src/share/vm/memory/defNewGeneration.cpp

Sat, 23 Oct 2010 23:03:49 -0700

author
ysr
date
Sat, 23 Oct 2010 23:03:49 -0700
changeset 2243
a7214d79fcf1
parent 2191
894b1d7c7e01
child 2244
c766bae6c14d
permissions
-rw-r--r--

6896603: CMS/GCH: collection_attempt_is_safe() ergo should use more recent data
Summary: Deprecated HandlePromotionFailure, removing the ability to turn off that feature, did away with one epoch look-ahead when deciding if a scavenge is likely to fail, relying on current data.
Reviewed-by: jmasa, johnc, poonam

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_defNewGeneration.cpp.incl"
    28 //
    29 // DefNewGeneration functions.
    31 // Methods of protected closure types.
    33 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* g) : _g(g) {
    34   assert(g->level() == 0, "Optimized for youngest gen.");
    35 }
    36 void DefNewGeneration::IsAliveClosure::do_object(oop p) {
    37   assert(false, "Do not call.");
    38 }
    39 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
    40   return (HeapWord*)p >= _g->reserved().end() || p->is_forwarded();
    41 }
    43 DefNewGeneration::KeepAliveClosure::
    44 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
    45   GenRemSet* rs = GenCollectedHeap::heap()->rem_set();
    46   assert(rs->rs_kind() == GenRemSet::CardTable, "Wrong rem set kind.");
    47   _rs = (CardTableRS*)rs;
    48 }
    50 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
    51 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
    54 DefNewGeneration::FastKeepAliveClosure::
    55 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
    56   DefNewGeneration::KeepAliveClosure(cl) {
    57   _boundary = g->reserved().end();
    58 }
    60 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
    61 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
    63 DefNewGeneration::EvacuateFollowersClosure::
    64 EvacuateFollowersClosure(GenCollectedHeap* gch, int level,
    65                          ScanClosure* cur, ScanClosure* older) :
    66   _gch(gch), _level(level),
    67   _scan_cur_or_nonheap(cur), _scan_older(older)
    68 {}
    70 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
    71   do {
    72     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
    73                                        _scan_older);
    74   } while (!_gch->no_allocs_since_save_marks(_level));
    75 }
    77 DefNewGeneration::FastEvacuateFollowersClosure::
    78 FastEvacuateFollowersClosure(GenCollectedHeap* gch, int level,
    79                              DefNewGeneration* gen,
    80                              FastScanClosure* cur, FastScanClosure* older) :
    81   _gch(gch), _level(level), _gen(gen),
    82   _scan_cur_or_nonheap(cur), _scan_older(older)
    83 {}
    85 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
    86   do {
    87     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
    88                                        _scan_older);
    89   } while (!_gch->no_allocs_since_save_marks(_level));
    90   guarantee(_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
    91 }
    93 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
    94   OopsInGenClosure(g), _g(g), _gc_barrier(gc_barrier)
    95 {
    96   assert(_g->level() == 0, "Optimized for youngest generation");
    97   _boundary = _g->reserved().end();
    98 }
   100 void ScanClosure::do_oop(oop* p)       { ScanClosure::do_oop_work(p); }
   101 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
   103 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
   104   OopsInGenClosure(g), _g(g), _gc_barrier(gc_barrier)
   105 {
   106   assert(_g->level() == 0, "Optimized for youngest generation");
   107   _boundary = _g->reserved().end();
   108 }
   110 void FastScanClosure::do_oop(oop* p)       { FastScanClosure::do_oop_work(p); }
   111 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
   113 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
   114   OopClosure(g->ref_processor()), _g(g)
   115 {
   116   assert(_g->level() == 0, "Optimized for youngest generation");
   117   _boundary = _g->reserved().end();
   118 }
   120 void ScanWeakRefClosure::do_oop(oop* p)       { ScanWeakRefClosure::do_oop_work(p); }
   121 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
   123 void FilteringClosure::do_oop(oop* p)       { FilteringClosure::do_oop_work(p); }
   124 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
   126 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
   127                                    size_t initial_size,
   128                                    int level,
   129                                    const char* policy)
   130   : Generation(rs, initial_size, level),
   131     _promo_failure_drain_in_progress(false),
   132     _should_allocate_from_space(false)
   133 {
   134   MemRegion cmr((HeapWord*)_virtual_space.low(),
   135                 (HeapWord*)_virtual_space.high());
   136   Universe::heap()->barrier_set()->resize_covered_region(cmr);
   138   if (GenCollectedHeap::heap()->collector_policy()->has_soft_ended_eden()) {
   139     _eden_space = new ConcEdenSpace(this);
   140   } else {
   141     _eden_space = new EdenSpace(this);
   142   }
   143   _from_space = new ContiguousSpace();
   144   _to_space   = new ContiguousSpace();
   146   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL)
   147     vm_exit_during_initialization("Could not allocate a new gen space");
   149   // Compute the maximum eden and survivor space sizes. These sizes
   150   // are computed assuming the entire reserved space is committed.
