src/share/vm/gc_interface/collectedHeap.hpp

Mon, 26 Sep 2011 10:24:05 -0700

author
kvn
date
Mon, 26 Sep 2011 10:24:05 -0700
changeset 3157
a92cdbac8b9e
parent 2971
c9ca3f51cf41
child 3205
e5928e7dab26
permissions
-rw-r--r--

7081933: Use zeroing elimination optimization for large array
Summary: Don't zero new typeArray during runtime call if the allocation is followed by arraycopy into it.
Reviewed-by: twisti

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP
    26 #define SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP
    28 #include "gc_interface/gcCause.hpp"
    29 #include "memory/allocation.hpp"
    30 #include "memory/barrierSet.hpp"
    31 #include "runtime/handles.hpp"
    32 #include "runtime/perfData.hpp"
    33 #include "runtime/safepoint.hpp"
    35 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
    36 // is an abstract class: there may be many different kinds of heaps.  This
    37 // class defines the functions that a heap must implement, and contains
    38 // infrastructure common to all heaps.
    40 class BarrierSet;
    41 class ThreadClosure;
    42 class AdaptiveSizePolicy;
    43 class Thread;
    44 class CollectorPolicy;
    46 //
    47 // CollectedHeap
    48 //   SharedHeap
    49 //     GenCollectedHeap
    50 //     G1CollectedHeap
    51 //   ParallelScavengeHeap
    52 //
    53 class CollectedHeap : public CHeapObj {
    54   friend class VMStructs;
    55   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
    56   friend class constantPoolCacheKlass; // allocate() method inserts is_conc_safe
    58 #ifdef ASSERT
    59   static int       _fire_out_of_memory_count;
    60 #endif
    62   // Used for filler objects (static, but initialized in ctor).
    63   static size_t _filler_array_max_size;
    65   // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2 is being used
    66   bool _defer_initial_card_mark;
    68  protected:
    69   MemRegion _reserved;
    70   BarrierSet* _barrier_set;
    71   bool _is_gc_active;
    72   int _n_par_threads;
    74   unsigned int _total_collections;          // ... started
    75   unsigned int _total_full_collections;     // ... started
    76   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
    77   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
    79   // Reason for current garbage collection.  Should be set to
    80   // a value reflecting no collection between collections.
    81   GCCause::Cause _gc_cause;
    82   GCCause::Cause _gc_lastcause;
    83   PerfStringVariable* _perf_gc_cause;
    84   PerfStringVariable* _perf_gc_lastcause;
    86   // Constructor
    87   CollectedHeap();
    89   // Do common initializations that must follow instance construction,
    90   // for example, those needing virtual calls.
    91   // This code could perhaps be moved into initialize() but would
    92   // be slightly more awkward because we want the latter to be a
    93   // pure virtual.
    94   void pre_initialize();
    96   // Create a new tlab. All TLAB allocations must go through this.
    97   virtual HeapWord* allocate_new_tlab(size_t size);
    99   // Accumulate statistics on all tlabs.
   100   virtual void accumulate_statistics_all_tlabs();
   102   // Reinitialize tlabs before resuming mutators.
   103   virtual void resize_all_tlabs();
   105  protected:
   106   // Allocate from the current thread's TLAB, with broken-out slow path.
   107   inline static HeapWord* allocate_from_tlab(Thread* thread, size_t size);
   108   static HeapWord* allocate_from_tlab_slow(Thread* thread, size_t size);
   110   // Allocate an uninitialized block of the given size, or returns NULL if
   111   // this is impossible.
   112   inline static HeapWord* common_mem_allocate_noinit(size_t size, TRAPS);
   114   // Like allocate_init, but the block returned by a successful allocation
   115   // is guaranteed initialized to zeros.
   116   inline static HeapWord* common_mem_allocate_init(size_t size, TRAPS);
   118   // Same as common_mem version, except memory is allocated in the permanent area
   119   // If there is no permanent area, revert to common_mem_allocate_noinit
   120   inline static HeapWord* common_permanent_mem_allocate_noinit(size_t size, TRAPS);
   122   // Same as common_mem version, except memory is allocated in the permanent area
   123   // If there is no permanent area, revert to common_mem_allocate_init
   124   inline static HeapWord* common_permanent_mem_allocate_init(size_t size, TRAPS);
   126   // Helper functions for (VM) allocation.
