
kvn@4205 506
kvn@4205 507 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
kvn@4205 508 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
kvn@4205 509 if (!UseAESIntrinsics) return NULL;
kvn@4205 510 // these two require the predicated logic
kvn@4205 511 is_predicted = true;
kvn@4205 512 break;
kvn@4205 513
drchase@5353 514 case vmIntrinsics::_updateCRC32:
drchase@5353 515 case vmIntrinsics::_updateBytesCRC32:
drchase@5353 516 case vmIntrinsics::_updateByteBufferCRC32:
drchase@5353 517 if (!UseCRC32Intrinsics) return NULL;
drchase@5353 518 break;
drchase@5353 519
rbackman@5997 520 case vmIntrinsics::_incrementExactI:
rbackman@5997 521 case vmIntrinsics::_addExactI:
rbackman@6375 522 if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
rbackman@5997 523 break;
rbackman@5997 524 case vmIntrinsics::_incrementExactL:
rbackman@5997 525 case vmIntrinsics::_addExactL:
rbackman@6375 526 if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
rbackman@5997 527 break;
rbackman@5997 528 case vmIntrinsics::_decrementExactI:
rbackman@5997 529 case vmIntrinsics::_subtractExactI:
rbackman@6375 530 if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
rbackman@5997 531 break;
rbackman@5997 532 case vmIntrinsics::_decrementExactL:
rbackman@5997 533 case vmIntrinsics::_subtractExactL:
rbackman@6375 534 if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
rbackman@5997 535 break;
rbackman@5997 536 case vmIntrinsics::_negateExactI:
rbackman@6375 537 if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
rbackman@5997 538 break;
rbackman@5997 539 case vmIntrinsics::_negateExactL:
rbackman@6375 540 if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
rbackman@5997 541 break;
rbackman@5997 542 case vmIntrinsics::_multiplyExactI:
rbackman@6375 543 if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
rbackman@5997 544 break;
rbackman@5997 545 case vmIntrinsics::_multiplyExactL:
rbackman@6375 546 if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
rbackman@5791 547 break;
rbackman@5791 548
duke@435 549 default:
jrose@1291 550 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
jrose@1291 551 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
duke@435 552 break;
duke@435 553 }
duke@435 554
duke@435 555 // -XX:-InlineClassNatives disables natives from the Class class.
duke@435 556 // The flag applies to all reflective calls, notably Array.newArray
duke@435 557 // (visible to Java programmers as Array.newInstance).
duke@435 558 if (m->holder()->name() == ciSymbol::java_lang_Class() ||
duke@435 559 m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
duke@435 560 if (!InlineClassNatives) return NULL;
duke@435 561 }
duke@435 562
duke@435 563 // -XX:-InlineThreadNatives disables natives from the Thread class.
duke@435 564 if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
duke@435 565 if (!InlineThreadNatives) return NULL;
duke@435 566 }
duke@435 567
duke@435 568 // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
duke@435 569 if (m->holder()->name() == ciSymbol::java_lang_Math() ||
duke@435 570 m->holder()->name() == ciSymbol::java_lang_Float() ||
duke@435 571 m->holder()->name() == ciSymbol::java_lang_Double()) {
duke@435 572 if (!InlineMathNatives) return NULL;
duke@435 573 }
duke@435 574
duke@435 575 // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
duke@435 576 if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
duke@435 577 if (!InlineUnsafeOps) return NULL;
duke@435 578 }
duke@435 579
shade@5798 580 return new LibraryIntrinsic(m, is_virtual, is_predicted, does_virtual_dispatch, (vmIntrinsics::ID) id);
duke@435 581 }
duke@435 582
duke@435 583 //----------------------register_library_intrinsics-----------------------
duke@435 584 // Initialize this file's data structures, for each Compile instance.
duke@435 585 void Compile::register_library_intrinsics() {
duke@435 586 // Nothing to do here.
duke@435 587 }
duke@435 588
roland@5981 589 JVMState* LibraryIntrinsic::generate(JVMState* jvms, Parse* parent_parser) {
duke@435 590 LibraryCallKit kit(jvms, this);
duke@435 591 Compile* C = kit.C;
duke@435 592 int nodes = C->unique();
duke@435 593 #ifndef PRODUCT
kvn@5763 594 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
duke@435 595 char buf[1000];
duke@435 596 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
duke@435 597 tty->print_cr("Intrinsic %s", str);
duke@435 598 }
duke@435 599 #endif
twisti@4313 600 ciMethod* callee = kit.callee();
twisti@4313 601 const int bci = kit.bci();
twisti@4313 602
twisti@4313 603 // Try to inline the intrinsic.
duke@435 604 if (kit.try_to_inline()) {
kvn@5763 605 if (C->print_intrinsics() || C->print_inlining()) {
roland@4357 606 C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
duke@435 607 }
duke@435 608 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
duke@435 609 if (C->log()) {
duke@435 610 C->log()->elem("intrinsic id='%s'%s nodes='%d'",
duke@435 611 vmIntrinsics::name_at(intrinsic_id()),
duke@435 612 (is_virtual() ? " virtual='1'" : ""),
duke@435 613 C->unique() - nodes);
duke@435 614 }
twisti@4313 615 // Push the result from the inlined method onto the stack.
twisti@4313 616 kit.push_result();
duke@435 617 return kit.transfer_exceptions_into_jvms();
duke@435 618 }
duke@435 619
never@3631 620 // The intrinsic bailed out
kvn@5763 621 if (C->print_intrinsics() || C->print_inlining()) {
johnc@2781 622 if (jvms->has_method()) {
johnc@2781 623 // Not a root compile.
never@3631 624 const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
roland@4357 625 C->print_inlining(callee, jvms->depth() - 1, bci, msg);
johnc@2781 626 } else {
johnc@2781 627 // Root compile
johnc@2781 628 tty->print("Did not generate intrinsic %s%s at bci:%d in",
jrose@1291 629 vmIntrinsics::name_at(intrinsic_id()),
twisti@4313 630 (is_virtual() ? " (virtual)" : ""), bci);
johnc@2781 631 }
duke@435 632 }
duke@435 633 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
duke@435 634 return NULL;
duke@435 635 }
duke@435 636
kvn@4205 637 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
kvn@4205 638 LibraryCallKit kit(jvms, this);
kvn@4205 639 Compile* C = kit.C;
kvn@4205 640 int nodes = C->unique();
kvn@4205 641 #ifndef PRODUCT
kvn@4205 642 assert(is_predicted(), "sanity");
kvn@5763 643 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
kvn@4205 644 char buf[1000];
kvn@4205 645 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
kvn@4205 646 tty->print_cr("Predicate for intrinsic %s", str);
kvn@4205 647 }
kvn@4205 648 #endif
twisti@4313 649 ciMethod* callee = kit.callee();
twisti@4313 650 const int bci = kit.bci();
kvn@4205 651
kvn@4205 652 Node* slow_ctl = kit.try_to_predicate();
kvn@4205 653 if (!kit.failing()) {
kvn@5763 654 if (C->print_intrinsics() || C->print_inlining()) {
roland@4357 655 C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
twisti@4313 656 }
twisti@4313 657 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
kvn@4205 658 if (C->log()) {
kvn@4205 659 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
kvn@4205 660 vmIntrinsics::name_at(intrinsic_id()),
kvn@4205 661 (is_virtual() ? " virtual='1'" : ""),
kvn@4205 662 C->unique() - nodes);
kvn@4205 663 }
kvn@4205 664 return slow_ctl; // Could be NULL if the check folds.
kvn@4205 665 }
kvn@4205 666
kvn@4205 667 // The intrinsic bailed out
kvn@5763 668 if (C->print_intrinsics() || C->print_inlining()) {
kvn@4205 669 if (jvms->has_method()) {
kvn@4205 670 // Not a root compile.
kvn@4205 671 const char* msg = "failed to generate predicate for intrinsic";
roland@4357 672 C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
kvn@4205 673 } else {
kvn@4205 674 // Root compile
roland@4357 675 C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
roland@4357 676 vmIntrinsics::name_at(intrinsic_id()),
roland@4357 677 (is_virtual() ? " (virtual)" : ""), bci);
kvn@4205 678 }
kvn@4205 679 }
kvn@4205 680 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
kvn@4205 681 return NULL;
kvn@4205 682 }
kvn@4205 683
duke@435 684 bool LibraryCallKit::try_to_inline() {
duke@435 685 // Handle symbolic names for otherwise undistinguished boolean switches:
duke@435 686 const bool is_store = true;
duke@435 687 const bool is_native_ptr = true;
duke@435 688 const bool is_static = true;
twisti@4313 689 const bool is_volatile = true;
duke@435 690
johnc@2781 691 if (!jvms()->has_method()) {
johnc@2781 692 // Root JVMState has a null method.
johnc@2781 693 assert(map()->memory()->Opcode() == Op_Parm, "");
johnc@2781 694 // Insert the memory aliasing node
johnc@2781 695 set_all_memory(reset_memory());
johnc@2781 696 }
johnc@2781 697 assert(merged_memory(), "");
johnc@2781 698
twisti@4313 699
duke@435 700 switch (intrinsic_id()) {
twisti@4313 701 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
twisti@4313 702 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static);
twisti@4313 703 case vmIntrinsics::_getClass: return inline_native_getClass();
duke@435 704
duke@435 705 case vmIntrinsics::_dsin:
duke@435 706 case vmIntrinsics::_dcos:
duke@435 707 case vmIntrinsics::_dtan:
duke@435 708 case vmIntrinsics::_dabs:
duke@435 709 case vmIntrinsics::_datan2:
duke@435 710 case vmIntrinsics::_dsqrt:
duke@435 711 case vmIntrinsics::_dexp:
duke@435 712 case vmIntrinsics::_dlog:
duke@435 713 case vmIntrinsics::_dlog10:
twisti@4313 714 case vmIntrinsics::_dpow: return inline_math_native(intrinsic_id());
duke@435 715
duke@435 716 case vmIntrinsics::_min:
twisti@4313 717 case vmIntrinsics::_max: return inline_min_max(intrinsic_id());
twisti@4313 718
rbackman@5997 719 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */);
rbackman@5997 720 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */);
rbackman@5997 721 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */);
rbackman@5997 722 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */);
rbackman@5997 723 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */);
rbackman@5997 724 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */);
rbackman@5997 725 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI();
rbackman@5997 726 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL();
rbackman@5997 727 case vmIntrinsics::_negateExactI: return inline_math_negateExactI();
rbackman@5997 728 case vmIntrinsics::_negateExactL: return inline_math_negateExactL();
rbackman@5997 729 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */);
rbackman@5997 730 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */);
rbackman@5791 731
twisti@4313 732 case vmIntrinsics::_arraycopy: return inline_arraycopy();
twisti@4313 733
twisti@4313 734 case vmIntrinsics::_compareTo: return inline_string_compareTo();
twisti@4313 735 case vmIntrinsics::_indexOf: return inline_string_indexOf();
twisti@4313 736 case vmIntrinsics::_equals: return inline_string_equals();
twisti@4313 737
twisti@4313 738 case vmIntrinsics::_getObject: return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, !is_volatile);
twisti@4313 739 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
twisti@4313 740 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, !is_volatile);
twisti@4313 741 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, !is_volatile);
twisti@4313 742 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, !is_volatile);
twisti@4313 743 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, !is_volatile);
twisti@4313 744 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, !is_volatile);
twisti@4313 745 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, !is_volatile);
twisti@4313 746 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, !is_volatile);
twisti@4313 747
twisti@4313 748 case vmIntrinsics::_putObject: return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, !is_volatile);
twisti@4313 749 case vmIntrinsics::_putBoolean: return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, !is_volatile);
twisti@4313 750 case vmIntrinsics::_putByte: return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, !is_volatile);
twisti@4313 751 case vmIntrinsics::_putShort: return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, !is_volatile);
twisti@4313 752 case vmIntrinsics::_putChar: return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, !is_volatile);
twisti@4313 753 case vmIntrinsics::_putInt: return inline_unsafe_access(!is_native_ptr, is_store, T_INT, !is_volatile);
twisti@4313 754 case vmIntrinsics::_putLong: return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, !is_volatile);
twisti@4313 755 case vmIntrinsics::_putFloat: return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, !is_volatile);
twisti@4313 756 case vmIntrinsics::_putDouble: return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, !is_volatile);
twisti@4313 757
twisti@4313 758 case vmIntrinsics::_getByte_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE, !is_volatile);
twisti@4313 759 case vmIntrinsics::_getShort_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT, !is_volatile);
twisti@4313 760 case vmIntrinsics::_getChar_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR, !is_volatile);
twisti@4313 761 case vmIntrinsics::_getInt_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_INT, !is_volatile);
twisti@4313 762 case vmIntrinsics::_getLong_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_LONG, !is_volatile);
twisti@4313 763 case vmIntrinsics::_getFloat_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT, !is_volatile);
twisti@4313 764 case vmIntrinsics::_getDouble_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE, !is_volatile);
twisti@4313 765 case vmIntrinsics::_getAddress_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
twisti@4313 766
twisti@4313 767 case vmIntrinsics::_putByte_raw: return inline_unsafe_access( is_native_ptr, is_store, T_BYTE, !is_volatile);
twisti@4313 768 case vmIntrinsics::_putShort_raw: return inline_unsafe_access( is_native_ptr, is_store, T_SHORT, !is_volatile);
twisti@4313 769 case vmIntrinsics::_putChar_raw: return inline_unsafe_access( is_native_ptr, is_store, T_CHAR, !is_volatile);
twisti@4313 770 case vmIntrinsics::_putInt_raw: return inline_unsafe_access( is_native_ptr, is_store, T_INT, !is_volatile);
twisti@4313 771 case vmIntrinsics::_putLong_raw: return inline_unsafe_access( is_native_ptr, is_store, T_LONG, !is_volatile);
twisti@4313 772 case vmIntrinsics::_putFloat_raw: return inline_unsafe_access( is_native_ptr, is_store, T_FLOAT, !is_volatile);
twisti@4313 773 case vmIntrinsics::_putDouble_raw: return inline_unsafe_access( is_native_ptr, is_store, T_DOUBLE, !is_volatile);
twisti@4313 774 case vmIntrinsics::_putAddress_raw: return inline_unsafe_access( is_native_ptr, is_store, T_ADDRESS, !is_volatile);
twisti@4313 775
twisti@4313 776 case vmIntrinsics::_getObjectVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, is_volatile);
twisti@4313 777 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, is_volatile);
twisti@4313 778 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, is_volatile);
twisti@4313 779 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, is_volatile);
twisti@4313 780 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, is_volatile);
twisti@4313 781 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, is_volatile);
twisti@4313 782 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, is_volatile);
twisti@4313 783 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, is_volatile);
twisti@4313 784 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, is_volatile);
twisti@4313 785
twisti@4313 786 case vmIntrinsics::_putObjectVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, is_volatile);
twisti@4313 787 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, is_volatile);
twisti@4313 788 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, is_volatile);
twisti@4313 789 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, is_volatile);
twisti@4313 790 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, is_volatile);
twisti@4313 791 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_INT, is_volatile);
twisti@4313 792 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, is_volatile);
twisti@4313 793 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, is_volatile);
twisti@4313 794 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, is_volatile);
twisti@4313 795
twisti@4313 796 case vmIntrinsics::_prefetchRead: return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
twisti@4313 797 case vmIntrinsics::_prefetchWrite: return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
twisti@4313 798 case vmIntrinsics::_prefetchReadStatic: return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
twisti@4313 799 case vmIntrinsics::_prefetchWriteStatic: return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
twisti@4313 800
twisti@4313 801 case vmIntrinsics::_compareAndSwapObject: return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
twisti@4313 802 case vmIntrinsics::_compareAndSwapInt: return inline_unsafe_load_store(T_INT, LS_cmpxchg);
twisti@4313 803 case vmIntrinsics::_compareAndSwapLong: return inline_unsafe_load_store(T_LONG, LS_cmpxchg);
twisti@4313 804
twisti@4313 805 case vmIntrinsics::_putOrderedObject: return inline_unsafe_ordered_store(T_OBJECT);
twisti@4313 806 case vmIntrinsics::_putOrderedInt: return inline_unsafe_ordered_store(T_INT);
twisti@4313 807 case vmIntrinsics::_putOrderedLong: return inline_unsafe_ordered_store(T_LONG);
twisti@4313 808
twisti@4313 809 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_xadd);
twisti@4313 810 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_xadd);
twisti@4313 811 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_xchg);
twisti@4313 812 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_xchg);
twisti@4313 813 case vmIntrinsics::_getAndSetObject: return inline_unsafe_load_store(T_OBJECT, LS_xchg);
twisti@4313 814
kvn@4361 815 case vmIntrinsics::_loadFence:
kvn@4361 816 case vmIntrinsics::_storeFence:
kvn@4361 817 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id());
kvn@4361 818
twisti@4313 819 case vmIntrinsics::_currentThread: return inline_native_currentThread();
twisti@4313 820 case vmIntrinsics::_isInterrupted: return inline_native_isInterrupted();
duke@435 821
rbackman@3709 822 #ifdef TRACE_HAVE_INTRINSICS
twisti@4313 823 case vmIntrinsics::_classID: return inline_native_classID();
twisti@4313 824 case vmIntrinsics::_threadID: return inline_native_threadID();
twisti@4313 825 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
rbackman@3709 826 #endif
twisti@4313 827 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
twisti@4313 828 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
twisti@4313 829 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate();
twisti@4313 830 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory();
twisti@4313 831 case vmIntrinsics::_newArray: return inline_native_newArray();
twisti@4313 832 case vmIntrinsics::_getLength: return inline_native_getLength();
twisti@4313 833 case vmIntrinsics::_copyOf: return inline_array_copyOf(false);
twisti@4313 834 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true);
twisti@4313 835 case vmIntrinsics::_equalsC: return inline_array_equals();
twisti@4313 836 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual());
twisti@4313 837
twisti@4313 838 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check();
duke@435 839
duke@435 840 case vmIntrinsics::_isInstance:
duke@435 841 case vmIntrinsics::_getModifiers:
duke@435 842 case vmIntrinsics::_isInterface:
duke@435 843 case vmIntrinsics::_isArray:
duke@435 844 case vmIntrinsics::_isPrimitive:
duke@435 845 case vmIntrinsics::_getSuperclass:
duke@435 846 case vmIntrinsics::_getComponentType:
twisti@4313 847 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id());
duke@435 848
duke@435 849 case vmIntrinsics::_floatToRawIntBits:
duke@435 850 case vmIntrinsics::_floatToIntBits:
duke@435 851 case vmIntrinsics::_intBitsToFloat:
duke@435 852 case vmIntrinsics::_doubleToRawLongBits:
duke@435 853 case vmIntrinsics::_doubleToLongBits:
twisti@4313 854 case vmIntrinsics::_longBitsToDouble: return inline_fp_conversions(intrinsic_id());
duke@435 855
twisti@1210 856 case vmIntrinsics::_numberOfLeadingZeros_i:
twisti@1210 857 case vmIntrinsics::_numberOfLeadingZeros_l:
twisti@1210 858 case vmIntrinsics::_numberOfTrailingZeros_i:
twisti@1210 859 case vmIntrinsics::_numberOfTrailingZeros_l:
twisti@1078 860 case vmIntrinsics::_bitCount_i:
twisti@1078 861 case vmIntrinsics::_bitCount_l:
duke@435 862 case vmIntrinsics::_reverseBytes_i:
duke@435 863 case vmIntrinsics::_reverseBytes_l:
never@1831 864 case vmIntrinsics::_reverseBytes_s:
twisti@4313 865 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id());
twisti@4313 866
twisti@4313 867 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass();
twisti@4313 868
twisti@4313 869 case vmIntrinsics::_Reference_get: return inline_reference_get();
johnc@2781 870
kvn@4205 871 case vmIntrinsics::_aescrypt_encryptBlock:
twisti@4313 872 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id());
kvn@4205 873
kvn@4205 874 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
kvn@4205 875 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
kvn@4205 876 return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
kvn@4205 877
kvn@4479 878 case vmIntrinsics::_encodeISOArray:
kvn@4479 879 return inline_encodeISOArray();
kvn@4479 880
drchase@5353 881 case vmIntrinsics::_updateCRC32:
drchase@5353 882 return inline_updateCRC32();
drchase@5353 883 case vmIntrinsics::_updateBytesCRC32:
drchase@5353 884 return inline_updateBytesCRC32();
drchase@5353 885 case vmIntrinsics::_updateByteBufferCRC32:
drchase@5353 886 return inline_updateByteBufferCRC32();
drchase@5353 887
duke@435 888 default:
duke@435 889 // If you get here, it may be that someone has added a new intrinsic
duke@435 890 // to the list in vmSymbols.hpp without implementing it here.
duke@435 891 #ifndef PRODUCT
duke@435 892 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
duke@435 893 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
duke@435 894 vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
duke@435 895 }
duke@435 896 #endif
duke@435 897 return false;
duke@435 898 }
duke@435 899 }
duke@435 900
kvn@4205 901 Node* LibraryCallKit::try_to_predicate() {
kvn@4205 902 if (!jvms()->has_method()) {
kvn@4205 903 // Root JVMState has a null method.
kvn@4205 904 assert(map()->memory()->Opcode() == Op_Parm, "");
kvn@4205 905 // Insert the memory aliasing node
kvn@4205 906 set_all_memory(reset_memory());
kvn@4205 907 }
kvn@4205 908 assert(merged_memory(), "");
kvn@4205 909
kvn@4205 910 switch (intrinsic_id()) {
kvn@4205 911 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
kvn@4205 912 return inline_cipherBlockChaining_AESCrypt_predicate(false);
kvn@4205 913 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
kvn@4205 914 return inline_cipherBlockChaining_AESCrypt_predicate(true);
kvn@4205 915
kvn@4205 916 default:
kvn@4205 917 // If you get here, it may be that someone has added a new intrinsic
kvn@4205 918 // to the list in vmSymbols.hpp without implementing it here.
kvn@4205 919 #ifndef PRODUCT
kvn@4205 920 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
kvn@4205 921 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
kvn@4205 922 vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
kvn@4205 923 }
kvn@4205 924 #endif
kvn@4205 925 Node* slow_ctl = control();
kvn@4205 926 set_control(top()); // No fast path instrinsic
kvn@4205 927 return slow_ctl;
kvn@4205 928 }
kvn@4205 929 }
kvn@4205 930
twisti@4313 931 //------------------------------set_result-------------------------------
duke@435 932 // Helper function for finishing intrinsics.
twisti@4313 933 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
duke@435 934 record_for_igvn(region);
duke@435 935 set_control(_gvn.transform(region));
twisti@4313 936 set_result( _gvn.transform(value));
twisti@4313 937 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
duke@435 938 }
duke@435 939
duke@435 940 //------------------------------generate_guard---------------------------
duke@435 941 // Helper function for generating guarded fast-slow graph structures.
duke@435 942 // The given 'test', if true, guards a slow path. If the test fails
duke@435 943 // then a fast path can be taken. (We generally hope it fails.)
duke@435 944 // In all cases, GraphKit::control() is updated to the fast path.
duke@435 945 // The returned value represents the control for the slow path.
duke@435 946 // The return value is never 'top'; it is either a valid control
duke@435 947 // or NULL if it is obvious that the slow path can never be taken.
duke@435 948 // Also, if region and the slow control are not NULL, the slow edge
duke@435 949 // is appended to the region.
duke@435 950 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
duke@435 951 if (stopped()) {
duke@435 952 // Already short circuited.
duke@435 953 return NULL;
duke@435 954 }
duke@435 955
duke@435 956 // Build an if node and its projections.
duke@435 957 // If test is true we take the slow path, which we assume is uncommon.
duke@435 958 if (_gvn.type(test) == TypeInt::ZERO) {
duke@435 959 // The slow branch is never taken. No need to build this guard.
duke@435 960 return NULL;
duke@435 961 }
duke@435 962
duke@435 963 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
duke@435 964
drchase@5353 965 Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
duke@435 966 if (if_slow == top()) {
duke@435 967 // The slow branch is never taken. No need to build this guard.
duke@435 968 return NULL;
duke@435 969 }
duke@435 970
duke@435 971 if (region != NULL)
duke@435 972 region->add_req(if_slow);
duke@435 973
drchase@5353 974 Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
duke@435 975 set_control(if_fast);
duke@435 976
duke@435 977 return if_slow;
duke@435 978 }
duke@435 979
duke@435 980 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
duke@435 981 return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
duke@435 982 }
duke@435 983 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
duke@435 984 return generate_guard(test, region, PROB_FAIR);
duke@435 985 }
duke@435 986
duke@435 987 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
duke@435 988 Node* *pos_index) {
duke@435 989 if (stopped())
duke@435 990 return NULL; // already stopped
duke@435 991 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
duke@435 992 return NULL; // index is already adequately typed
drchase@5353 993 Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
drchase@5353 994 Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
duke@435 995 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
duke@435 996 if (is_neg != NULL && pos_index != NULL) {
duke@435 997 // Emulate effect of Parse::adjust_map_after_if.
kvn@4115 998 Node* ccast = new (C) CastIINode(index, TypeInt::POS);
duke@435 999 ccast->set_req(0, control());
duke@435 1000 (*pos_index) = _gvn.transform(ccast);
duke@435 1001 }
duke@435 1002 return is_neg;
duke@435 1003 }
duke@435 1004
duke@435 1005 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
duke@435 1006 Node* *pos_index) {
duke@435 1007 if (stopped())
duke@435 1008 return NULL; // already stopped
duke@435 1009 if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
duke@435 1010 return NULL; // index is already adequately typed
drchase@5353 1011 Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
duke@435 1012 BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
drchase@5353 1013 Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
duke@435 1014 Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
duke@435 1015 if (is_notp != NULL && pos_index != NULL) {
duke@435 1016 // Emulate effect of Parse::adjust_map_after_if.
kvn@4115 1017 Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
duke@435 1018 ccast->set_req(0, control());
duke@435 1019 (*pos_index) = _gvn.transform(ccast);
duke@435 1020 }
duke@435 1021 return is_notp;
duke@435 1022 }
duke@435 1023
duke@435 1024 // Make sure that 'position' is a valid limit index, in [0..length].
duke@435 1025 // There are two equivalent plans for checking this:
duke@435 1026 // A. (offset + copyLength) unsigned<= arrayLength
duke@435 1027 // B. offset <= (arrayLength - copyLength)
duke@435 1028 // We require that all of the values above, except for the sum and
duke@435 1029 // difference, are already known to be non-negative.
duke@435 1030 // Plan A is robust in the face of overflow, if offset and copyLength
duke@435 1031 // are both hugely positive.
duke@435 1032 //
duke@435 1033 // Plan B is less direct and intuitive, but it does not overflow at
duke@435 1034 // all, since the difference of two non-negatives is always
duke@435 1035 // representable. Whenever Java methods must perform the equivalent
duke@435 1036 // check they generally use Plan B instead of Plan A.
duke@435 1037 // For the moment we use Plan A.
duke@435 1038 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
duke@435 1039 Node* subseq_length,
duke@435 1040 Node* array_length,
duke@435 1041 RegionNode* region) {
duke@435 1042 if (stopped())
duke@435 1043 return NULL; // already stopped
duke@435 1044 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
kvn@3407 1045 if (zero_offset && subseq_length->eqv_uncast(array_length))
duke@435 1046 return NULL; // common case of whole-array copy
duke@435 1047 Node* last = subseq_length;
duke@435 1048 if (!zero_offset) // last += offset
drchase@5353 1049 last = _gvn.transform(new (C) AddINode(last, offset));
drchase@5353 1050 Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
drchase@5353 1051 Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
duke@435 1052 Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
duke@435 1053 return is_over;
duke@435 1054 }
duke@435 1055
duke@435 1056
duke@435 1057 //--------------------------generate_current_thread--------------------
duke@435 1058 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
duke@435 1059 ciKlass* thread_klass = env()->Thread_klass();
duke@435 1060 const Type* thread_type = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
kvn@4115 1061 Node* thread = _gvn.transform(new (C) ThreadLocalNode());
duke@435 1062 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
duke@435 1063 Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
duke@435 1064 tls_output = thread;
duke@435 1065 return threadObj;
duke@435 1066 }
duke@435 1067
duke@435 1068
kvn@1421 1069 //------------------------------make_string_method_node------------------------
kvn@3760 1070 // Helper method for String intrinsic functions. This version is called
kvn@3760 1071 // with str1 and str2 pointing to String object nodes.
kvn@3760 1072 //
kvn@3760 1073 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
kvn@1421 1074 Node* no_ctrl = NULL;
kvn@1421 1075
kvn@3760 1076 // Get start addr of string
kvn@3760 1077 Node* str1_value = load_String_value(no_ctrl, str1);
kvn@3760 1078 Node* str1_offset = load_String_offset(no_ctrl, str1);
kvn@1421 1079 Node* str1_start = array_element_address(str1_value, str1_offset, T_CHAR);
kvn@1421 1080
kvn@3760 1081 // Get length of string 1
kvn@3760 1082 Node* str1_len = load_String_length(no_ctrl, str1);
kvn@3760 1083
kvn@3760 1084 Node* str2_value = load_String_value(no_ctrl, str2);
kvn@3760 1085 Node* str2_offset = load_String_offset(no_ctrl, str2);
kvn@1421 1086 Node* str2_start = array_element_address(str2_value, str2_offset, T_CHAR);
kvn@1421 1087
kvn@3760 1088 Node* str2_len = NULL;
kvn@1421 1089 Node* result = NULL;
kvn@3760 1090
kvn@1421 1091 switch (opcode) {
kvn@1421 1092 case Op_StrIndexOf:
kvn@3760 1093 // Get length of string 2
kvn@3760 1094 str2_len = load_String_length(no_ctrl, str2);
kvn@3760 1095
kvn@4115 1096 result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 1097 str1_start, str1_len, str2_start, str2_len);
kvn@1421 1098 break;
kvn@1421 1099 case Op_StrComp:
kvn@3760 1100 // Get length of string 2
kvn@3760 1101 str2_len = load_String_length(no_ctrl, str2);
kvn@3760 1102
kvn@4115 1103 result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 1104 str1_start, str1_len, str2_start, str2_len);
kvn@1421 1105 break;
kvn@1421 1106 case Op_StrEquals:
kvn@4115 1107 result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 1108 str1_start, str2_start, str1_len);
kvn@1421 1109 break;
kvn@1421 1110 default:
kvn@1421 1111 ShouldNotReachHere();
kvn@1421 1112 return NULL;
kvn@1421 1113 }
kvn@1421 1114
kvn@1421 1115 // All these intrinsics have checks.
kvn@1421 1116 C->set_has_split_ifs(true); // Has chance for split-if optimization
kvn@1421 1117
kvn@1421 1118 return _gvn.transform(result);
kvn@1421 1119 }
kvn@1421 1120
kvn@3760 1121 // Helper method for String intrinsic functions. This version is called
kvn@3760 1122 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
kvn@3760 1123 // to Int nodes containing the lenghts of str1 and str2.
kvn@3760 1124 //
kvn@3760 1125 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
kvn@3760 1126 Node* result = NULL;
kvn@3760 1127 switch (opcode) {
kvn@3760 1128 case Op_StrIndexOf:
kvn@4115 1129 result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 1130 str1_start, cnt1, str2_start, cnt2);
kvn@3760 1131 break;
kvn@3760 1132 case Op_StrComp:
kvn@4115 1133 result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 1134 str1_start, cnt1, str2_start, cnt2);
kvn@3760 1135 break;
kvn@3760 1136 case Op_StrEquals:
kvn@4115 1137 result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 1138 str1_start, str2_start, cnt1);
kvn@3760 1139 break;
kvn@3760 1140 default:
kvn@3760 1141 ShouldNotReachHere();
kvn@3760 1142 return NULL;
kvn@3760 1143 }
kvn@3760 1144
kvn@3760 1145 // All these intrinsics have checks.
kvn@3760 1146 C->set_has_split_ifs(true); // Has chance for split-if optimization
kvn@3760 1147
kvn@3760 1148 return _gvn.transform(result);
kvn@3760 1149 }
kvn@3760 1150
duke@435 1151 //------------------------------inline_string_compareTo------------------------
twisti@4313 1152 // public int java.lang.String.compareTo(String anotherString);
duke@435 1153 bool LibraryCallKit::inline_string_compareTo() {
twisti@4313 1154 Node* receiver = null_check(argument(0));
twisti@4313 1155 Node* arg = null_check(argument(1));
duke@435 1156 if (stopped()) {
duke@435 1157 return true;
duke@435 1158 }
twisti@4313 1159 set_result(make_string_method_node(Op_StrComp, receiver, arg));
duke@435 1160 return true;
duke@435 1161 }
duke@435 1162
cfang@1116 1163 //------------------------------inline_string_equals------------------------
cfang@1116 1164 bool LibraryCallKit::inline_string_equals() {
twisti@4313 1165 Node* receiver = null_check_receiver();
twisti@4313 1166 // NOTE: Do not null check argument for String.equals() because spec
twisti@4313 1167 // allows to specify NULL as argument.
twisti@4313 1168 Node* argument = this->argument(1);
cfang@1116 1169 if (stopped()) {
cfang@1116 1170 return true;
cfang@1116 1171 }
cfang@1116 1172
kvn@1421 1173 // paths (plus control) merge
kvn@4115 1174 RegionNode* region = new (C) RegionNode(5);
kvn@4115 1175 Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
kvn@1421 1176
kvn@1421 1177 // does source == target string?
kvn@4115 1178 Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
kvn@4115 1179 Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
kvn@1421 1180
kvn@1421 1181 Node* if_eq = generate_slow_guard(bol, NULL);
kvn@1421 1182 if (if_eq != NULL) {
kvn@1421 1183 // receiver == argument
kvn@1421 1184 phi->init_req(2, intcon(1));
kvn@1421 1185 region->init_req(2, if_eq);
kvn@1421 1186 }
kvn@1421 1187
cfang@1116 1188 // get String klass for instanceOf
cfang@1116 1189 ciInstanceKlass* klass = env()->String_klass();
cfang@1116 1190
kvn@1421 1191 if (!stopped()) {
kvn@1421 1192 Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
kvn@4115 1193 Node* cmp = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
kvn@4115 1194 Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
kvn@1421 1195
kvn@1421 1196 Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
kvn@1421 1197 //instanceOf == true, fallthrough
kvn@1421 1198
kvn@1421 1199 if (inst_false != NULL) {
kvn@1421 1200 phi->init_req(3, intcon(0));
kvn@1421 1201 region->init_req(3, inst_false);
kvn@1421 1202 }
kvn@1421 1203 }
cfang@1116 1204
kvn@1421 1205 if (!stopped()) {
kvn@3760 1206 const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
kvn@3760 1207
never@1851 1208 // Properly cast the argument to String
kvn@4115 1209 argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
kvn@2869 1210 // This path is taken only when argument's type is String:NotNull.