   151   // These values are exported as performance counters.
   152   uintx alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
   153   uintx size = _virtual_space.reserved_size();
   154   _max_survivor_size = compute_survivor_size(size, alignment);
   155   _max_eden_size = size - (2*_max_survivor_size);
   157   // allocate the performance counters
   159   // Generation counters -- generation 0, 3 subspaces
   160   _gen_counters = new GenerationCounters("new", 0, 3, &_virtual_space);
   161   _gc_counters = new CollectorCounters(policy, 0);
   163   _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
   164                                       _gen_counters);
   165   _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
   166                                       _gen_counters);
   167   _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
   168                                     _gen_counters);
   170   compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
   171   update_counters();
   172   _next_gen = NULL;
   173   _tenuring_threshold = MaxTenuringThreshold;
   174   _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
   175 }
   177 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
   178                                                 bool clear_space,
   179                                                 bool mangle_space) {
   180   uintx alignment =
   181     GenCollectedHeap::heap()->collector_policy()->min_alignment();
   183   // If the spaces are being cleared (only done at heap initialization
   184   // currently), the survivor spaces need not be empty.
   185   // Otherwise, no care is taken for used areas in the survivor spaces
   186   // so check.
   187   assert(clear_space || (to()->is_empty() && from()->is_empty()),
   188     "Initialization of the survivor spaces assumes these are empty");
   190   // Compute sizes
   191   uintx size = _virtual_space.committed_size();
   192   uintx survivor_size = compute_survivor_size(size, alignment);
   193   uintx eden_size = size - (2*survivor_size);
   194   assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
   196   if (eden_size < minimum_eden_size) {
   197     // May happen due to 64Kb rounding, if so adjust eden size back up
   198     minimum_eden_size = align_size_up(minimum_eden_size, alignment);
   199     uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
   200     uintx unaligned_survivor_size =
   201       align_size_down(maximum_survivor_size, alignment);
   202     survivor_size = MAX2(unaligned_survivor_size, alignment);
   203     eden_size = size - (2*survivor_size);
   204     assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
   205     assert(eden_size >= minimum_eden_size, "just checking");
   206   }
   208   char *eden_start = _virtual_space.low();
   209   char *from_start = eden_start + eden_size;
   210   char *to_start   = from_start + survivor_size;
   211   char *to_end     = to_start   + survivor_size;
   213   assert(to_end == _virtual_space.high(), "just checking");
   214   assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
   215   assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
   216   assert(Space::is_aligned((HeapWord*)to_start),   "checking alignment");
   218   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
   219   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
   220   MemRegion toMR  ((HeapWord*)to_start, (HeapWord*)to_end);
   222   // A minimum eden size implies that there is a part of eden that
   223   // is being used and that affects the initialization of any
   224   // newly formed eden.
   225   bool live_in_eden = minimum_eden_size > 0;
   227   // If not clearing the spaces, do some checking to verify that
   228   // the space are already mangled.
   229   if (!clear_space) {
   230     // Must check mangling before the spaces are reshaped.  Otherwise,
   231     // the bottom or end of one space may have moved into another
   232     // a failure of the check may not correctly indicate which space
   233     // is not properly mangled.
   234     if (ZapUnusedHeapArea) {
   235       HeapWord* limit = (HeapWord*) _virtual_space.high();
   236       eden()->check_mangled_unused_area(limit);
   237       from()->check_mangled_unused_area(limit);
   238         to()->check_mangled_unused_area(limit);
   239     }
   240   }
   242   // Reset the spaces for their new regions.
