src/share/vm/gc_implementation/g1/heapRegion.hpp

Wed, 12 Jan 2011 16:34:25 -0500

author
tonyp
date
Wed, 12 Jan 2011 16:34:25 -0500
changeset 2454
b158bed62ef5
parent 2453
2250ee17e258
child 2472
0fa27f37d4d4
permissions
-rw-r--r--

6994297: G1: do first-level slow-path allocations with a CAS
Summary: First attempt to allocate out the current alloc region using a CAS instead of taking the Heap_lock (first level of G1's slow allocation path). Only if that fails and it's necessary to replace the current alloc region take the Heap_lock (that's the second level of G1's slow allocation path).
Reviewed-by: johnc, brutisso, ysr

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    28 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
    29 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
    30 #include "gc_implementation/g1/survRateGroup.hpp"
    31 #include "gc_implementation/shared/ageTable.hpp"
    32 #include "gc_implementation/shared/spaceDecorator.hpp"
    33 #include "memory/space.inline.hpp"
    34 #include "memory/watermark.hpp"
    36 #ifndef SERIALGC
    38 // A HeapRegion is the smallest piece of a G1CollectedHeap that
    39 // can be collected independently.
    41 // NOTE: Although a HeapRegion is a Space, its
    42 // Space::initDirtyCardClosure method must not be called.
    43 // The problem is that the existence of this method breaks
    44 // the independence of barrier sets from remembered sets.
    45 // The solution is to remove this method from the definition
    46 // of a Space.
    48 class CompactibleSpace;
    49 class ContiguousSpace;
    50 class HeapRegionRemSet;
    51 class HeapRegionRemSetIterator;
    52 class HeapRegion;
    54 // A dirty card to oop closure for heap regions. It
    55 // knows how to get the G1 heap and how to use the bitmap
    56 // in the concurrent marker used by G1 to filter remembered
    57 // sets.
    59 class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
    60 public:
    61   // Specification of possible DirtyCardToOopClosure filtering.
    62   enum FilterKind {
    63     NoFilterKind,
    64     IntoCSFilterKind,
    65     OutOfRegionFilterKind
    66   };
    68 protected:
    69   HeapRegion* _hr;
    70   FilterKind _fk;
    71   G1CollectedHeap* _g1;
    73   void walk_mem_region_with_cl(MemRegion mr,
    74                                HeapWord* bottom, HeapWord* top,
    75                                OopClosure* cl);
    77   // We don't specialize this for FilteringClosure; filtering is handled by
    78   // the "FilterKind" mechanism.  But we provide this to avoid a compiler
    79   // warning.
    80   void walk_mem_region_with_cl(MemRegion mr,
    81                                HeapWord* bottom, HeapWord* top,
    82                                FilteringClosure* cl) {
    83     HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
    84                                                        (OopClosure*)cl);
    85   }
    87   // Get the actual top of the area on which the closure will
    88   // operate, given where the top is assumed to be (the end of the
    89   // memory region passed to do_MemRegion) and where the object
    90   // at the top is assumed to start. For example, an object may
    91   // start at the top but actually extend past the assumed top,
    92   // in which case the top becomes the end of the object.
    93   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
    94     return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
    95   }
    97   // Walk the given memory region from bottom to (actual) top
    98   // looking for objects and applying the oop closure (_cl) to
    99   // them. The base implementation of this treats the area as
   100   // blocks, where a block may or may not be an object. Sub-
   101   // classes should override this to provide more accurate
   102   // or possibly more efficient walking.
   103   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
   104     Filtering_DCTOC::walk_mem_region(mr, bottom, top);
   105   }
   107 public:
   108   HeapRegionDCTOC(G1CollectedHeap* g1,
   109                   HeapRegion* hr, OopClosure* cl,
   110                   CardTableModRefBS::PrecisionStyle precision,
   111                   FilterKind fk);
   112 };
   115 // The complicating factor is that BlockOffsetTable diverged
   116 // significantly, and we need functionality that is only in the G1 version.
   117 // So I copied that code, which led to an alternate G1 version of
   118 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
   119 // be reconciled, then G1OffsetTableContigSpace could go away.
