src/share/vm/opto/superword.cpp

Mon, 31 Aug 2009 08:31:45 -0700

author
cfang
date
Mon, 31 Aug 2009 08:31:45 -0700
changeset 1387
ace8397c8563
parent 1102
78af5ae8e731
child 1420
685e959d09ea
permissions
-rw-r--r--

6876276: assert(!is_visited,"visit only once")
Summary: schedule the superword loads based on dependence constraints
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 2007-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  */
    24 #include "incls/_precompiled.incl"
    25 #include "incls/_superword.cpp.incl"
    27 //
    28 //                  S U P E R W O R D   T R A N S F O R M
    29 //=============================================================================
    31 //------------------------------SuperWord---------------------------
    32 SuperWord::SuperWord(PhaseIdealLoop* phase) :
    33   _phase(phase),
    34   _igvn(phase->_igvn),
    35   _arena(phase->C->comp_arena()),
    36   _packset(arena(), 8,  0, NULL),         // packs for the current block
    37   _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb
    38   _block(arena(), 8,  0, NULL),           // nodes in current block
    39   _data_entry(arena(), 8,  0, NULL),      // nodes with all inputs from outside
    40   _mem_slice_head(arena(), 8,  0, NULL),  // memory slice heads
    41   _mem_slice_tail(arena(), 8,  0, NULL),  // memory slice tails
    42   _node_info(arena(), 8,  0, SWNodeInfo::initial), // info needed per node
    43   _align_to_ref(NULL),                    // memory reference to align vectors to
    44   _disjoint_ptrs(arena(), 8,  0, OrderedPair::initial), // runtime disambiguated pointer pairs
    45   _dg(_arena),                            // dependence graph
    46   _visited(arena()),                      // visited node set
    47   _post_visited(arena()),                 // post visited node set
    48   _n_idx_list(arena(), 8),                // scratch list of (node,index) pairs
    49   _stk(arena(), 8, 0, NULL),              // scratch stack of nodes
    50   _nlist(arena(), 8, 0, NULL),            // scratch list of nodes
    51   _lpt(NULL),                             // loop tree node
    52   _lp(NULL),                              // LoopNode
    53   _bb(NULL),                              // basic block
    54   _iv(NULL)                               // induction var
    55 {}
    57 //------------------------------transform_loop---------------------------
    58 void SuperWord::transform_loop(IdealLoopTree* lpt) {
    59   assert(lpt->_head->is_CountedLoop(), "must be");
    60   CountedLoopNode *cl = lpt->_head->as_CountedLoop();
    62   if (!cl->is_main_loop() ) return; // skip normal, pre, and post loops
    64   // Check for no control flow in body (other than exit)
    65   Node *cl_exit = cl->loopexit();
    66   if (cl_exit->in(0) != lpt->_head) return;
    68   // Make sure the are no extra control users of the loop backedge
    69   if (cl->back_control()->outcnt() != 1) {
    70     return;
    71   }
    73   // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit))))
    74   CountedLoopEndNode* pre_end = get_pre_loop_end(cl);
    75   if (pre_end == NULL) return;
    76   Node *pre_opaq1 = pre_end->limit();
    77   if (pre_opaq1->Opcode() != Op_Opaque1) return;
    79   // Do vectors exist on this architecture?
    80   if (vector_width_in_bytes() == 0) return;
    82   init(); // initialize data structures
    84   set_lpt(lpt);
    85   set_lp(cl);
    87  // For now, define one block which is the entire loop body
    88   set_bb(cl);
    90   assert(_packset.length() == 0, "packset must be empty");
    91   SLP_extract();
    92 }
    94 //------------------------------SLP_extract---------------------------
    95 // Extract the superword level parallelism
    96 //
    97 // 1) A reverse post-order of nodes in the block is constructed.  By scanning
    98 //    this list from first to last, all definitions are visited before their uses.
    99 //
   100 // 2) A point-to-point dependence graph is constructed between memory references.
   101 //    This simplies the upcoming "independence" checker.
   102 //
   103 // 3) The maximum depth in the node graph from the beginning of the block
   104 //    to each node is computed.  This is used to prune the graph search
   105 //    in the independence checker.
   106 //
   107 // 4) For integer types, the necessary bit width is propagated backwards
   108 //    from stores to allow packed operations on byte, char, and short
   109 //    integers.  This reverses the promotion to type "int" that javac
   110 //    did for operations like: char c1,c2,c3;  c1 = c2 + c3.
   111 //
   112 // 5) One of the memory references is picked to be an aligned vector reference.
   113 //    The pre-loop trip count is adjusted to align this reference in the
   114 //    unrolled body.
   115 //
   116 // 6) The initial set of pack pairs is seeded with memory references.
   117 //
   118 // 7) The set of pack pairs is extended by following use->def and def->use links.
   119 //
   120 // 8) The pairs are combined into vector sized packs.
   121 //
   122 // 9) Reorder the memory slices to co-locate members of the memory packs.
   123 //
   124 // 10) Generate ideal vector nodes for the final set of packs and where necessary,
   125 //    inserting scalar promotion, vector creation from multiple scalars, and
   126 //    extraction of scalar values from vectors.
   127 //
   128 void SuperWord::SLP_extract() {
   130   // Ready the block
   132   construct_bb();
   134   dependence_graph();
   136   compute_max_depth();
   138   compute_vector_element_type();
   140   // Attempt vectorization
   142   find_adjacent_refs();
   144   extend_packlist();
   146   combine_packs();
   148   construct_my_pack_map();
   150   filter_packs();
   152   schedule();
   154   output();
   155 }
   157 //------------------------------find_adjacent_refs---------------------------
   158 // Find the adjacent memory references and create pack pairs for them.
   159 // This is the initial set of packs that will then be extended by
   160 // following use->def and def->use links.  The align positions are
   161 // assigned relative to the reference "align_to_ref"
   162 void SuperWord::find_adjacent_refs() {
   163   // Get list of memory operations
   164   Node_List memops;
   165   for (int i = 0; i < _block.length(); i++) {
   166     Node* n = _block.at(i);
   167     if (n->is_Mem() && in_bb(n) &&
   168         is_java_primitive(n->as_Mem()->memory_type())) {
   169       int align = memory_alignment(n->as_Mem(), 0);
   170       if (align != bottom_align) {
   171         memops.push(n);
   172       }
   173     }
   174   }
   175   if (memops.size() == 0) return;
   177   // Find a memory reference to align to.  The pre-loop trip count
   178   // is modified to align this reference to a vector-aligned address
   179   find_align_to_ref(memops);
   180   if (align_to_ref() == NULL) return;
   182   SWPointer align_to_ref_p(align_to_ref(), this);
   183   int offset = align_to_ref_p.offset_in_bytes();
   184   int scale  = align_to_ref_p.scale_in_bytes();
   185   int vw              = vector_width_in_bytes();
   186   int stride_sign     = (scale * iv_stride()) > 0 ? 1 : -1;
   187   int iv_adjustment   = (stride_sign * vw - (offset % vw)) % vw;
   189 #ifndef PRODUCT
   190   if (TraceSuperWord)
   191     tty->print_cr("\noffset = %d iv_adjustment = %d  elt_align = %d scale = %d iv_stride = %d",
   192                   offset, iv_adjustment, align_to_ref_p.memory_size(), align_to_ref_p.scale_in_bytes(), iv_stride());
   193 #endif
   195   // Set alignment relative to "align_to_ref"
   196   for (int i = memops.size() - 1; i >= 0; i--) {
   197     MemNode* s = memops.at(i)->as_Mem();
   198     SWPointer p2(s, this);
   199     if (p2.comparable(align_to_ref_p)) {
   200       int align = memory_alignment(s, iv_adjustment);
   201       set_alignment(s, align);
   202     } else {
   203       memops.remove(i);
   204     }
   205   }
   207   // Create initial pack pairs of memory operations
   208   for (uint i = 0; i < memops.size(); i++) {
   209     Node* s1 = memops.at(i);
   210     for (uint j = 0; j < memops.size(); j++) {
   211       Node* s2 = memops.at(j);
   212       if (s1 != s2 && are_adjacent_refs(s1, s2)) {
   213         int align = alignment(s1);
   214         if (stmts_can_pack(s1, s2, align)) {
   215           Node_List* pair = new Node_List();
   216           pair->push(s1);
   217           pair->push(s2);
   218           _packset.append(pair);
   219         }
   220       }
   221     }
   222   }
   224 #ifndef PRODUCT
   225   if (TraceSuperWord) {
   226     tty->print_cr("\nAfter find_adjacent_refs");
   227     print_packset();
   228   }
   229 #endif
   230 }
   232 //------------------------------find_align_to_ref---------------------------
   233 // Find a memory reference to align the loop induction variable to.
   234 // Looks first at stores then at loads, looking for a memory reference
   235 // with the largest number of references similar to it.
   236 void SuperWord::find_align_to_ref(Node_List &memops) {
   237   GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0);
   239   // Count number of comparable memory ops
   240   for (uint i = 0; i < memops.size(); i++) {
   241     MemNode* s1 = memops.at(i)->as_Mem();
   242     SWPointer p1(s1, this);
   243     // Discard if pre loop can't align this reference
   244     if (!ref_is_alignable(p1)) {
   245       *cmp_ct.adr_at(i) = 0;
   246       continue;
   247     }
   248     for (uint j = i+1; j < memops.size(); j++) {
   249       MemNode* s2 = memops.at(j)->as_Mem();
   250       if (isomorphic(s1, s2)) {
   251         SWPointer p2(s2, this);
   252         if (p1.comparable(p2)) {
   253           (*cmp_ct.adr_at(i))++;
   254           (*cmp_ct.adr_at(j))++;
   255         }
   256       }
   257     }
   258   }
   260   // Find Store (or Load) with the greatest number of "comparable" references
   261   int max_ct        = 0;
   262   int max_idx       = -1;
   263   int min_size      = max_jint;
   264   int min_iv_offset = max_jint;
   265   for (uint j = 0; j < memops.size(); j++) {
   266     MemNode* s = memops.at(j)->as_Mem();
   267     if (s->is_Store()) {
   268       SWPointer p(s, this);
   269       if (cmp_ct.at(j) > max_ct ||
   270           cmp_ct.at(j) == max_ct && (data_size(s) < min_size ||
   271                                      data_size(s) == min_size &&
   272                                         p.offset_in_bytes() < min_iv_offset)) {
   273         max_ct = cmp_ct.at(j);
   274         max_idx = j;
   275         min_size = data_size(s);
   276         min_iv_offset = p.offset_in_bytes();
   277       }
   278     }
   279   }
   280   // If no stores, look at loads
   281   if (max_ct == 0) {
   282     for (uint j = 0; j < memops.size(); j++) {
   283       MemNode* s = memops.at(j)->as_Mem();
   284       if (s->is_Load()) {
   285         SWPointer p(s, this);
   286         if (cmp_ct.at(j) > max_ct ||
   287             cmp_ct.at(j) == max_ct && (data_size(s) < min_size ||
   288                                        data_size(s) == min_size &&
   289                                           p.offset_in_bytes() < min_iv_offset)) {
   290           max_ct = cmp_ct.at(j);
   291           max_idx = j;
   292           min_size = data_size(s);
   293           min_iv_offset = p.offset_in_bytes();
   294         }
   295       }
   296     }
   297   }
   299   if (max_ct > 0)
   300     set_align_to_ref(memops.at(max_idx)->as_Mem());
   302 #ifndef PRODUCT
   303   if (TraceSuperWord && Verbose) {
   304     tty->print_cr("\nVector memops after find_align_to_refs");
   305     for (uint i = 0; i < memops.size(); i++) {
   306       MemNode* s = memops.at(i)->as_Mem();
   307       s->dump();
   308     }
   309   }
   310 #endif
   311 }
   313 //------------------------------ref_is_alignable---------------------------
   314 // Can the preloop align the reference to position zero in the vector?
