src/share/vm/gc_implementation/g1/concurrentMark.hpp

Fri, 16 Dec 2011 11:40:00 -0800

author
johnc
date
Fri, 16 Dec 2011 11:40:00 -0800
changeset 3338
adedfbbf0360
parent 3296
dc467e8b2c5e
child 3357
441e946dc1af
permissions
-rw-r--r--

7120038: G1: ParallelGCThreads==0 is broken
Summary: Running G1 with ParallelGCThreads==0 results in various crashes and asserts. Most of these are caused by unguarded references to the worker threads array or an incorrect number of active workers.
Reviewed-by: jmasa, tonyp

ysr@777 1 /*
tonyp@2472 2 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
stefank@2314 27
tonyp@2472 28 #include "gc_implementation/g1/heapRegionSets.hpp"
stefank@2314 29 #include "utilities/taskqueue.hpp"
stefank@2314 30
ysr@777 31 class G1CollectedHeap;
ysr@777 32 class CMTask;
jcoomes@1746 33 typedef GenericTaskQueue<oop> CMTaskQueue;
jcoomes@1746 34 typedef GenericTaskQueueSet<CMTaskQueue> CMTaskQueueSet;
ysr@777 35
johnc@2379 36 // Closure used by CM during concurrent reference discovery
johnc@2379 37 // and reference processing (during remarking) to determine
johnc@2379 38 // if a particular object is alive. It is primarily used
johnc@2379 39 // to determine if referents of discovered reference objects
johnc@2379 40 // are alive. An instance is also embedded into the
johnc@2379 41 // reference processor as the _is_alive_non_header field
johnc@2379 42 class G1CMIsAliveClosure: public BoolObjectClosure {
johnc@2379 43 G1CollectedHeap* _g1;
johnc@2379 44 public:
johnc@2379 45 G1CMIsAliveClosure(G1CollectedHeap* g1) :
johnc@2379 46 _g1(g1)
johnc@2379 47 {}
johnc@2379 48
johnc@2379 49 void do_object(oop obj) {
johnc@2379 50 ShouldNotCallThis();
johnc@2379 51 }
johnc@2379 52 bool do_object_b(oop obj);
johnc@2379 53 };
johnc@2379 54
ysr@777 55 // A generic CM bit map. This is essentially a wrapper around the BitMap
ysr@777 56 // class, with one bit per (1<<_shifter) HeapWords.
ysr@777 57
apetrusenko@984 58 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
ysr@777 59 protected:
ysr@777 60 HeapWord* _bmStartWord; // base address of range covered by map
ysr@777 61 size_t _bmWordSize; // map size (in #HeapWords covered)
ysr@777 62 const int _shifter; // map to char or bit
ysr@777 63 VirtualSpace _virtual_space; // underlying the bit map
ysr@777 64 BitMap _bm; // the bit map itself
ysr@777 65
ysr@777 66 public:
ysr@777 67 // constructor
ysr@777 68 CMBitMapRO(ReservedSpace rs, int shifter);
ysr@777 69
ysr@777 70 enum { do_yield = true };
ysr@777 71
ysr@777 72 // inquiries
ysr@777 73 HeapWord* startWord() const { return _bmStartWord; }
ysr@777 74 size_t sizeInWords() const { return _bmWordSize; }
ysr@777 75 // the following is one past the last word in space
ysr@777 76 HeapWord* endWord() const { return _bmStartWord + _bmWordSize; }
ysr@777 77
ysr@777 78 // read marks
ysr@777 79
ysr@777 80 bool isMarked(HeapWord* addr) const {
ysr@777 81 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 82 "outside underlying space?");
ysr@777 83 return _bm.at(heapWordToOffset(addr));
ysr@777 84 }
ysr@777 85
ysr@777 86 // iteration
ysr@777 87 bool iterate(BitMapClosure* cl) { return _bm.iterate(cl); }
ysr@777 88 bool iterate(BitMapClosure* cl, MemRegion mr);
ysr@777 89
ysr@777 90 // Return the address corresponding to the next marked bit at or after
ysr@777 91 // "addr", and before "limit", if "limit" is non-NULL. If there is no
ysr@777 92 // such bit, returns "limit" if that is non-NULL, or else "endWord()".
ysr@777 93 HeapWord* getNextMarkedWordAddress(HeapWord* addr,
ysr@777 94 HeapWord* limit = NULL) const;
ysr@777 95 // Return the address corresponding to the next unmarked bit at or after
ysr@777 96 // "addr", and before "limit", if "limit" is non-NULL. If there is no
ysr@777 97 // such bit, returns "limit" if that is non-NULL, or else "endWord()".
ysr@777 98 HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
ysr@777 99 HeapWord* limit = NULL) const;
ysr@777 100
ysr@777 101 // conversion utilities
ysr@777 102 // XXX Fix these so that offsets are size_t's...
ysr@777 103 HeapWord* offsetToHeapWord(size_t offset) const {
ysr@777 104 return _bmStartWord + (offset << _shifter);
ysr@777 105 }
ysr@777 106 size_t heapWordToOffset(HeapWord* addr) const {
ysr@777 107 return pointer_delta(addr, _bmStartWord) >> _shifter;
ysr@777 108 }
ysr@777 109 int heapWordDiffToOffsetDiff(size_t diff) const;
ysr@777 110 HeapWord* nextWord(HeapWord* addr) {
ysr@777 111 return offsetToHeapWord(heapWordToOffset(addr) + 1);
ysr@777 112 }
ysr@777 113
ysr@777 114 void mostly_disjoint_range_union(BitMap* from_bitmap,
ysr@777 115 size_t from_start_index,
ysr@777 116 HeapWord* to_start_word,
ysr@777 117 size_t word_num);
ysr@777 118
ysr@777 119 // debugging
ysr@777 120 NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
ysr@777 121 };
ysr@777 122
ysr@777 123 class CMBitMap : public CMBitMapRO {
ysr@777 124
ysr@777 125 public:
ysr@777 126 // constructor
ysr@777 127 CMBitMap(ReservedSpace rs, int shifter) :
ysr@777 128 CMBitMapRO(rs, shifter) {}
ysr@777 129
ysr@777 130 // write marks
ysr@777 131 void mark(HeapWord* addr) {
ysr@777 132 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 133 "outside underlying space?");
tonyp@2968 134 _bm.set_bit(heapWordToOffset(addr));
ysr@777 135 }
ysr@777 136 void clear(HeapWord* addr) {
ysr@777 137 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 138 "outside underlying space?");
tonyp@2968 139 _bm.clear_bit(heapWordToOffset(addr));
ysr@777 140 }
ysr@777 141 bool parMark(HeapWord* addr) {
ysr@777 142 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 143 "outside underlying space?");
tonyp@2968 144 return _bm.par_set_bit(heapWordToOffset(addr));
ysr@777 145 }
ysr@777 146 bool parClear(HeapWord* addr) {
ysr@777 147 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 148 "outside underlying space?");
tonyp@2968 149 return _bm.par_clear_bit(heapWordToOffset(addr));
ysr@777 150 }
ysr@777 151 void markRange(MemRegion mr);
ysr@777 152 void clearAll();
ysr@777 153 void clearRange(MemRegion mr);
ysr@777 154
ysr@777 155 // Starting at the bit corresponding to "addr" (inclusive), find the next
ysr@777 156 // "1" bit, if any. This bit starts some run of consecutive "1"'s; find
ysr@777 157 // the end of this run (stopping at "end_addr"). Return the MemRegion
ysr@777 158 // covering from the start of the region corresponding to the first bit
ysr@777 159 // of the run to the end of the region corresponding to the last bit of
ysr@777 160 // the run. If there is no "1" bit at or after "addr", return an empty
ysr@777 161 // MemRegion.
ysr@777 162 MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
ysr@777 163 };
ysr@777 164
ysr@777 165 // Represents a marking stack used by the CM collector.
ysr@777 166 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
apetrusenko@984 167 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
ysr@777 168 ConcurrentMark* _cm;
ysr@777 169 oop* _base; // bottom of stack
ysr@777 170 jint _index; // one more than last occupied index
ysr@777 171 jint _capacity; // max #elements
ysr@777 172 jint _oops_do_bound; // Number of elements to include in next iteration.