kvn@2869 1211 argument = cast_not_null(argument, false);
never@1851 1212
kvn@3760 1213 Node* no_ctrl = NULL;
kvn@3760 1214
kvn@3760 1215 // Get start addr of receiver
kvn@3760 1216 Node* receiver_val = load_String_value(no_ctrl, receiver);
kvn@3760 1217 Node* receiver_offset = load_String_offset(no_ctrl, receiver);
kvn@3760 1218 Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
kvn@3760 1219
kvn@3760 1220 // Get length of receiver
kvn@3760 1221 Node* receiver_cnt = load_String_length(no_ctrl, receiver);
kvn@3760 1222
kvn@3760 1223 // Get start addr of argument
twisti@4313 1224 Node* argument_val = load_String_value(no_ctrl, argument);
kvn@3760 1225 Node* argument_offset = load_String_offset(no_ctrl, argument);
kvn@3760 1226 Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
kvn@3760 1227
kvn@3760 1228 // Get length of argument
kvn@3760 1229 Node* argument_cnt = load_String_length(no_ctrl, argument);
kvn@1421 1230
kvn@1421 1231 // Check for receiver count != argument count
drchase@5353 1232 Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
drchase@5353 1233 Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
kvn@1421 1234 Node* if_ne = generate_slow_guard(bol, NULL);
kvn@1421 1235 if (if_ne != NULL) {
kvn@1421 1236 phi->init_req(4, intcon(0));
kvn@1421 1237 region->init_req(4, if_ne);
kvn@1421 1238 }
kvn@3760 1239
kvn@3760 1240 // Check for count == 0 is done by assembler code for StrEquals.
kvn@3760 1241
kvn@3760 1242 if (!stopped()) {
kvn@3760 1243 Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
kvn@3760 1244 phi->init_req(1, equals);
kvn@3760 1245 region->init_req(1, control());
kvn@3760 1246 }
kvn@1421 1247 }
cfang@1116 1248
cfang@1116 1249 // post merge
cfang@1116 1250 set_control(_gvn.transform(region));
cfang@1116 1251 record_for_igvn(region);
cfang@1116 1252
twisti@4313 1253 set_result(_gvn.transform(phi));
cfang@1116 1254 return true;
cfang@1116 1255 }
cfang@1116 1256
rasbold@604 1257 //------------------------------inline_array_equals----------------------------
rasbold@604 1258 bool LibraryCallKit::inline_array_equals() {
twisti@4313 1259 Node* arg1 = argument(0);
twisti@4313 1260 Node* arg2 = argument(1);
twisti@4313 1261 set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
rasbold@604 1262 return true;
rasbold@604 1263 }
rasbold@604 1264
duke@435 1265 // Java version of String.indexOf(constant string)
duke@435 1266 // class StringDecl {
duke@435 1267 // StringDecl(char[] ca) {
duke@435 1268 // offset = 0;
duke@435 1269 // count = ca.length;
duke@435 1270 // value = ca;
duke@435 1271 // }
duke@435 1272 // int offset;
duke@435 1273 // int count;
duke@435 1274 // char[] value;
duke@435 1275 // }
duke@435 1276 //
duke@435 1277 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
duke@435 1278 // int targetOffset, int cache_i, int md2) {
duke@435 1279 // int cache = cache_i;
duke@435 1280 // int sourceOffset = string_object.offset;
duke@435 1281 // int sourceCount = string_object.count;
duke@435 1282 // int targetCount = target_object.length;
duke@435 1283 //
duke@435 1284 // int targetCountLess1 = targetCount - 1;
duke@435 1285 // int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
duke@435 1286 //
duke@435 1287 // char[] source = string_object.value;
duke@435 1288 // char[] target = target_object;
duke@435 1289 // int lastChar = target[targetCountLess1];
duke@435 1290 //
duke@435 1291 // outer_loop:
duke@435 1292 // for (int i = sourceOffset; i < sourceEnd; ) {
duke@435 1293 // int src = source[i + targetCountLess1];
duke@435 1294 // if (src == lastChar) {
duke@435 1295 // // With random strings and a 4-character alphabet,
duke@435 1296 // // reverse matching at this point sets up 0.8% fewer
duke@435 1297 // // frames, but (paradoxically) makes 0.3% more probes.
duke@435 1298 // // Since those probes are nearer the lastChar probe,
duke@435 1299 // // there is may be a net D$ win with reverse matching.
duke@435 1300 // // But, reversing loop inhibits unroll of inner loop
duke@435 1301 // // for unknown reason. So, does running outer loop from
duke@435 1302 // // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
duke@435 1303 // for (int j = 0; j < targetCountLess1; j++) {
duke@435 1304 // if (target[targetOffset + j] != source[i+j]) {
duke@435 1305 // if ((cache & (1 << source[i+j])) == 0) {
duke@435 1306 // if (md2 < j+1) {
duke@435 1307 // i += j+1;
duke@435 1308 // continue outer_loop;
duke@435 1309 // }
duke@435 1310 // }
duke@435 1311 // i += md2;
duke@435 1312 // continue outer_loop;
duke@435 1313 // }
duke@435 1314 // }
duke@435 1315 // return i - sourceOffset;
duke@435 1316 // }
duke@435 1317 // if ((cache & (1 << src)) == 0) {
duke@435 1318 // i += targetCountLess1;
duke@435 1319 // } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
duke@435 1320 // i++;
duke@435 1321 // }
duke@435 1322 // return -1;
duke@435 1323 // }
duke@435 1324
duke@435 1325 //------------------------------string_indexOf------------------------
duke@435 1326 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
duke@435 1327 jint cache_i, jint md2_i) {
duke@435 1328
duke@435 1329 Node* no_ctrl = NULL;
duke@435 1330 float likely = PROB_LIKELY(0.9);
duke@435 1331 float unlikely = PROB_UNLIKELY(0.9);
duke@435 1332
twisti@4313 1333 const int nargs = 0; // no arguments to push back for uncommon trap in predicate
kvn@2665 1334
kvn@3760 1335 Node* source = load_String_value(no_ctrl, string_object);
kvn@3760 1336 Node* sourceOffset = load_String_offset(no_ctrl, string_object);
kvn@3760 1337 Node* sourceCount = load_String_length(no_ctrl, string_object);
duke@435 1338
drchase@5353 1339 Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
duke@435 1340 jint target_length = target_array->length();
duke@435 1341 const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
duke@435 1342 const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
duke@435 1343
vlivanov@5658 1344 // String.value field is known to be @Stable.
vlivanov@5658 1345 if (UseImplicitStableValues) {
vlivanov@5658 1346 target = cast_array_to_stable(target, target_type);
vlivanov@5658 1347 }
vlivanov@5658 1348
kvn@2726 1349 IdealKit kit(this, false, true);
duke@435 1350 #define __ kit.
duke@435 1351 Node* zero = __ ConI(0);
duke@435 1352 Node* one = __ ConI(1);
duke@435 1353 Node* cache = __ ConI(cache_i);
duke@435 1354 Node* md2 = __ ConI(md2_i);
duke@435 1355 Node* lastChar = __ ConI(target_array->char_at(target_length - 1));
duke@435 1356 Node* targetCount = __ ConI(target_length);
duke@435 1357 Node* targetCountLess1 = __ ConI(target_length - 1);
duke@435 1358 Node* targetOffset = __ ConI(targetOffset_i);
duke@435 1359 Node* sourceEnd = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
duke@435 1360
kvn@1286 1361 IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
duke@435 1362 Node* outer_loop = __ make_label(2 /* goto */);
duke@435 1363 Node* return_ = __ make_label(1);
duke@435 1364
duke@435 1365 __ set(rtn,__ ConI(-1));
kvn@2665 1366 __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
duke@435 1367 Node* i2 = __ AddI(__ value(i), targetCountLess1);
duke@435 1368 // pin to prohibit loading of "next iteration" value which may SEGV (rare)
duke@435 1369 Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
duke@435 1370 __ if_then(src, BoolTest::eq, lastChar, unlikely); {
kvn@2665 1371 __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
duke@435 1372 Node* tpj = __ AddI(targetOffset, __ value(j));
duke@435 1373 Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
duke@435 1374 Node* ipj = __ AddI(__ value(i), __ value(j));
duke@435 1375 Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
duke@435 1376 __ if_then(targ, BoolTest::ne, src2); {
duke@435 1377 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
duke@435 1378 __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
duke@435 1379 __ increment(i, __ AddI(__ value(j), one));
duke@435 1380 __ goto_(outer_loop);
duke@435 1381 } __ end_if(); __ dead(j);
duke@435 1382 }__ end_if(); __ dead(j);
duke@435 1383 __ increment(i, md2);
duke@435 1384 __ goto_(outer_loop);
duke@435 1385 }__ end_if();
duke@435 1386 __ increment(j, one);
duke@435 1387 }__ end_loop(); __ dead(j);
duke@435 1388 __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
duke@435 1389 __ goto_(return_);
duke@435 1390 }__ end_if();
duke@435 1391 __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
duke@435 1392 __ increment(i, targetCountLess1);
duke@435 1393 }__ end_if();
duke@435 1394 __ increment(i, one);
duke@435 1395 __ bind(outer_loop);
duke@435 1396 }__ end_loop(); __ dead(i);
duke@435 1397 __ bind(return_);
kvn@1286 1398
kvn@1286 1399 // Final sync IdealKit and GraphKit.
kvn@2726 1400 final_sync(kit);
duke@435 1401 Node* result = __ value(rtn);
duke@435 1402 #undef __
duke@435 1403 C->set_has_loops(true);
duke@435 1404 return result;
duke@435 1405 }
duke@435 1406
duke@435 1407 //------------------------------inline_string_indexOf------------------------
duke@435 1408 bool LibraryCallKit::inline_string_indexOf() {
twisti@4313 1409 Node* receiver = argument(0);
twisti@4313 1410 Node* arg = argument(1);
duke@435 1411
cfang@1116 1412 Node* result;
iveresov@1859 1413 // Disable the use of pcmpestri until it can be guaranteed that
iveresov@1859 1414 // the load doesn't cross into the uncommited space.
kvn@2602 1415 if (Matcher::has_match_rule(Op_StrIndexOf) &&
cfang@1116 1416 UseSSE42Intrinsics) {
cfang@1116 1417 // Generate SSE4.2 version of indexOf
cfang@1116 1418 // We currently only have match rules that use SSE4.2
cfang@1116 1419
twisti@4313 1420 receiver = null_check(receiver);
twisti@4313 1421 arg = null_check(arg);
cfang@1116 1422 if (stopped()) {
cfang@1116 1423 return true;
cfang@1116 1424 }
cfang@1116 1425
kvn@2602 1426 ciInstanceKlass* str_klass = env()->String_klass();
kvn@2602 1427 const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
kvn@2602 1428
kvn@1421 1429 // Make the merge point
kvn@4115 1430 RegionNode* result_rgn = new (C) RegionNode(4);
kvn@4115 1431 Node* result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
kvn@1421 1432 Node* no_ctrl = NULL;
kvn@1421 1433
kvn@3760 1434 // Get start addr of source string
kvn@3760 1435 Node* source = load_String_value(no_ctrl, receiver);
kvn@3760 1436 Node* source_offset = load_String_offset(no_ctrl, receiver);
kvn@3760 1437 Node* source_start = array_element_address(source, source_offset, T_CHAR);
kvn@3760 1438
kvn@3760 1439 // Get length of source string
kvn@3760 1440 Node* source_cnt = load_String_length(no_ctrl, receiver);
kvn@3760 1441
kvn@3760 1442 // Get start addr of substring
twisti@4313 1443 Node* substr = load_String_value(no_ctrl, arg);
twisti@4313 1444 Node* substr_offset = load_String_offset(no_ctrl, arg);
kvn@3760 1445 Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
kvn@3760 1446
kvn@3760 1447 // Get length of source string
twisti@4313 1448 Node* substr_cnt = load_String_length(no_ctrl, arg);
kvn@1421 1449
kvn@1421 1450 // Check for substr count > string count
drchase@5353 1451 Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
drchase@5353 1452 Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
kvn@1421 1453 Node* if_gt = generate_slow_guard(bol, NULL);
kvn@1421 1454 if (if_gt != NULL) {
kvn@1421 1455 result_phi->init_req(2, intcon(-1));
kvn@1421 1456 result_rgn->init_req(2, if_gt);
kvn@1421 1457 }
kvn@1421 1458
kvn@1421 1459 if (!stopped()) {
kvn@2602 1460 // Check for substr count == 0
drchase@5353 1461 cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
drchase@5353 1462 bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
kvn@2602 1463 Node* if_zero = generate_slow_guard(bol, NULL);
kvn@2602 1464 if (if_zero != NULL) {
kvn@2602 1465 result_phi->init_req(3, intcon(0));
kvn@2602 1466 result_rgn->init_req(3, if_zero);
kvn@2602 1467 }
kvn@2602 1468 }
kvn@2602 1469
kvn@2602 1470 if (!stopped()) {
kvn@3760 1471 result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
kvn@1421 1472 result_phi->init_req(1, result);
kvn@1421 1473 result_rgn->init_req(1, control());
kvn@1421 1474 }
kvn@1421 1475 set_control(_gvn.transform(result_rgn));
kvn@1421 1476 record_for_igvn(result_rgn);
kvn@1421 1477 result = _gvn.transform(result_phi);
kvn@1421 1478
kvn@2602 1479 } else { // Use LibraryCallKit::string_indexOf
kvn@2602 1480 // don't intrinsify if argument isn't a constant string.
twisti@4313 1481 if (!arg->is_Con()) {
cfang@1116 1482 return false;
cfang@1116 1483 }
twisti@4313 1484 const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
cfang@1116 1485 if (str_type == NULL) {
cfang@1116 1486 return false;
cfang@1116 1487 }
cfang@1116 1488 ciInstanceKlass* klass = env()->String_klass();
cfang@1116 1489 ciObject* str_const = str_type->const_oop();
cfang@1116 1490 if (str_const == NULL || str_const->klass() != klass) {
cfang@1116 1491 return false;
cfang@1116 1492 }
cfang@1116 1493 ciInstance* str = str_const->as_instance();
cfang@1116 1494 assert(str != NULL, "must be instance");
cfang@1116 1495
kvn@3760 1496 ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
cfang@1116 1497 ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
cfang@1116 1498
kvn@3760 1499 int o;
kvn@3760 1500 int c;
kvn@3760 1501 if (java_lang_String::has_offset_field()) {
kvn@3760 1502 o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
kvn@3760 1503 c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
kvn@3760 1504 } else {
kvn@3760 1505 o = 0;
kvn@3760 1506 c = pat->length();
kvn@3760 1507 }
kvn@3760 1508
cfang@1116 1509 // constant strings have no offset and count == length which
cfang@1116 1510 // simplifies the resulting code somewhat so lets optimize for that.
cfang@1116 1511 if (o != 0 || c != pat->length()) {
cfang@1116 1512 return false;
cfang@1116 1513 }
cfang@1116 1514
twisti@4313 1515 receiver = null_check(receiver, T_OBJECT);
twisti@4313 1516 // NOTE: No null check on the argument is needed since it's a constant String oop.
cfang@1116 1517 if (stopped()) {
kvn@2602 1518 return true;
cfang@1116 1519 }
cfang@1116 1520
cfang@1116 1521 // The null string as a pattern always returns 0 (match at beginning of string)
cfang@1116 1522 if (c == 0) {
twisti@4313 1523 set_result(intcon(0));
cfang@1116 1524 return true;
cfang@1116 1525 }
cfang@1116 1526
cfang@1116 1527 // Generate default indexOf
cfang@1116 1528 jchar lastChar = pat->char_at(o + (c - 1));
cfang@1116 1529 int cache = 0;
cfang@1116 1530 int i;
cfang@1116 1531 for (i = 0; i < c - 1; i++) {
cfang@1116 1532 assert(i < pat->length(), "out of range");
cfang@1116 1533 cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
cfang@1116 1534 }
cfang@1116 1535
cfang@1116 1536 int md2 = c;
cfang@1116 1537 for (i = 0; i < c - 1; i++) {
cfang@1116 1538 assert(i < pat->length(), "out of range");
cfang@1116 1539 if (pat->char_at(o + i) == lastChar) {
cfang@1116 1540 md2 = (c - 1) - i;
cfang@1116 1541 }
cfang@1116 1542 }
cfang@1116 1543
cfang@1116 1544 result = string_indexOf(receiver, pat, o, cache, md2);
duke@435 1545 }
twisti@4313 1546 set_result(result);
duke@435 1547 return true;
duke@435 1548 }
duke@435 1549
twisti@4313 1550 //--------------------------round_double_node--------------------------------
twisti@4313 1551 // Round a double node if necessary.
twisti@4313 1552 Node* LibraryCallKit::round_double_node(Node* n) {
twisti@4313 1553 if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
twisti@4313 1554 n = _gvn.transform(new (C) RoundDoubleNode(0, n));
twisti@4313 1555 return n;
twisti@4313 1556 }
twisti@4313 1557
twisti@4313 1558 //------------------------------inline_math-----------------------------------
twisti@4313 1559 // public static double Math.abs(double)
twisti@4313 1560 // public static double Math.sqrt(double)
twisti@4313 1561 // public static double Math.log(double)
twisti@4313 1562 // public static double Math.log10(double)
twisti@4313 1563 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
twisti@4313 1564 Node* arg = round_double_node(argument(0));
twisti@4313 1565 Node* n;
twisti@4313 1566 switch (id) {
roland@4617 1567 case vmIntrinsics::_dabs: n = new (C) AbsDNode( arg); break;
roland@4617 1568 case vmIntrinsics::_dsqrt: n = new (C) SqrtDNode(C, control(), arg); break;
roland@4617 1569 case vmIntrinsics::_dlog: n = new (C) LogDNode(C, control(), arg); break;
roland@4617 1570 case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg); break;
twisti@4313 1571 default: fatal_unexpected_iid(id); break;
twisti@4313 1572 }
twisti@4313 1573 set_result(_gvn.transform(n));
twisti@4313 1574 return true;
duke@435 1575 }
duke@435 1576
duke@435 1577 //------------------------------inline_trig----------------------------------
duke@435 1578 // Inline sin/cos/tan instructions, if possible. If rounding is required, do
duke@435 1579 // argument reduction which will turn into a fast/slow diamond.
duke@435 1580 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
twisti@4313 1581 Node* arg = round_double_node(argument(0));
twisti@4313 1582 Node* n = NULL;
duke@435 1583
duke@435 1584 switch (id) {
roland@4617 1585 case vmIntrinsics::_dsin: n = new (C) SinDNode(C, control(), arg); break;
roland@4617 1586 case vmIntrinsics::_dcos: n = new (C) CosDNode(C, control(), arg); break;
roland@4617 1587 case vmIntrinsics::_dtan: n = new (C) TanDNode(C, control(), arg); break;
twisti@4313 1588 default: fatal_unexpected_iid(id); break;
duke@435 1589 }
twisti@4313 1590 n = _gvn.transform(n);
duke@435 1591
duke@435 1592 // Rounding required? Check for argument reduction!
twisti@4313 1593 if (Matcher::strict_fp_requires_explicit_rounding) {
duke@435 1594 static const double pi_4 = 0.7853981633974483;
duke@435 1595 static const double neg_pi_4 = -0.7853981633974483;
duke@435 1596 // pi/2 in 80-bit extended precision
duke@435 1597 // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
duke@435 1598 // -pi/2 in 80-bit extended precision
duke@435 1599 // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
duke@435 1600 // Cutoff value for using this argument reduction technique
duke@435 1601 //static const double pi_2_minus_epsilon = 1.564660403643354;
duke@435 1602 //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
duke@435 1603
duke@435 1604 // Pseudocode for sin:
duke@435 1605 // if (x <= Math.PI / 4.0) {
duke@435 1606 // if (x >= -Math.PI / 4.0) return fsin(x);
duke@435 1607 // if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
duke@435 1608 // } else {
duke@435 1609 // if (x <= Math.PI / 2.0) return fcos(x - Math.PI / 2.0);
duke@435 1610 // }
duke@435 1611 // return StrictMath.sin(x);
duke@435 1612
duke@435 1613 // Pseudocode for cos:
duke@435 1614 // if (x <= Math.PI / 4.0) {
duke@435 1615 // if (x >= -Math.PI / 4.0) return fcos(x);
duke@435 1616 // if (x >= -Math.PI / 2.0) return fsin(x + Math.PI / 2.0);
duke@435 1617 // } else {
duke@435 1618 // if (x <= Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
duke@435 1619 // }
duke@435 1620 // return StrictMath.cos(x);
duke@435 1621
duke@435 1622 // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
duke@435 1623 // requires a special machine instruction to load it. Instead we'll try
duke@435 1624 // the 'easy' case. If we really need the extra range +/- PI/2 we'll
duke@435 1625 // probably do the math inside the SIN encoding.
duke@435 1626
duke@435 1627 // Make the merge point
twisti@4313 1628 RegionNode* r = new (C) RegionNode(3);
twisti@4313 1629 Node* phi = new (C) PhiNode(r, Type::DOUBLE);
duke@435 1630
duke@435 1631 // Flatten arg so we need only 1 test
kvn@4115 1632 Node *abs = _gvn.transform(new (C) AbsDNode(arg));
duke@435 1633 // Node for PI/4 constant
duke@435 1634 Node *pi4 = makecon(TypeD::make(pi_4));
duke@435 1635 // Check PI/4 : abs(arg)
kvn@4115 1636 Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
duke@435 1637 // Check: If PI/4 < abs(arg) then go slow
drchase@5353 1638 Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
duke@435 1639 // Branch either way
duke@435 1640 IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
duke@435 1641 set_control(opt_iff(r,iff));
duke@435 1642
duke@435 1643 // Set fast path result
twisti@4313 1644 phi->init_req(2, n);
duke@435 1645
duke@435 1646 // Slow path - non-blocking leaf call
duke@435 1647 Node* call = NULL;
duke@435 1648 switch (id) {
duke@435 1649 case vmIntrinsics::_dsin:
duke@435 1650 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
duke@435 1651 CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
duke@435 1652 "Sin", NULL, arg, top());
duke@435 1653 break;
duke@435 1654 case vmIntrinsics::_dcos:
duke@435 1655 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
duke@435 1656 CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
duke@435 1657 "Cos", NULL, arg, top());
duke@435 1658 break;
duke@435 1659 case vmIntrinsics::_dtan:
duke@435 1660 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
duke@435 1661 CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
duke@435 1662 "Tan", NULL, arg, top());
duke@435 1663 break;
duke@435 1664 }
duke@435 1665 assert(control()->in(0) == call, "");
twisti@4313 1666 Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
twisti@4313 1667 r->init_req(1, control());
twisti@4313 1668 phi->init_req(1, slow_result);
duke@435 1669
duke@435 1670 // Post-merge
duke@435 1671 set_control(_gvn.transform(r));
duke@435 1672 record_for_igvn(r);
twisti@4313 1673 n = _gvn.transform(phi);
duke@435 1674
duke@435 1675 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 1676 }
twisti@4313 1677 set_result(n);
duke@435 1678 return true;
duke@435 1679 }
duke@435 1680
roland@3908 1681 void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
roland@3908 1682 //-------------------
roland@3908 1683 //result=(result.isNaN())? funcAddr():result;
roland@3908 1684 // Check: If isNaN() by checking result!=result? then either trap
roland@3908 1685 // or go to runtime
twisti@4313 1686 Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
roland@3908 1687 // Build the boolean node
twisti@4313 1688 Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
roland@3908 1689
roland@3908 1690 if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
twisti@4313 1691 { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
roland@3908 1692 // The pow or exp intrinsic returned a NaN, which requires a call
roland@3908 1693 // to the runtime. Recompile with the runtime call.
roland@3908 1694 uncommon_trap(Deoptimization::Reason_intrinsic,
roland@3908 1695 Deoptimization::Action_make_not_entrant);
roland@3908 1696 }
twisti@4313 1697 set_result(result);
roland@3908 1698 } else {
roland@3908 1699 // If this inlining ever returned NaN in the past, we compile a call
roland@3908 1700 // to the runtime to properly handle corner cases
roland@3908 1701
roland@3908 1702 IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
drchase@5353 1703 Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
drchase@5353 1704 Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
roland@3908 1705
roland@3908 1706 if (!if_slow->is_top()) {
twisti@4313 1707 RegionNode* result_region = new (C) RegionNode(3);
kvn@4115 1708 PhiNode* result_val = new (C) PhiNode(result_region, Type::DOUBLE);
roland@3908 1709
roland@3908 1710 result_region->init_req(1, if_fast);
roland@3908 1711 result_val->init_req(1, result);
roland@3908 1712
roland@3908 1713 set_control(if_slow);
roland@3908 1714
roland@3908 1715 const TypePtr* no_memory_effects = NULL;
roland@3908 1716 Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
roland@3908 1717 no_memory_effects,
roland@3908 1718 x, top(), y, y ? top() : NULL);
kvn@4115 1719 Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
roland@3908 1720 #ifdef ASSERT
kvn@4115 1721 Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
roland@3908 1722 assert(value_top == top(), "second value must be top");
roland@3908 1723 #endif
roland@3908 1724
roland@3908 1725 result_region->init_req(2, control());
roland@3908 1726 result_val->init_req(2, value);
twisti@4313 1727 set_result(result_region, result_val);
roland@3908 1728 } else {
twisti@4313 1729 set_result(result);
roland@3908 1730 }
roland@3908 1731 }
roland@3908 1732 }
roland@3908 1733
duke@435 1734 //------------------------------inline_exp-------------------------------------
duke@435 1735 // Inline exp instructions, if possible. The Intel hardware only misses
duke@435 1736 // really odd corner cases (+/- Infinity). Just uncommon-trap them.
twisti@4313 1737 bool LibraryCallKit::inline_exp() {
twisti@4313 1738 Node* arg = round_double_node(argument(0));
roland@4589 1739 Node* n = _gvn.transform(new (C) ExpDNode(C, control(), arg));
twisti@4313 1740
twisti@4313 1741 finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
duke@435 1742
duke@435 1743 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 1744 return true;
duke@435 1745 }
duke@435 1746
duke@435 1747 //------------------------------inline_pow-------------------------------------
duke@435 1748 // Inline power instructions, if possible.
twisti@4313 1749 bool LibraryCallKit::inline_pow() {
duke@435 1750 // Pseudocode for pow
duke@435 1751 // if (x <= 0.0) {
roland@3908 1752 // long longy = (long)y;
roland@3908 1753 // if ((double)longy == y) { // if y is long
roland@3908 1754 // if (y + 1 == y) longy = 0; // huge number: even
roland@3908 1755 // result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
duke@435 1756 // } else {
duke@435 1757 // result = NaN;
duke@435 1758 // }
duke@435 1759 // } else {
duke@435 1760 // result = DPow(x,y);
duke@435 1761 // }
duke@435 1762 // if (result != result)? {
roland@3908 1763 // result = uncommon_trap() or runtime_call();
duke@435 1764 // }
duke@435 1765 // return result;
duke@435 1766
twisti@4313 1767 Node* x = round_double_node(argument(0));
twisti@4313 1768 Node* y = round_double_node(argument(2));
duke@435 1769
roland@3908 1770 Node* result = NULL;
roland@3908 1771
roland@3908 1772 if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
roland@3908 1773 // Short form: skip the fancy tests and just check for NaN result.
roland@4589 1774 result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
duke@435 1775 } else {
roland@3908 1776 // If this inlining ever returned NaN in the past, include all
roland@3908 1777 // checks + call to the runtime.
duke@435 1778
duke@435 1779 // Set the merge point for If node with condition of (x <= 0.0)
duke@435 1780 // There are four possible paths to region node and phi node
kvn@4115 1781 RegionNode *r = new (C) RegionNode(4);
kvn@4115 1782 Node *phi = new (C) PhiNode(r, Type::DOUBLE);
duke@435 1783
duke@435 1784 // Build the first if node: if (x <= 0.0)
duke@435 1785 // Node for 0 constant
duke@435 1786 Node *zeronode = makecon(TypeD::ZERO);
duke@435 1787 // Check x:0
kvn@4115 1788 Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
duke@435 1789 // Check: If (x<=0) then go complex path
drchase@5353 1790 Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
duke@435 1791 // Branch either way
duke@435 1792 IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
duke@435 1793 // Fast path taken; set region slot 3
drchase@5353 1794 Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
duke@435 1795 r->init_req(3,fast_taken); // Capture fast-control
duke@435 1796
duke@435 1797 // Fast path not-taken, i.e. slow path
drchase@5353 1798 Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
duke@435 1799
duke@435 1800 // Set fast path result
drchase@5353 1801 Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
duke@435 1802 phi->init_req(3, fast_result);
duke@435 1803
duke@435 1804 // Complex path
roland@3908 1805 // Build the second if node (if y is long)
roland@3908 1806 // Node for (long)y
drchase@5353 1807 Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
roland@3908 1808 // Node for (double)((long) y)
drchase@5353 1809 Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
roland@3908 1810 // Check (double)((long) y) : y
kvn@4115 1811 Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
roland@3908 1812 // Check if (y isn't long) then go to slow path
roland@3908 1813
drchase@5353 1814 Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
twisti@1040 1815 // Branch either way
duke@435 1816 IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
drchase@5353 1817 Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
drchase@5353 1818
drchase@5353 1819 Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
roland@3908 1820
roland@3908 1821 // Calculate DPow(abs(x), y)*(1 & (long)y)
duke@435 1822 // Node for constant 1
roland@3908 1823 Node *conone = longcon(1);
roland@3908 1824 // 1& (long)y
drchase@5353 1825 Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
roland@3908 1826
roland@3908 1827 // A huge number is always even. Detect a huge number by checking
roland@3908 1828 // if y + 1 == y and set integer to be tested for parity to 0.
roland@3908 1829 // Required for corner case:
roland@3908 1830 // (long)9.223372036854776E18 = max_jlong
roland@3908 1831 // (double)(long)9.223372036854776E18 = 9.223372036854776E18
roland@3908 1832 // max_jlong is odd but 9.223372036854776E18 is even
drchase@5353 1833 Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
kvn@4115 1834 Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
drchase@5353 1835 Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
roland@3908 1836 Node* correctedsign = NULL;
roland@3908 1837 if (ConditionalMoveLimit != 0) {
roland@3908 1838 correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
roland@3908 1839 } else {
roland@3908 1840 IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
kvn@4115 1841 RegionNode *r = new (C) RegionNode(3);
kvn@4115 1842 Node *phi = new (C) PhiNode(r, TypeLong::LONG);
drchase@5353 1843 r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
drchase@5353 1844 r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
roland@3908 1845 phi->init_req(1, signnode);
roland@3908 1846 phi->init_req(2, longcon(0));
roland@3908 1847 correctedsign = _gvn.transform(phi);
roland@3908 1848 ylong_path = _gvn.transform(r);
roland@3908 1849 record_for_igvn(r);
roland@3908 1850 }
roland@3908 1851
duke@435 1852 // zero node
roland@3908 1853 Node *conzero = longcon(0);
roland@3908 1854 // Check (1&(long)y)==0?
