src/cpu/x86/vm/assembler_x86_64.hpp

Wed, 23 Apr 2008 11:20:36 -0700

author
kvn
date
Wed, 23 Apr 2008 11:20:36 -0700
changeset 559
b130b98db9cf
parent 548
ba764ed4b6f2
child 599
c436414a719e
child 777
37f87013dfd8
permissions
-rw-r--r--

6689060: Escape Analysis does not work with Compressed Oops
Summary: 64-bits VM crashes with -XX:+AggresiveOpts (Escape Analysis + Compressed Oops)
Reviewed-by: never, sgoldman

duke@435 1 /*
duke@435 2 * Copyright 2003-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 class BiasedLockingCounters;
duke@435 26
duke@435 27 // Contains all the definitions needed for amd64 assembly code generation.
duke@435 28
duke@435 29 #ifdef _LP64
duke@435 30 // Calling convention
duke@435 31 class Argument VALUE_OBJ_CLASS_SPEC {
duke@435 32 public:
duke@435 33 enum {
duke@435 34 #ifdef _WIN64
duke@435 35 n_int_register_parameters_c = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
duke@435 36 n_float_register_parameters_c = 4, // xmm0 - xmm3 (c_farg0, c_farg1, ... )
duke@435 37 #else
duke@435 38 n_int_register_parameters_c = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
duke@435 39 n_float_register_parameters_c = 8, // xmm0 - xmm7 (c_farg0, c_farg1, ... )
coleenp@548 40 #endif // _WIN64
duke@435 41 n_int_register_parameters_j = 6, // j_rarg0, j_rarg1, ...
duke@435 42 n_float_register_parameters_j = 8 // j_farg0, j_farg1, ...
duke@435 43 };
duke@435 44 };
duke@435 45
duke@435 46
duke@435 47 // Symbolically name the register arguments used by the c calling convention.
duke@435 48 // Windows is different from linux/solaris. So much for standards...
duke@435 49
duke@435 50 #ifdef _WIN64
duke@435 51
duke@435 52 REGISTER_DECLARATION(Register, c_rarg0, rcx);
duke@435 53 REGISTER_DECLARATION(Register, c_rarg1, rdx);
duke@435 54 REGISTER_DECLARATION(Register, c_rarg2, r8);
duke@435 55 REGISTER_DECLARATION(Register, c_rarg3, r9);
duke@435 56
duke@435 57 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
duke@435 58 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
duke@435 59 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
duke@435 60 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
duke@435 61
duke@435 62 #else
duke@435 63
duke@435 64 REGISTER_DECLARATION(Register, c_rarg0, rdi);
duke@435 65 REGISTER_DECLARATION(Register, c_rarg1, rsi);
duke@435 66 REGISTER_DECLARATION(Register, c_rarg2, rdx);
duke@435 67 REGISTER_DECLARATION(Register, c_rarg3, rcx);
duke@435 68 REGISTER_DECLARATION(Register, c_rarg4, r8);
duke@435 69 REGISTER_DECLARATION(Register, c_rarg5, r9);
duke@435 70
duke@435 71 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
duke@435 72 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
duke@435 73 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
duke@435 74 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
duke@435 75 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
duke@435 76 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
duke@435 77 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
duke@435 78 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
duke@435 79
coleenp@548 80 #endif // _WIN64
duke@435 81
duke@435 82 // Symbolically name the register arguments used by the Java calling convention.
duke@435 83 // We have control over the convention for java so we can do what we please.
duke@435 84 // What pleases us is to offset the java calling convention so that when
duke@435 85 // we call a suitable jni method the arguments are lined up and we don't
duke@435 86 // have to do little shuffling. A suitable jni method is non-static and a
duke@435 87 // small number of arguments (two fewer args on windows)
duke@435 88 //
duke@435 89 // |-------------------------------------------------------|
duke@435 90 // | c_rarg0 c_rarg1 c_rarg2 c_rarg3 c_rarg4 c_rarg5 |
duke@435 91 // |-------------------------------------------------------|
duke@435 92 // | rcx rdx r8 r9 rdi* rsi* | windows (* not a c_rarg)
duke@435 93 // | rdi rsi rdx rcx r8 r9 | solaris/linux
duke@435 94 // |-------------------------------------------------------|
duke@435 95 // | j_rarg5 j_rarg0 j_rarg1 j_rarg2 j_rarg3 j_rarg4 |
duke@435 96 // |-------------------------------------------------------|
duke@435 97
duke@435 98 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
duke@435 99 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
duke@435 100 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
duke@435 101 // Windows runs out of register args here
duke@435 102 #ifdef _WIN64
duke@435 103 REGISTER_DECLARATION(Register, j_rarg3, rdi);
duke@435 104 REGISTER_DECLARATION(Register, j_rarg4, rsi);
duke@435 105 #else
duke@435 106 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
duke@435 107 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
coleenp@548 108 #endif // _WIN64
duke@435 109 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
duke@435 110
duke@435 111 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
duke@435 112 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
duke@435 113 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
duke@435 114 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
duke@435 115 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
duke@435 116 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
duke@435 117 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
duke@435 118 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
duke@435 119
duke@435 120 REGISTER_DECLARATION(Register, rscratch1, r10); // volatile
duke@435 121 REGISTER_DECLARATION(Register, rscratch2, r11); // volatile
duke@435 122
coleenp@548 123 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
coleenp@548 124 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
duke@435 125
duke@435 126 #endif // _LP64
duke@435 127
duke@435 128 // Address is an abstraction used to represent a memory location
duke@435 129 // using any of the amd64 addressing modes with one object.
duke@435 130 //
duke@435 131 // Note: A register location is represented via a Register, not
duke@435 132 // via an address for efficiency & simplicity reasons.
duke@435 133
duke@435 134 class ArrayAddress;
duke@435 135
duke@435 136 class Address VALUE_OBJ_CLASS_SPEC {
duke@435 137 public:
duke@435 138 enum ScaleFactor {
duke@435 139 no_scale = -1,
duke@435 140 times_1 = 0,
duke@435 141 times_2 = 1,
duke@435 142 times_4 = 2,
duke@435 143 times_8 = 3
duke@435 144 };
duke@435 145
duke@435 146 private:
duke@435 147 Register _base;
duke@435 148 Register _index;
duke@435 149 ScaleFactor _scale;
duke@435 150 int _disp;
duke@435 151 RelocationHolder _rspec;
duke@435 152
duke@435 153 // Easily misused constructors make them private
duke@435 154 Address(int disp, address loc, relocInfo::relocType rtype);
duke@435 155 Address(int disp, address loc, RelocationHolder spec);
duke@435 156
duke@435 157 public:
duke@435 158 // creation
duke@435 159 Address()
duke@435 160 : _base(noreg),
duke@435 161 _index(noreg),
duke@435 162 _scale(no_scale),
duke@435 163 _disp(0) {
duke@435 164 }
duke@435 165
duke@435 166 // No default displacement otherwise Register can be implicitly
duke@435 167 // converted to 0(Register) which is quite a different animal.
duke@435 168
duke@435 169 Address(Register base, int disp)
duke@435 170 : _base(base),
duke@435 171 _index(noreg),
duke@435 172 _scale(no_scale),
duke@435 173 _disp(disp) {
duke@435 174 }
duke@435 175
duke@435 176 Address(Register base, Register index, ScaleFactor scale, int disp = 0)
duke@435 177 : _base (base),
duke@435 178 _index(index),
duke@435 179 _scale(scale),
duke@435 180 _disp (disp) {
duke@435 181 assert(!index->is_valid() == (scale == Address::no_scale),
duke@435 182 "inconsistent address");
duke@435 183 }
duke@435 184
duke@435 185 // The following two overloads are used in connection with the
duke@435 186 // ByteSize type (see sizes.hpp). They simplify the use of
duke@435 187 // ByteSize'd arguments in assembly code. Note that their equivalent
duke@435 188 // for the optimized build are the member functions with int disp
duke@435 189 // argument since ByteSize is mapped to an int type in that case.
duke@435 190 //
duke@435 191 // Note: DO NOT introduce similar overloaded functions for WordSize
duke@435 192 // arguments as in the optimized mode, both ByteSize and WordSize
duke@435 193 // are mapped to the same type and thus the compiler cannot make a
duke@435 194 // distinction anymore (=> compiler errors).
