src/share/vm/opto/library_call.cpp

Mon, 27 May 2013 12:56:34 +0200

author
stefank
date
Mon, 27 May 2013 12:56:34 +0200
changeset 5195
95c00927be11
parent 5111
70120f47d403
child 5237
f2110083203d
permissions
-rw-r--r--

8015428: Remove unused CDS support from StringTable
Summary: The string in StringTable is not used by CDS anymore. Remove the unnecessary code in preparation for 8015422: Large performance hit when the StringTable is walked twice in Parallel Scavenge
Reviewed-by: pliden, tschatzl, coleenp

duke@435 1 /*
rbackman@3709 2 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "classfile/vmSymbols.hpp"
twisti@2687 28 #include "compiler/compileBroker.hpp"
stefank@2314 29 #include "compiler/compileLog.hpp"
stefank@2314 30 #include "oops/objArrayKlass.hpp"
stefank@2314 31 #include "opto/addnode.hpp"
stefank@2314 32 #include "opto/callGenerator.hpp"
stefank@2314 33 #include "opto/cfgnode.hpp"
stefank@2314 34 #include "opto/idealKit.hpp"
stefank@2314 35 #include "opto/mulnode.hpp"
stefank@2314 36 #include "opto/parse.hpp"
stefank@2314 37 #include "opto/runtime.hpp"
stefank@2314 38 #include "opto/subnode.hpp"
stefank@2314 39 #include "prims/nativeLookup.hpp"
stefank@2314 40 #include "runtime/sharedRuntime.hpp"
duke@435 41
duke@435 42 class LibraryIntrinsic : public InlineCallGenerator {
duke@435 43 // Extend the set of intrinsics known to the runtime:
duke@435 44 public:
duke@435 45 private:
duke@435 46 bool _is_virtual;
kvn@4205 47 bool _is_predicted;
duke@435 48 vmIntrinsics::ID _intrinsic_id;
duke@435 49
duke@435 50 public:
kvn@4205 51 LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, vmIntrinsics::ID id)
duke@435 52 : InlineCallGenerator(m),
duke@435 53 _is_virtual(is_virtual),
kvn@4205 54 _is_predicted(is_predicted),
duke@435 55 _intrinsic_id(id)
duke@435 56 {
duke@435 57 }
duke@435 58 virtual bool is_intrinsic() const { return true; }
duke@435 59 virtual bool is_virtual() const { return _is_virtual; }
kvn@4205 60 virtual bool is_predicted() const { return _is_predicted; }
duke@435 61 virtual JVMState* generate(JVMState* jvms);
kvn@4205 62 virtual Node* generate_predicate(JVMState* jvms);
duke@435 63 vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
duke@435 64 };
duke@435 65
duke@435 66
duke@435 67 // Local helper class for LibraryIntrinsic:
duke@435 68 class LibraryCallKit : public GraphKit {
duke@435 69 private:
twisti@4313 70 LibraryIntrinsic* _intrinsic; // the library intrinsic being called
twisti@4313 71 Node* _result; // the result node, if any
twisti@4313 72 int _reexecute_sp; // the stack pointer when bytecode needs to be reexecuted
duke@435 73
roland@4106 74 const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
roland@4106 75
duke@435 76 public:
twisti@4313 77 LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
twisti@4313 78 : GraphKit(jvms),
twisti@4313 79 _intrinsic(intrinsic),
twisti@4313 80 _result(NULL)
duke@435 81 {
twisti@4319 82 // Check if this is a root compile. In that case we don't have a caller.
twisti@4319 83 if (!jvms->has_method()) {
twisti@4319 84 _reexecute_sp = sp();
twisti@4319 85 } else {
twisti@4319 86 // Find out how many arguments the interpreter needs when deoptimizing
twisti@4319 87 // and save the stack pointer value so it can used by uncommon_trap.
twisti@4319 88 // We find the argument count by looking at the declared signature.
twisti@4319 89 bool ignored_will_link;
twisti@4319 90 ciSignature* declared_signature = NULL;
twisti@4319 91 ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
twisti@4319 92 const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
twisti@4319 93 _reexecute_sp = sp() + nargs; // "push" arguments back on stack
twisti@4319 94 }
duke@435 95 }
duke@435 96
twisti@4313 97 virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
twisti@4313 98
duke@435 99 ciMethod* caller() const { return jvms()->method(); }
duke@435 100 int bci() const { return jvms()->bci(); }
duke@435 101 LibraryIntrinsic* intrinsic() const { return _intrinsic; }
duke@435 102 vmIntrinsics::ID intrinsic_id() const { return _intrinsic->intrinsic_id(); }
duke@435 103 ciMethod* callee() const { return _intrinsic->method(); }
duke@435 104
duke@435 105 bool try_to_inline();
kvn@4205 106 Node* try_to_predicate();
duke@435 107
twisti@4313 108 void push_result() {
twisti@4313 109 // Push the result onto the stack.