   127   inline static void post_allocation_setup_common(KlassHandle klass,
   128                                                   HeapWord* obj, size_t size);
   129   inline static void post_allocation_setup_no_klass_install(KlassHandle klass,
   130                                                             HeapWord* objPtr,
   131                                                             size_t size);
   133   inline static void post_allocation_setup_obj(KlassHandle klass,
   134                                                HeapWord* obj, size_t size);
   136   inline static void post_allocation_setup_array(KlassHandle klass,
   137                                                  HeapWord* obj, size_t size,
   138                                                  int length);
   140   // Clears an allocated object.
   141   inline static void init_obj(HeapWord* obj, size_t size);
   143   // Filler object utilities.
   144   static inline size_t filler_array_hdr_size();
   145   static inline size_t filler_array_min_size();
   146   static inline size_t filler_array_max_size();
   148   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
   149   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
   151   // Fill with a single array; caller must ensure filler_array_min_size() <=
   152   // words <= filler_array_max_size().
   153   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
   155   // Fill with a single object (either an int array or a java.lang.Object).
   156   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
   158   // Verification functions
   159   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
   160     PRODUCT_RETURN;
   161   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
   162     PRODUCT_RETURN;
   163   debug_only(static void check_for_valid_allocation_state();)
   165  public:
   166   enum Name {
   167     Abstract,
   168     SharedHeap,
   169     GenCollectedHeap,
   170     ParallelScavengeHeap,
   171     G1CollectedHeap
   172   };
   174   virtual CollectedHeap::Name kind() const { return CollectedHeap::Abstract; }
   176   /**
   177    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
   178    * and JNI_OK on success.
   179    */
   180   virtual jint initialize() = 0;
   182   // In many heaps, there will be a need to perform some initialization activities
   183   // after the Universe is fully formed, but before general heap allocation is allowed.
   184   // This is the correct place to place such initialization methods.
   185   virtual void post_initialize() = 0;
   187   MemRegion reserved_region() const { return _reserved; }
   188   address base() const { return (address)reserved_region().start(); }
   190   // Future cleanup here. The following functions should specify bytes or
   191   // heapwords as part of their signature.
   192   virtual size_t capacity() const = 0;
   193   virtual size_t used() const = 0;
   195   // Return "true" if the part of the heap that allocates Java
   196   // objects has reached the maximal committed limit that it can
   197   // reach, without a garbage collection.
   198   virtual bool is_maximal_no_gc() const = 0;
   200   virtual size_t permanent_capacity() const = 0;
   201   virtual size_t permanent_used() const = 0;
   203   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
   204   // memory that the vm could make available for storing 'normal' java objects.
   205   // This is based on the reserved address space, but should not include space
   206   // that the vm uses internally for bookkeeping or temporary storage (e.g.,
   207   // perm gen space or, in the case of the young gen, one of the survivor
   208   // spaces).
   209   virtual size_t max_capacity() const = 0;
   211   // Returns "TRUE" if "p" points into the reserved area of the heap.
   212   bool is_in_reserved(const void* p) const {
   213     return _reserved.contains(p);
   214   }
   216   bool is_in_reserved_or_null(const void* p) const {
   217     return p == NULL || is_in_reserved(p);
   218   }
   220   // Returns "TRUE" if "p" points to the head of an allocated object in the
   221   // heap. Since this method can be expensive in general, we restrict its
   222   // use to assertion checking only.
   223   virtual bool is_in(const void* p) const = 0;
   225   bool is_in_or_null(const void* p) const {
   226     return p == NULL || is_in(p);
   227   }
   229   // Let's define some terms: a "closed" subset of a heap is one that
   230   //
   231   // 1) contains all currently-allocated objects, and
   232   //
   233   // 2) is closed under reference: no object in the closed subset
   234   //    references one outside the closed subset.
   235   //
   236   // Membership in a heap's closed subset is useful for assertions.
   237   // Clearly, the entire heap is a closed subset, so the default
   238   // implementation is to use "is_in_reserved".  But this may not be too
   239   // liberal to perform useful checking.  Also, the "is_in" predicate
   240   // defines a closed subset, but may be too expensive, since "is_in"
   241   // verifies that its argument points to an object head.  The
   242   // "closed_subset" method allows a heap to define an intermediate
   243   // predicate, allowing more precise checking than "is_in_reserved" at
   244   // lower cost than "is_in."