ysr@777 173 NOT_PRODUCT(jint _max_depth;) // max depth plumbed during run
ysr@777 174
ysr@777 175 bool _overflow;
ysr@777 176 DEBUG_ONLY(bool _drain_in_progress;)
ysr@777 177 DEBUG_ONLY(bool _drain_in_progress_yields;)
ysr@777 178
ysr@777 179 public:
ysr@777 180 CMMarkStack(ConcurrentMark* cm);
ysr@777 181 ~CMMarkStack();
ysr@777 182
ysr@777 183 void allocate(size_t size);
ysr@777 184
ysr@777 185 oop pop() {
ysr@777 186 if (!isEmpty()) {
ysr@777 187 return _base[--_index] ;
ysr@777 188 }
ysr@777 189 return NULL;
ysr@777 190 }
ysr@777 191
ysr@777 192 // If overflow happens, don't do the push, and record the overflow.
ysr@777 193 // *Requires* that "ptr" is already marked.
ysr@777 194 void push(oop ptr) {
ysr@777 195 if (isFull()) {
ysr@777 196 // Record overflow.
ysr@777 197 _overflow = true;
ysr@777 198 return;
ysr@777 199 } else {
ysr@777 200 _base[_index++] = ptr;
ysr@777 201 NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
ysr@777 202 }
ysr@777 203 }
ysr@777 204 // Non-block impl. Note: concurrency is allowed only with other
ysr@777 205 // "par_push" operations, not with "pop" or "drain". We would need
ysr@777 206 // parallel versions of them if such concurrency was desired.
ysr@777 207 void par_push(oop ptr);
ysr@777 208
ysr@777 209 // Pushes the first "n" elements of "ptr_arr" on the stack.
ysr@777 210 // Non-block impl. Note: concurrency is allowed only with other
ysr@777 211 // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
ysr@777 212 void par_adjoin_arr(oop* ptr_arr, int n);
ysr@777 213
ysr@777 214 // Pushes the first "n" elements of "ptr_arr" on the stack.
ysr@777 215 // Locking impl: concurrency is allowed only with
ysr@777 216 // "par_push_arr" and/or "par_pop_arr" operations, which use the same
ysr@777 217 // locking strategy.
ysr@777 218 void par_push_arr(oop* ptr_arr, int n);
ysr@777 219
ysr@777 220 // If returns false, the array was empty. Otherwise, removes up to "max"
ysr@777 221 // elements from the stack, and transfers them to "ptr_arr" in an
ysr@777 222 // unspecified order. The actual number transferred is given in "n" ("n
ysr@777 223 // == 0" is deliberately redundant with the return value.) Locking impl:
ysr@777 224 // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
ysr@777 225 // operations, which use the same locking strategy.
ysr@777 226 bool par_pop_arr(oop* ptr_arr, int max, int* n);
ysr@777 227
ysr@777 228 // Drain the mark stack, applying the given closure to all fields of
ysr@777 229 // objects on the stack. (That is, continue until the stack is empty,
ysr@777 230 // even if closure applications add entries to the stack.) The "bm"
ysr@777 231 // argument, if non-null, may be used to verify that only marked objects
ysr@777 232 // are on the mark stack. If "yield_after" is "true", then the
ysr@777 233 // concurrent marker performing the drain offers to yield after
ysr@777 234 // processing each object. If a yield occurs, stops the drain operation
ysr@777 235 // and returns false. Otherwise, returns true.
ysr@777 236 template<class OopClosureClass>
ysr@777 237 bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
ysr@777 238
ysr@777 239 bool isEmpty() { return _index == 0; }
ysr@777 240 bool isFull() { return _index == _capacity; }
ysr@777 241 int maxElems() { return _capacity; }
ysr@777 242
ysr@777 243 bool overflow() { return _overflow; }
ysr@777 244 void clear_overflow() { _overflow = false; }
ysr@777 245
ysr@777 246 int size() { return _index; }
ysr@777 247
ysr@777 248 void setEmpty() { _index = 0; clear_overflow(); }
ysr@777 249
ysr@777 250 // Record the current size; a subsequent "oops_do" will iterate only over
ysr@777 251 // indices valid at the time of this call.
ysr@777 252 void set_oops_do_bound(jint bound = -1) {
ysr@777 253 if (bound == -1) {
ysr@777 254 _oops_do_bound = _index;
ysr@777 255 } else {
ysr@777 256 _oops_do_bound = bound;
ysr@777 257 }
ysr@777 258 }
ysr@777 259 jint oops_do_bound() { return _oops_do_bound; }
ysr@777 260 // iterate over the oops in the mark stack, up to the bound recorded via
ysr@777 261 // the call above.
ysr@777 262 void oops_do(OopClosure* f);
ysr@777 263 };
ysr@777 264
apetrusenko@984 265 class CMRegionStack VALUE_OBJ_CLASS_SPEC {
ysr@777 266 MemRegion* _base;
ysr@777 267 jint _capacity;
ysr@777 268 jint _index;
ysr@777 269 jint _oops_do_bound;
ysr@777 270 bool _overflow;
ysr@777 271 public:
ysr@777 272 CMRegionStack();
ysr@777 273 ~CMRegionStack();
ysr@777 274 void allocate(size_t size);
ysr@777 275
ysr@777 276 // This is lock-free; assumes that it will only be called in parallel
ysr@777 277 // with other "push" operations (no pops).
johnc@2190 278 void push_lock_free(MemRegion mr);
tonyp@1793 279
ysr@777 280 // Lock-free; assumes that it will only be called in parallel
ysr@777 281 // with other "pop" operations (no pushes).
johnc@2190 282 MemRegion pop_lock_free();
johnc@2190 283
johnc@2190 284 #if 0
johnc@2190 285 // The routines that manipulate the region stack with a lock are
johnc@2190 286 // not currently used. They should be retained, however, as a
johnc@2190 287 // diagnostic aid.
tonyp@1793 288
tonyp@1793 289 // These two are the implementations that use a lock. They can be
tonyp@1793 290 // called concurrently with each other but they should not be called
tonyp@1793 291 // concurrently with the lock-free versions (push() / pop()).
tonyp@1793 292 void push_with_lock(MemRegion mr);
tonyp@1793 293 MemRegion pop_with_lock();
johnc@2190 294 #endif
ysr@777 295
ysr@777 296 bool isEmpty() { return _index == 0; }
ysr@777 297 bool isFull() { return _index == _capacity; }
ysr@777 298
ysr@777 299 bool overflow() { return _overflow; }
ysr@777 300 void clear_overflow() { _overflow = false; }
ysr@777 301
ysr@777 302 int size() { return _index; }
ysr@777 303
ysr@777 304 // It iterates over the entries in the region stack and it
ysr@777 305 // invalidates (i.e. assigns MemRegion()) the ones that point to
ysr@777 306 // regions in the collection set.
ysr@777 307 bool invalidate_entries_into_cset();
ysr@777 308
ysr@777 309 // This gives an upper bound up to which the iteration in
ysr@777 310 // invalidate_entries_into_cset() will reach. This prevents
ysr@777 311 // newly-added entries to be unnecessarily scanned.