   243   eden()->initialize(edenMR,
   244                      clear_space && !live_in_eden,
   245                      SpaceDecorator::Mangle);
   246   // If clear_space and live_in_eden, we will not have cleared any
   247   // portion of eden above its top. This can cause newly
   248   // expanded space not to be mangled if using ZapUnusedHeapArea.
   249   // We explicitly do such mangling here.
   250   if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
   251     eden()->mangle_unused_area();
   252   }
   253   from()->initialize(fromMR, clear_space, mangle_space);
   254   to()->initialize(toMR, clear_space, mangle_space);
   256   // Set next compaction spaces.
   257   eden()->set_next_compaction_space(from());
   258   // The to-space is normally empty before a compaction so need
   259   // not be considered.  The exception is during promotion
   260   // failure handling when to-space can contain live objects.
   261   from()->set_next_compaction_space(NULL);
   262 }
   264 void DefNewGeneration::swap_spaces() {
   265   ContiguousSpace* s = from();
   266   _from_space        = to();
   267   _to_space          = s;
   268   eden()->set_next_compaction_space(from());
   269   // The to-space is normally empty before a compaction so need
   270   // not be considered.  The exception is during promotion
   271   // failure handling when to-space can contain live objects.
   272   from()->set_next_compaction_space(NULL);
   274   if (UsePerfData) {
   275     CSpaceCounters* c = _from_counters;
   276     _from_counters = _to_counters;
   277     _to_counters = c;
   278   }
   279 }
   281 bool DefNewGeneration::expand(size_t bytes) {
   282   MutexLocker x(ExpandHeap_lock);
   283   HeapWord* prev_high = (HeapWord*) _virtual_space.high();
   284   bool success = _virtual_space.expand_by(bytes);
   285   if (success && ZapUnusedHeapArea) {
   286     // Mangle newly committed space immediately because it
   287     // can be done here more simply that after the new
   288     // spaces have been computed.
   289     HeapWord* new_high = (HeapWord*) _virtual_space.high();
   290     MemRegion mangle_region(prev_high, new_high);
   291     SpaceMangler::mangle_region(mangle_region);
   292   }
   294   // Do not attempt an expand-to-the reserve size.  The
   295   // request should properly observe the maximum size of
   296   // the generation so an expand-to-reserve should be
   297   // unnecessary.  Also a second call to expand-to-reserve
   298   // value potentially can cause an undue expansion.
   299   // For example if the first expand fail for unknown reasons,
   300   // but the second succeeds and expands the heap to its maximum
   301   // value.
   302   if (GC_locker::is_active()) {
   303     if (PrintGC && Verbose) {
   304       gclog_or_tty->print_cr("Garbage collection disabled, "
   305         "expanded heap instead");
   306     }
   307   }
   309   return success;
   310 }
   313 void DefNewGeneration::compute_new_size() {
   314   // This is called after a gc that includes the following generation
   315   // (which is required to exist.)  So from-space will normally be empty.
   316   // Note that we check both spaces, since if scavenge failed they revert roles.
   317   // If not we bail out (otherwise we would have to relocate the objects)
   318   if (!from()->is_empty() || !to()->is_empty()) {
   319     return;
   320   }
   322   int next_level = level() + 1;
   323   GenCollectedHeap* gch = GenCollectedHeap::heap();
   324   assert(next_level < gch->_n_gens,
   325          "DefNewGeneration cannot be an oldest gen");
   327   Generation* next_gen = gch->_gens[next_level];
   328   size_t old_size = next_gen->capacity();
   329   size_t new_size_before = _virtual_space.committed_size();
   330   size_t min_new_size = spec()->init_size();
   331   size_t max_new_size = reserved().byte_size();
   332   assert(min_new_size <= new_size_before &&
   333          new_size_before <= max_new_size,
   334          "just checking");
   335   // All space sizes must be multiples of Generation::GenGrain.
   336   size_t alignment = Generation::GenGrain;
   338   // Compute desired new generation size based on NewRatio and
   339   // NewSizeThreadIncrease
   340   size_t desired_new_size = old_size/NewRatio;
   341   int threads_count = Threads::number_of_non_daemon_threads();
   342   size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
   343   desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
   345   // Adjust new generation size
   346   desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
   347   assert(desired_new_size <= max_new_size, "just checking");
   349   bool changed = false;
   350   if (desired_new_size > new_size_before) {
   351     size_t change = desired_new_size - new_size_before;
   352     assert(change % alignment == 0, "just checking");
   353     if (expand(change)) {
   354        changed = true;
   355     }
   356     // If the heap failed to expand to the desired size,
   357     // "changed" will be false.  If the expansion failed
   358     // (and at this point it was expected to succeed),
   359     // ignore the failure (leaving "changed" as false).