   121 // The idea behind time stamps is the following. Doing a save_marks on
   122 // all regions at every GC pause is time consuming (if I remember
   123 // well, 10ms or so). So, we would like to do that only for regions
   124 // that are GC alloc regions. To achieve this, we use time
   125 // stamps. For every evacuation pause, G1CollectedHeap generates a
   126 // unique time stamp (essentially a counter that gets
   127 // incremented). Every time we want to call save_marks on a region,
   128 // we set the saved_mark_word to top and also copy the current GC
   129 // time stamp to the time stamp field of the space. Reading the
   130 // saved_mark_word involves checking the time stamp of the
   131 // region. If it is the same as the current GC time stamp, then we
   132 // can safely read the saved_mark_word field, as it is valid. If the
   133 // time stamp of the region is not the same as the current GC time
   134 // stamp, then we instead read top, as the saved_mark_word field is
   135 // invalid. Time stamps (on the regions and also on the
   136 // G1CollectedHeap) are reset at every cleanup (we iterate over
   137 // the regions anyway) and at the end of a Full GC. The current scheme
   138 // that uses sequential unsigned ints will fail only if we have 4b
   139 // evacuation pauses between two cleanups, which is _highly_ unlikely.
   141 class G1OffsetTableContigSpace: public ContiguousSpace {
   142   friend class VMStructs;
   143  protected:
   144   G1BlockOffsetArrayContigSpace _offsets;
   145   Mutex _par_alloc_lock;
   146   volatile unsigned _gc_time_stamp;
   148  public:
   149   // Constructor.  If "is_zeroed" is true, the MemRegion "mr" may be
   150   // assumed to contain zeros.
   151   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
   152                            MemRegion mr, bool is_zeroed = false);
   154   void set_bottom(HeapWord* value);
   155   void set_end(HeapWord* value);
   157   virtual HeapWord* saved_mark_word() const;
   158   virtual void set_saved_mark();
   159   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
   161   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   162   virtual void clear(bool mangle_space);
   164   HeapWord* block_start(const void* p);
   165   HeapWord* block_start_const(const void* p) const;
   167   // Add offset table update.
   168   virtual HeapWord* allocate(size_t word_size);
   169   HeapWord* par_allocate(size_t word_size);
   171   // MarkSweep support phase3
   172   virtual HeapWord* initialize_threshold();
   173   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
   175   virtual void print() const;
   177   void reset_bot() {
   178     _offsets.zero_bottom_entry();
   179     _offsets.initialize_threshold();
   180   }
   182   void update_bot_for_object(HeapWord* start, size_t word_size) {
   183     _offsets.alloc_block(start, word_size);
   184   }
   186   void print_bot_on(outputStream* out) {
   187     _offsets.print_on(out);
   188   }
   189 };
   191 class HeapRegion: public G1OffsetTableContigSpace {
   192   friend class VMStructs;
   193  private:
   195   enum HumongousType {
   196     NotHumongous = 0,
   197     StartsHumongous,
   198     ContinuesHumongous
   199   };
   201   // The next filter kind that should be used for a "new_dcto_cl" call with
   202   // the "traditional" signature.
   203   HeapRegionDCTOC::FilterKind _next_fk;
   205   // Requires that the region "mr" be dense with objects, and begin and end
   206   // with an object.
   207   void oops_in_mr_iterate(MemRegion mr, OopClosure* cl);
   209   // The remembered set for this region.
   210   // (Might want to make this "inline" later, to avoid some alloc failure
   211   // issues.)
   212   HeapRegionRemSet* _rem_set;
   214   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
   216  protected:
   217   // If this region is a member of a HeapRegionSeq, the index in that
   218   // sequence, otherwise -1.
   219   int  _hrs_index;
   221   HumongousType _humongous_type;
   222   // For a humongous region, region in which it starts.
   223   HeapRegion* _humongous_start_region;
   224   // For the start region of a humongous sequence, it's original end().
   225   HeapWord* _orig_end;
   227   // True iff the region is in current collection_set.
   228   bool _in_collection_set;
   230     // True iff the region is on the unclean list, waiting to be zero filled.
   231   bool _is_on_unclean_list;
   233   // True iff the region is on the free list, ready for allocation.
   234   bool _is_on_free_list;
   236   // Is this or has it been an allocation region in the current collection
   237   // pause.
   238   bool _is_gc_alloc_region;
   240   // True iff an attempt to evacuate an object in the region failed.
   241   bool _evacuation_failed;
   243   // A heap region may be a member one of a number of special subsets, each
   244   // represented as linked lists through the field below.  Currently, these
   245   // sets include:
   246   //   The collection set.
   247   //   The set of allocation regions used in a collection pause.
   248   //   Spaces that may contain gray objects.
   249   HeapRegion* _next_in_special_set;
   251   // next region in the young "generation" region set
   252   HeapRegion* _next_young_region;
   254   // Next region whose cards need cleaning
   255   HeapRegion* _next_dirty_cards_region;
   257   // For parallel heapRegion traversal.
   258   jint _claimed;
   260   // We use concurrent marking to determine the amount of live data
   261   // in each heap region.
   262   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
   263   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
   265   // See "sort_index" method.  -1 means is not in the array.