twisti@4313 110 if (!stopped() && result() != NULL) {
twisti@4313 111 BasicType bt = result()->bottom_type()->basic_type();
twisti@4313 112 push_node(bt, result());
twisti@4313 113 }
twisti@4313 114 }
twisti@4313 115
twisti@4313 116 private:
twisti@4313 117 void fatal_unexpected_iid(vmIntrinsics::ID iid) {
twisti@4313 118 fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
twisti@4313 119 }
twisti@4313 120
twisti@4313 121 void set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
twisti@4313 122 void set_result(RegionNode* region, PhiNode* value);
twisti@4313 123 Node* result() { return _result; }
twisti@4313 124
twisti@4313 125 virtual int reexecute_sp() { return _reexecute_sp; }
twisti@4313 126
duke@435 127 // Helper functions to inline natives
duke@435 128 Node* generate_guard(Node* test, RegionNode* region, float true_prob);
duke@435 129 Node* generate_slow_guard(Node* test, RegionNode* region);
duke@435 130 Node* generate_fair_guard(Node* test, RegionNode* region);
duke@435 131 Node* generate_negative_guard(Node* index, RegionNode* region,
duke@435 132 // resulting CastII of index:
duke@435 133 Node* *pos_index = NULL);
duke@435 134 Node* generate_nonpositive_guard(Node* index, bool never_negative,
duke@435 135 // resulting CastII of index:
duke@435 136 Node* *pos_index = NULL);
duke@435 137 Node* generate_limit_guard(Node* offset, Node* subseq_length,
duke@435 138 Node* array_length,
duke@435 139 RegionNode* region);
duke@435 140 Node* generate_current_thread(Node* &tls_output);
duke@435 141 address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
iveresov@2606 142 bool disjoint_bases, const char* &name, bool dest_uninitialized);
duke@435 143 Node* load_mirror_from_klass(Node* klass);
duke@435 144 Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
duke@435 145 RegionNode* region, int null_path,
duke@435 146 int offset);
twisti@4313 147 Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
duke@435 148 RegionNode* region, int null_path) {
duke@435 149 int offset = java_lang_Class::klass_offset_in_bytes();
twisti@4313 150 return load_klass_from_mirror_common(mirror, never_see_null,
duke@435 151 region, null_path,
duke@435 152 offset);
duke@435 153 }
duke@435 154 Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
duke@435 155 RegionNode* region, int null_path) {
duke@435 156 int offset = java_lang_Class::array_klass_offset_in_bytes();
twisti@4313 157 return load_klass_from_mirror_common(mirror, never_see_null,
duke@435 158 region, null_path,
duke@435 159 offset);
duke@435 160 }
duke@435 161 Node* generate_access_flags_guard(Node* kls,
duke@435 162 int modifier_mask, int modifier_bits,
duke@435 163 RegionNode* region);
duke@435 164 Node* generate_interface_guard(Node* kls, RegionNode* region);
duke@435 165 Node* generate_array_guard(Node* kls, RegionNode* region) {
duke@435 166 return generate_array_guard_common(kls, region, false, false);
duke@435 167 }
duke@435 168 Node* generate_non_array_guard(Node* kls, RegionNode* region) {
duke@435 169 return generate_array_guard_common(kls, region, false, true);
duke@435 170 }
duke@435 171 Node* generate_objArray_guard(Node* kls, RegionNode* region) {
duke@435 172 return generate_array_guard_common(kls, region, true, false);
duke@435 173 }
duke@435 174 Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
duke@435 175 return generate_array_guard_common(kls, region, true, true);
duke@435 176 }
duke@435 177 Node* generate_array_guard_common(Node* kls, RegionNode* region,
duke@435 178 bool obj_array, bool not_array);
duke@435 179 Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
duke@435 180 CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
duke@435 181 bool is_virtual = false, bool is_static = false);
duke@435 182 CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
duke@435 183 return generate_method_call(method_id, false, true);
duke@435 184 }
duke@435 185 CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
duke@435 186 return generate_method_call(method_id, true, false);
duke@435 187 }
kvn@4205 188 Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
duke@435 189
kvn@3760 190 Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
kvn@3760 191 Node* make_string_method_node(int opcode, Node* str1, Node* str2);
duke@435 192 bool inline_string_compareTo();
duke@435 193 bool inline_string_indexOf();
duke@435 194 Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
cfang@1116 195 bool inline_string_equals();
twisti@4313 196 Node* round_double_node(Node* n);
duke@435 197 bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
duke@435 198 bool inline_math_native(vmIntrinsics::ID id);
duke@435 199 bool inline_trig(vmIntrinsics::ID id);
twisti@4313 200 bool inline_math(vmIntrinsics::ID id);
twisti@4313 201 bool inline_exp();
twisti@4313 202 bool inline_pow();
roland@3908 203 void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
duke@435 204 bool inline_min_max(vmIntrinsics::ID id);
duke@435 205 Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
duke@435 206 // This returns Type::AnyPtr, RawPtr, or OopPtr.
duke@435 207 int classify_unsafe_addr(Node* &base, Node* &offset);
duke@435 208 Node* make_unsafe_address(Node* base, Node* offset);
johnc@2781 209 // Helper for inline_unsafe_access.
johnc@2781 210 // Generates the guards that check whether the result of
johnc@2781 211 // Unsafe.getObject should be recorded in an SATB log buffer.
twisti@4313 212 void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
duke@435 213 bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
duke@435 214 bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
duke@435 215 bool inline_unsafe_allocate();
duke@435 216 bool inline_unsafe_copyMemory();
duke@435 217 bool inline_native_currentThread();
rbackman@3709 218 #ifdef TRACE_HAVE_INTRINSICS
rbackman@3709 219 bool inline_native_classID();
rbackman@3709 220 bool inline_native_threadID();
rbackman@3709 221 #endif
rbackman@3709 222 bool inline_native_time_funcs(address method, const char* funcName);
duke@435 223 bool inline_native_isInterrupted();
duke@435 224 bool inline_native_Class_query(vmIntrinsics::ID id);
duke@435 225 bool inline_native_subtype_check();
duke@435 226
duke@435 227 bool inline_native_newArray();
duke@435 228 bool inline_native_getLength();
duke@435 229 bool inline_array_copyOf(bool is_copyOfRange);
rasbold@604 230 bool inline_array_equals();
kvn@1268 231 void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
duke@435 232 bool inline_native_clone(bool is_virtual);
duke@435 233 bool inline_native_Reflection_getCallerClass();
duke@435 234 // Helper function for inlining native object hash method
duke@435 235 bool inline_native_hashcode(bool is_virtual, bool is_static);
duke@435 236 bool inline_native_getClass();
duke@435 237
duke@435 238 // Helper functions for inlining arraycopy
duke@435 239 bool inline_arraycopy();
duke@435 240 void generate_arraycopy(const TypePtr* adr_type,
duke@435 241 BasicType basic_elem_type,
duke@435 242 Node* src, Node* src_offset,
duke@435 243 Node* dest, Node* dest_offset,
duke@435 244 Node* copy_length,
duke@435 245 bool disjoint_bases = false,
duke@435 246 bool length_never_negative = false,
duke@435 247 RegionNode* slow_region = NULL);
duke@435 248 AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
duke@435 249 RegionNode* slow_region);
duke@435 250 void generate_clear_array(const TypePtr* adr_type,
duke@435 251 Node* dest,
duke@435 252 BasicType basic_elem_type,
duke@435 253 Node* slice_off,
duke@435 254 Node* slice_len,
duke@435 255 Node* slice_end);
duke@435 256 bool generate_block_arraycopy(const TypePtr* adr_type,
duke@435 257 BasicType basic_elem_type,
duke@435 258 AllocateNode* alloc,
duke@435 259 Node* src, Node* src_offset,
duke@435 260 Node* dest, Node* dest_offset,
iveresov@2606 261 Node* dest_size, bool dest_uninitialized);
duke@435 262 void generate_slow_arraycopy(const TypePtr* adr_type,
duke@435 263 Node* src, Node* src_offset,
duke@435 264 Node* dest, Node* dest_offset,
iveresov@2606 265 Node* copy_length, bool dest_uninitialized);
duke@435 266 Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
duke@435 267 Node* dest_elem_klass,
duke@435 268 Node* src, Node* src_offset,
duke@435 269 Node* dest, Node* dest_offset,
iveresov@2606 270 Node* copy_length, bool dest_uninitialized);
duke@435 271 Node* generate_generic_arraycopy(const TypePtr* adr_type,
duke@435 272 Node* src, Node* src_offset,
duke@435 273 Node* dest, Node* dest_offset,
iveresov@2606 274 Node* copy_length, bool dest_uninitialized);
duke@435 275 void generate_unchecked_arraycopy(const TypePtr* adr_type,
duke@435 276 BasicType basic_elem_type,
duke@435 277 bool disjoint_bases,
duke@435 278 Node* src, Node* src_offset,
duke@435 279 Node* dest, Node* dest_offset,
iveresov@2606 280 Node* copy_length, bool dest_uninitialized);
roland@4106 281 typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
roland@4106 282 bool inline_unsafe_load_store(BasicType type, LoadStoreKind kind);
duke@435 283 bool inline_unsafe_ordered_store(BasicType type);
kvn@4361 284 bool inline_unsafe_fence(vmIntrinsics::ID id);
duke@435 285 bool inline_fp_conversions(vmIntrinsics::ID id);
twisti@4313 286 bool inline_number_methods(vmIntrinsics::ID id);
johnc@2781 287 bool inline_reference_get();
kvn@4205 288 bool inline_aescrypt_Block(vmIntrinsics::ID id);
kvn@4205 289 bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
kvn@4205 290 Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
kvn@4205 291 Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
kvn@4479 292 bool inline_encodeISOArray();
duke@435 293 };
duke@435 294
duke@435 295
duke@435 296 //---------------------------make_vm_intrinsic----------------------------
duke@435 297 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
duke@435 298 vmIntrinsics::ID id = m->intrinsic_id();
duke@435 299 assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
duke@435 300
duke@435 301 if (DisableIntrinsic[0] != '\0'
duke@435 302 && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
duke@435 303 // disabled by a user request on the command line:
duke@435 304 // example: -XX:DisableIntrinsic=_hashCode,_getClass
duke@435 305 return NULL;
duke@435 306 }
duke@435 307
duke@435 308 if (!m->is_loaded()) {
duke@435 309 // do not attempt to inline unloaded methods
duke@435 310 return NULL;
duke@435 311 }
duke@435 312
duke@435 313 // Only a few intrinsics implement a virtual dispatch.