   360   }
   361   if (desired_new_size < new_size_before && eden()->is_empty()) {
   362     // bail out of shrinking if objects in eden
   363     size_t change = new_size_before - desired_new_size;
   364     assert(change % alignment == 0, "just checking");
   365     _virtual_space.shrink_by(change);
   366     changed = true;
   367   }
   368   if (changed) {
   369     // The spaces have already been mangled at this point but
   370     // may not have been cleared (set top = bottom) and should be.
   371     // Mangling was done when the heap was being expanded.
   372     compute_space_boundaries(eden()->used(),
   373                              SpaceDecorator::Clear,
   374                              SpaceDecorator::DontMangle);
   375     MemRegion cmr((HeapWord*)_virtual_space.low(),
   376                   (HeapWord*)_virtual_space.high());
   377     Universe::heap()->barrier_set()->resize_covered_region(cmr);
   378     if (Verbose && PrintGC) {
   379       size_t new_size_after  = _virtual_space.committed_size();
   380       size_t eden_size_after = eden()->capacity();
   381       size_t survivor_size_after = from()->capacity();
   382       gclog_or_tty->print("New generation size " SIZE_FORMAT "K->"
   383         SIZE_FORMAT "K [eden="
   384         SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
   385         new_size_before/K, new_size_after/K,
   386         eden_size_after/K, survivor_size_after/K);
   387       if (WizardMode) {
   388         gclog_or_tty->print("[allowed " SIZE_FORMAT "K extra for %d threads]",
   389           thread_increase_size/K, threads_count);
   390       }
   391       gclog_or_tty->cr();
   392     }
   393   }
   394 }
   396 void DefNewGeneration::object_iterate_since_last_GC(ObjectClosure* cl) {
   397   // $$$ This may be wrong in case of "scavenge failure"?
   398   eden()->object_iterate(cl);
   399 }
   401 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
   402   assert(false, "NYI -- are you sure you want to call this?");
   403 }
   406 size_t DefNewGeneration::capacity() const {
   407   return eden()->capacity()
   408        + from()->capacity();  // to() is only used during scavenge
   409 }
   412 size_t DefNewGeneration::used() const {
   413   return eden()->used()
   414        + from()->used();      // to() is only used during scavenge
   415 }
   418 size_t DefNewGeneration::free() const {
   419   return eden()->free()
   420        + from()->free();      // to() is only used during scavenge
   421 }
   423 size_t DefNewGeneration::max_capacity() const {
   424   const size_t alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
   425   const size_t reserved_bytes = reserved().byte_size();
   426   return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
   427 }
   429 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
   430   return eden()->free();
   431 }
   433 size_t DefNewGeneration::capacity_before_gc() const {
   434   return eden()->capacity();
   435 }
   437 size_t DefNewGeneration::contiguous_available() const {
   438   return eden()->free();
   439 }
   442 HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
   443 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
   445 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
   446   eden()->object_iterate(blk);
   447   from()->object_iterate(blk);
   448 }
   451 void DefNewGeneration::space_iterate(SpaceClosure* blk,
   452                                      bool usedOnly) {
   453   blk->do_space(eden());
   454   blk->do_space(from());
   455   blk->do_space(to());
   456 }
   458 // The last collection bailed out, we are running out of heap space,
   459 // so we try to allocate the from-space, too.
   460 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
   461   HeapWord* result = NULL;
   462   if (PrintGC && Verbose) {
   463     gclog_or_tty->print("DefNewGeneration::allocate_from_space(%u):"
   464                   "  will_fail: %s"
   465                   "  heap_lock: %s"
   466                   "  free: " SIZE_FORMAT,
   467                   size,
   468                GenCollectedHeap::heap()->incremental_collection_will_fail() ? "true" : "false",
   469                Heap_lock->is_locked() ? "locked" : "unlocked",
   470                from()->free());
   471     }
   472   if (should_allocate_from_space() || GC_locker::is_active_and_needs_gc()) {
   473     if (Heap_lock->owned_by_self() ||
   474         (SafepointSynchronize::is_at_safepoint() &&
   475          Thread::current()->is_VM_thread())) {
   476       // If the Heap_lock is not locked by this thread, this will be called
   477       // again later with the Heap_lock held.