   266   int _sort_index;
   268   // <PREDICTION>
   269   double _gc_efficiency;
   270   // </PREDICTION>
   272   enum YoungType {
   273     NotYoung,                   // a region is not young
   274     Young,                      // a region is young
   275     Survivor                    // a region is young and it contains
   276                                 // survivor
   277   };
   279   volatile YoungType _young_type;
   280   int  _young_index_in_cset;
   281   SurvRateGroup* _surv_rate_group;
   282   int  _age_index;
   284   // The start of the unmarked area. The unmarked area extends from this
   285   // word until the top and/or end of the region, and is the part
   286   // of the region for which no marking was done, i.e. objects may
   287   // have been allocated in this part since the last mark phase.
   288   // "prev" is the top at the start of the last completed marking.
   289   // "next" is the top at the start of the in-progress marking (if any.)
   290   HeapWord* _prev_top_at_mark_start;
   291   HeapWord* _next_top_at_mark_start;
   292   // If a collection pause is in progress, this is the top at the start
   293   // of that pause.
   295   // We've counted the marked bytes of objects below here.
   296   HeapWord* _top_at_conc_mark_count;
   298   void init_top_at_mark_start() {
   299     assert(_prev_marked_bytes == 0 &&
   300            _next_marked_bytes == 0,
   301            "Must be called after zero_marked_bytes.");
   302     HeapWord* bot = bottom();
   303     _prev_top_at_mark_start = bot;
   304     _next_top_at_mark_start = bot;
   305     _top_at_conc_mark_count = bot;
   306   }
   308   jint _zfs;  // A member of ZeroFillState.  Protected by ZF_lock.
   309   Thread* _zero_filler; // If _zfs is ZeroFilling, the thread that (last)
   310                         // made it so.
   312   void set_young_type(YoungType new_type) {
   313     //assert(_young_type != new_type, "setting the same type" );
   314     // TODO: add more assertions here
   315     _young_type = new_type;
   316   }
   318   // Cached attributes used in the collection set policy information
   320   // The RSet length that was added to the total value
   321   // for the collection set.
   322   size_t _recorded_rs_length;
   324   // The predicted elapsed time that was added to total value
   325   // for the collection set.
   326   double _predicted_elapsed_time_ms;
   328   // The predicted number of bytes to copy that was added to
   329   // the total value for the collection set.
   330   size_t _predicted_bytes_to_copy;
   332  public:
   333   // If "is_zeroed" is "true", the region "mr" can be assumed to contain zeros.
   334   HeapRegion(G1BlockOffsetSharedArray* sharedOffsetArray,
   335              MemRegion mr, bool is_zeroed);
   337   static int LogOfHRGrainBytes;
   338   static int LogOfHRGrainWords;
   339   // The normal type of these should be size_t. However, they used to
   340   // be members of an enum before and they are assumed by the
   341   // compilers to be ints. To avoid going and fixing all their uses,
   342   // I'm declaring them as ints. I'm not anticipating heap region
   343   // sizes to reach anywhere near 2g, so using an int here is safe.
   344   static int GrainBytes;
   345   static int GrainWords;
   346   static int CardsPerRegion;
   348   // It sets up the heap region size (GrainBytes / GrainWords), as
   349   // well as other related fields that are based on the heap region
   350   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
   351   // CardsPerRegion). All those fields are considered constant
   352   // throughout the JVM's execution, therefore they should only be set
   353   // up once during initialization time.
   354   static void setup_heap_region_size(uintx min_heap_size);
   356   enum ClaimValues {
   357     InitialClaimValue     = 0,
   358     FinalCountClaimValue  = 1,
   359     NoteEndClaimValue     = 2,
   360     ScrubRemSetClaimValue = 3,
   361     ParVerifyClaimValue   = 4,
   362     RebuildRSClaimValue   = 5
   363   };
   365   // Concurrent refinement requires contiguous heap regions (in which TLABs
   366   // might be allocated) to be zero-filled.  Each region therefore has a
   367   // zero-fill-state.
   368   enum ZeroFillState {
   369     NotZeroFilled,
   370     ZeroFilling,
   371     ZeroFilled,
   372     Allocated
   373   };
   375   inline HeapWord* par_allocate_no_bot_updates(size_t word_size) {
   376     assert(is_young(), "we can only skip BOT updates on young regions");
   377     return ContiguousSpace::par_allocate(word_size);
   378   }
   379   inline HeapWord* allocate_no_bot_updates(size_t word_size) {
   380     assert(is_young(), "we can only skip BOT updates on young regions");
   381     return ContiguousSpace::allocate(word_size);
   382   }
   384   // If this region is a member of a HeapRegionSeq, the index in that
   385   // sequence, otherwise -1.