duke@435 195
duke@435 196 #ifdef ASSERT
duke@435 197 Address(Register base, ByteSize disp)
duke@435 198 : _base(base),
duke@435 199 _index(noreg),
duke@435 200 _scale(no_scale),
duke@435 201 _disp(in_bytes(disp)) {
duke@435 202 }
duke@435 203
duke@435 204 Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
duke@435 205 : _base(base),
duke@435 206 _index(index),
duke@435 207 _scale(scale),
duke@435 208 _disp(in_bytes(disp)) {
duke@435 209 assert(!index->is_valid() == (scale == Address::no_scale),
duke@435 210 "inconsistent address");
duke@435 211 }
duke@435 212 #endif // ASSERT
duke@435 213
duke@435 214 // accessors
duke@435 215 bool uses(Register reg) const {
duke@435 216 return _base == reg || _index == reg;
duke@435 217 }
duke@435 218
duke@435 219 // Convert the raw encoding form into the form expected by the constructor for
duke@435 220 // Address. An index of 4 (rsp) corresponds to having no index, so convert
duke@435 221 // that to noreg for the Address constructor.
duke@435 222 static Address make_raw(int base, int index, int scale, int disp);
duke@435 223
duke@435 224 static Address make_array(ArrayAddress);
duke@435 225
duke@435 226 private:
duke@435 227 bool base_needs_rex() const {
duke@435 228 return _base != noreg && _base->encoding() >= 8;
duke@435 229 }
duke@435 230
duke@435 231 bool index_needs_rex() const {
duke@435 232 return _index != noreg &&_index->encoding() >= 8;
duke@435 233 }
duke@435 234
duke@435 235 relocInfo::relocType reloc() const { return _rspec.type(); }
duke@435 236
duke@435 237 friend class Assembler;
duke@435 238 friend class MacroAssembler;
duke@435 239 friend class LIR_Assembler; // base/index/scale/disp
duke@435 240 };
duke@435 241
duke@435 242 //
duke@435 243 // AddressLiteral has been split out from Address because operands of this type
duke@435 244 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
duke@435 245 // the few instructions that need to deal with address literals are unique and the
duke@435 246 // MacroAssembler does not have to implement every instruction in the Assembler
duke@435 247 // in order to search for address literals that may need special handling depending
duke@435 248 // on the instruction and the platform. As small step on the way to merging i486/amd64
duke@435 249 // directories.
duke@435 250 //
duke@435 251 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
duke@435 252 friend class ArrayAddress;
duke@435 253 RelocationHolder _rspec;
duke@435 254 // Typically we use AddressLiterals we want to use their rval
duke@435 255 // However in some situations we want the lval (effect address) of the item.
duke@435 256 // We provide a special factory for making those lvals.
duke@435 257 bool _is_lval;
duke@435 258
duke@435 259 // If the target is far we'll need to load the ea of this to
duke@435 260 // a register to reach it. Otherwise if near we can do rip
duke@435 261 // relative addressing.
duke@435 262
duke@435 263 address _target;
duke@435 264
duke@435 265 protected:
duke@435 266 // creation
duke@435 267 AddressLiteral()
duke@435 268 : _is_lval(false),
duke@435 269 _target(NULL)
duke@435 270 {}
duke@435 271
duke@435 272 public:
duke@435 273
duke@435 274
duke@435 275 AddressLiteral(address target, relocInfo::relocType rtype);
duke@435 276
duke@435 277 AddressLiteral(address target, RelocationHolder const& rspec)
duke@435 278 : _rspec(rspec),
duke@435 279 _is_lval(false),
duke@435 280 _target(target)
duke@435 281 {}
duke@435 282
duke@435 283 AddressLiteral addr() {
duke@435 284 AddressLiteral ret = *this;
duke@435 285 ret._is_lval = true;
duke@435 286 return ret;
duke@435 287 }
duke@435 288
duke@435 289
duke@435 290 private:
duke@435 291
duke@435 292 address target() { return _target; }
duke@435 293 bool is_lval() { return _is_lval; }
duke@435 294
duke@435 295 relocInfo::relocType reloc() const { return _rspec.type(); }
duke@435 296 const RelocationHolder& rspec() const { return _rspec; }
duke@435 297
duke@435 298 friend class Assembler;
duke@435 299 friend class MacroAssembler;
duke@435 300 friend class Address;
duke@435 301 friend class LIR_Assembler;
duke@435 302 };
duke@435 303
duke@435 304 // Convience classes
duke@435 305 class RuntimeAddress: public AddressLiteral {
duke@435 306
duke@435 307 public:
duke@435 308
duke@435 309 RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
duke@435 310
duke@435 311 };
duke@435 312
duke@435 313 class OopAddress: public AddressLiteral {
duke@435 314
duke@435 315 public:
duke@435 316
duke@435 317 OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
duke@435 318
duke@435 319 };
duke@435 320
duke@435 321 class ExternalAddress: public AddressLiteral {
duke@435 322
duke@435 323 public:
duke@435 324
duke@435 325 ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){}
duke@435 326
duke@435 327 };
duke@435 328
duke@435 329 class InternalAddress: public AddressLiteral {
duke@435 330
duke@435 331 public:
duke@435 332
duke@435 333 InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
duke@435 334
duke@435 335 };
duke@435 336
duke@435 337 // x86 can do array addressing as a single operation since disp can be an absolute
duke@435 338 // address but amd64 can't [e.g. array_base(rx, ry:width) ]. We create a class
duke@435 339 // that expresses the concept but does extra magic on amd64 to get the final result
duke@435 340
duke@435 341 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
duke@435 342 private:
duke@435 343
duke@435 344 AddressLiteral _base;
duke@435 345 Address _index;
duke@435 346
duke@435 347 public:
duke@435 348
duke@435 349 ArrayAddress() {};
duke@435 350 ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
duke@435 351 AddressLiteral base() { return _base; }
duke@435 352 Address index() { return _index; }
duke@435 353
duke@435 354 };
duke@435 355
duke@435 356 // The amd64 Assembler: Pure assembler doing NO optimizations on
duke@435 357 // the instruction level (e.g. mov rax, 0 is not translated into xor
duke@435 358 // rax, rax!); i.e., what you write is what you get. The Assembler is
duke@435 359 // generating code into a CodeBuffer.
duke@435 360
duke@435 361 const int FPUStateSizeInWords = 512 / wordSize;
duke@435 362
duke@435 363 class Assembler : public AbstractAssembler {
duke@435 364 friend class AbstractAssembler; // for the non-virtual hack
duke@435 365 friend class StubGenerator;
duke@435 366
duke@435 367
duke@435 368 protected:
duke@435 369 #ifdef ASSERT
duke@435 370 void check_relocation(RelocationHolder const& rspec, int format);
duke@435 371 #endif
duke@435 372
duke@435 373 inline void emit_long64(jlong x);
duke@435 374
duke@435 375 void emit_data(jint data, relocInfo::relocType rtype, int format /* = 1 */);
duke@435 376 void emit_data(jint data, RelocationHolder const& rspec, int format /* = 1 */);
duke@435 377 void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
duke@435 378 void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
duke@435 379
duke@435 380 // Helper functions for groups of instructions
duke@435 381 void emit_arith_b(int op1, int op2, Register dst, int imm8);
duke@435 382
duke@435 383 void emit_arith(int op1, int op2, Register dst, int imm32);
duke@435 384 // only x86??
duke@435 385 void emit_arith(int op1, int op2, Register dst, jobject obj);
duke@435 386 void emit_arith(int op1, int op2, Register dst, Register src);
duke@435 387
duke@435 388 void emit_operand(Register reg,
duke@435 389 Register base, Register index, Address::ScaleFactor scale,
duke@435 390 int disp,
duke@435 391 RelocationHolder const& rspec,
duke@435 392 int rip_relative_correction = 0);
duke@435 393 void emit_operand(Register reg, Address adr,
duke@435 394 int rip_relative_correction = 0);
duke@435 395 void emit_operand(XMMRegister reg,
duke@435 396 Register base, Register index, Address::ScaleFactor scale,
duke@435 397 int disp,
duke@435 398 RelocationHolder const& rspec,
duke@435 399 int rip_relative_correction = 0);
duke@435 400 void emit_operand(XMMRegister reg, Address adr,
duke@435 401 int rip_relative_correction = 0);
duke@435 402
duke@435 403 // Immediate-to-memory forms
duke@435 404 void emit_arith_operand(int op1, Register rm, Address adr, int imm32);
duke@435 405
duke@435 406 void emit_farith(int b1, int b2, int i);
duke@435 407
duke@435 408 bool reachable(AddressLiteral adr);
duke@435 409
duke@435 410 // These are all easily abused and hence protected
duke@435 411
duke@435 412 // Make these disappear in 64bit mode since they would never be correct
duke@435 413 #ifndef _LP64
duke@435 414 void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);
duke@435 415 void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);
duke@435 416
duke@435 417 void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);
duke@435 418 void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);
duke@435 419
duke@435 420 void push_literal32(int32_t imm32, RelocationHolder const& rspec);
duke@435 421 #endif // _LP64
duke@435 422
duke@435 423
duke@435 424 void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);
duke@435 425
duke@435 426 // These are unique in that we are ensured by the caller that the 32bit
duke@435 427 // relative in these instructions will always be able to reach the potentially
duke@435 428 // 64bit address described by entry. Since they can take a 64bit address they
duke@435 429 // don't have the 32 suffix like the other instructions in this class.