   478       result = from()->allocate(size);
   479     } else if (PrintGC && Verbose) {
   480       gclog_or_tty->print_cr("  Heap_lock is not owned by self");
   481     }
   482   } else if (PrintGC && Verbose) {
   483     gclog_or_tty->print_cr("  should_allocate_from_space: NOT");
   484   }
   485   if (PrintGC && Verbose) {
   486     gclog_or_tty->print_cr("  returns %s", result == NULL ? "NULL" : "object");
   487   }
   488   return result;
   489 }
   491 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
   492                                                 bool   is_tlab,
   493                                                 bool   parallel) {
   494   // We don't attempt to expand the young generation (but perhaps we should.)
   495   return allocate(size, is_tlab);
   496 }
   499 void DefNewGeneration::collect(bool   full,
   500                                bool   clear_all_soft_refs,
   501                                size_t size,
   502                                bool   is_tlab) {
   503   assert(full || size > 0, "otherwise we don't want to collect");
   504   GenCollectedHeap* gch = GenCollectedHeap::heap();
   505   _next_gen = gch->next_gen(this);
   506   assert(_next_gen != NULL,
   507     "This must be the youngest gen, and not the only gen");
   509   // If the next generation is too full to accomodate promotion
   510   // from this generation, pass on collection; let the next generation
   511   // do it.
   512   if (!collection_attempt_is_safe()) {
   513     gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
   514     return;
   515   }
   516   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
   518   init_assuming_no_promotion_failure();
   520   TraceTime t1("GC", PrintGC && !PrintGCDetails, true, gclog_or_tty);
   521   // Capture heap used before collection (for printing).
   522   size_t gch_prev_used = gch->used();
   524   SpecializationStats::clear();
   526   // These can be shared for all code paths
   527   IsAliveClosure is_alive(this);
   528   ScanWeakRefClosure scan_weak_ref(this);
   530   age_table()->clear();
   531   to()->clear(SpaceDecorator::Mangle);
   533   gch->rem_set()->prepare_for_younger_refs_iterate(false);
   535   assert(gch->no_allocs_since_save_marks(0),
   536          "save marks have not been newly set.");
   538   // Not very pretty.
   539   CollectorPolicy* cp = gch->collector_policy();
   541   FastScanClosure fsc_with_no_gc_barrier(this, false);
   542   FastScanClosure fsc_with_gc_barrier(this, true);
   544   set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
   545   FastEvacuateFollowersClosure evacuate_followers(gch, _level, this,
   546                                                   &fsc_with_no_gc_barrier,
   547                                                   &fsc_with_gc_barrier);
   549   assert(gch->no_allocs_since_save_marks(0),
   550          "save marks have not been newly set.");
   552   gch->gen_process_strong_roots(_level,
   553                                 true,  // Process younger gens, if any,
   554                                        // as strong roots.
   555                                 true,  // activate StrongRootsScope
   556                                 false, // not collecting perm generation.
   557                                 SharedHeap::SO_AllClasses,
   558                                 &fsc_with_no_gc_barrier,
   559                                 true,   // walk *all* scavengable nmethods
   560                                 &fsc_with_gc_barrier);
   562   // "evacuate followers".
   563   evacuate_followers.do_void();
   565   FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
   566   ReferenceProcessor* rp = ref_processor();
   567   rp->setup_policy(clear_all_soft_refs);
   568   rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
   569                                     NULL);
   570   if (!promotion_failed()) {
   571     // Swap the survivor spaces.
   572     eden()->clear(SpaceDecorator::Mangle);
   573     from()->clear(SpaceDecorator::Mangle);
   574     if (ZapUnusedHeapArea) {
   575       // This is now done here because of the piece-meal mangling which
   576       // can check for valid mangling at intermediate points in the
   577       // collection(s).  When a minor collection fails to collect
   578       // sufficient space resizing of the young generation can occur
   579       // an redistribute the spaces in the young generation.  Mangle
   580       // here so that unzapped regions don't get distributed to
   581       // other spaces.
