src/cpu/x86/vm/assembler_x86_64.hpp

Sat, 01 Dec 2007 00:00:00 +0000

author
duke
date
Sat, 01 Dec 2007 00:00:00 +0000
changeset 435
a61af66fc99e
child 506
3d62cb85208d
permissions
-rw-r--r--

Initial load

duke@435 1 /*
duke@435 2 * Copyright 2003-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 class BiasedLockingCounters;
duke@435 26
duke@435 27 // Contains all the definitions needed for amd64 assembly code generation.
duke@435 28
duke@435 29 #ifdef _LP64
duke@435 30 // Calling convention
duke@435 31 class Argument VALUE_OBJ_CLASS_SPEC {
duke@435 32 public:
duke@435 33 enum {
duke@435 34 #ifdef _WIN64
duke@435 35 n_int_register_parameters_c = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
duke@435 36 n_float_register_parameters_c = 4, // xmm0 - xmm3 (c_farg0, c_farg1, ... )
duke@435 37 #else
duke@435 38 n_int_register_parameters_c = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
duke@435 39 n_float_register_parameters_c = 8, // xmm0 - xmm7 (c_farg0, c_farg1, ... )
duke@435 40 #endif
duke@435 41 n_int_register_parameters_j = 6, // j_rarg0, j_rarg1, ...
duke@435 42 n_float_register_parameters_j = 8 // j_farg0, j_farg1, ...
duke@435 43 };
duke@435 44 };
duke@435 45
duke@435 46
duke@435 47 // Symbolically name the register arguments used by the c calling convention.
duke@435 48 // Windows is different from linux/solaris. So much for standards...
duke@435 49
duke@435 50 #ifdef _WIN64
duke@435 51
duke@435 52 REGISTER_DECLARATION(Register, c_rarg0, rcx);
duke@435 53 REGISTER_DECLARATION(Register, c_rarg1, rdx);
duke@435 54 REGISTER_DECLARATION(Register, c_rarg2, r8);
duke@435 55 REGISTER_DECLARATION(Register, c_rarg3, r9);
duke@435 56
duke@435 57 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
duke@435 58 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
duke@435 59 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
duke@435 60 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
duke@435 61
duke@435 62 #else
duke@435 63
duke@435 64 REGISTER_DECLARATION(Register, c_rarg0, rdi);
duke@435 65 REGISTER_DECLARATION(Register, c_rarg1, rsi);
duke@435 66 REGISTER_DECLARATION(Register, c_rarg2, rdx);
duke@435 67 REGISTER_DECLARATION(Register, c_rarg3, rcx);
duke@435 68 REGISTER_DECLARATION(Register, c_rarg4, r8);
duke@435 69 REGISTER_DECLARATION(Register, c_rarg5, r9);
duke@435 70
duke@435 71 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
duke@435 72 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
duke@435 73 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
duke@435 74 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
duke@435 75 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
duke@435 76 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
duke@435 77 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
duke@435 78 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
duke@435 79
duke@435 80 #endif
duke@435 81
duke@435 82 // Symbolically name the register arguments used by the Java calling convention.
duke@435 83 // We have control over the convention for java so we can do what we please.
duke@435 84 // What pleases us is to offset the java calling convention so that when
duke@435 85 // we call a suitable jni method the arguments are lined up and we don't
duke@435 86 // have to do little shuffling. A suitable jni method is non-static and a
duke@435 87 // small number of arguments (two fewer args on windows)
duke@435 88 //
duke@435 89 // |-------------------------------------------------------|
duke@435 90 // | c_rarg0 c_rarg1 c_rarg2 c_rarg3 c_rarg4 c_rarg5 |
duke@435 91 // |-------------------------------------------------------|
duke@435 92 // | rcx rdx r8 r9 rdi* rsi* | windows (* not a c_rarg)
duke@435 93 // | rdi rsi rdx rcx r8 r9 | solaris/linux
duke@435 94 // |-------------------------------------------------------|
duke@435 95 // | j_rarg5 j_rarg0 j_rarg1 j_rarg2 j_rarg3 j_rarg4 |
duke@435 96 // |-------------------------------------------------------|
duke@435 97
duke@435 98 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
duke@435 99 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
duke@435 100 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
duke@435 101 // Windows runs out of register args here
duke@435 102 #ifdef _WIN64
duke@435 103 REGISTER_DECLARATION(Register, j_rarg3, rdi);
duke@435 104 REGISTER_DECLARATION(Register, j_rarg4, rsi);
duke@435 105 #else
duke@435 106 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
duke@435 107 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
duke@435 108 #endif /* _WIN64 */
duke@435 109 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
duke@435 110
duke@435 111 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
duke@435 112 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
duke@435 113 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
duke@435 114 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
duke@435 115 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
duke@435 116 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
duke@435 117 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
duke@435 118 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
duke@435 119
duke@435 120 REGISTER_DECLARATION(Register, rscratch1, r10); // volatile
duke@435 121 REGISTER_DECLARATION(Register, rscratch2, r11); // volatile
duke@435 122
duke@435 123 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
duke@435 124
duke@435 125 #endif // _LP64
duke@435 126
duke@435 127 // Address is an abstraction used to represent a memory location
duke@435 128 // using any of the amd64 addressing modes with one object.
duke@435 129 //
duke@435 130 // Note: A register location is represented via a Register, not
duke@435 131 // via an address for efficiency & simplicity reasons.
duke@435 132
duke@435 133 class ArrayAddress;
duke@435 134
duke@435 135 class Address VALUE_OBJ_CLASS_SPEC {
duke@435 136 public:
duke@435 137 enum ScaleFactor {
duke@435 138 no_scale = -1,
duke@435 139 times_1 = 0,
duke@435 140 times_2 = 1,
duke@435 141 times_4 = 2,
duke@435 142 times_8 = 3
duke@435 143 };
duke@435 144
duke@435 145 private:
duke@435 146 Register _base;
duke@435 147 Register _index;
duke@435 148 ScaleFactor _scale;
duke@435 149 int _disp;
duke@435 150 RelocationHolder _rspec;
duke@435 151
duke@435 152 // Easily misused constructors make them private
duke@435 153 Address(int disp, address loc, relocInfo::relocType rtype);
duke@435 154 Address(int disp, address loc, RelocationHolder spec);
duke@435 155
duke@435 156 public:
duke@435 157 // creation
duke@435 158 Address()
duke@435 159 : _base(noreg),
duke@435 160 _index(noreg),
duke@435 161 _scale(no_scale),
duke@435 162 _disp(0) {
duke@435 163 }
duke@435 164
duke@435 165 // No default displacement otherwise Register can be implicitly
duke@435 166 // converted to 0(Register) which is quite a different animal.
duke@435 167
duke@435 168 Address(Register base, int disp)
duke@435 169 : _base(base),
duke@435 170 _index(noreg),
duke@435 171 _scale(no_scale),
duke@435 172 _disp(disp) {
duke@435 173 }
duke@435 174
duke@435 175 Address(Register base, Register index, ScaleFactor scale, int disp = 0)
duke@435 176 : _base (base),
duke@435 177 _index(index),
duke@435 178 _scale(scale),
duke@435 179 _disp (disp) {
duke@435 180 assert(!index->is_valid() == (scale == Address::no_scale),
duke@435 181 "inconsistent address");
duke@435 182 }
duke@435 183
duke@435 184 // The following two overloads are used in connection with the
duke@435 185 // ByteSize type (see sizes.hpp). They simplify the use of
duke@435 186 // ByteSize'd arguments in assembly code. Note that their equivalent
duke@435 187 // for the optimized build are the member functions with int disp
duke@435 188 // argument since ByteSize is mapped to an int type in that case.
duke@435 189 //
duke@435 190 // Note: DO NOT introduce similar overloaded functions for WordSize
duke@435 191 // arguments as in the optimized mode, both ByteSize and WordSize
duke@435 192 // are mapped to the same type and thus the compiler cannot make a
duke@435 193 // distinction anymore (=> compiler errors).