ysr@777 312 void set_oops_do_bound() {
ysr@777 313 _oops_do_bound = _index;
ysr@777 314 }
ysr@777 315
ysr@777 316 void setEmpty() { _index = 0; clear_overflow(); }
ysr@777 317 };
ysr@777 318
tonyp@2848 319 class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {
tonyp@2848 320 private:
tonyp@2848 321 #ifndef PRODUCT
tonyp@2848 322 uintx _num_remaining;
tonyp@2848 323 bool _force;
tonyp@2848 324 #endif // !defined(PRODUCT)
tonyp@2848 325
tonyp@2848 326 public:
tonyp@2848 327 void init() PRODUCT_RETURN;
tonyp@2848 328 void update() PRODUCT_RETURN;
tonyp@2848 329 bool should_force() PRODUCT_RETURN_( return false; );
tonyp@2848 330 };
tonyp@2848 331
ysr@777 332 // this will enable a variety of different statistics per GC task
ysr@777 333 #define _MARKING_STATS_ 0
ysr@777 334 // this will enable the higher verbose levels
ysr@777 335 #define _MARKING_VERBOSE_ 0
ysr@777 336
ysr@777 337 #if _MARKING_STATS_
ysr@777 338 #define statsOnly(statement) \
ysr@777 339 do { \
ysr@777 340 statement ; \
ysr@777 341 } while (0)
ysr@777 342 #else // _MARKING_STATS_
ysr@777 343 #define statsOnly(statement) \
ysr@777 344 do { \
ysr@777 345 } while (0)
ysr@777 346 #endif // _MARKING_STATS_
ysr@777 347
ysr@777 348 typedef enum {
ysr@777 349 no_verbose = 0, // verbose turned off
ysr@777 350 stats_verbose, // only prints stats at the end of marking
ysr@777 351 low_verbose, // low verbose, mostly per region and per major event
ysr@777 352 medium_verbose, // a bit more detailed than low
ysr@777 353 high_verbose // per object verbose
ysr@777 354 } CMVerboseLevel;
ysr@777 355
ysr@777 356
ysr@777 357 class ConcurrentMarkThread;
ysr@777 358
apetrusenko@984 359 class ConcurrentMark: public CHeapObj {
ysr@777 360 friend class ConcurrentMarkThread;
ysr@777 361 friend class CMTask;
ysr@777 362 friend class CMBitMapClosure;
johnc@3296 363 friend class CSetMarkOopClosure;
ysr@777 364 friend class CMGlobalObjectClosure;
ysr@777 365 friend class CMRemarkTask;
ysr@777 366 friend class CMConcurrentMarkingTask;
ysr@777 367 friend class G1ParNoteEndTask;
ysr@777 368 friend class CalcLiveObjectsClosure;
johnc@3175 369 friend class G1CMRefProcTaskProxy;
johnc@3175 370 friend class G1CMRefProcTaskExecutor;
johnc@2494 371 friend class G1CMParKeepAliveAndDrainClosure;
johnc@2494 372 friend class G1CMParDrainMarkingStackClosure;
ysr@777 373
ysr@777 374 protected:
ysr@777 375 ConcurrentMarkThread* _cmThread; // the thread doing the work
ysr@777 376 G1CollectedHeap* _g1h; // the heap.
ysr@777 377 size_t _parallel_marking_threads; // the number of marking
jmasa@3294 378 // threads we're use
jmasa@3294 379 size_t _max_parallel_marking_threads; // max number of marking
jmasa@3294 380 // threads we'll ever use
ysr@777 381 double _sleep_factor; // how much we have to sleep, with
ysr@777 382 // respect to the work we just did, to
ysr@777 383 // meet the marking overhead goal
ysr@777 384 double _marking_task_overhead; // marking target overhead for
ysr@777 385 // a single task
ysr@777 386
ysr@777 387 // same as the two above, but for the cleanup task
ysr@777 388 double _cleanup_sleep_factor;
ysr@777 389 double _cleanup_task_overhead;
ysr@777 390
tonyp@2472 391 FreeRegionList _cleanup_list;
ysr@777 392
ysr@777 393 // CMS marking support structures
ysr@777 394 CMBitMap _markBitMap1;
ysr@777 395 CMBitMap _markBitMap2;
ysr@777 396 CMBitMapRO* _prevMarkBitMap; // completed mark bitmap
ysr@777 397 CMBitMap* _nextMarkBitMap; // under-construction mark bitmap
ysr@777 398 bool _at_least_one_mark_complete;
ysr@777 399
ysr@777 400 BitMap _region_bm;
ysr@777 401 BitMap _card_bm;
ysr@777 402
ysr@777 403 // Heap bounds
ysr@777 404 HeapWord* _heap_start;
ysr@777 405 HeapWord* _heap_end;
ysr@777 406
ysr@777 407 // For gray objects
ysr@777 408 CMMarkStack _markStack; // Grey objects behind global finger.
ysr@777 409 CMRegionStack _regionStack; // Grey regions behind global finger.
ysr@777 410 HeapWord* volatile _finger; // the global finger, region aligned,
ysr@777 411 // always points to the end of the
ysr@777 412 // last claimed region
ysr@777 413
ysr@777 414 // marking tasks
ysr@777 415 size_t _max_task_num; // maximum task number
ysr@777 416 size_t _active_tasks; // task num currently active
ysr@777 417 CMTask** _tasks; // task queue array (max_task_num len)
ysr@777 418 CMTaskQueueSet* _task_queues; // task queue set
ysr@777 419 ParallelTaskTerminator _terminator; // for termination
ysr@777 420
ysr@777 421 // Two sync barriers that are used to synchronise tasks when an
ysr@777 422 // overflow occurs. The algorithm is the following. All tasks enter
ysr@777 423 // the first one to ensure that they have all stopped manipulating
ysr@777 424 // the global data structures. After they exit it, they re-initialise
ysr@777 425 // their data structures and task 0 re-initialises the global data
ysr@777 426 // structures. Then, they enter the second sync barrier. This
ysr@777 427 // ensure, that no task starts doing work before all data
ysr@777 428 // structures (local and global) have been re-initialised. When they
ysr@777 429 // exit it, they are free to start working again.
ysr@777 430 WorkGangBarrierSync _first_overflow_barrier_sync;
ysr@777 431 WorkGangBarrierSync _second_overflow_barrier_sync;
ysr@777 432
ysr@777 433
ysr@777 434 // this is set by any task, when an overflow on the global data
ysr@777 435 // structures is detected.
ysr@777 436 volatile bool _has_overflown;
ysr@777 437 // true: marking is concurrent, false: we're in remark
ysr@777 438 volatile bool _concurrent;
ysr@777 439 // set at the end of a Full GC so that marking aborts
ysr@777 440 volatile bool _has_aborted;
johnc@2190 441
ysr@777 442 // used when remark aborts due to an overflow to indicate that
ysr@777 443 // another concurrent marking phase should start
ysr@777 444 volatile bool _restart_for_overflow;
ysr@777 445
ysr@777 446 // This is true from the very start of concurrent marking until the
ysr@777 447 // point when all the tasks complete their work. It is really used
ysr@777 448 // to determine the points between the end of concurrent marking and
ysr@777 449 // time of remark.
ysr@777 450 volatile bool _concurrent_marking_in_progress;
ysr@777 451
ysr@777 452 // verbose level
ysr@777 453 CMVerboseLevel _verbose_level;
ysr@777 454
ysr@777 455 // These two fields are used to implement the optimisation that
ysr@777 456 // avoids pushing objects on the global/region stack if there are
ysr@777 457 // no collection set regions above the lowest finger.
ysr@777 458
ysr@777 459 // This is the lowest finger (among the global and local fingers),
ysr@777 460 // which is calculated before a new collection set is chosen.
ysr@777 461 HeapWord* _min_finger;
ysr@777 462 // If this flag is true, objects/regions that are marked below the
ysr@777 463 // finger should be pushed on the stack(s). If this is flag is
ysr@777 464 // false, it is safe not to push them on the stack(s).
ysr@777 465 bool _should_gray_objects;
ysr@777 466
ysr@777 467 // All of these times are in ms.
ysr@777 468 NumberSeq _init_times;
ysr@777 469 NumberSeq _remark_times;
ysr@777 470 NumberSeq _remark_mark_times;
ysr@777 471 NumberSeq _remark_weak_ref_times;
ysr@777 472 NumberSeq _cleanup_times;
ysr@777 473 double _total_counting_time;
ysr@777 474 double _total_rs_scrub_time;
ysr@777 475
ysr@777 476 double* _accum_task_vtime; // accumulated task vtime
ysr@777 477
jmasa@3294 478 FlexibleWorkGang* _parallel_workers;
ysr@777 479
tonyp@2848 480 ForceOverflowSettings _force_overflow_conc;
tonyp@2848 481 ForceOverflowSettings _force_overflow_stw;
tonyp@2848 482
ysr@777 483 void weakRefsWork(bool clear_all_soft_refs);
ysr@777 484
ysr@777 485 void swapMarkBitMaps();
ysr@777 486
ysr@777 487 // It resets the global marking data structures, as well as the
ysr@777 488 // task local ones; should be called during initial mark.