duke@435 314 // They are expensive calls which are also frequently overridden.
duke@435 315 if (is_virtual) {
duke@435 316 switch (id) {
duke@435 317 case vmIntrinsics::_hashCode:
duke@435 318 case vmIntrinsics::_clone:
duke@435 319 // OK, Object.hashCode and Object.clone intrinsics come in both flavors
duke@435 320 break;
duke@435 321 default:
duke@435 322 return NULL;
duke@435 323 }
duke@435 324 }
duke@435 325
duke@435 326 // -XX:-InlineNatives disables nearly all intrinsics:
duke@435 327 if (!InlineNatives) {
duke@435 328 switch (id) {
duke@435 329 case vmIntrinsics::_indexOf:
duke@435 330 case vmIntrinsics::_compareTo:
cfang@1116 331 case vmIntrinsics::_equals:
rasbold@604 332 case vmIntrinsics::_equalsC:
roland@4106 333 case vmIntrinsics::_getAndAddInt:
roland@4106 334 case vmIntrinsics::_getAndAddLong:
roland@4106 335 case vmIntrinsics::_getAndSetInt:
roland@4106 336 case vmIntrinsics::_getAndSetLong:
roland@4106 337 case vmIntrinsics::_getAndSetObject:
kvn@4361 338 case vmIntrinsics::_loadFence:
kvn@4361 339 case vmIntrinsics::_storeFence:
kvn@4361 340 case vmIntrinsics::_fullFence:
duke@435 341 break; // InlineNatives does not control String.compareTo
kvn@4002 342 case vmIntrinsics::_Reference_get:
kvn@4002 343 break; // InlineNatives does not control Reference.get
duke@435 344 default:
duke@435 345 return NULL;
duke@435 346 }
duke@435 347 }
duke@435 348
kvn@4205 349 bool is_predicted = false;
kvn@4205 350
duke@435 351 switch (id) {
duke@435 352 case vmIntrinsics::_compareTo:
duke@435 353 if (!SpecialStringCompareTo) return NULL;
twisti@4313 354 if (!Matcher::match_rule_supported(Op_StrComp)) return NULL;
duke@435 355 break;
duke@435 356 case vmIntrinsics::_indexOf:
duke@435 357 if (!SpecialStringIndexOf) return NULL;
duke@435 358 break;
cfang@1116 359 case vmIntrinsics::_equals:
cfang@1116 360 if (!SpecialStringEquals) return NULL;
twisti@4313 361 if (!Matcher::match_rule_supported(Op_StrEquals)) return NULL;
cfang@1116 362 break;
rasbold@604 363 case vmIntrinsics::_equalsC:
rasbold@604 364 if (!SpecialArraysEquals) return NULL;
twisti@4313 365 if (!Matcher::match_rule_supported(Op_AryEq)) return NULL;
rasbold@604 366 break;
duke@435 367 case vmIntrinsics::_arraycopy:
duke@435 368 if (!InlineArrayCopy) return NULL;
duke@435 369 break;
duke@435 370 case vmIntrinsics::_copyMemory:
duke@435 371 if (StubRoutines::unsafe_arraycopy() == NULL) return NULL;
duke@435 372 if (!InlineArrayCopy) return NULL;
duke@435 373 break;
duke@435 374 case vmIntrinsics::_hashCode:
duke@435 375 if (!InlineObjectHash) return NULL;
duke@435 376 break;
duke@435 377 case vmIntrinsics::_clone:
duke@435 378 case vmIntrinsics::_copyOf:
duke@435 379 case vmIntrinsics::_copyOfRange:
duke@435 380 if (!InlineObjectCopy) return NULL;
duke@435 381 // These also use the arraycopy intrinsic mechanism:
duke@435 382 if (!InlineArrayCopy) return NULL;
duke@435 383 break;
kvn@4479 384 case vmIntrinsics::_encodeISOArray:
kvn@4479 385 if (!SpecialEncodeISOArray) return NULL;
kvn@4479 386 if (!Matcher::match_rule_supported(Op_EncodeISOArray)) return NULL;
kvn@4479 387 break;
duke@435 388 case vmIntrinsics::_checkIndex:
duke@435 389 // We do not intrinsify this. The optimizer does fine with it.