   386   int hrs_index() const { return _hrs_index; }
   387   void set_hrs_index(int index) { _hrs_index = index; }
   389   // The number of bytes marked live in the region in the last marking phase.
   390   size_t marked_bytes()    { return _prev_marked_bytes; }
   391   // The number of bytes counted in the next marking.
   392   size_t next_marked_bytes() { return _next_marked_bytes; }
   393   // The number of bytes live wrt the next marking.
   394   size_t next_live_bytes() {
   395     return (top() - next_top_at_mark_start())
   396       * HeapWordSize
   397       + next_marked_bytes();
   398   }
   400   // A lower bound on the amount of garbage bytes in the region.
   401   size_t garbage_bytes() {
   402     size_t used_at_mark_start_bytes =
   403       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
   404     assert(used_at_mark_start_bytes >= marked_bytes(),
   405            "Can't mark more than we have.");
   406     return used_at_mark_start_bytes - marked_bytes();
   407   }
   409   // An upper bound on the number of live bytes in the region.
   410   size_t max_live_bytes() { return used() - garbage_bytes(); }
   412   void add_to_marked_bytes(size_t incr_bytes) {
   413     _next_marked_bytes = _next_marked_bytes + incr_bytes;
   414     guarantee( _next_marked_bytes <= used(), "invariant" );
   415   }
   417   void zero_marked_bytes()      {
   418     _prev_marked_bytes = _next_marked_bytes = 0;
   419   }
   421   bool isHumongous() const { return _humongous_type != NotHumongous; }
   422   bool startsHumongous() const { return _humongous_type == StartsHumongous; }
   423   bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
   424   // For a humongous region, region in which it starts.
   425   HeapRegion* humongous_start_region() const {
   426     return _humongous_start_region;
   427   }
   429   // Makes the current region be a "starts humongous" region, i.e.,
   430   // the first region in a series of one or more contiguous regions
   431   // that will contain a single "humongous" object. The two parameters
   432   // are as follows:
   433   //
   434   // new_top : The new value of the top field of this region which
   435   // points to the end of the humongous object that's being
   436   // allocated. If there is more than one region in the series, top
   437   // will lie beyond this region's original end field and on the last
   438   // region in the series.
   439   //
   440   // new_end : The new value of the end field of this region which
   441   // points to the end of the last region in the series. If there is
   442   // one region in the series (namely: this one) end will be the same
   443   // as the original end of this region.
   444   //
   445   // Updating top and end as described above makes this region look as
   446   // if it spans the entire space taken up by all the regions in the
   447   // series and an single allocation moved its top to new_top. This
   448   // ensures that the space (capacity / allocated) taken up by all
   449   // humongous regions can be calculated by just looking at the
   450   // "starts humongous" regions and by ignoring the "continues
   451   // humongous" regions.
   452   void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
   454   // Makes the current region be a "continues humongous'
   455   // region. first_hr is the "start humongous" region of the series
   456   // which this region will be part of.
   457   void set_continuesHumongous(HeapRegion* first_hr);
   459   // If the region has a remembered set, return a pointer to it.
   460   HeapRegionRemSet* rem_set() const {
   461     return _rem_set;
   462   }
   464   // True iff the region is in current collection_set.
   465   bool in_collection_set() const {
   466     return _in_collection_set;
   467   }
   468   void set_in_collection_set(bool b) {
   469     _in_collection_set = b;
   470   }
   471   HeapRegion* next_in_collection_set() {
   472     assert(in_collection_set(), "should only invoke on member of CS.");
   473     assert(_next_in_special_set == NULL ||
   474            _next_in_special_set->in_collection_set(),
   475            "Malformed CS.");
   476     return _next_in_special_set;
   477   }
   478   void set_next_in_collection_set(HeapRegion* r) {
   479     assert(in_collection_set(), "should only invoke on member of CS.");
   480     assert(r == NULL || r->in_collection_set(), "Malformed CS.");
   481     _next_in_special_set = r;
   482   }
   484   // True iff it is or has been an allocation region in the current
   485   // collection pause.