   582       to()->mangle_unused_area();
   583     }
   584     swap_spaces();
   586     assert(to()->is_empty(), "to space should be empty now");
   588     // Set the desired survivor size to half the real survivor space
   589     _tenuring_threshold =
   590       age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
   592     // A successful scavenge should restart the GC time limit count which is
   593     // for full GC's.
   594     AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
   595     size_policy->reset_gc_overhead_limit_count();
   596     if (PrintGC && !PrintGCDetails) {
   597       gch->print_heap_change(gch_prev_used);
   598     }
   599     assert(!gch->incremental_collection_failed(), "Should be clear");
   600   } else {
   601     assert(_promo_failure_scan_stack.is_empty(), "post condition");
   602     _promo_failure_scan_stack.clear(true); // Clear cached segments.
   604     remove_forwarding_pointers();
   605     if (PrintGCDetails) {
   606       gclog_or_tty->print(" (promotion failed) ");
   607     }
   608     // Add to-space to the list of space to compact
   609     // when a promotion failure has occurred.  In that
   610     // case there can be live objects in to-space
   611     // as a result of a partial evacuation of eden
   612     // and from-space.
   613     swap_spaces();   // For uniformity wrt ParNewGeneration.
   614     from()->set_next_compaction_space(to());
   615     gch->set_incremental_collection_failed();
   617     // Inform the next generation that a promotion failure occurred.
   618     _next_gen->promotion_failure_occurred();
   620     // Reset the PromotionFailureALot counters.
   621     NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
   622   }
   623   // set new iteration safe limit for the survivor spaces
   624   from()->set_concurrent_iteration_safe_limit(from()->top());
   625   to()->set_concurrent_iteration_safe_limit(to()->top());
   626   SpecializationStats::print();
   627   update_time_of_last_gc(os::javaTimeMillis());
   628 }
   630 class RemoveForwardPointerClosure: public ObjectClosure {
   631 public:
   632   void do_object(oop obj) {
   633     obj->init_mark();
   634   }
   635 };
   637 void DefNewGeneration::init_assuming_no_promotion_failure() {
   638   _promotion_failed = false;
   639   from()->set_next_compaction_space(NULL);
   640 }
   642 void DefNewGeneration::remove_forwarding_pointers() {
   643   RemoveForwardPointerClosure rspc;
   644   eden()->object_iterate(&rspc);
   645   from()->object_iterate(&rspc);
   647   // Now restore saved marks, if any.
   648   assert(_objs_with_preserved_marks.size() == _preserved_marks_of_objs.size(),
   649          "should be the same");
   650   while (!_objs_with_preserved_marks.is_empty()) {
   651     oop obj   = _objs_with_preserved_marks.pop();
   652     markOop m = _preserved_marks_of_objs.pop();
   653     obj->set_mark(m);
   654   }
   655   _objs_with_preserved_marks.clear(true);
   656   _preserved_marks_of_objs.clear(true);
   657 }
   659 void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
   660   if (m->must_be_preserved_for_promotion_failure(obj)) {
   661     _objs_with_preserved_marks.push(obj);
   662     _preserved_marks_of_objs.push(m);
   663   }
   664 }
   666 void DefNewGeneration::handle_promotion_failure(oop old) {
   667   preserve_mark_if_necessary(old, old->mark());
   668   if (!_promotion_failed && PrintPromotionFailure) {
   669     gclog_or_tty->print(" (promotion failure size = " SIZE_FORMAT ") ",
   670                         old->size());
   671   }
   673   // forward to self
   674   old->forward_to(old);
   675   _promotion_failed = true;
   677   _promo_failure_scan_stack.push(old);
   679   if (!_promo_failure_drain_in_progress) {
   680     // prevent recursion in copy_to_survivor_space()
   681     _promo_failure_drain_in_progress = true;
   682     drain_promo_failure_scan_stack();
   683     _promo_failure_drain_in_progress = false;
   684   }
   685 }
   687 oop DefNewGeneration::copy_to_survivor_space(oop old) {
   688   assert(is_in_reserved(old) && !old->is_forwarded(),
   689          "shouldn't be scavenging this oop");
   690   size_t s = old->size();
   691   oop obj = NULL;
   693   // Try allocating obj in to-space (unless too old)
   694   if (old->age() < tenuring_threshold()) {
   695     obj = (oop) to()->allocate(s);