ysr@777 489 void reset();
ysr@777 490 // It resets all the marking data structures.
tonyp@2848 491 void clear_marking_state(bool clear_overflow = true);
ysr@777 492
ysr@777 493 // It should be called to indicate which phase we're in (concurrent
ysr@777 494 // mark or remark) and how many threads are currently active.
ysr@777 495 void set_phase(size_t active_tasks, bool concurrent);
ysr@777 496 // We do this after we're done with marking so that the marking data
ysr@777 497 // structures are initialised to a sensible and predictable state.
ysr@777 498 void set_non_marking_state();
ysr@777 499
ysr@777 500 // prints all gathered CM-related statistics
ysr@777 501 void print_stats();
ysr@777 502
tonyp@2472 503 bool cleanup_list_is_empty() {
tonyp@2472 504 return _cleanup_list.is_empty();
tonyp@2472 505 }
tonyp@2472 506
ysr@777 507 // accessor methods
ysr@777 508 size_t parallel_marking_threads() { return _parallel_marking_threads; }
jmasa@3294 509 size_t max_parallel_marking_threads() { return _max_parallel_marking_threads;}
ysr@777 510 double sleep_factor() { return _sleep_factor; }
ysr@777 511 double marking_task_overhead() { return _marking_task_overhead;}
ysr@777 512 double cleanup_sleep_factor() { return _cleanup_sleep_factor; }
ysr@777 513 double cleanup_task_overhead() { return _cleanup_task_overhead;}
ysr@777 514
ysr@777 515 HeapWord* finger() { return _finger; }
ysr@777 516 bool concurrent() { return _concurrent; }
ysr@777 517 size_t active_tasks() { return _active_tasks; }
ysr@777 518 ParallelTaskTerminator* terminator() { return &_terminator; }
ysr@777 519
ysr@777 520 // It claims the next available region to be scanned by a marking
ysr@777 521 // task. It might return NULL if the next region is empty or we have
ysr@777 522 // run out of regions. In the latter case, out_of_regions()
ysr@777 523 // determines whether we've really run out of regions or the task
ysr@777 524 // should call claim_region() again. This might seem a bit
ysr@777 525 // awkward. Originally, the code was written so that claim_region()
ysr@777 526 // either successfully returned with a non-empty region or there
ysr@777 527 // were no more regions to be claimed. The problem with this was
ysr@777 528 // that, in certain circumstances, it iterated over large chunks of
ysr@777 529 // the heap finding only empty regions and, while it was working, it
ysr@777 530 // was preventing the calling task to call its regular clock
ysr@777 531 // method. So, this way, each task will spend very little time in
ysr@777 532 // claim_region() and is allowed to call the regular clock method
ysr@777 533 // frequently.
ysr@777 534 HeapRegion* claim_region(int task);
ysr@777 535
ysr@777 536 // It determines whether we've run out of regions to scan.
ysr@777 537 bool out_of_regions() { return _finger == _heap_end; }
ysr@777 538
ysr@777 539 // Returns the task with the given id
ysr@777 540 CMTask* task(int id) {
tonyp@1458 541 assert(0 <= id && id < (int) _active_tasks,
tonyp@1458 542 "task id not within active bounds");
ysr@777 543 return _tasks[id];
ysr@777 544 }
ysr@777 545
ysr@777 546 // Returns the task queue with the given id
ysr@777 547 CMTaskQueue* task_queue(int id) {
tonyp@1458 548 assert(0 <= id && id < (int) _active_tasks,
tonyp@1458 549 "task queue id not within active bounds");
ysr@777 550 return (CMTaskQueue*) _task_queues->queue(id);
ysr@777 551 }
ysr@777 552
ysr@777 553 // Returns the task queue set
ysr@777 554 CMTaskQueueSet* task_queues() { return _task_queues; }
ysr@777 555
ysr@777 556 // Access / manipulation of the overflow flag which is set to
ysr@777 557 // indicate that the global stack or region stack has overflown
ysr@777 558 bool has_overflown() { return _has_overflown; }
ysr@777 559 void set_has_overflown() { _has_overflown = true; }
ysr@777 560 void clear_has_overflown() { _has_overflown = false; }
ysr@777 561
ysr@777 562 bool has_aborted() { return _has_aborted; }
ysr@777 563 bool restart_for_overflow() { return _restart_for_overflow; }
ysr@777 564
ysr@777 565 // Methods to enter the two overflow sync barriers
ysr@777 566 void enter_first_sync_barrier(int task_num);
ysr@777 567 void enter_second_sync_barrier(int task_num);
ysr@777 568
tonyp@2848 569 ForceOverflowSettings* force_overflow_conc() {
tonyp@2848 570 return &_force_overflow_conc;
tonyp@2848 571 }
tonyp@2848 572
tonyp@2848 573 ForceOverflowSettings* force_overflow_stw() {
tonyp@2848 574 return &_force_overflow_stw;
tonyp@2848 575 }
tonyp@2848 576
tonyp@2848 577 ForceOverflowSettings* force_overflow() {
tonyp@2848 578 if (concurrent()) {
tonyp@2848 579 return force_overflow_conc();
tonyp@2848 580 } else {
tonyp@2848 581 return force_overflow_stw();
tonyp@2848 582 }
tonyp@2848 583 }
tonyp@2848 584
ysr@777 585 public:
ysr@777 586 // Manipulation of the global mark stack.
ysr@777 587 // Notice that the first mark_stack_push is CAS-based, whereas the
ysr@777 588 // two below are Mutex-based. This is OK since the first one is only
ysr@777 589 // called during evacuation pauses and doesn't compete with the
ysr@777 590 // other two (which are called by the marking tasks during
ysr@777 591 // concurrent marking or remark).
ysr@777 592 bool mark_stack_push(oop p) {
ysr@777 593 _markStack.par_push(p);
ysr@777 594 if (_markStack.overflow()) {
ysr@777 595 set_has_overflown();
ysr@777 596 return false;
ysr@777 597 }
ysr@777 598 return true;
ysr@777 599 }
ysr@777 600 bool mark_stack_push(oop* arr, int n) {
ysr@777 601 _markStack.par_push_arr(arr, n);
ysr@777 602 if (_markStack.overflow()) {
ysr@777 603 set_has_overflown();
ysr@777 604 return false;
ysr@777 605 }
ysr@777 606 return true;
ysr@777 607 }
ysr@777 608 void mark_stack_pop(oop* arr, int max, int* n) {
ysr@777 609 _markStack.par_pop_arr(arr, max, n);
ysr@777 610 }
tonyp@2973 611 size_t mark_stack_size() { return _markStack.size(); }
ysr@777 612 size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
tonyp@2973 613 bool mark_stack_overflow() { return _markStack.overflow(); }
tonyp@2973 614 bool mark_stack_empty() { return _markStack.isEmpty(); }
ysr@777 615
johnc@2190 616 // (Lock-free) Manipulation of the region stack
johnc@2190 617 bool region_stack_push_lock_free(MemRegion mr) {
tonyp@1793 618 // Currently we only call the lock-free version during evacuation
tonyp@1793 619 // pauses.
tonyp@1793 620 assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
tonyp@1793 621
johnc@2190 622 _regionStack.push_lock_free(mr);
ysr@777 623 if (_regionStack.overflow()) {
ysr@777 624 set_has_overflown();
ysr@777 625 return false;
ysr@777 626 }
ysr@777 627 return true;
ysr@777 628 }
johnc@2190 629
johnc@2190 630 // Lock-free version of region-stack pop. Should only be
johnc@2190 631 // called in tandem with other lock-free pops.
johnc@2190 632 MemRegion region_stack_pop_lock_free() {
johnc@2190 633 return _regionStack.pop_lock_free();
johnc@2190 634 }
johnc@2190 635
tonyp@1793 636 #if 0
johnc@2190 637 // The routines that manipulate the region stack with a lock are
johnc@2190 638 // not currently used. They should be retained, however, as a
johnc@2190 639 // diagnostic aid.