   486   bool is_gc_alloc_region() const {
   487     return _is_gc_alloc_region;
   488   }
   489   void set_is_gc_alloc_region(bool b) {
   490     _is_gc_alloc_region = b;
   491   }
   492   HeapRegion* next_gc_alloc_region() {
   493     assert(is_gc_alloc_region(), "should only invoke on member of CS.");
   494     assert(_next_in_special_set == NULL ||
   495            _next_in_special_set->is_gc_alloc_region(),
   496            "Malformed CS.");
   497     return _next_in_special_set;
   498   }
   499   void set_next_gc_alloc_region(HeapRegion* r) {
   500     assert(is_gc_alloc_region(), "should only invoke on member of CS.");
   501     assert(r == NULL || r->is_gc_alloc_region(), "Malformed CS.");
   502     _next_in_special_set = r;
   503   }
   505   bool is_on_free_list() {
   506     return _is_on_free_list;
   507   }
   509   void set_on_free_list(bool b) {
   510     _is_on_free_list = b;
   511   }
   513   HeapRegion* next_from_free_list() {
   514     assert(is_on_free_list(),
   515            "Should only invoke on free space.");
   516     assert(_next_in_special_set == NULL ||
   517            _next_in_special_set->is_on_free_list(),
   518            "Malformed Free List.");
   519     return _next_in_special_set;
   520   }
   522   void set_next_on_free_list(HeapRegion* r) {
   523     assert(r == NULL || r->is_on_free_list(), "Malformed free list.");
   524     _next_in_special_set = r;
   525   }
   527   bool is_on_unclean_list() {
   528     return _is_on_unclean_list;
   529   }
   531   void set_on_unclean_list(bool b);
   533   HeapRegion* next_from_unclean_list() {
   534     assert(is_on_unclean_list(),
   535            "Should only invoke on unclean space.");
   536     assert(_next_in_special_set == NULL ||
   537            _next_in_special_set->is_on_unclean_list(),
   538            "Malformed unclean List.");
   539     return _next_in_special_set;
   540   }
   542   void set_next_on_unclean_list(HeapRegion* r);
   544   HeapRegion* get_next_young_region() { return _next_young_region; }
   545   void set_next_young_region(HeapRegion* hr) {
   546     _next_young_region = hr;
   547   }
   549   HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
   550   HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
   551   void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
   552   bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
   554   // Allows logical separation between objects allocated before and after.
   555   void save_marks();
   557   // Reset HR stuff to default values.
   558   void hr_clear(bool par, bool clear_space);
   560   void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   562   // Ensure that "this" is zero-filled.
   563   void ensure_zero_filled();
   564   // This one requires that the calling thread holds ZF_mon.
   565   void ensure_zero_filled_locked();
   567   // Get the start of the unmarked area in this region.
   568   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
   569   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
   571   // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
   572   // allocated in the current region before the last call to "save_mark".
   573   void oop_before_save_marks_iterate(OopClosure* cl);
   575   // This call determines the "filter kind" argument that will be used for
   576   // the next call to "new_dcto_cl" on this region with the "traditional"
   577   // signature (i.e., the call below.)  The default, in the absence of a
   578   // preceding call to this method, is "NoFilterKind", and a call to this
   579   // method is necessary for each such call, or else it reverts to the
   580   // default.
   581   // (This is really ugly, but all other methods I could think of changed a
   582   // lot of main-line code for G1.)
   583   void set_next_filter_kind(HeapRegionDCTOC::FilterKind nfk) {
   584     _next_fk = nfk;
   585   }
   587   DirtyCardToOopClosure*
   588   new_dcto_closure(OopClosure* cl,
   589                    CardTableModRefBS::PrecisionStyle precision,
   590                    HeapRegionDCTOC::FilterKind fk);
   592 #if WHASSUP
   593   DirtyCardToOopClosure*
   594   new_dcto_closure(OopClosure* cl,
   595                    CardTableModRefBS::PrecisionStyle precision,
   596                    HeapWord* boundary) {
   597     assert(boundary == NULL, "This arg doesn't make sense here.");
   598     DirtyCardToOopClosure* res = new_dcto_closure(cl, precision, _next_fk);
   599     _next_fk = HeapRegionDCTOC::NoFilterKind;
   600     return res;
   601   }
   602 #endif
   604   //
   605   // Note the start or end of marking. This tells the heap region
   606   // that the collector is about to start or has finished (concurrently)
   607   // marking the heap.
   608   //
   610   // Note the start of a marking phase. Record the
   611   // start of the unmarked area of the region here.
   612   void note_start_of_marking(bool during_initial_mark) {
   613     init_top_at_conc_mark_count();
   614     _next_marked_bytes = 0;
   615     if (during_initial_mark && is_young() && !is_survivor())
   616       _next_top_at_mark_start = bottom();
   617     else
   618       _next_top_at_mark_start = top();
   619   }
   621   // Note the end of a marking phase. Install the start of
   622   // the unmarked area that was captured at start of marking.
   623   void note_end_of_marking() {
   624     _prev_top_at_mark_start = _next_top_at_mark_start;
   625     _prev_marked_bytes = _next_marked_bytes;
   626     _next_marked_bytes = 0;
   628     guarantee(_prev_marked_bytes <=
   629               (size_t) (prev_top_at_mark_start() - bottom()) * HeapWordSize,
   630               "invariant");
   631   }
   633   // After an evacuation, we need to update _next_top_at_mark_start
   634   // to be the current top.  Note this is only valid if we have only
   635   // ever evacuated into this region.  If we evacuate, allocate, and
   636   // then evacuate we are in deep doodoo.