   315 bool SuperWord::ref_is_alignable(SWPointer& p) {
   316   if (!p.has_iv()) {
   317     return true;   // no induction variable
   318   }
   319   CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop());
   320   assert(pre_end->stride_is_con(), "pre loop stride is constant");
   321   int preloop_stride = pre_end->stride_con();
   323   int span = preloop_stride * p.scale_in_bytes();
   325   // Stride one accesses are alignable.
   326   if (ABS(span) == p.memory_size())
   327     return true;
   329   // If initial offset from start of object is computable,
   330   // compute alignment within the vector.
   331   int vw = vector_width_in_bytes();
   332   if (vw % span == 0) {
   333     Node* init_nd = pre_end->init_trip();
   334     if (init_nd->is_Con() && p.invar() == NULL) {
   335       int init = init_nd->bottom_type()->is_int()->get_con();
   337       int init_offset = init * p.scale_in_bytes() + p.offset_in_bytes();
   338       assert(init_offset >= 0, "positive offset from object start");
   340       if (span > 0) {
   341         return (vw - (init_offset % vw)) % span == 0;
   342       } else {
   343         assert(span < 0, "nonzero stride * scale");
   344         return (init_offset % vw) % -span == 0;
   345       }
   346     }
   347   }
   348   return false;
   349 }
   351 //---------------------------dependence_graph---------------------------
   352 // Construct dependency graph.
   353 // Add dependence edges to load/store nodes for memory dependence
   354 //    A.out()->DependNode.in(1) and DependNode.out()->B.prec(x)
   355 void SuperWord::dependence_graph() {
   356   // First, assign a dependence node to each memory node
   357   for (int i = 0; i < _block.length(); i++ ) {
   358     Node *n = _block.at(i);
   359     if (n->is_Mem() || n->is_Phi() && n->bottom_type() == Type::MEMORY) {
   360       _dg.make_node(n);
   361     }
   362   }
   364   // For each memory slice, create the dependences
   365   for (int i = 0; i < _mem_slice_head.length(); i++) {
   366     Node* n      = _mem_slice_head.at(i);
   367     Node* n_tail = _mem_slice_tail.at(i);
   369     // Get slice in predecessor order (last is first)
   370     mem_slice_preds(n_tail, n, _nlist);
   372     // Make the slice dependent on the root
   373     DepMem* slice = _dg.dep(n);
   374     _dg.make_edge(_dg.root(), slice);
   376     // Create a sink for the slice
   377     DepMem* slice_sink = _dg.make_node(NULL);
   378     _dg.make_edge(slice_sink, _dg.tail());
   380     // Now visit each pair of memory ops, creating the edges
   381     for (int j = _nlist.length() - 1; j >= 0 ; j--) {
   382       Node* s1 = _nlist.at(j);
   384       // If no dependency yet, use slice
   385       if (_dg.dep(s1)->in_cnt() == 0) {
   386         _dg.make_edge(slice, s1);
   387       }
   388       SWPointer p1(s1->as_Mem(), this);
   389       bool sink_dependent = true;
   390       for (int k = j - 1; k >= 0; k--) {
   391         Node* s2 = _nlist.at(k);
   392         if (s1->is_Load() && s2->is_Load())
   393           continue;
   394         SWPointer p2(s2->as_Mem(), this);
   396         int cmp = p1.cmp(p2);
   397         if (SuperWordRTDepCheck &&
   398             p1.base() != p2.base() && p1.valid() && p2.valid()) {
   399           // Create a runtime check to disambiguate
   400           OrderedPair pp(p1.base(), p2.base());
   401           _disjoint_ptrs.append_if_missing(pp);
   402         } else if (!SWPointer::not_equal(cmp)) {
   403           // Possibly same address
   404           _dg.make_edge(s1, s2);
   405           sink_dependent = false;
   406         }
   407       }
   408       if (sink_dependent) {
   409         _dg.make_edge(s1, slice_sink);
   410       }
   411     }
   412 #ifndef PRODUCT
   413     if (TraceSuperWord) {
   414       tty->print_cr("\nDependence graph for slice: %d", n->_idx);
   415       for (int q = 0; q < _nlist.length(); q++) {
   416         _dg.print(_nlist.at(q));
   417       }
   418       tty->cr();
   419     }
   420 #endif
   421     _nlist.clear();
   422   }
   424 #ifndef PRODUCT
   425   if (TraceSuperWord) {
   426     tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE");
   427     for (int r = 0; r < _disjoint_ptrs.length(); r++) {
   428       _disjoint_ptrs.at(r).print();
   429       tty->cr();
   430     }
   431     tty->cr();
   432   }
   433 #endif
   434 }
   436 //---------------------------mem_slice_preds---------------------------
   437 // Return a memory slice (node list) in predecessor order starting at "start"
   438 void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) {
   439   assert(preds.length() == 0, "start empty");
   440   Node* n = start;
   441   Node* prev = NULL;
   442   while (true) {
   443     assert(in_bb(n), "must be in block");
   444     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   445       Node* out = n->fast_out(i);
   446       if (out->is_Load()) {
   447         if (in_bb(out)) {
   448           preds.push(out);
   449         }
   450       } else {
   451         // FIXME
   452         if (out->is_MergeMem() && !in_bb(out)) {
   453           // Either unrolling is causing a memory edge not to disappear,
   454           // or need to run igvn.optimize() again before SLP
   455         } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) {
   456           // Ditto.  Not sure what else to check further.
   457         } else if (out->Opcode() == Op_StoreCM && out->in(MemNode::OopStore) == n) {
   458           // StoreCM has an input edge used as a precedence edge.
   459           // Maybe an issue when oop stores are vectorized.
   460         } else if( out->is_MergeMem() && prev &&
   461                    prev->Opcode() == Op_StoreCM && out == prev->in(MemNode::OopStore)) {
   462           // Oop store is a MergeMem! This should not happen. Temporarily remove the assertion
   463           // for this case because it could not be superwordized anyway.
   464         } else {
   465           assert(out == prev || prev == NULL, "no branches off of store slice");
   466         }
   467       }
   468     }
   469     if (n == stop) break;
   470     preds.push(n);
   471     prev = n;
   472     n = n->in(MemNode::Memory);
   473   }
   474 }
   476 //------------------------------stmts_can_pack---------------------------
   477 // Can s1 and s2 be in a pack with s1 immediately preceding s2 and
   478 // s1 aligned at "align"
   479 bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) {
   480   if (isomorphic(s1, s2)) {
   481     if (independent(s1, s2)) {
   482       if (!exists_at(s1, 0) && !exists_at(s2, 1)) {
   483         if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) {
   484           int s1_align = alignment(s1);
   485           int s2_align = alignment(s2);
   486           if (s1_align == top_align || s1_align == align) {
   487             if (s2_align == top_align || s2_align == align + data_size(s1)) {
   488               return true;
   489             }
   490           }
   491         }
   492       }
   493     }
   494   }
   495   return false;
   496 }
   498 //------------------------------exists_at---------------------------
   499 // Does s exist in a pack at position pos?
   500 bool SuperWord::exists_at(Node* s, uint pos) {
   501   for (int i = 0; i < _packset.length(); i++) {
   502     Node_List* p = _packset.at(i);
   503     if (p->at(pos) == s) {
   504       return true;
   505     }
   506   }
   507   return false;
   508 }
   510 //------------------------------are_adjacent_refs---------------------------
   511 // Is s1 immediately before s2 in memory?
   512 bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
   513   if (!s1->is_Mem() || !s2->is_Mem()) return false;
   514   if (!in_bb(s1)    || !in_bb(s2))    return false;
   515   // FIXME - co_locate_pack fails on Stores in different mem-slices, so
   516   // only pack memops that are in the same alias set until that's fixed.
   517   if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
   518       _phase->C->get_alias_index(s2->as_Mem()->adr_type()))
   519     return false;
   520   SWPointer p1(s1->as_Mem(), this);
   521   SWPointer p2(s2->as_Mem(), this);
   522   if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
   523   int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
   524   return diff == data_size(s1);
   525 }
   527 //------------------------------isomorphic---------------------------
   528 // Are s1 and s2 similar?
   529 bool SuperWord::isomorphic(Node* s1, Node* s2) {
   530   if (s1->Opcode() != s2->Opcode()) return false;
   531   if (s1->req() != s2->req()) return false;
   532   if (s1->in(0) != s2->in(0)) return false;
   533   if (velt_type(s1) != velt_type(s2)) return false;
   534   return true;
   535 }
   537 //------------------------------independent---------------------------
   538 // Is there no data path from s1 to s2 or s2 to s1?