kvn@4115 1855 Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
roland@3908 1856 // Check if (1&(long)y)!=0?, if so the result is negative
drchase@5353 1857 Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
duke@435 1858 // abs(x)
drchase@5353 1859 Node *absx=_gvn.transform(new (C) AbsDNode(x));
duke@435 1860 // abs(x)^y
drchase@5353 1861 Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
duke@435 1862 // -abs(x)^y
kvn@4115 1863 Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
roland@3908 1864 // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
roland@3908 1865 Node *signresult = NULL;
roland@3908 1866 if (ConditionalMoveLimit != 0) {
roland@3908 1867 signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
roland@3908 1868 } else {
roland@3908 1869 IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
kvn@4115 1870 RegionNode *r = new (C) RegionNode(3);
kvn@4115 1871 Node *phi = new (C) PhiNode(r, Type::DOUBLE);
drchase@5353 1872 r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
drchase@5353 1873 r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
roland@3908 1874 phi->init_req(1, absxpowy);
roland@3908 1875 phi->init_req(2, negabsxpowy);
roland@3908 1876 signresult = _gvn.transform(phi);
roland@3908 1877 ylong_path = _gvn.transform(r);
roland@3908 1878 record_for_igvn(r);
roland@3908 1879 }
duke@435 1880 // Set complex path fast result
roland@3908 1881 r->init_req(2, ylong_path);
duke@435 1882 phi->init_req(2, signresult);
duke@435 1883
duke@435 1884 static const jlong nan_bits = CONST64(0x7ff8000000000000);
duke@435 1885 Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
duke@435 1886 r->init_req(1,slow_path);
duke@435 1887 phi->init_req(1,slow_result);
duke@435 1888
duke@435 1889 // Post merge
duke@435 1890 set_control(_gvn.transform(r));
duke@435 1891 record_for_igvn(r);
twisti@4313 1892 result = _gvn.transform(phi);
duke@435 1893 }
duke@435 1894
roland@3908 1895 finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
duke@435 1896
duke@435 1897 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 1898 return true;
duke@435 1899 }
duke@435 1900
duke@435 1901 //------------------------------runtime_math-----------------------------
duke@435 1902 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
duke@435 1903 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
duke@435 1904 "must be (DD)D or (D)D type");
duke@435 1905
duke@435 1906 // Inputs
twisti@4313 1907 Node* a = round_double_node(argument(0));
twisti@4313 1908 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
duke@435 1909
duke@435 1910 const TypePtr* no_memory_effects = NULL;
duke@435 1911 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
duke@435 1912 no_memory_effects,
duke@435 1913 a, top(), b, b ? top() : NULL);
kvn@4115 1914 Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
duke@435 1915 #ifdef ASSERT
kvn@4115 1916 Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
duke@435 1917 assert(value_top == top(), "second value must be top");
duke@435 1918 #endif
duke@435 1919
twisti@4313 1920 set_result(value);
duke@435 1921 return true;
duke@435 1922 }
duke@435 1923
duke@435 1924 //------------------------------inline_math_native-----------------------------
duke@435 1925 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
twisti@4313 1926 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
duke@435 1927 switch (id) {
duke@435 1928 // These intrinsics are not properly supported on all hardware
twisti@4313 1929 case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
twisti@4313 1930 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos), "COS");
twisti@4313 1931 case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
twisti@4313 1932 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin), "SIN");
twisti@4313 1933 case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
twisti@4313 1934 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN");
twisti@4313 1935
twisti@4313 1936 case vmIntrinsics::_dlog: return Matcher::has_match_rule(Op_LogD) ? inline_math(id) :
twisti@4313 1937 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog), "LOG");
twisti@4313 1938 case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
twisti@4313 1939 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
duke@435 1940
duke@435 1941 // These intrinsics are supported on all hardware
twisti@4313 1942 case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_math(id) : false;
twisti@4313 1943 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_math(id) : false;
twisti@4313 1944
twisti@4313 1945 case vmIntrinsics::_dexp: return Matcher::has_match_rule(Op_ExpD) ? inline_exp() :
twisti@4313 1946 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp), "EXP");
twisti@4313 1947 case vmIntrinsics::_dpow: return Matcher::has_match_rule(Op_PowD) ? inline_pow() :
twisti@4313 1948 runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow), "POW");
twisti@4313 1949 #undef FN_PTR
duke@435 1950
duke@435 1951 // These intrinsics are not yet correctly implemented
duke@435 1952 case vmIntrinsics::_datan2:
duke@435 1953 return false;
duke@435 1954
duke@435 1955 default:
twisti@4313 1956 fatal_unexpected_iid(id);
duke@435 1957 return false;
duke@435 1958 }
duke@435 1959 }
duke@435 1960
duke@435 1961 static bool is_simple_name(Node* n) {
duke@435 1962 return (n->req() == 1 // constant
duke@435 1963 || (n->is_Type() && n->as_Type()->type()->singleton())
duke@435 1964 || n->is_Proj() // parameter or return value
duke@435 1965 || n->is_Phi() // local of some sort
duke@435 1966 );
duke@435 1967 }
duke@435 1968
duke@435 1969 //----------------------------inline_min_max-----------------------------------
duke@435 1970 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
twisti@4313 1971 set_result(generate_min_max(id, argument(0), argument(1)));
duke@435 1972 return true;
duke@435 1973 }
duke@435 1974
rbackman@6375 1975 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
rbackman@6375 1976 Node* bol = _gvn.transform( new (C) BoolNode(test, BoolTest::overflow) );
rbackman@5791 1977 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
rbackman@5791 1978 Node* fast_path = _gvn.transform( new (C) IfFalseNode(check));
rbackman@5791 1979 Node* slow_path = _gvn.transform( new (C) IfTrueNode(check) );
rbackman@5791 1980
rbackman@5791 1981 {
rbackman@5791 1982 PreserveJVMState pjvms(this);
rbackman@5791 1983 PreserveReexecuteState preexecs(this);
rbackman@5791 1984 jvms()->set_should_reexecute(true);
rbackman@5791 1985
rbackman@5791 1986 set_control(slow_path);
rbackman@5791 1987 set_i_o(i_o());
rbackman@5791 1988
rbackman@5791 1989 uncommon_trap(Deoptimization::Reason_intrinsic,
rbackman@5791 1990 Deoptimization::Action_none);
rbackman@5791 1991 }
rbackman@5791 1992
rbackman@5791 1993 set_control(fast_path);
rbackman@6375 1994 set_result(math);
rbackman@5997 1995 }
rbackman@5997 1996
rbackman@6375 1997 template <typename OverflowOp>
rbackman@6375 1998 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
rbackman@6375 1999 typedef typename OverflowOp::MathOp MathOp;
rbackman@6375 2000
rbackman@6375 2001 MathOp* mathOp = new(C) MathOp(arg1, arg2);
rbackman@6375 2002 Node* operation = _gvn.transform( mathOp );
rbackman@6375 2003 Node* ofcheck = _gvn.transform( new(C) OverflowOp(arg1, arg2) );
rbackman@6375 2004 inline_math_mathExact(operation, ofcheck);
rbackman@5791 2005 return true;
rbackman@5791 2006 }
rbackman@5791 2007
rbackman@6375 2008 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
rbackman@6375 2009 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
rbackman@6375 2010 }
rbackman@6375 2011
rbackman@5997 2012 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
rbackman@6375 2013 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
rbackman@5997 2014 }
rbackman@5997 2015
rbackman@5997 2016 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
rbackman@6375 2017 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
rbackman@5997 2018 }
rbackman@5997 2019
rbackman@5997 2020 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
rbackman@6375 2021 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
rbackman@5997 2022 }
rbackman@5997 2023
rbackman@5997 2024 bool LibraryCallKit::inline_math_negateExactI() {
rbackman@6375 2025 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
rbackman@5997 2026 }
rbackman@5997 2027
rbackman@5997 2028 bool LibraryCallKit::inline_math_negateExactL() {
rbackman@6375 2029 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
rbackman@5997 2030 }
rbackman@5997 2031
rbackman@5997 2032 bool LibraryCallKit::inline_math_multiplyExactI() {
rbackman@6375 2033 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
rbackman@5997 2034 }
rbackman@5997 2035
rbackman@5997 2036 bool LibraryCallKit::inline_math_multiplyExactL() {
rbackman@6375 2037 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
rbackman@5791 2038 }
rbackman@5791 2039
duke@435 2040 Node*
duke@435 2041 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
duke@435 2042 // These are the candidate return value:
duke@435 2043 Node* xvalue = x0;
duke@435 2044 Node* yvalue = y0;
duke@435 2045
duke@435 2046 if (xvalue == yvalue) {
duke@435 2047 return xvalue;
duke@435 2048 }
duke@435 2049
duke@435 2050 bool want_max = (id == vmIntrinsics::_max);
duke@435 2051
duke@435 2052 const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
duke@435 2053 const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
duke@435 2054 if (txvalue == NULL || tyvalue == NULL) return top();
duke@435 2055 // This is not really necessary, but it is consistent with a
duke@435 2056 // hypothetical MaxINode::Value method:
duke@435 2057 int widen = MAX2(txvalue->_widen, tyvalue->_widen);
duke@435 2058
duke@435 2059 // %%% This folding logic should (ideally) be in a different place.
duke@435 2060 // Some should be inside IfNode, and there to be a more reliable
duke@435 2061 // transformation of ?: style patterns into cmoves. We also want
duke@435 2062 // more powerful optimizations around cmove and min/max.
duke@435 2063
duke@435 2064 // Try to find a dominating comparison of these guys.
duke@435 2065 // It can simplify the index computation for Arrays.copyOf
duke@435 2066 // and similar uses of System.arraycopy.
duke@435 2067 // First, compute the normalized version of CmpI(x, y).
duke@435 2068 int cmp_op = Op_CmpI;
duke@435 2069 Node* xkey = xvalue;
duke@435 2070 Node* ykey = yvalue;
drchase@5353 2071 Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
duke@435 2072 if (ideal_cmpxy->is_Cmp()) {
duke@435 2073 // E.g., if we have CmpI(length - offset, count),
duke@435 2074 // it might idealize to CmpI(length, count + offset)
duke@435 2075 cmp_op = ideal_cmpxy->Opcode();
duke@435 2076 xkey = ideal_cmpxy->in(1);
duke@435 2077 ykey = ideal_cmpxy->in(2);
duke@435 2078 }
duke@435 2079
duke@435 2080 // Start by locating any relevant comparisons.
duke@435 2081 Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
duke@435 2082 Node* cmpxy = NULL;
duke@435 2083 Node* cmpyx = NULL;
duke@435 2084 for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
duke@435 2085 Node* cmp = start_from->fast_out(k);
duke@435 2086 if (cmp->outcnt() > 0 && // must have prior uses
duke@435 2087 cmp->in(0) == NULL && // must be context-independent
duke@435 2088 cmp->Opcode() == cmp_op) { // right kind of compare
duke@435 2089 if (cmp->in(1) == xkey && cmp->in(2) == ykey) cmpxy = cmp;
duke@435 2090 if (cmp->in(1) == ykey && cmp->in(2) == xkey) cmpyx = cmp;
duke@435 2091 }
duke@435 2092 }
duke@435 2093
duke@435 2094 const int NCMPS = 2;
duke@435 2095 Node* cmps[NCMPS] = { cmpxy, cmpyx };
duke@435 2096 int cmpn;
duke@435 2097 for (cmpn = 0; cmpn < NCMPS; cmpn++) {
duke@435 2098 if (cmps[cmpn] != NULL) break; // find a result
duke@435 2099 }
duke@435 2100 if (cmpn < NCMPS) {
duke@435 2101 // Look for a dominating test that tells us the min and max.
duke@435 2102 int depth = 0; // Limit search depth for speed
duke@435 2103 Node* dom = control();
duke@435 2104 for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
duke@435 2105 if (++depth >= 100) break;
duke@435 2106 Node* ifproj = dom;
duke@435 2107 if (!ifproj->is_Proj()) continue;
duke@435 2108 Node* iff = ifproj->in(0);
duke@435 2109 if (!iff->is_If()) continue;
duke@435 2110 Node* bol = iff->in(1);
duke@435 2111 if (!bol->is_Bool()) continue;
duke@435 2112 Node* cmp = bol->in(1);
duke@435 2113 if (cmp == NULL) continue;
duke@435 2114 for (cmpn = 0; cmpn < NCMPS; cmpn++)
duke@435 2115 if (cmps[cmpn] == cmp) break;
duke@435 2116 if (cmpn == NCMPS) continue;
duke@435 2117 BoolTest::mask btest = bol->as_Bool()->_test._test;
duke@435 2118 if (ifproj->is_IfFalse()) btest = BoolTest(btest).negate();
duke@435 2119 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
duke@435 2120 // At this point, we know that 'x btest y' is true.
duke@435 2121 switch (btest) {
duke@435 2122 case BoolTest::eq:
duke@435 2123 // They are proven equal, so we can collapse the min/max.
duke@435 2124 // Either value is the answer. Choose the simpler.
duke@435 2125 if (is_simple_name(yvalue) && !is_simple_name(xvalue))
duke@435 2126 return yvalue;
duke@435 2127 return xvalue;
duke@435 2128 case BoolTest::lt: // x < y
duke@435 2129 case BoolTest::le: // x <= y
duke@435 2130 return (want_max ? yvalue : xvalue);
duke@435 2131 case BoolTest::gt: // x > y
duke@435 2132 case BoolTest::ge: // x >= y
duke@435 2133 return (want_max ? xvalue : yvalue);
duke@435 2134 }
duke@435 2135 }
duke@435 2136 }
duke@435 2137
duke@435 2138 // We failed to find a dominating test.
duke@435 2139 // Let's pick a test that might GVN with prior tests.
duke@435 2140 Node* best_bol = NULL;
duke@435 2141 BoolTest::mask best_btest = BoolTest::illegal;
duke@435 2142 for (cmpn = 0; cmpn < NCMPS; cmpn++) {
duke@435 2143 Node* cmp = cmps[cmpn];
duke@435 2144 if (cmp == NULL) continue;
duke@435 2145 for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
duke@435 2146 Node* bol = cmp->fast_out(j);
duke@435 2147 if (!bol->is_Bool()) continue;
duke@435 2148 BoolTest::mask btest = bol->as_Bool()->_test._test;
duke@435 2149 if (btest == BoolTest::eq || btest == BoolTest::ne) continue;
duke@435 2150 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
duke@435 2151 if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
duke@435 2152 best_bol = bol->as_Bool();
duke@435 2153 best_btest = btest;
duke@435 2154 }
duke@435 2155 }
duke@435 2156 }
duke@435 2157
duke@435 2158 Node* answer_if_true = NULL;
duke@435 2159 Node* answer_if_false = NULL;
duke@435 2160 switch (best_btest) {
duke@435 2161 default:
duke@435 2162 if (cmpxy == NULL)
duke@435 2163 cmpxy = ideal_cmpxy;
drchase@5353 2164 best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
duke@435 2165 // and fall through:
duke@435 2166 case BoolTest::lt: // x < y
duke@435 2167 case BoolTest::le: // x <= y
duke@435 2168 answer_if_true = (want_max ? yvalue : xvalue);
duke@435 2169 answer_if_false = (want_max ? xvalue : yvalue);
duke@435 2170 break;
duke@435 2171 case BoolTest::gt: // x > y
duke@435 2172 case BoolTest::ge: // x >= y
duke@435 2173 answer_if_true = (want_max ? xvalue : yvalue);
duke@435 2174 answer_if_false = (want_max ? yvalue : xvalue);
duke@435 2175 break;
duke@435 2176 }
duke@435 2177
duke@435 2178 jint hi, lo;
duke@435 2179 if (want_max) {
duke@435 2180 // We can sharpen the minimum.
duke@435 2181 hi = MAX2(txvalue->_hi, tyvalue->_hi);
duke@435 2182 lo = MAX2(txvalue->_lo, tyvalue->_lo);
duke@435 2183 } else {
duke@435 2184 // We can sharpen the maximum.
duke@435 2185 hi = MIN2(txvalue->_hi, tyvalue->_hi);
duke@435 2186 lo = MIN2(txvalue->_lo, tyvalue->_lo);
duke@435 2187 }
duke@435 2188
duke@435 2189 // Use a flow-free graph structure, to avoid creating excess control edges
duke@435 2190 // which could hinder other optimizations.
duke@435 2191 // Since Math.min/max is often used with arraycopy, we want
duke@435 2192 // tightly_coupled_allocation to be able to see beyond min/max expressions.
duke@435 2193 Node* cmov = CMoveNode::make(C, NULL, best_bol,
duke@435 2194 answer_if_false, answer_if_true,
duke@435 2195 TypeInt::make(lo, hi, widen));
duke@435 2196
duke@435 2197 return _gvn.transform(cmov);
duke@435 2198
duke@435 2199 /*
duke@435 2200 // This is not as desirable as it may seem, since Min and Max
duke@435 2201 // nodes do not have a full set of optimizations.
duke@435 2202 // And they would interfere, anyway, with 'if' optimizations
duke@435 2203 // and with CMoveI canonical forms.
duke@435 2204 switch (id) {
duke@435 2205 case vmIntrinsics::_min:
duke@435 2206 result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
duke@435 2207 case vmIntrinsics::_max:
duke@435 2208 result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
duke@435 2209 default:
duke@435 2210 ShouldNotReachHere();
duke@435 2211 }
duke@435 2212 */
duke@435 2213 }
duke@435 2214
duke@435 2215 inline int
duke@435 2216 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
duke@435 2217 const TypePtr* base_type = TypePtr::NULL_PTR;
duke@435 2218 if (base != NULL) base_type = _gvn.type(base)->isa_ptr();
duke@435 2219 if (base_type == NULL) {
duke@435 2220 // Unknown type.
duke@435 2221 return Type::AnyPtr;
duke@435 2222 } else if (base_type == TypePtr::NULL_PTR) {
duke@435 2223 // Since this is a NULL+long form, we have to switch to a rawptr.
drchase@5353 2224 base = _gvn.transform(new (C) CastX2PNode(offset));
duke@435 2225 offset = MakeConX(0);
duke@435 2226 return Type::RawPtr;
duke@435 2227 } else if (base_type->base() == Type::RawPtr) {
duke@435 2228 return Type::RawPtr;
duke@435 2229 } else if (base_type->isa_oopptr()) {
duke@435 2230 // Base is never null => always a heap address.
duke@435 2231 if (base_type->ptr() == TypePtr::NotNull) {
duke@435 2232 return Type::OopPtr;
duke@435 2233 }
duke@435 2234 // Offset is small => always a heap address.
duke@435 2235 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
duke@435 2236 if (offset_type != NULL &&
duke@435 2237 base_type->offset() == 0 && // (should always be?)
duke@435 2238 offset_type->_lo >= 0 &&
duke@435 2239 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
duke@435 2240 return Type::OopPtr;
duke@435 2241 }
duke@435 2242 // Otherwise, it might either be oop+off or NULL+addr.
duke@435 2243 return Type::AnyPtr;
duke@435 2244 } else {
duke@435 2245 // No information:
duke@435 2246 return Type::AnyPtr;
duke@435 2247 }
duke@435 2248 }
duke@435 2249
duke@435 2250 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
duke@435 2251 int kind = classify_unsafe_addr(base, offset);
duke@435 2252 if (kind == Type::RawPtr) {
duke@435 2253 return basic_plus_adr(top(), base, offset);
duke@435 2254 } else {
duke@435 2255 return basic_plus_adr(base, offset);
duke@435 2256 }
duke@435 2257 }
duke@435 2258
twisti@4313 2259 //--------------------------inline_number_methods-----------------------------
twisti@4313 2260 // inline int Integer.numberOfLeadingZeros(int)
twisti@4313 2261 // inline int Long.numberOfLeadingZeros(long)
twisti@4313 2262 //
twisti@4313 2263 // inline int Integer.numberOfTrailingZeros(int)
twisti@4313 2264 // inline int Long.numberOfTrailingZeros(long)
twisti@4313 2265 //
twisti@4313 2266 // inline int Integer.bitCount(int)
twisti@4313 2267 // inline int Long.bitCount(long)
twisti@4313 2268 //
twisti@4313 2269 // inline char Character.reverseBytes(char)
twisti@4313 2270 // inline short Short.reverseBytes(short)
twisti@4313 2271 // inline int Integer.reverseBytes(int)
twisti@4313 2272 // inline long Long.reverseBytes(long)
twisti@4313 2273 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
twisti@4313 2274 Node* arg = argument(0);
twisti@4313 2275 Node* n;
twisti@1210 2276 switch (id) {
twisti@4313 2277 case vmIntrinsics::_numberOfLeadingZeros_i: n = new (C) CountLeadingZerosINode( arg); break;
twisti@4313 2278 case vmIntrinsics::_numberOfLeadingZeros_l: n = new (C) CountLeadingZerosLNode( arg); break;
twisti@4313 2279 case vmIntrinsics::_numberOfTrailingZeros_i: n = new (C) CountTrailingZerosINode(arg); break;
twisti@4313 2280 case vmIntrinsics::_numberOfTrailingZeros_l: n = new (C) CountTrailingZerosLNode(arg); break;
twisti@4313 2281 case vmIntrinsics::_bitCount_i: n = new (C) PopCountINode( arg); break;
twisti@4313 2282 case vmIntrinsics::_bitCount_l: n = new (C) PopCountLNode( arg); break;
twisti@4313 2283 case vmIntrinsics::_reverseBytes_c: n = new (C) ReverseBytesUSNode(0, arg); break;
twisti@4313 2284 case vmIntrinsics::_reverseBytes_s: n = new (C) ReverseBytesSNode( 0, arg); break;
twisti@4313 2285 case vmIntrinsics::_reverseBytes_i: n = new (C) ReverseBytesINode( 0, arg); break;
twisti@4313 2286 case vmIntrinsics::_reverseBytes_l: n = new (C) ReverseBytesLNode( 0, arg); break;
twisti@4313 2287 default: fatal_unexpected_iid(id); break;
twisti@1210 2288 }
twisti@4313 2289 set_result(_gvn.transform(n));
twisti@1210 2290 return true;
twisti@1210 2291 }
twisti@1210 2292
duke@435 2293 //----------------------------inline_unsafe_access----------------------------
duke@435 2294
duke@435 2295 const static BasicType T_ADDRESS_HOLDER = T_LONG;
duke@435 2296
kvn@4002 2297 // Helper that guards and inserts a pre-barrier.
kvn@4002 2298 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
twisti@4313 2299 Node* pre_val, bool need_mem_bar) {
johnc@2781 2300 // We could be accessing the referent field of a reference object. If so, when G1
johnc@2781 2301 // is enabled, we need to log the value in the referent field in an SATB buffer.
johnc@2781 2302 // This routine performs some compile time filters and generates suitable
johnc@2781 2303 // runtime filters that guard the pre-barrier code.
kvn@4002 2304 // Also add memory barrier for non volatile load from the referent field
kvn@4002 2305 // to prevent commoning of loads across safepoint.
kvn@4002 2306 if (!UseG1GC && !need_mem_bar)
kvn@4002 2307 return;
johnc@2781 2308
johnc@2781 2309 // Some compile time checks.
johnc@2781 2310
johnc@2781 2311 // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
johnc@2781 2312 const TypeX* otype = offset->find_intptr_t_type();
johnc@2781 2313 if (otype != NULL && otype->is_con() &&
johnc@2781 2314 otype->get_con() != java_lang_ref_Reference::referent_offset) {
johnc@2781 2315 // Constant offset but not the reference_offset so just return
johnc@2781 2316 return;
johnc@2781 2317 }
johnc@2781 2318
johnc@2781 2319 // We only need to generate the runtime guards for instances.
johnc@2781 2320 const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
johnc@2781 2321 if (btype != NULL) {
johnc@2781 2322 if (btype->isa_aryptr()) {
johnc@2781 2323 // Array type so nothing to do
johnc@2781 2324 return;
johnc@2781 2325 }
johnc@2781 2326
johnc@2781 2327 const TypeInstPtr* itype = btype->isa_instptr();
johnc@2781 2328 if (itype != NULL) {
kvn@4002 2329 // Can the klass of base_oop be statically determined to be
kvn@4002 2330 // _not_ a sub-class of Reference and _not_ Object?
johnc@2781 2331 ciKlass* klass = itype->klass();
kvn@4002 2332 if ( klass->is_loaded() &&
kvn@4002 2333 !klass->is_subtype_of(env()->Reference_klass()) &&
kvn@4002 2334 !env()->Object_klass()->is_subtype_of(klass)) {
johnc@2781 2335 return;
johnc@2781 2336 }
johnc@2781 2337 }
johnc@2781 2338 }
johnc@2781 2339
johnc@2781 2340 // The compile time filters did not reject base_oop/offset so
johnc@2781 2341 // we need to generate the following runtime filters
johnc@2781 2342 //
johnc@2781 2343 // if (offset == java_lang_ref_Reference::_reference_offset) {
kvn@4002 2344 // if (instance_of(base, java.lang.ref.Reference)) {
kvn@4002 2345 // pre_barrier(_, pre_val, ...);
johnc@2781 2346 // }
johnc@2781 2347 // }
johnc@2781 2348
twisti@4313 2349 float likely = PROB_LIKELY( 0.999);
twisti@4313 2350 float unlikely = PROB_UNLIKELY(0.999);
johnc@2781 2351
johnc@2787 2352 IdealKit ideal(this);
johnc@2781 2353 #define __ ideal.
johnc@2781 2354
johnc@2786 2355 Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
johnc@2781 2356
johnc@2781 2357 __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
johnc@2781 2358 // Update graphKit memory and control from IdealKit.
johnc@2787 2359 sync_kit(ideal);
johnc@2781 2360
johnc@2781 2361 Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
johnc@2781 2362 Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
johnc@2781 2363
johnc@2781 2364 // Update IdealKit memory and control from graphKit.
johnc@2787 2365 __ sync_kit(this);
johnc@2781 2366
johnc@2781 2367 Node* one = __ ConI(1);
kvn@4002 2368 // is_instof == 0 if base_oop == NULL
johnc@2781 2369 __ if_then(is_instof, BoolTest::eq, one, unlikely); {
johnc@2781 2370
johnc@2781 2371 // Update graphKit from IdeakKit.
johnc@2787 2372 sync_kit(ideal);
johnc@2781 2373
johnc@2781 2374 // Use the pre-barrier to record the value in the referent field
johnc@2781 2375 pre_barrier(false /* do_load */,
johnc@2781 2376 __ ctrl(),
johnc@2790 2377 NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
johnc@2781 2378 pre_val /* pre_val */,
johnc@2781 2379 T_OBJECT);
kvn@4002 2380 if (need_mem_bar) {
kvn@4002 2381 // Add memory barrier to prevent commoning reads from this field
kvn@4002 2382 // across safepoint since GC can change its value.
kvn@4002 2383 insert_mem_bar(Op_MemBarCPUOrder);
kvn@4002 2384 }
johnc@2781 2385 // Update IdealKit from graphKit.
johnc@2787 2386 __ sync_kit(this);
johnc@2781 2387
johnc@2781 2388 } __ end_if(); // _ref_type != ref_none
johnc@2781 2389 } __ end_if(); // offset == referent_offset
johnc@2781 2390
johnc@2781 2391 // Final sync IdealKit and GraphKit.
johnc@2787 2392 final_sync(ideal);
johnc@2781 2393 #undef __
johnc@2781 2394 }
johnc@2781 2395
johnc@2781 2396
duke@435 2397 // Interpret Unsafe.fieldOffset cookies correctly:
duke@435 2398 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
duke@435 2399
roland@4106 2400 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
roland@4106 2401 // Attempt to infer a sharper value type from the offset and base type.
roland@4106 2402 ciKlass* sharpened_klass = NULL;
roland@4106 2403
roland@4106 2404 // See if it is an instance field, with an object type.
roland@4106 2405 if (alias_type->field() != NULL) {
roland@4106 2406 assert(!is_native_ptr, "native pointer op cannot use a java address");
roland@4106 2407 if (alias_type->field()->type()->is_klass()) {
roland@4106 2408 sharpened_klass = alias_type->field()->type()->as_klass();
roland@4106 2409 }
roland@4106 2410 }
roland@4106 2411
roland@4106 2412 // See if it is a narrow oop array.
roland@4106 2413 if (adr_type->isa_aryptr()) {
roland@4106 2414 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
roland@4106 2415 const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
roland@4106 2416 if (elem_type != NULL) {
roland@4106 2417 sharpened_klass = elem_type->klass();
roland@4106 2418 }
roland@4106 2419 }
roland@4106 2420 }
roland@4106 2421
twisti@4158 2422 // The sharpened class might be unloaded if there is no class loader
twisti@4158 2423 // contraint in place.
twisti@4158 2424 if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
roland@4106 2425 const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
roland@4106 2426
roland@4106 2427 #ifndef PRODUCT
kvn@5763 2428 if (C->print_intrinsics() || C->print_inlining()) {
twisti@4158 2429 tty->print(" from base type: "); adr_type->dump();
twisti@4158 2430 tty->print(" sharpened value: "); tjp->dump();
roland@4106 2431 }
roland@4106 2432 #endif
roland@4106 2433 // Sharpen the value type.
roland@4106 2434 return tjp;
roland@4106 2435 }
roland@4106 2436 return NULL;
roland@4106 2437 }
roland@4106 2438
duke@435 2439 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
duke@435 2440 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2441
duke@435 2442 #ifndef PRODUCT
duke@435 2443 {
duke@435 2444 ResourceMark rm;
duke@435 2445 // Check the signatures.
twisti@4313 2446 ciSignature* sig = callee()->signature();
duke@435 2447 #ifdef ASSERT
duke@435 2448 if (!is_store) {
duke@435 2449 // Object getObject(Object base, int/long offset), etc.
duke@435 2450 BasicType rtype = sig->return_type()->basic_type();
duke@435 2451 if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
duke@435 2452 rtype = T_ADDRESS; // it is really a C void*
duke@435 2453 assert(rtype == type, "getter must return the expected value");
duke@435 2454 if (!is_native_ptr) {
duke@435 2455 assert(sig->count() == 2, "oop getter has 2 arguments");
duke@435 2456 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
duke@435 2457 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
duke@435 2458 } else {
duke@435 2459 assert(sig->count() == 1, "native getter has 1 argument");
duke@435 2460 assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
duke@435 2461 }
duke@435 2462 } else {
duke@435 2463 // void putObject(Object base, int/long offset, Object x), etc.
duke@435 2464 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
duke@435 2465 if (!is_native_ptr) {
duke@435 2466 assert(sig->count() == 3, "oop putter has 3 arguments");
duke@435 2467 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
duke@435 2468 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
duke@435 2469 } else {
duke@435 2470 assert(sig->count() == 2, "native putter has 2 arguments");
duke@435 2471 assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
duke@435 2472 }
duke@435 2473 BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
duke@435 2474 if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
duke@435 2475 vtype = T_ADDRESS; // it is really a C void*
duke@435 2476 assert(vtype == type, "putter must accept the expected value");
duke@435 2477 }
duke@435 2478 #endif // ASSERT
duke@435 2479 }
duke@435 2480 #endif //PRODUCT
duke@435 2481
duke@435 2482 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2483
twisti@4313 2484 Node* receiver = argument(0); // type: oop
twisti@4313 2485
twisti@4313 2486 // Build address expression. See the code in inline_unsafe_prefetch.
twisti@4313 2487 Node* adr;
twisti@4313 2488 Node* heap_base_oop = top();
twisti@4313 2489 Node* offset = top();
duke@435 2490 Node* val;
johnc@2781 2491
duke@435 2492 if (!is_native_ptr) {
twisti@4313 2493 // The base is either a Java object or a value produced by Unsafe.staticFieldBase
twisti@4313 2494 Node* base = argument(1); // type: oop
duke@435 2495 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
twisti@4313 2496 offset = argument(2); // type: long
duke@435 2497 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
duke@435 2498 // to be plain byte offsets, which are also the same as those accepted
duke@435 2499 // by oopDesc::field_base.
duke@435 2500 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
duke@435 2501 "fieldOffset must be byte-scaled");
duke@435 2502 // 32-bit machines ignore the high half!
duke@435 2503 offset = ConvL2X(offset);
duke@435 2504 adr = make_unsafe_address(base, offset);
duke@435 2505 heap_base_oop = base;
twisti@4313 2506 val = is_store ? argument(4) : NULL;
duke@435 2507 } else {
twisti@4313 2508 Node* ptr = argument(1); // type: long
twisti@4313 2509 ptr = ConvL2X(ptr); // adjust Java long to machine word
duke@435 2510 adr = make_unsafe_address(NULL, ptr);
twisti@4313 2511 val = is_store ? argument(3) : NULL;
duke@435 2512 }
duke@435 2513
duke@435 2514 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
duke@435 2515
duke@435 2516 // First guess at the value type.
duke@435 2517 const Type *value_type = Type::get_const_basic_type(type);
duke@435 2518
duke@435 2519 // Try to categorize the address. If it comes up as TypeJavaPtr::BOTTOM,
duke@435 2520 // there was not enough information to nail it down.
duke@435 2521 Compile::AliasType* alias_type = C->alias_type(adr_type);
duke@435 2522 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
duke@435 2523
duke@435 2524 // We will need memory barriers unless we can determine a unique
duke@435 2525 // alias category for this reference. (Note: If for some reason
duke@435 2526 // the barriers get omitted and the unsafe reference begins to "pollute"
duke@435 2527 // the alias analysis of the rest of the graph, either Compile::can_alias
duke@435 2528 // or Compile::must_alias will throw a diagnostic assert.)
duke@435 2529 bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
duke@435 2530
johnc@2781 2531 // If we are reading the value of the referent field of a Reference
johnc@2781 2532 // object (either by using Unsafe directly or through reflection)
johnc@2781 2533 // then, if G1 is enabled, we need to record the referent in an
johnc@2781 2534 // SATB log buffer using the pre-barrier mechanism.
kvn@4002 2535 // Also we need to add memory barrier to prevent commoning reads
kvn@4002 2536 // from this field across safepoint since GC can change its value.
kvn@4002 2537 bool need_read_barrier = !is_native_ptr && !is_store &&
johnc@2781 2538 offset != top() && heap_base_oop != top();
johnc@2781 2539
duke@435 2540 if (!is_store && type == T_OBJECT) {
roland@4106 2541 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
roland@4106 2542 if (tjp != NULL) {
duke@435 2543 value_type = tjp;
duke@435 2544 }
duke@435 2545 }
duke@435 2546
twisti@4313 2547 receiver = null_check(receiver);
duke@435 2548 if (stopped()) {
duke@435 2549 return true;
duke@435 2550 }
duke@435 2551 // Heap pointers get a null-check from the interpreter,
duke@435 2552 // as a courtesy. However, this is not guaranteed by Unsafe,
duke@435 2553 // and it is not possible to fully distinguish unintended nulls
duke@435 2554 // from intended ones in this API.
duke@435 2555
duke@435 2556 if (is_volatile) {
duke@435 2557 // We need to emit leading and trailing CPU membars (see below) in
duke@435 2558 // addition to memory membars when is_volatile. This is a little
duke@435 2559 // too strong, but avoids the need to insert per-alias-type
duke@435 2560 // volatile membars (for stores; compare Parse::do_put_xxx), which
twisti@1040 2561 // we cannot do effectively here because we probably only have a
duke@435 2562 // rough approximation of type.
duke@435 2563 need_mem_bar = true;
duke@435 2564 // For Stores, place a memory ordering barrier now.
duke@435 2565 if (is_store)
duke@435 2566 insert_mem_bar(Op_MemBarRelease);
duke@435 2567 }
duke@435 2568
duke@435 2569 // Memory barrier to prevent normal and 'unsafe' accesses from
duke@435 2570 // bypassing each other. Happens after null checks, so the
duke@435 2571 // exception paths do not take memory state from the memory barrier,
duke@435 2572 // so there's no problems making a strong assert about mixing users
duke@435 2573 // of safe & unsafe memory. Otherwise fails in a CTW of rt.jar
duke@435 2574 // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
duke@435 2575 if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2576
duke@435 2577 if (!is_store) {
duke@435 2578 Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
twisti@4313 2579 // load value
duke@435 2580 switch (type) {
duke@435 2581 case T_BOOLEAN:
duke@435 2582 case T_CHAR:
duke@435 2583 case T_BYTE:
duke@435 2584 case T_SHORT:
duke@435 2585 case T_INT:
twisti@4313 2586 case T_LONG:
duke@435 2587 case T_FLOAT:
twisti@4313 2588 case T_DOUBLE:
johnc@2781 2589 break;
duke@435 2590 case T_OBJECT:
johnc@2781 2591 if (need_read_barrier) {
twisti@4313 2592 insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
johnc@2781 2593 }
duke@435 2594 break;
duke@435 2595 case T_ADDRESS:
duke@435 2596 // Cast to an int type.
twisti@4313 2597 p = _gvn.transform(new (C) CastP2XNode(NULL, p));
duke@435 2598 p = ConvX2L(p);
duke@435 2599 break;
twisti@4313 2600 default:
twisti@4313 2601 fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
duke@435 2602 break;
duke@435 2603 }
twisti@4313 2604 // The load node has the control of the preceding MemBarCPUOrder. All
twisti@4313 2605 // following nodes will have the control of the MemBarCPUOrder inserted at
twisti@4313 2606 // the end of this method. So, pushing the load onto the stack at a later
twisti@4313 2607 // point is fine.
twisti@4313 2608 set_result(p);
duke@435 2609 } else {
duke@435 2610 // place effect of store into memory
duke@435 2611 switch (type) {
duke@435 2612 case T_DOUBLE:
duke@435 2613 val = dstore_rounding(val);
duke@435 2614 break;
duke@435 2615 case T_ADDRESS:
duke@435 2616 // Repackage the long as a pointer.