duke@435 390 return NULL;
duke@435 391
duke@435 392 case vmIntrinsics::_getCallerClass:
duke@435 393 if (!UseNewReflection) return NULL;
duke@435 394 if (!InlineReflectionGetCallerClass) return NULL;
twisti@4866 395 if (SystemDictionary::reflect_CallerSensitive_klass() == NULL) return NULL;
duke@435 396 break;
duke@435 397
twisti@1078 398 case vmIntrinsics::_bitCount_i:
never@3637 399 if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
never@3631 400 break;
never@3631 401
twisti@1078 402 case vmIntrinsics::_bitCount_l:
never@3637 403 if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
never@3631 404 break;
never@3631 405
never@3631 406 case vmIntrinsics::_numberOfLeadingZeros_i:
never@3631 407 if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
never@3631 408 break;
never@3631 409
never@3631 410 case vmIntrinsics::_numberOfLeadingZeros_l:
never@3631 411 if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
never@3631 412 break;
never@3631 413
never@3631 414 case vmIntrinsics::_numberOfTrailingZeros_i:
never@3631 415 if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
never@3631 416 break;
never@3631 417
never@3631 418 case vmIntrinsics::_numberOfTrailingZeros_l:
never@3631 419 if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
twisti@1078 420 break;
twisti@1078 421
twisti@4313 422 case vmIntrinsics::_reverseBytes_c:
roland@4357 423 if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
twisti@4313 424 break;
twisti@4313 425 case vmIntrinsics::_reverseBytes_s:
roland@4357 426 if (!Matcher::match_rule_supported(Op_ReverseBytesS)) return NULL;
twisti@4313 427 break;
twisti@4313 428 case vmIntrinsics::_reverseBytes_i:
roland@4357 429 if (!Matcher::match_rule_supported(Op_ReverseBytesI)) return NULL;
twisti@4313 430 break;
twisti@4313 431 case vmIntrinsics::_reverseBytes_l:
roland@4357 432 if (!Matcher::match_rule_supported(Op_ReverseBytesL)) return NULL;
twisti@4313 433 break;
twisti@4313 434
johnc@2781 435 case vmIntrinsics::_Reference_get:
kvn@4002 436 // Use the intrinsic version of Reference.get() so that the value in
kvn@4002 437 // the referent field can be registered by the G1 pre-barrier code.
kvn@4002 438 // Also add memory barrier to prevent commoning reads from this field
kvn@4002 439 // across safepoint since GC can change it value.
johnc@2781 440 break;
johnc@2781 441
roland@4106 442 case vmIntrinsics::_compareAndSwapObject:
roland@4106 443 #ifdef _LP64
roland@4106 444 if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
roland@4106 445 #endif
roland@4106 446 break;
roland@4106 447
roland@4106 448 case vmIntrinsics::_compareAndSwapLong:
roland@4106 449 if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
roland@4106 450 break;
roland@4106 451
roland@4106 452 case vmIntrinsics::_getAndAddInt:
roland@4106 453 if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
roland@4106 454 break;
roland@4106 455
roland@4106 456 case vmIntrinsics::_getAndAddLong:
roland@4106 457 if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
roland@4106 458 break;
roland@4106 459
roland@4106 460 case vmIntrinsics::_getAndSetInt:
roland@4106 461 if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
roland@4106 462 break;
roland@4106 463
roland@4106 464 case vmIntrinsics::_getAndSetLong:
roland@4106 465 if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
roland@4106 466 break;
roland@4106 467
roland@4106 468 case vmIntrinsics::_getAndSetObject:
roland@4106 469 #ifdef _LP64
roland@4106 470 if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
roland@4106 471 if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
roland@4106 472 break;
roland@4106 473 #else
roland@4106 474 if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
roland@4106 475 break;
roland@4106 476 #endif
roland@4106 477
kvn@4205 478 case vmIntrinsics::_aescrypt_encryptBlock:
kvn@4205 479 case vmIntrinsics::_aescrypt_decryptBlock:
kvn@4205 480 if (!UseAESIntrinsics) return NULL;
kvn@4205 481 break;
kvn@4205 482
kvn@4205 483 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
kvn@4205 484 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
kvn@4205 485 if (!UseAESIntrinsics) return NULL;
kvn@4205 486 // these two require the predicated logic
kvn@4205 487 is_predicted = true;
kvn@4205 488 break;
kvn@4205 489
duke@435 490 default:
jrose@1291 491 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
jrose@1291 492 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
duke@435 493 break;
duke@435 494 }
duke@435 495
duke@435 496 // -XX:-InlineClassNatives disables natives from the Class class.
duke@435 497 // The flag applies to all reflective calls, notably Array.newArray
duke@435 498 // (visible to Java programmers as Array.newInstance).
duke@435 499 if (m->holder()->name() == ciSymbol::java_lang_Class() ||
duke@435 500 m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
duke@435 501 if (!InlineClassNatives) return NULL;
duke@435 502 }
duke@435 503
duke@435 504 // -XX:-InlineThreadNatives disables natives from the Thread class.
duke@435 505 if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
duke@435 506 if (!InlineThreadNatives) return NULL;
duke@435 507 }
duke@435 508
duke@435 509 // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
duke@435 510 if (m->holder()->name() == ciSymbol::java_lang_Math() ||
duke@435 511 m->holder()->name() == ciSymbol::java_lang_Float() ||
duke@435 512 m->holder()->name() == ciSymbol::java_lang_Double()) {
duke@435 513 if (!InlineMathNatives) return NULL;
duke@435 514 }
duke@435 515
duke@435 516 // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
duke@435 517 if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
duke@435 518 if (!InlineUnsafeOps) return NULL;
duke@435 519 }
duke@435 520
kvn@4205 521 return new LibraryIntrinsic(m, is_virtual, is_predicted, (vmIntrinsics::ID) id);
duke@435 522 }
duke@435 523
duke@435 524 //----------------------register_library_intrinsics-----------------------
duke@435 525 // Initialize this file's data structures, for each Compile instance.
duke@435 526 void Compile::register_library_intrinsics() {
duke@435 527 // Nothing to do here.
duke@435 528 }
duke@435 529
duke@435 530 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
duke@435 531 LibraryCallKit kit(jvms, this);
duke@435 532 Compile* C = kit.C;
duke@435 533 int nodes = C->unique();
duke@435 534 #ifndef PRODUCT
duke@435 535 if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
duke@435 536 char buf[1000];
duke@435 537 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
duke@435 538 tty->print_cr("Intrinsic %s", str);
duke@435 539 }
duke@435 540 #endif
twisti@4313 541 ciMethod* callee = kit.callee();
twisti@4313 542 const int bci = kit.bci();
twisti@4313 543
twisti@4313 544 // Try to inline the intrinsic.
duke@435 545 if (kit.try_to_inline()) {
duke@435 546 if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
roland@4357 547 C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
duke@435 548 }
duke@435 549 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
duke@435 550 if (C->log()) {
duke@435 551 C->log()->elem("intrinsic id='%s'%s nodes='%d'",
duke@435 552 vmIntrinsics::name_at(intrinsic_id()),
duke@435 553 (is_virtual() ? " virtual='1'" : ""),
duke@435 554 C->unique() - nodes);
duke@435 555 }
twisti@4313 556 // Push the result from the inlined method onto the stack.
twisti@4313 557 kit.push_result();
duke@435 558 return kit.transfer_exceptions_into_jvms();
duke@435 559 }
duke@435 560
never@3631 561 // The intrinsic bailed out
never@3631 562 if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
johnc@2781 563 if (jvms->has_method()) {
johnc@2781 564 // Not a root compile.