   246   // One important case is a heap composed of disjoint contiguous spaces,
   247   // such as the Garbage-First collector.  Such heaps have a convenient
   248   // closed subset consisting of the allocated portions of those
   249   // contiguous spaces.
   251   // Return "TRUE" iff the given pointer points into the heap's defined
   252   // closed subset (which defaults to the entire heap).
   253   virtual bool is_in_closed_subset(const void* p) const {
   254     return is_in_reserved(p);
   255   }
   257   bool is_in_closed_subset_or_null(const void* p) const {
   258     return p == NULL || is_in_closed_subset(p);
   259   }
   261   // XXX is_permanent() and is_in_permanent() should be better named
   262   // to distinguish one from the other.
   264   // Returns "TRUE" if "p" is allocated as "permanent" data.
   265   // If the heap does not use "permanent" data, returns the same
   266   // value is_in_reserved() would return.
   267   // NOTE: this actually returns true if "p" is in reserved space
   268   // for the space not that it is actually allocated (i.e. in committed
   269   // space). If you need the more conservative answer use is_permanent().
   270   virtual bool is_in_permanent(const void *p) const = 0;
   273 #ifdef ASSERT
   274   // Returns true if "p" is in the part of the
   275   // heap being collected.
   276   virtual bool is_in_partial_collection(const void *p) = 0;
   277 #endif
   279   bool is_in_permanent_or_null(const void *p) const {
   280     return p == NULL || is_in_permanent(p);
   281   }
   283   // Returns "TRUE" if "p" is in the committed area of  "permanent" data.
   284   // If the heap does not use "permanent" data, returns the same
   285   // value is_in() would return.
   286   virtual bool is_permanent(const void *p) const = 0;
   288   bool is_permanent_or_null(const void *p) const {
   289     return p == NULL || is_permanent(p);
   290   }
   292   // An object is scavengable if its location may move during a scavenge.
   293   // (A scavenge is a GC which is not a full GC.)
   294   virtual bool is_scavengable(const void *p) = 0;
   296   // Returns "TRUE" if "p" is a method oop in the
   297   // current heap, with high probability. This predicate
   298   // is not stable, in general.
   299   bool is_valid_method(oop p) const;
   301   void set_gc_cause(GCCause::Cause v) {
   302      if (UsePerfData) {
   303        _gc_lastcause = _gc_cause;
   304        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
   305        _perf_gc_cause->set_value(GCCause::to_string(v));
   306      }
   307     _gc_cause = v;
   308   }
   309   GCCause::Cause gc_cause() { return _gc_cause; }
   311   // Number of threads currently working on GC tasks.
   312   int n_par_threads() { return _n_par_threads; }
   314   // May be overridden to set additional parallelism.
   315   virtual void set_par_threads(int t) { _n_par_threads = t; };
   317   // Preload classes into the shared portion of the heap, and then dump
   318   // that data to a file so that it can be loaded directly by another
   319   // VM (then terminate).
   320   virtual void preload_and_dump(TRAPS) { ShouldNotReachHere(); }
   322   // General obj/array allocation facilities.
   323   inline static oop obj_allocate(KlassHandle klass, int size, TRAPS);
   324   inline static oop array_allocate(KlassHandle klass, int size, int length, TRAPS);
   325   inline static oop array_allocate_nozero(KlassHandle klass, int size, int length, TRAPS);
   327   // Special obj/array allocation facilities.
   328   // Some heaps may want to manage "permanent" data uniquely. These default
   329   // to the general routines if the heap does not support such handling.
   330   inline static oop permanent_obj_allocate(KlassHandle klass, int size, TRAPS);
   331   // permanent_obj_allocate_no_klass_install() does not do the installation of
   332   // the klass pointer in the newly created object (as permanent_obj_allocate()
   333   // above does).  This allows for a delay in the installation of the klass
   334   // pointer that is needed during the create of klassKlass's.  The
   335   // method post_allocation_install_obj_klass() is used to install the
   336   // klass pointer.
   337   inline static oop permanent_obj_allocate_no_klass_install(KlassHandle klass,
   338                                                             int size,
   339                                                             TRAPS);
   340   inline static void post_allocation_install_obj_klass(KlassHandle klass,
   341                                                        oop obj,
   342                                                        int size);
   343   inline static oop permanent_array_allocate(KlassHandle klass, int size, int length, TRAPS);
   345   // Raw memory allocation facilities
   346   // The obj and array allocate methods are covers for these methods.