   539 bool SuperWord::independent(Node* s1, Node* s2) {
   540   //  assert(s1->Opcode() == s2->Opcode(), "check isomorphic first");
   541   int d1 = depth(s1);
   542   int d2 = depth(s2);
   543   if (d1 == d2) return s1 != s2;
   544   Node* deep    = d1 > d2 ? s1 : s2;
   545   Node* shallow = d1 > d2 ? s2 : s1;
   547   visited_clear();
   549   return independent_path(shallow, deep);
   550 }
   552 //------------------------------independent_path------------------------------
   553 // Helper for independent
   554 bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) {
   555   if (dp >= 1000) return false; // stop deep recursion
   556   visited_set(deep);
   557   int shal_depth = depth(shallow);
   558   assert(shal_depth <= depth(deep), "must be");
   559   for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) {
   560     Node* pred = preds.current();
   561     if (in_bb(pred) && !visited_test(pred)) {
   562       if (shallow == pred) {
   563         return false;
   564       }
   565       if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) {
   566         return false;
   567       }
   568     }
   569   }
   570   return true;
   571 }
   573 //------------------------------set_alignment---------------------------
   574 void SuperWord::set_alignment(Node* s1, Node* s2, int align) {
   575   set_alignment(s1, align);
   576   set_alignment(s2, align + data_size(s1));
   577 }
   579 //------------------------------data_size---------------------------
   580 int SuperWord::data_size(Node* s) {
   581   const Type* t = velt_type(s);
   582   BasicType  bt = t->array_element_basic_type();
   583   int bsize = type2aelembytes(bt);
   584   assert(bsize != 0, "valid size");
   585   return bsize;
   586 }
   588 //------------------------------extend_packlist---------------------------
   589 // Extend packset by following use->def and def->use links from pack members.
   590 void SuperWord::extend_packlist() {
   591   bool changed;
   592   do {
   593     changed = false;
   594     for (int i = 0; i < _packset.length(); i++) {
   595       Node_List* p = _packset.at(i);
   596       changed |= follow_use_defs(p);
   597       changed |= follow_def_uses(p);
   598     }
   599   } while (changed);
   601 #ifndef PRODUCT
   602   if (TraceSuperWord) {
   603     tty->print_cr("\nAfter extend_packlist");
   604     print_packset();
   605   }
   606 #endif
   607 }
   609 //------------------------------follow_use_defs---------------------------
   610 // Extend the packset by visiting operand definitions of nodes in pack p
   611 bool SuperWord::follow_use_defs(Node_List* p) {
   612   Node* s1 = p->at(0);
   613   Node* s2 = p->at(1);
   614   assert(p->size() == 2, "just checking");
   615   assert(s1->req() == s2->req(), "just checking");
   616   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
   618   if (s1->is_Load()) return false;
   620   int align = alignment(s1);
   621   bool changed = false;
   622   int start = s1->is_Store() ? MemNode::ValueIn   : 1;
   623   int end   = s1->is_Store() ? MemNode::ValueIn+1 : s1->req();
   624   for (int j = start; j < end; j++) {
   625     Node* t1 = s1->in(j);
   626     Node* t2 = s2->in(j);
   627     if (!in_bb(t1) || !in_bb(t2))
   628       continue;
   629     if (stmts_can_pack(t1, t2, align)) {
   630       if (est_savings(t1, t2) >= 0) {
   631         Node_List* pair = new Node_List();
   632         pair->push(t1);
   633         pair->push(t2);
   634         _packset.append(pair);
   635         set_alignment(t1, t2, align);
   636         changed = true;
   637       }
   638     }
   639   }
   640   return changed;
   641 }
   643 //------------------------------follow_def_uses---------------------------
   644 // Extend the packset by visiting uses of nodes in pack p
   645 bool SuperWord::follow_def_uses(Node_List* p) {
   646   bool changed = false;
   647   Node* s1 = p->at(0);
   648   Node* s2 = p->at(1);
   649   assert(p->size() == 2, "just checking");
   650   assert(s1->req() == s2->req(), "just checking");
   651   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
   653   if (s1->is_Store()) return false;
   655   int align = alignment(s1);
   656   int savings = -1;
   657   Node* u1 = NULL;
   658   Node* u2 = NULL;
   659   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
   660     Node* t1 = s1->fast_out(i);
   661     if (!in_bb(t1)) continue;
   662     for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
   663       Node* t2 = s2->fast_out(j);
   664       if (!in_bb(t2)) continue;
   665       if (!opnd_positions_match(s1, t1, s2, t2))
   666         continue;
   667       if (stmts_can_pack(t1, t2, align)) {
   668         int my_savings = est_savings(t1, t2);
   669         if (my_savings > savings) {
   670           savings = my_savings;
   671           u1 = t1;
   672           u2 = t2;
   673         }
   674       }
   675     }
   676   }
   677   if (savings >= 0) {
   678     Node_List* pair = new Node_List();
   679     pair->push(u1);
   680     pair->push(u2);
   681     _packset.append(pair);
   682     set_alignment(u1, u2, align);
   683     changed = true;
   684   }
   685   return changed;
   686 }
   688 //---------------------------opnd_positions_match-------------------------
   689 // Is the use of d1 in u1 at the same operand position as d2 in u2?
   690 bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) {
   691   uint ct = u1->req();
   692   if (ct != u2->req()) return false;
   693   uint i1 = 0;
   694   uint i2 = 0;
   695   do {
   696     for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break;
   697     for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break;
   698     if (i1 != i2) {
   699       return false;
   700     }
   701   } while (i1 < ct);
   702   return true;
   703 }
   705 //------------------------------est_savings---------------------------
   706 // Estimate the savings from executing s1 and s2 as a pack
   707 int SuperWord::est_savings(Node* s1, Node* s2) {
   708   int save = 2 - 1; // 2 operations per instruction in packed form
   710   // inputs
   711   for (uint i = 1; i < s1->req(); i++) {
   712     Node* x1 = s1->in(i);
   713     Node* x2 = s2->in(i);
   714     if (x1 != x2) {
   715       if (are_adjacent_refs(x1, x2)) {
   716         save += adjacent_profit(x1, x2);
   717       } else if (!in_packset(x1, x2)) {
   718         save -= pack_cost(2);
   719       } else {
   720         save += unpack_cost(2);
   721       }
   722     }
   723   }
   725   // uses of result
   726   uint ct = 0;
   727   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
   728     Node* s1_use = s1->fast_out(i);
   729     for (int j = 0; j < _packset.length(); j++) {
   730       Node_List* p = _packset.at(j);
   731       if (p->at(0) == s1_use) {
   732         for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) {
   733           Node* s2_use = s2->fast_out(k);
   734           if (p->at(p->size()-1) == s2_use) {
   735             ct++;
   736             if (are_adjacent_refs(s1_use, s2_use)) {
   737               save += adjacent_profit(s1_use, s2_use);
   738             }
   739           }
   740         }
   741       }
   742     }
   743   }
   745   if (ct < s1->outcnt()) save += unpack_cost(1);
   746   if (ct < s2->outcnt()) save += unpack_cost(1);
   748   return save;
   749 }
   751 //------------------------------costs---------------------------
   752 int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; }
   753 int SuperWord::pack_cost(int ct)   { return ct; }
   754 int SuperWord::unpack_cost(int ct) { return ct; }
   756 //------------------------------combine_packs---------------------------
   757 // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
   758 void SuperWord::combine_packs() {
   759   bool changed;
   760   do {
   761     changed = false;
   762     for (int i = 0; i < _packset.length(); i++) {
   763       Node_List* p1 = _packset.at(i);
   764       if (p1 == NULL) continue;
   765       for (int j = 0; j < _packset.length(); j++) {
   766         Node_List* p2 = _packset.at(j);
   767         if (p2 == NULL) continue;
   768         if (p1->at(p1->size()-1) == p2->at(0)) {
   769           for (uint k = 1; k < p2->size(); k++) {
   770             p1->push(p2->at(k));
   771           }
   772           _packset.at_put(j, NULL);
   773           changed = true;
   774         }
   775       }
   776     }
   777   } while (changed);
   779   for (int i = _packset.length() - 1; i >= 0; i--) {
   780     Node_List* p1 = _packset.at(i);
   781     if (p1 == NULL) {
   782       _packset.remove_at(i);
   783     }
   784   }
   786 #ifndef PRODUCT
   787   if (TraceSuperWord) {
   788     tty->print_cr("\nAfter combine_packs");
   789     print_packset();
   790   }
   791 #endif
   792 }
   794 //-----------------------------construct_my_pack_map--------------------------
   795 // Construct the map from nodes to packs.  Only valid after the
   796 // point where a node is only in one pack (after combine_packs).
   797 void SuperWord::construct_my_pack_map() {
   798   Node_List* rslt = NULL;
   799   for (int i = 0; i < _packset.length(); i++) {
   800     Node_List* p = _packset.at(i);
   801     for (uint j = 0; j < p->size(); j++) {
   802       Node* s = p->at(j);
   803       assert(my_pack(s) == NULL, "only in one pack");
   804       set_my_pack(s, p);
   805     }
   806   }
   807 }
   809 //------------------------------filter_packs---------------------------
   810 // Remove packs that are not implemented or not profitable.
   811 void SuperWord::filter_packs() {
   813   // Remove packs that are not implemented
   814   for (int i = _packset.length() - 1; i >= 0; i--) {
   815     Node_List* pk = _packset.at(i);
   816     bool impl = implemented(pk);
   817     if (!impl) {
   818 #ifndef PRODUCT
   819       if (TraceSuperWord && Verbose) {
   820         tty->print_cr("Unimplemented");
   821         pk->at(0)->dump();
   822       }
   823 #endif
   824       remove_pack_at(i);
   825     }
   826   }
   828   // Remove packs that are not profitable
   829   bool changed;
   830   do {
   831     changed = false;
   832     for (int i = _packset.length() - 1; i >= 0; i--) {
   833       Node_List* pk = _packset.at(i);
   834       bool prof = profitable(pk);
   835       if (!prof) {
   836 #ifndef PRODUCT
   837         if (TraceSuperWord && Verbose) {
   838           tty->print_cr("Unprofitable");
   839           pk->at(0)->dump();
   840         }
   841 #endif
   842         remove_pack_at(i);
   843         changed = true;
   844       }
   845     }
   846   } while (changed);
   848 #ifndef PRODUCT
   849   if (TraceSuperWord) {
   850     tty->print_cr("\nAfter filter_packs");
   851     print_packset();
   852     tty->cr();
   853   }
   854 #endif
   855 }
   857 //------------------------------implemented---------------------------
   858 // Can code be generated for pack p?