   696   }
   698   // Otherwise try allocating obj tenured
   699   if (obj == NULL) {
   700     obj = _next_gen->promote(old, s);
   701     if (obj == NULL) {
   702       handle_promotion_failure(old);
   703       return old;
   704     }
   705   } else {
   706     // Prefetch beyond obj
   707     const intx interval = PrefetchCopyIntervalInBytes;
   708     Prefetch::write(obj, interval);
   710     // Copy obj
   711     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
   713     // Increment age if obj still in new generation
   714     obj->incr_age();
   715     age_table()->add(obj, s);
   716   }
   718   // Done, insert forward pointer to obj in this header
   719   old->forward_to(obj);
   721   return obj;
   722 }
   724 void DefNewGeneration::drain_promo_failure_scan_stack() {
   725   while (!_promo_failure_scan_stack.is_empty()) {
   726      oop obj = _promo_failure_scan_stack.pop();
   727      obj->oop_iterate(_promo_failure_scan_stack_closure);
   728   }
   729 }
   731 void DefNewGeneration::save_marks() {
   732   eden()->set_saved_mark();
   733   to()->set_saved_mark();
   734   from()->set_saved_mark();
   735 }
   738 void DefNewGeneration::reset_saved_marks() {
   739   eden()->reset_saved_mark();
   740   to()->reset_saved_mark();
   741   from()->reset_saved_mark();
   742 }
   745 bool DefNewGeneration::no_allocs_since_save_marks() {
   746   assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
   747   assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
   748   return to()->saved_mark_at_top();
   749 }
   751 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
   752                                                                 \
   753 void DefNewGeneration::                                         \
   754 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
   755   cl->set_generation(this);                                     \
   756   eden()->oop_since_save_marks_iterate##nv_suffix(cl);          \
   757   to()->oop_since_save_marks_iterate##nv_suffix(cl);            \
   758   from()->oop_since_save_marks_iterate##nv_suffix(cl);          \
   759   cl->reset_generation();                                       \
   760   save_marks();                                                 \
   761 }
   763 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
   765 #undef DefNew_SINCE_SAVE_MARKS_DEFN
   767 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
   768                                          size_t max_alloc_words) {
   769   if (requestor == this || _promotion_failed) return;
   770   assert(requestor->level() > level(), "DefNewGeneration must be youngest");
   772   /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
   773   if (to_space->top() > to_space->bottom()) {
   774     trace("to_space not empty when contribute_scratch called");
   775   }
   776   */
   778   ContiguousSpace* to_space = to();
   779   assert(to_space->end() >= to_space->top(), "pointers out of order");
   780   size_t free_words = pointer_delta(to_space->end(), to_space->top());
   781   if (free_words >= MinFreeScratchWords) {
   782     ScratchBlock* sb = (ScratchBlock*)to_space->top();
   783     sb->num_words = free_words;
   784     sb->next = list;
   785     list = sb;
   786   }
   787 }
   789 void DefNewGeneration::reset_scratch() {
   790   // If contributing scratch in to_space, mangle all of
   791   // to_space if ZapUnusedHeapArea.  This is needed because
   792   // top is not maintained while using to-space as scratch.
   793   if (ZapUnusedHeapArea) {
   794     to()->mangle_unused_area_complete();
   795   }
   796 }
   798 bool DefNewGeneration::collection_attempt_is_safe() {
   799   if (!to()->is_empty()) {
   800     return false;
   801   }
   802   if (_next_gen == NULL) {
   803     GenCollectedHeap* gch = GenCollectedHeap::heap();
   804     _next_gen = gch->next_gen(this);
   805     assert(_next_gen != NULL,
   806            "This must be the youngest gen, and not the only gen");
   807   }
   808   return _next_gen->promotion_attempt_is_safe(used());
   809 }
   811 void DefNewGeneration::gc_epilogue(bool full) {
   812   // Check if the heap is approaching full after a collection has
   813   // been done.  Generally the young generation is empty at
   814   // a minimum at the end of a collection.  If it is not, then
   815   // the heap is approaching full.