tonyp@1793 640
tonyp@1793 641 bool region_stack_push_with_lock(MemRegion mr) {
tonyp@1793 642 // Currently we only call the lock-based version during either
tonyp@1793 643 // concurrent marking or remark.
tonyp@1793 644 assert(!SafepointSynchronize::is_at_safepoint() || !concurrent(),
tonyp@1793 645 "if we are at a safepoint it should be the remark safepoint");
tonyp@1793 646
tonyp@1793 647 _regionStack.push_with_lock(mr);
tonyp@1793 648 if (_regionStack.overflow()) {
tonyp@1793 649 set_has_overflown();
tonyp@1793 650 return false;
tonyp@1793 651 }
tonyp@1793 652 return true;
tonyp@1793 653 }
johnc@2190 654
tonyp@1793 655 MemRegion region_stack_pop_with_lock() {
tonyp@1793 656 // Currently we only call the lock-based version during either
tonyp@1793 657 // concurrent marking or remark.
tonyp@1793 658 assert(!SafepointSynchronize::is_at_safepoint() || !concurrent(),
tonyp@1793 659 "if we are at a safepoint it should be the remark safepoint");
tonyp@1793 660
tonyp@1793 661 return _regionStack.pop_with_lock();
tonyp@1793 662 }
johnc@2190 663 #endif
tonyp@1793 664
ysr@777 665 int region_stack_size() { return _regionStack.size(); }
ysr@777 666 bool region_stack_overflow() { return _regionStack.overflow(); }
ysr@777 667 bool region_stack_empty() { return _regionStack.isEmpty(); }
ysr@777 668
johnc@2190 669 // Iterate over any regions that were aborted while draining the
johnc@2190 670 // region stack (any such regions are saved in the corresponding
johnc@2190 671 // CMTask) and invalidate (i.e. assign to the empty MemRegion())
johnc@2190 672 // any regions that point into the collection set.
johnc@2190 673 bool invalidate_aborted_regions_in_cset();
johnc@2190 674
johnc@2190 675 // Returns true if there are any aborted memory regions.
johnc@2190 676 bool has_aborted_regions();
johnc@2190 677
ysr@777 678 bool concurrent_marking_in_progress() {
ysr@777 679 return _concurrent_marking_in_progress;
ysr@777 680 }
ysr@777 681 void set_concurrent_marking_in_progress() {
ysr@777 682 _concurrent_marking_in_progress = true;
ysr@777 683 }
ysr@777 684 void clear_concurrent_marking_in_progress() {
ysr@777 685 _concurrent_marking_in_progress = false;
ysr@777 686 }
ysr@777 687
ysr@777 688 void update_accum_task_vtime(int i, double vtime) {
ysr@777 689 _accum_task_vtime[i] += vtime;
ysr@777 690 }
ysr@777 691
ysr@777 692 double all_task_accum_vtime() {
ysr@777 693 double ret = 0.0;
ysr@777 694 for (int i = 0; i < (int)_max_task_num; ++i)
ysr@777 695 ret += _accum_task_vtime[i];
ysr@777 696 return ret;
ysr@777 697 }
ysr@777 698
ysr@777 699 // Attempts to steal an object from the task queues of other tasks
ysr@777 700 bool try_stealing(int task_num, int* hash_seed, oop& obj) {
ysr@777 701 return _task_queues->steal(task_num, hash_seed, obj);
ysr@777 702 }
ysr@777 703
ysr@777 704 // It grays an object by first marking it. Then, if it's behind the
ysr@777 705 // global finger, it also pushes it on the global stack.
ysr@777 706 void deal_with_reference(oop obj);
ysr@777 707
ysr@777 708 ConcurrentMark(ReservedSpace rs, int max_regions);
ysr@777 709 ~ConcurrentMark();
ysr@777 710 ConcurrentMarkThread* cmThread() { return _cmThread; }
ysr@777 711
ysr@777 712 CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
ysr@777 713 CMBitMap* nextMarkBitMap() const { return _nextMarkBitMap; }
ysr@777 714
jmasa@3294 715 // Returns the number of GC threads to be used in a concurrent
jmasa@3294 716 // phase based on the number of GC threads being used in a STW
jmasa@3294 717 // phase.
jmasa@3294 718 size_t scale_parallel_threads(size_t n_par_threads);
jmasa@3294 719
jmasa@3294 720 // Calculates the number of GC threads to be used in a concurrent phase.
johnc@3338 721 size_t calc_parallel_marking_threads();
jmasa@3294 722
ysr@777 723 // The following three are interaction between CM and
ysr@777 724 // G1CollectedHeap
ysr@777 725
ysr@777 726 // This notifies CM that a root during initial-mark needs to be
ysr@777 727 // grayed and it's MT-safe. Currently, we just mark it. But, in the
ysr@777 728 // future, we can experiment with pushing it on the stack and we can
ysr@777 729 // do this without changing G1CollectedHeap.
ysr@777 730 void grayRoot(oop p);
ysr@777 731 // It's used during evacuation pauses to gray a region, if
ysr@777 732 // necessary, and it's MT-safe. It assumes that the caller has
ysr@777 733 // marked any objects on that region. If _should_gray_objects is
ysr@777 734 // true and we're still doing concurrent marking, the region is
ysr@777 735 // pushed on the region stack, if it is located below the global
ysr@777 736 // finger, otherwise we do nothing.
ysr@777 737 void grayRegionIfNecessary(MemRegion mr);
ysr@777 738 // It's used during evacuation pauses to mark and, if necessary,
ysr@777 739 // gray a single object and it's MT-safe. It assumes the caller did
ysr@777 740 // not mark the object. If _should_gray_objects is true and we're
ysr@777 741 // still doing concurrent marking, the objects is pushed on the
ysr@777 742 // global stack, if it is located below the global finger, otherwise
ysr@777 743 // we do nothing.
ysr@777 744 void markAndGrayObjectIfNecessary(oop p);
ysr@777 745
tonyp@1823 746 // It iterates over the heap and for each object it comes across it
tonyp@1823 747 // will dump the contents of its reference fields, as well as
tonyp@1823 748 // liveness information for the object and its referents. The dump
tonyp@1823 749 // will be written to a file with the following name:
johnc@2969 750 // G1PrintReachableBaseFile + "." + str.
johnc@2969 751 // vo decides whether the prev (vo == UsePrevMarking), the next
johnc@2969 752 // (vo == UseNextMarking) marking information, or the mark word
johnc@2969 753 // (vo == UseMarkWord) will be used to determine the liveness of
johnc@2969 754 // each object / referent.
johnc@2969 755 // If all is true, all objects in the heap will be dumped, otherwise
johnc@2969 756 // only the live ones. In the dump the following symbols / breviations
johnc@2969 757 // are used:
tonyp@1823 758 // M : an explicitly live object (its bitmap bit is set)
tonyp@1823 759 // > : an implicitly live object (over tams)
tonyp@1823 760 // O : an object outside the G1 heap (typically: in the perm gen)
tonyp@1823 761 // NOT : a reference field whose referent is not live
tonyp@1823 762 // AND MARKED : indicates that an object is both explicitly and
tonyp@1823 763 // implicitly live (it should be one or the other, not both)
tonyp@1823 764 void print_reachable(const char* str,
johnc@2969 765 VerifyOption vo, bool all) PRODUCT_RETURN;
ysr@777 766
ysr@777 767 // Clear the next marking bitmap (will be called concurrently).
ysr@777 768 void clearNextBitmap();
ysr@777 769
ysr@777 770 // These two do the work that needs to be done before and after the
ysr@777 771 // initial root checkpoint. Since this checkpoint can be done at two
ysr@777 772 // different points (i.e. an explicit pause or piggy-backed on a
ysr@777 773 // young collection), then it's nice to be able to easily share the
ysr@777 774 // pre/post code. It might be the case that we can put everything in
ysr@777 775 // the post method. TP
ysr@777 776 void checkpointRootsInitialPre();
ysr@777 777 void checkpointRootsInitialPost();
ysr@777 778
ysr@777 779 // Do concurrent phase of marking, to a tentative transitive closure.