   859 bool SuperWord::implemented(Node_List* p) {
   860   Node* p0 = p->at(0);
   861   int vopc = VectorNode::opcode(p0->Opcode(), p->size(), velt_type(p0));
   862   return vopc > 0 && Matcher::has_match_rule(vopc);
   863 }
   865 //------------------------------profitable---------------------------
   866 // For pack p, are all operands and all uses (with in the block) vector?
   867 bool SuperWord::profitable(Node_List* p) {
   868   Node* p0 = p->at(0);
   869   uint start, end;
   870   vector_opd_range(p0, &start, &end);
   872   // Return false if some input is not vector and inside block
   873   for (uint i = start; i < end; i++) {
   874     if (!is_vector_use(p0, i)) {
   875       // For now, return false if not scalar promotion case (inputs are the same.)
   876       // Later, implement PackNode and allow differing, non-vector inputs
   877       // (maybe just the ones from outside the block.)
   878       Node* p0_def = p0->in(i);
   879       for (uint j = 1; j < p->size(); j++) {
   880         Node* use = p->at(j);
   881         Node* def = use->in(i);
   882         if (p0_def != def)
   883           return false;
   884       }
   885     }
   886   }
   887   if (!p0->is_Store()) {
   888     // For now, return false if not all uses are vector.
   889     // Later, implement ExtractNode and allow non-vector uses (maybe
   890     // just the ones outside the block.)
   891     for (uint i = 0; i < p->size(); i++) {
   892       Node* def = p->at(i);
   893       for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
   894         Node* use = def->fast_out(j);
   895         for (uint k = 0; k < use->req(); k++) {
   896           Node* n = use->in(k);
   897           if (def == n) {
   898             if (!is_vector_use(use, k)) {
   899               return false;
   900             }
   901           }
   902         }
   903       }
   904     }
   905   }
   906   return true;
   907 }
   909 //------------------------------schedule---------------------------
   910 // Adjust the memory graph for the packed operations
   911 void SuperWord::schedule() {
   913   // Co-locate in the memory graph the members of each memory pack
   914   for (int i = 0; i < _packset.length(); i++) {
   915     co_locate_pack(_packset.at(i));
   916   }
   917 }
   919 //-------------------------------remove_and_insert-------------------
   920 //remove "current" from its current position in the memory graph and insert
   921 //it after the appropriate insertion point (lip or uip)
   922 void SuperWord::remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip,
   923                                   Node *uip, Unique_Node_List &sched_before) {
   924   Node* my_mem = current->in(MemNode::Memory);
   925   _igvn.hash_delete(current);
   926   _igvn.hash_delete(my_mem);
   928   //remove current_store from its current position in the memmory graph
   929   for (DUIterator i = current->outs(); current->has_out(i); i++) {
   930     Node* use = current->out(i);
   931     if (use->is_Mem()) {
   932       assert(use->in(MemNode::Memory) == current, "must be");
   933       _igvn.hash_delete(use);
   934       if (use == prev) { // connect prev to my_mem
   935         use->set_req(MemNode::Memory, my_mem);
   936       } else if (sched_before.member(use)) {
   937         _igvn.hash_delete(uip);
   938         use->set_req(MemNode::Memory, uip);
   939       } else {
   940         _igvn.hash_delete(lip);
   941         use->set_req(MemNode::Memory, lip);
   942       }
   943       _igvn._worklist.push(use);
   944       --i; //deleted this edge; rescan position
   945     }
   946   }
   948   bool sched_up = sched_before.member(current);
   949   Node *insert_pt =  sched_up ?  uip : lip;
   950   _igvn.hash_delete(insert_pt);
   952   // all uses of insert_pt's memory state should use current's instead
   953   for (DUIterator i = insert_pt->outs(); insert_pt->has_out(i); i++) {
   954     Node* use = insert_pt->out(i);
   955     if (use->is_Mem()) {
   956       assert(use->in(MemNode::Memory) == insert_pt, "must be");
   957       _igvn.hash_delete(use);
   958       use->set_req(MemNode::Memory, current);
   959       _igvn._worklist.push(use);
   960       --i; //deleted this edge; rescan position
   961     } else if (!sched_up && use->is_Phi() && use->bottom_type() == Type::MEMORY) {
   962       uint pos; //lip (lower insert point) must be the last one in the memory slice
   963       _igvn.hash_delete(use);
   964       for (pos=1; pos < use->req(); pos++) {
   965         if (use->in(pos) == insert_pt) break;
   966       }
   967       use->set_req(pos, current);
   968       _igvn._worklist.push(use);
   969       --i;
   970     }
   971   }
   973   //connect current to insert_pt
   974   current->set_req(MemNode::Memory, insert_pt);
   975   _igvn._worklist.push(current);
   976 }
   978 //------------------------------co_locate_pack----------------------------------
   979 // To schedule a store pack, we need to move any sandwiched memory ops either before
   980 // or after the pack, based upon dependence information:
   981 // (1) If any store in the pack depends on the sandwiched memory op, the
   982 //     sandwiched memory op must be scheduled BEFORE the pack;
   983 // (2) If a sandwiched memory op depends on any store in the pack, the
   984 //     sandwiched memory op must be scheduled AFTER the pack;
   985 // (3) If a sandwiched memory op (say, memA) depends on another sandwiched
   986 //     memory op (say memB), memB must be scheduled before memA. So, if memA is
   987 //     scheduled before the pack, memB must also be scheduled before the pack;
   988 // (4) If there is no dependence restriction for a sandwiched memory op, we simply
   989 //     schedule this store AFTER the pack
   990 // (5) We know there is no dependence cycle, so there in no other case;
   991 // (6) Finally, all memory ops in another single pack should be moved in the same direction.
   992 //
   993 // To schedule a load pack, we use the memory state of either the first or the last load in
   994 // the pack, based on the dependence constraint.
   995 void SuperWord::co_locate_pack(Node_List* pk) {
   996   if (pk->at(0)->is_Store()) {
   997     MemNode* first     = executed_first(pk)->as_Mem();
   998     MemNode* last      = executed_last(pk)->as_Mem();
   999     Unique_Node_List schedule_before_pack;
  1000     Unique_Node_List memops;
  1002     MemNode* current   = last->in(MemNode::Memory)->as_Mem();
  1003     MemNode* previous  = last;
  1004     while (true) {
  1005       assert(in_bb(current), "stay in block");
  1006       memops.push(previous);
  1007       for (DUIterator i = current->outs(); current->has_out(i); i++) {
  1008         Node* use = current->out(i);
  1009         if (use->is_Mem() && use != previous)
  1010           memops.push(use);
  1012       if(current == first) break;
  1013       previous = current;
  1014       current  = current->in(MemNode::Memory)->as_Mem();
  1017     // determine which memory operations should be scheduled before the pack
  1018     for (uint i = 1; i < memops.size(); i++) {
  1019       Node *s1 = memops.at(i);
  1020       if (!in_pack(s1, pk) && !schedule_before_pack.member(s1)) {
  1021         for (uint j = 0; j< i; j++) {
  1022           Node *s2 = memops.at(j);
  1023           if (!independent(s1, s2)) {
  1024             if (in_pack(s2, pk) || schedule_before_pack.member(s2)) {
  1025               schedule_before_pack.push(s1); //s1 must be scheduled before
  1026               Node_List* mem_pk = my_pack(s1);
  1027               if (mem_pk != NULL) {
  1028                 for (uint ii = 0; ii < mem_pk->size(); ii++) {
  1029                   Node* s = mem_pk->at(ii); // follow partner
  1030                   if (memops.member(s) && !schedule_before_pack.member(s))
  1031                     schedule_before_pack.push(s);
  1040     MemNode* lower_insert_pt = last;
  1041     Node*    upper_insert_pt = first->in(MemNode::Memory);
  1042     previous                 = last; //previous store in pk
  1043     current                  = last->in(MemNode::Memory)->as_Mem();
  1045     //start scheduling from "last" to "first"
  1046     while (true) {
  1047       assert(in_bb(current), "stay in block");
  1048       assert(in_pack(previous, pk), "previous stays in pack");
  1049       Node* my_mem = current->in(MemNode::Memory);
  1051       if (in_pack(current, pk)) {
  1052         // Forward users of my memory state (except "previous) to my input memory state
  1053         _igvn.hash_delete(current);
  1054         for (DUIterator i = current->outs(); current->has_out(i); i++) {
  1055           Node* use = current->out(i);
  1056           if (use->is_Mem() && use != previous) {
  1057             assert(use->in(MemNode::Memory) == current, "must be");
  1058             _igvn.hash_delete(use);
  1059             if (schedule_before_pack.member(use)) {
  1060               _igvn.hash_delete(upper_insert_pt);
  1061               use->set_req(MemNode::Memory, upper_insert_pt);
  1062             } else {
  1063               _igvn.hash_delete(lower_insert_pt);
  1064               use->set_req(MemNode::Memory, lower_insert_pt);
  1066             _igvn._worklist.push(use);
  1067             --i; // deleted this edge; rescan position
  1070         previous = current;
  1071       } else { // !in_pack(current, pk) ==> a sandwiched store
  1072         remove_and_insert(current, previous, lower_insert_pt, upper_insert_pt, schedule_before_pack);
  1075       if (current == first) break;
  1076       current = my_mem->as_Mem();
  1077     } // end while
  1078   } else if (pk->at(0)->is_Load()) { //load
  1079     // all loads in the pack should have the same memory state. By default,
  1080     // we use the memory state of the last load. However, if any load could
  1081     // not be moved down due to the dependence constraint, we use the memory
  1082     // state of the first load.