duke@435 430 void jmp_literal(address entry, RelocationHolder const& rspec);
duke@435 431 void call_literal(address entry, RelocationHolder const& rspec);
duke@435 432
duke@435 433 public:
duke@435 434 enum Condition { // The amd64 condition codes used for conditional jumps/moves.
duke@435 435 zero = 0x4,
duke@435 436 notZero = 0x5,
duke@435 437 equal = 0x4,
duke@435 438 notEqual = 0x5,
duke@435 439 less = 0xc,
duke@435 440 lessEqual = 0xe,
duke@435 441 greater = 0xf,
duke@435 442 greaterEqual = 0xd,
duke@435 443 below = 0x2,
duke@435 444 belowEqual = 0x6,
duke@435 445 above = 0x7,
duke@435 446 aboveEqual = 0x3,
duke@435 447 overflow = 0x0,
duke@435 448 noOverflow = 0x1,
duke@435 449 carrySet = 0x2,
duke@435 450 carryClear = 0x3,
duke@435 451 negative = 0x8,
duke@435 452 positive = 0x9,
duke@435 453 parity = 0xa,
duke@435 454 noParity = 0xb
duke@435 455 };
duke@435 456
duke@435 457 enum Prefix {
duke@435 458 // segment overrides
duke@435 459 // XXX remove segment prefixes
duke@435 460 CS_segment = 0x2e,
duke@435 461 SS_segment = 0x36,
duke@435 462 DS_segment = 0x3e,
duke@435 463 ES_segment = 0x26,
duke@435 464 FS_segment = 0x64,
duke@435 465 GS_segment = 0x65,
duke@435 466
duke@435 467 REX = 0x40,
duke@435 468
duke@435 469 REX_B = 0x41,
duke@435 470 REX_X = 0x42,
duke@435 471 REX_XB = 0x43,
duke@435 472 REX_R = 0x44,
duke@435 473 REX_RB = 0x45,
duke@435 474 REX_RX = 0x46,
duke@435 475 REX_RXB = 0x47,
duke@435 476
duke@435 477 REX_W = 0x48,
duke@435 478
duke@435 479 REX_WB = 0x49,
duke@435 480 REX_WX = 0x4A,
duke@435 481 REX_WXB = 0x4B,
duke@435 482 REX_WR = 0x4C,
duke@435 483 REX_WRB = 0x4D,
duke@435 484 REX_WRX = 0x4E,
duke@435 485 REX_WRXB = 0x4F
duke@435 486 };
duke@435 487
duke@435 488 enum WhichOperand {
duke@435 489 // input to locate_operand, and format code for relocations
duke@435 490 imm64_operand = 0, // embedded 64-bit immediate operand
duke@435 491 disp32_operand = 1, // embedded 32-bit displacement
duke@435 492 call32_operand = 2, // embedded 32-bit self-relative displacement
duke@435 493 _WhichOperand_limit = 3
duke@435 494 };
duke@435 495
duke@435 496 public:
duke@435 497
duke@435 498 // Creation
duke@435 499 Assembler(CodeBuffer* code)
duke@435 500 : AbstractAssembler(code) {
duke@435 501 }
duke@435 502
duke@435 503 // Decoding
duke@435 504 static address locate_operand(address inst, WhichOperand which);
duke@435 505 static address locate_next_instruction(address inst);
duke@435 506
duke@435 507 // Utilities
duke@435 508
duke@435 509 static bool is_simm(int64_t x, int nbits) { return -( CONST64(1) << (nbits-1) ) <= x && x < ( CONST64(1) << (nbits-1) ); }
duke@435 510 static bool is_simm32 (int64_t x) { return x == (int64_t)(int32_t)x; }
duke@435 511
duke@435 512
duke@435 513 // Stack
duke@435 514 void pushaq();
duke@435 515 void popaq();
duke@435 516
duke@435 517 void pushfq();
duke@435 518 void popfq();
duke@435 519
duke@435 520 void pushq(int imm32);
duke@435 521
duke@435 522 void pushq(Register src);
duke@435 523 void pushq(Address src);
duke@435 524
duke@435 525 void popq(Register dst);
duke@435 526 void popq(Address dst);
duke@435 527
duke@435 528 // Instruction prefixes
duke@435 529 void prefix(Prefix p);
duke@435 530
duke@435 531 int prefix_and_encode(int reg_enc, bool byteinst = false);
duke@435 532 int prefixq_and_encode(int reg_enc);
duke@435 533
duke@435 534 int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
duke@435 535 int prefixq_and_encode(int dst_enc, int src_enc);
duke@435 536
duke@435 537 void prefix(Register reg);
duke@435 538 void prefix(Address adr);
duke@435 539 void prefixq(Address adr);
duke@435 540
duke@435 541 void prefix(Address adr, Register reg, bool byteinst = false);
duke@435 542 void prefixq(Address adr, Register reg);
duke@435 543
duke@435 544 void prefix(Address adr, XMMRegister reg);
duke@435 545
duke@435 546 // Moves
duke@435 547 void movb(Register dst, Address src);
duke@435 548 void movb(Address dst, int imm8);
duke@435 549 void movb(Address dst, Register src);
duke@435 550
duke@435 551 void movw(Address dst, int imm16);
duke@435 552 void movw(Register dst, Address src);
duke@435 553 void movw(Address dst, Register src);
duke@435 554
duke@435 555 void movl(Register dst, int imm32);
duke@435 556 void movl(Register dst, Register src);
duke@435 557 void movl(Register dst, Address src);
duke@435 558 void movl(Address dst, int imm32);
duke@435 559 void movl(Address dst, Register src);
duke@435 560
duke@435 561 void movq(Register dst, Register src);
duke@435 562 void movq(Register dst, Address src);
duke@435 563 void movq(Address dst, Register src);
duke@435 564 // These prevent using movq from converting a zero (like NULL) into Register
duke@435 565 // by giving the compiler two choices it can't resolve
duke@435 566 void movq(Address dst, void* dummy);
duke@435 567 void movq(Register dst, void* dummy);
duke@435 568
duke@435 569 void mov64(Register dst, intptr_t imm64);
duke@435 570 void mov64(Address dst, intptr_t imm64);
duke@435 571
duke@435 572 void movsbl(Register dst, Address src);
duke@435 573 void movsbl(Register dst, Register src);
duke@435 574 void movswl(Register dst, Address src);
duke@435 575 void movswl(Register dst, Register src);
duke@435 576 void movslq(Register dst, Address src);
duke@435 577 void movslq(Register dst, Register src);
duke@435 578
duke@435 579 void movzbl(Register dst, Address src);
duke@435 580 void movzbl(Register dst, Register src);
duke@435 581 void movzwl(Register dst, Address src);
duke@435 582 void movzwl(Register dst, Register src);
duke@435 583
duke@435 584 protected: // Avoid using the next instructions directly.
duke@435 585 // New cpus require use of movsd and movss to avoid partial register stall
duke@435 586 // when loading from memory. But for old Opteron use movlpd instead of movsd.
duke@435 587 // The selection is done in MacroAssembler::movdbl() and movflt().
duke@435 588 void movss(XMMRegister dst, XMMRegister src);
duke@435 589 void movss(XMMRegister dst, Address src);
duke@435 590 void movss(Address dst, XMMRegister src);
duke@435 591 void movsd(XMMRegister dst, XMMRegister src);
duke@435 592 void movsd(Address dst, XMMRegister src);
duke@435 593 void movsd(XMMRegister dst, Address src);
duke@435 594 void movlpd(XMMRegister dst, Address src);
duke@435 595 // New cpus require use of movaps and movapd to avoid partial register stall
duke@435 596 // when moving between registers.