duke@435 194
duke@435 195 #ifdef ASSERT
duke@435 196 Address(Register base, ByteSize disp)
duke@435 197 : _base(base),
duke@435 198 _index(noreg),
duke@435 199 _scale(no_scale),
duke@435 200 _disp(in_bytes(disp)) {
duke@435 201 }
duke@435 202
duke@435 203 Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
duke@435 204 : _base(base),
duke@435 205 _index(index),
duke@435 206 _scale(scale),
duke@435 207 _disp(in_bytes(disp)) {
duke@435 208 assert(!index->is_valid() == (scale == Address::no_scale),
duke@435 209 "inconsistent address");
duke@435 210 }
duke@435 211 #endif // ASSERT
duke@435 212
duke@435 213 // accessors
duke@435 214 bool uses(Register reg) const {
duke@435 215 return _base == reg || _index == reg;
duke@435 216 }
duke@435 217
duke@435 218 // Convert the raw encoding form into the form expected by the constructor for
duke@435 219 // Address. An index of 4 (rsp) corresponds to having no index, so convert
duke@435 220 // that to noreg for the Address constructor.
duke@435 221 static Address make_raw(int base, int index, int scale, int disp);
duke@435 222
duke@435 223 static Address make_array(ArrayAddress);
duke@435 224
duke@435 225 private:
duke@435 226 bool base_needs_rex() const {
duke@435 227 return _base != noreg && _base->encoding() >= 8;
duke@435 228 }
duke@435 229
duke@435 230 bool index_needs_rex() const {
duke@435 231 return _index != noreg &&_index->encoding() >= 8;
duke@435 232 }
duke@435 233
duke@435 234 relocInfo::relocType reloc() const { return _rspec.type(); }
duke@435 235
duke@435 236 friend class Assembler;
duke@435 237 friend class MacroAssembler;
duke@435 238 friend class LIR_Assembler; // base/index/scale/disp
duke@435 239 };
duke@435 240
duke@435 241 //
duke@435 242 // AddressLiteral has been split out from Address because operands of this type
duke@435 243 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
duke@435 244 // the few instructions that need to deal with address literals are unique and the
duke@435 245 // MacroAssembler does not have to implement every instruction in the Assembler
duke@435 246 // in order to search for address literals that may need special handling depending
duke@435 247 // on the instruction and the platform. As small step on the way to merging i486/amd64
duke@435 248 // directories.
duke@435 249 //
duke@435 250 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
duke@435 251 friend class ArrayAddress;
duke@435 252 RelocationHolder _rspec;
duke@435 253 // Typically we use AddressLiterals we want to use their rval
duke@435 254 // However in some situations we want the lval (effect address) of the item.
duke@435 255 // We provide a special factory for making those lvals.
duke@435 256 bool _is_lval;
duke@435 257
duke@435 258 // If the target is far we'll need to load the ea of this to
duke@435 259 // a register to reach it. Otherwise if near we can do rip
duke@435 260 // relative addressing.
duke@435 261
duke@435 262 address _target;
duke@435 263
duke@435 264 protected:
duke@435 265 // creation
duke@435 266 AddressLiteral()
duke@435 267 : _is_lval(false),
duke@435 268 _target(NULL)
duke@435 269 {}
duke@435 270
duke@435 271 public:
duke@435 272
duke@435 273
duke@435 274 AddressLiteral(address target, relocInfo::relocType rtype);
duke@435 275
duke@435 276 AddressLiteral(address target, RelocationHolder const& rspec)
duke@435 277 : _rspec(rspec),
duke@435 278 _is_lval(false),
duke@435 279 _target(target)
duke@435 280 {}
duke@435 281
duke@435 282 AddressLiteral addr() {
duke@435 283 AddressLiteral ret = *this;
duke@435 284 ret._is_lval = true;
duke@435 285 return ret;
duke@435 286 }
duke@435 287
duke@435 288
duke@435 289 private:
duke@435 290
duke@435 291 address target() { return _target; }
duke@435 292 bool is_lval() { return _is_lval; }
duke@435 293
duke@435 294 relocInfo::relocType reloc() const { return _rspec.type(); }
duke@435 295 const RelocationHolder& rspec() const { return _rspec; }
duke@435 296
duke@435 297 friend class Assembler;
duke@435 298 friend class MacroAssembler;
duke@435 299 friend class Address;
duke@435 300 friend class LIR_Assembler;
duke@435 301 };
duke@435 302
duke@435 303 // Convience classes
duke@435 304 class RuntimeAddress: public AddressLiteral {
duke@435 305
duke@435 306 public:
duke@435 307
duke@435 308 RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
duke@435 309
duke@435 310 };
duke@435 311
duke@435 312 class OopAddress: public AddressLiteral {
duke@435 313
duke@435 314 public:
duke@435 315
duke@435 316 OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
duke@435 317
duke@435 318 };
duke@435 319
duke@435 320 class ExternalAddress: public AddressLiteral {
duke@435 321
duke@435 322 public:
duke@435 323
duke@435 324 ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){}
duke@435 325
duke@435 326 };
duke@435 327
duke@435 328 class InternalAddress: public AddressLiteral {
duke@435 329
duke@435 330 public:
duke@435 331
duke@435 332 InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
duke@435 333
duke@435 334 };
duke@435 335
duke@435 336 // x86 can do array addressing as a single operation since disp can be an absolute
duke@435 337 // address but amd64 can't [e.g. array_base(rx, ry:width) ]. We create a class
duke@435 338 // that expresses the concept but does extra magic on amd64 to get the final result
duke@435 339
duke@435 340 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
duke@435 341 private:
duke@435 342
duke@435 343 AddressLiteral _base;
duke@435 344 Address _index;
duke@435 345
duke@435 346 public:
duke@435 347
duke@435 348 ArrayAddress() {};
duke@435 349 ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
duke@435 350 AddressLiteral base() { return _base; }
duke@435 351 Address index() { return _index; }
duke@435 352
duke@435 353 };
duke@435 354
duke@435 355 // The amd64 Assembler: Pure assembler doing NO optimizations on
duke@435 356 // the instruction level (e.g. mov rax, 0 is not translated into xor
duke@435 357 // rax, rax!); i.e., what you write is what you get. The Assembler is
duke@435 358 // generating code into a CodeBuffer.
duke@435 359
duke@435 360 const int FPUStateSizeInWords = 512 / wordSize;
duke@435 361
duke@435 362 class Assembler : public AbstractAssembler {
duke@435 363 friend class AbstractAssembler; // for the non-virtual hack
duke@435 364 friend class StubGenerator;
duke@435 365
duke@435 366
duke@435 367 protected:
duke@435 368 #ifdef ASSERT
duke@435 369 void check_relocation(RelocationHolder const& rspec, int format);
duke@435 370 #endif
duke@435 371
duke@435 372 inline void emit_long64(jlong x);
duke@435 373
duke@435 374 void emit_data(jint data, relocInfo::relocType rtype, int format /* = 1 */);
duke@435 375 void emit_data(jint data, RelocationHolder const& rspec, int format /* = 1 */);
duke@435 376 void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
duke@435 377 void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
duke@435 378
duke@435 379 // Helper functions for groups of instructions
duke@435 380 void emit_arith_b(int op1, int op2, Register dst, int imm8);
duke@435 381
duke@435 382 void emit_arith(int op1, int op2, Register dst, int imm32);
duke@435 383 // only x86??
duke@435 384 void emit_arith(int op1, int op2, Register dst, jobject obj);
duke@435 385 void emit_arith(int op1, int op2, Register dst, Register src);
duke@435 386
duke@435 387 void emit_operand(Register reg,
duke@435 388 Register base, Register index, Address::ScaleFactor scale,
duke@435 389 int disp,
duke@435 390 RelocationHolder const& rspec,
duke@435 391 int rip_relative_correction = 0);
duke@435 392 void emit_operand(Register reg, Address adr,
duke@435 393 int rip_relative_correction = 0);
duke@435 394 void emit_operand(XMMRegister reg,
duke@435 395 Register base, Register index, Address::ScaleFactor scale,
duke@435 396 int disp,
duke@435 397 RelocationHolder const& rspec,
duke@435 398 int rip_relative_correction = 0);
duke@435 399 void emit_operand(XMMRegister reg, Address adr,
duke@435 400 int rip_relative_correction = 0);
duke@435 401
duke@435 402 // Immediate-to-memory forms
duke@435 403 void emit_arith_operand(int op1, Register rm, Address adr, int imm32);
duke@435 404
duke@435 405 void emit_farith(int b1, int b2, int i);
duke@435 406
duke@435 407 bool reachable(AddressLiteral adr);
duke@435 408
duke@435 409 // These are all easily abused and hence protected
duke@435 410
duke@435 411 // Make these disappear in 64bit mode since they would never be correct
duke@435 412 #ifndef _LP64
duke@435 413 void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);
duke@435 414 void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);
duke@435 415
duke@435 416 void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);
duke@435 417 void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);
duke@435 418
duke@435 419 void push_literal32(int32_t imm32, RelocationHolder const& rspec);
duke@435 420 #endif // _LP64
duke@435 421
duke@435 422
duke@435 423 void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);
duke@435 424
duke@435 425 // These are unique in that we are ensured by the caller that the 32bit
duke@435 426 // relative in these instructions will always be able to reach the potentially
duke@435 427 // 64bit address described by entry. Since they can take a 64bit address they
duke@435 428 // don't have the 32 suffix like the other instructions in this class.