duke@435 2617 val = ConvL2X(val);
drchase@5353 2618 val = _gvn.transform(new (C) CastX2PNode(val));
duke@435 2619 break;
duke@435 2620 }
duke@435 2621
duke@435 2622 if (type != T_OBJECT ) {
duke@435 2623 (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
duke@435 2624 } else {
duke@435 2625 // Possibly an oop being stored to Java heap or native memory
duke@435 2626 if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
duke@435 2627 // oop to Java heap.
never@1260 2628 (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
duke@435 2629 } else {
duke@435 2630 // We can't tell at compile time if we are storing in the Java heap or outside
duke@435 2631 // of it. So we need to emit code to conditionally do the proper type of
duke@435 2632 // store.
duke@435 2633
kvn@2726 2634 IdealKit ideal(this);
kvn@1286 2635 #define __ ideal.
duke@435 2636 // QQQ who knows what probability is here??
kvn@1286 2637 __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
kvn@1286 2638 // Sync IdealKit and graphKit.
kvn@2726 2639 sync_kit(ideal);
kvn@1286 2640 Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
kvn@1286 2641 // Update IdealKit memory.
kvn@2726 2642 __ sync_kit(this);
kvn@1286 2643 } __ else_(); {
kvn@1286 2644 __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
kvn@1286 2645 } __ end_if();
kvn@1286 2646 // Final sync IdealKit and GraphKit.
kvn@2726 2647 final_sync(ideal);
kvn@1286 2648 #undef __
duke@435 2649 }
duke@435 2650 }
duke@435 2651 }
duke@435 2652
duke@435 2653 if (is_volatile) {
duke@435 2654 if (!is_store)
duke@435 2655 insert_mem_bar(Op_MemBarAcquire);
duke@435 2656 else
duke@435 2657 insert_mem_bar(Op_MemBarVolatile);
duke@435 2658 }
duke@435 2659
duke@435 2660 if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2661
duke@435 2662 return true;
duke@435 2663 }
duke@435 2664
duke@435 2665 //----------------------------inline_unsafe_prefetch----------------------------
duke@435 2666
duke@435 2667 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
duke@435 2668 #ifndef PRODUCT
duke@435 2669 {
duke@435 2670 ResourceMark rm;
duke@435 2671 // Check the signatures.
twisti@4313 2672 ciSignature* sig = callee()->signature();
duke@435 2673 #ifdef ASSERT
duke@435 2674 // Object getObject(Object base, int/long offset), etc.
duke@435 2675 BasicType rtype = sig->return_type()->basic_type();
duke@435 2676 if (!is_native_ptr) {
duke@435 2677 assert(sig->count() == 2, "oop prefetch has 2 arguments");
duke@435 2678 assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
duke@435 2679 assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
duke@435 2680 } else {
duke@435 2681 assert(sig->count() == 1, "native prefetch has 1 argument");
duke@435 2682 assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
duke@435 2683 }
duke@435 2684 #endif // ASSERT
duke@435 2685 }
duke@435 2686 #endif // !PRODUCT
duke@435 2687
duke@435 2688 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2689
twisti@4313 2690 const int idx = is_static ? 0 : 1;
twisti@4313 2691 if (!is_static) {
twisti@4313 2692 null_check_receiver();
twisti@4313 2693 if (stopped()) {
twisti@4313 2694 return true;
twisti@4313 2695 }
twisti@4313 2696 }
duke@435 2697
duke@435 2698 // Build address expression. See the code in inline_unsafe_access.
duke@435 2699 Node *adr;
duke@435 2700 if (!is_native_ptr) {
twisti@4313 2701 // The base is either a Java object or a value produced by Unsafe.staticFieldBase
twisti@4313 2702 Node* base = argument(idx + 0); // type: oop
duke@435 2703 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
twisti@4313 2704 Node* offset = argument(idx + 1); // type: long
duke@435 2705 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
duke@435 2706 // to be plain byte offsets, which are also the same as those accepted
duke@435 2707 // by oopDesc::field_base.
duke@435 2708 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
duke@435 2709 "fieldOffset must be byte-scaled");
duke@435 2710 // 32-bit machines ignore the high half!
duke@435 2711 offset = ConvL2X(offset);
duke@435 2712 adr = make_unsafe_address(base, offset);
duke@435 2713 } else {
twisti@4313 2714 Node* ptr = argument(idx + 0); // type: long
twisti@4313 2715 ptr = ConvL2X(ptr); // adjust Java long to machine word
duke@435 2716 adr = make_unsafe_address(NULL, ptr);
duke@435 2717 }
duke@435 2718
duke@435 2719 // Generate the read or write prefetch
duke@435 2720 Node *prefetch;
duke@435 2721 if (is_store) {
kvn@4115 2722 prefetch = new (C) PrefetchWriteNode(i_o(), adr);
duke@435 2723 } else {
kvn@4115 2724 prefetch = new (C) PrefetchReadNode(i_o(), adr);
duke@435 2725 }
duke@435 2726 prefetch->init_req(0, control());
duke@435 2727 set_i_o(_gvn.transform(prefetch));
duke@435 2728
duke@435 2729 return true;
duke@435 2730 }
duke@435 2731
roland@4106 2732 //----------------------------inline_unsafe_load_store----------------------------
twisti@4313 2733 // This method serves a couple of different customers (depending on LoadStoreKind):
twisti@4313 2734 //
twisti@4313 2735 // LS_cmpxchg:
twisti@4313 2736 // public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
twisti@4313 2737 // public final native boolean compareAndSwapInt( Object o, long offset, int expected, int x);
twisti@4313 2738 // public final native boolean compareAndSwapLong( Object o, long offset, long expected, long x);
twisti@4313 2739 //
twisti@4313 2740 // LS_xadd:
twisti@4313 2741 // public int getAndAddInt( Object o, long offset, int delta)
twisti@4313 2742 // public long getAndAddLong(Object o, long offset, long delta)
twisti@4313 2743 //
twisti@4313 2744 // LS_xchg:
twisti@4313 2745 // int getAndSet(Object o, long offset, int newValue)
twisti@4313 2746 // long getAndSet(Object o, long offset, long newValue)
twisti@4313 2747 // Object getAndSet(Object o, long offset, Object newValue)
twisti@4313 2748 //
roland@4106 2749 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
duke@435 2750 // This basic scheme here is the same as inline_unsafe_access, but
duke@435 2751 // differs in enough details that combining them would make the code
duke@435 2752 // overly confusing. (This is a true fact! I originally combined
duke@435 2753 // them, but even I was confused by it!) As much code/comments as
duke@435 2754 // possible are retained from inline_unsafe_access though to make
twisti@1040 2755 // the correspondences clearer. - dl
duke@435 2756
duke@435 2757 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2758
duke@435 2759 #ifndef PRODUCT
roland@4106 2760 BasicType rtype;
duke@435 2761 {
duke@435 2762 ResourceMark rm;
twisti@4313 2763 // Check the signatures.
twisti@4313 2764 ciSignature* sig = callee()->signature();
roland@4106 2765 rtype = sig->return_type()->basic_type();
roland@4106 2766 if (kind == LS_xadd || kind == LS_xchg) {
roland@4106 2767 // Check the signatures.
duke@435 2768 #ifdef ASSERT
roland@4106 2769 assert(rtype == type, "get and set must return the expected type");
roland@4106 2770 assert(sig->count() == 3, "get and set has 3 arguments");
roland@4106 2771 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
roland@4106 2772 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
roland@4106 2773 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
duke@435 2774 #endif // ASSERT
roland@4106 2775 } else if (kind == LS_cmpxchg) {
roland@4106 2776 // Check the signatures.
roland@4106 2777 #ifdef ASSERT
roland@4106 2778 assert(rtype == T_BOOLEAN, "CAS must return boolean");
roland@4106 2779 assert(sig->count() == 4, "CAS has 4 arguments");
roland@4106 2780 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
roland@4106 2781 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
roland@4106 2782 #endif // ASSERT
roland@4106 2783 } else {
roland@4106 2784 ShouldNotReachHere();
roland@4106 2785 }
duke@435 2786 }
duke@435 2787 #endif //PRODUCT
duke@435 2788
duke@435 2789 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2790
twisti@4313 2791 // Get arguments:
twisti@4313 2792 Node* receiver = NULL;
twisti@4313 2793 Node* base = NULL;
twisti@4313 2794 Node* offset = NULL;
twisti@4313 2795 Node* oldval = NULL;
twisti@4313 2796 Node* newval = NULL;
twisti@4313 2797 if (kind == LS_cmpxchg) {
twisti@4313 2798 const bool two_slot_type = type2size[type] == 2;
twisti@4313 2799 receiver = argument(0); // type: oop
twisti@4313 2800 base = argument(1); // type: oop
twisti@4313 2801 offset = argument(2); // type: long
twisti@4313 2802 oldval = argument(4); // type: oop, int, or long
twisti@4313 2803 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long
twisti@4313 2804 } else if (kind == LS_xadd || kind == LS_xchg){
twisti@4313 2805 receiver = argument(0); // type: oop
twisti@4313 2806 base = argument(1); // type: oop
twisti@4313 2807 offset = argument(2); // type: long
twisti@4313 2808 oldval = NULL;
twisti@4313 2809 newval = argument(4); // type: oop, int, or long
twisti@4313 2810 }
twisti@4313 2811
twisti@4313 2812 // Null check receiver.
twisti@4313 2813 receiver = null_check(receiver);
duke@435 2814 if (stopped()) {
duke@435 2815 return true;
duke@435 2816 }
duke@435 2817
duke@435 2818 // Build field offset expression.
duke@435 2819 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
duke@435 2820 // to be plain byte offsets, which are also the same as those accepted
duke@435 2821 // by oopDesc::field_base.
duke@435 2822 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
duke@435 2823 // 32-bit machines ignore the high half of long offsets
duke@435 2824 offset = ConvL2X(offset);
duke@435 2825 Node* adr = make_unsafe_address(base, offset);
duke@435 2826 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
duke@435 2827
roland@4106 2828 // For CAS, unlike inline_unsafe_access, there seems no point in
roland@4106 2829 // trying to refine types. Just use the coarse types here.
duke@435 2830 const Type *value_type = Type::get_const_basic_type(type);
duke@435 2831 Compile::AliasType* alias_type = C->alias_type(adr_type);
duke@435 2832 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
roland@4106 2833
roland@4106 2834 if (kind == LS_xchg && type == T_OBJECT) {
roland@4106 2835 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
roland@4106 2836 if (tjp != NULL) {
roland@4106 2837 value_type = tjp;
roland@4106 2838 }
roland@4106 2839 }
roland@4106 2840
duke@435 2841 int alias_idx = C->get_alias_index(adr_type);
duke@435 2842
roland@4106 2843 // Memory-model-wise, a LoadStore acts like a little synchronized
roland@4106 2844 // block, so needs barriers on each side. These don't translate
roland@4106 2845 // into actual barriers on most machines, but we still need rest of
duke@435 2846 // compiler to respect ordering.
duke@435 2847
duke@435 2848 insert_mem_bar(Op_MemBarRelease);
duke@435 2849 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2850
duke@435 2851 // 4984716: MemBars must be inserted before this
duke@435 2852 // memory node in order to avoid a false
duke@435 2853 // dependency which will confuse the scheduler.
duke@435 2854 Node *mem = memory(alias_idx);
duke@435 2855
duke@435 2856 // For now, we handle only those cases that actually exist: ints,
duke@435 2857 // longs, and Object. Adding others should be straightforward.
roland@4106 2858 Node* load_store;
duke@435 2859 switch(type) {
duke@435 2860 case T_INT:
roland@4106 2861 if (kind == LS_xadd) {
kvn@4115 2862 load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
roland@4106 2863 } else if (kind == LS_xchg) {
kvn@4115 2864 load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
roland@4106 2865 } else if (kind == LS_cmpxchg) {
kvn@4115 2866 load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
roland@4106 2867 } else {
roland@4106 2868 ShouldNotReachHere();
roland@4106 2869 }
duke@435 2870 break;
duke@435 2871 case T_LONG:
roland@4106 2872 if (kind == LS_xadd) {
kvn@4115 2873 load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
roland@4106 2874 } else if (kind == LS_xchg) {
kvn@4115 2875 load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
roland@4106 2876 } else if (kind == LS_cmpxchg) {
kvn@4115 2877 load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
roland@4106 2878 } else {
roland@4106 2879 ShouldNotReachHere();
roland@4106 2880 }
duke@435 2881 break;
duke@435 2882 case T_OBJECT:
kvn@3521 2883 // Transformation of a value which could be NULL pointer (CastPP #NULL)
kvn@3521 2884 // could be delayed during Parse (for example, in adjust_map_after_if()).
kvn@3521 2885 // Execute transformation here to avoid barrier generation in such case.
kvn@3521 2886 if (_gvn.type(newval) == TypePtr::NULL_PTR)
kvn@3521 2887 newval = _gvn.makecon(TypePtr::NULL_PTR);
kvn@3521 2888
kvn@3521 2889 // Reference stores need a store barrier.
kvn@5637 2890 if (kind == LS_xchg) {
kvn@5637 2891 // If pre-barrier must execute before the oop store, old value will require do_load here.
kvn@5637 2892 if (!can_move_pre_barrier()) {
kvn@5637 2893 pre_barrier(true /* do_load*/,
kvn@5637 2894 control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
kvn@5637 2895 NULL /* pre_val*/,
kvn@5637 2896 T_OBJECT);
kvn@5637 2897 } // Else move pre_barrier to use load_store value, see below.
kvn@5637 2898 } else if (kind == LS_cmpxchg) {
kvn@5637 2899 // Same as for newval above:
kvn@5637 2900 if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
kvn@5637 2901 oldval = _gvn.makecon(TypePtr::NULL_PTR);
kvn@5637 2902 }
kvn@5637 2903 // The only known value which might get overwritten is oldval.
kvn@5637 2904 pre_barrier(false /* do_load */,
kvn@5637 2905 control(), NULL, NULL, max_juint, NULL, NULL,
kvn@5637 2906 oldval /* pre_val */,
kvn@5637 2907 T_OBJECT);
kvn@5637 2908 } else {
kvn@5637 2909 ShouldNotReachHere();
kvn@5637 2910 }
kvn@5637 2911
coleenp@548 2912 #ifdef _LP64
kvn@598 2913 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
kvn@4115 2914 Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
roland@4106 2915 if (kind == LS_xchg) {
kvn@4115 2916 load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
roland@4106 2917 newval_enc, adr_type, value_type->make_narrowoop()));
roland@4106 2918 } else {
roland@4106 2919 assert(kind == LS_cmpxchg, "wrong LoadStore operation");
kvn@4115 2920 Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
kvn@4115 2921 load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
roland@4106 2922 newval_enc, oldval_enc));
roland@4106 2923 }
coleenp@548 2924 } else
coleenp@548 2925 #endif
kvn@656 2926 {
roland@4106 2927 if (kind == LS_xchg) {
kvn@4115 2928 load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
roland@4106 2929 } else {
roland@4106 2930 assert(kind == LS_cmpxchg, "wrong LoadStore operation");
kvn@4115 2931 load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
roland@4106 2932 }
kvn@656 2933 }
roland@4106 2934 post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
duke@435 2935 break;
duke@435 2936 default:
twisti@4313 2937 fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
duke@435 2938 break;
duke@435 2939 }
duke@435 2940
roland@4106 2941 // SCMemProjNodes represent the memory state of a LoadStore. Their
roland@4106 2942 // main role is to prevent LoadStore nodes from being optimized away
roland@4106 2943 // when their results aren't used.
drchase@5353 2944 Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
duke@435 2945 set_memory(proj, alias_idx);
duke@435 2946
kvn@5637 2947 if (type == T_OBJECT && kind == LS_xchg) {
kvn@5637 2948 #ifdef _LP64
kvn@5637 2949 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
kvn@5637 2950 load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
kvn@5637 2951 }
kvn@5637 2952 #endif
kvn@5637 2953 if (can_move_pre_barrier()) {
kvn@5637 2954 // Don't need to load pre_val. The old value is returned by load_store.
kvn@5637 2955 // The pre_barrier can execute after the xchg as long as no safepoint
kvn@5637 2956 // gets inserted between them.
kvn@5637 2957 pre_barrier(false /* do_load */,
kvn@5637 2958 control(), NULL, NULL, max_juint, NULL, NULL,
kvn@5637 2959 load_store /* pre_val */,
kvn@5637 2960 T_OBJECT);
kvn@5637 2961 }
kvn@5637 2962 }
kvn@5637 2963
duke@435 2964 // Add the trailing membar surrounding the access
duke@435 2965 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2966 insert_mem_bar(Op_MemBarAcquire);
duke@435 2967
roland@4106 2968 assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
twisti@4313 2969 set_result(load_store);
duke@435 2970 return true;
duke@435 2971 }
duke@435 2972
twisti@4313 2973 //----------------------------inline_unsafe_ordered_store----------------------
twisti@4313 2974 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
twisti@4313 2975 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
twisti@4313 2976 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
duke@435 2977 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
duke@435 2978 // This is another variant of inline_unsafe_access, differing in
duke@435 2979 // that it always issues store-store ("release") barrier and ensures
duke@435 2980 // store-atomicity (which only matters for "long").
duke@435 2981
duke@435 2982 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2983
duke@435 2984 #ifndef PRODUCT
duke@435 2985 {
duke@435 2986 ResourceMark rm;
duke@435 2987 // Check the signatures.
twisti@4313 2988 ciSignature* sig = callee()->signature();
duke@435 2989 #ifdef ASSERT
duke@435 2990 BasicType rtype = sig->return_type()->basic_type();
duke@435 2991 assert(rtype == T_VOID, "must return void");
duke@435 2992 assert(sig->count() == 3, "has 3 arguments");
duke@435 2993 assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
duke@435 2994 assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
duke@435 2995 #endif // ASSERT
duke@435 2996 }
duke@435 2997 #endif //PRODUCT
duke@435 2998
duke@435 2999 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 3000
twisti@4313 3001 // Get arguments:
twisti@4313 3002 Node* receiver = argument(0); // type: oop
twisti@4313 3003 Node* base = argument(1); // type: oop
twisti@4313 3004 Node* offset = argument(2); // type: long
twisti@4313 3005 Node* val = argument(4); // type: oop, int, or long
twisti@4313 3006
twisti@4313 3007 // Null check receiver.
twisti@4313 3008 receiver = null_check(receiver);
duke@435 3009 if (stopped()) {
duke@435 3010 return true;
duke@435 3011 }
duke@435 3012
duke@435 3013 // Build field offset expression.
duke@435 3014 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
duke@435 3015 // 32-bit machines ignore the high half of long offsets
duke@435 3016 offset = ConvL2X(offset);
duke@435 3017 Node* adr = make_unsafe_address(base, offset);
duke@435 3018 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
duke@435 3019 const Type *value_type = Type::get_const_basic_type(type);
duke@435 3020 Compile::AliasType* alias_type = C->alias_type(adr_type);
duke@435 3021
duke@435 3022 insert_mem_bar(Op_MemBarRelease);
duke@435 3023 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 3024 // Ensure that the store is atomic for longs:
twisti@4313 3025 const bool require_atomic_access = true;
duke@435 3026 Node* store;
duke@435 3027 if (type == T_OBJECT) // reference stores need a store barrier.
never@1260 3028 store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
duke@435 3029 else {
duke@435 3030 store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
duke@435 3031 }
duke@435 3032 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 3033 return true;
duke@435 3034 }
duke@435 3035
kvn@4361 3036 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
kvn@4361 3037 // Regardless of form, don't allow previous ld/st to move down,
kvn@4361 3038 // then issue acquire, release, or volatile mem_bar.
kvn@4361 3039 insert_mem_bar(Op_MemBarCPUOrder);
kvn@4361 3040 switch(id) {
kvn@4361 3041 case vmIntrinsics::_loadFence:
kvn@4361 3042 insert_mem_bar(Op_MemBarAcquire);
kvn@4361 3043 return true;
kvn@4361 3044 case vmIntrinsics::_storeFence:
kvn@4361 3045 insert_mem_bar(Op_MemBarRelease);
kvn@4361 3046 return true;
kvn@4361 3047 case vmIntrinsics::_fullFence:
kvn@4361 3048 insert_mem_bar(Op_MemBarVolatile);
kvn@4361 3049 return true;
kvn@4361 3050 default:
kvn@4361 3051 fatal_unexpected_iid(id);
kvn@4361 3052 return false;
kvn@4361 3053 }
kvn@4361 3054 }
kvn@4361 3055
rbackman@5546 3056 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
rbackman@5546 3057 if (!kls->is_Con()) {
rbackman@5546 3058 return true;
rbackman@5546 3059 }
rbackman@5546 3060 const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
rbackman@5546 3061 if (klsptr == NULL) {
rbackman@5546 3062 return true;
rbackman@5546 3063 }
rbackman@5546 3064 ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
rbackman@5546 3065 // don't need a guard for a klass that is already initialized
rbackman@5546 3066 return !ik->is_initialized();
rbackman@5546 3067 }
rbackman@5546 3068
twisti@4313 3069 //----------------------------inline_unsafe_allocate---------------------------
rbackman@5546 3070 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
duke@435 3071 bool LibraryCallKit::inline_unsafe_allocate() {
duke@435 3072 if (callee()->is_static()) return false; // caller must have the capability!
twisti@4313 3073
twisti@4313 3074 null_check_receiver(); // null-check, then ignore
twisti@4313 3075 Node* cls = null_check(argument(1));
duke@435 3076 if (stopped()) return true;
duke@435 3077
twisti@4313 3078 Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
twisti@4313 3079 kls = null_check(kls);
duke@435 3080 if (stopped()) return true; // argument was like int.class
duke@435 3081
rbackman@5546 3082 Node* test = NULL;
rbackman@5546 3083 if (LibraryCallKit::klass_needs_init_guard(kls)) {
rbackman@5546 3084 // Note: The argument might still be an illegal value like
rbackman@5546 3085 // Serializable.class or Object[].class. The runtime will handle it.
rbackman@5546 3086 // But we must make an explicit check for initialization.
rbackman@5546 3087 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
rbackman@5546 3088 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
rbackman@5546 3089 // can generate code to load it as unsigned byte.
rbackman@5546 3090 Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
rbackman@5546 3091 Node* bits = intcon(InstanceKlass::fully_initialized);
rbackman@5546 3092 test = _gvn.transform(new (C) SubINode(inst, bits));
rbackman@5546 3093 // The 'test' is non-zero if we need to take a slow path.
rbackman@5546 3094 }
duke@435 3095
duke@435 3096 Node* obj = new_instance(kls, test);
twisti@4313 3097 set_result(obj);
duke@435 3098 return true;
duke@435 3099 }
duke@435 3100
rbackman@3709 3101 #ifdef TRACE_HAVE_INTRINSICS
rbackman@3709 3102 /*
rbackman@3709 3103 * oop -> myklass
rbackman@3709 3104 * myklass->trace_id |= USED
rbackman@3709 3105 * return myklass->trace_id & ~0x3
rbackman@3709 3106 */
rbackman@3709 3107 bool LibraryCallKit::inline_native_classID() {
twisti@4313 3108 null_check_receiver(); // null-check, then ignore
twisti@4313 3109 Node* cls = null_check(argument(1), T_OBJECT);
twisti@4313 3110 Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
twisti@4313 3111 kls = null_check(kls, T_OBJECT);
rbackman@3709 3112 ByteSize offset = TRACE_ID_OFFSET;
rbackman@3709 3113 Node* insp = basic_plus_adr(kls, in_bytes(offset));
rbackman@3709 3114 Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG);
rbackman@3709 3115 Node* bits = longcon(~0x03l); // ignore bit 0 & 1
kvn@4115 3116 Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
rbackman@3709 3117 Node* clsused = longcon(0x01l); // set the class bit
kvn@4115 3118 Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
rbackman@3709 3119
rbackman@3709 3120 const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
rbackman@3709 3121 store_to_memory(control(), insp, orl, T_LONG, adr_type);
twisti@4313 3122 set_result(andl);
rbackman@3709 3123 return true;
rbackman@3709 3124 }
rbackman@3709 3125
rbackman@3709 3126 bool LibraryCallKit::inline_native_threadID() {
rbackman@3709 3127 Node* tls_ptr = NULL;
rbackman@3709 3128 Node* cur_thr = generate_current_thread(tls_ptr);
rbackman@3709 3129 Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
rbackman@3709 3130 Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
rbackman@3709 3131 p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
rbackman@3709 3132
rbackman@3709 3133 Node* threadid = NULL;
rbackman@3709 3134 size_t thread_id_size = OSThread::thread_id_size();
rbackman@3709 3135 if (thread_id_size == (size_t) BytesPerLong) {
rbackman@3709 3136 threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG));
rbackman@3709 3137 } else if (thread_id_size == (size_t) BytesPerInt) {
rbackman@3709 3138 threadid = make_load(control(), p, TypeInt::INT, T_INT);
rbackman@3709 3139 } else {
rbackman@3709 3140 ShouldNotReachHere();
rbackman@3709 3141 }
twisti@4313 3142 set_result(threadid);
rbackman@3709 3143 return true;
rbackman@3709 3144 }
rbackman@3709 3145 #endif
rbackman@3709 3146
duke@435 3147 //------------------------inline_native_time_funcs--------------
duke@435 3148 // inline code for System.currentTimeMillis() and System.nanoTime()
duke@435 3149 // these have the same type and signature
rbackman@3709 3150 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
twisti@4313 3151 const TypeFunc* tf = OptoRuntime::void_long_Type();
duke@435 3152 const TypePtr* no_memory_effects = NULL;
duke@435 3153 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
kvn@4115 3154 Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
duke@435 3155 #ifdef ASSERT
twisti@4313 3156 Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
duke@435 3157 assert(value_top == top(), "second value must be top");
duke@435 3158 #endif
twisti@4313 3159 set_result(value);
duke@435 3160 return true;
duke@435 3161 }
duke@435 3162
duke@435 3163 //------------------------inline_native_currentThread------------------
duke@435 3164 bool LibraryCallKit::inline_native_currentThread() {
duke@435 3165 Node* junk = NULL;
twisti@4313 3166 set_result(generate_current_thread(junk));
duke@435 3167 return true;
duke@435 3168 }
duke@435 3169
duke@435 3170 //------------------------inline_native_isInterrupted------------------
twisti@4313 3171 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
duke@435 3172 bool LibraryCallKit::inline_native_isInterrupted() {
duke@435 3173 // Add a fast path to t.isInterrupted(clear_int):
minqi@6358 3174 // (t == Thread.current() &&
minqi@6358 3175 // (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
duke@435 3176 // ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
duke@435 3177 // So, in the common case that the interrupt bit is false,
duke@435 3178 // we avoid making a call into the VM. Even if the interrupt bit
duke@435 3179 // is true, if the clear_int argument is false, we avoid the VM call.
duke@435 3180 // However, if the receiver is not currentThread, we must call the VM,
duke@435 3181 // because there must be some locking done around the operation.
duke@435 3182
duke@435 3183 // We only go to the fast case code if we pass two guards.
duke@435 3184 // Paths which do not pass are accumulated in the slow_region.
vlivanov@4358 3185
vlivanov@4358 3186 enum {
vlivanov@4358 3187 no_int_result_path = 1, // t == Thread.current() && !TLS._osthread._interrupted
vlivanov@4358 3188 no_clear_result_path = 2, // t == Thread.current() && TLS._osthread._interrupted && !clear_int
vlivanov@4358 3189 slow_result_path = 3, // slow path: t.isInterrupted(clear_int)
vlivanov@4358 3190 PATH_LIMIT
vlivanov@4358 3191 };
vlivanov@4358 3192
vlivanov@4358 3193 // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
vlivanov@4358 3194 // out of the function.
vlivanov@4358 3195 insert_mem_bar(Op_MemBarCPUOrder);
vlivanov@4358 3196
vlivanov@4358 3197 RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
vlivanov@4358 3198 PhiNode* result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
vlivanov@4358 3199
kvn@4115 3200 RegionNode* slow_region = new (C) RegionNode(1);
duke@435 3201 record_for_igvn(slow_region);
duke@435 3202
duke@435 3203 // (a) Receiving thread must be the current thread.
duke@435 3204 Node* rec_thr = argument(0);
duke@435 3205 Node* tls_ptr = NULL;
duke@435 3206 Node* cur_thr = generate_current_thread(tls_ptr);
drchase@5353 3207 Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
drchase@5353 3208 Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
duke@435 3209
vlivanov@4358 3210 generate_slow_guard(bol_thr, slow_region);
duke@435 3211
duke@435 3212 // (b) Interrupt bit on TLS must be false.
duke@435 3213 Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
duke@435 3214 Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
duke@435 3215 p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
vlivanov@4358 3216
kvn@1222 3217 // Set the control input on the field _interrupted read to prevent it floating up.
kvn@1222 3218 Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
drchase@5353 3219 Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
drchase@5353 3220 Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
duke@435 3221
duke@435 3222 IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
duke@435 3223
duke@435 3224 // First fast path: if (!TLS._interrupted) return false;
drchase@5353 3225 Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
duke@435 3226 result_rgn->init_req(no_int_result_path, false_bit);
duke@435 3227 result_val->init_req(no_int_result_path, intcon(0));
duke@435 3228
duke@435 3229 // drop through to next case
drchase@5353 3230 set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
duke@435 3231
minqi@6358 3232 #ifndef TARGET_OS_FAMILY_windows
duke@435 3233 // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
duke@435 3234 Node* clr_arg = argument(1);
drchase@5353 3235 Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
drchase@5353 3236 Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
duke@435 3237 IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
duke@435 3238
duke@435 3239 // Second fast path: ... else if (!clear_int) return true;
drchase@5353 3240 Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
duke@435 3241 result_rgn->init_req(no_clear_result_path, false_arg);
duke@435 3242 result_val->init_req(no_clear_result_path, intcon(1));
duke@435 3243
duke@435 3244 // drop through to next case
drchase@5353 3245 set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
minqi@6358 3246 #else
minqi@6358 3247 // To return true on Windows you must read the _interrupted field
minqi@6358 3248 // and check the the event state i.e. take the slow path.
minqi@6358 3249 #endif // TARGET_OS_FAMILY_windows
duke@435 3250
duke@435 3251 // (d) Otherwise, go to the slow path.
duke@435 3252 slow_region->add_req(control());
drchase@5353 3253 set_control( _gvn.transform(slow_region));
duke@435 3254
duke@435 3255 if (stopped()) {
duke@435 3256 // There is no slow path.
duke@435 3257 result_rgn->init_req(slow_result_path, top());
duke@435 3258 result_val->init_req(slow_result_path, top());
duke@435 3259 } else {
duke@435 3260 // non-virtual because it is a private non-static
duke@435 3261 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
duke@435 3262
duke@435 3263 Node* slow_val = set_results_for_java_call(slow_call);
duke@435 3264 // this->control() comes from set_results_for_java_call
duke@435 3265
duke@435 3266 Node* fast_io = slow_call->in(TypeFunc::I_O);
duke@435 3267 Node* fast_mem = slow_call->in(TypeFunc::Memory);
vlivanov@4358 3268
duke@435 3269 // These two phis are pre-filled with copies of of the fast IO and Memory
vlivanov@4358 3270 PhiNode* result_mem = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
vlivanov@4358 3271 PhiNode* result_io = PhiNode::make(result_rgn, fast_io, Type::ABIO);
duke@435 3272
duke@435 3273 result_rgn->init_req(slow_result_path, control());
vlivanov@4358 3274 result_io ->init_req(slow_result_path, i_o());
vlivanov@4358 3275 result_mem->init_req(slow_result_path, reset_memory());
duke@435 3276 result_val->init_req(slow_result_path, slow_val);
duke@435 3277
vlivanov@4358 3278 set_all_memory(_gvn.transform(result_mem));
vlivanov@4358 3279 set_i_o( _gvn.transform(result_io));
duke@435 3280 }
duke@435 3281
duke@435 3282 C->set_has_split_ifs(true); // Has chance for split-if optimization
twisti@4313 3283 set_result(result_rgn, result_val);
duke@435 3284 return true;
duke@435 3285 }
duke@435 3286
duke@435 3287 //---------------------------load_mirror_from_klass----------------------------
duke@435 3288 // Given a klass oop, load its java mirror (a java.lang.Class oop).
duke@435 3289 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
stefank@3391 3290 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
duke@435 3291 return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
duke@435 3292 }
duke@435 3293
duke@435 3294 //-----------------------load_klass_from_mirror_common-------------------------
duke@435 3295 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
duke@435 3296 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
duke@435 3297 // and branch to the given path on the region.
duke@435 3298 // If never_see_null, take an uncommon trap on null, so we can optimistically
duke@435 3299 // compile for the non-null case.
duke@435 3300 // If the region is NULL, force never_see_null = true.
duke@435 3301 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
duke@435 3302 bool never_see_null,
duke@435 3303 RegionNode* region,
duke@435 3304 int null_path,
duke@435 3305 int offset) {
duke@435 3306 if (region == NULL) never_see_null = true;
duke@435 3307 Node* p = basic_plus_adr(mirror, offset);
duke@435 3308 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
drchase@5353 3309 Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
duke@435 3310 Node* null_ctl = top();
duke@435 3311 kls = null_check_oop(kls, &null_ctl, never_see_null);
duke@435 3312 if (region != NULL) {
duke@435 3313 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
duke@435 3314 region->init_req(null_path, null_ctl);
duke@435 3315 } else {
duke@435 3316 assert(null_ctl == top(), "no loose ends");
duke@435 3317 }
duke@435 3318 return kls;
duke@435 3319 }
duke@435 3320
duke@435 3321 //--------------------(inline_native_Class_query helpers)---------------------
duke@435 3322 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
duke@435 3323 // Fall through if (mods & mask) == bits, take the guard otherwise.
duke@435 3324 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
duke@435 3325 // Branch around if the given klass has the given modifier bit set.
duke@435 3326 // Like generate_guard, adds a new path onto the region.
stefank@3391 3327 Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
duke@435 3328 Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
duke@435 3329 Node* mask = intcon(modifier_mask);
duke@435 3330 Node* bits = intcon(modifier_bits);
drchase@5353 3331 Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
drchase@5353 3332 Node* cmp = _gvn.transform(new (C) CmpINode(mbit, bits));
drchase@5353 3333 Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
duke@435 3334 return generate_fair_guard(bol, region);
duke@435 3335 }
duke@435 3336 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
duke@435 3337 return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
duke@435 3338 }
duke@435 3339
duke@435 3340 //-------------------------inline_native_Class_query-------------------
duke@435 3341 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
duke@435 3342 const Type* return_type = TypeInt::BOOL;
duke@435 3343 Node* prim_return_value = top(); // what happens if it's a primitive class?