   347   // The permanent allocation method should default to mem_allocate if
   348   // permanent memory isn't supported. mem_allocate() should never be
   349   // called to allocate TLABs, only individual objects.
   350   virtual HeapWord* mem_allocate(size_t size,
   351                                  bool* gc_overhead_limit_was_exceeded) = 0;
   352   virtual HeapWord* permanent_mem_allocate(size_t size) = 0;
   354   // Utilities for turning raw memory into filler objects.
   355   //
   356   // min_fill_size() is the smallest region that can be filled.
   357   // fill_with_objects() can fill arbitrary-sized regions of the heap using
   358   // multiple objects.  fill_with_object() is for regions known to be smaller
   359   // than the largest array of integers; it uses a single object to fill the
   360   // region and has slightly less overhead.
   361   static size_t min_fill_size() {
   362     return size_t(align_object_size(oopDesc::header_size()));
   363   }
   365   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
   367   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
   368   static void fill_with_object(MemRegion region, bool zap = true) {
   369     fill_with_object(region.start(), region.word_size(), zap);
   370   }
   371   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
   372     fill_with_object(start, pointer_delta(end, start), zap);
   373   }
   375   // Some heaps may offer a contiguous region for shared non-blocking
   376   // allocation, via inlined code (by exporting the address of the top and
   377   // end fields defining the extent of the contiguous allocation region.)
   379   // This function returns "true" iff the heap supports this kind of
   380   // allocation.  (Default is "no".)
   381   virtual bool supports_inline_contig_alloc() const {
   382     return false;
   383   }
   384   // These functions return the addresses of the fields that define the
   385   // boundaries of the contiguous allocation area.  (These fields should be
   386   // physically near to one another.)
   387   virtual HeapWord** top_addr() const {
   388     guarantee(false, "inline contiguous allocation not supported");
   389     return NULL;
   390   }
   391   virtual HeapWord** end_addr() const {
   392     guarantee(false, "inline contiguous allocation not supported");
   393     return NULL;
   394   }
   396   // Some heaps may be in an unparseable state at certain times between
   397   // collections. This may be necessary for efficient implementation of
   398   // certain allocation-related activities. Calling this function before
   399   // attempting to parse a heap ensures that the heap is in a parsable
   400   // state (provided other concurrent activity does not introduce
   401   // unparsability). It is normally expected, therefore, that this
   402   // method is invoked with the world stopped.
   403   // NOTE: if you override this method, make sure you call
   404   // super::ensure_parsability so that the non-generational
   405   // part of the work gets done. See implementation of
   406   // CollectedHeap::ensure_parsability and, for instance,
   407   // that of GenCollectedHeap::ensure_parsability().
   408   // The argument "retire_tlabs" controls whether existing TLABs
   409   // are merely filled or also retired, thus preventing further
   410   // allocation from them and necessitating allocation of new TLABs.
   411   virtual void ensure_parsability(bool retire_tlabs);
   413   // Return an estimate of the maximum allocation that could be performed
   414   // without triggering any collection or expansion activity.  In a
   415   // generational collector, for example, this is probably the largest
   416   // allocation that could be supported (without expansion) in the youngest
   417   // generation.  It is "unsafe" because no locks are taken; the result
   418   // should be treated as an approximation, not a guarantee, for use in
   419   // heuristic resizing decisions.
   420   virtual size_t unsafe_max_alloc() = 0;
   422   // Section on thread-local allocation buffers (TLABs)
   423   // If the heap supports thread-local allocation buffers, it should override
   424   // the following methods:
   425   // Returns "true" iff the heap supports thread-local allocation buffers.
   426   // The default is "no".
   427   virtual bool supports_tlab_allocation() const {
   428     return false;
   429   }
   430   // The amount of space available for thread-local allocation buffers.
   431   virtual size_t tlab_capacity(Thread *thr) const {
   432     guarantee(false, "thread-local allocation buffers not supported");
   433     return 0;
   434   }
   435   // An estimate of the maximum allocation that could be performed
   436   // for thread-local allocation buffers without triggering any
   437   // collection or expansion activity.
   438   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
   439     guarantee(false, "thread-local allocation buffers not supported");
   440     return 0;
   441   }
   443   // Can a compiler initialize a new object without store barriers?
   444   // This permission only extends from the creation of a new object
   445   // via a TLAB up to the first subsequent safepoint. If such permission
   446   // is granted for this heap type, the compiler promises to call
   447   // defer_store_barrier() below on any slow path allocation of
   448   // a new object for which such initializing store barriers will
   449   // have been elided.