duke@435 429 void jmp_literal(address entry, RelocationHolder const& rspec);
duke@435 430 void call_literal(address entry, RelocationHolder const& rspec);
duke@435 431
duke@435 432 public:
duke@435 433 enum Condition { // The amd64 condition codes used for conditional jumps/moves.
duke@435 434 zero = 0x4,
duke@435 435 notZero = 0x5,
duke@435 436 equal = 0x4,
duke@435 437 notEqual = 0x5,
duke@435 438 less = 0xc,
duke@435 439 lessEqual = 0xe,
duke@435 440 greater = 0xf,
duke@435 441 greaterEqual = 0xd,
duke@435 442 below = 0x2,
duke@435 443 belowEqual = 0x6,
duke@435 444 above = 0x7,
duke@435 445 aboveEqual = 0x3,
duke@435 446 overflow = 0x0,
duke@435 447 noOverflow = 0x1,
duke@435 448 carrySet = 0x2,
duke@435 449 carryClear = 0x3,
duke@435 450 negative = 0x8,
duke@435 451 positive = 0x9,
duke@435 452 parity = 0xa,
duke@435 453 noParity = 0xb
duke@435 454 };
duke@435 455
duke@435 456 enum Prefix {
duke@435 457 // segment overrides
duke@435 458 // XXX remove segment prefixes
duke@435 459 CS_segment = 0x2e,
duke@435 460 SS_segment = 0x36,
duke@435 461 DS_segment = 0x3e,
duke@435 462 ES_segment = 0x26,
duke@435 463 FS_segment = 0x64,
duke@435 464 GS_segment = 0x65,
duke@435 465
duke@435 466 REX = 0x40,
duke@435 467
duke@435 468 REX_B = 0x41,
duke@435 469 REX_X = 0x42,
duke@435 470 REX_XB = 0x43,
duke@435 471 REX_R = 0x44,
duke@435 472 REX_RB = 0x45,
duke@435 473 REX_RX = 0x46,
duke@435 474 REX_RXB = 0x47,
duke@435 475
duke@435 476 REX_W = 0x48,
duke@435 477
duke@435 478 REX_WB = 0x49,
duke@435 479 REX_WX = 0x4A,
duke@435 480 REX_WXB = 0x4B,
duke@435 481 REX_WR = 0x4C,
duke@435 482 REX_WRB = 0x4D,
duke@435 483 REX_WRX = 0x4E,
duke@435 484 REX_WRXB = 0x4F
duke@435 485 };
duke@435 486
duke@435 487 enum WhichOperand {
duke@435 488 // input to locate_operand, and format code for relocations
duke@435 489 imm64_operand = 0, // embedded 64-bit immediate operand
duke@435 490 disp32_operand = 1, // embedded 32-bit displacement
duke@435 491 call32_operand = 2, // embedded 32-bit self-relative displacement
duke@435 492 _WhichOperand_limit = 3
duke@435 493 };
duke@435 494
duke@435 495 public:
duke@435 496
duke@435 497 // Creation
duke@435 498 Assembler(CodeBuffer* code)
duke@435 499 : AbstractAssembler(code) {
duke@435 500 }
duke@435 501
duke@435 502 // Decoding
duke@435 503 static address locate_operand(address inst, WhichOperand which);
duke@435 504 static address locate_next_instruction(address inst);
duke@435 505
duke@435 506 // Utilities
duke@435 507
duke@435 508 static bool is_simm(int64_t x, int nbits) { return -( CONST64(1) << (nbits-1) ) <= x && x < ( CONST64(1) << (nbits-1) ); }
duke@435 509 static bool is_simm32 (int64_t x) { return x == (int64_t)(int32_t)x; }
duke@435 510
duke@435 511
duke@435 512 // Stack
duke@435 513 void pushaq();
duke@435 514 void popaq();
duke@435 515
duke@435 516 void pushfq();
duke@435 517 void popfq();
duke@435 518
duke@435 519 void pushq(int imm32);
duke@435 520
duke@435 521 void pushq(Register src);
duke@435 522 void pushq(Address src);
duke@435 523
duke@435 524 void popq(Register dst);
duke@435 525 void popq(Address dst);
duke@435 526
duke@435 527 // Instruction prefixes
duke@435 528 void prefix(Prefix p);
duke@435 529
duke@435 530 int prefix_and_encode(int reg_enc, bool byteinst = false);
duke@435 531 int prefixq_and_encode(int reg_enc);
duke@435 532
duke@435 533 int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
duke@435 534 int prefixq_and_encode(int dst_enc, int src_enc);
duke@435 535
duke@435 536 void prefix(Register reg);
duke@435 537 void prefix(Address adr);
duke@435 538 void prefixq(Address adr);
duke@435 539
duke@435 540 void prefix(Address adr, Register reg, bool byteinst = false);
duke@435 541 void prefixq(Address adr, Register reg);
duke@435 542
duke@435 543 void prefix(Address adr, XMMRegister reg);
duke@435 544
duke@435 545 // Moves
duke@435 546 void movb(Register dst, Address src);
duke@435 547 void movb(Address dst, int imm8);
duke@435 548 void movb(Address dst, Register src);
duke@435 549
duke@435 550 void movw(Address dst, int imm16);
duke@435 551 void movw(Register dst, Address src);
duke@435 552 void movw(Address dst, Register src);
duke@435 553
duke@435 554 void movl(Register dst, int imm32);
duke@435 555 void movl(Register dst, Register src);
duke@435 556 void movl(Register dst, Address src);
duke@435 557 void movl(Address dst, int imm32);
duke@435 558 void movl(Address dst, Register src);
duke@435 559
duke@435 560 void movq(Register dst, Register src);
duke@435 561 void movq(Register dst, Address src);
duke@435 562 void movq(Address dst, Register src);
duke@435 563 // These prevent using movq from converting a zero (like NULL) into Register
duke@435 564 // by giving the compiler two choices it can't resolve
duke@435 565 void movq(Address dst, void* dummy);
duke@435 566 void movq(Register dst, void* dummy);
duke@435 567
duke@435 568 void mov64(Register dst, intptr_t imm64);
duke@435 569 void mov64(Address dst, intptr_t imm64);
duke@435 570
duke@435 571 void movsbl(Register dst, Address src);
duke@435 572 void movsbl(Register dst, Register src);
duke@435 573 void movswl(Register dst, Address src);
duke@435 574 void movswl(Register dst, Register src);
duke@435 575 void movslq(Register dst, Address src);
duke@435 576 void movslq(Register dst, Register src);
duke@435 577
duke@435 578 void movzbl(Register dst, Address src);
duke@435 579 void movzbl(Register dst, Register src);
duke@435 580 void movzwl(Register dst, Address src);
duke@435 581 void movzwl(Register dst, Register src);
duke@435 582
duke@435 583 protected: // Avoid using the next instructions directly.
duke@435 584 // New cpus require use of movsd and movss to avoid partial register stall
duke@435 585 // when loading from memory. But for old Opteron use movlpd instead of movsd.
duke@435 586 // The selection is done in MacroAssembler::movdbl() and movflt().