  1083     Node* last_mem  = executed_last(pk)->in(MemNode::Memory);
  1084     Node* first_mem = executed_first(pk)->in(MemNode::Memory);
  1085     bool schedule_last = true;
  1086     for (uint i = 0; i < pk->size(); i++) {
  1087       Node* ld = pk->at(i);
  1088       for (Node* current = last_mem; current != ld->in(MemNode::Memory);
  1089            current=current->in(MemNode::Memory)) {
  1090         assert(current != first_mem, "corrupted memory graph");
  1091         if(current->is_Mem() && !independent(current, ld)){
  1092           schedule_last = false; // a later store depends on this load
  1093           break;
  1098     Node* mem_input = schedule_last ? last_mem : first_mem;
  1099     _igvn.hash_delete(mem_input);
  1100     // Give each load the same memory state
  1101     for (uint i = 0; i < pk->size(); i++) {
  1102       LoadNode* ld = pk->at(i)->as_Load();
  1103       _igvn.hash_delete(ld);
  1104       ld->set_req(MemNode::Memory, mem_input);
  1105       _igvn._worklist.push(ld);
  1110 //------------------------------output---------------------------
  1111 // Convert packs into vector node operations
  1112 void SuperWord::output() {
  1113   if (_packset.length() == 0) return;
  1115   // MUST ENSURE main loop's initial value is properly aligned:
  1116   //  (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0
  1118   align_initial_loop_index(align_to_ref());
  1120   // Insert extract (unpack) operations for scalar uses
  1121   for (int i = 0; i < _packset.length(); i++) {
  1122     insert_extracts(_packset.at(i));
  1125   for (int i = 0; i < _block.length(); i++) {
  1126     Node* n = _block.at(i);
  1127     Node_List* p = my_pack(n);
  1128     if (p && n == executed_last(p)) {
  1129       uint vlen = p->size();
  1130       Node* vn = NULL;
  1131       Node* low_adr = p->at(0);
  1132       Node* first   = executed_first(p);
  1133       if (n->is_Load()) {
  1134         int   opc = n->Opcode();
  1135         Node* ctl = n->in(MemNode::Control);
  1136         Node* mem = first->in(MemNode::Memory);
  1137         Node* adr = low_adr->in(MemNode::Address);
  1138         const TypePtr* atyp = n->adr_type();
  1139         vn = VectorLoadNode::make(_phase->C, opc, ctl, mem, adr, atyp, vlen);
  1141       } else if (n->is_Store()) {
  1142         // Promote value to be stored to vector
  1143         VectorNode* val = vector_opd(p, MemNode::ValueIn);
  1145         int   opc = n->Opcode();
  1146         Node* ctl = n->in(MemNode::Control);
  1147         Node* mem = first->in(MemNode::Memory);
  1148         Node* adr = low_adr->in(MemNode::Address);
  1149         const TypePtr* atyp = n->adr_type();
  1150         vn = VectorStoreNode::make(_phase->C, opc, ctl, mem, adr, atyp, val, vlen);
  1152       } else if (n->req() == 3) {
  1153         // Promote operands to vector
  1154         Node* in1 = vector_opd(p, 1);
  1155         Node* in2 = vector_opd(p, 2);
  1156         vn = VectorNode::make(_phase->C, n->Opcode(), in1, in2, vlen, velt_type(n));
  1158       } else {
  1159         ShouldNotReachHere();
  1162       _phase->_igvn.register_new_node_with_optimizer(vn);
  1163       _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0)));
  1164       for (uint j = 0; j < p->size(); j++) {
  1165         Node* pm = p->at(j);
  1166         _igvn.hash_delete(pm);
  1167         _igvn.subsume_node(pm, vn);
  1169       _igvn._worklist.push(vn);
  1174 //------------------------------vector_opd---------------------------
  1175 // Create a vector operand for the nodes in pack p for operand: in(opd_idx)
  1176 VectorNode* SuperWord::vector_opd(Node_List* p, int opd_idx) {
  1177   Node* p0 = p->at(0);
  1178   uint vlen = p->size();
  1179   Node* opd = p0->in(opd_idx);
  1181   bool same_opd = true;
  1182   for (uint i = 1; i < vlen; i++) {
  1183     Node* pi = p->at(i);
  1184     Node* in = pi->in(opd_idx);
  1185     if (opd != in) {
  1186       same_opd = false;
  1187       break;
  1191   if (same_opd) {
  1192     if (opd->is_Vector()) {
  1193       return (VectorNode*)opd; // input is matching vector
  1195     // Convert scalar input to vector. Use p0's type because it's container
  1196     // maybe smaller than the operand's container.
  1197     const Type* opd_t = velt_type(!in_bb(opd) ? p0 : opd);
  1198     const Type* p0_t  = velt_type(p0);
  1199     if (p0_t->higher_equal(opd_t)) opd_t = p0_t;
  1200     VectorNode* vn    = VectorNode::scalar2vector(_phase->C, opd, vlen, opd_t);
  1202     _phase->_igvn.register_new_node_with_optimizer(vn);
  1203     _phase->set_ctrl(vn, _phase->get_ctrl(opd));
  1204     return vn;
  1207   // Insert pack operation
  1208   const Type* opd_t = velt_type(!in_bb(opd) ? p0 : opd);
  1209   PackNode* pk = PackNode::make(_phase->C, opd, opd_t);
  1211   for (uint i = 1; i < vlen; i++) {
  1212     Node* pi = p->at(i);
  1213     Node* in = pi->in(opd_idx);
  1214     assert(my_pack(in) == NULL, "Should already have been unpacked");
  1215     assert(opd_t == velt_type(!in_bb(in) ? pi : in), "all same type");
  1216     pk->add_opd(in);
  1218   _phase->_igvn.register_new_node_with_optimizer(pk);
  1219   _phase->set_ctrl(pk, _phase->get_ctrl(opd));
  1220   return pk;
  1223 //------------------------------insert_extracts---------------------------
  1224 // If a use of pack p is not a vector use, then replace the
  1225 // use with an extract operation.
  1226 void SuperWord::insert_extracts(Node_List* p) {
  1227   if (p->at(0)->is_Store()) return;
  1228   assert(_n_idx_list.is_empty(), "empty (node,index) list");
  1230   // Inspect each use of each pack member.  For each use that is
  1231   // not a vector use, replace the use with an extract operation.
  1233   for (uint i = 0; i < p->size(); i++) {
  1234     Node* def = p->at(i);
  1235     for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
  1236       Node* use = def->fast_out(j);
  1237       for (uint k = 0; k < use->req(); k++) {
  1238         Node* n = use->in(k);
  1239         if (def == n) {
  1240           if (!is_vector_use(use, k)) {
  1241             _n_idx_list.push(use, k);
  1248   while (_n_idx_list.is_nonempty()) {
  1249     Node* use = _n_idx_list.node();
  1250     int   idx = _n_idx_list.index();
  1251     _n_idx_list.pop();
  1252     Node* def = use->in(idx);
  1254     // Insert extract operation
  1255     _igvn.hash_delete(def);
  1256     _igvn.hash_delete(use);
  1257     int def_pos = alignment(def) / data_size(def);
  1258     const Type* def_t = velt_type(def);
  1260     Node* ex = ExtractNode::make(_phase->C, def, def_pos, def_t);
  1261     _phase->_igvn.register_new_node_with_optimizer(ex);
  1262     _phase->set_ctrl(ex, _phase->get_ctrl(def));
  1263     use->set_req(idx, ex);
  1264     _igvn._worklist.push(def);
  1265     _igvn._worklist.push(use);
  1267     bb_insert_after(ex, bb_idx(def));
  1268     set_velt_type(ex, def_t);
  1272 //------------------------------is_vector_use---------------------------
  1273 // Is use->in(u_idx) a vector use?
  1274 bool SuperWord::is_vector_use(Node* use, int u_idx) {
  1275   Node_List* u_pk = my_pack(use);
  1276   if (u_pk == NULL) return false;
  1277   Node* def = use->in(u_idx);
  1278   Node_List* d_pk = my_pack(def);
  1279   if (d_pk == NULL) {
  1280     // check for scalar promotion
  1281     Node* n = u_pk->at(0)->in(u_idx);
  1282     for (uint i = 1; i < u_pk->size(); i++) {
  1283       if (u_pk->at(i)->in(u_idx) != n) return false;
  1285     return true;
  1287   if (u_pk->size() != d_pk->size())
  1288     return false;
  1289   for (uint i = 0; i < u_pk->size(); i++) {
  1290     Node* ui = u_pk->at(i);
  1291     Node* di = d_pk->at(i);
  1292     if (ui->in(u_idx) != di || alignment(ui) != alignment(di))
  1293       return false;
  1295   return true;
  1298 //------------------------------construct_bb---------------------------
  1299 // Construct reverse postorder list of block members
  1300 void SuperWord::construct_bb() {
  1301   Node* entry = bb();
  1303   assert(_stk.length() == 0,            "stk is empty");
  1304   assert(_block.length() == 0,          "block is empty");
  1305   assert(_data_entry.length() == 0,     "data_entry is empty");
  1306   assert(_mem_slice_head.length() == 0, "mem_slice_head is empty");
  1307   assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty");
  1309   // Find non-control nodes with no inputs from within block,
  1310   // create a temporary map from node _idx to bb_idx for use
  1311   // by the visited and post_visited sets,
  1312   // and count number of nodes in block.
  1313   int bb_ct = 0;
  1314   for (uint i = 0; i < lpt()->_body.size(); i++ ) {
  1315     Node *n = lpt()->_body.at(i);
  1316     set_bb_idx(n, i); // Create a temporary map
  1317     if (in_bb(n)) {
  1318       bb_ct++;
  1319       if (!n->is_CFG()) {
  1320         bool found = false;
  1321         for (uint j = 0; j < n->req(); j++) {
  1322           Node* def = n->in(j);
  1323           if (def && in_bb(def)) {
  1324             found = true;
  1325             break;
  1328         if (!found) {
  1329           assert(n != entry, "can't be entry");
  1330           _data_entry.push(n);
  1336   // Find memory slices (head and tail)
  1337   for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) {
  1338     Node *n = lp()->fast_out(i);
  1339     if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
  1340       Node* n_tail  = n->in(LoopNode::LoopBackControl);
  1341       if (n_tail != n->in(LoopNode::EntryControl)) {
  1342         _mem_slice_head.push(n);
  1343         _mem_slice_tail.push(n_tail);
  1348   // Create an RPO list of nodes in block
  1350   visited_clear();
  1351   post_visited_clear();
  1353   // Push all non-control nodes with no inputs from within block, then control entry
  1354   for (int j = 0; j < _data_entry.length(); j++) {
  1355     Node* n = _data_entry.at(j);
  1356     visited_set(n);
  1357     _stk.push(n);
  1359   visited_set(entry);
  1360   _stk.push(entry);
  1362   // Do a depth first walk over out edges
  1363   int rpo_idx = bb_ct - 1;
  1364   int size;
  1365   while ((size = _stk.length()) > 0) {
  1366     Node* n = _stk.top(); // Leave node on stack
  1367     if (!visited_test_set(n)) {
  1368       // forward arc in graph
  1369     } else if (!post_visited_test(n)) {
  1370       // cross or back arc
  1371       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1372         Node *use = n->fast_out(i);
  1373         if (in_bb(use) && !visited_test(use) &&
  1374             // Don't go around backedge
  1375             (!use->is_Phi() || n == entry)) {
  1376           _stk.push(use);
  1379       if (_stk.length() == size) {
  1380         // There were no additional uses, post visit node now
  1381         _stk.pop(); // Remove node from stack
  1382         assert(rpo_idx >= 0, "");
  1383         _block.at_put_grow(rpo_idx, n);
  1384         rpo_idx--;
  1385         post_visited_set(n);
  1386         assert(rpo_idx >= 0 || _stk.is_empty(), "");
  1388     } else {
  1389       _stk.pop(); // Remove post-visited node from stack
  1393   // Create real map of block indices for nodes
  1394   for (int j = 0; j < _block.length(); j++) {
  1395     Node* n = _block.at(j);
  1396     set_bb_idx(n, j);
  1399   initialize_bb(); // Ensure extra info is allocated.