never@3631 565 const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
roland@4357 566 C->print_inlining(callee, jvms->depth() - 1, bci, msg);
johnc@2781 567 } else {
johnc@2781 568 // Root compile
johnc@2781 569 tty->print("Did not generate intrinsic %s%s at bci:%d in",
jrose@1291 570 vmIntrinsics::name_at(intrinsic_id()),
twisti@4313 571 (is_virtual() ? " (virtual)" : ""), bci);
johnc@2781 572 }
duke@435 573 }
duke@435 574 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
duke@435 575 return NULL;
duke@435 576 }
duke@435 577
kvn@4205 578 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
kvn@4205 579 LibraryCallKit kit(jvms, this);
kvn@4205 580 Compile* C = kit.C;
kvn@4205 581 int nodes = C->unique();
kvn@4205 582 #ifndef PRODUCT
kvn@4205 583 assert(is_predicted(), "sanity");
kvn@4205 584 if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
kvn@4205 585 char buf[1000];
kvn@4205 586 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
kvn@4205 587 tty->print_cr("Predicate for intrinsic %s", str);
kvn@4205 588 }
kvn@4205 589 #endif
twisti@4313 590 ciMethod* callee = kit.callee();
twisti@4313 591 const int bci = kit.bci();
kvn@4205 592
kvn@4205 593 Node* slow_ctl = kit.try_to_predicate();
kvn@4205 594 if (!kit.failing()) {
twisti@4313 595 if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
roland@4357 596 C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
twisti@4313 597 }
twisti@4313 598 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
kvn@4205 599 if (C->log()) {
kvn@4205 600 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
kvn@4205 601 vmIntrinsics::name_at(intrinsic_id()),
kvn@4205 602 (is_virtual() ? " virtual='1'" : ""),
kvn@4205 603 C->unique() - nodes);
kvn@4205 604 }
kvn@4205 605 return slow_ctl; // Could be NULL if the check folds.
kvn@4205 606 }
kvn@4205 607
kvn@4205 608 // The intrinsic bailed out
kvn@4205 609 if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
kvn@4205 610 if (jvms->has_method()) {
kvn@4205 611 // Not a root compile.
kvn@4205 612 const char* msg = "failed to generate predicate for intrinsic";
roland@4357 613 C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
kvn@4205 614 } else {
kvn@4205 615 // Root compile
roland@4357 616 C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
roland@4357 617 vmIntrinsics::name_at(intrinsic_id()),
roland@4357 618 (is_virtual() ? " (virtual)" : ""), bci);
kvn@4205 619 }
kvn@4205 620 }
kvn@4205 621 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
kvn@4205 622 return NULL;
kvn@4205 623 }
kvn@4205 624
duke@435 625 bool LibraryCallKit::try_to_inline() {
duke@435 626 // Handle symbolic names for otherwise undistinguished boolean switches:
duke@435 627 const bool is_store = true;
duke@435 628 const bool is_native_ptr = true;
duke@435 629 const bool is_static = true;
twisti@4313 630 const bool is_volatile = true;
duke@435 631
johnc@2781 632 if (!jvms()->has_method()) {
johnc@2781 633 // Root JVMState has a null method.
johnc@2781 634 assert(map()->memory()->Opcode() == Op_Parm, "");
johnc@2781 635 // Insert the memory aliasing node
johnc@2781 636 set_all_memory(reset_memory());
johnc@2781 637 }
johnc@2781 638 assert(merged_memory(), "");
johnc@2781 639
twisti@4313 640
duke@435 641 switch (intrinsic_id()) {
twisti@4313 642 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
twisti@4313 643 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static);
twisti@4313 644 case vmIntrinsics::_getClass: return inline_native_getClass();
duke@435 645
duke@435 646 case vmIntrinsics::_dsin:
duke@435 647 case vmIntrinsics::_dcos:
duke@435 648 case vmIntrinsics::_dtan:
duke@435 649 case vmIntrinsics::_dabs:
duke@435 650 case vmIntrinsics::_datan2:
duke@435 651 case vmIntrinsics::_dsqrt:
duke@435 652 case vmIntrinsics::_dexp:
duke@435 653 case vmIntrinsics::_dlog:
duke@435 654 case vmIntrinsics::_dlog10:
twisti@4313 655 case vmIntrinsics::_dpow: return inline_math_native(intrinsic_id());
duke@435 656
duke@435 657 case vmIntrinsics::_min:
twisti@4313 658 case vmIntrinsics::_max: return inline_min_max(intrinsic_id());
twisti@4313 659
twisti@4313 660 case vmIntrinsics::_arraycopy: return inline_arraycopy();
twisti@4313 661
twisti@4313 662 case vmIntrinsics::_compareTo: return inline_string_compareTo();
twisti@4313 663 case vmIntrinsics::_indexOf: return inline_string_indexOf();
twisti@4313 664 case vmIntrinsics::_equals: return inline_string_equals();
twisti@4313 665
twisti@4313 666 case vmIntrinsics::_getObject: return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, !is_volatile);
twisti@4313 667 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
twisti@4313 668 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, !is_volatile);
twisti@4313 669 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, !is_volatile);
twisti@4313 670 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, !is_volatile);
twisti@4313 671 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, !is_volatile);
twisti@4313 672 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, !is_volatile);
twisti@4313 673 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, !is_volatile);
twisti@4313 674 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, !is_volatile);
twisti@4313 675
twisti@4313 676 case vmIntrinsics::_putObject: return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, !is_volatile);
twisti@4313 677 case vmIntrinsics::_putBoolean: return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, !is_volatile);
twisti@4313 678 case vmIntrinsics::_putByte: return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, !is_volatile);
twisti@4313 679 case vmIntrinsics::_putShort: return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, !is_volatile);
twisti@4313 680 case vmIntrinsics::_putChar: return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, !is_volatile);
twisti@4313 681 case vmIntrinsics::_putInt: return inline_unsafe_access(!is_native_ptr, is_store, T_INT, !is_volatile);
twisti@4313 682 case vmIntrinsics::_putLong: return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, !is_volatile);
twisti@4313 683 case vmIntrinsics::_putFloat: return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, !is_volatile);
twisti@4313 684 case vmIntrinsics::_putDouble: return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, !is_volatile);
twisti@4313 685
twisti@4313 686 case vmIntrinsics::_getByte_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE, !is_volatile);
twisti@4313 687 case vmIntrinsics::_getShort_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT, !is_volatile);
twisti@4313 688 case vmIntrinsics::_getChar_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR, !is_volatile);
twisti@4313 689 case vmIntrinsics::_getInt_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_INT, !is_volatile);
twisti@4313 690 case vmIntrinsics::_getLong_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_LONG, !is_volatile);
twisti@4313 691 case vmIntrinsics::_getFloat_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT, !is_volatile);
twisti@4313 692 case vmIntrinsics::_getDouble_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE, !is_volatile);
twisti@4313 693 case vmIntrinsics::_getAddress_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
twisti@4313 694
twisti@4313 695 case vmIntrinsics::_putByte_raw: return inline_unsafe_access( is_native_ptr, is_store, T_BYTE, !is_volatile);
twisti@4313 696 case vmIntrinsics::_putShort_raw: return inline_unsafe_access( is_native_ptr, is_store, T_SHORT, !is_volatile);
twisti@4313 697 case vmIntrinsics::_putChar_raw: return inline_unsafe_access( is_native_ptr, is_store, T_CHAR, !is_volatile);