duke@435 587 void movss(XMMRegister dst, XMMRegister src);
duke@435 588 void movss(XMMRegister dst, Address src);
duke@435 589 void movss(Address dst, XMMRegister src);
duke@435 590 void movsd(XMMRegister dst, XMMRegister src);
duke@435 591 void movsd(Address dst, XMMRegister src);
duke@435 592 void movsd(XMMRegister dst, Address src);
duke@435 593 void movlpd(XMMRegister dst, Address src);
duke@435 594 // New cpus require use of movaps and movapd to avoid partial register stall
duke@435 595 // when moving between registers.
duke@435 596 void movapd(XMMRegister dst, XMMRegister src);
duke@435 597 void movaps(XMMRegister dst, XMMRegister src);
duke@435 598 public:
duke@435 599
duke@435 600 void movdl(XMMRegister dst, Register src);
duke@435 601 void movdl(Register dst, XMMRegister src);
duke@435 602 void movdq(XMMRegister dst, Register src);
duke@435 603 void movdq(Register dst, XMMRegister src);
duke@435 604
duke@435 605 void cmovl(Condition cc, Register dst, Register src);
duke@435 606 void cmovl(Condition cc, Register dst, Address src);
duke@435 607 void cmovq(Condition cc, Register dst, Register src);
duke@435 608 void cmovq(Condition cc, Register dst, Address src);
duke@435 609
duke@435 610 // Prefetches
duke@435 611 private:
duke@435 612 void prefetch_prefix(Address src);
duke@435 613 public:
duke@435 614 void prefetcht0(Address src);
duke@435 615 void prefetcht1(Address src);
duke@435 616 void prefetcht2(Address src);
duke@435 617 void prefetchnta(Address src);
duke@435 618 void prefetchw(Address src);
duke@435 619
duke@435 620 // Arithmetics
duke@435 621 void adcl(Register dst, int imm32);
duke@435 622 void adcl(Register dst, Address src);
duke@435 623 void adcl(Register dst, Register src);
duke@435 624 void adcq(Register dst, int imm32);
duke@435 625 void adcq(Register dst, Address src);
duke@435 626 void adcq(Register dst, Register src);
duke@435 627
duke@435 628 void addl(Address dst, int imm32);
duke@435 629 void addl(Address dst, Register src);
duke@435 630 void addl(Register dst, int imm32);
duke@435 631 void addl(Register dst, Address src);
duke@435 632 void addl(Register dst, Register src);
duke@435 633 void addq(Address dst, int imm32);
duke@435 634 void addq(Address dst, Register src);
duke@435 635 void addq(Register dst, int imm32);
duke@435 636 void addq(Register dst, Address src);
duke@435 637 void addq(Register dst, Register src);
duke@435 638
duke@435 639 void andl(Register dst, int imm32);
duke@435 640 void andl(Register dst, Address src);
duke@435 641 void andl(Register dst, Register src);
duke@435 642 void andq(Register dst, int imm32);
duke@435 643 void andq(Register dst, Address src);
duke@435 644 void andq(Register dst, Register src);
duke@435 645
duke@435 646 void cmpb(Address dst, int imm8);
duke@435 647 void cmpl(Address dst, int imm32);
duke@435 648 void cmpl(Register dst, int imm32);
duke@435 649 void cmpl(Register dst, Register src);
duke@435 650 void cmpl(Register dst, Address src);
duke@435 651 void cmpq(Address dst, int imm32);
duke@435 652 void cmpq(Address dst, Register src);
duke@435 653 void cmpq(Register dst, int imm32);
duke@435 654 void cmpq(Register dst, Register src);
duke@435 655 void cmpq(Register dst, Address src);
duke@435 656
duke@435 657 void ucomiss(XMMRegister dst, XMMRegister src);
duke@435 658 void ucomisd(XMMRegister dst, XMMRegister src);
duke@435 659
duke@435 660 protected:
duke@435 661 // Don't use next inc() and dec() methods directly. INC & DEC instructions
duke@435 662 // could cause a partial flag stall since they don't set CF flag.
duke@435 663 // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
duke@435 664 // which call inc() & dec() or add() & sub() in accordance with
duke@435 665 // the product flag UseIncDec value.
duke@435 666
duke@435 667 void decl(Register dst);
duke@435 668 void decl(Address dst);
duke@435 669 void decq(Register dst);
duke@435 670 void decq(Address dst);
duke@435 671
duke@435 672 void incl(Register dst);
duke@435 673 void incl(Address dst);
duke@435 674 void incq(Register dst);
duke@435 675 void incq(Address dst);
duke@435 676
duke@435 677 public:
duke@435 678 void idivl(Register src);
duke@435 679 void idivq(Register src);
duke@435 680 void cdql();
duke@435 681 void cdqq();
duke@435 682
duke@435 683 void imull(Register dst, Register src);
duke@435 684 void imull(Register dst, Register src, int value);
duke@435 685 void imulq(Register dst, Register src);
duke@435 686 void imulq(Register dst, Register src, int value);
duke@435 687
duke@435 688 void leal(Register dst, Address src);
duke@435 689 void leaq(Register dst, Address src);
duke@435 690
duke@435 691 void mull(Address src);
duke@435 692 void mull(Register src);
duke@435 693
duke@435 694 void negl(Register dst);
duke@435 695 void negq(Register dst);
duke@435 696
duke@435 697 void notl(Register dst);
duke@435 698 void notq(Register dst);
duke@435 699
duke@435 700 void orl(Address dst, int imm32);
duke@435 701 void orl(Register dst, int imm32);
duke@435 702 void orl(Register dst, Address src);
duke@435 703 void orl(Register dst, Register src);
duke@435 704 void orq(Address dst, int imm32);
duke@435 705 void orq(Register dst, int imm32);
duke@435 706 void orq(Register dst, Address src);
duke@435 707 void orq(Register dst, Register src);
duke@435 708
duke@435 709 void rcll(Register dst, int imm8);
duke@435 710 void rclq(Register dst, int imm8);
duke@435 711
duke@435 712 void sarl(Register dst, int imm8);
duke@435 713 void sarl(Register dst);
duke@435 714 void sarq(Register dst, int imm8);
duke@435 715 void sarq(Register dst);
duke@435 716
duke@435 717 void sbbl(Address dst, int imm32);
duke@435 718 void sbbl(Register dst, int imm32);
duke@435 719 void sbbl(Register dst, Address src);
duke@435 720 void sbbl(Register dst, Register src);
duke@435 721 void sbbq(Address dst, int imm32);
duke@435 722 void sbbq(Register dst, int imm32);
duke@435 723 void sbbq(Register dst, Address src);
duke@435 724 void sbbq(Register dst, Register src);
duke@435 725
duke@435 726 void shll(Register dst, int imm8);
duke@435 727 void shll(Register dst);
duke@435 728 void shlq(Register dst, int imm8);
duke@435 729 void shlq(Register dst);
duke@435 730
duke@435 731 void shrl(Register dst, int imm8);
duke@435 732 void shrl(Register dst);
duke@435 733 void shrq(Register dst, int imm8);
duke@435 734 void shrq(Register dst);
duke@435 735
duke@435 736 void subl(Address dst, int imm32);
duke@435 737 void subl(Address dst, Register src);
duke@435 738 void subl(Register dst, int imm32);
duke@435 739 void subl(Register dst, Address src);
duke@435 740 void subl(Register dst, Register src);
duke@435 741 void subq(Address dst, int imm32);
duke@435 742 void subq(Address dst, Register src);
duke@435 743 void subq(Register dst, int imm32);
duke@435 744 void subq(Register dst, Address src);
duke@435 745 void subq(Register dst, Register src);
duke@435 746
duke@435 747 void testb(Register dst, int imm8);
duke@435 748 void testl(Register dst, int imm32);
duke@435 749 void testl(Register dst, Register src);
duke@435 750 void testq(Register dst, int imm32);
duke@435 751 void testq(Register dst, Register src);
duke@435 752
duke@435 753 void xaddl(Address dst, Register src);
duke@435 754 void xaddq(Address dst, Register src);
duke@435 755
duke@435 756 void xorl(Register dst, int imm32);
duke@435 757 void xorl(Register dst, Address src);
duke@435 758 void xorl(Register dst, Register src);
duke@435 759 void xorq(Register dst, int imm32);
duke@435 760 void xorq(Register dst, Address src);
duke@435 761 void xorq(Register dst, Register src);
duke@435 762
duke@435 763 // Miscellaneous
duke@435 764 void bswapl(Register reg);
duke@435 765 void bswapq(Register reg);
duke@435 766 void lock();
duke@435 767
duke@435 768 void xchgl(Register reg, Address adr);
duke@435 769 void xchgl(Register dst, Register src);
duke@435 770 void xchgq(Register reg, Address adr);
duke@435 771 void xchgq(Register dst, Register src);
duke@435 772
duke@435 773 void cmpxchgl(Register reg, Address adr);
duke@435 774 void cmpxchgq(Register reg, Address adr);
duke@435 775
duke@435 776 void nop(int i = 1);
duke@435 777 void addr_nop_4();
duke@435 778 void addr_nop_5();
duke@435 779 void addr_nop_7();
duke@435 780 void addr_nop_8();
duke@435 781
duke@435 782 void hlt();
duke@435 783 void ret(int imm16);
duke@435 784 void smovl();
duke@435 785 void rep_movl();
duke@435 786 void rep_movq();
duke@435 787 void rep_set();
duke@435 788 void repne_scan();
duke@435 789 void setb(Condition cc, Register dst);
duke@435 790
duke@435 791 void clflush(Address adr);
duke@435 792
duke@435 793 enum Membar_mask_bits {
duke@435 794 StoreStore = 1 << 3,
duke@435 795 LoadStore = 1 << 2,
duke@435 796 StoreLoad = 1 << 1,
duke@435 797 LoadLoad = 1 << 0
duke@435 798 };
duke@435 799
duke@435 800 // Serializes memory.