duke@435 597 void movapd(XMMRegister dst, XMMRegister src);
duke@435 598 void movaps(XMMRegister dst, XMMRegister src);
duke@435 599 public:
duke@435 600
duke@435 601 void movdl(XMMRegister dst, Register src);
duke@435 602 void movdl(Register dst, XMMRegister src);
duke@435 603 void movdq(XMMRegister dst, Register src);
duke@435 604 void movdq(Register dst, XMMRegister src);
duke@435 605
duke@435 606 void cmovl(Condition cc, Register dst, Register src);
duke@435 607 void cmovl(Condition cc, Register dst, Address src);
duke@435 608 void cmovq(Condition cc, Register dst, Register src);
duke@435 609 void cmovq(Condition cc, Register dst, Address src);
duke@435 610
duke@435 611 // Prefetches
duke@435 612 private:
duke@435 613 void prefetch_prefix(Address src);
duke@435 614 public:
duke@435 615 void prefetcht0(Address src);
duke@435 616 void prefetcht1(Address src);
duke@435 617 void prefetcht2(Address src);
duke@435 618 void prefetchnta(Address src);
duke@435 619 void prefetchw(Address src);
duke@435 620
duke@435 621 // Arithmetics
duke@435 622 void adcl(Register dst, int imm32);
duke@435 623 void adcl(Register dst, Address src);
duke@435 624 void adcl(Register dst, Register src);
duke@435 625 void adcq(Register dst, int imm32);
duke@435 626 void adcq(Register dst, Address src);
duke@435 627 void adcq(Register dst, Register src);
duke@435 628
duke@435 629 void addl(Address dst, int imm32);
duke@435 630 void addl(Address dst, Register src);
duke@435 631 void addl(Register dst, int imm32);
duke@435 632 void addl(Register dst, Address src);
duke@435 633 void addl(Register dst, Register src);
duke@435 634 void addq(Address dst, int imm32);
duke@435 635 void addq(Address dst, Register src);
duke@435 636 void addq(Register dst, int imm32);
duke@435 637 void addq(Register dst, Address src);
duke@435 638 void addq(Register dst, Register src);
duke@435 639
duke@435 640 void andl(Register dst, int imm32);
duke@435 641 void andl(Register dst, Address src);
duke@435 642 void andl(Register dst, Register src);
duke@435 643 void andq(Register dst, int imm32);
duke@435 644 void andq(Register dst, Address src);
duke@435 645 void andq(Register dst, Register src);
duke@435 646
duke@435 647 void cmpb(Address dst, int imm8);
duke@435 648 void cmpl(Address dst, int imm32);
duke@435 649 void cmpl(Register dst, int imm32);
duke@435 650 void cmpl(Register dst, Register src);
duke@435 651 void cmpl(Register dst, Address src);
duke@435 652 void cmpq(Address dst, int imm32);
duke@435 653 void cmpq(Address dst, Register src);
duke@435 654 void cmpq(Register dst, int imm32);
duke@435 655 void cmpq(Register dst, Register src);
duke@435 656 void cmpq(Register dst, Address src);
duke@435 657
duke@435 658 void ucomiss(XMMRegister dst, XMMRegister src);
duke@435 659 void ucomisd(XMMRegister dst, XMMRegister src);
duke@435 660
duke@435 661 protected:
duke@435 662 // Don't use next inc() and dec() methods directly. INC & DEC instructions
duke@435 663 // could cause a partial flag stall since they don't set CF flag.
duke@435 664 // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
duke@435 665 // which call inc() & dec() or add() & sub() in accordance with
duke@435 666 // the product flag UseIncDec value.
duke@435 667
duke@435 668 void decl(Register dst);
duke@435 669 void decl(Address dst);
duke@435 670 void decq(Register dst);
duke@435 671 void decq(Address dst);
duke@435 672
duke@435 673 void incl(Register dst);
duke@435 674 void incl(Address dst);
duke@435 675 void incq(Register dst);
duke@435 676 void incq(Address dst);
duke@435 677
duke@435 678 public:
duke@435 679 void idivl(Register src);
duke@435 680 void idivq(Register src);
duke@435 681 void cdql();
duke@435 682 void cdqq();
duke@435 683
duke@435 684 void imull(Register dst, Register src);
duke@435 685 void imull(Register dst, Register src, int value);
duke@435 686 void imulq(Register dst, Register src);
duke@435 687 void imulq(Register dst, Register src, int value);
duke@435 688
duke@435 689 void leal(Register dst, Address src);
duke@435 690 void leaq(Register dst, Address src);
duke@435 691
duke@435 692 void mull(Address src);
duke@435 693 void mull(Register src);
duke@435 694
duke@435 695 void negl(Register dst);
duke@435 696 void negq(Register dst);
duke@435 697
duke@435 698 void notl(Register dst);
duke@435 699 void notq(Register dst);
duke@435 700
duke@435 701 void orl(Address dst, int imm32);
duke@435 702 void orl(Register dst, int imm32);
duke@435 703 void orl(Register dst, Address src);
duke@435 704 void orl(Register dst, Register src);
duke@435 705 void orq(Address dst, int imm32);
duke@435 706 void orq(Register dst, int imm32);
duke@435 707 void orq(Register dst, Address src);
duke@435 708 void orq(Register dst, Register src);
duke@435 709
duke@435 710 void rcll(Register dst, int imm8);
duke@435 711 void rclq(Register dst, int imm8);
duke@435 712
duke@435 713 void sarl(Register dst, int imm8);
duke@435 714 void sarl(Register dst);
duke@435 715 void sarq(Register dst, int imm8);
duke@435 716 void sarq(Register dst);
duke@435 717
duke@435 718 void sbbl(Address dst, int imm32);
duke@435 719 void sbbl(Register dst, int imm32);
duke@435 720 void sbbl(Register dst, Address src);
duke@435 721 void sbbl(Register dst, Register src);
duke@435 722 void sbbq(Address dst, int imm32);
duke@435 723 void sbbq(Register dst, int imm32);
duke@435 724 void sbbq(Register dst, Address src);
duke@435 725 void sbbq(Register dst, Register src);
duke@435 726
duke@435 727 void shll(Register dst, int imm8);
duke@435 728 void shll(Register dst);
duke@435 729 void shlq(Register dst, int imm8);
duke@435 730 void shlq(Register dst);
duke@435 731
duke@435 732 void shrl(Register dst, int imm8);
duke@435 733 void shrl(Register dst);
duke@435 734 void shrq(Register dst, int imm8);
duke@435 735 void shrq(Register dst);
duke@435 736
duke@435 737 void subl(Address dst, int imm32);
duke@435 738 void subl(Address dst, Register src);
duke@435 739 void subl(Register dst, int imm32);
duke@435 740 void subl(Register dst, Address src);
duke@435 741 void subl(Register dst, Register src);
duke@435 742 void subq(Address dst, int imm32);
duke@435 743 void subq(Address dst, Register src);
duke@435 744 void subq(Register dst, int imm32);
duke@435 745 void subq(Register dst, Address src);
duke@435 746 void subq(Register dst, Register src);
duke@435 747
duke@435 748 void testb(Register dst, int imm8);
duke@435 749 void testl(Register dst, int imm32);
duke@435 750 void testl(Register dst, Register src);
duke@435 751 void testq(Register dst, int imm32);
duke@435 752 void testq(Register dst, Register src);
duke@435 753
duke@435 754 void xaddl(Address dst, Register src);
duke@435 755 void xaddq(Address dst, Register src);
duke@435 756
duke@435 757 void xorl(Register dst, int imm32);
duke@435 758 void xorl(Register dst, Address src);
duke@435 759 void xorl(Register dst, Register src);
duke@435 760 void xorq(Register dst, int imm32);
duke@435 761 void xorq(Register dst, Address src);
duke@435 762 void xorq(Register dst, Register src);
duke@435 763
duke@435 764 // Miscellaneous
duke@435 765 void bswapl(Register reg);
duke@435 766 void bswapq(Register reg);
duke@435 767 void lock();
duke@435 768
duke@435 769 void xchgl(Register reg, Address adr);
duke@435 770 void xchgl(Register dst, Register src);
duke@435 771 void xchgq(Register reg, Address adr);
duke@435 772 void xchgq(Register dst, Register src);
duke@435 773
duke@435 774 void cmpxchgl(Register reg, Address adr);
duke@435 775 void cmpxchgq(Register reg, Address adr);
duke@435 776
duke@435 777 void nop(int i = 1);
duke@435 778 void addr_nop_4();
duke@435 779 void addr_nop_5();
duke@435 780 void addr_nop_7();
duke@435 781 void addr_nop_8();
duke@435 782
duke@435 783 void hlt();
duke@435 784 void ret(int imm16);
duke@435 785 void smovl();
duke@435 786 void rep_movl();
duke@435 787 void rep_movq();
duke@435 788 void rep_set();
coleenp@548 789 void repne_scanl();
coleenp@548 790 void repne_scanq();
duke@435 791 void setb(Condition cc, Register dst);
duke@435 792
duke@435 793 void clflush(Address adr);
duke@435 794
duke@435 795 enum Membar_mask_bits {
duke@435 796 StoreStore = 1 << 3,
duke@435 797 LoadStore = 1 << 2,
duke@435 798 StoreLoad = 1 << 1,
duke@435 799 LoadLoad = 1 << 0
duke@435 800 };
duke@435 801
duke@435 802 // Serializes memory.