twisti@4313 698 case vmIntrinsics::_putInt_raw: return inline_unsafe_access( is_native_ptr, is_store, T_INT, !is_volatile);
twisti@4313 699 case vmIntrinsics::_putLong_raw: return inline_unsafe_access( is_native_ptr, is_store, T_LONG, !is_volatile);
twisti@4313 700 case vmIntrinsics::_putFloat_raw: return inline_unsafe_access( is_native_ptr, is_store, T_FLOAT, !is_volatile);
twisti@4313 701 case vmIntrinsics::_putDouble_raw: return inline_unsafe_access( is_native_ptr, is_store, T_DOUBLE, !is_volatile);
twisti@4313 702 case vmIntrinsics::_putAddress_raw: return inline_unsafe_access( is_native_ptr, is_store, T_ADDRESS, !is_volatile);
twisti@4313 703
twisti@4313 704 case vmIntrinsics::_getObjectVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, is_volatile);
twisti@4313 705 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, is_volatile);
twisti@4313 706 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, is_volatile);
twisti@4313 707 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, is_volatile);
twisti@4313 708 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, is_volatile);
twisti@4313 709 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, is_volatile);
twisti@4313 710 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, is_volatile);
twisti@4313 711 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, is_volatile);
twisti@4313 712 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, is_volatile);
twisti@4313 713
twisti@4313 714 case vmIntrinsics::_putObjectVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, is_volatile);
twisti@4313 715 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, is_volatile);
twisti@4313 716 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, is_volatile);
twisti@4313 717 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, is_volatile);
twisti@4313 718 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, is_volatile);
twisti@4313 719 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_INT, is_volatile);
twisti@4313 720 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, is_volatile);
twisti@4313 721 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, is_volatile);
twisti@4313 722 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, is_volatile);
twisti@4313 723
twisti@4313 724 case vmIntrinsics::_prefetchRead: return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
twisti@4313 725 case vmIntrinsics::_prefetchWrite: return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
twisti@4313 726 case vmIntrinsics::_prefetchReadStatic: return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
twisti@4313 727 case vmIntrinsics::_prefetchWriteStatic: return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
twisti@4313 728
twisti@4313 729 case vmIntrinsics::_compareAndSwapObject: return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
twisti@4313 730 case vmIntrinsics::_compareAndSwapInt: return inline_unsafe_load_store(T_INT, LS_cmpxchg);
twisti@4313 731 case vmIntrinsics::_compareAndSwapLong: return inline_unsafe_load_store(T_LONG, LS_cmpxchg);
twisti@4313 732
twisti@4313 733 case vmIntrinsics::_putOrderedObject: return inline_unsafe_ordered_store(T_OBJECT);
twisti@4313 734 case vmIntrinsics::_putOrderedInt: return inline_unsafe_ordered_store(T_INT);
twisti@4313 735 case vmIntrinsics::_putOrderedLong: return inline_unsafe_ordered_store(T_LONG);
twisti@4313 736
twisti@4313 737 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_xadd);
twisti@4313 738 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_xadd);
twisti@4313 739 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_xchg);
twisti@4313 740 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_xchg);
twisti@4313 741 case vmIntrinsics::_getAndSetObject: return inline_unsafe_load_store(T_OBJECT, LS_xchg);
twisti@4313 742
kvn@4361 743 case vmIntrinsics::_loadFence:
kvn@4361 744 case vmIntrinsics::_storeFence:
kvn@4361 745 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id());
kvn@4361 746
twisti@4313 747 case vmIntrinsics::_currentThread: return inline_native_currentThread();
twisti@4313 748 case vmIntrinsics::_isInterrupted: return inline_native_isInterrupted();
duke@435 749
rbackman@3709 750 #ifdef TRACE_HAVE_INTRINSICS
twisti@4313 751 case vmIntrinsics::_classID: return inline_native_classID();
twisti@4313 752 case vmIntrinsics::_threadID: return inline_native_threadID();
twisti@4313 753 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
rbackman@3709 754 #endif
twisti@4313 755 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
twisti@4313 756 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
twisti@4313 757 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate();
twisti@4313 758 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory();
twisti@4313 759 case vmIntrinsics::_newArray: return inline_native_newArray();
twisti@4313 760 case vmIntrinsics::_getLength: return inline_native_getLength();
twisti@4313 761 case vmIntrinsics::_copyOf: return inline_array_copyOf(false);
twisti@4313 762 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true);
twisti@4313 763 case vmIntrinsics::_equalsC: return inline_array_equals();
twisti@4313 764 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual());
twisti@4313 765
twisti@4313 766 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check();
duke@435 767
duke@435 768 case vmIntrinsics::_isInstance:
duke@435 769 case vmIntrinsics::_getModifiers:
duke@435 770 case vmIntrinsics::_isInterface:
duke@435 771 case vmIntrinsics::_isArray:
duke@435 772 case vmIntrinsics::_isPrimitive:
duke@435 773 case vmIntrinsics::_getSuperclass:
duke@435 774 case vmIntrinsics::_getComponentType:
twisti@4313 775 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id());
duke@435 776
duke@435 777 case vmIntrinsics::_floatToRawIntBits:
duke@435 778 case vmIntrinsics::_floatToIntBits:
duke@435 779 case vmIntrinsics::_intBitsToFloat:
duke@435 780 case vmIntrinsics::_doubleToRawLongBits:
duke@435 781 case vmIntrinsics::_doubleToLongBits:
twisti@4313 782 case vmIntrinsics::_longBitsToDouble: return inline_fp_conversions(intrinsic_id());
duke@435 783
twisti@1210 784 case vmIntrinsics::_numberOfLeadingZeros_i:
twisti@1210 785 case vmIntrinsics::_numberOfLeadingZeros_l:
twisti@1210 786 case vmIntrinsics::_numberOfTrailingZeros_i:
twisti@1210 787 case vmIntrinsics::_numberOfTrailingZeros_l:
twisti@1078 788 case vmIntrinsics::_bitCount_i:
twisti@1078 789 case vmIntrinsics::_bitCount_l:
duke@435 790 case vmIntrinsics::_reverseBytes_i:
duke@435 791 case vmIntrinsics::_reverseBytes_l:
never@1831 792 case vmIntrinsics::_reverseBytes_s:
twisti@4313 793 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id());
twisti@4313 794
twisti@4313 795 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass();
twisti@4313 796
twisti@4313 797 case vmIntrinsics::_Reference_get: return inline_reference_get();
johnc@2781 798
kvn@4205 799 case vmIntrinsics::_aescrypt_encryptBlock:
twisti@4313 800 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id());
kvn@4205 801
kvn@4205 802 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
kvn@4205 803 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
kvn@4205 804 return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
kvn@4205 805
kvn@4479 806 case vmIntrinsics::_encodeISOArray:
kvn@4479 807 return inline_encodeISOArray();
kvn@4479 808
duke@435 809 default:
duke@435 810 // If you get here, it may be that someone has added a new intrinsic
duke@435 811 // to the list in vmSymbols.hpp without implementing it here.