duke@435 801 void membar(Membar_mask_bits order_constraint) {
duke@435 802 // We only have to handle StoreLoad and LoadLoad
duke@435 803 if (order_constraint & StoreLoad) {
duke@435 804 // MFENCE subsumes LFENCE
duke@435 805 mfence();
duke@435 806 } /* [jk] not needed currently: else if (order_constraint & LoadLoad) {
duke@435 807 lfence();
duke@435 808 } */
duke@435 809 }
duke@435 810
duke@435 811 void lfence() {
duke@435 812 emit_byte(0x0F);
duke@435 813 emit_byte(0xAE);
duke@435 814 emit_byte(0xE8);
duke@435 815 }
duke@435 816
duke@435 817 void mfence() {
duke@435 818 emit_byte(0x0F);
duke@435 819 emit_byte(0xAE);
duke@435 820 emit_byte(0xF0);
duke@435 821 }
duke@435 822
duke@435 823 // Identify processor type and features
duke@435 824 void cpuid() {
duke@435 825 emit_byte(0x0F);
duke@435 826 emit_byte(0xA2);
duke@435 827 }
duke@435 828
duke@435 829 void cld() { emit_byte(0xfc);
duke@435 830 }
duke@435 831
duke@435 832 void std() { emit_byte(0xfd);
duke@435 833 }
duke@435 834
duke@435 835
duke@435 836 // Calls
duke@435 837
duke@435 838 void call(Label& L, relocInfo::relocType rtype);
duke@435 839 void call(Register reg);
duke@435 840 void call(Address adr);
duke@435 841
duke@435 842 // Jumps
duke@435 843
duke@435 844 void jmp(Register reg);
duke@435 845 void jmp(Address adr);
duke@435 846
duke@435 847 // Label operations & relative jumps (PPUM Appendix D)
duke@435 848 // unconditional jump to L
duke@435 849 void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none);
duke@435 850
duke@435 851
duke@435 852 // Unconditional 8-bit offset jump to L.
duke@435 853 // WARNING: be very careful using this for forward jumps. If the label is
duke@435 854 // not bound within an 8-bit offset of this instruction, a run-time error
duke@435 855 // will occur.
duke@435 856 void jmpb(Label& L);
duke@435 857
duke@435 858 // jcc is the generic conditional branch generator to run- time
duke@435 859 // routines, jcc is used for branches to labels. jcc takes a branch
duke@435 860 // opcode (cc) and a label (L) and generates either a backward
duke@435 861 // branch or a forward branch and links it to the label fixup
duke@435 862 // chain. Usage:
duke@435 863 //
duke@435 864 // Label L; // unbound label
duke@435 865 // jcc(cc, L); // forward branch to unbound label
duke@435 866 // bind(L); // bind label to the current pc
duke@435 867 // jcc(cc, L); // backward branch to bound label
duke@435 868 // bind(L); // illegal: a label may be bound only once
duke@435 869 //
duke@435 870 // Note: The same Label can be used for forward and backward branches
duke@435 871 // but it may be bound only once.
duke@435 872
duke@435 873 void jcc(Condition cc, Label& L,
duke@435 874 relocInfo::relocType rtype = relocInfo::none);
duke@435 875
duke@435 876 // Conditional jump to a 8-bit offset to L.
duke@435 877 // WARNING: be very careful using this for forward jumps. If the label is
duke@435 878 // not bound within an 8-bit offset of this instruction, a run-time error
duke@435 879 // will occur.
duke@435 880 void jccb(Condition cc, Label& L);
duke@435 881
duke@435 882 // Floating-point operations
duke@435 883
duke@435 884 void fxsave(Address dst);
duke@435 885 void fxrstor(Address src);
duke@435 886 void ldmxcsr(Address src);
duke@435 887 void stmxcsr(Address dst);
duke@435 888
duke@435 889 void addss(XMMRegister dst, XMMRegister src);
duke@435 890 void addss(XMMRegister dst, Address src);
duke@435 891 void subss(XMMRegister dst, XMMRegister src);
duke@435 892 void subss(XMMRegister dst, Address src);
duke@435 893 void mulss(XMMRegister dst, XMMRegister src);
duke@435 894 void mulss(XMMRegister dst, Address src);
duke@435 895 void divss(XMMRegister dst, XMMRegister src);
duke@435 896 void divss(XMMRegister dst, Address src);
duke@435 897 void addsd(XMMRegister dst, XMMRegister src);
duke@435 898 void addsd(XMMRegister dst, Address src);
duke@435 899 void subsd(XMMRegister dst, XMMRegister src);
duke@435 900 void subsd(XMMRegister dst, Address src);
duke@435 901 void mulsd(XMMRegister dst, XMMRegister src);
duke@435 902 void mulsd(XMMRegister dst, Address src);
duke@435 903 void divsd(XMMRegister dst, XMMRegister src);
duke@435 904 void divsd(XMMRegister dst, Address src);
duke@435 905
duke@435 906 // We only need the double form
duke@435 907 void sqrtsd(XMMRegister dst, XMMRegister src);
duke@435 908 void sqrtsd(XMMRegister dst, Address src);
duke@435 909
duke@435 910 void xorps(XMMRegister dst, XMMRegister src);
duke@435 911 void xorps(XMMRegister dst, Address src);
duke@435 912 void xorpd(XMMRegister dst, XMMRegister src);
duke@435 913 void xorpd(XMMRegister dst, Address src);
duke@435 914
duke@435 915 void cvtsi2ssl(XMMRegister dst, Register src);
duke@435 916 void cvtsi2ssq(XMMRegister dst, Register src);
duke@435 917 void cvtsi2sdl(XMMRegister dst, Register src);
duke@435 918 void cvtsi2sdq(XMMRegister dst, Register src);
duke@435 919 void cvttss2sil(Register dst, XMMRegister src); // truncates
duke@435 920 void cvttss2siq(Register dst, XMMRegister src); // truncates
duke@435 921 void cvttsd2sil(Register dst, XMMRegister src); // truncates
duke@435 922 void cvttsd2siq(Register dst, XMMRegister src); // truncates
duke@435 923 void cvtss2sd(XMMRegister dst, XMMRegister src);
duke@435 924 void cvtsd2ss(XMMRegister dst, XMMRegister src);
duke@435 925
duke@435 926 void pxor(XMMRegister dst, Address src); // Xor Packed Byte Integer Values
duke@435 927 void pxor(XMMRegister dst, XMMRegister src); // Xor Packed Byte Integer Values
duke@435 928
duke@435 929 void movdqa(XMMRegister dst, Address src); // Move Aligned Double Quadword
duke@435 930 void movdqa(XMMRegister dst, XMMRegister src);
duke@435 931 void movdqa(Address dst, XMMRegister src);
duke@435 932
duke@435 933 void movq(XMMRegister dst, Address src);
duke@435 934 void movq(Address dst, XMMRegister src);
duke@435 935
duke@435 936 void pshufd(XMMRegister dst, XMMRegister src, int mode); // Shuffle Packed Doublewords
duke@435 937 void pshufd(XMMRegister dst, Address src, int mode);
duke@435 938 void pshuflw(XMMRegister dst, XMMRegister src, int mode); // Shuffle Packed Low Words
duke@435 939 void pshuflw(XMMRegister dst, Address src, int mode);
duke@435 940
duke@435 941 void psrlq(XMMRegister dst, int shift); // Shift Right Logical Quadword Immediate
duke@435 942
duke@435 943 void punpcklbw(XMMRegister dst, XMMRegister src); // Interleave Low Bytes
duke@435 944 void punpcklbw(XMMRegister dst, Address src);
duke@435 945 };
duke@435 946
duke@435 947
duke@435 948 // MacroAssembler extends Assembler by frequently used macros.