duke@435 803 void membar(Membar_mask_bits order_constraint) {
duke@435 804 // We only have to handle StoreLoad and LoadLoad
duke@435 805 if (order_constraint & StoreLoad) {
duke@435 806 // MFENCE subsumes LFENCE
duke@435 807 mfence();
duke@435 808 } /* [jk] not needed currently: else if (order_constraint & LoadLoad) {
duke@435 809 lfence();
duke@435 810 } */
duke@435 811 }
duke@435 812
duke@435 813 void lfence() {
duke@435 814 emit_byte(0x0F);
duke@435 815 emit_byte(0xAE);
duke@435 816 emit_byte(0xE8);
duke@435 817 }
duke@435 818
duke@435 819 void mfence() {
duke@435 820 emit_byte(0x0F);
duke@435 821 emit_byte(0xAE);
duke@435 822 emit_byte(0xF0);
duke@435 823 }
duke@435 824
duke@435 825 // Identify processor type and features
duke@435 826 void cpuid() {
duke@435 827 emit_byte(0x0F);
duke@435 828 emit_byte(0xA2);
duke@435 829 }
duke@435 830
duke@435 831 void cld() { emit_byte(0xfc);
duke@435 832 }
duke@435 833
duke@435 834 void std() { emit_byte(0xfd);
duke@435 835 }
duke@435 836
duke@435 837
duke@435 838 // Calls
duke@435 839
duke@435 840 void call(Label& L, relocInfo::relocType rtype);
duke@435 841 void call(Register reg);
duke@435 842 void call(Address adr);
duke@435 843
duke@435 844 // Jumps
duke@435 845
duke@435 846 void jmp(Register reg);
duke@435 847 void jmp(Address adr);
duke@435 848
duke@435 849 // Label operations & relative jumps (PPUM Appendix D)
duke@435 850 // unconditional jump to L
duke@435 851 void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none);
duke@435 852
duke@435 853
duke@435 854 // Unconditional 8-bit offset jump to L.
duke@435 855 // WARNING: be very careful using this for forward jumps. If the label is
duke@435 856 // not bound within an 8-bit offset of this instruction, a run-time error
duke@435 857 // will occur.
duke@435 858 void jmpb(Label& L);
duke@435 859
duke@435 860 // jcc is the generic conditional branch generator to run- time
duke@435 861 // routines, jcc is used for branches to labels. jcc takes a branch
duke@435 862 // opcode (cc) and a label (L) and generates either a backward
duke@435 863 // branch or a forward branch and links it to the label fixup
duke@435 864 // chain. Usage:
duke@435 865 //
duke@435 866 // Label L; // unbound label
duke@435 867 // jcc(cc, L); // forward branch to unbound label
duke@435 868 // bind(L); // bind label to the current pc
duke@435 869 // jcc(cc, L); // backward branch to bound label
duke@435 870 // bind(L); // illegal: a label may be bound only once
duke@435 871 //
duke@435 872 // Note: The same Label can be used for forward and backward branches
duke@435 873 // but it may be bound only once.
duke@435 874
duke@435 875 void jcc(Condition cc, Label& L,
duke@435 876 relocInfo::relocType rtype = relocInfo::none);
duke@435 877
duke@435 878 // Conditional jump to a 8-bit offset to L.
duke@435 879 // WARNING: be very careful using this for forward jumps. If the label is
duke@435 880 // not bound within an 8-bit offset of this instruction, a run-time error
duke@435 881 // will occur.
duke@435 882 void jccb(Condition cc, Label& L);
duke@435 883
duke@435 884 // Floating-point operations
duke@435 885
duke@435 886 void fxsave(Address dst);
duke@435 887 void fxrstor(Address src);
duke@435 888 void ldmxcsr(Address src);
duke@435 889 void stmxcsr(Address dst);
duke@435 890
duke@435 891 void addss(XMMRegister dst, XMMRegister src);
duke@435 892 void addss(XMMRegister dst, Address src);
duke@435 893 void subss(XMMRegister dst, XMMRegister src);
duke@435 894 void subss(XMMRegister dst, Address src);
duke@435 895 void mulss(XMMRegister dst, XMMRegister src);
duke@435 896 void mulss(XMMRegister dst, Address src);
duke@435 897 void divss(XMMRegister dst, XMMRegister src);
duke@435 898 void divss(XMMRegister dst, Address src);
duke@435 899 void addsd(XMMRegister dst, XMMRegister src);
duke@435 900 void addsd(XMMRegister dst, Address src);
duke@435 901 void subsd(XMMRegister dst, XMMRegister src);
duke@435 902 void subsd(XMMRegister dst, Address src);
duke@435 903 void mulsd(XMMRegister dst, XMMRegister src);
duke@435 904 void mulsd(XMMRegister dst, Address src);
duke@435 905 void divsd(XMMRegister dst, XMMRegister src);
duke@435 906 void divsd(XMMRegister dst, Address src);
duke@435 907
duke@435 908 // We only need the double form
duke@435 909 void sqrtsd(XMMRegister dst, XMMRegister src);
duke@435 910 void sqrtsd(XMMRegister dst, Address src);
duke@435 911
duke@435 912 void xorps(XMMRegister dst, XMMRegister src);
duke@435 913 void xorps(XMMRegister dst, Address src);
duke@435 914 void xorpd(XMMRegister dst, XMMRegister src);
duke@435 915 void xorpd(XMMRegister dst, Address src);
duke@435 916
duke@435 917 void cvtsi2ssl(XMMRegister dst, Register src);
duke@435 918 void cvtsi2ssq(XMMRegister dst, Register src);
duke@435 919 void cvtsi2sdl(XMMRegister dst, Register src);
duke@435 920 void cvtsi2sdq(XMMRegister dst, Register src);
duke@435 921 void cvttss2sil(Register dst, XMMRegister src); // truncates
duke@435 922 void cvttss2siq(Register dst, XMMRegister src); // truncates
duke@435 923 void cvttsd2sil(Register dst, XMMRegister src); // truncates
duke@435 924 void cvttsd2siq(Register dst, XMMRegister src); // truncates
duke@435 925 void cvtss2sd(XMMRegister dst, XMMRegister src);
duke@435 926 void cvtsd2ss(XMMRegister dst, XMMRegister src);
kvn@506 927 void cvtdq2pd(XMMRegister dst, XMMRegister src);
kvn@506 928 void cvtdq2ps(XMMRegister dst, XMMRegister src);
duke@435 929
duke@435 930 void pxor(XMMRegister dst, Address src); // Xor Packed Byte Integer Values
duke@435 931 void pxor(XMMRegister dst, XMMRegister src); // Xor Packed Byte Integer Values
duke@435 932
duke@435 933 void movdqa(XMMRegister dst, Address src); // Move Aligned Double Quadword
duke@435 934 void movdqa(XMMRegister dst, XMMRegister src);
duke@435 935 void movdqa(Address dst, XMMRegister src);
duke@435 936
duke@435 937 void movq(XMMRegister dst, Address src);
duke@435 938 void movq(Address dst, XMMRegister src);
duke@435 939
duke@435 940 void pshufd(XMMRegister dst, XMMRegister src, int mode); // Shuffle Packed Doublewords
duke@435 941 void pshufd(XMMRegister dst, Address src, int mode);
duke@435 942 void pshuflw(XMMRegister dst, XMMRegister src, int mode); // Shuffle Packed Low Words
duke@435 943 void pshuflw(XMMRegister dst, Address src, int mode);
duke@435 944
duke@435 945 void psrlq(XMMRegister dst, int shift); // Shift Right Logical Quadword Immediate
duke@435 946
duke@435 947 void punpcklbw(XMMRegister dst, XMMRegister src); // Interleave Low Bytes
duke@435 948 void punpcklbw(XMMRegister dst, Address src);
duke@435 949 };
duke@435 950
duke@435 951
duke@435 952 // MacroAssembler extends Assembler by frequently used macros.