   450   virtual bool can_elide_tlab_store_barriers() const = 0;
   452   // If a compiler is eliding store barriers for TLAB-allocated objects,
   453   // there is probably a corresponding slow path which can produce
   454   // an object allocated anywhere.  The compiler's runtime support
   455   // promises to call this function on such a slow-path-allocated
   456   // object before performing initializations that have elided
   457   // store barriers. Returns new_obj, or maybe a safer copy thereof.
   458   virtual oop new_store_pre_barrier(JavaThread* thread, oop new_obj);
   460   // Answers whether an initializing store to a new object currently
   461   // allocated at the given address doesn't need a store
   462   // barrier. Returns "true" if it doesn't need an initializing
   463   // store barrier; answers "false" if it does.
   464   virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0;
   466   // If a compiler is eliding store barriers for TLAB-allocated objects,
   467   // we will be informed of a slow-path allocation by a call
   468   // to new_store_pre_barrier() above. Such a call precedes the
   469   // initialization of the object itself, and no post-store-barriers will
   470   // be issued. Some heap types require that the barrier strictly follows
   471   // the initializing stores. (This is currently implemented by deferring the
   472   // barrier until the next slow-path allocation or gc-related safepoint.)
   473   // This interface answers whether a particular heap type needs the card
   474   // mark to be thus strictly sequenced after the stores.
   475   virtual bool card_mark_must_follow_store() const = 0;
   477   // If the CollectedHeap was asked to defer a store barrier above,
   478   // this informs it to flush such a deferred store barrier to the
   479   // remembered set.
   480   virtual void flush_deferred_store_barrier(JavaThread* thread);
   482   // Can a compiler elide a store barrier when it writes
   483   // a permanent oop into the heap?  Applies when the compiler
   484   // is storing x to the heap, where x->is_perm() is true.
   485   virtual bool can_elide_permanent_oop_store_barriers() const = 0;
   487   // Does this heap support heap inspection (+PrintClassHistogram?)
   488   virtual bool supports_heap_inspection() const = 0;
   490   // Perform a collection of the heap; intended for use in implementing
   491   // "System.gc".  This probably implies as full a collection as the
   492   // "CollectedHeap" supports.
   493   virtual void collect(GCCause::Cause cause) = 0;
   495   // This interface assumes that it's being called by the
   496   // vm thread. It collects the heap assuming that the
   497   // heap lock is already held and that we are executing in
   498   // the context of the vm thread.
   499   virtual void collect_as_vm_thread(GCCause::Cause cause) = 0;
   501   // Returns the barrier set for this heap
   502   BarrierSet* barrier_set() { return _barrier_set; }
   504   // Returns "true" iff there is a stop-world GC in progress.  (I assume
   505   // that it should answer "false" for the concurrent part of a concurrent
   506   // collector -- dld).
   507   bool is_gc_active() const { return _is_gc_active; }
   509   // Total number of GC collections (started)
   510   unsigned int total_collections() const { return _total_collections; }
   511   unsigned int total_full_collections() const { return _total_full_collections;}
   513   // Increment total number of GC collections (started)
   514   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
   515   void increment_total_collections(bool full = false) {
   516     _total_collections++;
   517     if (full) {
   518       increment_total_full_collections();
   519     }
   520   }
   522   void increment_total_full_collections() { _total_full_collections++; }
   524   // Return the AdaptiveSizePolicy for the heap.
   525   virtual AdaptiveSizePolicy* size_policy() = 0;
   527   // Return the CollectorPolicy for the heap
   528   virtual CollectorPolicy* collector_policy() const = 0;
   530   // Iterate over all the ref-containing fields of all objects, calling
   531   // "cl.do_oop" on each. This includes objects in permanent memory.
   532   virtual void oop_iterate(OopClosure* cl) = 0;
   534   // Iterate over all objects, calling "cl.do_object" on each.
   535   // This includes objects in permanent memory.
   536   virtual void object_iterate(ObjectClosure* cl) = 0;
   538   // Similar to object_iterate() except iterates only
   539   // over live objects.
   540   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
   542   // Behaves the same as oop_iterate, except only traverses
   543   // interior pointers contained in permanent memory. If there
   544   // is no permanent memory, does nothing.