duke@435 949 //
duke@435 950 // Instructions for which a 'better' code sequence exists depending
duke@435 951 // on arguments should also go in here.
duke@435 952
duke@435 953 class MacroAssembler : public Assembler {
duke@435 954 friend class LIR_Assembler;
duke@435 955 protected:
duke@435 956
duke@435 957 Address as_Address(AddressLiteral adr);
duke@435 958 Address as_Address(ArrayAddress adr);
duke@435 959
duke@435 960 // Support for VM calls
duke@435 961 //
duke@435 962 // This is the base routine called by the different versions of
duke@435 963 // call_VM_leaf. The interpreter may customize this version by
duke@435 964 // overriding it for its purposes (e.g., to save/restore additional
duke@435 965 // registers when doing a VM call).
duke@435 966
duke@435 967 virtual void call_VM_leaf_base(
duke@435 968 address entry_point, // the entry point
duke@435 969 int number_of_arguments // the number of arguments to
duke@435 970 // pop after the call
duke@435 971 );
duke@435 972
duke@435 973 // This is the base routine called by the different versions of
duke@435 974 // call_VM. The interpreter may customize this version by overriding
duke@435 975 // it for its purposes (e.g., to save/restore additional registers
duke@435 976 // when doing a VM call).
duke@435 977 //
duke@435 978 // If no java_thread register is specified (noreg) than rdi will be
duke@435 979 // used instead. call_VM_base returns the register which contains
duke@435 980 // the thread upon return. If a thread register has been specified,
duke@435 981 // the return value will correspond to that register. If no
duke@435 982 // last_java_sp is specified (noreg) than rsp will be used instead.
duke@435 983 virtual void call_VM_base( // returns the register
duke@435 984 // containing the thread upon
duke@435 985 // return
duke@435 986 Register oop_result, // where an oop-result ends up
duke@435 987 // if any; use noreg otherwise
duke@435 988 Register java_thread, // the thread if computed
duke@435 989 // before ; use noreg otherwise
duke@435 990 Register last_java_sp, // to set up last_Java_frame in
duke@435 991 // stubs; use noreg otherwise
duke@435 992 address entry_point, // the entry point
duke@435 993 int number_of_arguments, // the number of arguments (w/o
duke@435 994 // thread) to pop after the
duke@435 995 // call
duke@435 996 bool check_exceptions // whether to check for pending
duke@435 997 // exceptions after return
duke@435 998 );
duke@435 999
duke@435 1000 // This routines should emit JVMTI PopFrame handling and ForceEarlyReturn code.
duke@435 1001 // The implementation is only non-empty for the InterpreterMacroAssembler,
duke@435 1002 // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
duke@435 1003 virtual void check_and_handle_popframe(Register java_thread);
duke@435 1004 virtual void check_and_handle_earlyret(Register java_thread);
duke@435 1005
duke@435 1006 void call_VM_helper(Register oop_result,
duke@435 1007 address entry_point,
duke@435 1008 int number_of_arguments,
duke@435 1009 bool check_exceptions = true);
duke@435 1010
duke@435 1011 public:
duke@435 1012 MacroAssembler(CodeBuffer* code) : Assembler(code) {}
duke@435 1013
duke@435 1014 // Support for NULL-checks
duke@435 1015 //
duke@435 1016 // Generates code that causes a NULL OS exception if the content of
duke@435 1017 // reg is NULL. If the accessed location is M[reg + offset] and the
duke@435 1018 // offset is known, provide the offset. No explicit code generation
duke@435 1019 // is needed if the offset is within a certain range (0 <= offset <=
duke@435 1020 // page_size).
duke@435 1021 void null_check(Register reg, int offset = -1);
duke@435 1022 static bool needs_explicit_null_check(int offset);
duke@435 1023
duke@435 1024 // Required platform-specific helpers for Label::patch_instructions.
duke@435 1025 // They _shadow_ the declarations in AbstractAssembler, which are undefined.
duke@435 1026 void pd_patch_instruction(address branch, address target);
duke@435 1027 #ifndef PRODUCT
duke@435 1028 static void pd_print_patched_instruction(address branch);
duke@435 1029 #endif
duke@435 1030
duke@435 1031
duke@435 1032 // The following 4 methods return the offset of the appropriate move
duke@435 1033 // instruction. Note: these are 32 bit instructions
duke@435 1034
duke@435 1035 // Support for fast byte/word loading with zero extension (depending
duke@435 1036 // on particular CPU)
duke@435 1037 int load_unsigned_byte(Register dst, Address src);
duke@435 1038 int load_unsigned_word(Register dst, Address src);
duke@435 1039
duke@435 1040 // Support for fast byte/word loading with sign extension (depending
duke@435 1041 // on particular CPU)
duke@435 1042 int load_signed_byte(Register dst, Address src);
duke@435 1043 int load_signed_word(Register dst, Address src);
duke@435 1044
duke@435 1045 // Support for inc/dec with optimal instruction selection depending
duke@435 1046 // on value
duke@435 1047 void incrementl(Register reg, int value = 1);
duke@435 1048 void decrementl(Register reg, int value = 1);
duke@435 1049 void incrementq(Register reg, int value = 1);
duke@435 1050 void decrementq(Register reg, int value = 1);
duke@435 1051
duke@435 1052 void incrementl(Address dst, int value = 1);
duke@435 1053 void decrementl(Address dst, int value = 1);
duke@435 1054 void incrementq(Address dst, int value = 1);
duke@435 1055 void decrementq(Address dst, int value = 1);
duke@435 1056
duke@435 1057 // Support optimal SSE move instructions.
duke@435 1058 void movflt(XMMRegister dst, XMMRegister src) {
duke@435 1059 if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
duke@435 1060 else { movss (dst, src); return; }
duke@435 1061 }
duke@435 1062
duke@435 1063 void movflt(XMMRegister dst, Address src) { movss(dst, src); }
duke@435 1064
duke@435 1065 void movflt(XMMRegister dst, AddressLiteral src);
duke@435 1066
duke@435 1067 void movflt(Address dst, XMMRegister src) { movss(dst, src); }
duke@435 1068
duke@435 1069 void movdbl(XMMRegister dst, XMMRegister src) {
duke@435 1070 if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
duke@435 1071 else { movsd (dst, src); return; }
duke@435 1072 }
duke@435 1073
duke@435 1074 void movdbl(XMMRegister dst, AddressLiteral src);
duke@435 1075
duke@435 1076 void movdbl(XMMRegister dst, Address src) {
duke@435 1077 if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
duke@435 1078 else { movlpd(dst, src); return; }
duke@435 1079 }
duke@435 1080
duke@435 1081 void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
duke@435 1082
duke@435 1083 void incrementl(AddressLiteral dst);
duke@435 1084 void incrementl(ArrayAddress dst);
duke@435 1085
duke@435 1086 // Alignment
duke@435 1087 void align(int modulus);
duke@435 1088
duke@435 1089 // Misc
duke@435 1090 void fat_nop(); // 5 byte nop
duke@435 1091
duke@435 1092
duke@435 1093 // C++ bool manipulation
duke@435 1094
duke@435 1095 void movbool(Register dst, Address src);
duke@435 1096 void movbool(Address dst, bool boolconst);
duke@435 1097 void movbool(Address dst, Register src);
duke@435 1098 void testbool(Register dst);
duke@435 1099
duke@435 1100 // Stack frame creation/removal
duke@435 1101 void enter();
duke@435 1102 void leave();
duke@435 1103
duke@435 1104 // Support for getting the JavaThread pointer (i.e.; a reference to
duke@435 1105 // thread-local information) The pointer will be loaded into the
duke@435 1106 // thread register.