duke@435 812 #ifndef PRODUCT
duke@435 813 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
duke@435 814 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
duke@435 815 vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
duke@435 816 }
duke@435 817 #endif
duke@435 818 return false;
duke@435 819 }
duke@435 820 }
duke@435 821
kvn@4205 822 Node* LibraryCallKit::try_to_predicate() {
kvn@4205 823 if (!jvms()->has_method()) {
kvn@4205 824 // Root JVMState has a null method.
kvn@4205 825 assert(map()->memory()->Opcode() == Op_Parm, "");
kvn@4205 826 // Insert the memory aliasing node
kvn@4205 827 set_all_memory(reset_memory());
kvn@4205 828 }
kvn@4205 829 assert(merged_memory(), "");
kvn@4205 830
kvn@4205 831 switch (intrinsic_id()) {
kvn@4205 832 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
kvn@4205 833 return inline_cipherBlockChaining_AESCrypt_predicate(false);
kvn@4205 834 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
kvn@4205 835 return inline_cipherBlockChaining_AESCrypt_predicate(true);
kvn@4205 836
kvn@4205 837 default:
kvn@4205 838 // If you get here, it may be that someone has added a new intrinsic
kvn@4205 839 // to the list in vmSymbols.hpp without implementing it here.
kvn@4205 840 #ifndef PRODUCT
kvn@4205 841 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
kvn@4205 842 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
kvn@4205 843 vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
kvn@4205 844 }
kvn@4205 845 #endif
kvn@4205 846 Node* slow_ctl = control();
kvn@4205 847 set_control(top()); // No fast path instrinsic
kvn@4205 848 return slow_ctl;
kvn@4205 849 }
kvn@4205 850 }
kvn@4205 851
twisti@4313 852 //------------------------------set_result-------------------------------
duke@435 853 // Helper function for finishing intrinsics.
twisti@4313 854 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
duke@435 855 record_for_igvn(region);
duke@435 856 set_control(_gvn.transform(region));
twisti@4313 857 set_result( _gvn.transform(value));
twisti@4313 858 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
duke@435 859 }
duke@435 860
duke@435 861 //------------------------------generate_guard---------------------------
duke@435 862 // Helper function for generating guarded fast-slow graph structures.
duke@435 863 // The given 'test', if true, guards a slow path. If the test fails
duke@435 864 // then a fast path can be taken. (We generally hope it fails.)
duke@435 865 // In all cases, GraphKit::control() is updated to the fast path.
duke@435 866 // The returned value represents the control for the slow path.
duke@435 867 // The return value is never 'top'; it is either a valid control
duke@435 868 // or NULL if it is obvious that the slow path can never be taken.
duke@435 869 // Also, if region and the slow control are not NULL, the slow edge
duke@435 870 // is appended to the region.
duke@435 871 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
duke@435 872 if (stopped()) {
duke@435 873 // Already short circuited.
duke@435 874 return NULL;
duke@435 875 }
duke@435 876
duke@435 877 // Build an if node and its projections.
duke@435 878 // If test is true we take the slow path, which we assume is uncommon.
duke@435 879 if (_gvn.type(test) == TypeInt::ZERO) {
duke@435 880 // The slow branch is never taken. No need to build this guard.
duke@435 881 return NULL;
duke@435 882 }
duke@435 883
duke@435 884 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
duke@435 885
kvn@4115 886 Node* if_slow = _gvn.transform( new (C) IfTrueNode(iff) );
duke@435 887 if (if_slow == top()) {
duke@435 888 // The slow branch is never taken. No need to build this guard.
duke@435 889 return NULL;
duke@435 890 }
duke@435 891
duke@435 892 if (region != NULL)
duke@435 893 region->add_req(if_slow);
duke@435 894
kvn@4115 895 Node* if_fast = _gvn.transform( new (C) IfFalseNode(iff) );
duke@435 896 set_control(if_fast);
duke@435 897
duke@435 898 return if_slow;
duke@435 899 }
duke@435 900
duke@435 901 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
duke@435 902 return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
duke@435 903 }
duke@435 904 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
duke@435 905 return generate_guard(test, region, PROB_FAIR);
duke@435 906 }
duke@435 907
duke@435 908 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
duke@435 909 Node* *pos_index) {
duke@435 910 if (stopped())
duke@435 911 return NULL; // already stopped
duke@435 912 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
duke@435 913 return NULL; // index is already adequately typed
kvn@4115 914 Node* cmp_lt = _gvn.transform( new (C) CmpINode(index, intcon(0)) );
kvn@4115 915 Node* bol_lt = _gvn.transform( new (C) BoolNode(cmp_lt, BoolTest::lt) );
duke@435 916 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
duke@435 917 if (is_neg != NULL && pos_index != NULL) {
duke@435 918 // Emulate effect of Parse::adjust_map_after_if.
kvn@4115 919 Node* ccast = new (C) CastIINode(index, TypeInt::POS);
duke@435 920 ccast->set_req(0, control());
duke@435 921 (*pos_index) = _gvn.transform(ccast);
duke@435 922 }
duke@435 923 return is_neg;
duke@435 924 }
duke@435 925
duke@435 926 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
duke@435 927 Node* *pos_index) {
duke@435 928 if (stopped())
duke@435 929 return NULL; // already stopped
duke@435 930 if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
duke@435 931 return NULL; // index is already adequately typed
kvn@4115 932 Node* cmp_le = _gvn.transform( new (C) CmpINode(index, intcon(0)) );
duke@435 933 BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
kvn@4115 934 Node* bol_le = _gvn.transform( new (C) BoolNode(cmp_le, le_or_eq) );
duke@435 935 Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
duke@435 936 if (is_notp != NULL && pos_index != NULL) {
duke@435 937 // Emulate effect of Parse::adjust_map_after_if.
kvn@4115 938 Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
duke@435 939 ccast->set_req(0, control());
duke@435 940 (*pos_index) = _gvn.transform(ccast);
duke@435 941 }
duke@435 942 return is_notp;
duke@435 943 }
duke@435 944
duke@435 945 // Make sure that 'position' is a valid limit index, in [0..length].
duke@435 946 // There are two equivalent plans for checking this:
duke@435 947 // A. (offset + copyLength) unsigned<= arrayLength
duke@435 948 // B. offset <= (arrayLength - copyLength)
duke@435 949 // We require that all of the values above, except for the sum and
duke@435 950 // difference, are already known to be non-negative.
duke@435 951 // Plan A is robust in the face of overflow, if offset and copyLength
duke@435 952 // are both hugely positive.
duke@435 953 //
duke@435 954 // Plan B is less direct and intuitive, but it does not overflow at
duke@435 955 // all, since the difference of two non-negatives is always
duke@435 956 // representable. Whenever Java methods must perform the equivalent
duke@435 957 // check they generally use Plan B instead of Plan A.