duke@435 953 //
duke@435 954 // Instructions for which a 'better' code sequence exists depending
duke@435 955 // on arguments should also go in here.
duke@435 956
duke@435 957 class MacroAssembler : public Assembler {
duke@435 958 friend class LIR_Assembler;
duke@435 959 protected:
duke@435 960
duke@435 961 Address as_Address(AddressLiteral adr);
duke@435 962 Address as_Address(ArrayAddress adr);
duke@435 963
duke@435 964 // Support for VM calls
duke@435 965 //
duke@435 966 // This is the base routine called by the different versions of
duke@435 967 // call_VM_leaf. The interpreter may customize this version by
duke@435 968 // overriding it for its purposes (e.g., to save/restore additional
duke@435 969 // registers when doing a VM call).
duke@435 970
duke@435 971 virtual void call_VM_leaf_base(
duke@435 972 address entry_point, // the entry point
duke@435 973 int number_of_arguments // the number of arguments to
duke@435 974 // pop after the call
duke@435 975 );
duke@435 976
duke@435 977 // This is the base routine called by the different versions of
duke@435 978 // call_VM. The interpreter may customize this version by overriding
duke@435 979 // it for its purposes (e.g., to save/restore additional registers
duke@435 980 // when doing a VM call).
duke@435 981 //
duke@435 982 // If no java_thread register is specified (noreg) than rdi will be
duke@435 983 // used instead. call_VM_base returns the register which contains
duke@435 984 // the thread upon return. If a thread register has been specified,
duke@435 985 // the return value will correspond to that register. If no
duke@435 986 // last_java_sp is specified (noreg) than rsp will be used instead.
duke@435 987 virtual void call_VM_base( // returns the register
duke@435 988 // containing the thread upon
duke@435 989 // return
duke@435 990 Register oop_result, // where an oop-result ends up
duke@435 991 // if any; use noreg otherwise
duke@435 992 Register java_thread, // the thread if computed
duke@435 993 // before ; use noreg otherwise
duke@435 994 Register last_java_sp, // to set up last_Java_frame in
duke@435 995 // stubs; use noreg otherwise
duke@435 996 address entry_point, // the entry point
duke@435 997 int number_of_arguments, // the number of arguments (w/o
duke@435 998 // thread) to pop after the
duke@435 999 // call
duke@435 1000 bool check_exceptions // whether to check for pending
duke@435 1001 // exceptions after return
duke@435 1002 );
duke@435 1003
duke@435 1004 // This routines should emit JVMTI PopFrame handling and ForceEarlyReturn code.
duke@435 1005 // The implementation is only non-empty for the InterpreterMacroAssembler,
duke@435 1006 // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
duke@435 1007 virtual void check_and_handle_popframe(Register java_thread);
duke@435 1008 virtual void check_and_handle_earlyret(Register java_thread);
duke@435 1009
duke@435 1010 void call_VM_helper(Register oop_result,
duke@435 1011 address entry_point,
duke@435 1012 int number_of_arguments,
duke@435 1013 bool check_exceptions = true);
duke@435 1014
duke@435 1015 public:
duke@435 1016 MacroAssembler(CodeBuffer* code) : Assembler(code) {}
duke@435 1017
duke@435 1018 // Support for NULL-checks
duke@435 1019 //
duke@435 1020 // Generates code that causes a NULL OS exception if the content of
duke@435 1021 // reg is NULL. If the accessed location is M[reg + offset] and the
duke@435 1022 // offset is known, provide the offset. No explicit code generation
duke@435 1023 // is needed if the offset is within a certain range (0 <= offset <=
duke@435 1024 // page_size).
duke@435 1025 void null_check(Register reg, int offset = -1);
duke@435 1026 static bool needs_explicit_null_check(int offset);
duke@435 1027
duke@435 1028 // Required platform-specific helpers for Label::patch_instructions.
duke@435 1029 // They _shadow_ the declarations in AbstractAssembler, which are undefined.
duke@435 1030 void pd_patch_instruction(address branch, address target);
duke@435 1031 #ifndef PRODUCT
duke@435 1032 static void pd_print_patched_instruction(address branch);
duke@435 1033 #endif
duke@435 1034
duke@435 1035
duke@435 1036 // The following 4 methods return the offset of the appropriate move
duke@435 1037 // instruction. Note: these are 32 bit instructions
duke@435 1038
duke@435 1039 // Support for fast byte/word loading with zero extension (depending
duke@435 1040 // on particular CPU)
duke@435 1041 int load_unsigned_byte(Register dst, Address src);
duke@435 1042 int load_unsigned_word(Register dst, Address src);
duke@435 1043
duke@435 1044 // Support for fast byte/word loading with sign extension (depending
duke@435 1045 // on particular CPU)
duke@435 1046 int load_signed_byte(Register dst, Address src);
duke@435 1047 int load_signed_word(Register dst, Address src);
duke@435 1048
duke@435 1049 // Support for inc/dec with optimal instruction selection depending
duke@435 1050 // on value
duke@435 1051 void incrementl(Register reg, int value = 1);
duke@435 1052 void decrementl(Register reg, int value = 1);
duke@435 1053 void incrementq(Register reg, int value = 1);
duke@435 1054 void decrementq(Register reg, int value = 1);
duke@435 1055
duke@435 1056 void incrementl(Address dst, int value = 1);
duke@435 1057 void decrementl(Address dst, int value = 1);
duke@435 1058 void incrementq(Address dst, int value = 1);
duke@435 1059 void decrementq(Address dst, int value = 1);
duke@435 1060
duke@435 1061 // Support optimal SSE move instructions.
duke@435 1062 void movflt(XMMRegister dst, XMMRegister src) {
duke@435 1063 if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
duke@435 1064 else { movss (dst, src); return; }
duke@435 1065 }
duke@435 1066
duke@435 1067 void movflt(XMMRegister dst, Address src) { movss(dst, src); }
duke@435 1068
duke@435 1069 void movflt(XMMRegister dst, AddressLiteral src);
duke@435 1070
duke@435 1071 void movflt(Address dst, XMMRegister src) { movss(dst, src); }
duke@435 1072
duke@435 1073 void movdbl(XMMRegister dst, XMMRegister src) {
duke@435 1074 if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
duke@435 1075 else { movsd (dst, src); return; }
duke@435 1076 }
duke@435 1077
duke@435 1078 void movdbl(XMMRegister dst, AddressLiteral src);
duke@435 1079
duke@435 1080 void movdbl(XMMRegister dst, Address src) {
duke@435 1081 if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
duke@435 1082 else { movlpd(dst, src); return; }
duke@435 1083 }
duke@435 1084
duke@435 1085 void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
duke@435 1086
duke@435 1087 void incrementl(AddressLiteral dst);
duke@435 1088 void incrementl(ArrayAddress dst);
duke@435 1089
duke@435 1090 // Alignment
duke@435 1091 void align(int modulus);
duke@435 1092
duke@435 1093 // Misc
duke@435 1094 void fat_nop(); // 5 byte nop
duke@435 1095
duke@435 1096
duke@435 1097 // C++ bool manipulation
duke@435 1098
duke@435 1099 void movbool(Register dst, Address src);
duke@435 1100 void movbool(Address dst, bool boolconst);
duke@435 1101 void movbool(Address dst, Register src);
duke@435 1102 void testbool(Register dst);
duke@435 1103
coleenp@548 1104 // oop manipulations
coleenp@548 1105 void load_klass(Register dst, Register src);
coleenp@548 1106 void store_klass(Register dst, Register src);
coleenp@548 1107
coleenp@548 1108 void load_heap_oop(Register dst, Address src);
coleenp@548 1109 void store_heap_oop(Address dst, Register src);
coleenp@548 1110 void encode_heap_oop(Register r);
coleenp@548 1111 void decode_heap_oop(Register r);
coleenp@548 1112 void encode_heap_oop_not_null(Register r);
coleenp@548 1113 void decode_heap_oop_not_null(Register r);
kvn@559 1114 void encode_heap_oop_not_null(Register dst, Register src);
kvn@559 1115 void decode_heap_oop_not_null(Register dst, Register src);
coleenp@548 1116
duke@435 1117 // Stack frame creation/removal
duke@435 1118 void enter();
duke@435 1119 void leave();
duke@435 1120
duke@435 1121 // Support for getting the JavaThread pointer (i.e.; a reference to
duke@435 1122 // thread-local information) The pointer will be loaded into the
duke@435 1123 // thread register.