  1401 #ifndef PRODUCT
  1402   if (TraceSuperWord) {
  1403     print_bb();
  1404     tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE");
  1405     for (int m = 0; m < _data_entry.length(); m++) {
  1406       tty->print("%3d ", m);
  1407       _data_entry.at(m)->dump();
  1409     tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE");
  1410     for (int m = 0; m < _mem_slice_head.length(); m++) {
  1411       tty->print("%3d ", m); _mem_slice_head.at(m)->dump();
  1412       tty->print("    ");    _mem_slice_tail.at(m)->dump();
  1415 #endif
  1416   assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found");
  1419 //------------------------------initialize_bb---------------------------
  1420 // Initialize per node info
  1421 void SuperWord::initialize_bb() {
  1422   Node* last = _block.at(_block.length() - 1);
  1423   grow_node_info(bb_idx(last));
  1426 //------------------------------bb_insert_after---------------------------
  1427 // Insert n into block after pos
  1428 void SuperWord::bb_insert_after(Node* n, int pos) {
  1429   int n_pos = pos + 1;
  1430   // Make room
  1431   for (int i = _block.length() - 1; i >= n_pos; i--) {
  1432     _block.at_put_grow(i+1, _block.at(i));
  1434   for (int j = _node_info.length() - 1; j >= n_pos; j--) {
  1435     _node_info.at_put_grow(j+1, _node_info.at(j));
  1437   // Set value
  1438   _block.at_put_grow(n_pos, n);
  1439   _node_info.at_put_grow(n_pos, SWNodeInfo::initial);
  1440   // Adjust map from node->_idx to _block index
  1441   for (int i = n_pos; i < _block.length(); i++) {
  1442     set_bb_idx(_block.at(i), i);
  1446 //------------------------------compute_max_depth---------------------------
  1447 // Compute max depth for expressions from beginning of block
  1448 // Use to prune search paths during test for independence.
  1449 void SuperWord::compute_max_depth() {
  1450   int ct = 0;
  1451   bool again;
  1452   do {
  1453     again = false;
  1454     for (int i = 0; i < _block.length(); i++) {
  1455       Node* n = _block.at(i);
  1456       if (!n->is_Phi()) {
  1457         int d_orig = depth(n);
  1458         int d_in   = 0;
  1459         for (DepPreds preds(n, _dg); !preds.done(); preds.next()) {
  1460           Node* pred = preds.current();
  1461           if (in_bb(pred)) {
  1462             d_in = MAX2(d_in, depth(pred));
  1465         if (d_in + 1 != d_orig) {
  1466           set_depth(n, d_in + 1);
  1467           again = true;
  1471     ct++;
  1472   } while (again);
  1473 #ifndef PRODUCT
  1474   if (TraceSuperWord && Verbose)
  1475     tty->print_cr("compute_max_depth iterated: %d times", ct);
  1476 #endif
  1479 //-------------------------compute_vector_element_type-----------------------
  1480 // Compute necessary vector element type for expressions
  1481 // This propagates backwards a narrower integer type when the
  1482 // upper bits of the value are not needed.
  1483 // Example:  char a,b,c;  a = b + c;
  1484 // Normally the type of the add is integer, but for packed character
  1485 // operations the type of the add needs to be char.
  1486 void SuperWord::compute_vector_element_type() {
  1487 #ifndef PRODUCT
  1488   if (TraceSuperWord && Verbose)
  1489     tty->print_cr("\ncompute_velt_type:");
  1490 #endif
  1492   // Initial type
  1493   for (int i = 0; i < _block.length(); i++) {
  1494     Node* n = _block.at(i);
  1495     const Type* t  = n->is_Mem() ? Type::get_const_basic_type(n->as_Mem()->memory_type())
  1496                                  : _igvn.type(n);
  1497     const Type* vt = container_type(t);
  1498     set_velt_type(n, vt);
  1501   // Propagate narrowed type backwards through operations
  1502   // that don't depend on higher order bits
  1503   for (int i = _block.length() - 1; i >= 0; i--) {
  1504     Node* n = _block.at(i);
  1505     // Only integer types need be examined
  1506     if (n->bottom_type()->isa_int()) {
  1507       uint start, end;
  1508       vector_opd_range(n, &start, &end);
  1509       const Type* vt = velt_type(n);
  1511       for (uint j = start; j < end; j++) {
  1512         Node* in  = n->in(j);
  1513         // Don't propagate through a type conversion
  1514         if (n->bottom_type() != in->bottom_type())
  1515           continue;
  1516         switch(in->Opcode()) {
  1517         case Op_AddI:    case Op_AddL:
  1518         case Op_SubI:    case Op_SubL:
  1519         case Op_MulI:    case Op_MulL:
  1520         case Op_AndI:    case Op_AndL:
  1521         case Op_OrI:     case Op_OrL:
  1522         case Op_XorI:    case Op_XorL:
  1523         case Op_LShiftI: case Op_LShiftL:
  1524         case Op_CMoveI:  case Op_CMoveL:
  1525           if (in_bb(in)) {
  1526             bool same_type = true;
  1527             for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
  1528               Node *use = in->fast_out(k);
  1529               if (!in_bb(use) || velt_type(use) != vt) {
  1530                 same_type = false;
  1531                 break;
  1534             if (same_type) {
  1535               set_velt_type(in, vt);
  1542 #ifndef PRODUCT
  1543   if (TraceSuperWord && Verbose) {
  1544     for (int i = 0; i < _block.length(); i++) {
  1545       Node* n = _block.at(i);
  1546       velt_type(n)->dump();
  1547       tty->print("\t");
  1548       n->dump();
  1551 #endif
  1554 //------------------------------memory_alignment---------------------------
  1555 // Alignment within a vector memory reference
  1556 int SuperWord::memory_alignment(MemNode* s, int iv_adjust_in_bytes) {
  1557   SWPointer p(s, this);
  1558   if (!p.valid()) {
  1559     return bottom_align;
  1561   int offset  = p.offset_in_bytes();
  1562   offset     += iv_adjust_in_bytes;
  1563   int off_rem = offset % vector_width_in_bytes();
  1564   int off_mod = off_rem >= 0 ? off_rem : off_rem + vector_width_in_bytes();
  1565   return off_mod;
  1568 //---------------------------container_type---------------------------
  1569 // Smallest type containing range of values
  1570 const Type* SuperWord::container_type(const Type* t) {
  1571   const Type* tp = t->make_ptr();
  1572   if (tp && tp->isa_aryptr()) {
  1573     t = tp->is_aryptr()->elem();
  1575   if (t->basic_type() == T_INT) {
  1576     if (t->higher_equal(TypeInt::BOOL))  return TypeInt::BOOL;
  1577     if (t->higher_equal(TypeInt::BYTE))  return TypeInt::BYTE;
  1578     if (t->higher_equal(TypeInt::CHAR))  return TypeInt::CHAR;
  1579     if (t->higher_equal(TypeInt::SHORT)) return TypeInt::SHORT;
  1580     return TypeInt::INT;
  1582   return t;
  1585 //-------------------------vector_opd_range-----------------------
  1586 // (Start, end] half-open range defining which operands are vector
  1587 void SuperWord::vector_opd_range(Node* n, uint* start, uint* end) {
  1588   switch (n->Opcode()) {
  1589   case Op_LoadB:   case Op_LoadUS:
  1590   case Op_LoadI:   case Op_LoadL:
  1591   case Op_LoadF:   case Op_LoadD:
  1592   case Op_LoadP:
  1593     *start = 0;
  1594     *end   = 0;
  1595     return;
  1596   case Op_StoreB:  case Op_StoreC:
  1597   case Op_StoreI:  case Op_StoreL:
  1598   case Op_StoreF:  case Op_StoreD:
  1599   case Op_StoreP:
  1600     *start = MemNode::ValueIn;
  1601     *end   = *start + 1;
  1602     return;
  1603   case Op_LShiftI: case Op_LShiftL:
  1604     *start = 1;
  1605     *end   = 2;
  1606     return;
  1607   case Op_CMoveI:  case Op_CMoveL:  case Op_CMoveF:  case Op_CMoveD:
  1608     *start = 2;
  1609     *end   = n->req();
  1610     return;
  1612   *start = 1;
  1613   *end   = n->req(); // default is all operands
  1616 //------------------------------in_packset---------------------------
  1617 // Are s1 and s2 in a pack pair and ordered as s1,s2?
  1618 bool SuperWord::in_packset(Node* s1, Node* s2) {
  1619   for (int i = 0; i < _packset.length(); i++) {
  1620     Node_List* p = _packset.at(i);
  1621     assert(p->size() == 2, "must be");
  1622     if (p->at(0) == s1 && p->at(p->size()-1) == s2) {
  1623       return true;
  1626   return false;
  1629 //------------------------------in_pack---------------------------
  1630 // Is s in pack p?
  1631 Node_List* SuperWord::in_pack(Node* s, Node_List* p) {
  1632   for (uint i = 0; i < p->size(); i++) {
  1633     if (p->at(i) == s) {
  1634       return p;
  1637   return NULL;
  1640 //------------------------------remove_pack_at---------------------------
  1641 // Remove the pack at position pos in the packset
  1642 void SuperWord::remove_pack_at(int pos) {
  1643   Node_List* p = _packset.at(pos);
  1644   for (uint i = 0; i < p->size(); i++) {
  1645     Node* s = p->at(i);
  1646     set_my_pack(s, NULL);
  1648   _packset.remove_at(pos);
  1651 //------------------------------executed_first---------------------------
  1652 // Return the node executed first in pack p.  Uses the RPO block list
  1653 // to determine order.