ysr@777 780 void markFromRoots();
ysr@777 781
ysr@777 782 // Process all unprocessed SATB buffers. It is called at the
ysr@777 783 // beginning of an evacuation pause.
ysr@777 784 void drainAllSATBBuffers();
ysr@777 785
ysr@777 786 void checkpointRootsFinal(bool clear_all_soft_refs);
ysr@777 787 void checkpointRootsFinalWork();
ysr@777 788 void calcDesiredRegions();
ysr@777 789 void cleanup();
ysr@777 790 void completeCleanup();
ysr@777 791
ysr@777 792 // Mark in the previous bitmap. NB: this is usually read-only, so use
ysr@777 793 // this carefully!
ysr@777 794 void markPrev(oop p);
ysr@777 795 void clear(oop p);
ysr@777 796 // Clears marks for all objects in the given range, for both prev and
ysr@777 797 // next bitmaps. NB: the previous bitmap is usually read-only, so use
ysr@777 798 // this carefully!
ysr@777 799 void clearRangeBothMaps(MemRegion mr);
ysr@777 800
ysr@777 801 // Record the current top of the mark and region stacks; a
ysr@777 802 // subsequent oops_do() on the mark stack and
ysr@777 803 // invalidate_entries_into_cset() on the region stack will iterate
ysr@777 804 // only over indices valid at the time of this call.
ysr@777 805 void set_oops_do_bound() {
ysr@777 806 _markStack.set_oops_do_bound();
ysr@777 807 _regionStack.set_oops_do_bound();
ysr@777 808 }
ysr@777 809 // Iterate over the oops in the mark stack and all local queues. It
ysr@777 810 // also calls invalidate_entries_into_cset() on the region stack.
ysr@777 811 void oops_do(OopClosure* f);
ysr@777 812 // It is called at the end of an evacuation pause during marking so
ysr@777 813 // that CM is notified of where the new end of the heap is. It
ysr@777 814 // doesn't do anything if concurrent_marking_in_progress() is false,
ysr@777 815 // unless the force parameter is true.
ysr@777 816 void update_g1_committed(bool force = false);
ysr@777 817
ysr@777 818 void complete_marking_in_collection_set();
ysr@777 819
ysr@777 820 // It indicates that a new collection set is being chosen.
ysr@777 821 void newCSet();
johnc@2910 822
ysr@777 823 // It registers a collection set heap region with CM. This is used
ysr@777 824 // to determine whether any heap regions are located above the finger.
ysr@777 825 void registerCSetRegion(HeapRegion* hr);
ysr@777 826
johnc@2910 827 // Resets the region fields of any active CMTask whose region fields
johnc@2910 828 // are in the collection set (i.e. the region currently claimed by
johnc@2910 829 // the CMTask will be evacuated and may be used, subsequently, as
johnc@2910 830 // an alloc region). When this happens the region fields in the CMTask
johnc@2910 831 // are stale and, hence, should be cleared causing the worker thread
johnc@2910 832 // to claim a new region.
johnc@2910 833 void reset_active_task_region_fields_in_cset();
johnc@2910 834
johnc@1829 835 // Registers the maximum region-end associated with a set of
johnc@1829 836 // regions with CM. Again this is used to determine whether any
johnc@1829 837 // heap regions are located above the finger.
johnc@1829 838 void register_collection_set_finger(HeapWord* max_finger) {
johnc@1829 839 // max_finger is the highest heap region end of the regions currently
johnc@1829 840 // contained in the collection set. If this value is larger than
johnc@1829 841 // _min_finger then we need to gray objects.
johnc@1829 842 // This routine is like registerCSetRegion but for an entire
johnc@1829 843 // collection of regions.
tonyp@2973 844 if (max_finger > _min_finger) {
johnc@1829 845 _should_gray_objects = true;
tonyp@2973 846 }
johnc@1829 847 }
johnc@1829 848
ysr@777 849 // Returns "true" if at least one mark has been completed.
ysr@777 850 bool at_least_one_mark_complete() { return _at_least_one_mark_complete; }
ysr@777 851
ysr@777 852 bool isMarked(oop p) const {
ysr@777 853 assert(p != NULL && p->is_oop(), "expected an oop");
ysr@777 854 HeapWord* addr = (HeapWord*)p;
ysr@777 855 assert(addr >= _nextMarkBitMap->startWord() ||
ysr@777 856 addr < _nextMarkBitMap->endWord(), "in a region");
ysr@777 857
ysr@777 858 return _nextMarkBitMap->isMarked(addr);
ysr@777 859 }
ysr@777 860
ysr@777 861 inline bool not_yet_marked(oop p) const;
ysr@777 862
ysr@777 863 // XXX Debug code
ysr@777 864 bool containing_card_is_marked(void* p);
ysr@777 865 bool containing_cards_are_marked(void* start, void* last);
ysr@777 866
ysr@777 867 bool isPrevMarked(oop p) const {
ysr@777 868 assert(p != NULL && p->is_oop(), "expected an oop");
ysr@777 869 HeapWord* addr = (HeapWord*)p;
ysr@777 870 assert(addr >= _prevMarkBitMap->startWord() ||
ysr@777 871 addr < _prevMarkBitMap->endWord(), "in a region");
ysr@777 872
ysr@777 873 return _prevMarkBitMap->isMarked(addr);
ysr@777 874 }
ysr@777 875
ysr@777 876 inline bool do_yield_check(int worker_i = 0);
ysr@777 877 inline bool should_yield();
ysr@777 878
ysr@777 879 // Called to abort the marking cycle after a Full GC takes palce.
ysr@777 880 void abort();
ysr@777 881
ysr@777 882 // This prints the global/local fingers. It is used for debugging.
ysr@777 883 NOT_PRODUCT(void print_finger();)
ysr@777 884
ysr@777 885 void print_summary_info();
ysr@777 886
tonyp@1454 887 void print_worker_threads_on(outputStream* st) const;
tonyp@1454 888
ysr@777 889 // The following indicate whether a given verbose level has been
ysr@777 890 // set. Notice that anything above stats is conditional to
ysr@777 891 // _MARKING_VERBOSE_ having been set to 1
tonyp@2973 892 bool verbose_stats() {
tonyp@2973 893 return _verbose_level >= stats_verbose;
tonyp@2973 894 }
tonyp@2973 895 bool verbose_low() {
tonyp@2973 896 return _MARKING_VERBOSE_ && _verbose_level >= low_verbose;
tonyp@2973 897 }
tonyp@2973 898 bool verbose_medium() {
tonyp@2973 899 return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose;
tonyp@2973 900 }
tonyp@2973 901 bool verbose_high() {
tonyp@2973 902 return _MARKING_VERBOSE_ && _verbose_level >= high_verbose;
tonyp@2973 903 }
ysr@777 904 };
ysr@777 905
ysr@777 906 // A class representing a marking task.