duke@435 1124 void get_thread(Register thread);
duke@435 1125
duke@435 1126 void int3();
duke@435 1127
duke@435 1128 // Support for VM calls
duke@435 1129 //
duke@435 1130 // It is imperative that all calls into the VM are handled via the
duke@435 1131 // call_VM macros. They make sure that the stack linkage is setup
duke@435 1132 // correctly. call_VM's correspond to ENTRY/ENTRY_X entry points
duke@435 1133 // while call_VM_leaf's correspond to LEAF entry points.
duke@435 1134 void call_VM(Register oop_result,
duke@435 1135 address entry_point,
duke@435 1136 bool check_exceptions = true);
duke@435 1137 void call_VM(Register oop_result,
duke@435 1138 address entry_point,
duke@435 1139 Register arg_1,
duke@435 1140 bool check_exceptions = true);
duke@435 1141 void call_VM(Register oop_result,
duke@435 1142 address entry_point,
duke@435 1143 Register arg_1, Register arg_2,
duke@435 1144 bool check_exceptions = true);
duke@435 1145 void call_VM(Register oop_result,
duke@435 1146 address entry_point,
duke@435 1147 Register arg_1, Register arg_2, Register arg_3,
duke@435 1148 bool check_exceptions = true);
duke@435 1149
duke@435 1150 // Overloadings with last_Java_sp
duke@435 1151 void call_VM(Register oop_result,
duke@435 1152 Register last_java_sp,
duke@435 1153 address entry_point,
duke@435 1154 int number_of_arguments = 0,
duke@435 1155 bool check_exceptions = true);
duke@435 1156 void call_VM(Register oop_result,
duke@435 1157 Register last_java_sp,
duke@435 1158 address entry_point,
duke@435 1159 Register arg_1, bool
duke@435 1160 check_exceptions = true);
duke@435 1161 void call_VM(Register oop_result,
duke@435 1162 Register last_java_sp,
duke@435 1163 address entry_point,
duke@435 1164 Register arg_1, Register arg_2,
duke@435 1165 bool check_exceptions = true);
duke@435 1166 void call_VM(Register oop_result,
duke@435 1167 Register last_java_sp,
duke@435 1168 address entry_point,
duke@435 1169 Register arg_1, Register arg_2, Register arg_3,
duke@435 1170 bool check_exceptions = true);
duke@435 1171
duke@435 1172 void call_VM_leaf(address entry_point,
duke@435 1173 int number_of_arguments = 0);
duke@435 1174 void call_VM_leaf(address entry_point,
duke@435 1175 Register arg_1);
duke@435 1176 void call_VM_leaf(address entry_point,
duke@435 1177 Register arg_1, Register arg_2);
duke@435 1178 void call_VM_leaf(address entry_point,
duke@435 1179 Register arg_1, Register arg_2, Register arg_3);
duke@435 1180
duke@435 1181 // last Java Frame (fills frame anchor)
duke@435 1182 void set_last_Java_frame(Register last_java_sp,
duke@435 1183 Register last_java_fp,
duke@435 1184 address last_java_pc);
duke@435 1185 void reset_last_Java_frame(bool clear_fp, bool clear_pc);
duke@435 1186
duke@435 1187 // Stores
duke@435 1188 void store_check(Register obj); // store check for
duke@435 1189 // obj - register is
duke@435 1190 // destroyed
duke@435 1191 // afterwards
duke@435 1192 void store_check(Register obj, Address dst); // same as above, dst
duke@435 1193 // is exact store
duke@435 1194 // location (reg. is
duke@435 1195 // destroyed)
duke@435 1196
duke@435 1197 // split store_check(Register obj) to enhance instruction interleaving
duke@435 1198 void store_check_part_1(Register obj);
duke@435 1199 void store_check_part_2(Register obj);
duke@435 1200
duke@435 1201 // C 'boolean' to Java boolean: x == 0 ? 0 : 1
duke@435 1202 void c2bool(Register x);
duke@435 1203
duke@435 1204 // Int division/reminder for Java
duke@435 1205 // (as idivl, but checks for special case as described in JVM spec.)
duke@435 1206 // returns idivl instruction offset for implicit exception handling
duke@435 1207 int corrected_idivl(Register reg);
duke@435 1208 // Long division/reminder for Java
duke@435 1209 // (as idivq, but checks for special case as described in JVM spec.)
duke@435 1210 // returns idivq instruction offset for implicit exception handling
duke@435 1211 int corrected_idivq(Register reg);
duke@435 1212
duke@435 1213 // Push and pop integer/fpu/cpu state
duke@435 1214 void push_IU_state();
duke@435 1215 void pop_IU_state();
duke@435 1216
duke@435 1217 void push_FPU_state();
duke@435 1218 void pop_FPU_state();
duke@435 1219
duke@435 1220 void push_CPU_state();
duke@435 1221 void pop_CPU_state();
duke@435 1222
duke@435 1223 // Sign extension
duke@435 1224 void sign_extend_short(Register reg);
duke@435 1225 void sign_extend_byte(Register reg);
duke@435 1226
duke@435 1227 // Division by power of 2, rounding towards 0
duke@435 1228 void division_with_shift(Register reg, int shift_value);
duke@435 1229
duke@435 1230 // Round up to a power of two
duke@435 1231 void round_to_l(Register reg, int modulus);
duke@435 1232 void round_to_q(Register reg, int modulus);
duke@435 1233
duke@435 1234 // allocation
duke@435 1235 void eden_allocate(
duke@435 1236 Register obj, // result: pointer to object after
duke@435 1237 // successful allocation
duke@435 1238 Register var_size_in_bytes, // object size in bytes if unknown at
duke@435 1239 // compile time; invalid otherwise
duke@435 1240 int con_size_in_bytes, // object size in bytes if known at
duke@435 1241 // compile time
duke@435 1242 Register t1, // temp register
duke@435 1243 Label& slow_case // continuation point if fast
duke@435 1244 // allocation fails
duke@435 1245 );
duke@435 1246 void tlab_allocate(
duke@435 1247 Register obj, // result: pointer to object after
duke@435 1248 // successful allocation
duke@435 1249 Register var_size_in_bytes, // object size in bytes if unknown at
duke@435 1250 // compile time; invalid otherwise
duke@435 1251 int con_size_in_bytes, // object size in bytes if known at
duke@435 1252 // compile time
duke@435 1253 Register t1, // temp register
duke@435 1254 Register t2, // temp register
duke@435 1255 Label& slow_case // continuation point if fast
duke@435 1256 // allocation fails
duke@435 1257 );
duke@435 1258 void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
duke@435 1259
duke@435 1260 //----
duke@435 1261
duke@435 1262 // Debugging
duke@435 1263
duke@435 1264 // only if +VerifyOops
duke@435 1265 void verify_oop(Register reg, const char* s = "broken oop");
duke@435 1266 void verify_oop_addr(Address addr, const char * s = "broken oop addr");
duke@435 1267
coleenp@548 1268 // if heap base register is used - reinit it with the correct value
coleenp@548 1269 void reinit_heapbase();
coleenp@548 1270
duke@435 1271 // only if +VerifyFPU
duke@435 1272 void verify_FPU(int stack_depth, const char* s = "illegal FPU state") {}
duke@435 1273
duke@435 1274 // prints msg, dumps registers and stops execution
duke@435 1275 void stop(const char* msg);
duke@435 1276
duke@435 1277 // prints message and continues
duke@435 1278 void warn(const char* msg);
duke@435 1279
duke@435 1280 static void debug(char* msg, int64_t pc, int64_t regs[]);
duke@435 1281
duke@435 1282 void os_breakpoint();
duke@435 1283
duke@435 1284 void untested()
duke@435 1285 {
duke@435 1286 stop("untested");
duke@435 1287 }
duke@435 1288
duke@435 1289 void unimplemented(const char* what = "")
duke@435 1290 {
duke@435 1291 char* b = new char[1024];
duke@435 1292 sprintf(b, "unimplemented: %s", what);
duke@435 1293 stop(b);
duke@435 1294 }
duke@435 1295
duke@435 1296 void should_not_reach_here()
duke@435 1297 {
duke@435 1298 stop("should not reach here");
duke@435 1299 }
duke@435 1300
duke@435 1301 // Stack overflow checking
duke@435 1302 void bang_stack_with_offset(int offset)
duke@435 1303 {
duke@435 1304 // stack grows down, caller passes positive offset
duke@435 1305 assert(offset > 0, "must bang with negative offset");
duke@435 1306 movl(Address(rsp, (-offset)), rax);
duke@435 1307 }
duke@435 1308
duke@435 1309 // Writes to stack successive pages until offset reached to check for
duke@435 1310 // stack overflow + shadow pages. Also, clobbers tmp
duke@435 1311 void bang_stack_size(Register offset, Register tmp);
duke@435 1312
duke@435 1313 // Support for serializing memory accesses between threads.