duke@435 1107 void get_thread(Register thread);
duke@435 1108
duke@435 1109 void int3();
duke@435 1110
duke@435 1111 // Support for VM calls
duke@435 1112 //
duke@435 1113 // It is imperative that all calls into the VM are handled via the
duke@435 1114 // call_VM macros. They make sure that the stack linkage is setup
duke@435 1115 // correctly. call_VM's correspond to ENTRY/ENTRY_X entry points
duke@435 1116 // while call_VM_leaf's correspond to LEAF entry points.
duke@435 1117 void call_VM(Register oop_result,
duke@435 1118 address entry_point,
duke@435 1119 bool check_exceptions = true);
duke@435 1120 void call_VM(Register oop_result,
duke@435 1121 address entry_point,
duke@435 1122 Register arg_1,
duke@435 1123 bool check_exceptions = true);
duke@435 1124 void call_VM(Register oop_result,
duke@435 1125 address entry_point,
duke@435 1126 Register arg_1, Register arg_2,
duke@435 1127 bool check_exceptions = true);
duke@435 1128 void call_VM(Register oop_result,
duke@435 1129 address entry_point,
duke@435 1130 Register arg_1, Register arg_2, Register arg_3,
duke@435 1131 bool check_exceptions = true);
duke@435 1132
duke@435 1133 // Overloadings with last_Java_sp
duke@435 1134 void call_VM(Register oop_result,
duke@435 1135 Register last_java_sp,
duke@435 1136 address entry_point,
duke@435 1137 int number_of_arguments = 0,
duke@435 1138 bool check_exceptions = true);
duke@435 1139 void call_VM(Register oop_result,
duke@435 1140 Register last_java_sp,
duke@435 1141 address entry_point,
duke@435 1142 Register arg_1, bool
duke@435 1143 check_exceptions = true);
duke@435 1144 void call_VM(Register oop_result,
duke@435 1145 Register last_java_sp,
duke@435 1146 address entry_point,
duke@435 1147 Register arg_1, Register arg_2,
duke@435 1148 bool check_exceptions = true);
duke@435 1149 void call_VM(Register oop_result,
duke@435 1150 Register last_java_sp,
duke@435 1151 address entry_point,
duke@435 1152 Register arg_1, Register arg_2, Register arg_3,
duke@435 1153 bool check_exceptions = true);
duke@435 1154
duke@435 1155 void call_VM_leaf(address entry_point,
duke@435 1156 int number_of_arguments = 0);
duke@435 1157 void call_VM_leaf(address entry_point,
duke@435 1158 Register arg_1);
duke@435 1159 void call_VM_leaf(address entry_point,
duke@435 1160 Register arg_1, Register arg_2);
duke@435 1161 void call_VM_leaf(address entry_point,
duke@435 1162 Register arg_1, Register arg_2, Register arg_3);
duke@435 1163
duke@435 1164 // last Java Frame (fills frame anchor)
duke@435 1165 void set_last_Java_frame(Register last_java_sp,
duke@435 1166 Register last_java_fp,
duke@435 1167 address last_java_pc);
duke@435 1168 void reset_last_Java_frame(bool clear_fp, bool clear_pc);
duke@435 1169
duke@435 1170 // Stores
duke@435 1171 void store_check(Register obj); // store check for
duke@435 1172 // obj - register is
duke@435 1173 // destroyed
duke@435 1174 // afterwards
duke@435 1175 void store_check(Register obj, Address dst); // same as above, dst
duke@435 1176 // is exact store
duke@435 1177 // location (reg. is
duke@435 1178 // destroyed)
duke@435 1179
duke@435 1180 // split store_check(Register obj) to enhance instruction interleaving
duke@435 1181 void store_check_part_1(Register obj);
duke@435 1182 void store_check_part_2(Register obj);
duke@435 1183
duke@435 1184 // C 'boolean' to Java boolean: x == 0 ? 0 : 1
duke@435 1185 void c2bool(Register x);
duke@435 1186
duke@435 1187 // Int division/reminder for Java
duke@435 1188 // (as idivl, but checks for special case as described in JVM spec.)
duke@435 1189 // returns idivl instruction offset for implicit exception handling
duke@435 1190 int corrected_idivl(Register reg);
duke@435 1191 // Long division/reminder for Java
duke@435 1192 // (as idivq, but checks for special case as described in JVM spec.)
duke@435 1193 // returns idivq instruction offset for implicit exception handling
duke@435 1194 int corrected_idivq(Register reg);
duke@435 1195
duke@435 1196 // Push and pop integer/fpu/cpu state
duke@435 1197 void push_IU_state();
duke@435 1198 void pop_IU_state();
duke@435 1199
duke@435 1200 void push_FPU_state();
duke@435 1201 void pop_FPU_state();
duke@435 1202
duke@435 1203 void push_CPU_state();
duke@435 1204 void pop_CPU_state();
duke@435 1205
duke@435 1206 // Sign extension
duke@435 1207 void sign_extend_short(Register reg);
duke@435 1208 void sign_extend_byte(Register reg);
duke@435 1209
duke@435 1210 // Division by power of 2, rounding towards 0
duke@435 1211 void division_with_shift(Register reg, int shift_value);
duke@435 1212
duke@435 1213 // Round up to a power of two
duke@435 1214 void round_to_l(Register reg, int modulus);
duke@435 1215 void round_to_q(Register reg, int modulus);
duke@435 1216
duke@435 1217 // allocation
duke@435 1218 void eden_allocate(
duke@435 1219 Register obj, // result: pointer to object after
duke@435 1220 // successful allocation
duke@435 1221 Register var_size_in_bytes, // object size in bytes if unknown at
duke@435 1222 // compile time; invalid otherwise
duke@435 1223 int con_size_in_bytes, // object size in bytes if known at
duke@435 1224 // compile time
duke@435 1225 Register t1, // temp register
duke@435 1226 Label& slow_case // continuation point if fast
duke@435 1227 // allocation fails
duke@435 1228 );
duke@435 1229 void tlab_allocate(
duke@435 1230 Register obj, // result: pointer to object after
duke@435 1231 // successful allocation
duke@435 1232 Register var_size_in_bytes, // object size in bytes if unknown at
duke@435 1233 // compile time; invalid otherwise
duke@435 1234 int con_size_in_bytes, // object size in bytes if known at
duke@435 1235 // compile time
duke@435 1236 Register t1, // temp register
duke@435 1237 Register t2, // temp register
duke@435 1238 Label& slow_case // continuation point if fast
duke@435 1239 // allocation fails
duke@435 1240 );
duke@435 1241 void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
duke@435 1242
duke@435 1243 //----
duke@435 1244
duke@435 1245 // Debugging
duke@435 1246
duke@435 1247 // only if +VerifyOops
duke@435 1248 void verify_oop(Register reg, const char* s = "broken oop");
duke@435 1249 void verify_oop_addr(Address addr, const char * s = "broken oop addr");
duke@435 1250
duke@435 1251 // only if +VerifyFPU
duke@435 1252 void verify_FPU(int stack_depth, const char* s = "illegal FPU state") {}
duke@435 1253
duke@435 1254 // prints msg, dumps registers and stops execution
duke@435 1255 void stop(const char* msg);
duke@435 1256
duke@435 1257 // prints message and continues
duke@435 1258 void warn(const char* msg);
duke@435 1259
duke@435 1260 static void debug(char* msg, int64_t pc, int64_t regs[]);
duke@435 1261
duke@435 1262 void os_breakpoint();
duke@435 1263
duke@435 1264 void untested()
duke@435 1265 {
duke@435 1266 stop("untested");
duke@435 1267 }
duke@435 1268
duke@435 1269 void unimplemented(const char* what = "")
duke@435 1270 {
duke@435 1271 char* b = new char[1024];
duke@435 1272 sprintf(b, "unimplemented: %s", what);
duke@435 1273 stop(b);
duke@435 1274 }
duke@435 1275
duke@435 1276 void should_not_reach_here()
duke@435 1277 {
duke@435 1278 stop("should not reach here");
duke@435 1279 }
duke@435 1280
duke@435 1281 // Stack overflow checking
duke@435 1282 void bang_stack_with_offset(int offset)
duke@435 1283 {
duke@435 1284 // stack grows down, caller passes positive offset
duke@435 1285 assert(offset > 0, "must bang with negative offset");
duke@435 1286 movl(Address(rsp, (-offset)), rax);
duke@435 1287 }
duke@435 1288
duke@435 1289 // Writes to stack successive pages until offset reached to check for
duke@435 1290 // stack overflow + shadow pages. Also, clobbers tmp
duke@435 1291 void bang_stack_size(Register offset, Register tmp);
duke@435 1292
duke@435 1293 // Support for serializing memory accesses between threads.