   637   void note_end_of_copying() {
   638     assert(top() >= _next_top_at_mark_start, "Increase only");
   639     _next_top_at_mark_start = top();
   640   }
   642   // Returns "false" iff no object in the region was allocated when the
   643   // last mark phase ended.
   644   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
   646   // If "is_marked()" is true, then this is the index of the region in
   647   // an array constructed at the end of marking of the regions in a
   648   // "desirability" order.
   649   int sort_index() {
   650     return _sort_index;
   651   }
   652   void set_sort_index(int i) {
   653     _sort_index = i;
   654   }
   656   void init_top_at_conc_mark_count() {
   657     _top_at_conc_mark_count = bottom();
   658   }
   660   void set_top_at_conc_mark_count(HeapWord *cur) {
   661     assert(bottom() <= cur && cur <= end(), "Sanity.");
   662     _top_at_conc_mark_count = cur;
   663   }
   665   HeapWord* top_at_conc_mark_count() {
   666     return _top_at_conc_mark_count;
   667   }
   669   void reset_during_compaction() {
   670     guarantee( isHumongous() && startsHumongous(),
   671                "should only be called for humongous regions");
   673     zero_marked_bytes();
   674     init_top_at_mark_start();
   675   }
   677   // <PREDICTION>
   678   void calc_gc_efficiency(void);
   679   double gc_efficiency() { return _gc_efficiency;}
   680   // </PREDICTION>
   682   bool is_young() const     { return _young_type != NotYoung; }
   683   bool is_survivor() const  { return _young_type == Survivor; }
   685   int  young_index_in_cset() const { return _young_index_in_cset; }
   686   void set_young_index_in_cset(int index) {
   687     assert( (index == -1) || is_young(), "pre-condition" );
   688     _young_index_in_cset = index;
   689   }
   691   int age_in_surv_rate_group() {
   692     assert( _surv_rate_group != NULL, "pre-condition" );
   693     assert( _age_index > -1, "pre-condition" );
   694     return _surv_rate_group->age_in_group(_age_index);
   695   }
   697   void record_surv_words_in_group(size_t words_survived) {
   698     assert( _surv_rate_group != NULL, "pre-condition" );
   699     assert( _age_index > -1, "pre-condition" );
   700     int age_in_group = age_in_surv_rate_group();
   701     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
   702   }
   704   int age_in_surv_rate_group_cond() {
   705     if (_surv_rate_group != NULL)
   706       return age_in_surv_rate_group();
   707     else
   708       return -1;
   709   }
   711   SurvRateGroup* surv_rate_group() {
   712     return _surv_rate_group;
   713   }
   715   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
   716     assert( surv_rate_group != NULL, "pre-condition" );
   717     assert( _surv_rate_group == NULL, "pre-condition" );
   718     assert( is_young(), "pre-condition" );
   720     _surv_rate_group = surv_rate_group;
   721     _age_index = surv_rate_group->next_age_index();
   722   }
   724   void uninstall_surv_rate_group() {
   725     if (_surv_rate_group != NULL) {
   726       assert( _age_index > -1, "pre-condition" );
   727       assert( is_young(), "pre-condition" );
   729       _surv_rate_group = NULL;
   730       _age_index = -1;
   731     } else {
   732       assert( _age_index == -1, "pre-condition" );
   733     }
   734   }
   736   void set_young() { set_young_type(Young); }
   738   void set_survivor() { set_young_type(Survivor); }
   740   void set_not_young() { set_young_type(NotYoung); }
   742   // Determine if an object has been allocated since the last
   743   // mark performed by the collector. This returns true iff the object
   744   // is within the unmarked area of the region.
   745   bool obj_allocated_since_prev_marking(oop obj) const {
   746     return (HeapWord *) obj >= prev_top_at_mark_start();
   747   }
   748   bool obj_allocated_since_next_marking(oop obj) const {
   749     return (HeapWord *) obj >= next_top_at_mark_start();
   750   }
   752   // For parallel heapRegion traversal.
   753   bool claimHeapRegion(int claimValue);
   754   jint claim_value() { return _claimed; }
   755   // Use this carefully: only when you're sure no one is claiming...
   756   void set_claim_value(int claimValue) { _claimed = claimValue; }
   758   // Returns the "evacuation_failed" property of the region.
   759   bool evacuation_failed() { return _evacuation_failed; }
   761   // Sets the "evacuation_failed" property of the region.