ysr@777 907 class CMTask : public TerminatorTerminator {
ysr@777 908 private:
ysr@777 909 enum PrivateConstants {
ysr@777 910 // the regular clock call is called once the scanned words reaches
ysr@777 911 // this limit
ysr@777 912 words_scanned_period = 12*1024,
ysr@777 913 // the regular clock call is called once the number of visited
ysr@777 914 // references reaches this limit
ysr@777 915 refs_reached_period = 384,
ysr@777 916 // initial value for the hash seed, used in the work stealing code
ysr@777 917 init_hash_seed = 17,
ysr@777 918 // how many entries will be transferred between global stack and
ysr@777 919 // local queues
ysr@777 920 global_stack_transfer_size = 16
ysr@777 921 };
ysr@777 922
ysr@777 923 int _task_id;
ysr@777 924 G1CollectedHeap* _g1h;
ysr@777 925 ConcurrentMark* _cm;
ysr@777 926 CMBitMap* _nextMarkBitMap;
ysr@777 927 // the task queue of this task
ysr@777 928 CMTaskQueue* _task_queue;
ysr@1280 929 private:
ysr@777 930 // the task queue set---needed for stealing
ysr@777 931 CMTaskQueueSet* _task_queues;
ysr@777 932 // indicates whether the task has been claimed---this is only for
ysr@777 933 // debugging purposes
ysr@777 934 bool _claimed;
ysr@777 935
ysr@777 936 // number of calls to this task
ysr@777 937 int _calls;
ysr@777 938
ysr@777 939 // when the virtual timer reaches this time, the marking step should
ysr@777 940 // exit
ysr@777 941 double _time_target_ms;
ysr@777 942 // the start time of the current marking step
ysr@777 943 double _start_time_ms;
ysr@777 944
ysr@777 945 // the oop closure used for iterations over oops
tonyp@2968 946 G1CMOopClosure* _cm_oop_closure;
ysr@777 947
ysr@777 948 // the region this task is scanning, NULL if we're not scanning any
ysr@777 949 HeapRegion* _curr_region;
ysr@777 950 // the local finger of this task, NULL if we're not scanning a region
ysr@777 951 HeapWord* _finger;
ysr@777 952 // limit of the region this task is scanning, NULL if we're not scanning one
ysr@777 953 HeapWord* _region_limit;
ysr@777 954
ysr@777 955 // This is used only when we scan regions popped from the region
ysr@777 956 // stack. It records what the last object on such a region we
ysr@777 957 // scanned was. It is used to ensure that, if we abort region
ysr@777 958 // iteration, we do not rescan the first part of the region. This
ysr@777 959 // should be NULL when we're not scanning a region from the region
ysr@777 960 // stack.
ysr@777 961 HeapWord* _region_finger;
ysr@777 962
johnc@2190 963 // If we abort while scanning a region we record the remaining
johnc@2190 964 // unscanned portion and check this field when marking restarts.
johnc@2190 965 // This avoids having to push on the region stack while other
johnc@2190 966 // marking threads may still be popping regions.
johnc@2190 967 // If we were to push the unscanned portion directly to the
johnc@2190 968 // region stack then we would need to using locking versions
johnc@2190 969 // of the push and pop operations.
johnc@2190 970 MemRegion _aborted_region;
johnc@2190 971
ysr@777 972 // the number of words this task has scanned
ysr@777 973 size_t _words_scanned;
ysr@777 974 // When _words_scanned reaches this limit, the regular clock is
ysr@777 975 // called. Notice that this might be decreased under certain
ysr@777 976 // circumstances (i.e. when we believe that we did an expensive
ysr@777 977 // operation).
ysr@777 978 size_t _words_scanned_limit;
ysr@777 979 // the initial value of _words_scanned_limit (i.e. what it was
ysr@777 980 // before it was decreased).
ysr@777 981 size_t _real_words_scanned_limit;
ysr@777 982
ysr@777 983 // the number of references this task has visited
ysr@777 984 size_t _refs_reached;
ysr@777 985 // When _refs_reached reaches this limit, the regular clock is
ysr@777 986 // called. Notice this this might be decreased under certain
ysr@777 987 // circumstances (i.e. when we believe that we did an expensive
ysr@777 988 // operation).
ysr@777 989 size_t _refs_reached_limit;
ysr@777 990 // the initial value of _refs_reached_limit (i.e. what it was before
ysr@777 991 // it was decreased).
ysr@777 992 size_t _real_refs_reached_limit;
ysr@777 993
ysr@777 994 // used by the work stealing stuff
ysr@777 995 int _hash_seed;
ysr@777 996 // if this is true, then the task has aborted for some reason
ysr@777 997 bool _has_aborted;
ysr@777 998 // set when the task aborts because it has met its time quota
johnc@2494 999 bool _has_timed_out;
ysr@777 1000 // true when we're draining SATB buffers; this avoids the task
ysr@777 1001 // aborting due to SATB buffers being available (as we're already
ysr@777 1002 // dealing with them)
ysr@777 1003 bool _draining_satb_buffers;
ysr@777 1004
ysr@777 1005 // number sequence of past step times
ysr@777 1006 NumberSeq _step_times_ms;
ysr@777 1007 // elapsed time of this task
ysr@777 1008 double _elapsed_time_ms;
ysr@777 1009 // termination time of this task
ysr@777 1010 double _termination_time_ms;
ysr@777 1011 // when this task got into the termination protocol
ysr@777 1012 double _termination_start_time_ms;
ysr@777 1013
ysr@777 1014 // true when the task is during a concurrent phase, false when it is
ysr@777 1015 // in the remark phase (so, in the latter case, we do not have to
ysr@777 1016 // check all the things that we have to check during the concurrent
ysr@777 1017 // phase, i.e. SATB buffer availability...)
ysr@777 1018 bool _concurrent;
ysr@777 1019
ysr@777 1020 TruncatedSeq _marking_step_diffs_ms;
ysr@777 1021
ysr@777 1022 // LOTS of statistics related with this task
ysr@777 1023 #if _MARKING_STATS_
ysr@777 1024 NumberSeq _all_clock_intervals_ms;
ysr@777 1025 double _interval_start_time_ms;
ysr@777 1026
ysr@777 1027 int _aborted;
ysr@777 1028 int _aborted_overflow;
ysr@777 1029 int _aborted_cm_aborted;
ysr@777 1030 int _aborted_yield;
ysr@777 1031 int _aborted_timed_out;
ysr@777 1032 int _aborted_satb;
ysr@777 1033 int _aborted_termination;
ysr@777 1034
ysr@777 1035 int _steal_attempts;
ysr@777 1036 int _steals;
ysr@777 1037
ysr@777 1038 int _clock_due_to_marking;
ysr@777 1039 int _clock_due_to_scanning;
ysr@777 1040
ysr@777 1041 int _local_pushes;
ysr@777 1042 int _local_pops;
ysr@777 1043 int _local_max_size;
ysr@777 1044 int _objs_scanned;
ysr@777 1045
ysr@777 1046 int _global_pushes;
ysr@777 1047 int _global_pops;
ysr@777 1048 int _global_max_size;
ysr@777 1049
ysr@777 1050 int _global_transfers_to;
ysr@777 1051 int _global_transfers_from;
ysr@777 1052
ysr@777 1053 int _region_stack_pops;
ysr@777 1054
ysr@777 1055 int _regions_claimed;
ysr@777 1056 int _objs_found_on_bitmap;
ysr@777 1057
ysr@777 1058 int _satb_buffers_processed;
ysr@777 1059 #endif // _MARKING_STATS_
ysr@777 1060
ysr@777 1061 // it updates the local fields after this task has claimed
ysr@777 1062 // a new region to scan
ysr@777 1063 void setup_for_region(HeapRegion* hr);
ysr@777 1064 // it brings up-to-date the limit of the region
ysr@777 1065 void update_region_limit();
ysr@777 1066
ysr@777 1067 // called when either the words scanned or the refs visited limit
ysr@777 1068 // has been reached
ysr@777 1069 void reached_limit();
ysr@777 1070 // recalculates the words scanned and refs visited limits
ysr@777 1071 void recalculate_limits();
ysr@777 1072 // decreases the words scanned and refs visited limits when we reach
ysr@777 1073 // an expensive operation
ysr@777 1074 void decrease_limits();
ysr@777 1075 // it checks whether the words scanned or refs visited reached their
ysr@777 1076 // respective limit and calls reached_limit() if they have
ysr@777 1077 void check_limits() {
ysr@777 1078 if (_words_scanned >= _words_scanned_limit ||
tonyp@2973 1079 _refs_reached >= _refs_reached_limit) {
ysr@777 1080 reached_limit();
tonyp@2973 1081 }
ysr@777 1082 }
ysr@777 1083 // this is supposed to be called regularly during a marking step as
ysr@777 1084 // it checks a bunch of conditions that might cause the marking step
ysr@777 1085 // to abort
ysr@777 1086 void regular_clock_call();
ysr@777 1087 bool concurrent() { return _concurrent; }
ysr@777 1088
ysr@777 1089 public:
ysr@777 1090 // It resets the task; it should be called right at the beginning of
ysr@777 1091 // a marking phase.
ysr@777 1092 void reset(CMBitMap* _nextMarkBitMap);
ysr@777 1093 // it clears all the fields that correspond to a claimed region.