duke@435 3344 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
duke@435 3345 bool expect_prim = false; // most of these guys expect to work on refs
duke@435 3346
duke@435 3347 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
duke@435 3348
twisti@4313 3349 Node* mirror = argument(0);
twisti@4313 3350 Node* obj = top();
twisti@4313 3351
duke@435 3352 switch (id) {
duke@435 3353 case vmIntrinsics::_isInstance:
duke@435 3354 // nothing is an instance of a primitive type
duke@435 3355 prim_return_value = intcon(0);
twisti@4313 3356 obj = argument(1);
duke@435 3357 break;
duke@435 3358 case vmIntrinsics::_getModifiers:
duke@435 3359 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
duke@435 3360 assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
duke@435 3361 return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
duke@435 3362 break;
duke@435 3363 case vmIntrinsics::_isInterface:
duke@435 3364 prim_return_value = intcon(0);
duke@435 3365 break;
duke@435 3366 case vmIntrinsics::_isArray:
duke@435 3367 prim_return_value = intcon(0);
duke@435 3368 expect_prim = true; // cf. ObjectStreamClass.getClassSignature
duke@435 3369 break;
duke@435 3370 case vmIntrinsics::_isPrimitive:
duke@435 3371 prim_return_value = intcon(1);
duke@435 3372 expect_prim = true; // obviously
duke@435 3373 break;
duke@435 3374 case vmIntrinsics::_getSuperclass:
duke@435 3375 prim_return_value = null();
duke@435 3376 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
duke@435 3377 break;
duke@435 3378 case vmIntrinsics::_getComponentType:
duke@435 3379 prim_return_value = null();
duke@435 3380 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
duke@435 3381 break;
duke@435 3382 case vmIntrinsics::_getClassAccessFlags:
duke@435 3383 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
duke@435 3384 return_type = TypeInt::INT; // not bool! 6297094
duke@435 3385 break;
duke@435 3386 default:
twisti@4313 3387 fatal_unexpected_iid(id);
twisti@4313 3388 break;
duke@435 3389 }
duke@435 3390
duke@435 3391 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
duke@435 3392 if (mirror_con == NULL) return false; // cannot happen?
duke@435 3393
duke@435 3394 #ifndef PRODUCT
kvn@5763 3395 if (C->print_intrinsics() || C->print_inlining()) {
duke@435 3396 ciType* k = mirror_con->java_mirror_type();
duke@435 3397 if (k) {
duke@435 3398 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
duke@435 3399 k->print_name();
duke@435 3400 tty->cr();
duke@435 3401 }
duke@435 3402 }
duke@435 3403 #endif
duke@435 3404
duke@435 3405 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
kvn@4115 3406 RegionNode* region = new (C) RegionNode(PATH_LIMIT);
duke@435 3407 record_for_igvn(region);
kvn@4115 3408 PhiNode* phi = new (C) PhiNode(region, return_type);
duke@435 3409
duke@435 3410 // The mirror will never be null of Reflection.getClassAccessFlags, however
duke@435 3411 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
duke@435 3412 // if it is. See bug 4774291.
duke@435 3413
duke@435 3414 // For Reflection.getClassAccessFlags(), the null check occurs in
duke@435 3415 // the wrong place; see inline_unsafe_access(), above, for a similar
duke@435 3416 // situation.
twisti@4313 3417 mirror = null_check(mirror);
duke@435 3418 // If mirror or obj is dead, only null-path is taken.
duke@435 3419 if (stopped()) return true;
duke@435 3420
duke@435 3421 if (expect_prim) never_see_null = false; // expect nulls (meaning prims)
duke@435 3422
duke@435 3423 // Now load the mirror's klass metaobject, and null-check it.
duke@435 3424 // Side-effects region with the control path if the klass is null.
twisti@4313 3425 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
duke@435 3426 // If kls is null, we have a primitive mirror.
duke@435 3427 phi->init_req(_prim_path, prim_return_value);
twisti@4313 3428 if (stopped()) { set_result(region, phi); return true; }
roland@5991 3429 bool safe_for_replace = (region->in(_prim_path) == top());
duke@435 3430
duke@435 3431 Node* p; // handy temp
duke@435 3432 Node* null_ctl;
duke@435 3433
duke@435 3434 // Now that we have the non-null klass, we can perform the real query.
duke@435 3435 // For constant classes, the query will constant-fold in LoadNode::Value.
duke@435 3436 Node* query_value = top();
duke@435 3437 switch (id) {
duke@435 3438 case vmIntrinsics::_isInstance:
duke@435 3439 // nothing is an instance of a primitive type
roland@5991 3440 query_value = gen_instanceof(obj, kls, safe_for_replace);
duke@435 3441 break;
duke@435 3442
duke@435 3443 case vmIntrinsics::_getModifiers:
stefank@3391 3444 p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
duke@435 3445 query_value = make_load(NULL, p, TypeInt::INT, T_INT);
duke@435 3446 break;
duke@435 3447
duke@435 3448 case vmIntrinsics::_isInterface:
duke@435 3449 // (To verify this code sequence, check the asserts in JVM_IsInterface.)
duke@435 3450 if (generate_interface_guard(kls, region) != NULL)
duke@435 3451 // A guard was added. If the guard is taken, it was an interface.
duke@435 3452 phi->add_req(intcon(1));
duke@435 3453 // If we fall through, it's a plain class.
duke@435 3454 query_value = intcon(0);
duke@435 3455 break;
duke@435 3456
duke@435 3457 case vmIntrinsics::_isArray:
duke@435 3458 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
duke@435 3459 if (generate_array_guard(kls, region) != NULL)
duke@435 3460 // A guard was added. If the guard is taken, it was an array.
duke@435 3461 phi->add_req(intcon(1));
duke@435 3462 // If we fall through, it's a plain class.
duke@435 3463 query_value = intcon(0);
duke@435 3464 break;
duke@435 3465
duke@435 3466 case vmIntrinsics::_isPrimitive:
duke@435 3467 query_value = intcon(0); // "normal" path produces false
duke@435 3468 break;
duke@435 3469
duke@435 3470 case vmIntrinsics::_getSuperclass:
duke@435 3471 // The rules here are somewhat unfortunate, but we can still do better
duke@435 3472 // with random logic than with a JNI call.
duke@435 3473 // Interfaces store null or Object as _super, but must report null.
duke@435 3474 // Arrays store an intermediate super as _super, but must report Object.
duke@435 3475 // Other types can report the actual _super.
duke@435 3476 // (To verify this code sequence, check the asserts in JVM_IsInterface.)
duke@435 3477 if (generate_interface_guard(kls, region) != NULL)
duke@435 3478 // A guard was added. If the guard is taken, it was an interface.
duke@435 3479 phi->add_req(null());
duke@435 3480 if (generate_array_guard(kls, region) != NULL)
duke@435 3481 // A guard was added. If the guard is taken, it was an array.
duke@435 3482 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
duke@435 3483 // If we fall through, it's a plain class. Get its _super.
stefank@3391 3484 p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
drchase@5353 3485 kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
duke@435 3486 null_ctl = top();
duke@435 3487 kls = null_check_oop(kls, &null_ctl);
duke@435 3488 if (null_ctl != top()) {
duke@435 3489 // If the guard is taken, Object.superClass is null (both klass and mirror).
duke@435 3490 region->add_req(null_ctl);
duke@435 3491 phi ->add_req(null());
duke@435 3492 }
duke@435 3493 if (!stopped()) {
duke@435 3494 query_value = load_mirror_from_klass(kls);
duke@435 3495 }
duke@435 3496 break;
duke@435 3497
duke@435 3498 case vmIntrinsics::_getComponentType:
duke@435 3499 if (generate_array_guard(kls, region) != NULL) {
duke@435 3500 // Be sure to pin the oop load to the guard edge just created:
duke@435 3501 Node* is_array_ctrl = region->in(region->req()-1);
coleenp@4142 3502 Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
duke@435 3503 Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
duke@435 3504 phi->add_req(cmo);
duke@435 3505 }
duke@435 3506 query_value = null(); // non-array case is null
duke@435 3507 break;
duke@435 3508
duke@435 3509 case vmIntrinsics::_getClassAccessFlags:
stefank@3391 3510 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
duke@435 3511 query_value = make_load(NULL, p, TypeInt::INT, T_INT);
duke@435 3512 break;
duke@435 3513
duke@435 3514 default:
twisti@4313 3515 fatal_unexpected_iid(id);
twisti@4313 3516 break;
duke@435 3517 }
duke@435 3518
duke@435 3519 // Fall-through is the normal case of a query to a real class.
duke@435 3520 phi->init_req(1, query_value);
duke@435 3521 region->init_req(1, control());
duke@435 3522
duke@435 3523 C->set_has_split_ifs(true); // Has chance for split-if optimization
twisti@4313 3524 set_result(region, phi);
duke@435 3525 return true;
duke@435 3526 }
duke@435 3527
duke@435 3528 //--------------------------inline_native_subtype_check------------------------
duke@435 3529 // This intrinsic takes the JNI calls out of the heart of
duke@435 3530 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
duke@435 3531 bool LibraryCallKit::inline_native_subtype_check() {
duke@435 3532 // Pull both arguments off the stack.
duke@435 3533 Node* args[2]; // two java.lang.Class mirrors: superc, subc
duke@435 3534 args[0] = argument(0);
duke@435 3535 args[1] = argument(1);
duke@435 3536 Node* klasses[2]; // corresponding Klasses: superk, subk
duke@435 3537 klasses[0] = klasses[1] = top();
duke@435 3538
duke@435 3539 enum {
duke@435 3540 // A full decision tree on {superc is prim, subc is prim}:
duke@435 3541 _prim_0_path = 1, // {P,N} => false
duke@435 3542 // {P,P} & superc!=subc => false
duke@435 3543 _prim_same_path, // {P,P} & superc==subc => true
duke@435 3544 _prim_1_path, // {N,P} => false
duke@435 3545 _ref_subtype_path, // {N,N} & subtype check wins => true
duke@435 3546 _both_ref_path, // {N,N} & subtype check loses => false
duke@435 3547 PATH_LIMIT
duke@435 3548 };
duke@435 3549
kvn@4115 3550 RegionNode* region = new (C) RegionNode(PATH_LIMIT);
kvn@4115 3551 Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
duke@435 3552 record_for_igvn(region);
duke@435 3553
duke@435 3554 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads
duke@435 3555 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
duke@435 3556 int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
duke@435 3557
duke@435 3558 // First null-check both mirrors and load each mirror's klass metaobject.
duke@435 3559 int which_arg;
duke@435 3560 for (which_arg = 0; which_arg <= 1; which_arg++) {
duke@435 3561 Node* arg = args[which_arg];
twisti@4313 3562 arg = null_check(arg);
duke@435 3563 if (stopped()) break;
roland@4357 3564 args[which_arg] = arg;
duke@435 3565
duke@435 3566 Node* p = basic_plus_adr(arg, class_klass_offset);
kvn@599 3567 Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
duke@435 3568 klasses[which_arg] = _gvn.transform(kls);
duke@435 3569 }
duke@435 3570
duke@435 3571 // Having loaded both klasses, test each for null.
duke@435 3572 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
duke@435 3573 for (which_arg = 0; which_arg <= 1; which_arg++) {
duke@435 3574 Node* kls = klasses[which_arg];
duke@435 3575 Node* null_ctl = top();
duke@435 3576 kls = null_check_oop(kls, &null_ctl, never_see_null);
duke@435 3577 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
duke@435 3578 region->init_req(prim_path, null_ctl);
duke@435 3579 if (stopped()) break;
duke@435 3580 klasses[which_arg] = kls;
duke@435 3581 }
duke@435 3582
duke@435 3583 if (!stopped()) {
duke@435 3584 // now we have two reference types, in klasses[0..1]
duke@435 3585 Node* subk = klasses[1]; // the argument to isAssignableFrom
duke@435 3586 Node* superk = klasses[0]; // the receiver
duke@435 3587 region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
duke@435 3588 // now we have a successful reference subtype check
duke@435 3589 region->set_req(_ref_subtype_path, control());
duke@435 3590 }
duke@435 3591
duke@435 3592 // If both operands are primitive (both klasses null), then
duke@435 3593 // we must return true when they are identical primitives.
duke@435 3594 // It is convenient to test this after the first null klass check.
duke@435 3595 set_control(region->in(_prim_0_path)); // go back to first null check
duke@435 3596 if (!stopped()) {
duke@435 3597 // Since superc is primitive, make a guard for the superc==subc case.
drchase@5353 3598 Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
drchase@5353 3599 Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
duke@435 3600 generate_guard(bol_eq, region, PROB_FAIR);
duke@435 3601 if (region->req() == PATH_LIMIT+1) {
duke@435 3602 // A guard was added. If the added guard is taken, superc==subc.
duke@435 3603 region->swap_edges(PATH_LIMIT, _prim_same_path);
duke@435 3604 region->del_req(PATH_LIMIT);
duke@435 3605 }
duke@435 3606 region->set_req(_prim_0_path, control()); // Not equal after all.
duke@435 3607 }
duke@435 3608
duke@435 3609 // these are the only paths that produce 'true':
duke@435 3610 phi->set_req(_prim_same_path, intcon(1));
duke@435 3611 phi->set_req(_ref_subtype_path, intcon(1));
duke@435 3612
duke@435 3613 // pull together the cases:
duke@435 3614 assert(region->req() == PATH_LIMIT, "sane region");
duke@435 3615 for (uint i = 1; i < region->req(); i++) {
duke@435 3616 Node* ctl = region->in(i);
duke@435 3617 if (ctl == NULL || ctl == top()) {
duke@435 3618 region->set_req(i, top());
duke@435 3619 phi ->set_req(i, top());
duke@435 3620 } else if (phi->in(i) == NULL) {
duke@435 3621 phi->set_req(i, intcon(0)); // all other paths produce 'false'
duke@435 3622 }
duke@435 3623 }
duke@435 3624
duke@435 3625 set_control(_gvn.transform(region));
twisti@4313 3626 set_result(_gvn.transform(phi));
duke@435 3627 return true;
duke@435 3628 }
duke@435 3629
duke@435 3630 //---------------------generate_array_guard_common------------------------
duke@435 3631 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
duke@435 3632 bool obj_array, bool not_array) {
duke@435 3633 // If obj_array/non_array==false/false:
duke@435 3634 // Branch around if the given klass is in fact an array (either obj or prim).
duke@435 3635 // If obj_array/non_array==false/true:
duke@435 3636 // Branch around if the given klass is not an array klass of any kind.
duke@435 3637 // If obj_array/non_array==true/true:
duke@435 3638 // Branch around if the kls is not an oop array (kls is int[], String, etc.)
duke@435 3639 // If obj_array/non_array==true/false:
duke@435 3640 // Branch around if the kls is an oop array (Object[] or subtype)
duke@435 3641 //
duke@435 3642 // Like generate_guard, adds a new path onto the region.
duke@435 3643 jint layout_con = 0;
duke@435 3644 Node* layout_val = get_layout_helper(kls, layout_con);
duke@435 3645 if (layout_val == NULL) {
duke@435 3646 bool query = (obj_array
duke@435 3647 ? Klass::layout_helper_is_objArray(layout_con)
coleenp@4037 3648 : Klass::layout_helper_is_array(layout_con));
duke@435 3649 if (query == not_array) {
duke@435 3650 return NULL; // never a branch
duke@435 3651 } else { // always a branch
duke@435 3652 Node* always_branch = control();
duke@435 3653 if (region != NULL)
duke@435 3654 region->add_req(always_branch);
duke@435 3655 set_control(top());
duke@435 3656 return always_branch;
duke@435 3657 }
duke@435 3658 }
duke@435 3659 // Now test the correct condition.
duke@435 3660 jint nval = (obj_array
duke@435 3661 ? ((jint)Klass::_lh_array_tag_type_value
duke@435 3662 << Klass::_lh_array_tag_shift)
duke@435 3663 : Klass::_lh_neutral_value);
drchase@5353 3664 Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
duke@435 3665 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array
duke@435 3666 // invert the test if we are looking for a non-array
duke@435 3667 if (not_array) btest = BoolTest(btest).negate();
drchase@5353 3668 Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
duke@435 3669 return generate_fair_guard(bol, region);
duke@435 3670 }
duke@435 3671
duke@435 3672
duke@435 3673 //-----------------------inline_native_newArray--------------------------
twisti@4313 3674 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
duke@435 3675 bool LibraryCallKit::inline_native_newArray() {
duke@435 3676 Node* mirror = argument(0);
duke@435 3677 Node* count_val = argument(1);
duke@435 3678
twisti@4313 3679 mirror = null_check(mirror);
kvn@598 3680 // If mirror or obj is dead, only null-path is taken.
kvn@598 3681 if (stopped()) return true;
duke@435 3682
duke@435 3683 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
kvn@4115 3684 RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
kvn@4115 3685 PhiNode* result_val = new(C) PhiNode(result_reg,
kvn@4115 3686 TypeInstPtr::NOTNULL);
kvn@4115 3687 PhiNode* result_io = new(C) PhiNode(result_reg, Type::ABIO);
kvn@4115 3688 PhiNode* result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
kvn@4115 3689 TypePtr::BOTTOM);
duke@435 3690
duke@435 3691 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
duke@435 3692 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
duke@435 3693 result_reg, _slow_path);
duke@435 3694 Node* normal_ctl = control();
duke@435 3695 Node* no_array_ctl = result_reg->in(_slow_path);
duke@435 3696
duke@435 3697 // Generate code for the slow case. We make a call to newArray().
duke@435 3698 set_control(no_array_ctl);
duke@435 3699 if (!stopped()) {
duke@435 3700 // Either the input type is void.class, or else the
duke@435 3701 // array klass has not yet been cached. Either the
duke@435 3702 // ensuing call will throw an exception, or else it
duke@435 3703 // will cache the array klass for next time.
duke@435 3704 PreserveJVMState pjvms(this);
duke@435 3705 CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
duke@435 3706 Node* slow_result = set_results_for_java_call(slow_call);
duke@435 3707 // this->control() comes from set_results_for_java_call
duke@435 3708 result_reg->set_req(_slow_path, control());
duke@435 3709 result_val->set_req(_slow_path, slow_result);
duke@435 3710 result_io ->set_req(_slow_path, i_o());
duke@435 3711 result_mem->set_req(_slow_path, reset_memory());
duke@435 3712 }
duke@435 3713
duke@435 3714 set_control(normal_ctl);
duke@435 3715 if (!stopped()) {
duke@435 3716 // Normal case: The array type has been cached in the java.lang.Class.
duke@435 3717 // The following call works fine even if the array type is polymorphic.
duke@435 3718 // It could be a dynamic mix of int[], boolean[], Object[], etc.
twisti@4313 3719 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push
duke@435 3720 result_reg->init_req(_normal_path, control());
duke@435 3721 result_val->init_req(_normal_path, obj);
duke@435 3722 result_io ->init_req(_normal_path, i_o());
duke@435 3723 result_mem->init_req(_normal_path, reset_memory());
duke@435 3724 }
duke@435 3725
duke@435 3726 // Return the combined state.
duke@435 3727 set_i_o( _gvn.transform(result_io) );
drchase@5353 3728 set_all_memory( _gvn.transform(result_mem));
twisti@4313 3729
duke@435 3730 C->set_has_split_ifs(true); // Has chance for split-if optimization
twisti@4313 3731 set_result(result_reg, result_val);
duke@435 3732 return true;
duke@435 3733 }
duke@435 3734
duke@435 3735 //----------------------inline_native_getLength--------------------------
twisti@4313 3736 // public static native int java.lang.reflect.Array.getLength(Object array);
duke@435 3737 bool LibraryCallKit::inline_native_getLength() {
duke@435 3738 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 3739
twisti@4313 3740 Node* array = null_check(argument(0));
duke@435 3741 // If array is dead, only null-path is taken.
duke@435 3742 if (stopped()) return true;
duke@435 3743
duke@435 3744 // Deoptimize if it is a non-array.
duke@435 3745 Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
duke@435 3746
duke@435 3747 if (non_array != NULL) {
duke@435 3748 PreserveJVMState pjvms(this);
duke@435 3749 set_control(non_array);
duke@435 3750 uncommon_trap(Deoptimization::Reason_intrinsic,
duke@435 3751 Deoptimization::Action_maybe_recompile);
duke@435 3752 }
duke@435 3753
duke@435 3754 // If control is dead, only non-array-path is taken.
duke@435 3755 if (stopped()) return true;
duke@435 3756
duke@435 3757 // The works fine even if the array type is polymorphic.
duke@435 3758 // It could be a dynamic mix of int[], boolean[], Object[], etc.
twisti@4313 3759 Node* result = load_array_length(array);
twisti@4313 3760
twisti@4313 3761 C->set_has_split_ifs(true); // Has chance for split-if optimization
twisti@4313 3762 set_result(result);
duke@435 3763 return true;
duke@435 3764 }
duke@435 3765
duke@435 3766 //------------------------inline_array_copyOf----------------------------
twisti@4313 3767 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType);
twisti@4313 3768 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType);
duke@435 3769 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
duke@435 3770 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 3771
twisti@4313 3772 // Get the arguments.
duke@435 3773 Node* original = argument(0);
duke@435 3774 Node* start = is_copyOfRange? argument(1): intcon(0);
duke@435 3775 Node* end = is_copyOfRange? argument(2): argument(1);
duke@435 3776 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
duke@435 3777
cfang@1337 3778 Node* newcopy;
cfang@1337 3779
twisti@4313 3780 // Set the original stack and the reexecute bit for the interpreter to reexecute
twisti@4313 3781 // the bytecode that invokes Arrays.copyOf if deoptimization happens.
cfang@1337 3782 { PreserveReexecuteState preexecs(this);
cfang@1337 3783 jvms()->set_should_reexecute(true);
cfang@1337 3784
twisti@4313 3785 array_type_mirror = null_check(array_type_mirror);
twisti@4313 3786 original = null_check(original);
cfang@1337 3787
cfang@1337 3788 // Check if a null path was taken unconditionally.
cfang@1337 3789 if (stopped()) return true;
cfang@1337 3790
cfang@1337 3791 Node* orig_length = load_array_length(original);
cfang@1337 3792
twisti@4313 3793 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
twisti@4313 3794 klass_node = null_check(klass_node);
cfang@1337 3795
kvn@4115 3796 RegionNode* bailout = new (C) RegionNode(1);
cfang@1337 3797 record_for_igvn(bailout);
cfang@1337 3798
cfang@1337 3799 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
cfang@1337 3800 // Bail out if that is so.
cfang@1337 3801 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
cfang@1337 3802 if (not_objArray != NULL) {
cfang@1337 3803 // Improve the klass node's type from the new optimistic assumption:
cfang@1337 3804 ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
cfang@1337 3805 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
kvn@4115 3806 Node* cast = new (C) CastPPNode(klass_node, akls);
cfang@1337 3807 cast->init_req(0, control());
cfang@1337 3808 klass_node = _gvn.transform(cast);
cfang@1337 3809 }
cfang@1337 3810
cfang@1337 3811 // Bail out if either start or end is negative.
cfang@1337 3812 generate_negative_guard(start, bailout, &start);
cfang@1337 3813 generate_negative_guard(end, bailout, &end);
cfang@1337 3814
cfang@1337 3815 Node* length = end;
cfang@1337 3816 if (_gvn.type(start) != TypeInt::ZERO) {
twisti@4313 3817 length = _gvn.transform(new (C) SubINode(end, start));
cfang@1337 3818 }
cfang@1337 3819
cfang@1337 3820 // Bail out if length is negative.
roland@3883 3821 // Without this the new_array would throw
roland@3883 3822 // NegativeArraySizeException but IllegalArgumentException is what
roland@3883 3823 // should be thrown
roland@3883 3824 generate_negative_guard(length, bailout, &length);
cfang@1337 3825
cfang@1337 3826 if (bailout->req() > 1) {
cfang@1337 3827 PreserveJVMState pjvms(this);
twisti@4313 3828 set_control(_gvn.transform(bailout));
cfang@1337 3829 uncommon_trap(Deoptimization::Reason_intrinsic,
cfang@1337 3830 Deoptimization::Action_maybe_recompile);
cfang@1337 3831 }
cfang@1337 3832
cfang@1337 3833 if (!stopped()) {
cfang@1335 3834 // How many elements will we copy from the original?
cfang@1335 3835 // The answer is MinI(orig_length - start, length).
twisti@4313 3836 Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
cfang@1335 3837 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
cfang@1335 3838
twisti@4313 3839 newcopy = new_array(klass_node, length, 0); // no argments to push
cfang@1335 3840
cfang@1335 3841 // Generate a direct call to the right arraycopy function(s).
cfang@1335 3842 // We know the copy is disjoint but we might not know if the
cfang@1335 3843 // oop stores need checking.
cfang@1335 3844 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class).
cfang@1335 3845 // This will fail a store-check if x contains any non-nulls.
cfang@1335 3846 bool disjoint_bases = true;
roland@3883 3847 // if start > orig_length then the length of the copy may be
roland@3883 3848 // negative.
roland@3883 3849 bool length_never_negative = !is_copyOfRange;
cfang@1335 3850 generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
cfang@1335 3851 original, start, newcopy, intcon(0), moved,
cfang@1335 3852 disjoint_bases, length_never_negative);
cfang@1337 3853 }
twisti@4313 3854 } // original reexecute is set back here
twisti@4313 3855
twisti@4313 3856 C->set_has_split_ifs(true); // Has chance for split-if optimization
twisti@4313 3857 if (!stopped()) {
twisti@4313 3858 set_result(newcopy);
duke@435 3859 }
duke@435 3860 return true;
duke@435 3861 }
duke@435 3862
duke@435 3863
duke@435 3864 //----------------------generate_virtual_guard---------------------------
duke@435 3865 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call.
duke@435 3866 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
duke@435 3867 RegionNode* slow_region) {
duke@435 3868 ciMethod* method = callee();
duke@435 3869 int vtable_index = method->vtable_index();
drchase@5732 3870 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
drchase@5732 3871 err_msg_res("bad index %d", vtable_index));
coleenp@4037 3872 // Get the Method* out of the appropriate vtable entry.
coleenp@4037 3873 int entry_offset = (InstanceKlass::vtable_start_offset() +
duke@435 3874 vtable_index*vtableEntry::size()) * wordSize +
duke@435 3875 vtableEntry::method_offset_in_bytes();
duke@435 3876 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset);
kvn@4199 3877 Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS);
duke@435 3878
duke@435 3879 // Compare the target method with the expected method (e.g., Object.hashCode).
coleenp@4037 3880 const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
duke@435 3881
duke@435 3882 Node* native_call = makecon(native_call_addr);
drchase@5353 3883 Node* chk_native = _gvn.transform(new(C) CmpPNode(target_call, native_call));
drchase@5353 3884 Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
duke@435 3885
duke@435 3886 return generate_slow_guard(test_native, slow_region);
duke@435 3887 }
duke@435 3888
duke@435 3889 //-----------------------generate_method_call----------------------------
duke@435 3890 // Use generate_method_call to make a slow-call to the real
duke@435 3891 // method if the fast path fails. An alternative would be to
duke@435 3892 // use a stub like OptoRuntime::slow_arraycopy_Java.
duke@435 3893 // This only works for expanding the current library call,
duke@435 3894 // not another intrinsic. (E.g., don't use this for making an
duke@435 3895 // arraycopy call inside of the copyOf intrinsic.)
duke@435 3896 CallJavaNode*
duke@435 3897 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
duke@435 3898 // When compiling the intrinsic method itself, do not use this technique.
duke@435 3899 guarantee(callee() != C->method(), "cannot make slow-call to self");
duke@435 3900
duke@435 3901 ciMethod* method = callee();
duke@435 3902 // ensure the JVMS we have will be correct for this call
duke@435 3903 guarantee(method_id == method->intrinsic_id(), "must match");
duke@435 3904
duke@435 3905 const TypeFunc* tf = TypeFunc::make(method);
duke@435 3906 CallJavaNode* slow_call;
duke@435 3907 if (is_static) {
duke@435 3908 assert(!is_virtual, "");
kvn@5110 3909 slow_call = new(C) CallStaticJavaNode(C, tf,
kvn@4115 3910 SharedRuntime::get_resolve_static_call_stub(),
kvn@4115 3911 method, bci());
duke@435 3912 } else if (is_virtual) {
twisti@4313 3913 null_check_receiver();
coleenp@4037 3914 int vtable_index = Method::invalid_vtable_index;
duke@435 3915 if (UseInlineCaches) {
duke@435 3916 // Suppress the vtable call
duke@435 3917 } else {
duke@435 3918 // hashCode and clone are not a miranda methods,
duke@435 3919 // so the vtable index is fixed.
duke@435 3920 // No need to use the linkResolver to get it.
duke@435 3921 vtable_index = method->vtable_index();
drchase@5732 3922 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
drchase@5732 3923 err_msg_res("bad index %d", vtable_index));
duke@435 3924 }
kvn@4115 3925 slow_call = new(C) CallDynamicJavaNode(tf,
kvn@4115 3926 SharedRuntime::get_resolve_virtual_call_stub(),
kvn@4115 3927 method, vtable_index, bci());
duke@435 3928 } else { // neither virtual nor static: opt_virtual
twisti@4313 3929 null_check_receiver();
kvn@5110 3930 slow_call = new(C) CallStaticJavaNode(C, tf,
duke@435 3931 SharedRuntime::get_resolve_opt_virtual_call_stub(),
duke@435 3932 method, bci());
duke@435 3933 slow_call->set_optimized_virtual(true);
duke@435 3934 }
duke@435 3935 set_arguments_for_java_call(slow_call);
duke@435 3936 set_edges_for_java_call(slow_call);
duke@435 3937 return slow_call;
duke@435 3938 }
duke@435 3939
duke@435 3940
duke@435 3941 //------------------------------inline_native_hashcode--------------------
duke@435 3942 // Build special case code for calls to hashCode on an object.
duke@435 3943 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
duke@435 3944 assert(is_static == callee()->is_static(), "correct intrinsic selection");
duke@435 3945 assert(!(is_virtual && is_static), "either virtual, special, or static");
duke@435 3946
duke@435 3947 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
duke@435 3948
kvn@4115 3949 RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
kvn@4115 3950 PhiNode* result_val = new(C) PhiNode(result_reg,
kvn@4115 3951 TypeInt::INT);
kvn@4115 3952 PhiNode* result_io = new(C) PhiNode(result_reg, Type::ABIO);
kvn@4115 3953 PhiNode* result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
kvn@4115 3954 TypePtr::BOTTOM);
duke@435 3955 Node* obj = NULL;
duke@435 3956 if (!is_static) {
duke@435 3957 // Check for hashing null object
twisti@4313 3958 obj = null_check_receiver();
duke@435 3959 if (stopped()) return true; // unconditionally null
duke@435 3960 result_reg->init_req(_null_path, top());
duke@435 3961 result_val->init_req(_null_path, top());
duke@435 3962 } else {
duke@435 3963 // Do a null check, and return zero if null.
duke@435 3964 // System.identityHashCode(null) == 0
duke@435 3965 obj = argument(0);
duke@435 3966 Node* null_ctl = top();
duke@435 3967 obj = null_check_oop(obj, &null_ctl);
duke@435 3968 result_reg->init_req(_null_path, null_ctl);
duke@435 3969 result_val->init_req(_null_path, _gvn.intcon(0));
duke@435 3970 }
duke@435 3971
duke@435 3972 // Unconditionally null? Then return right away.
duke@435 3973 if (stopped()) {
twisti@4313 3974 set_control( result_reg->in(_null_path));
duke@435 3975 if (!stopped())
twisti@4313 3976 set_result(result_val->in(_null_path));
duke@435 3977 return true;
duke@435 3978 }
duke@435 3979
duke@435 3980 // After null check, get the object's klass.
duke@435 3981 Node* obj_klass = load_object_klass(obj);
duke@435 3982
duke@435 3983 // This call may be virtual (invokevirtual) or bound (invokespecial).
duke@435 3984 // For each case we generate slightly different code.
duke@435 3985
duke@435 3986 // We only go to the fast case code if we pass a number of guards. The
duke@435 3987 // paths which do not pass are accumulated in the slow_region.
kvn@4115 3988 RegionNode* slow_region = new (C) RegionNode(1);
duke@435 3989 record_for_igvn(slow_region);
duke@435 3990
duke@435 3991 // If this is a virtual call, we generate a funny guard. We pull out
duke@435 3992 // the vtable entry corresponding to hashCode() from the target object.
duke@435 3993 // If the target method which we are calling happens to be the native
duke@435 3994 // Object hashCode() method, we pass the guard. We do not need this
duke@435 3995 // guard for non-virtual calls -- the caller is known to be the native
duke@435 3996 // Object hashCode().
duke@435 3997 if (is_virtual) {
duke@435 3998 generate_virtual_guard(obj_klass, slow_region);
duke@435 3999 }
duke@435 4000
duke@435 4001 // Get the header out of the object, use LoadMarkNode when available
duke@435 4002 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
kvn@1964 4003 Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
duke@435 4004
duke@435 4005 // Test the header to see if it is unlocked.
duke@435 4006 Node *lock_mask = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
drchase@5353 4007 Node *lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
duke@435 4008 Node *unlocked_val = _gvn.MakeConX(markOopDesc::unlocked_value);
drchase@5353 4009 Node *chk_unlocked = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
drchase@5353 4010 Node *test_unlocked = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
duke@435 4011
duke@435 4012 generate_slow_guard(test_unlocked, slow_region);
duke@435 4013
duke@435 4014 // Get the hash value and check to see that it has been properly assigned.
duke@435 4015 // We depend on hash_mask being at most 32 bits and avoid the use of
duke@435 4016 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
duke@435 4017 // vm: see markOop.hpp.
duke@435 4018 Node *hash_mask = _gvn.intcon(markOopDesc::hash_mask);
duke@435 4019 Node *hash_shift = _gvn.intcon(markOopDesc::hash_shift);
drchase@5353 4020 Node *hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
duke@435 4021 // This hack lets the hash bits live anywhere in the mark object now, as long
twisti@1040 4022 // as the shift drops the relevant bits into the low 32 bits. Note that
duke@435 4023 // Java spec says that HashCode is an int so there's no point in capturing
duke@435 4024 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
duke@435 4025 hshifted_header = ConvX2I(hshifted_header);
drchase@5353 4026 Node *hash_val = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
duke@435 4027
duke@435 4028 Node *no_hash_val = _gvn.intcon(markOopDesc::no_hash);
drchase@5353 4029 Node *chk_assigned = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
drchase@5353 4030 Node *test_assigned = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
duke@435 4031
duke@435 4032 generate_slow_guard(test_assigned, slow_region);
duke@435 4033
duke@435 4034 Node* init_mem = reset_memory();
duke@435 4035 // fill in the rest of the null path:
duke@435 4036 result_io ->init_req(_null_path, i_o());
duke@435 4037 result_mem->init_req(_null_path, init_mem);
duke@435 4038
duke@435 4039 result_val->init_req(_fast_path, hash_val);
duke@435 4040 result_reg->init_req(_fast_path, control());
duke@435 4041 result_io ->init_req(_fast_path, i_o());
duke@435 4042 result_mem->init_req(_fast_path, init_mem);
duke@435 4043
duke@435 4044 // Generate code for the slow case. We make a call to hashCode().