   762   void set_evacuation_failed(bool b) {
   763     _evacuation_failed = b;
   765     if (b) {
   766       init_top_at_conc_mark_count();
   767       _next_marked_bytes = 0;
   768     }
   769   }
   771   // Requires that "mr" be entirely within the region.
   772   // Apply "cl->do_object" to all objects that intersect with "mr".
   773   // If the iteration encounters an unparseable portion of the region,
   774   // or if "cl->abort()" is true after a closure application,
   775   // terminate the iteration and return the address of the start of the
   776   // subregion that isn't done.  (The two can be distinguished by querying
   777   // "cl->abort()".)  Return of "NULL" indicates that the iteration
   778   // completed.
   779   HeapWord*
   780   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
   782   // In this version - if filter_young is true and the region
   783   // is a young region then we skip the iteration.
   784   HeapWord*
   785   oops_on_card_seq_iterate_careful(MemRegion mr,
   786                                    FilterOutOfRegionClosure* cl,
   787                                    bool filter_young);
   789   // A version of block start that is guaranteed to find *some* block
   790   // boundary at or before "p", but does not object iteration, and may
   791   // therefore be used safely when the heap is unparseable.
   792   HeapWord* block_start_careful(const void* p) const {
   793     return _offsets.block_start_careful(p);
   794   }
   796   // Requires that "addr" is within the region.  Returns the start of the
   797   // first ("careful") block that starts at or after "addr", or else the
   798   // "end" of the region if there is no such block.
   799   HeapWord* next_block_start_careful(HeapWord* addr);
   801   // Returns the zero-fill-state of the current region.
   802   ZeroFillState zero_fill_state() { return (ZeroFillState)_zfs; }
   803   bool zero_fill_is_allocated() { return _zfs == Allocated; }
   804   Thread* zero_filler() { return _zero_filler; }
   806   // Indicate that the contents of the region are unknown, and therefore
   807   // might require zero-filling.
   808   void set_zero_fill_needed() {
   809     set_zero_fill_state_work(NotZeroFilled);
   810   }
   811   void set_zero_fill_in_progress(Thread* t) {
   812     set_zero_fill_state_work(ZeroFilling);
   813     _zero_filler = t;
   814   }
   815   void set_zero_fill_complete();
   816   void set_zero_fill_allocated() {
   817     set_zero_fill_state_work(Allocated);
   818   }
   820   void set_zero_fill_state_work(ZeroFillState zfs);
   822   // This is called when a full collection shrinks the heap.
   823   // We want to set the heap region to a value which says
   824   // it is no longer part of the heap.  For now, we'll let "NotZF" fill
   825   // that role.
   826   void reset_zero_fill() {
   827     set_zero_fill_state_work(NotZeroFilled);
   828     _zero_filler = NULL;
   829   }
   831   size_t recorded_rs_length() const        { return _recorded_rs_length; }
   832   double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
   833   size_t predicted_bytes_to_copy() const   { return _predicted_bytes_to_copy; }
   835   void set_recorded_rs_length(size_t rs_length) {
   836     _recorded_rs_length = rs_length;
   837   }
   839   void set_predicted_elapsed_time_ms(double ms) {
   840     _predicted_elapsed_time_ms = ms;
   841   }
   843   void set_predicted_bytes_to_copy(size_t bytes) {
   844     _predicted_bytes_to_copy = bytes;
   845   }
   847 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
   848   virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
   849   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
   851   CompactibleSpace* next_compaction_space() const;
   853   virtual void reset_after_compaction();
   855   void print() const;
   856   void print_on(outputStream* st) const;
   858   // use_prev_marking == true  -> use "prev" marking information,
   859   // use_prev_marking == false -> use "next" marking information
   860   // NOTE: Only the "prev" marking information is guaranteed to be
   861   // consistent most of the time, so most calls to this should use
   862   // use_prev_marking == true. Currently, there is only one case where
   863   // this is called with use_prev_marking == false, which is to verify
   864   // the "next" marking information at the end of remark.
   865   void verify(bool allow_dirty, bool use_prev_marking, bool *failures) const;
   867   // Override; it uses the "prev" marking information
   868   virtual void verify(bool allow_dirty) const;
   870 #ifdef DEBUG
   871   HeapWord* allocate(size_t size);
   872 #endif
   873 };
   875 // HeapRegionClosure is used for iterating over regions.
   876 // Terminates the iteration when the "doHeapRegion" method returns "true".
   877 class HeapRegionClosure : public StackObj {
   878   friend class HeapRegionSeq;
   879   friend class G1CollectedHeap;
   881   bool _complete;
   882   void incomplete() { _complete = false; }
   884  public:
   885   HeapRegionClosure(): _complete(true) {}
   887   // Typically called on each region until it returns true.