ysr@777 1094 void clear_region_fields();
ysr@777 1095
ysr@777 1096 void set_concurrent(bool concurrent) { _concurrent = concurrent; }
ysr@777 1097
ysr@777 1098 // The main method of this class which performs a marking step
ysr@777 1099 // trying not to exceed the given duration. However, it might exit
ysr@777 1100 // prematurely, according to some conditions (i.e. SATB buffers are
ysr@777 1101 // available for processing).
johnc@2494 1102 void do_marking_step(double target_ms, bool do_stealing, bool do_termination);
ysr@777 1103
ysr@777 1104 // These two calls start and stop the timer
ysr@777 1105 void record_start_time() {
ysr@777 1106 _elapsed_time_ms = os::elapsedTime() * 1000.0;
ysr@777 1107 }
ysr@777 1108 void record_end_time() {
ysr@777 1109 _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
ysr@777 1110 }
ysr@777 1111
ysr@777 1112 // returns the task ID
ysr@777 1113 int task_id() { return _task_id; }
ysr@777 1114
ysr@777 1115 // From TerminatorTerminator. It determines whether this task should
ysr@777 1116 // exit the termination protocol after it's entered it.
ysr@777 1117 virtual bool should_exit_termination();
ysr@777 1118
johnc@2910 1119 // Resets the local region fields after a task has finished scanning a
johnc@2910 1120 // region; or when they have become stale as a result of the region
johnc@2910 1121 // being evacuated.
johnc@2910 1122 void giveup_current_region();
johnc@2910 1123
ysr@777 1124 HeapWord* finger() { return _finger; }
ysr@777 1125
ysr@777 1126 bool has_aborted() { return _has_aborted; }
ysr@777 1127 void set_has_aborted() { _has_aborted = true; }
ysr@777 1128 void clear_has_aborted() { _has_aborted = false; }
johnc@2494 1129 bool has_timed_out() { return _has_timed_out; }
johnc@2494 1130 bool claimed() { return _claimed; }
ysr@777 1131
johnc@2190 1132 // Support routines for the partially scanned region that may be
johnc@2190 1133 // recorded as a result of aborting while draining the CMRegionStack
johnc@2190 1134 MemRegion aborted_region() { return _aborted_region; }
johnc@2190 1135 void set_aborted_region(MemRegion mr)
johnc@2190 1136 { _aborted_region = mr; }
johnc@2190 1137
johnc@2190 1138 // Clears any recorded partially scanned region
johnc@2190 1139 void clear_aborted_region() { set_aborted_region(MemRegion()); }
johnc@2190 1140
tonyp@2968 1141 void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
ysr@777 1142
ysr@777 1143 // It grays the object by marking it and, if necessary, pushing it
ysr@777 1144 // on the local queue
tonyp@2968 1145 inline void deal_with_reference(oop obj);
ysr@777 1146
ysr@777 1147 // It scans an object and visits its children.
tonyp@2968 1148 void scan_object(oop obj);
ysr@777 1149
ysr@777 1150 // It pushes an object on the local queue.
tonyp@2968 1151 inline void push(oop obj);
ysr@777 1152
ysr@777 1153 // These two move entries to/from the global stack.
ysr@777 1154 void move_entries_to_global_stack();
ysr@777 1155 void get_entries_from_global_stack();
ysr@777 1156
ysr@777 1157 // It pops and scans objects from the local queue. If partially is
ysr@777 1158 // true, then it stops when the queue size is of a given limit. If
ysr@777 1159 // partially is false, then it stops when the queue is empty.
ysr@777 1160 void drain_local_queue(bool partially);
ysr@777 1161 // It moves entries from the global stack to the local queue and
ysr@777 1162 // drains the local queue. If partially is true, then it stops when
ysr@777 1163 // both the global stack and the local queue reach a given size. If
ysr@777 1164 // partially if false, it tries to empty them totally.
ysr@777 1165 void drain_global_stack(bool partially);
ysr@777 1166 // It keeps picking SATB buffers and processing them until no SATB
ysr@777 1167 // buffers are available.
ysr@777 1168 void drain_satb_buffers();
ysr@777 1169 // It keeps popping regions from the region stack and processing
ysr@777 1170 // them until the region stack is empty.
ysr@777 1171 void drain_region_stack(BitMapClosure* closure);
ysr@777 1172
ysr@777 1173 // moves the local finger to a new location
ysr@777 1174 inline void move_finger_to(HeapWord* new_finger) {
tonyp@1458 1175 assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
ysr@777 1176 _finger = new_finger;
ysr@777 1177 }
ysr@777 1178
ysr@777 1179 // moves the region finger to a new location
ysr@777 1180 inline void move_region_finger_to(HeapWord* new_finger) {
tonyp@1458 1181 assert(new_finger < _cm->finger(), "invariant");
ysr@777 1182 _region_finger = new_finger;
ysr@777 1183 }
ysr@777 1184
ysr@777 1185 CMTask(int task_num, ConcurrentMark *cm,
ysr@777 1186 CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
ysr@777 1187
ysr@777 1188 // it prints statistics associated with this task
ysr@777 1189 void print_stats();
ysr@777 1190
ysr@777 1191 #if _MARKING_STATS_
ysr@777 1192 void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
ysr@777 1193 #endif // _MARKING_STATS_
ysr@777 1194 };
stefank@2314 1195
tonyp@2717 1196 // Class that's used to to print out per-region liveness
tonyp@2717 1197 // information. It's currently used at the end of marking and also
tonyp@2717 1198 // after we sort the old regions at the end of the cleanup operation.
tonyp@2717 1199 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
tonyp@2717 1200 private:
tonyp@2717 1201 outputStream* _out;
tonyp@2717 1202
tonyp@2717 1203 // Accumulators for these values.
tonyp@2717 1204 size_t _total_used_bytes;
tonyp@2717 1205 size_t _total_capacity_bytes;
tonyp@2717 1206 size_t _total_prev_live_bytes;
tonyp@2717 1207 size_t _total_next_live_bytes;
tonyp@2717 1208
tonyp@2717 1209 // These are set up when we come across a "stars humongous" region
tonyp@2717 1210 // (as this is where most of this information is stored, not in the
tonyp@2717 1211 // subsequent "continues humongous" regions). After that, for every
tonyp@2717 1212 // region in a given humongous region series we deduce the right
tonyp@2717 1213 // values for it by simply subtracting the appropriate amount from
tonyp@2717 1214 // these fields. All these values should reach 0 after we've visited
tonyp@2717 1215 // the last region in the series.
tonyp@2717 1216 size_t _hum_used_bytes;
tonyp@2717 1217 size_t _hum_capacity_bytes;
tonyp@2717 1218 size_t _hum_prev_live_bytes;
tonyp@2717 1219 size_t _hum_next_live_bytes;
tonyp@2717 1220
tonyp@2717 1221 static double perc(size_t val, size_t total) {
tonyp@2717 1222 if (total == 0) {
tonyp@2717 1223 return 0.0;
tonyp@2717 1224 } else {
tonyp@2717 1225 return 100.0 * ((double) val / (double) total);
tonyp@2717 1226 }
tonyp@2717 1227 }
tonyp@2717 1228
tonyp@2717 1229 static double bytes_to_mb(size_t val) {
tonyp@2717 1230 return (double) val / (double) M;
tonyp@2717 1231 }
tonyp@2717 1232
tonyp@2717 1233 // See the .cpp file.
tonyp@2717 1234 size_t get_hum_bytes(size_t* hum_bytes);
tonyp@2717 1235 void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
tonyp@2717 1236 size_t* prev_live_bytes, size_t* next_live_bytes);
tonyp@2717 1237
tonyp@2717 1238 public:
tonyp@2717 1239 // The header and footer are printed in the constructor and
tonyp@2717 1240 // destructor respectively.
tonyp@2717 1241 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name);
tonyp@2717 1242 virtual bool doHeapRegion(HeapRegion* r);
tonyp@2717 1243 ~G1PrintRegionLivenessInfoClosure();
tonyp@2717 1244 };
tonyp@2717 1245
stefank@2314 1246 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP

mercurial