duke@435 4045 set_control(_gvn.transform(slow_region));
duke@435 4046 if (!stopped()) {
duke@435 4047 // No need for PreserveJVMState, because we're using up the present state.
duke@435 4048 set_all_memory(init_mem);
twisti@4313 4049 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
duke@435 4050 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
duke@435 4051 Node* slow_result = set_results_for_java_call(slow_call);
duke@435 4052 // this->control() comes from set_results_for_java_call
duke@435 4053 result_reg->init_req(_slow_path, control());
duke@435 4054 result_val->init_req(_slow_path, slow_result);
duke@435 4055 result_io ->set_req(_slow_path, i_o());
duke@435 4056 result_mem ->set_req(_slow_path, reset_memory());
duke@435 4057 }
duke@435 4058
duke@435 4059 // Return the combined state.
duke@435 4060 set_i_o( _gvn.transform(result_io) );
drchase@5353 4061 set_all_memory( _gvn.transform(result_mem));
twisti@4313 4062
twisti@4313 4063 set_result(result_reg, result_val);
duke@435 4064 return true;
duke@435 4065 }
duke@435 4066
duke@435 4067 //---------------------------inline_native_getClass----------------------------
twisti@4313 4068 // public final native Class<?> java.lang.Object.getClass();
twisti@4313 4069 //
twisti@1040 4070 // Build special case code for calls to getClass on an object.
duke@435 4071 bool LibraryCallKit::inline_native_getClass() {
twisti@4313 4072 Node* obj = null_check_receiver();
duke@435 4073 if (stopped()) return true;
twisti@4313 4074 set_result(load_mirror_from_klass(load_object_klass(obj)));
duke@435 4075 return true;
duke@435 4076 }
duke@435 4077
duke@435 4078 //-----------------inline_native_Reflection_getCallerClass---------------------
twisti@4866 4079 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
twisti@4313 4080 //
duke@435 4081 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
duke@435 4082 //
twisti@4866 4083 // NOTE: This code must perform the same logic as JVM_GetCallerClass
twisti@4866 4084 // in that it must skip particular security frames and checks for
twisti@4866 4085 // caller sensitive methods.
duke@435 4086 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
duke@435 4087 #ifndef PRODUCT
kvn@5763 4088 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
duke@435 4089 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
duke@435 4090 }
duke@435 4091 #endif
duke@435 4092
duke@435 4093 if (!jvms()->has_method()) {
duke@435 4094 #ifndef PRODUCT
kvn@5763 4095 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
duke@435 4096 tty->print_cr(" Bailing out because intrinsic was inlined at top level");
duke@435 4097 }
duke@435 4098 #endif
duke@435 4099 return false;
duke@435 4100 }
duke@435 4101
duke@435 4102 // Walk back up the JVM state to find the caller at the required
twisti@4866 4103 // depth.
twisti@4866 4104 JVMState* caller_jvms = jvms();
twisti@4866 4105
twisti@4866 4106 // Cf. JVM_GetCallerClass
twisti@4866 4107 // NOTE: Start the loop at depth 1 because the current JVM state does
twisti@4866 4108 // not include the Reflection.getCallerClass() frame.
twisti@4866 4109 for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
twisti@4866 4110 ciMethod* m = caller_jvms->method();
twisti@4866 4111 switch (n) {
twisti@4866 4112 case 0:
twisti@4866 4113 fatal("current JVM state does not include the Reflection.getCallerClass frame");
twisti@4866 4114 break;
twisti@4866 4115 case 1:
twisti@4866 4116 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
twisti@4866 4117 if (!m->caller_sensitive()) {
twisti@4866 4118 #ifndef PRODUCT
kvn@5763 4119 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
twisti@4866 4120 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n);
twisti@4866 4121 }
twisti@4866 4122 #endif
twisti@4866 4123 return false; // bail-out; let JVM_GetCallerClass do the work
duke@435 4124 }
twisti@4866 4125 break;
twisti@4866 4126 default:
twisti@4866 4127 if (!m->is_ignored_by_security_stack_walk()) {
twisti@4866 4128 // We have reached the desired frame; return the holder class.
twisti@4866 4129 // Acquire method holder as java.lang.Class and push as constant.
twisti@4866 4130 ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
twisti@4866 4131 ciInstance* caller_mirror = caller_klass->java_mirror();
twisti@4866 4132 set_result(makecon(TypeInstPtr::make(caller_mirror)));
twisti@4866 4133
twisti@4866 4134 #ifndef PRODUCT
kvn@5763 4135 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
twisti@4866 4136 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
twisti@4866 4137 tty->print_cr(" JVM state at this point:");
twisti@4866 4138 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
twisti@4866 4139 ciMethod* m = jvms()->of_depth(i)->method();
twisti@4866 4140 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
twisti@4866 4141 }
twisti@4866 4142 }
twisti@4866 4143 #endif
twisti@4866 4144 return true;
twisti@4866 4145 }
twisti@4866 4146 break;
twisti@4866 4147 }
duke@435 4148 }
duke@435 4149
duke@435 4150 #ifndef PRODUCT
kvn@5763 4151 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
twisti@4866 4152 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
duke@435 4153 tty->print_cr(" JVM state at this point:");
twisti@4866 4154 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
twisti@4313 4155 ciMethod* m = jvms()->of_depth(i)->method();
twisti@4866 4156 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
duke@435 4157 }
duke@435 4158 }
duke@435 4159 #endif
twisti@4866 4160
twisti@4866 4161 return false; // bail-out; let JVM_GetCallerClass do the work
duke@435 4162 }
duke@435 4163
duke@435 4164 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
twisti@4313 4165 Node* arg = argument(0);
twisti@4313 4166 Node* result;
duke@435 4167
duke@435 4168 switch (id) {
twisti@4313 4169 case vmIntrinsics::_floatToRawIntBits: result = new (C) MoveF2INode(arg); break;
twisti@4313 4170 case vmIntrinsics::_intBitsToFloat: result = new (C) MoveI2FNode(arg); break;
twisti@4313 4171 case vmIntrinsics::_doubleToRawLongBits: result = new (C) MoveD2LNode(arg); break;
twisti@4313 4172 case vmIntrinsics::_longBitsToDouble: result = new (C) MoveL2DNode(arg); break;
duke@435 4173
duke@435 4174 case vmIntrinsics::_doubleToLongBits: {
duke@435 4175 // two paths (plus control) merge in a wood
kvn@4115 4176 RegionNode *r = new (C) RegionNode(3);
kvn@4115 4177 Node *phi = new (C) PhiNode(r, TypeLong::LONG);
kvn@4115 4178
twisti@4313 4179 Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
duke@435 4180 // Build the boolean node
twisti@4313 4181 Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
duke@435 4182
duke@435 4183 // Branch either way.
duke@435 4184 // NaN case is less traveled, which makes all the difference.
duke@435 4185 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
duke@435 4186 Node *opt_isnan = _gvn.transform(ifisnan);
duke@435 4187 assert( opt_isnan->is_If(), "Expect an IfNode");
duke@435 4188 IfNode *opt_ifisnan = (IfNode*)opt_isnan;
drchase@5353 4189 Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
duke@435 4190
duke@435 4191 set_control(iftrue);
duke@435 4192
duke@435 4193 static const jlong nan_bits = CONST64(0x7ff8000000000000);
duke@435 4194 Node *slow_result = longcon(nan_bits); // return NaN
duke@435 4195 phi->init_req(1, _gvn.transform( slow_result ));
duke@435 4196 r->init_req(1, iftrue);
duke@435 4197
duke@435 4198 // Else fall through
twisti@4313 4199 Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
duke@435 4200 set_control(iffalse);
duke@435 4201
twisti@4313 4202 phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
duke@435 4203 r->init_req(2, iffalse);
duke@435 4204
duke@435 4205 // Post merge
duke@435 4206 set_control(_gvn.transform(r));
duke@435 4207 record_for_igvn(r);
duke@435 4208
twisti@4313 4209 C->set_has_split_ifs(true); // Has chance for split-if optimization
twisti@4313 4210 result = phi;
duke@435 4211 assert(result->bottom_type()->isa_long(), "must be");
duke@435 4212 break;
duke@435 4213 }
duke@435 4214
duke@435 4215 case vmIntrinsics::_floatToIntBits: {
duke@435 4216 // two paths (plus control) merge in a wood
kvn@4115 4217 RegionNode *r = new (C) RegionNode(3);
kvn@4115 4218 Node *phi = new (C) PhiNode(r, TypeInt::INT);
kvn@4115 4219
twisti@4313 4220 Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
duke@435 4221 // Build the boolean node
twisti@4313 4222 Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
duke@435 4223
duke@435 4224 // Branch either way.
duke@435 4225 // NaN case is less traveled, which makes all the difference.
duke@435 4226 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
duke@435 4227 Node *opt_isnan = _gvn.transform(ifisnan);
duke@435 4228 assert( opt_isnan->is_If(), "Expect an IfNode");
duke@435 4229 IfNode *opt_ifisnan = (IfNode*)opt_isnan;
drchase@5353 4230 Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
duke@435 4231
duke@435 4232 set_control(iftrue);
duke@435 4233
duke@435 4234 static const jint nan_bits = 0x7fc00000;
duke@435 4235 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
duke@435 4236 phi->init_req(1, _gvn.transform( slow_result ));
duke@435 4237 r->init_req(1, iftrue);
duke@435 4238
duke@435 4239 // Else fall through
twisti@4313 4240 Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
duke@435 4241 set_control(iffalse);
duke@435 4242
twisti@4313 4243 phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
duke@435 4244 r->init_req(2, iffalse);
duke@435 4245
duke@435 4246 // Post merge
duke@435 4247 set_control(_gvn.transform(r));
duke@435 4248 record_for_igvn(r);
duke@435 4249
twisti@4313 4250 C->set_has_split_ifs(true); // Has chance for split-if optimization
twisti@4313 4251 result = phi;
duke@435 4252 assert(result->bottom_type()->isa_int(), "must be");
duke@435 4253 break;
duke@435 4254 }
duke@435 4255
duke@435 4256 default:
twisti@4313 4257 fatal_unexpected_iid(id);
twisti@4313 4258 break;
duke@435 4259 }
twisti@4313 4260 set_result(_gvn.transform(result));
duke@435 4261 return true;
duke@435 4262 }
duke@435 4263
duke@435 4264 #ifdef _LP64
duke@435 4265 #define XTOP ,top() /*additional argument*/
duke@435 4266 #else //_LP64
duke@435 4267 #define XTOP /*no additional argument*/
duke@435 4268 #endif //_LP64
duke@435 4269
duke@435 4270 //----------------------inline_unsafe_copyMemory-------------------------
twisti@4313 4271 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
duke@435 4272 bool LibraryCallKit::inline_unsafe_copyMemory() {
duke@435 4273 if (callee()->is_static()) return false; // caller must have the capability!
twisti@4313 4274 null_check_receiver(); // null-check receiver
duke@435 4275 if (stopped()) return true;
duke@435 4276
duke@435 4277 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 4278
twisti@4313 4279 Node* src_ptr = argument(1); // type: oop
twisti@4313 4280 Node* src_off = ConvL2X(argument(2)); // type: long
twisti@4313 4281 Node* dst_ptr = argument(4); // type: oop
twisti@4313 4282 Node* dst_off = ConvL2X(argument(5)); // type: long
twisti@4313 4283 Node* size = ConvL2X(argument(7)); // type: long
duke@435 4284
duke@435 4285 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
duke@435 4286 "fieldOffset must be byte-scaled");
duke@435 4287
duke@435 4288 Node* src = make_unsafe_address(src_ptr, src_off);
duke@435 4289 Node* dst = make_unsafe_address(dst_ptr, dst_off);
duke@435 4290
duke@435 4291 // Conservatively insert a memory barrier on all memory slices.
duke@435 4292 // Do not let writes of the copy source or destination float below the copy.
duke@435 4293 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4294
duke@435 4295 // Call it. Note that the length argument is not scaled.
duke@435 4296 make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 4297 OptoRuntime::fast_arraycopy_Type(),
duke@435 4298 StubRoutines::unsafe_arraycopy(),
duke@435 4299 "unsafe_arraycopy",
duke@435 4300 TypeRawPtr::BOTTOM,
duke@435 4301 src, dst, size XTOP);
duke@435 4302
duke@435 4303 // Do not let reads of the copy destination float above the copy.
duke@435 4304 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4305
duke@435 4306 return true;
duke@435 4307 }
duke@435 4308
kvn@1268 4309 //------------------------clone_coping-----------------------------------
kvn@1268 4310 // Helper function for inline_native_clone.
kvn@1268 4311 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
kvn@1268 4312 assert(obj_size != NULL, "");
kvn@1268 4313 Node* raw_obj = alloc_obj->in(1);
kvn@1268 4314 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
kvn@1268 4315
roland@3392 4316 AllocateNode* alloc = NULL;
kvn@1268 4317 if (ReduceBulkZeroing) {
kvn@1268 4318 // We will be completely responsible for initializing this object -
kvn@1268 4319 // mark Initialize node as complete.
roland@3392 4320 alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
kvn@1268 4321 // The object was just allocated - there should be no any stores!
kvn@1268 4322 guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
roland@3392 4323 // Mark as complete_with_arraycopy so that on AllocateNode
roland@3392 4324 // expansion, we know this AllocateNode is initialized by an array
roland@3392 4325 // copy and a StoreStore barrier exists after the array copy.
roland@3392 4326 alloc->initialization()->set_complete_with_arraycopy();
kvn@1268 4327 }
kvn@1268 4328
kvn@1268 4329 // Copy the fastest available way.
kvn@1268 4330 // TODO: generate fields copies for small objects instead.
kvn@1268 4331 Node* src = obj;
kvn@1393 4332 Node* dest = alloc_obj;
kvn@1268 4333 Node* size = _gvn.transform(obj_size);
kvn@1268 4334
kvn@1268 4335 // Exclude the header but include array length to copy by 8 bytes words.
kvn@1268 4336 // Can't use base_offset_in_bytes(bt) since basic type is unknown.
kvn@1268 4337 int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
kvn@1268 4338 instanceOopDesc::base_offset_in_bytes();
kvn@1268 4339 // base_off:
kvn@1268 4340 // 8 - 32-bit VM
coleenp@4037 4341 // 12 - 64-bit VM, compressed klass
coleenp@4037 4342 // 16 - 64-bit VM, normal klass
kvn@1268 4343 if (base_off % BytesPerLong != 0) {
ehelin@5694 4344 assert(UseCompressedClassPointers, "");
kvn@1268 4345 if (is_array) {
kvn@1268 4346 // Exclude length to copy by 8 bytes words.
kvn@1268 4347 base_off += sizeof(int);
kvn@1268 4348 } else {
kvn@1268 4349 // Include klass to copy by 8 bytes words.
kvn@1268 4350 base_off = instanceOopDesc::klass_offset_in_bytes();
kvn@1268 4351 }
kvn@1268 4352 assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
kvn@1268 4353 }
kvn@1268 4354 src = basic_plus_adr(src, base_off);
kvn@1268 4355 dest = basic_plus_adr(dest, base_off);
kvn@1268 4356
kvn@1268 4357 // Compute the length also, if needed:
kvn@1268 4358 Node* countx = size;
drchase@5353 4359 countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
drchase@5353 4360 countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
kvn@1268 4361
kvn@1268 4362 const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
kvn@1268 4363 bool disjoint_bases = true;
kvn@1268 4364 generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
iveresov@2606 4365 src, NULL, dest, NULL, countx,
iveresov@2606 4366 /*dest_uninitialized*/true);
kvn@1268 4367
kvn@1268 4368 // If necessary, emit some card marks afterwards. (Non-arrays only.)
kvn@1268 4369 if (card_mark) {
kvn@1268 4370 assert(!is_array, "");
kvn@1268 4371 // Put in store barrier for any and all oops we are sticking
kvn@1268 4372 // into this object. (We could avoid this if we could prove
kvn@1268 4373 // that the object type contains no oop fields at all.)
kvn@1268 4374 Node* no_particular_value = NULL;
kvn@1268 4375 Node* no_particular_field = NULL;
kvn@1268 4376 int raw_adr_idx = Compile::AliasIdxRaw;
kvn@1268 4377 post_barrier(control(),
kvn@1268 4378 memory(raw_adr_type),
kvn@1393 4379 alloc_obj,
kvn@1268 4380 no_particular_field,
kvn@1268 4381 raw_adr_idx,
kvn@1268 4382 no_particular_value,
kvn@1268 4383 T_OBJECT,
kvn@1268 4384 false);
kvn@1268 4385 }
kvn@1268 4386
kvn@1393 4387 // Do not let reads from the cloned object float above the arraycopy.
roland@3392 4388 if (alloc != NULL) {
roland@3392 4389 // Do not let stores that initialize this object be reordered with
roland@3392 4390 // a subsequent store that would make this object accessible by
roland@3392 4391 // other threads.
roland@3392 4392 // Record what AllocateNode this StoreStore protects so that
roland@3392 4393 // escape analysis can go from the MemBarStoreStoreNode to the
roland@3392 4394 // AllocateNode and eliminate the MemBarStoreStoreNode if possible
roland@3392 4395 // based on the escape status of the AllocateNode.
roland@3392 4396 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
roland@3392 4397 } else {
roland@3392 4398 insert_mem_bar(Op_MemBarCPUOrder);
roland@3392 4399 }
kvn@1268 4400 }
duke@435 4401
duke@435 4402 //------------------------inline_native_clone----------------------------
twisti@4313 4403 // protected native Object java.lang.Object.clone();
twisti@4313 4404 //
duke@435 4405 // Here are the simple edge cases:
duke@435 4406 // null receiver => normal trap
duke@435 4407 // virtual and clone was overridden => slow path to out-of-line clone
duke@435 4408 // not cloneable or finalizer => slow path to out-of-line Object.clone
duke@435 4409 //
duke@435 4410 // The general case has two steps, allocation and copying.
duke@435 4411 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
duke@435 4412 //
duke@435 4413 // Copying also has two cases, oop arrays and everything else.
duke@435 4414 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
duke@435 4415 // Everything else uses the tight inline loop supplied by CopyArrayNode.
duke@435 4416 //
duke@435 4417 // These steps fold up nicely if and when the cloned object's klass
duke@435 4418 // can be sharply typed as an object array, a type array, or an instance.
duke@435 4419 //
duke@435 4420 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
cfang@1337 4421 PhiNode* result_val;
duke@435 4422
twisti@4313 4423 // Set the reexecute bit for the interpreter to reexecute
twisti@4313 4424 // the bytecode that invokes Object.clone if deoptimization happens.
cfang@1335 4425 { PreserveReexecuteState preexecs(this);
cfang@1337 4426 jvms()->set_should_reexecute(true);
cfang@1337 4427
twisti@4313 4428 Node* obj = null_check_receiver();
cfang@1337 4429 if (stopped()) return true;
cfang@1337 4430
cfang@1337 4431 Node* obj_klass = load_object_klass(obj);
cfang@1337 4432 const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
cfang@1337 4433 const TypeOopPtr* toop = ((tklass != NULL)
cfang@1337 4434 ? tklass->as_instance_type()
cfang@1337 4435 : TypeInstPtr::NOTNULL);
cfang@1337 4436
cfang@1337 4437 // Conservatively insert a memory barrier on all memory slices.
cfang@1337 4438 // Do not let writes into the original float below the clone.
cfang@1337 4439 insert_mem_bar(Op_MemBarCPUOrder);
cfang@1337 4440
cfang@1337 4441 // paths into result_reg:
cfang@1337 4442 enum {
cfang@1337 4443 _slow_path = 1, // out-of-line call to clone method (virtual or not)
cfang@1337 4444 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy
cfang@1337 4445 _array_path, // plain array allocation, plus arrayof_long_arraycopy
cfang@1337 4446 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy
cfang@1337 4447 PATH_LIMIT
cfang@1337 4448 };
kvn@4115 4449 RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
kvn@4115 4450 result_val = new(C) PhiNode(result_reg,
kvn@4115 4451 TypeInstPtr::NOTNULL);
kvn@4115 4452 PhiNode* result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
kvn@4115 4453 PhiNode* result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
kvn@4115 4454 TypePtr::BOTTOM);
cfang@1337 4455 record_for_igvn(result_reg);
cfang@1337 4456
cfang@1337 4457 const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
cfang@1337 4458 int raw_adr_idx = Compile::AliasIdxRaw;
cfang@1335 4459
cfang@1335 4460 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
cfang@1335 4461 if (array_ctl != NULL) {
cfang@1335 4462 // It's an array.
cfang@1335 4463 PreserveJVMState pjvms(this);
cfang@1335 4464 set_control(array_ctl);
cfang@1335 4465 Node* obj_length = load_array_length(obj);
cfang@1335 4466 Node* obj_size = NULL;
twisti@4313 4467 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size); // no arguments to push
cfang@1335 4468
cfang@1335 4469 if (!use_ReduceInitialCardMarks()) {
cfang@1335 4470 // If it is an oop array, it requires very special treatment,
cfang@1335 4471 // because card marking is required on each card of the array.
cfang@1335 4472 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
cfang@1335 4473 if (is_obja != NULL) {
cfang@1335 4474 PreserveJVMState pjvms2(this);
cfang@1335 4475 set_control(is_obja);
cfang@1335 4476 // Generate a direct call to the right arraycopy function(s).
cfang@1335 4477 bool disjoint_bases = true;
cfang@1335 4478 bool length_never_negative = true;
cfang@1335 4479 generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
cfang@1335 4480 obj, intcon(0), alloc_obj, intcon(0),
cfang@1335 4481 obj_length,
cfang@1335 4482 disjoint_bases, length_never_negative);
cfang@1335 4483 result_reg->init_req(_objArray_path, control());
cfang@1335 4484 result_val->init_req(_objArray_path, alloc_obj);
cfang@1335 4485 result_i_o ->set_req(_objArray_path, i_o());
cfang@1335 4486 result_mem ->set_req(_objArray_path, reset_memory());
cfang@1335 4487 }
cfang@1335 4488 }
cfang@1335 4489 // Otherwise, there are no card marks to worry about.
ysr@1462 4490 // (We can dispense with card marks if we know the allocation
ysr@1462 4491 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks
ysr@1462 4492 // causes the non-eden paths to take compensating steps to
ysr@1462 4493 // simulate a fresh allocation, so that no further
ysr@1462 4494 // card marks are required in compiled code to initialize
ysr@1462 4495 // the object.)
cfang@1335 4496
cfang@1335 4497 if (!stopped()) {
cfang@1335 4498 copy_to_clone(obj, alloc_obj, obj_size, true, false);
cfang@1335 4499
cfang@1335 4500 // Present the results of the copy.
cfang@1335 4501 result_reg->init_req(_array_path, control());
cfang@1335 4502 result_val->init_req(_array_path, alloc_obj);
cfang@1335 4503 result_i_o ->set_req(_array_path, i_o());
cfang@1335 4504 result_mem ->set_req(_array_path, reset_memory());
duke@435 4505 }
duke@435 4506 }
cfang@1335 4507
cfang@1335 4508 // We only go to the instance fast case code if we pass a number of guards.
cfang@1335 4509 // The paths which do not pass are accumulated in the slow_region.
kvn@4115 4510 RegionNode* slow_region = new (C) RegionNode(1);
cfang@1335 4511 record_for_igvn(slow_region);
kvn@1268 4512 if (!stopped()) {
cfang@1335 4513 // It's an instance (we did array above). Make the slow-path tests.
cfang@1335 4514 // If this is a virtual call, we generate a funny guard. We grab
cfang@1335 4515 // the vtable entry corresponding to clone() from the target object.
cfang@1335 4516 // If the target method which we are calling happens to be the
cfang@1335 4517 // Object clone() method, we pass the guard. We do not need this
cfang@1335 4518 // guard for non-virtual calls; the caller is known to be the native
cfang@1335 4519 // Object clone().
cfang@1335 4520 if (is_virtual) {
cfang@1335 4521 generate_virtual_guard(obj_klass, slow_region);
cfang@1335 4522 }
cfang@1335 4523
cfang@1335 4524 // The object must be cloneable and must not have a finalizer.
cfang@1335 4525 // Both of these conditions may be checked in a single test.
cfang@1335 4526 // We could optimize the cloneable test further, but we don't care.
cfang@1335 4527 generate_access_flags_guard(obj_klass,
cfang@1335 4528 // Test both conditions:
cfang@1335 4529 JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
cfang@1335 4530 // Must be cloneable but not finalizer:
cfang@1335 4531 JVM_ACC_IS_CLONEABLE,
cfang@1335 4532 slow_region);
kvn@1268 4533 }
cfang@1335 4534
cfang@1335 4535 if (!stopped()) {
cfang@1335 4536 // It's an instance, and it passed the slow-path tests.
cfang@1335 4537 PreserveJVMState pjvms(this);
cfang@1335 4538 Node* obj_size = NULL;
kvn@2810 4539 Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
cfang@1335 4540
cfang@1335 4541 copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
cfang@1335 4542
cfang@1335 4543 // Present the results of the slow call.
cfang@1335 4544 result_reg->init_req(_instance_path, control());
cfang@1335 4545 result_val->init_req(_instance_path, alloc_obj);
cfang@1335 4546 result_i_o ->set_req(_instance_path, i_o());
cfang@1335 4547 result_mem ->set_req(_instance_path, reset_memory());
duke@435 4548 }
duke@435 4549
cfang@1335 4550 // Generate code for the slow case. We make a call to clone().
cfang@1335 4551 set_control(_gvn.transform(slow_region));
cfang@1335 4552 if (!stopped()) {
cfang@1335 4553 PreserveJVMState pjvms(this);
cfang@1335 4554 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
cfang@1335 4555 Node* slow_result = set_results_for_java_call(slow_call);
cfang@1335 4556 // this->control() comes from set_results_for_java_call
cfang@1335 4557 result_reg->init_req(_slow_path, control());
cfang@1335 4558 result_val->init_req(_slow_path, slow_result);
cfang@1335 4559 result_i_o ->set_req(_slow_path, i_o());
cfang@1335 4560 result_mem ->set_req(_slow_path, reset_memory());
cfang@1335 4561 }
cfang@1337 4562
cfang@1337 4563 // Return the combined state.
drchase@5353 4564 set_control( _gvn.transform(result_reg));
drchase@5353 4565 set_i_o( _gvn.transform(result_i_o));
drchase@5353 4566 set_all_memory( _gvn.transform(result_mem));
twisti@4313 4567 } // original reexecute is set back here
twisti@4313 4568
twisti@4313 4569 set_result(_gvn.transform(result_val));
duke@435 4570 return true;
duke@435 4571 }
duke@435 4572
duke@435 4573 //------------------------------basictype2arraycopy----------------------------
duke@435 4574 address LibraryCallKit::basictype2arraycopy(BasicType t,
duke@435 4575 Node* src_offset,
duke@435 4576 Node* dest_offset,
duke@435 4577 bool disjoint_bases,
iveresov@2606 4578 const char* &name,
iveresov@2606 4579 bool dest_uninitialized) {
duke@435 4580 const TypeInt* src_offset_inttype = gvn().find_int_type(src_offset);;
duke@435 4581 const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
duke@435 4582
duke@435 4583 bool aligned = false;
duke@435 4584 bool disjoint = disjoint_bases;
duke@435 4585
duke@435 4586 // if the offsets are the same, we can treat the memory regions as
duke@435 4587 // disjoint, because either the memory regions are in different arrays,
duke@435 4588 // or they are identical (which we can treat as disjoint.) We can also
duke@435 4589 // treat a copy with a destination index less that the source index
duke@435 4590 // as disjoint since a low->high copy will work correctly in this case.
duke@435 4591 if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
duke@435 4592 dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
duke@435 4593 // both indices are constants
duke@435 4594 int s_offs = src_offset_inttype->get_con();
duke@435 4595 int d_offs = dest_offset_inttype->get_con();
kvn@464 4596 int element_size = type2aelembytes(t);
duke@435 4597 aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
duke@435 4598 ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
duke@435 4599 if (s_offs >= d_offs) disjoint = true;
duke@435 4600 } else if (src_offset == dest_offset && src_offset != NULL) {
duke@435 4601 // This can occur if the offsets are identical non-constants.
duke@435 4602 disjoint = true;
duke@435 4603 }
duke@435 4604
roland@2728 4605 return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
duke@435 4606 }
duke@435 4607
duke@435 4608
duke@435 4609 //------------------------------inline_arraycopy-----------------------
twisti@4313 4610 // public static native void java.lang.System.arraycopy(Object src, int srcPos,
twisti@4313 4611 // Object dest, int destPos,
twisti@4313 4612 // int length);
duke@435 4613 bool LibraryCallKit::inline_arraycopy() {
twisti@4313 4614 // Get the arguments.
twisti@4313 4615 Node* src = argument(0); // type: oop
twisti@4313 4616 Node* src_offset = argument(1); // type: int
twisti@4313 4617 Node* dest = argument(2); // type: oop
twisti@4313 4618 Node* dest_offset = argument(3); // type: int
twisti@4313 4619 Node* length = argument(4); // type: int
duke@435 4620
duke@435 4621 // Compile time checks. If any of these checks cannot be verified at compile time,
duke@435 4622 // we do not make a fast path for this call. Instead, we let the call remain as it
duke@435 4623 // is. The checks we choose to mandate at compile time are:
duke@435 4624 //
duke@435 4625 // (1) src and dest are arrays.
twisti@4313 4626 const Type* src_type = src->Value(&_gvn);
duke@435 4627 const Type* dest_type = dest->Value(&_gvn);
twisti@4313 4628 const TypeAryPtr* top_src = src_type->isa_aryptr();
duke@435 4629 const TypeAryPtr* top_dest = dest_type->isa_aryptr();
roland@5991 4630
roland@5991 4631 // Do we have the type of src?
roland@5991 4632 bool has_src = (top_src != NULL && top_src->klass() != NULL);
roland@5991 4633 // Do we have the type of dest?
roland@5991 4634 bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
roland@5991 4635 // Is the type for src from speculation?
roland@5991 4636 bool src_spec = false;
roland@5991 4637 // Is the type for dest from speculation?
roland@5991 4638 bool dest_spec = false;
roland@5991 4639
roland@5991 4640 if (!has_src || !has_dest) {
roland@5991 4641 // We don't have sufficient type information, let's see if
roland@5991 4642 // speculative types can help. We need to have types for both src
roland@5991 4643 // and dest so that it pays off.
roland@5991 4644
roland@5991 4645 // Do we already have or could we have type information for src
roland@5991 4646 bool could_have_src = has_src;
roland@5991 4647 // Do we already have or could we have type information for dest
roland@5991 4648 bool could_have_dest = has_dest;
roland@5991 4649
roland@5991 4650 ciKlass* src_k = NULL;
roland@5991 4651 if (!has_src) {
roland@5991 4652 src_k = src_type->speculative_type();
roland@5991 4653 if (src_k != NULL && src_k->is_array_klass()) {
roland@5991 4654 could_have_src = true;
roland@5991 4655 }
roland@5991 4656 }
roland@5991 4657
roland@5991 4658 ciKlass* dest_k = NULL;
roland@5991 4659 if (!has_dest) {
roland@5991 4660 dest_k = dest_type->speculative_type();
roland@5991 4661 if (dest_k != NULL && dest_k->is_array_klass()) {
roland@5991 4662 could_have_dest = true;
roland@5991 4663 }
roland@5991 4664 }
roland@5991 4665
roland@5991 4666 if (could_have_src && could_have_dest) {
roland@5991 4667 // This is going to pay off so emit the required guards
roland@5991 4668 if (!has_src) {
roland@5991 4669 src = maybe_cast_profiled_obj(src, src_k);
roland@5991 4670 src_type = _gvn.type(src);
roland@5991 4671 top_src = src_type->isa_aryptr();
roland@5991 4672 has_src = (top_src != NULL && top_src->klass() != NULL);
roland@5991 4673 src_spec = true;
roland@5991 4674 }
roland@5991 4675 if (!has_dest) {
roland@5991 4676 dest = maybe_cast_profiled_obj(dest, dest_k);
roland@5991 4677 dest_type = _gvn.type(dest);
roland@5991 4678 top_dest = dest_type->isa_aryptr();
roland@5991 4679 has_dest = (top_dest != NULL && top_dest->klass() != NULL);
roland@5991 4680 dest_spec = true;
roland@5991 4681 }
roland@5991 4682 }
roland@5991 4683 }
roland@5991 4684
roland@5991 4685 if (!has_src || !has_dest) {
duke@435 4686 // Conservatively insert a memory barrier on all memory slices.
duke@435 4687 // Do not let writes into the source float below the arraycopy.
duke@435 4688 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4689
duke@435 4690 // Call StubRoutines::generic_arraycopy stub.
duke@435 4691 generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
kvn@1268 4692 src, src_offset, dest, dest_offset, length);
duke@435 4693
duke@435 4694 // Do not let reads from the destination float above the arraycopy.
duke@435 4695 // Since we cannot type the arrays, we don't know which slices
duke@435 4696 // might be affected. We could restrict this barrier only to those
duke@435 4697 // memory slices which pertain to array elements--but don't bother.
duke@435 4698 if (!InsertMemBarAfterArraycopy)
duke@435 4699 // (If InsertMemBarAfterArraycopy, there is already one in place.)
duke@435 4700 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4701 return true;
duke@435 4702 }
duke@435 4703
duke@435 4704 // (2) src and dest arrays must have elements of the same BasicType
duke@435 4705 // Figure out the size and type of the elements we will be copying.
duke@435 4706 BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type();
duke@435 4707 BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
duke@435 4708 if (src_elem == T_ARRAY) src_elem = T_OBJECT;
duke@435 4709 if (dest_elem == T_ARRAY) dest_elem = T_OBJECT;
duke@435 4710
duke@435 4711 if (src_elem != dest_elem || dest_elem == T_VOID) {
duke@435 4712 // The component types are not the same or are not recognized. Punt.
duke@435 4713 // (But, avoid the native method wrapper to JVM_ArrayCopy.)