  1654 Node* SuperWord::executed_first(Node_List* p) {
  1655   Node* n = p->at(0);
  1656   int n_rpo = bb_idx(n);
  1657   for (uint i = 1; i < p->size(); i++) {
  1658     Node* s = p->at(i);
  1659     int s_rpo = bb_idx(s);
  1660     if (s_rpo < n_rpo) {
  1661       n = s;
  1662       n_rpo = s_rpo;
  1665   return n;
  1668 //------------------------------executed_last---------------------------
  1669 // Return the node executed last in pack p.
  1670 Node* SuperWord::executed_last(Node_List* p) {
  1671   Node* n = p->at(0);
  1672   int n_rpo = bb_idx(n);
  1673   for (uint i = 1; i < p->size(); i++) {
  1674     Node* s = p->at(i);
  1675     int s_rpo = bb_idx(s);
  1676     if (s_rpo > n_rpo) {
  1677       n = s;
  1678       n_rpo = s_rpo;
  1681   return n;
  1684 //----------------------------align_initial_loop_index---------------------------
  1685 // Adjust pre-loop limit so that in main loop, a load/store reference
  1686 // to align_to_ref will be a position zero in the vector.
  1687 //   (iv + k) mod vector_align == 0
  1688 void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
  1689   CountedLoopNode *main_head = lp()->as_CountedLoop();
  1690   assert(main_head->is_main_loop(), "");
  1691   CountedLoopEndNode* pre_end = get_pre_loop_end(main_head);
  1692   assert(pre_end != NULL, "");
  1693   Node *pre_opaq1 = pre_end->limit();
  1694   assert(pre_opaq1->Opcode() == Op_Opaque1, "");
  1695   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
  1696   Node *lim0 = pre_opaq->in(1);
  1698   // Where we put new limit calculations
  1699   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
  1701   // Ensure the original loop limit is available from the
  1702   // pre-loop Opaque1 node.
  1703   Node *orig_limit = pre_opaq->original_loop_limit();
  1704   assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
  1706   SWPointer align_to_ref_p(align_to_ref, this);
  1708   // Given:
  1709   //     lim0 == original pre loop limit
  1710   //     V == v_align (power of 2)
  1711   //     invar == extra invariant piece of the address expression
  1712   //     e == k [ +/- invar ]
  1713   //
  1714   // When reassociating expressions involving '%' the basic rules are:
  1715   //     (a - b) % k == 0   =>  a % k == b % k
  1716   // and:
  1717   //     (a + b) % k == 0   =>  a % k == (k - b) % k
  1718   //
  1719   // For stride > 0 && scale > 0,
  1720   //   Derive the new pre-loop limit "lim" such that the two constraints:
  1721   //     (1) lim = lim0 + N           (where N is some positive integer < V)
  1722   //     (2) (e + lim) % V == 0
  1723   //   are true.
  1724   //
  1725   //   Substituting (1) into (2),
  1726   //     (e + lim0 + N) % V == 0
  1727   //   solve for N:
  1728   //     N = (V - (e + lim0)) % V
  1729   //   substitute back into (1), so that new limit
  1730   //     lim = lim0 + (V - (e + lim0)) % V
  1731   //
  1732   // For stride > 0 && scale < 0
  1733   //   Constraints:
  1734   //     lim = lim0 + N
  1735   //     (e - lim) % V == 0
  1736   //   Solving for lim:
  1737   //     (e - lim0 - N) % V == 0
  1738   //     N = (e - lim0) % V
  1739   //     lim = lim0 + (e - lim0) % V
  1740   //
  1741   // For stride < 0 && scale > 0
  1742   //   Constraints:
  1743   //     lim = lim0 - N
  1744   //     (e + lim) % V == 0
  1745   //   Solving for lim:
  1746   //     (e + lim0 - N) % V == 0
  1747   //     N = (e + lim0) % V
  1748   //     lim = lim0 - (e + lim0) % V
  1749   //
  1750   // For stride < 0 && scale < 0
  1751   //   Constraints:
  1752   //     lim = lim0 - N
  1753   //     (e - lim) % V == 0
  1754   //   Solving for lim:
  1755   //     (e - lim0 + N) % V == 0
  1756   //     N = (V - (e - lim0)) % V
  1757   //     lim = lim0 - (V - (e - lim0)) % V
  1759   int stride   = iv_stride();
  1760   int scale    = align_to_ref_p.scale_in_bytes();
  1761   int elt_size = align_to_ref_p.memory_size();
  1762   int v_align  = vector_width_in_bytes() / elt_size;
  1763   int k        = align_to_ref_p.offset_in_bytes() / elt_size;
  1765   Node *kn   = _igvn.intcon(k);
  1767   Node *e = kn;
  1768   if (align_to_ref_p.invar() != NULL) {
  1769     // incorporate any extra invariant piece producing k +/- invar >>> log2(elt)
  1770     Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
  1771     Node* aref     = new (_phase->C, 3) URShiftINode(align_to_ref_p.invar(), log2_elt);
  1772     _phase->_igvn.register_new_node_with_optimizer(aref);
  1773     _phase->set_ctrl(aref, pre_ctrl);
  1774     if (align_to_ref_p.negate_invar()) {
  1775       e = new (_phase->C, 3) SubINode(e, aref);
  1776     } else {
  1777       e = new (_phase->C, 3) AddINode(e, aref);
  1779     _phase->_igvn.register_new_node_with_optimizer(e);
  1780     _phase->set_ctrl(e, pre_ctrl);
  1783   // compute e +/- lim0
  1784   if (scale < 0) {
  1785     e = new (_phase->C, 3) SubINode(e, lim0);
  1786   } else {
  1787     e = new (_phase->C, 3) AddINode(e, lim0);
  1789   _phase->_igvn.register_new_node_with_optimizer(e);
  1790   _phase->set_ctrl(e, pre_ctrl);
  1792   if (stride * scale > 0) {
  1793     // compute V - (e +/- lim0)
  1794     Node* va  = _igvn.intcon(v_align);
  1795     e = new (_phase->C, 3) SubINode(va, e);
  1796     _phase->_igvn.register_new_node_with_optimizer(e);
  1797     _phase->set_ctrl(e, pre_ctrl);
  1799   // compute N = (exp) % V
  1800   Node* va_msk = _igvn.intcon(v_align - 1);
  1801   Node* N = new (_phase->C, 3) AndINode(e, va_msk);
  1802   _phase->_igvn.register_new_node_with_optimizer(N);
  1803   _phase->set_ctrl(N, pre_ctrl);
  1805   //   substitute back into (1), so that new limit
  1806   //     lim = lim0 + N
  1807   Node* lim;
  1808   if (stride < 0) {
  1809     lim = new (_phase->C, 3) SubINode(lim0, N);
  1810   } else {
  1811     lim = new (_phase->C, 3) AddINode(lim0, N);
  1813   _phase->_igvn.register_new_node_with_optimizer(lim);
  1814   _phase->set_ctrl(lim, pre_ctrl);
  1815   Node* constrained =
  1816     (stride > 0) ? (Node*) new (_phase->C,3) MinINode(lim, orig_limit)
  1817                  : (Node*) new (_phase->C,3) MaxINode(lim, orig_limit);
  1818   _phase->_igvn.register_new_node_with_optimizer(constrained);
  1819   _phase->set_ctrl(constrained, pre_ctrl);
  1820   _igvn.hash_delete(pre_opaq);
  1821   pre_opaq->set_req(1, constrained);
  1824 //----------------------------get_pre_loop_end---------------------------
  1825 // Find pre loop end from main loop.  Returns null if none.
  1826 CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode *cl) {
  1827   Node *ctrl = cl->in(LoopNode::EntryControl);
  1828   if (!ctrl->is_IfTrue() && !ctrl->is_IfFalse()) return NULL;
  1829   Node *iffm = ctrl->in(0);
  1830   if (!iffm->is_If()) return NULL;
  1831   Node *p_f = iffm->in(0);
  1832   if (!p_f->is_IfFalse()) return NULL;
  1833   if (!p_f->in(0)->is_CountedLoopEnd()) return NULL;
  1834   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
  1835   if (!pre_end->loopnode()->is_pre_loop()) return NULL;
  1836   return pre_end;
  1840 //------------------------------init---------------------------
  1841 void SuperWord::init() {
  1842   _dg.init();
  1843   _packset.clear();
  1844   _disjoint_ptrs.clear();
  1845   _block.clear();
  1846   _data_entry.clear();
  1847   _mem_slice_head.clear();
  1848   _mem_slice_tail.clear();
  1849   _node_info.clear();
  1850   _align_to_ref = NULL;
  1851   _lpt = NULL;
  1852   _lp = NULL;
  1853   _bb = NULL;
  1854   _iv = NULL;
  1857 //------------------------------print_packset---------------------------
  1858 void SuperWord::print_packset() {
  1859 #ifndef PRODUCT
  1860   tty->print_cr("packset");
  1861   for (int i = 0; i < _packset.length(); i++) {
  1862     tty->print_cr("Pack: %d", i);
  1863     Node_List* p = _packset.at(i);
  1864     print_pack(p);
  1866 #endif
  1869 //------------------------------print_pack---------------------------
  1870 void SuperWord::print_pack(Node_List* p) {
  1871   for (uint i = 0; i < p->size(); i++) {
  1872     print_stmt(p->at(i));
  1876 //------------------------------print_bb---------------------------
  1877 void SuperWord::print_bb() {
  1878 #ifndef PRODUCT
  1879   tty->print_cr("\nBlock");
  1880   for (int i = 0; i < _block.length(); i++) {
  1881     Node* n = _block.at(i);
  1882     tty->print("%d ", i);
  1883     if (n) {
  1884       n->dump();
  1887 #endif
  1890 //------------------------------print_stmt---------------------------
  1891 void SuperWord::print_stmt(Node* s) {
  1892 #ifndef PRODUCT
  1893   tty->print(" align: %d \t", alignment(s));
  1894   s->dump();
  1895 #endif
  1898 //------------------------------blank---------------------------
  1899 char* SuperWord::blank(uint depth) {
  1900   static char blanks[101];
  1901   assert(depth < 101, "too deep");
  1902   for (uint i = 0; i < depth; i++) blanks[i] = ' ';
  1903   blanks[depth] = '\0';
  1904   return blanks;
  1908 //==============================SWPointer===========================
  1910 //----------------------------SWPointer------------------------
  1911 SWPointer::SWPointer(MemNode* mem, SuperWord* slp) :
  1912   _mem(mem), _slp(slp),  _base(NULL),  _adr(NULL),
  1913   _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {
  1915   Node* adr = mem->in(MemNode::Address);
  1916   if (!adr->is_AddP()) {
  1917     assert(!valid(), "too complex");
  1918     return;
  1920   // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant)
  1921   Node* base = adr->in(AddPNode::Base);
  1922   for (int i = 0; i < 3; i++) {
  1923     if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) {
  1924       assert(!valid(), "too complex");
  1925       return;
  1927     adr = adr->in(AddPNode::Address);
  1928     if (base == adr || !adr->is_AddP()) {
  1929       break; // stop looking at addp's
  1932   _base = base;
  1933   _adr  = adr;
  1934   assert(valid(), "Usable");
  1937 // Following is used to create a temporary object during
  1938 // the pattern match of an address expression.