   816   GenCollectedHeap* gch = GenCollectedHeap::heap();
   817   if (full) {
   818     assert(!GC_locker::is_active(), "We should not be executing here");
   819     if (!collection_attempt_is_safe()) {
   820       gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
   821       set_should_allocate_from_space(); // we seem to be running out of space
   822     } else {
   823       gch->clear_incremental_collection_failed(); // We just did a full collection
   824       clear_should_allocate_from_space(); // if set
   825     }
   826   } else {
   827     assert(!gch->incremental_collection_failed(), "Error");
   828   }
   830   if (ZapUnusedHeapArea) {
   831     eden()->check_mangled_unused_area_complete();
   832     from()->check_mangled_unused_area_complete();
   833     to()->check_mangled_unused_area_complete();
   834   }
   836   // update the generation and space performance counters
   837   update_counters();
   838   gch->collector_policy()->counters()->update_counters();
   839 }
   841 void DefNewGeneration::record_spaces_top() {
   842   assert(ZapUnusedHeapArea, "Not mangling unused space");
   843   eden()->set_top_for_allocations();
   844   to()->set_top_for_allocations();
   845   from()->set_top_for_allocations();
   846 }
   849 void DefNewGeneration::update_counters() {
   850   if (UsePerfData) {
   851     _eden_counters->update_all();
   852     _from_counters->update_all();
   853     _to_counters->update_all();
   854     _gen_counters->update_all();
   855   }
   856 }
   858 void DefNewGeneration::verify(bool allow_dirty) {
   859   eden()->verify(allow_dirty);
   860   from()->verify(allow_dirty);
   861     to()->verify(allow_dirty);
   862 }
   864 void DefNewGeneration::print_on(outputStream* st) const {
   865   Generation::print_on(st);
   866   st->print("  eden");
   867   eden()->print_on(st);
   868   st->print("  from");
   869   from()->print_on(st);
   870   st->print("  to  ");
   871   to()->print_on(st);
   872 }
   875 const char* DefNewGeneration::name() const {
   876   return "def new generation";
   877 }
   879 // Moved from inline file as they are not called inline
   880 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
   881   return eden();
   882 }
   884 HeapWord* DefNewGeneration::allocate(size_t word_size,
   885                                      bool is_tlab) {
   886   // This is the slow-path allocation for the DefNewGeneration.
   887   // Most allocations are fast-path in compiled code.
   888   // We try to allocate from the eden.  If that works, we are happy.
   889   // Note that since DefNewGeneration supports lock-free allocation, we
   890   // have to use it here, as well.
   891   HeapWord* result = eden()->par_allocate(word_size);
   892   if (result != NULL) {
   893     return result;
   894   }
   895   do {
   896     HeapWord* old_limit = eden()->soft_end();
   897     if (old_limit < eden()->end()) {
   898       // Tell the next generation we reached a limit.
   899       HeapWord* new_limit =
   900         next_gen()->allocation_limit_reached(eden(), eden()->top(), word_size);
   901       if (new_limit != NULL) {
   902         Atomic::cmpxchg_ptr(new_limit, eden()->soft_end_addr(), old_limit);
   903       } else {
   904         assert(eden()->soft_end() == eden()->end(),
   905                "invalid state after allocation_limit_reached returned null");
   906       }
   907     } else {
   908       // The allocation failed and the soft limit is equal to the hard limit,
   909       // there are no reasons to do an attempt to allocate
   910       assert(old_limit == eden()->end(), "sanity check");
   911       break;
   912     }
   913     // Try to allocate until succeeded or the soft limit can't be adjusted
   914     result = eden()->par_allocate(word_size);
   915   } while (result == NULL);
   917   // If the eden is full and the last collection bailed out, we are running
   918   // out of heap space, and we try to allocate the from-space, too.
   919   // allocate_from_space can't be inlined because that would introduce a
   920   // circular dependency at compile time.
   921   if (result == NULL) {
   922     result = allocate_from_space(word_size);
   923   }
   924   return result;
   925 }
   927 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
   928                                          bool is_tlab) {
   929   return eden()->par_allocate(word_size);
   930 }
   932 void DefNewGeneration::gc_prologue(bool full) {
   933   // Ensure that _end and _soft_end are the same in eden space.
   934   eden()->set_soft_end(eden()->end());
   935 }
   937 size_t DefNewGeneration::tlab_capacity() const {
   938   return eden()->capacity();
   939 }
   941 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
   942   return unsafe_max_alloc_nogc();
   943 }

mercurial