duke@435 1314 void serialize_memory(Register thread, Register tmp);
duke@435 1315
duke@435 1316 void verify_tlab();
duke@435 1317
duke@435 1318 // Biased locking support
duke@435 1319 // lock_reg and obj_reg must be loaded up with the appropriate values.
duke@435 1320 // swap_reg must be rax and is killed.
duke@435 1321 // tmp_reg must be supplied and is killed.
duke@435 1322 // If swap_reg_contains_mark is true then the code assumes that the
duke@435 1323 // mark word of the object has already been loaded into swap_reg.
duke@435 1324 // Optional slow case is for implementations (interpreter and C1) which branch to
duke@435 1325 // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
duke@435 1326 // Returns offset of first potentially-faulting instruction for null
duke@435 1327 // check info (currently consumed only by C1). If
duke@435 1328 // swap_reg_contains_mark is true then returns -1 as it is assumed
duke@435 1329 // the calling code has already passed any potential faults.
duke@435 1330 int biased_locking_enter(Register lock_reg, Register obj_reg, Register swap_reg, Register tmp_reg,
duke@435 1331 bool swap_reg_contains_mark,
duke@435 1332 Label& done, Label* slow_case = NULL,
duke@435 1333 BiasedLockingCounters* counters = NULL);
duke@435 1334 void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
duke@435 1335
duke@435 1336 Condition negate_condition(Condition cond);
duke@435 1337
duke@435 1338 // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
duke@435 1339 // operands. In general the names are modified to avoid hiding the instruction in Assembler
duke@435 1340 // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
duke@435 1341 // here in MacroAssembler. The major exception to this rule is call
duke@435 1342
duke@435 1343 // Arithmetics
duke@435 1344
duke@435 1345 void cmp8(AddressLiteral src1, int8_t imm32);
duke@435 1346
duke@435 1347 void cmp32(AddressLiteral src1, int32_t src2);
duke@435 1348 // compare reg - mem, or reg - &mem
duke@435 1349 void cmp32(Register src1, AddressLiteral src2);
duke@435 1350
duke@435 1351 void cmp32(Register src1, Address src2);
duke@435 1352
duke@435 1353 #ifndef _LP64
duke@435 1354 void cmpoop(Address dst, jobject obj);
duke@435 1355 void cmpoop(Register dst, jobject obj);
duke@435 1356 #endif // _LP64
duke@435 1357
duke@435 1358 // NOTE src2 must be the lval. This is NOT an mem-mem compare
duke@435 1359 void cmpptr(Address src1, AddressLiteral src2);
duke@435 1360
duke@435 1361 void cmpptr(Register src1, AddressLiteral src);
duke@435 1362
duke@435 1363 // will be cmpreg(?)
duke@435 1364 void cmp64(Register src1, AddressLiteral src);
duke@435 1365
duke@435 1366 void cmpxchgptr(Register reg, Address adr);
duke@435 1367 void cmpxchgptr(Register reg, AddressLiteral adr);
duke@435 1368
duke@435 1369 // Helper functions for statistics gathering.
duke@435 1370 // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
duke@435 1371 void cond_inc32(Condition cond, AddressLiteral counter_addr);
duke@435 1372 // Unconditional atomic increment.
duke@435 1373 void atomic_incl(AddressLiteral counter_addr);
duke@435 1374
duke@435 1375
duke@435 1376 void lea(Register dst, AddressLiteral src);
duke@435 1377 void lea(Register dst, Address src);
duke@435 1378
duke@435 1379
duke@435 1380 // Calls
duke@435 1381 void call(Label& L, relocInfo::relocType rtype);
duke@435 1382 void call(Register entry);
duke@435 1383 void call(AddressLiteral entry);
duke@435 1384
duke@435 1385 // Jumps
duke@435 1386
duke@435 1387 // 32bit can do a case table jump in one instruction but we no longer allow the base
duke@435 1388 // to be installed in the Address class
duke@435 1389 void jump(ArrayAddress entry);
duke@435 1390
duke@435 1391 void jump(AddressLiteral entry);
duke@435 1392 void jump_cc(Condition cc, AddressLiteral dst);
duke@435 1393
duke@435 1394 // Floating
duke@435 1395
duke@435 1396 void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
duke@435 1397 void ldmxcsr(AddressLiteral src);
duke@435 1398
duke@435 1399 private:
duke@435 1400 // these are private because users should be doing movflt/movdbl
duke@435 1401
duke@435 1402 void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
duke@435 1403 void movss(Address dst, XMMRegister src) { Assembler::movss(dst, src); }
duke@435 1404 void movss(XMMRegister dst, Address src) { Assembler::movss(dst, src); }
duke@435 1405 void movss(XMMRegister dst, AddressLiteral src);
duke@435 1406
duke@435 1407 void movlpd(XMMRegister dst, Address src) {Assembler::movlpd(dst, src); }
duke@435 1408 void movlpd(XMMRegister dst, AddressLiteral src);
duke@435 1409
duke@435 1410 public:
duke@435 1411
duke@435 1412
duke@435 1413 void xorpd(XMMRegister dst, XMMRegister src) {Assembler::xorpd(dst, src); }
duke@435 1414 void xorpd(XMMRegister dst, Address src) {Assembler::xorpd(dst, src); }
duke@435 1415 void xorpd(XMMRegister dst, AddressLiteral src);
duke@435 1416
duke@435 1417 void xorps(XMMRegister dst, XMMRegister src) {Assembler::xorps(dst, src); }
duke@435 1418 void xorps(XMMRegister dst, Address src) {Assembler::xorps(dst, src); }
duke@435 1419 void xorps(XMMRegister dst, AddressLiteral src);
duke@435 1420
duke@435 1421
duke@435 1422 // Data
duke@435 1423
duke@435 1424 void movoop(Register dst, jobject obj);
duke@435 1425 void movoop(Address dst, jobject obj);
duke@435 1426
duke@435 1427 void movptr(ArrayAddress dst, Register src);
duke@435 1428 void movptr(Register dst, AddressLiteral src);
duke@435 1429
duke@435 1430 void movptr(Register dst, intptr_t src);
duke@435 1431 void movptr(Address dst, intptr_t src);
duke@435 1432
duke@435 1433 void movptr(Register dst, ArrayAddress src);
duke@435 1434
duke@435 1435 // to avoid hiding movl
duke@435 1436 void mov32(AddressLiteral dst, Register src);
duke@435 1437 void mov32(Register dst, AddressLiteral src);
duke@435 1438
duke@435 1439 void pushoop(jobject obj);
duke@435 1440
duke@435 1441 // Can push value or effective address
duke@435 1442 void pushptr(AddressLiteral src);
duke@435 1443
duke@435 1444 };
duke@435 1445
duke@435 1446 /**
duke@435 1447 * class SkipIfEqual:
duke@435 1448 *
duke@435 1449 * Instantiating this class will result in assembly code being output that will
duke@435 1450 * jump around any code emitted between the creation of the instance and it's
duke@435 1451 * automatic destruction at the end of a scope block, depending on the value of
duke@435 1452 * the flag passed to the constructor, which will be checked at run-time.
duke@435 1453 */
duke@435 1454 class SkipIfEqual {
duke@435 1455 private:
duke@435 1456 MacroAssembler* _masm;
duke@435 1457 Label _label;
duke@435 1458
duke@435 1459 public:
duke@435 1460 SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
duke@435 1461 ~SkipIfEqual();
duke@435 1462 };
duke@435 1463
duke@435 1464
duke@435 1465 #ifdef ASSERT
duke@435 1466 inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
duke@435 1467 #endif

mercurial