duke@435 1294 void serialize_memory(Register thread, Register tmp);
duke@435 1295
duke@435 1296 void verify_tlab();
duke@435 1297
duke@435 1298 // Biased locking support
duke@435 1299 // lock_reg and obj_reg must be loaded up with the appropriate values.
duke@435 1300 // swap_reg must be rax and is killed.
duke@435 1301 // tmp_reg must be supplied and is killed.
duke@435 1302 // If swap_reg_contains_mark is true then the code assumes that the
duke@435 1303 // mark word of the object has already been loaded into swap_reg.
duke@435 1304 // Optional slow case is for implementations (interpreter and C1) which branch to
duke@435 1305 // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
duke@435 1306 // Returns offset of first potentially-faulting instruction for null
duke@435 1307 // check info (currently consumed only by C1). If
duke@435 1308 // swap_reg_contains_mark is true then returns -1 as it is assumed
duke@435 1309 // the calling code has already passed any potential faults.
duke@435 1310 int biased_locking_enter(Register lock_reg, Register obj_reg, Register swap_reg, Register tmp_reg,
duke@435 1311 bool swap_reg_contains_mark,
duke@435 1312 Label& done, Label* slow_case = NULL,
duke@435 1313 BiasedLockingCounters* counters = NULL);
duke@435 1314 void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
duke@435 1315
duke@435 1316 Condition negate_condition(Condition cond);
duke@435 1317
duke@435 1318 // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
duke@435 1319 // operands. In general the names are modified to avoid hiding the instruction in Assembler
duke@435 1320 // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
duke@435 1321 // here in MacroAssembler. The major exception to this rule is call
duke@435 1322
duke@435 1323 // Arithmetics
duke@435 1324
duke@435 1325 void cmp8(AddressLiteral src1, int8_t imm32);
duke@435 1326
duke@435 1327 void cmp32(AddressLiteral src1, int32_t src2);
duke@435 1328 // compare reg - mem, or reg - &mem
duke@435 1329 void cmp32(Register src1, AddressLiteral src2);
duke@435 1330
duke@435 1331 void cmp32(Register src1, Address src2);
duke@435 1332
duke@435 1333 #ifndef _LP64
duke@435 1334 void cmpoop(Address dst, jobject obj);
duke@435 1335 void cmpoop(Register dst, jobject obj);
duke@435 1336 #endif // _LP64
duke@435 1337
duke@435 1338 // NOTE src2 must be the lval. This is NOT an mem-mem compare
duke@435 1339 void cmpptr(Address src1, AddressLiteral src2);
duke@435 1340
duke@435 1341 void cmpptr(Register src1, AddressLiteral src);
duke@435 1342
duke@435 1343 // will be cmpreg(?)
duke@435 1344 void cmp64(Register src1, AddressLiteral src);
duke@435 1345
duke@435 1346 void cmpxchgptr(Register reg, Address adr);
duke@435 1347 void cmpxchgptr(Register reg, AddressLiteral adr);
duke@435 1348
duke@435 1349 // Helper functions for statistics gathering.
duke@435 1350 // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
duke@435 1351 void cond_inc32(Condition cond, AddressLiteral counter_addr);
duke@435 1352 // Unconditional atomic increment.
duke@435 1353 void atomic_incl(AddressLiteral counter_addr);
duke@435 1354
duke@435 1355
duke@435 1356 void lea(Register dst, AddressLiteral src);
duke@435 1357 void lea(Register dst, Address src);
duke@435 1358
duke@435 1359
duke@435 1360 // Calls
duke@435 1361 void call(Label& L, relocInfo::relocType rtype);
duke@435 1362 void call(Register entry);
duke@435 1363 void call(AddressLiteral entry);
duke@435 1364
duke@435 1365 // Jumps
duke@435 1366
duke@435 1367 // 32bit can do a case table jump in one instruction but we no longer allow the base
duke@435 1368 // to be installed in the Address class
duke@435 1369 void jump(ArrayAddress entry);
duke@435 1370
duke@435 1371 void jump(AddressLiteral entry);
duke@435 1372 void jump_cc(Condition cc, AddressLiteral dst);
duke@435 1373
duke@435 1374 // Floating
duke@435 1375
duke@435 1376 void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
duke@435 1377 void ldmxcsr(AddressLiteral src);
duke@435 1378
duke@435 1379 private:
duke@435 1380 // these are private because users should be doing movflt/movdbl
duke@435 1381
duke@435 1382 void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
duke@435 1383 void movss(Address dst, XMMRegister src) { Assembler::movss(dst, src); }
duke@435 1384 void movss(XMMRegister dst, Address src) { Assembler::movss(dst, src); }
duke@435 1385 void movss(XMMRegister dst, AddressLiteral src);
duke@435 1386
duke@435 1387 void movlpd(XMMRegister dst, Address src) {Assembler::movlpd(dst, src); }
duke@435 1388 void movlpd(XMMRegister dst, AddressLiteral src);
duke@435 1389
duke@435 1390 public:
duke@435 1391
duke@435 1392
duke@435 1393 void xorpd(XMMRegister dst, XMMRegister src) {Assembler::xorpd(dst, src); }
duke@435 1394 void xorpd(XMMRegister dst, Address src) {Assembler::xorpd(dst, src); }
duke@435 1395 void xorpd(XMMRegister dst, AddressLiteral src);
duke@435 1396
duke@435 1397 void xorps(XMMRegister dst, XMMRegister src) {Assembler::xorps(dst, src); }
duke@435 1398 void xorps(XMMRegister dst, Address src) {Assembler::xorps(dst, src); }
duke@435 1399 void xorps(XMMRegister dst, AddressLiteral src);
duke@435 1400
duke@435 1401
duke@435 1402 // Data
duke@435 1403
duke@435 1404 void movoop(Register dst, jobject obj);
duke@435 1405 void movoop(Address dst, jobject obj);
duke@435 1406
duke@435 1407 void movptr(ArrayAddress dst, Register src);
duke@435 1408 void movptr(Register dst, AddressLiteral src);
duke@435 1409
duke@435 1410 void movptr(Register dst, intptr_t src);
duke@435 1411 void movptr(Address dst, intptr_t src);
duke@435 1412
duke@435 1413 void movptr(Register dst, ArrayAddress src);
duke@435 1414
duke@435 1415 // to avoid hiding movl
duke@435 1416 void mov32(AddressLiteral dst, Register src);
duke@435 1417 void mov32(Register dst, AddressLiteral src);
duke@435 1418
duke@435 1419 void pushoop(jobject obj);
duke@435 1420
duke@435 1421 // Can push value or effective address
duke@435 1422 void pushptr(AddressLiteral src);
duke@435 1423
duke@435 1424 };
duke@435 1425
duke@435 1426 /**
duke@435 1427 * class SkipIfEqual:
duke@435 1428 *
duke@435 1429 * Instantiating this class will result in assembly code being output that will
duke@435 1430 * jump around any code emitted between the creation of the instance and it's
duke@435 1431 * automatic destruction at the end of a scope block, depending on the value of
duke@435 1432 * the flag passed to the constructor, which will be checked at run-time.
duke@435 1433 */
duke@435 1434 class SkipIfEqual {
duke@435 1435 private:
duke@435 1436 MacroAssembler* _masm;
duke@435 1437 Label _label;
duke@435 1438
duke@435 1439 public:
duke@435 1440 SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
duke@435 1441 ~SkipIfEqual();
duke@435 1442 };
duke@435 1443
duke@435 1444
duke@435 1445 #ifdef ASSERT
duke@435 1446 inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
duke@435 1447 #endif

mercurial