  1939 SWPointer::SWPointer(SWPointer* p) :
  1940   _mem(p->_mem), _slp(p->_slp),  _base(NULL),  _adr(NULL),
  1941   _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {}
  1943 //------------------------scaled_iv_plus_offset--------------------
  1944 // Match: k*iv + offset
  1945 // where: k is a constant that maybe zero, and
  1946 //        offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional
  1947 bool SWPointer::scaled_iv_plus_offset(Node* n) {
  1948   if (scaled_iv(n)) {
  1949     return true;
  1951   if (offset_plus_k(n)) {
  1952     return true;
  1954   int opc = n->Opcode();
  1955   if (opc == Op_AddI) {
  1956     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) {
  1957       return true;
  1959     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
  1960       return true;
  1962   } else if (opc == Op_SubI) {
  1963     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) {
  1964       return true;
  1966     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
  1967       _scale *= -1;
  1968       return true;
  1971   return false;
  1974 //----------------------------scaled_iv------------------------
  1975 // Match: k*iv where k is a constant that's not zero
  1976 bool SWPointer::scaled_iv(Node* n) {
  1977   if (_scale != 0) {
  1978     return false;  // already found a scale
  1980   if (n == iv()) {
  1981     _scale = 1;
  1982     return true;
  1984   int opc = n->Opcode();
  1985   if (opc == Op_MulI) {
  1986     if (n->in(1) == iv() && n->in(2)->is_Con()) {
  1987       _scale = n->in(2)->get_int();
  1988       return true;
  1989     } else if (n->in(2) == iv() && n->in(1)->is_Con()) {
  1990       _scale = n->in(1)->get_int();
  1991       return true;
  1993   } else if (opc == Op_LShiftI) {
  1994     if (n->in(1) == iv() && n->in(2)->is_Con()) {
  1995       _scale = 1 << n->in(2)->get_int();
  1996       return true;
  1998   } else if (opc == Op_ConvI2L) {
  1999     if (scaled_iv_plus_offset(n->in(1))) {
  2000       return true;
  2002   } else if (opc == Op_LShiftL) {
  2003     if (!has_iv() && _invar == NULL) {
  2004       // Need to preserve the current _offset value, so
  2005       // create a temporary object for this expression subtree.
  2006       // Hacky, so should re-engineer the address pattern match.
  2007       SWPointer tmp(this);
  2008       if (tmp.scaled_iv_plus_offset(n->in(1))) {
  2009         if (tmp._invar == NULL) {
  2010           int mult = 1 << n->in(2)->get_int();
  2011           _scale   = tmp._scale  * mult;
  2012           _offset += tmp._offset * mult;
  2013           return true;
  2018   return false;
  2021 //----------------------------offset_plus_k------------------------
  2022 // Match: offset is (k [+/- invariant])
  2023 // where k maybe zero and invariant is optional, but not both.
  2024 bool SWPointer::offset_plus_k(Node* n, bool negate) {
  2025   int opc = n->Opcode();
  2026   if (opc == Op_ConI) {
  2027     _offset += negate ? -(n->get_int()) : n->get_int();
  2028     return true;
  2029   } else if (opc == Op_ConL) {
  2030     // Okay if value fits into an int
  2031     const TypeLong* t = n->find_long_type();
  2032     if (t->higher_equal(TypeLong::INT)) {
  2033       jlong loff = n->get_long();
  2034       jint  off  = (jint)loff;
  2035       _offset += negate ? -off : loff;
  2036       return true;
  2038     return false;
  2040   if (_invar != NULL) return false; // already have an invariant
  2041   if (opc == Op_AddI) {
  2042     if (n->in(2)->is_Con() && invariant(n->in(1))) {
  2043       _negate_invar = negate;
  2044       _invar = n->in(1);
  2045       _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
  2046       return true;
  2047     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
  2048       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
  2049       _negate_invar = negate;
  2050       _invar = n->in(2);
  2051       return true;
  2054   if (opc == Op_SubI) {
  2055     if (n->in(2)->is_Con() && invariant(n->in(1))) {
  2056       _negate_invar = negate;
  2057       _invar = n->in(1);
  2058       _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
  2059       return true;
  2060     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
  2061       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
  2062       _negate_invar = !negate;
  2063       _invar = n->in(2);
  2064       return true;
  2067   if (invariant(n)) {
  2068     _negate_invar = negate;
  2069     _invar = n;
  2070     return true;
  2072   return false;
  2075 //----------------------------print------------------------
  2076 void SWPointer::print() {
  2077 #ifndef PRODUCT
  2078   tty->print("base: %d  adr: %d  scale: %d  offset: %d  invar: %c%d\n",
  2079              _base != NULL ? _base->_idx : 0,
  2080              _adr  != NULL ? _adr->_idx  : 0,
  2081              _scale, _offset,
  2082              _negate_invar?'-':'+',
  2083              _invar != NULL ? _invar->_idx : 0);
  2084 #endif
  2087 // ========================= OrderedPair =====================
  2089 const OrderedPair OrderedPair::initial;
  2091 // ========================= SWNodeInfo =====================
  2093 const SWNodeInfo SWNodeInfo::initial;
  2096 // ============================ DepGraph ===========================
  2098 //------------------------------make_node---------------------------
  2099 // Make a new dependence graph node for an ideal node.
  2100 DepMem* DepGraph::make_node(Node* node) {
  2101   DepMem* m = new (_arena) DepMem(node);
  2102   if (node != NULL) {
  2103     assert(_map.at_grow(node->_idx) == NULL, "one init only");
  2104     _map.at_put_grow(node->_idx, m);
  2106   return m;
  2109 //------------------------------make_edge---------------------------
  2110 // Make a new dependence graph edge from dpred -> dsucc
  2111 DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) {
  2112   DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head());
  2113   dpred->set_out_head(e);
  2114   dsucc->set_in_head(e);
  2115   return e;
  2118 // ========================== DepMem ========================
  2120 //------------------------------in_cnt---------------------------
  2121 int DepMem::in_cnt() {
  2122   int ct = 0;
  2123   for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++;
  2124   return ct;
  2127 //------------------------------out_cnt---------------------------
  2128 int DepMem::out_cnt() {
  2129   int ct = 0;
  2130   for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++;
  2131   return ct;
  2134 //------------------------------print-----------------------------
  2135 void DepMem::print() {
  2136 #ifndef PRODUCT
  2137   tty->print("  DepNode %d (", _node->_idx);
  2138   for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) {
  2139     Node* pred = p->pred()->node();
  2140     tty->print(" %d", pred != NULL ? pred->_idx : 0);
  2142   tty->print(") [");
  2143   for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) {
  2144     Node* succ = s->succ()->node();
  2145     tty->print(" %d", succ != NULL ? succ->_idx : 0);
  2147   tty->print_cr(" ]");
  2148 #endif
  2151 // =========================== DepEdge =========================
  2153 //------------------------------DepPreds---------------------------
  2154 void DepEdge::print() {
  2155 #ifndef PRODUCT
  2156   tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx);
  2157 #endif
  2160 // =========================== DepPreds =========================
  2161 // Iterator over predecessor edges in the dependence graph.
  2163 //------------------------------DepPreds---------------------------
  2164 DepPreds::DepPreds(Node* n, DepGraph& dg) {
  2165   _n = n;
  2166   _done = false;
  2167   if (_n->is_Store() || _n->is_Load()) {
  2168     _next_idx = MemNode::Address;
  2169     _end_idx  = n->req();
  2170     _dep_next = dg.dep(_n)->in_head();
  2171   } else if (_n->is_Mem()) {
  2172     _next_idx = 0;
  2173     _end_idx  = 0;
  2174     _dep_next = dg.dep(_n)->in_head();
  2175   } else {
  2176     _next_idx = 1;
  2177     _end_idx  = _n->req();
  2178     _dep_next = NULL;
  2180   next();
  2183 //------------------------------next---------------------------
  2184 void DepPreds::next() {
  2185   if (_dep_next != NULL) {
  2186     _current  = _dep_next->pred()->node();
  2187     _dep_next = _dep_next->next_in();
  2188   } else if (_next_idx < _end_idx) {
  2189     _current  = _n->in(_next_idx++);
  2190   } else {
  2191     _done = true;
  2195 // =========================== DepSuccs =========================
  2196 // Iterator over successor edges in the dependence graph.
  2198 //------------------------------DepSuccs---------------------------
  2199 DepSuccs::DepSuccs(Node* n, DepGraph& dg) {
  2200   _n = n;
  2201   _done = false;
  2202   if (_n->is_Load()) {
  2203     _next_idx = 0;
  2204     _end_idx  = _n->outcnt();
  2205     _dep_next = dg.dep(_n)->out_head();
  2206   } else if (_n->is_Mem() || _n->is_Phi() && _n->bottom_type() == Type::MEMORY) {
  2207     _next_idx = 0;
  2208     _end_idx  = 0;
  2209     _dep_next = dg.dep(_n)->out_head();
  2210   } else {
  2211     _next_idx = 0;
  2212     _end_idx  = _n->outcnt();
  2213     _dep_next = NULL;
  2215   next();
  2218 //-------------------------------next---------------------------
  2219 void DepSuccs::next() {
  2220   if (_dep_next != NULL) {
  2221     _current  = _dep_next->succ()->node();
  2222     _dep_next = _dep_next->next_out();
  2223   } else if (_next_idx < _end_idx) {
  2224     _current  = _n->raw_out(_next_idx++);
  2225   } else {
  2226     _done = true;

mercurial