   545   virtual void permanent_oop_iterate(OopClosure* cl) = 0;
   547   // Behaves the same as object_iterate, except only traverses
   548   // object contained in permanent memory. If there is no
   549   // permanent memory, does nothing.
   550   virtual void permanent_object_iterate(ObjectClosure* cl) = 0;
   552   // NOTE! There is no requirement that a collector implement these
   553   // functions.
   554   //
   555   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
   556   // each address in the (reserved) heap is a member of exactly
   557   // one block.  The defining characteristic of a block is that it is
   558   // possible to find its size, and thus to progress forward to the next
   559   // block.  (Blocks may be of different sizes.)  Thus, blocks may
   560   // represent Java objects, or they might be free blocks in a
   561   // free-list-based heap (or subheap), as long as the two kinds are
   562   // distinguishable and the size of each is determinable.
   564   // Returns the address of the start of the "block" that contains the
   565   // address "addr".  We say "blocks" instead of "object" since some heaps
   566   // may not pack objects densely; a chunk may either be an object or a
   567   // non-object.
   568   virtual HeapWord* block_start(const void* addr) const = 0;
   570   // Requires "addr" to be the start of a chunk, and returns its size.
   571   // "addr + size" is required to be the start of a new chunk, or the end
   572   // of the active area of the heap.
   573   virtual size_t block_size(const HeapWord* addr) const = 0;
   575   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   576   // the block is an object.
   577   virtual bool block_is_obj(const HeapWord* addr) const = 0;
   579   // Returns the longest time (in ms) that has elapsed since the last
   580   // time that any part of the heap was examined by a garbage collection.
   581   virtual jlong millis_since_last_gc() = 0;
   583   // Perform any cleanup actions necessary before allowing a verification.
   584   virtual void prepare_for_verify() = 0;
   586   // Generate any dumps preceding or following a full gc
   587   void pre_full_gc_dump();
   588   void post_full_gc_dump();
   590   virtual void print() const = 0;
   591   virtual void print_on(outputStream* st) const = 0;
   593   // Print all GC threads (other than the VM thread)
   594   // used by this heap.
   595   virtual void print_gc_threads_on(outputStream* st) const = 0;
   596   void print_gc_threads() { print_gc_threads_on(tty); }
   597   // Iterator for all GC threads (other than VM thread)
   598   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
   600   // Print any relevant tracing info that flags imply.
   601   // Default implementation does nothing.
   602   virtual void print_tracing_info() const = 0;
   604   // Heap verification
   605   virtual void verify(bool allow_dirty, bool silent, VerifyOption option) = 0;
   607   // Non product verification and debugging.
   608 #ifndef PRODUCT
   609   // Support for PromotionFailureALot.  Return true if it's time to cause a
   610   // promotion failure.  The no-argument version uses
   611   // this->_promotion_failure_alot_count as the counter.
   612   inline bool promotion_should_fail(volatile size_t* count);
   613   inline bool promotion_should_fail();
   615   // Reset the PromotionFailureALot counters.  Should be called at the end of a
   616   // GC in which promotion failure ocurred.
   617   inline void reset_promotion_should_fail(volatile size_t* count);
   618   inline void reset_promotion_should_fail();
   619 #endif  // #ifndef PRODUCT
   621 #ifdef ASSERT
   622   static int fired_fake_oom() {
   623     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
   624   }
   625 #endif
   627  public:
   628   // This is a convenience method that is used in cases where
   629   // the actual number of GC worker threads is not pertinent but
   630   // only whether there more than 0.  Use of this method helps
   631   // reduce the occurrence of ParallelGCThreads to uses where the
   632   // actual number may be germane.
   633   static bool use_parallel_gc_threads() { return ParallelGCThreads > 0; }
   634 };
   636 // Class to set and reset the GC cause for a CollectedHeap.
   638 class GCCauseSetter : StackObj {
   639   CollectedHeap* _heap;
   640   GCCause::Cause _previous_cause;
   641  public:
   642   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
   643     assert(SafepointSynchronize::is_at_safepoint(),
   644            "This method manipulates heap state without locking");
   645     _heap = heap;
   646     _previous_cause = _heap->gc_cause();
   647     _heap->set_gc_cause(cause);
   648   }
   650   ~GCCauseSetter() {
   651     assert(SafepointSynchronize::is_at_safepoint(),
   652           "This method manipulates heap state without locking");
   653     _heap->set_gc_cause(_previous_cause);
   654   }
   655 };
   657 #endif // SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP

mercurial