   888   virtual bool doHeapRegion(HeapRegion* r) = 0;
   890   // True after iteration if the closure was applied to all heap regions
   891   // and returned "false" in all cases.
   892   bool complete() { return _complete; }
   893 };
   895 // A linked lists of heap regions.  It leaves the "next" field
   896 // unspecified; that's up to subtypes.
   897 class RegionList VALUE_OBJ_CLASS_SPEC {
   898 protected:
   899   virtual HeapRegion* get_next(HeapRegion* chr) = 0;
   900   virtual void set_next(HeapRegion* chr,
   901                         HeapRegion* new_next) = 0;
   903   HeapRegion* _hd;
   904   HeapRegion* _tl;
   905   size_t _sz;
   907   // Protected constructor because this type is only meaningful
   908   // when the _get/_set next functions are defined.
   909   RegionList() : _hd(NULL), _tl(NULL), _sz(0) {}
   910 public:
   911   void reset() {
   912     _hd = NULL;
   913     _tl = NULL;
   914     _sz = 0;
   915   }
   916   HeapRegion* hd() { return _hd; }
   917   HeapRegion* tl() { return _tl; }
   918   size_t sz() { return _sz; }
   919   size_t length();
   921   bool well_formed() {
   922     return
   923       ((hd() == NULL && tl() == NULL && sz() == 0)
   924        || (hd() != NULL && tl() != NULL && sz() > 0))
   925       && (sz() == length());
   926   }
   927   virtual void insert_before_head(HeapRegion* r);
   928   void prepend_list(RegionList* new_list);
   929   virtual HeapRegion* pop();
   930   void dec_sz() { _sz--; }
   931   // Requires that "r" is an element of the list, and is not the tail.
   932   void delete_after(HeapRegion* r);
   933 };
   935 class EmptyNonHRegionList: public RegionList {
   936 protected:
   937   // Protected constructor because this type is only meaningful
   938   // when the _get/_set next functions are defined.
   939   EmptyNonHRegionList() : RegionList() {}
   941 public:
   942   void insert_before_head(HeapRegion* r) {
   943     //    assert(r->is_empty(), "Better be empty");
   944     assert(!r->isHumongous(), "Better not be humongous.");
   945     RegionList::insert_before_head(r);
   946   }
   947   void prepend_list(EmptyNonHRegionList* new_list) {
   948     //    assert(new_list->hd() == NULL || new_list->hd()->is_empty(),
   949     //     "Better be empty");
   950     assert(new_list->hd() == NULL || !new_list->hd()->isHumongous(),
   951            "Better not be humongous.");
   952     //    assert(new_list->tl() == NULL || new_list->tl()->is_empty(),
   953     //     "Better be empty");
   954     assert(new_list->tl() == NULL || !new_list->tl()->isHumongous(),
   955            "Better not be humongous.");
   956     RegionList::prepend_list(new_list);
   957   }
   958 };
   960 class UncleanRegionList: public EmptyNonHRegionList {
   961 public:
   962   HeapRegion* get_next(HeapRegion* hr) {
   963     return hr->next_from_unclean_list();
   964   }
   965   void set_next(HeapRegion* hr, HeapRegion* new_next) {
   966     hr->set_next_on_unclean_list(new_next);
   967   }
   969   UncleanRegionList() : EmptyNonHRegionList() {}
   971   void insert_before_head(HeapRegion* r) {
   972     assert(!r->is_on_free_list(),
   973            "Better not already be on free list");
   974     assert(!r->is_on_unclean_list(),
   975            "Better not already be on unclean list");
   976     r->set_zero_fill_needed();
   977     r->set_on_unclean_list(true);
   978     EmptyNonHRegionList::insert_before_head(r);
   979   }
   980   void prepend_list(UncleanRegionList* new_list) {
   981     assert(new_list->tl() == NULL || !new_list->tl()->is_on_free_list(),
   982            "Better not already be on free list");
   983     assert(new_list->tl() == NULL || new_list->tl()->is_on_unclean_list(),
   984            "Better already be marked as on unclean list");
   985     assert(new_list->hd() == NULL || !new_list->hd()->is_on_free_list(),
   986            "Better not already be on free list");
   987     assert(new_list->hd() == NULL || new_list->hd()->is_on_unclean_list(),
   988            "Better already be marked as on unclean list");
   989     EmptyNonHRegionList::prepend_list(new_list);
   990   }
   991   HeapRegion* pop() {
   992     HeapRegion* res = RegionList::pop();
   993     if (res != NULL) res->set_on_unclean_list(false);
   994     return res;
   995   }
   996 };
   998 // Local Variables: ***
   999 // c-indentation-style: gnu ***
  1000 // End: ***
  1002 #endif // SERIALGC
  1004 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP

mercurial