duke@435 4714 generate_slow_arraycopy(TypePtr::BOTTOM,
iveresov@2606 4715 src, src_offset, dest, dest_offset, length,
iveresov@2606 4716 /*dest_uninitialized*/false);
duke@435 4717 return true;
duke@435 4718 }
duke@435 4719
roland@5991 4720 if (src_elem == T_OBJECT) {
roland@5991 4721 // If both arrays are object arrays then having the exact types
roland@5991 4722 // for both will remove the need for a subtype check at runtime
roland@5991 4723 // before the call and may make it possible to pick a faster copy
roland@5991 4724 // routine (without a subtype check on every element)
roland@5991 4725 // Do we have the exact type of src?
roland@5991 4726 bool could_have_src = src_spec;
roland@5991 4727 // Do we have the exact type of dest?
roland@5991 4728 bool could_have_dest = dest_spec;
roland@5991 4729 ciKlass* src_k = top_src->klass();
roland@5991 4730 ciKlass* dest_k = top_dest->klass();
roland@5991 4731 if (!src_spec) {
roland@5991 4732 src_k = src_type->speculative_type();
roland@5991 4733 if (src_k != NULL && src_k->is_array_klass()) {
roland@5991 4734 could_have_src = true;
roland@5991 4735 }
roland@5991 4736 }
roland@5991 4737 if (!dest_spec) {
roland@5991 4738 dest_k = dest_type->speculative_type();
roland@5991 4739 if (dest_k != NULL && dest_k->is_array_klass()) {
roland@5991 4740 could_have_dest = true;
roland@5991 4741 }
roland@5991 4742 }
roland@5991 4743 if (could_have_src && could_have_dest) {
roland@5991 4744 // If we can have both exact types, emit the missing guards
roland@5991 4745 if (could_have_src && !src_spec) {
roland@5991 4746 src = maybe_cast_profiled_obj(src, src_k);
roland@5991 4747 }
roland@5991 4748 if (could_have_dest && !dest_spec) {
roland@5991 4749 dest = maybe_cast_profiled_obj(dest, dest_k);
roland@5991 4750 }
roland@5991 4751 }
roland@5991 4752 }
roland@5991 4753
duke@435 4754 //---------------------------------------------------------------------------
duke@435 4755 // We will make a fast path for this call to arraycopy.
duke@435 4756
duke@435 4757 // We have the following tests left to perform:
duke@435 4758 //
duke@435 4759 // (3) src and dest must not be null.
duke@435 4760 // (4) src_offset must not be negative.
duke@435 4761 // (5) dest_offset must not be negative.
duke@435 4762 // (6) length must not be negative.
duke@435 4763 // (7) src_offset + length must not exceed length of src.
duke@435 4764 // (8) dest_offset + length must not exceed length of dest.
duke@435 4765 // (9) each element of an oop array must be assignable
duke@435 4766
kvn@4115 4767 RegionNode* slow_region = new (C) RegionNode(1);
duke@435 4768 record_for_igvn(slow_region);
duke@435 4769
duke@435 4770 // (3) operands must not be null
twisti@4313 4771 // We currently perform our null checks with the null_check routine.
duke@435 4772 // This means that the null exceptions will be reported in the caller
duke@435 4773 // rather than (correctly) reported inside of the native arraycopy call.
duke@435 4774 // This should be corrected, given time. We do our null check with the
duke@435 4775 // stack pointer restored.
twisti@4313 4776 src = null_check(src, T_ARRAY);
twisti@4313 4777 dest = null_check(dest, T_ARRAY);
duke@435 4778
duke@435 4779 // (4) src_offset must not be negative.
duke@435 4780 generate_negative_guard(src_offset, slow_region);
duke@435 4781
duke@435 4782 // (5) dest_offset must not be negative.
duke@435 4783 generate_negative_guard(dest_offset, slow_region);
duke@435 4784
duke@435 4785 // (6) length must not be negative (moved to generate_arraycopy()).
duke@435 4786 // generate_negative_guard(length, slow_region);
duke@435 4787
duke@435 4788 // (7) src_offset + length must not exceed length of src.
duke@435 4789 generate_limit_guard(src_offset, length,
duke@435 4790 load_array_length(src),
duke@435 4791 slow_region);
duke@435 4792
duke@435 4793 // (8) dest_offset + length must not exceed length of dest.
duke@435 4794 generate_limit_guard(dest_offset, length,
duke@435 4795 load_array_length(dest),
duke@435 4796 slow_region);
duke@435 4797
duke@435 4798 // (9) each element of an oop array must be assignable
duke@435 4799 // The generate_arraycopy subroutine checks this.
duke@435 4800
duke@435 4801 // This is where the memory effects are placed:
duke@435 4802 const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
duke@435 4803 generate_arraycopy(adr_type, dest_elem,
duke@435 4804 src, src_offset, dest, dest_offset, length,
kvn@1268 4805 false, false, slow_region);
duke@435 4806
duke@435 4807 return true;
duke@435 4808 }
duke@435 4809
duke@435 4810 //-----------------------------generate_arraycopy----------------------
duke@435 4811 // Generate an optimized call to arraycopy.
duke@435 4812 // Caller must guard against non-arrays.
duke@435 4813 // Caller must determine a common array basic-type for both arrays.
duke@435 4814 // Caller must validate offsets against array bounds.
duke@435 4815 // The slow_region has already collected guard failure paths
duke@435 4816 // (such as out of bounds length or non-conformable array types).
duke@435 4817 // The generated code has this shape, in general:
duke@435 4818 //
duke@435 4819 // if (length == 0) return // via zero_path
duke@435 4820 // slowval = -1
duke@435 4821 // if (types unknown) {
duke@435 4822 // slowval = call generic copy loop
duke@435 4823 // if (slowval == 0) return // via checked_path
duke@435 4824 // } else if (indexes in bounds) {
duke@435 4825 // if ((is object array) && !(array type check)) {
duke@435 4826 // slowval = call checked copy loop
duke@435 4827 // if (slowval == 0) return // via checked_path
duke@435 4828 // } else {
duke@435 4829 // call bulk copy loop
duke@435 4830 // return // via fast_path
duke@435 4831 // }
duke@435 4832 // }
duke@435 4833 // // adjust params for remaining work:
duke@435 4834 // if (slowval != -1) {
duke@435 4835 // n = -1^slowval; src_offset += n; dest_offset += n; length -= n
duke@435 4836 // }
duke@435 4837 // slow_region:
duke@435 4838 // call slow arraycopy(src, src_offset, dest, dest_offset, length)
duke@435 4839 // return // via slow_call_path
duke@435 4840 //
duke@435 4841 // This routine is used from several intrinsics: System.arraycopy,
duke@435 4842 // Object.clone (the array subcase), and Arrays.copyOf[Range].
duke@435 4843 //
duke@435 4844 void
duke@435 4845 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
duke@435 4846 BasicType basic_elem_type,
duke@435 4847 Node* src, Node* src_offset,
duke@435 4848 Node* dest, Node* dest_offset,
duke@435 4849 Node* copy_length,
duke@435 4850 bool disjoint_bases,
duke@435 4851 bool length_never_negative,
duke@435 4852 RegionNode* slow_region) {
duke@435 4853
duke@435 4854 if (slow_region == NULL) {
kvn@4115 4855 slow_region = new(C) RegionNode(1);
duke@435 4856 record_for_igvn(slow_region);
duke@435 4857 }
duke@435 4858
duke@435 4859 Node* original_dest = dest;
duke@435 4860 AllocateArrayNode* alloc = NULL; // used for zeroing, if needed
iveresov@2606 4861 bool dest_uninitialized = false;
duke@435 4862
duke@435 4863 // See if this is the initialization of a newly-allocated array.
duke@435 4864 // If so, we will take responsibility here for initializing it to zero.
duke@435 4865 // (Note: Because tightly_coupled_allocation performs checks on the
duke@435 4866 // out-edges of the dest, we need to avoid making derived pointers
duke@435 4867 // from it until we have checked its uses.)
duke@435 4868 if (ReduceBulkZeroing
duke@435 4869 && !ZeroTLAB // pointless if already zeroed
duke@435 4870 && basic_elem_type != T_CONFLICT // avoid corner case
kvn@3407 4871 && !src->eqv_uncast(dest)
duke@435 4872 && ((alloc = tightly_coupled_allocation(dest, slow_region))
duke@435 4873 != NULL)
kvn@469 4874 && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
duke@435 4875 && alloc->maybe_set_complete(&_gvn)) {
duke@435 4876 // "You break it, you buy it."
duke@435 4877 InitializeNode* init = alloc->initialization();
duke@435 4878 assert(init->is_complete(), "we just did this");
kvn@3157 4879 init->set_complete_with_arraycopy();
kvn@1268 4880 assert(dest->is_CheckCastPP(), "sanity");
duke@435 4881 assert(dest->in(0)->in(0) == init, "dest pinned");
duke@435 4882 adr_type = TypeRawPtr::BOTTOM; // all initializations are into raw memory
duke@435 4883 // From this point on, every exit path is responsible for
duke@435 4884 // initializing any non-copied parts of the object to zero.
iveresov@2606 4885 // Also, if this flag is set we make sure that arraycopy interacts properly
iveresov@2606 4886 // with G1, eliding pre-barriers. See CR 6627983.
iveresov@2606 4887 dest_uninitialized = true;
duke@435 4888 } else {
duke@435 4889 // No zeroing elimination here.
duke@435 4890 alloc = NULL;
duke@435 4891 //original_dest = dest;
iveresov@2606 4892 //dest_uninitialized = false;
duke@435 4893 }
duke@435 4894
duke@435 4895 // Results are placed here:
duke@435 4896 enum { fast_path = 1, // normal void-returning assembly stub
duke@435 4897 checked_path = 2, // special assembly stub with cleanup
duke@435 4898 slow_call_path = 3, // something went wrong; call the VM
duke@435 4899 zero_path = 4, // bypass when length of copy is zero
duke@435 4900 bcopy_path = 5, // copy primitive array by 64-bit blocks
duke@435 4901 PATH_LIMIT = 6
duke@435 4902 };
kvn@4115 4903 RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
kvn@4115 4904 PhiNode* result_i_o = new(C) PhiNode(result_region, Type::ABIO);
kvn@4115 4905 PhiNode* result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
duke@435 4906 record_for_igvn(result_region);
duke@435 4907 _gvn.set_type_bottom(result_i_o);
duke@435 4908 _gvn.set_type_bottom(result_memory);
duke@435 4909 assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
duke@435 4910
duke@435 4911 // The slow_control path:
duke@435 4912 Node* slow_control;
duke@435 4913 Node* slow_i_o = i_o();
duke@435 4914 Node* slow_mem = memory(adr_type);
duke@435 4915 debug_only(slow_control = (Node*) badAddress);
duke@435 4916
duke@435 4917 // Checked control path:
duke@435 4918 Node* checked_control = top();
duke@435 4919 Node* checked_mem = NULL;
duke@435 4920 Node* checked_i_o = NULL;
duke@435 4921 Node* checked_value = NULL;
duke@435 4922
duke@435 4923 if (basic_elem_type == T_CONFLICT) {
iveresov@2606 4924 assert(!dest_uninitialized, "");
duke@435 4925 Node* cv = generate_generic_arraycopy(adr_type,
duke@435 4926 src, src_offset, dest, dest_offset,
iveresov@2606 4927 copy_length, dest_uninitialized);
duke@435 4928 if (cv == NULL) cv = intcon(-1); // failure (no stub available)
duke@435 4929 checked_control = control();
duke@435 4930 checked_i_o = i_o();
duke@435 4931 checked_mem = memory(adr_type);
duke@435 4932 checked_value = cv;
duke@435 4933 set_control(top()); // no fast path
duke@435 4934 }
duke@435 4935
duke@435 4936 Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
duke@435 4937 if (not_pos != NULL) {
duke@435 4938 PreserveJVMState pjvms(this);
duke@435 4939 set_control(not_pos);
duke@435 4940
duke@435 4941 // (6) length must not be negative.
duke@435 4942 if (!length_never_negative) {
duke@435 4943 generate_negative_guard(copy_length, slow_region);
duke@435 4944 }
duke@435 4945
kvn@1271 4946 // copy_length is 0.
iveresov@2606 4947 if (!stopped() && dest_uninitialized) {
duke@435 4948 Node* dest_length = alloc->in(AllocateNode::ALength);
kvn@3407 4949 if (copy_length->eqv_uncast(dest_length)
duke@435 4950 || _gvn.find_int_con(dest_length, 1) <= 0) {
kvn@1271 4951 // There is no zeroing to do. No need for a secondary raw memory barrier.
duke@435 4952 } else {
duke@435 4953 // Clear the whole thing since there are no source elements to copy.
duke@435 4954 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4955 intcon(0), NULL,
duke@435 4956 alloc->in(AllocateNode::AllocSize));
kvn@1271 4957 // Use a secondary InitializeNode as raw memory barrier.
kvn@1271 4958 // Currently it is needed only on this path since other
kvn@1271 4959 // paths have stub or runtime calls as raw memory barriers.
kvn@1271 4960 InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
kvn@1271 4961 Compile::AliasIdxRaw,
kvn@1271 4962 top())->as_Initialize();
kvn@1271 4963 init->set_complete(&_gvn); // (there is no corresponding AllocateNode)
duke@435 4964 }
duke@435 4965 }
duke@435 4966
duke@435 4967 // Present the results of the fast call.
duke@435 4968 result_region->init_req(zero_path, control());
duke@435 4969 result_i_o ->init_req(zero_path, i_o());
duke@435 4970 result_memory->init_req(zero_path, memory(adr_type));
duke@435 4971 }
duke@435 4972
iveresov@2606 4973 if (!stopped() && dest_uninitialized) {
duke@435 4974 // We have to initialize the *uncopied* part of the array to zero.
duke@435 4975 // The copy destination is the slice dest[off..off+len]. The other slices
duke@435 4976 // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
duke@435 4977 Node* dest_size = alloc->in(AllocateNode::AllocSize);
duke@435 4978 Node* dest_length = alloc->in(AllocateNode::ALength);
drchase@5353 4979 Node* dest_tail = _gvn.transform(new(C) AddINode(dest_offset,
drchase@5353 4980 copy_length));
duke@435 4981
duke@435 4982 // If there is a head section that needs zeroing, do it now.
duke@435 4983 if (find_int_con(dest_offset, -1) != 0) {
duke@435 4984 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4985 intcon(0), dest_offset,
duke@435 4986 NULL);
duke@435 4987 }
duke@435 4988
duke@435 4989 // Next, perform a dynamic check on the tail length.
duke@435 4990 // It is often zero, and we can win big if we prove this.
duke@435 4991 // There are two wins: Avoid generating the ClearArray
duke@435 4992 // with its attendant messy index arithmetic, and upgrade
duke@435 4993 // the copy to a more hardware-friendly word size of 64 bits.
duke@435 4994 Node* tail_ctl = NULL;
kvn@3407 4995 if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
drchase@5353 4996 Node* cmp_lt = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
drchase@5353 4997 Node* bol_lt = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
duke@435 4998 tail_ctl = generate_slow_guard(bol_lt, NULL);
duke@435 4999 assert(tail_ctl != NULL || !stopped(), "must be an outcome");
duke@435 5000 }
duke@435 5001
duke@435 5002 // At this point, let's assume there is no tail.
duke@435 5003 if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
duke@435 5004 // There is no tail. Try an upgrade to a 64-bit copy.
duke@435 5005 bool didit = false;
duke@435 5006 { PreserveJVMState pjvms(this);
duke@435 5007 didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
duke@435 5008 src, src_offset, dest, dest_offset,
iveresov@2606 5009 dest_size, dest_uninitialized);
duke@435 5010 if (didit) {
duke@435 5011 // Present the results of the block-copying fast call.
duke@435 5012 result_region->init_req(bcopy_path, control());
duke@435 5013 result_i_o ->init_req(bcopy_path, i_o());
duke@435 5014 result_memory->init_req(bcopy_path, memory(adr_type));
duke@435 5015 }
duke@435 5016 }
duke@435 5017 if (didit)
duke@435 5018 set_control(top()); // no regular fast path
duke@435 5019 }
duke@435 5020
duke@435 5021 // Clear the tail, if any.
duke@435 5022 if (tail_ctl != NULL) {
duke@435 5023 Node* notail_ctl = stopped() ? NULL : control();
duke@435 5024 set_control(tail_ctl);
duke@435 5025 if (notail_ctl == NULL) {
duke@435 5026 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 5027 dest_tail, NULL,
duke@435 5028 dest_size);
duke@435 5029 } else {
duke@435 5030 // Make a local merge.
kvn@4115 5031 Node* done_ctl = new(C) RegionNode(3);
kvn@4115 5032 Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
duke@435 5033 done_ctl->init_req(1, notail_ctl);
duke@435 5034 done_mem->init_req(1, memory(adr_type));
duke@435 5035 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 5036 dest_tail, NULL,
duke@435 5037 dest_size);
duke@435 5038 done_ctl->init_req(2, control());
duke@435 5039 done_mem->init_req(2, memory(adr_type));
drchase@5353 5040 set_control( _gvn.transform(done_ctl));
duke@435 5041 set_memory( _gvn.transform(done_mem), adr_type );
duke@435 5042 }
duke@435 5043 }
duke@435 5044 }
duke@435 5045
duke@435 5046 BasicType copy_type = basic_elem_type;
duke@435 5047 assert(basic_elem_type != T_ARRAY, "caller must fix this");
duke@435 5048 if (!stopped() && copy_type == T_OBJECT) {
duke@435 5049 // If src and dest have compatible element types, we can copy bits.
duke@435 5050 // Types S[] and D[] are compatible if D is a supertype of S.
duke@435 5051 //
duke@435 5052 // If they are not, we will use checked_oop_disjoint_arraycopy,
duke@435 5053 // which performs a fast optimistic per-oop check, and backs off
duke@435 5054 // further to JVM_ArrayCopy on the first per-oop check that fails.
duke@435 5055 // (Actually, we don't move raw bits only; the GC requires card marks.)
duke@435 5056
coleenp@4037 5057 // Get the Klass* for both src and dest
duke@435 5058 Node* src_klass = load_object_klass(src);
duke@435 5059 Node* dest_klass = load_object_klass(dest);
duke@435 5060
duke@435 5061 // Generate the subtype check.
duke@435 5062 // This might fold up statically, or then again it might not.
duke@435 5063 //
duke@435 5064 // Non-static example: Copying List<String>.elements to a new String[].
duke@435 5065 // The backing store for a List<String> is always an Object[],
duke@435 5066 // but its elements are always type String, if the generic types
duke@435 5067 // are correct at the source level.
duke@435 5068 //
duke@435 5069 // Test S[] against D[], not S against D, because (probably)
duke@435 5070 // the secondary supertype cache is less busy for S[] than S.
duke@435 5071 // This usually only matters when D is an interface.
duke@435 5072 Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
duke@435 5073 // Plug failing path into checked_oop_disjoint_arraycopy
duke@435 5074 if (not_subtype_ctrl != top()) {
duke@435 5075 PreserveJVMState pjvms(this);
duke@435 5076 set_control(not_subtype_ctrl);
duke@435 5077 // (At this point we can assume disjoint_bases, since types differ.)
coleenp@4142 5078 int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
duke@435 5079 Node* p1 = basic_plus_adr(dest_klass, ek_offset);
kvn@599 5080 Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
duke@435 5081 Node* dest_elem_klass = _gvn.transform(n1);
duke@435 5082 Node* cv = generate_checkcast_arraycopy(adr_type,
duke@435 5083 dest_elem_klass,
duke@435 5084 src, src_offset, dest, dest_offset,
iveresov@2606 5085 ConvI2X(copy_length), dest_uninitialized);
duke@435 5086 if (cv == NULL) cv = intcon(-1); // failure (no stub available)
duke@435 5087 checked_control = control();
duke@435 5088 checked_i_o = i_o();
duke@435 5089 checked_mem = memory(adr_type);
duke@435 5090 checked_value = cv;
duke@435 5091 }
duke@435 5092 // At this point we know we do not need type checks on oop stores.
duke@435 5093
duke@435 5094 // Let's see if we need card marks:
duke@435 5095 if (alloc != NULL && use_ReduceInitialCardMarks()) {
duke@435 5096 // If we do not need card marks, copy using the jint or jlong stub.
coleenp@548 5097 copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
kvn@464 5098 assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
duke@435 5099 "sizes agree");
duke@435 5100 }
duke@435 5101 }
duke@435 5102
duke@435 5103 if (!stopped()) {
duke@435 5104 // Generate the fast path, if possible.
duke@435 5105 PreserveJVMState pjvms(this);
duke@435 5106 generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
duke@435 5107 src, src_offset, dest, dest_offset,
iveresov@2606 5108 ConvI2X(copy_length), dest_uninitialized);
duke@435 5109
duke@435 5110 // Present the results of the fast call.
duke@435 5111 result_region->init_req(fast_path, control());
duke@435 5112 result_i_o ->init_req(fast_path, i_o());
duke@435 5113 result_memory->init_req(fast_path, memory(adr_type));
duke@435 5114 }
duke@435 5115
duke@435 5116 // Here are all the slow paths up to this point, in one bundle:
duke@435 5117 slow_control = top();
duke@435 5118 if (slow_region != NULL)
duke@435 5119 slow_control = _gvn.transform(slow_region);
twisti@4313 5120 DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
duke@435 5121
duke@435 5122 set_control(checked_control);
duke@435 5123 if (!stopped()) {
duke@435 5124 // Clean up after the checked call.
duke@435 5125 // The returned value is either 0 or -1^K,
duke@435 5126 // where K = number of partially transferred array elements.
drchase@5353 5127 Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
drchase@5353 5128 Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
duke@435 5129 IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
duke@435 5130
duke@435 5131 // If it is 0, we are done, so transfer to the end.
drchase@5353 5132 Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
duke@435 5133 result_region->init_req(checked_path, checks_done);
duke@435 5134 result_i_o ->init_req(checked_path, checked_i_o);
duke@435 5135 result_memory->init_req(checked_path, checked_mem);
duke@435 5136
duke@435 5137 // If it is not zero, merge into the slow call.
drchase@5353 5138 set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
kvn@4115 5139 RegionNode* slow_reg2 = new(C) RegionNode(3);
kvn@4115 5140 PhiNode* slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
kvn@4115 5141 PhiNode* slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
duke@435 5142 record_for_igvn(slow_reg2);
duke@435 5143 slow_reg2 ->init_req(1, slow_control);
duke@435 5144 slow_i_o2 ->init_req(1, slow_i_o);
duke@435 5145 slow_mem2 ->init_req(1, slow_mem);
duke@435 5146 slow_reg2 ->init_req(2, control());
kvn@1268 5147 slow_i_o2 ->init_req(2, checked_i_o);
kvn@1268 5148 slow_mem2 ->init_req(2, checked_mem);
duke@435 5149
duke@435 5150 slow_control = _gvn.transform(slow_reg2);
duke@435 5151 slow_i_o = _gvn.transform(slow_i_o2);
duke@435 5152 slow_mem = _gvn.transform(slow_mem2);
duke@435 5153
duke@435 5154 if (alloc != NULL) {
duke@435 5155 // We'll restart from the very beginning, after zeroing the whole thing.
duke@435 5156 // This can cause double writes, but that's OK since dest is brand new.
duke@435 5157 // So we ignore the low 31 bits of the value returned from the stub.
duke@435 5158 } else {
duke@435 5159 // We must continue the copy exactly where it failed, or else
duke@435 5160 // another thread might see the wrong number of writes to dest.
drchase@5353 5161 Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
kvn@4115 5162 Node* slow_offset = new(C) PhiNode(slow_reg2, TypeInt::INT);
duke@435 5163 slow_offset->init_req(1, intcon(0));
duke@435 5164 slow_offset->init_req(2, checked_offset);
duke@435 5165 slow_offset = _gvn.transform(slow_offset);
duke@435 5166
duke@435 5167 // Adjust the arguments by the conditionally incoming offset.
drchase@5353 5168 Node* src_off_plus = _gvn.transform(new(C) AddINode(src_offset, slow_offset));
drchase@5353 5169 Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
drchase@5353 5170 Node* length_minus = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
duke@435 5171
duke@435 5172 // Tweak the node variables to adjust the code produced below:
duke@435 5173 src_offset = src_off_plus;
duke@435 5174 dest_offset = dest_off_plus;
duke@435 5175 copy_length = length_minus;
duke@435 5176 }
duke@435 5177 }
duke@435 5178
duke@435 5179 set_control(slow_control);
duke@435 5180 if (!stopped()) {
duke@435 5181 // Generate the slow path, if needed.
duke@435 5182 PreserveJVMState pjvms(this); // replace_in_map may trash the map
duke@435 5183
duke@435 5184 set_memory(slow_mem, adr_type);
duke@435 5185 set_i_o(slow_i_o);
duke@435 5186
iveresov@2606 5187 if (dest_uninitialized) {
duke@435 5188 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 5189 intcon(0), NULL,
duke@435 5190 alloc->in(AllocateNode::AllocSize));
duke@435 5191 }
duke@435 5192
duke@435 5193 generate_slow_arraycopy(adr_type,
duke@435 5194 src, src_offset, dest, dest_offset,
iveresov@2606 5195 copy_length, /*dest_uninitialized*/false);
duke@435 5196
duke@435 5197 result_region->init_req(slow_call_path, control());
duke@435 5198 result_i_o ->init_req(slow_call_path, i_o());
duke@435 5199 result_memory->init_req(slow_call_path, memory(adr_type));
duke@435 5200 }
duke@435 5201
duke@435 5202 // Remove unused edges.
duke@435 5203 for (uint i = 1; i < result_region->req(); i++) {
duke@435 5204 if (result_region->in(i) == NULL)
duke@435 5205 result_region->init_req(i, top());
duke@435 5206 }
duke@435 5207
duke@435 5208 // Finished; return the combined state.
drchase@5353 5209 set_control( _gvn.transform(result_region));
duke@435 5210 set_i_o( _gvn.transform(result_i_o) );
duke@435 5211 set_memory( _gvn.transform(result_memory), adr_type );
duke@435 5212
duke@435 5213 // The memory edges above are precise in order to model effects around
twisti@1040 5214 // array copies accurately to allow value numbering of field loads around
duke@435 5215 // arraycopy. Such field loads, both before and after, are common in Java
duke@435 5216 // collections and similar classes involving header/array data structures.
duke@435 5217 //
duke@435 5218 // But with low number of register or when some registers are used or killed
duke@435 5219 // by arraycopy calls it causes registers spilling on stack. See 6544710.
duke@435 5220 // The next memory barrier is added to avoid it. If the arraycopy can be
duke@435 5221 // optimized away (which it can, sometimes) then we can manually remove
duke@435 5222 // the membar also.
kvn@1393 5223 //
kvn@1393 5224 // Do not let reads from the cloned object float above the arraycopy.
roland@3392 5225 if (alloc != NULL) {
roland@3392 5226 // Do not let stores that initialize this object be reordered with
roland@3392 5227 // a subsequent store that would make this object accessible by
roland@3392 5228 // other threads.
roland@3392 5229 // Record what AllocateNode this StoreStore protects so that
roland@3392 5230 // escape analysis can go from the MemBarStoreStoreNode to the
roland@3392 5231 // AllocateNode and eliminate the MemBarStoreStoreNode if possible
roland@3392 5232 // based on the escape status of the AllocateNode.
roland@3392 5233 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
roland@3392 5234 } else if (InsertMemBarAfterArraycopy)
duke@435 5235 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 5236 }
duke@435 5237
duke@435 5238
duke@435 5239 // Helper function which determines if an arraycopy immediately follows
duke@435 5240 // an allocation, with no intervening tests or other escapes for the object.
duke@435 5241 AllocateArrayNode*
duke@435 5242 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
duke@435 5243 RegionNode* slow_region) {
duke@435 5244 if (stopped()) return NULL; // no fast path
duke@435 5245 if (C->AliasLevel() == 0) return NULL; // no MergeMems around
duke@435 5246
duke@435 5247 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
duke@435 5248 if (alloc == NULL) return NULL;
duke@435 5249
duke@435 5250 Node* rawmem = memory(Compile::AliasIdxRaw);
duke@435 5251 // Is the allocation's memory state untouched?
duke@435 5252 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
duke@435 5253 // Bail out if there have been raw-memory effects since the allocation.
duke@435 5254 // (Example: There might have been a call or safepoint.)
duke@435 5255 return NULL;
duke@435 5256 }
duke@435 5257 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
duke@435 5258 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
duke@435 5259 return NULL;
duke@435 5260 }
duke@435 5261
duke@435 5262 // There must be no unexpected observers of this allocation.
duke@435 5263 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
duke@435 5264 Node* obs = ptr->fast_out(i);
duke@435 5265 if (obs != this->map()) {
duke@435 5266 return NULL;
duke@435 5267 }
duke@435 5268 }
duke@435 5269
duke@435 5270 // This arraycopy must unconditionally follow the allocation of the ptr.
duke@435 5271 Node* alloc_ctl = ptr->in(0);
duke@435 5272 assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
duke@435 5273
duke@435 5274 Node* ctl = control();
duke@435 5275 while (ctl != alloc_ctl) {
duke@435 5276 // There may be guards which feed into the slow_region.
duke@435 5277 // Any other control flow means that we might not get a chance
duke@435 5278 // to finish initializing the allocated object.
duke@435 5279 if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
duke@435 5280 IfNode* iff = ctl->in(0)->as_If();
duke@435 5281 Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
duke@435 5282 assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
duke@435 5283 if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
duke@435 5284 ctl = iff->in(0); // This test feeds the known slow_region.
duke@435 5285 continue;
duke@435 5286 }
duke@435 5287 // One more try: Various low-level checks bottom out in
duke@435 5288 // uncommon traps. If the debug-info of the trap omits
duke@435 5289 // any reference to the allocation, as we've already
duke@435 5290 // observed, then there can be no objection to the trap.
duke@435 5291 bool found_trap = false;
duke@435 5292 for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
duke@435 5293 Node* obs = not_ctl->fast_out(j);
duke@435 5294 if (obs->in(0) == not_ctl && obs->is_Call() &&
twisti@2103 5295 (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
duke@435 5296 found_trap = true; break;
duke@435 5297 }
duke@435 5298 }
duke@435 5299 if (found_trap) {
duke@435 5300 ctl = iff->in(0); // This test feeds a harmless uncommon trap.
duke@435 5301 continue;
duke@435 5302 }
duke@435 5303 }
duke@435 5304 return NULL;
duke@435 5305 }
duke@435 5306
duke@435 5307 // If we get this far, we have an allocation which immediately
duke@435 5308 // precedes the arraycopy, and we can take over zeroing the new object.
duke@435 5309 // The arraycopy will finish the initialization, and provide
duke@435 5310 // a new control state to which we will anchor the destination pointer.
duke@435 5311
duke@435 5312 return alloc;
duke@435 5313 }
duke@435 5314
duke@435 5315 // Helper for initialization of arrays, creating a ClearArray.
duke@435 5316 // It writes zero bits in [start..end), within the body of an array object.
duke@435 5317 // The memory effects are all chained onto the 'adr_type' alias category.
duke@435 5318 //
duke@435 5319 // Since the object is otherwise uninitialized, we are free
duke@435 5320 // to put a little "slop" around the edges of the cleared area,
duke@435 5321 // as long as it does not go back into the array's header,
duke@435 5322 // or beyond the array end within the heap.
duke@435 5323 //
duke@435 5324 // The lower edge can be rounded down to the nearest jint and the
duke@435 5325 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
duke@435 5326 //
duke@435 5327 // Arguments:
duke@435 5328 // adr_type memory slice where writes are generated
duke@435 5329 // dest oop of the destination array
duke@435 5330 // basic_elem_type element type of the destination
duke@435 5331 // slice_idx array index of first element to store
duke@435 5332 // slice_len number of elements to store (or NULL)
duke@435 5333 // dest_size total size in bytes of the array object
duke@435 5334 //
duke@435 5335 // Exactly one of slice_len or dest_size must be non-NULL.
duke@435 5336 // If dest_size is non-NULL, zeroing extends to the end of the object.
duke@435 5337 // If slice_len is non-NULL, the slice_idx value must be a constant.
duke@435 5338 void
duke@435 5339 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
duke@435 5340 Node* dest,
duke@435 5341 BasicType basic_elem_type,
duke@435 5342 Node* slice_idx,
duke@435 5343 Node* slice_len,
duke@435 5344 Node* dest_size) {
duke@435 5345 // one or the other but not both of slice_len and dest_size:
duke@435 5346 assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
duke@435 5347 if (slice_len == NULL) slice_len = top();
duke@435 5348 if (dest_size == NULL) dest_size = top();
duke@435 5349
duke@435 5350 // operate on this memory slice:
duke@435 5351 Node* mem = memory(adr_type); // memory slice to operate on
duke@435 5352
duke@435 5353 // scaling and rounding of indexes:
kvn@464 5354 int scale = exact_log2(type2aelembytes(basic_elem_type));
duke@435 5355 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
duke@435 5356 int clear_low = (-1 << scale) & (BytesPerInt - 1);
duke@435 5357 int bump_bit = (-1 << scale) & BytesPerInt;
duke@435 5358
duke@435 5359 // determine constant starts and ends
duke@435 5360 const intptr_t BIG_NEG = -128;
duke@435 5361 assert(BIG_NEG + 2*abase < 0, "neg enough");
duke@435 5362 intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
duke@435 5363 intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
duke@435 5364 if (slice_len_con == 0) {
duke@435 5365 return; // nothing to do here
duke@435 5366 }
duke@435 5367 intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
duke@435 5368 intptr_t end_con = find_intptr_t_con(dest_size, -1);
duke@435 5369 if (slice_idx_con >= 0 && slice_len_con >= 0) {
duke@435 5370 assert(end_con < 0, "not two cons");
duke@435 5371 end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
duke@435 5372 BytesPerLong);
duke@435 5373 }
duke@435 5374
duke@435 5375 if (start_con >= 0 && end_con >= 0) {
duke@435 5376 // Constant start and end. Simple.
duke@435 5377 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5378 start_con, end_con, &_gvn);
duke@435 5379 } else if (start_con >= 0 && dest_size != top()) {
duke@435 5380 // Constant start, pre-rounded end after the tail of the array.
duke@435 5381 Node* end = dest_size;
duke@435 5382 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5383 start_con, end, &_gvn);
duke@435 5384 } else if (start_con >= 0 && slice_len != top()) {
duke@435 5385 // Constant start, non-constant end. End needs rounding up.
duke@435 5386 // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
duke@435 5387 intptr_t end_base = abase + (slice_idx_con << scale);
duke@435 5388 int end_round = (-1 << scale) & (BytesPerLong - 1);
duke@435 5389 Node* end = ConvI2X(slice_len);
duke@435 5390 if (scale != 0)
drchase@5353 5391 end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
duke@435 5392 end_base += end_round;
drchase@5353 5393 end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
drchase@5353 5394 end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
duke@435 5395 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5396 start_con, end, &_gvn);
duke@435 5397 } else if (start_con < 0 && dest_size != top()) {
duke@435 5398 // Non-constant start, pre-rounded end after the tail of the array.
duke@435 5399 // This is almost certainly a "round-to-end" operation.
duke@435 5400 Node* start = slice_idx;
duke@435 5401 start = ConvI2X(start);
duke@435 5402 if (scale != 0)
drchase@5353 5403 start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
drchase@5353 5404 start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
duke@435 5405 if ((bump_bit | clear_low) != 0) {
duke@435 5406 int to_clear = (bump_bit | clear_low);
duke@435 5407 // Align up mod 8, then store a jint zero unconditionally
duke@435 5408 // just before the mod-8 boundary.
coleenp@548 5409 if (((abase + bump_bit) & ~to_clear) - bump_bit
coleenp@548 5410 < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
coleenp@548 5411 bump_bit = 0;
coleenp@548 5412 assert((abase & to_clear) == 0, "array base must be long-aligned");
coleenp@548 5413 } else {
coleenp@548 5414 // Bump 'start' up to (or past) the next jint boundary:
drchase@5353 5415 start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
coleenp@548 5416 assert((abase & clear_low) == 0, "array base must be int-aligned");
coleenp@548 5417 }
duke@435 5418 // Round bumped 'start' down to jlong boundary in body of array.
drchase@5353 5419 start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
coleenp@548 5420 if (bump_bit != 0) {
coleenp@548 5421 // Store a zero to the immediately preceding jint:
drchase@5353 5422 Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
coleenp@548 5423 Node* p1 = basic_plus_adr(dest, x1);
coleenp@548 5424 mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
coleenp@548 5425 mem = _gvn.transform(mem);
coleenp@548 5426 }
duke@435 5427 }
duke@435 5428 Node* end = dest_size; // pre-rounded
duke@435 5429 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5430 start, end, &_gvn);
duke@435 5431 } else {
duke@435 5432 // Non-constant start, unrounded non-constant end.
duke@435 5433 // (Nobody zeroes a random midsection of an array using this routine.)
duke@435 5434 ShouldNotReachHere(); // fix caller
duke@435 5435 }
duke@435 5436
duke@435 5437 // Done.
duke@435 5438 set_memory(mem, adr_type);
duke@435 5439 }
duke@435 5440
duke@435 5441
duke@435 5442 bool
duke@435 5443 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
duke@435 5444 BasicType basic_elem_type,
duke@435 5445 AllocateNode* alloc,
duke@435 5446 Node* src, Node* src_offset,
duke@435 5447 Node* dest, Node* dest_offset,
iveresov@2606 5448 Node* dest_size, bool dest_uninitialized) {
duke@435 5449 // See if there is an advantage from block transfer.
kvn@464 5450 int scale = exact_log2(type2aelembytes(basic_elem_type));
duke@435 5451 if (scale >= LogBytesPerLong)
duke@435 5452 return false; // it is already a block transfer
duke@435 5453
duke@435 5454 // Look at the alignment of the starting offsets.
duke@435 5455 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@2939 5456
kvn@2939 5457 intptr_t src_off_con = (intptr_t) find_int_con(src_offset, -1);
kvn@2939 5458 intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
kvn@2939 5459 if (src_off_con < 0 || dest_off_con < 0)
duke@435 5460 // At present, we can only understand constants.
duke@435 5461 return false;
duke@435 5462
kvn@2939 5463 intptr_t src_off = abase + (src_off_con << scale);
kvn@2939 5464 intptr_t dest_off = abase + (dest_off_con << scale);
kvn@2939 5465
duke@435 5466 if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
duke@435 5467 // Non-aligned; too bad.
duke@435 5468 // One more chance: Pick off an initial 32-bit word.
duke@435 5469 // This is a common case, since abase can be odd mod 8.
duke@435 5470 if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
duke@435 5471 ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
duke@435 5472 Node* sptr = basic_plus_adr(src, src_off);
duke@435 5473 Node* dptr = basic_plus_adr(dest, dest_off);
duke@435 5474 Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
duke@435 5475 store_to_memory(control(), dptr, sval, T_INT, adr_type);
duke@435 5476 src_off += BytesPerInt;
duke@435 5477 dest_off += BytesPerInt;
duke@435 5478 } else {
duke@435 5479 return false;
duke@435 5480 }
duke@435 5481 }
duke@435 5482 assert(src_off % BytesPerLong == 0, "");
duke@435 5483 assert(dest_off % BytesPerLong == 0, "");
duke@435 5484
duke@435 5485 // Do this copy by giant steps.
duke@435 5486 Node* sptr = basic_plus_adr(src, src_off);
duke@435 5487 Node* dptr = basic_plus_adr(dest, dest_off);
duke@435 5488 Node* countx = dest_size;
drchase@5353 5489 countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
drchase@5353 5490 countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
duke@435 5491
duke@435 5492 bool disjoint_bases = true; // since alloc != NULL
duke@435 5493 generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
iveresov@2606 5494 sptr, NULL, dptr, NULL, countx, dest_uninitialized);
duke@435 5495
duke@435 5496 return true;
duke@435 5497 }
duke@435 5498
duke@435 5499
duke@435 5500 // Helper function; generates code for the slow case.
duke@435 5501 // We make a call to a runtime method which emulates the native method,
duke@435 5502 // but without the native wrapper overhead.
duke@435 5503 void
duke@435 5504 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
duke@435 5505 Node* src, Node* src_offset,
duke@435 5506 Node* dest, Node* dest_offset,
iveresov@2606 5507 Node* copy_length, bool dest_uninitialized) {
iveresov@2606 5508 assert(!dest_uninitialized, "Invariant");
duke@435 5509 Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
duke@435 5510 OptoRuntime::slow_arraycopy_Type(),
duke@435 5511 OptoRuntime::slow_arraycopy_Java(),
duke@435 5512 "slow_arraycopy", adr_type,
duke@435 5513 src, src_offset, dest, dest_offset,
duke@435 5514 copy_length);
duke@435 5515
duke@435 5516 // Handle exceptions thrown by this fellow:
duke@435 5517 make_slow_call_ex(call, env()->Throwable_klass(), false);
duke@435 5518 }
duke@435 5519
duke@435 5520 // Helper function; generates code for cases requiring runtime checks.
duke@435 5521 Node*
duke@435 5522 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
duke@435 5523 Node* dest_elem_klass,
duke@435 5524 Node* src, Node* src_offset,
duke@435 5525 Node* dest, Node* dest_offset,
iveresov@2606 5526 Node* copy_length, bool dest_uninitialized) {
duke@435 5527 if (stopped()) return NULL;
duke@435 5528
iveresov@2606 5529 address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
duke@435 5530 if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
duke@435 5531 return NULL;
duke@435 5532 }
duke@435 5533
duke@435 5534 // Pick out the parameters required to perform a store-check
duke@435 5535 // for the target array. This is an optimistic check. It will
duke@435 5536 // look in each non-null element's class, at the desired klass's
duke@435 5537 // super_check_offset, for the desired klass.
stefank@3391 5538 int sco_offset = in_bytes(Klass::super_check_offset_offset());
duke@435 5539 Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
kvn@4115 5540 Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
never@2199 5541 Node* check_offset = ConvI2X(_gvn.transform(n3));
duke@435 5542 Node* check_value = dest_elem_klass;
duke@435 5543
duke@435 5544 Node* src_start = array_element_address(src, src_offset, T_OBJECT);
duke@435 5545 Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
duke@435 5546
duke@435 5547 // (We know the arrays are never conjoint, because their types differ.)
duke@435 5548 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 5549 OptoRuntime::checkcast_arraycopy_Type(),
duke@435 5550 copyfunc_addr, "checkcast_arraycopy", adr_type,
duke@435 5551 // five arguments, of which two are
duke@435 5552 // intptr_t (jlong in LP64)
duke@435 5553 src_start, dest_start,
duke@435 5554 copy_length XTOP,
duke@435 5555 check_offset XTOP,
duke@435 5556 check_value);
duke@435 5557
kvn@4115 5558 return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
duke@435 5559 }
duke@435 5560
duke@435 5561
duke@435 5562 // Helper function; generates code for cases requiring runtime checks.
duke@435 5563 Node*
duke@435 5564 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
duke@435 5565 Node* src, Node* src_offset,
duke@435 5566 Node* dest, Node* dest_offset,
iveresov@2606 5567 Node* copy_length, bool dest_uninitialized) {
iveresov@2606 5568 assert(!dest_uninitialized, "Invariant");
duke@435 5569 if (stopped()) return NULL;
duke@435 5570 address copyfunc_addr = StubRoutines::generic_arraycopy();
duke@435 5571 if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
duke@435 5572 return NULL;
duke@435 5573 }
duke@435 5574
duke@435 5575 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 5576 OptoRuntime::generic_arraycopy_Type(),
duke@435 5577 copyfunc_addr, "generic_arraycopy", adr_type,
duke@435 5578 src, src_offset, dest, dest_offset, copy_length);
duke@435 5579
kvn@4115 5580 return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
duke@435 5581 }
duke@435 5582
duke@435 5583 // Helper function; generates the fast out-of-line call to an arraycopy stub.
duke@435 5584 void
duke@435 5585 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
duke@435 5586 BasicType basic_elem_type,
duke@435 5587 bool disjoint_bases,
duke@435 5588 Node* src, Node* src_offset,
duke@435 5589 Node* dest, Node* dest_offset,
iveresov@2606 5590 Node* copy_length, bool dest_uninitialized) {
duke@435 5591 if (stopped()) return; // nothing to do
duke@435 5592
duke@435 5593 Node* src_start = src;
duke@435 5594 Node* dest_start = dest;
duke@435 5595 if (src_offset != NULL || dest_offset != NULL) {
duke@435 5596 assert(src_offset != NULL && dest_offset != NULL, "");
duke@435 5597 src_start = array_element_address(src, src_offset, basic_elem_type);
duke@435 5598 dest_start = array_element_address(dest, dest_offset, basic_elem_type);
duke@435 5599 }
duke@435 5600
duke@435 5601 // Figure out which arraycopy runtime method to call.
duke@435 5602 const char* copyfunc_name = "arraycopy";
duke@435 5603 address copyfunc_addr =
duke@435 5604 basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
iveresov@2606 5605 disjoint_bases, copyfunc_name, dest_uninitialized);
duke@435 5606
duke@435 5607 // Call it. Note that the count_ix value is not scaled to a byte-size.
duke@435 5608 make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 5609 OptoRuntime::fast_arraycopy_Type(),
duke@435 5610 copyfunc_addr, copyfunc_name, adr_type,
duke@435 5611 src_start, dest_start, copy_length XTOP);
duke@435 5612 }
johnc@2781 5613
kvn@4479 5614 //-------------inline_encodeISOArray-----------------------------------
kvn@4479 5615 // encode char[] to byte[] in ISO_8859_1
kvn@4479 5616 bool LibraryCallKit::inline_encodeISOArray() {
kvn@4479 5617 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
kvn@4479 5618 // no receiver since it is static method
kvn@4479 5619 Node *src = argument(0);
kvn@4479 5620 Node *src_offset = argument(1);
kvn@4479 5621 Node *dst = argument(2);
kvn@4479 5622 Node *dst_offset = argument(3);
kvn@4479 5623 Node *length = argument(4);
kvn@4479 5624
kvn@4479 5625 const Type* src_type = src->Value(&_gvn);
kvn@4479 5626 const Type* dst_type = dst->Value(&_gvn);
kvn@4479 5627 const TypeAryPtr* top_src = src_type->isa_aryptr();
kvn@4479 5628 const TypeAryPtr* top_dest = dst_type->isa_aryptr();
kvn@4479 5629 if (top_src == NULL || top_src->klass() == NULL ||
kvn@4479 5630 top_dest == NULL || top_dest->klass() == NULL) {
kvn@4479 5631 // failed array check
kvn@4479 5632 return false;
kvn@4479 5633 }
kvn@4479 5634
kvn@4479 5635 // Figure out the size and type of the elements we will be copying.
kvn@4479 5636 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
kvn@4479 5637 BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
kvn@4479 5638 if (src_elem != T_CHAR || dst_elem != T_BYTE) {
kvn@4479 5639 return false;
kvn@4479 5640 }
kvn@4479 5641 Node* src_start = array_element_address(src, src_offset, src_elem);
kvn@4479 5642 Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
kvn@4479 5643 // 'src_start' points to src array + scaled offset
kvn@4479 5644 // 'dst_start' points to dst array + scaled offset
kvn@4479 5645
kvn@4479 5646 const TypeAryPtr* mtype = TypeAryPtr::BYTES;
kvn@4479 5647 Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
kvn@4479 5648 enc = _gvn.transform(enc);
kvn@4479 5649 Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
kvn@4479 5650 set_memory(res_mem, mtype);
kvn@4479 5651 set_result(enc);
kvn@4479 5652 return true;
kvn@4479 5653 }
kvn@4479 5654
drchase@5353 5655 /**
drchase@5353 5656 * Calculate CRC32 for byte.
drchase@5353 5657 * int java.util.zip.CRC32.update(int crc, int b)
drchase@5353 5658 */
drchase@5353 5659 bool LibraryCallKit::inline_updateCRC32() {
drchase@5353 5660 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
drchase@5353 5661 assert(callee()->signature()->size() == 2, "update has 2 parameters");
drchase@5353 5662 // no receiver since it is static method
drchase@5353 5663 Node* crc = argument(0); // type: int
drchase@5353 5664 Node* b = argument(1); // type: int
drchase@5353 5665
drchase@5353 5666 /*
drchase@5353 5667 * int c = ~ crc;
drchase@5353 5668 * b = timesXtoThe32[(b ^ c) & 0xFF];
drchase@5353 5669 * b = b ^ (c >>> 8);
drchase@5353 5670 * crc = ~b;
drchase@5353 5671 */
drchase@5353 5672
drchase@5353 5673 Node* M1 = intcon(-1);
drchase@5353 5674 crc = _gvn.transform(new (C) XorINode(crc, M1));
drchase@5353 5675 Node* result = _gvn.transform(new (C) XorINode(crc, b));
drchase@5353 5676 result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
drchase@5353 5677
drchase@5353 5678 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
drchase@5353 5679 Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
drchase@5353 5680 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
drchase@5353 5681 result = make_load(control(), adr, TypeInt::INT, T_INT);
drchase@5353 5682
drchase@5353 5683 crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
drchase@5353 5684 result = _gvn.transform(new (C) XorINode(crc, result));
drchase@5353 5685 result = _gvn.transform(new (C) XorINode(result, M1));
drchase@5353 5686 set_result(result);
drchase@5353 5687 return true;
drchase@5353 5688 }
drchase@5353 5689
drchase@5353 5690 /**
drchase@5353 5691 * Calculate CRC32 for byte[] array.
drchase@5353 5692 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
drchase@5353 5693 */
drchase@5353 5694 bool LibraryCallKit::inline_updateBytesCRC32() {
drchase@5353 5695 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
drchase@5353 5696 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
drchase@5353 5697 // no receiver since it is static method
drchase@5353 5698 Node* crc = argument(0); // type: int
drchase@5353 5699 Node* src = argument(1); // type: oop
drchase@5353 5700 Node* offset = argument(2); // type: int
drchase@5353 5701 Node* length = argument(3); // type: int
drchase@5353 5702
drchase@5353 5703 const Type* src_type = src->Value(&_gvn);
drchase@5353 5704 const TypeAryPtr* top_src = src_type->isa_aryptr();
drchase@5353 5705 if (top_src == NULL || top_src->klass() == NULL) {
drchase@5353 5706 // failed array check
drchase@5353 5707 return false;
drchase@5353 5708 }
drchase@5353 5709
drchase@5353 5710 // Figure out the size and type of the elements we will be copying.
drchase@5353 5711 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
drchase@5353 5712 if (src_elem != T_BYTE) {
drchase@5353 5713 return false;
drchase@5353 5714 }
drchase@5353 5715
drchase@5353 5716 // 'src_start' points to src array + scaled offset
drchase@5353 5717 Node* src_start = array_element_address(src, offset, src_elem);
drchase@5353 5718
drchase@5353 5719 // We assume that range check is done by caller.
drchase@5353 5720 // TODO: generate range check (offset+length < src.length) in debug VM.
drchase@5353 5721
drchase@5353 5722 // Call the stub.
drchase@5353 5723 address stubAddr = StubRoutines::updateBytesCRC32();
drchase@5353 5724 const char *stubName = "updateBytesCRC32";
drchase@5353 5725
drchase@5353 5726 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
drchase@5353 5727 stubAddr, stubName, TypePtr::BOTTOM,
drchase@5353 5728 crc, src_start, length);
drchase@5353 5729 Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
drchase@5353 5730 set_result(result);
drchase@5353 5731 return true;
drchase@5353 5732 }
drchase@5353 5733
drchase@5353 5734 /**
drchase@5353 5735 * Calculate CRC32 for ByteBuffer.
drchase@5353 5736 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
drchase@5353 5737 */
drchase@5353 5738 bool LibraryCallKit::inline_updateByteBufferCRC32() {
drchase@5353 5739 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
drchase@5353 5740 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
drchase@5353 5741 // no receiver since it is static method
drchase@5353 5742 Node* crc = argument(0); // type: int
drchase@5353 5743 Node* src = argument(1); // type: long
drchase@5353 5744 Node* offset = argument(3); // type: int
drchase@5353 5745 Node* length = argument(4); // type: int
drchase@5353 5746
drchase@5353 5747 src = ConvL2X(src); // adjust Java long to machine word
drchase@5353 5748 Node* base = _gvn.transform(new (C) CastX2PNode(src));
drchase@5353 5749 offset = ConvI2X(offset);
drchase@5353 5750
drchase@5353 5751 // 'src_start' points to src array + scaled offset
drchase@5353 5752 Node* src_start = basic_plus_adr(top(), base, offset);
drchase@5353 5753
drchase@5353 5754 // Call the stub.
drchase@5353 5755 address stubAddr = StubRoutines::updateBytesCRC32();
drchase@5353 5756 const char *stubName = "updateBytesCRC32";
drchase@5353 5757
drchase@5353 5758 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
drchase@5353 5759 stubAddr, stubName, TypePtr::BOTTOM,
drchase@5353 5760 crc, src_start, length);
drchase@5353 5761 Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
drchase@5353 5762 set_result(result);
drchase@5353 5763 return true;
drchase@5353 5764 }
drchase@5353 5765
johnc@2781 5766 //----------------------------inline_reference_get----------------------------
twisti@4313 5767 // public T java.lang.ref.Reference.get();
johnc@2781 5768 bool LibraryCallKit::inline_reference_get() {
twisti@4313 5769 const int referent_offset = java_lang_ref_Reference::referent_offset;
twisti@4313 5770 guarantee(referent_offset > 0, "should have already been set");
twisti@4313 5771
twisti@4313 5772 // Get the argument:
twisti@4313 5773 Node* reference_obj = null_check_receiver();
johnc@2781 5774 if (stopped()) return true;
johnc@2781 5775
twisti@4313 5776 Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
johnc@2781 5777
johnc@2781 5778 ciInstanceKlass* klass = env()->Object_klass();
johnc@2781 5779 const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
johnc@2781 5780
johnc@2781 5781 Node* no_ctrl = NULL;
twisti@4313 5782 Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT);
johnc@2781 5783
johnc@2781 5784 // Use the pre-barrier to record the value in the referent field
johnc@2781 5785 pre_barrier(false /* do_load */,
johnc@2781 5786 control(),
johnc@2790 5787 NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
johnc@2781 5788 result /* pre_val */,
johnc@2781 5789 T_OBJECT);
johnc@2781 5790
kvn@4002 5791 // Add memory barrier to prevent commoning reads from this field
kvn@4002 5792 // across safepoint since GC can change its value.
kvn@4002 5793 insert_mem_bar(Op_MemBarCPUOrder);
kvn@4002 5794
twisti@4313 5795 set_result(result);
johnc@2781 5796 return true;
johnc@2781 5797 }
kvn@4205 5798
kvn@4205 5799
kvn@4205 5800 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
kvn@4205 5801 bool is_exact=true, bool is_static=false) {
kvn@4205 5802
kvn@4205 5803 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
kvn@4205 5804 assert(tinst != NULL, "obj is null");
kvn@4205 5805 assert(tinst->klass()->is_loaded(), "obj is not loaded");
kvn@4205 5806 assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
kvn@4205 5807
kvn@4205 5808 ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
kvn@4205 5809 ciSymbol::make(fieldTypeString),
kvn@4205 5810 is_static);
kvn@4205 5811 if (field == NULL) return (Node *) NULL;
kvn@4205 5812 assert (field != NULL, "undefined field");
kvn@4205 5813
kvn@4205 5814 // Next code copied from Parse::do_get_xxx():
kvn@4205 5815
kvn@4205 5816 // Compute address and memory type.
kvn@4205 5817 int offset = field->offset_in_bytes();
kvn@4205 5818 bool is_vol = field->is_volatile();
kvn@4205 5819 ciType* field_klass = field->type();
kvn@4205 5820 assert(field_klass->is_loaded(), "should be loaded");
kvn@4205 5821 const TypePtr* adr_type = C->alias_type(field)->adr_type();
kvn@4205 5822 Node *adr = basic_plus_adr(fromObj, fromObj, offset);
kvn@4205 5823 BasicType bt = field->layout_type();
kvn@4205 5824
kvn@4205 5825 // Build the resultant type of the load
kvn@4205 5826 const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
kvn@4205 5827
kvn@4205 5828 // Build the load.
kvn@4205 5829 Node* loadedField = make_load(NULL, adr, type, bt, adr_type, is_vol);
kvn@4205 5830 return loadedField;
kvn@4205 5831 }
kvn@4205 5832
kvn@4205 5833
kvn@4205 5834 //------------------------------inline_aescrypt_Block-----------------------
kvn@4205 5835 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
kvn@4205 5836 address stubAddr;
kvn@4205 5837 const char *stubName;
kvn@4205 5838 assert(UseAES, "need AES instruction support");
kvn@4205 5839
kvn@4205 5840 switch(id) {
kvn@4205 5841 case vmIntrinsics::_aescrypt_encryptBlock:
kvn@4205 5842 stubAddr = StubRoutines::aescrypt_encryptBlock();
kvn@4205 5843 stubName = "aescrypt_encryptBlock";
kvn@4205 5844 break;
kvn@4205 5845 case vmIntrinsics::_aescrypt_decryptBlock:
kvn@4205 5846 stubAddr = StubRoutines::aescrypt_decryptBlock();
kvn@4205 5847 stubName = "aescrypt_decryptBlock";
kvn@4205 5848 break;
kvn@4205 5849 }
kvn@4205 5850 if (stubAddr == NULL) return false;
kvn@4205 5851
twisti@4313 5852 Node* aescrypt_object = argument(0);
twisti@4313 5853 Node* src = argument(1);
twisti@4313 5854 Node* src_offset = argument(2);
twisti@4313 5855 Node* dest = argument(3);
twisti@4313 5856 Node* dest_offset = argument(4);
kvn@4205 5857
kvn@4205 5858 // (1) src and dest are arrays.
kvn@4205 5859 const Type* src_type = src->Value(&_gvn);
kvn@4205 5860 const Type* dest_type = dest->Value(&_gvn);
kvn@4205 5861 const TypeAryPtr* top_src = src_type->isa_aryptr();
kvn@4205 5862 const TypeAryPtr* top_dest = dest_type->isa_aryptr();
kvn@4205 5863 assert (top_src != NULL && top_src->klass() != NULL && top_dest != NULL && top_dest->klass() != NULL, "args are strange");
kvn@4205 5864
kvn@4205 5865 // for the quick and dirty code we will skip all the checks.
kvn@4205 5866 // we are just trying to get the call to be generated.
kvn@4205 5867 Node* src_start = src;
kvn@4205 5868 Node* dest_start = dest;
kvn@4205 5869 if (src_offset != NULL || dest_offset != NULL) {
kvn@4205 5870 assert(src_offset != NULL && dest_offset != NULL, "");
kvn@4205 5871 src_start = array_element_address(src, src_offset, T_BYTE);
kvn@4205 5872 dest_start = array_element_address(dest, dest_offset, T_BYTE);
kvn@4205 5873 }
kvn@4205 5874
kvn@4205 5875 // now need to get the start of its expanded key array
kvn@4205 5876 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
kvn@4205 5877 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
kvn@4205 5878 if (k_start == NULL) return false;
kvn@4205 5879
kvn@6312 5880 if (Matcher::pass_original_key_for_aes()) {
kvn@6312 5881 // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
kvn@6312 5882 // compatibility issues between Java key expansion and SPARC crypto instructions
kvn@6312 5883 Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
kvn@6312 5884 if (original_k_start == NULL) return false;
kvn@6312 5885
kvn@6312 5886 // Call the stub.
kvn@6312 5887 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
kvn@6312 5888 stubAddr, stubName, TypePtr::BOTTOM,
kvn@6312 5889 src_start, dest_start, k_start, original_k_start);
kvn@6312 5890 } else {
kvn@6312 5891 // Call the stub.
kvn@6312 5892 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
kvn@6312 5893 stubAddr, stubName, TypePtr::BOTTOM,
kvn@6312 5894 src_start, dest_start, k_start);
kvn@6312 5895 }
kvn@4205 5896
kvn@4205 5897 return true;
kvn@4205 5898 }
kvn@4205 5899
kvn@4205 5900 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
kvn@4205 5901 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
kvn@4205 5902 address stubAddr;
kvn@4205 5903 const char *stubName;
kvn@4205 5904
kvn@4205 5905 assert(UseAES, "need AES instruction support");
kvn@4205 5906
kvn@4205 5907 switch(id) {
kvn@4205 5908 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
kvn@4205 5909 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
kvn@4205 5910 stubName = "cipherBlockChaining_encryptAESCrypt";
kvn@4205 5911 break;
kvn@4205 5912 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
kvn@4205 5913 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
kvn@4205 5914 stubName = "cipherBlockChaining_decryptAESCrypt";
kvn@4205 5915 break;
kvn@4205 5916 }
kvn@4205 5917 if (stubAddr == NULL) return false;
kvn@4205 5918
twisti@4313 5919 Node* cipherBlockChaining_object = argument(0);
twisti@4313 5920 Node* src = argument(1);
twisti@4313 5921 Node* src_offset = argument(2);
twisti@4313 5922 Node* len = argument(3);
twisti@4313 5923 Node* dest = argument(4);
twisti@4313 5924 Node* dest_offset = argument(5);
kvn@4205 5925
kvn@4205 5926 // (1) src and dest are arrays.
kvn@4205 5927 const Type* src_type = src->Value(&_gvn);
kvn@4205 5928 const Type* dest_type = dest->Value(&_gvn);
kvn@4205 5929 const TypeAryPtr* top_src = src_type->isa_aryptr();
kvn@4205 5930 const TypeAryPtr* top_dest = dest_type->isa_aryptr();
kvn@4205 5931 assert (top_src != NULL && top_src->klass() != NULL
kvn@4205 5932 && top_dest != NULL && top_dest->klass() != NULL, "args are strange");
kvn@4205 5933
kvn@4205 5934 // checks are the responsibility of the caller
kvn@4205 5935 Node* src_start = src;
kvn@4205 5936 Node* dest_start = dest;
kvn@4205 5937 if (src_offset != NULL || dest_offset != NULL) {
kvn@4205 5938 assert(src_offset != NULL && dest_offset != NULL, "");
kvn@4205 5939 src_start = array_element_address(src, src_offset, T_BYTE);
kvn@4205 5940 dest_start = array_element_address(dest, dest_offset, T_BYTE);
kvn@4205 5941 }
kvn@4205 5942
kvn@4205 5943 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
kvn@4205 5944 // (because of the predicated logic executed earlier).
kvn@4205 5945 // so we cast it here safely.
kvn@4205 5946 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
kvn@4205 5947
kvn@4205 5948 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
kvn@4205 5949 if (embeddedCipherObj == NULL) return false;
kvn@4205 5950
kvn@4205 5951 // cast it to what we know it will be at runtime
kvn@4205 5952 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
kvn@4205 5953 assert(tinst != NULL, "CBC obj is null");
kvn@4205 5954 assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
kvn@4205 5955 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
kvn@4205 5956 if (!klass_AESCrypt->is_loaded()) return false;
kvn@4205 5957
kvn@4205 5958 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
kvn@4205 5959 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
kvn@4205 5960 const TypeOopPtr* xtype = aklass->as_instance_type();
kvn@4205 5961 Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
kvn@4205 5962 aescrypt_object = _gvn.transform(aescrypt_object);
kvn@4205 5963
kvn@4205 5964 // we need to get the start of the aescrypt_object's expanded key array
kvn@4205 5965 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
kvn@4205 5966 if (k_start == NULL) return false;
kvn@4205 5967
kvn@4205 5968 // similarly, get the start address of the r vector
kvn@4205 5969 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
kvn@4205 5970 if (objRvec == NULL) return false;
kvn@4205 5971 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
kvn@4205 5972
kvn@6312 5973 Node* cbcCrypt;
kvn@6312 5974 if (Matcher::pass_original_key_for_aes()) {
kvn@6312 5975 // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
kvn@6312 5976 // compatibility issues between Java key expansion and SPARC crypto instructions
kvn@6312 5977 Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
kvn@6312 5978 if (original_k_start == NULL) return false;
kvn@6312 5979
kvn@6312 5980 // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
kvn@6312 5981 cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
kvn@6312 5982 OptoRuntime::cipherBlockChaining_aescrypt_Type(),
kvn@6312 5983 stubAddr, stubName, TypePtr::BOTTOM,
kvn@6312 5984 src_start, dest_start, k_start, r_start, len, original_k_start);
kvn@6312 5985 } else {
kvn@6312 5986 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
kvn@6312 5987 cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
kvn@6312 5988 OptoRuntime::cipherBlockChaining_aescrypt_Type(),
kvn@6312 5989 stubAddr, stubName, TypePtr::BOTTOM,
kvn@6312 5990 src_start, dest_start, k_start, r_start, len);
kvn@6312 5991 }
kvn@6312 5992
kvn@6312 5993 // return cipher length (int)
kvn@6312 5994 Node* retvalue = _gvn.transform(new (C) ProjNode(cbcCrypt, TypeFunc::Parms));
kvn@6312 5995 set_result(retvalue);
kvn@4205 5996 return true;
kvn@4205 5997 }
kvn@4205 5998
kvn@4205 5999 //------------------------------get_key_start_from_aescrypt_object-----------------------
kvn@4205 6000 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
kvn@4205 6001 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
kvn@4205 6002 assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
kvn@4205 6003 if (objAESCryptKey == NULL) return (Node *) NULL;
kvn@4205 6004
kvn@4205 6005 // now have the array, need to get the start address of the K array
kvn@4205 6006 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
kvn@4205 6007 return k_start;
kvn@4205 6008 }
kvn@4205 6009
kvn@6312 6010 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
kvn@6312 6011 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
kvn@6312 6012 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
kvn@6312 6013 assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
kvn@6312 6014 if (objAESCryptKey == NULL) return (Node *) NULL;
kvn@6312 6015
kvn@6312 6016 // now have the array, need to get the start address of the lastKey array
kvn@6312 6017 Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
kvn@6312 6018 return original_k_start;
kvn@6312 6019 }
kvn@6312 6020
kvn@4205 6021 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
kvn@4205 6022 // Return node representing slow path of predicate check.
kvn@4205 6023 // the pseudo code we want to emulate with this predicate is:
kvn@4205 6024 // for encryption:
kvn@4205 6025 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
kvn@4205 6026 // for decryption:
kvn@4205 6027 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
kvn@4205 6028 // note cipher==plain is more conservative than the original java code but that's OK
kvn@4205 6029 //
kvn@4205 6030 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
kvn@4205 6031 // First, check receiver for NULL since it is virtual method.
kvn@4205 6032 Node* objCBC = argument(0);
twisti@4313 6033 objCBC = null_check(objCBC);
kvn@4205 6034
kvn@4205 6035 if (stopped()) return NULL; // Always NULL
kvn@4205 6036
kvn@4205 6037 // Load embeddedCipher field of CipherBlockChaining object.
kvn@4205 6038 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
kvn@4205 6039
kvn@4205 6040 // get AESCrypt klass for instanceOf check
kvn@4205 6041 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
kvn@4205 6042 // will have same classloader as CipherBlockChaining object
kvn@4205 6043 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
kvn@4205 6044 assert(tinst != NULL, "CBCobj is null");
kvn@4205 6045 assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
kvn@4205 6046
kvn@4205 6047 // we want to do an instanceof comparison against the AESCrypt class
kvn@4205 6048 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
kvn@4205 6049 if (!klass_AESCrypt->is_loaded()) {
kvn@4205 6050 // if AESCrypt is not even loaded, we never take the intrinsic fast path
kvn@4205 6051 Node* ctrl = control();
kvn@4205 6052 set_control(top()); // no regular fast path
kvn@4205 6053 return ctrl;
kvn@4205 6054 }
kvn@4205 6055 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
kvn@4205 6056
kvn@4205 6057 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
kvn@4205 6058 Node* cmp_instof = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
kvn@4205 6059 Node* bool_instof = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
kvn@4205 6060
kvn@4205 6061 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
kvn@4205 6062
kvn@4205 6063 // for encryption, we are done
kvn@4205 6064 if (!decrypting)
kvn@4205 6065 return instof_false; // even if it is NULL
kvn@4205 6066
kvn@4205 6067 // for decryption, we need to add a further check to avoid
kvn@4205 6068 // taking the intrinsic path when cipher and plain are the same
kvn@4205 6069 // see the original java code for why.
kvn@4205 6070 RegionNode* region = new(C) RegionNode(3);
kvn@4205 6071 region->init_req(1, instof_false);
kvn@4205 6072 Node* src = argument(1);
twisti@4313 6073 Node* dest = argument(4);
kvn@4205 6074 Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
kvn@4205 6075 Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
kvn@4205 6076 Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
kvn@4205 6077 region->init_req(2, src_dest_conjoint);
kvn@4205 6078
kvn@4205 6079 record_for_igvn(region);
kvn@4205 6080 return _gvn.transform(region);
kvn@4205 6081 }

mercurial