duke@435 958 // For the moment we use Plan A.
duke@435 959 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
duke@435 960 Node* subseq_length,
duke@435 961 Node* array_length,
duke@435 962 RegionNode* region) {
duke@435 963 if (stopped())
duke@435 964 return NULL; // already stopped
duke@435 965 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
kvn@3407 966 if (zero_offset && subseq_length->eqv_uncast(array_length))
duke@435 967 return NULL; // common case of whole-array copy
duke@435 968 Node* last = subseq_length;
duke@435 969 if (!zero_offset) // last += offset
kvn@4115 970 last = _gvn.transform( new (C) AddINode(last, offset));
kvn@4115 971 Node* cmp_lt = _gvn.transform( new (C) CmpUNode(array_length, last) );
kvn@4115 972 Node* bol_lt = _gvn.transform( new (C) BoolNode(cmp_lt, BoolTest::lt) );
duke@435 973 Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
duke@435 974 return is_over;
duke@435 975 }
duke@435 976
duke@435 977
duke@435 978 //--------------------------generate_current_thread--------------------
duke@435 979 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
duke@435 980 ciKlass* thread_klass = env()->Thread_klass();
duke@435 981 const Type* thread_type = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
kvn@4115 982 Node* thread = _gvn.transform(new (C) ThreadLocalNode());
duke@435 983 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
duke@435 984 Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
duke@435 985 tls_output = thread;
duke@435 986 return threadObj;
duke@435 987 }
duke@435 988
duke@435 989
kvn@1421 990 //------------------------------make_string_method_node------------------------
kvn@3760 991 // Helper method for String intrinsic functions. This version is called
kvn@3760 992 // with str1 and str2 pointing to String object nodes.
kvn@3760 993 //
kvn@3760 994 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
kvn@1421 995 Node* no_ctrl = NULL;
kvn@1421 996
kvn@3760 997 // Get start addr of string
kvn@3760 998 Node* str1_value = load_String_value(no_ctrl, str1);
kvn@3760 999 Node* str1_offset = load_String_offset(no_ctrl, str1);
kvn@1421 1000 Node* str1_start = array_element_address(str1_value, str1_offset, T_CHAR);
kvn@1421 1001
kvn@3760 1002 // Get length of string 1
kvn@3760 1003 Node* str1_len = load_String_length(no_ctrl, str1);
kvn@3760 1004
kvn@3760 1005 Node* str2_value = load_String_value(no_ctrl, str2);
kvn@3760 1006 Node* str2_offset = load_String_offset(no_ctrl, str2);
kvn@1421 1007 Node* str2_start = array_element_address(str2_value, str2_offset, T_CHAR);
kvn@1421 1008
kvn@3760 1009 Node* str2_len = NULL;
kvn@1421 1010 Node* result = NULL;
kvn@3760 1011
kvn@1421 1012 switch (opcode) {
kvn@1421 1013 case Op_StrIndexOf:
kvn@3760 1014 // Get length of string 2
kvn@3760 1015 str2_len = load_String_length(no_ctrl, str2);
kvn@3760 1016
kvn@4115 1017 result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 1018 str1_start, str1_len, str2_start, str2_len);
kvn@1421 1019 break;
kvn@1421 1020 case Op_StrComp:
kvn@3760 1021 // Get length of string 2
kvn@3760 1022 str2_len = load_String_length(no_ctrl, str2);
kvn@3760 1023
kvn@4115 1024 result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 1025 str1_start, str1_len, str2_start, str2_len);
kvn@1421 1026 break;
kvn@1421 1027 case Op_StrEquals:
kvn@4115 1028 result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 1029 str1_start, str2_start, str1_len);
kvn@1421 1030 break;
kvn@1421 1031 default:
kvn@1421 1032 ShouldNotReachHere();
kvn@1421 1033 return NULL;
kvn@1421 1034 }
kvn@1421 1035
kvn@1421 1036 // All these intrinsics have checks.
kvn@1421 1037 C->set_has_split_ifs(true); // Has chance for split-if optimization
kvn@1421 1038
kvn@1421 1039 return _gvn.transform(result);
kvn@1421 1040 }
kvn@1421 1041
kvn@3760 1042 // Helper method for String intrinsic functions. This version is called
kvn@3760 1043 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
kvn@3760 1044 // to Int nodes containing the lenghts of str1 and str2.
kvn@3760 1045 //
kvn@3760 1046 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
kvn@3760 1047 Node* result = NULL;
kvn@3760 1048 switch (opcode) {
kvn@3760 1049 case Op_StrIndexOf:
kvn@4115 1050 result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 1051 str1_start, cnt1, str2_start, cnt2);
kvn@3760 1052 break;
kvn@3760 1053 case Op_StrComp:
kvn@4115 1054 result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 1055 str1_start, cnt1, str2_start, cnt2);
kvn@3760 1056 break;
kvn@3760 1057 case Op_StrEquals:
kvn@4115 1058 result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 1059 str1_start, str2_start, cnt1);
kvn@3760 1060 break;
kvn@3760 1061 default:
kvn@3760 1062 ShouldNotReachHere();
kvn@3760 1063 return NULL;
kvn@3760 1064 }
kvn@3760 1065
kvn@3760 1066 // All these intrinsics have checks.
kvn@3760 1067 C->set_has_split_ifs(true); // Has chance for split-if optimization
kvn@3760 1068
kvn@3760 1069 return _gvn.transform(result);
kvn@3760 1070 }
kvn@3760 1071
duke@435 1072 //------------------------------inline_string_compareTo------------------------
twisti@4313 1073 // public int java.lang.String.compareTo(String anotherString);
duke@435 1074 bool LibraryCallKit::inline_string_compareTo() {
twisti@4313 1075 Node* receiver = null_check(argument(0));
twisti@4313 1076 Node* arg = null_check(argument(1));
duke@435 1077 if (stopped()) {
duke@435 1078 return true;
duke@435 1079 }
twisti@4313 1080 set_result(make_string_method_node(Op_StrComp, receiver, arg));
duke@435 1081 return true;
duke@435 1082 }
duke@435 1083
cfang@1116 1084 //------------------------------inline_string_equals------------------------
cfang@1116 1085 bool LibraryCallKit::inline_string_equals() {
twisti@4313 1086 Node* receiver = null_check_receiver();
twisti@4313 1087 // NOTE: Do not null check argument for String.equals() because spec
twisti@4313 1088 // allows to specify NULL as argument.
twisti@4313 1089 Node* argument = this->argument(1);
cfang@1116 1090 if (stopped()) {
cfang@1116 1091 return true;
cfang@1116 1092 }
cfang@1116 1093
kvn@1421 1094 // paths (plus control) merge
kvn@4115 1095 RegionNode* region = new (C) RegionNode(5);
kvn@4115 1096 Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
kvn@1421 1097
kvn@1421 1098 // does source == target string?
kvn@4115 1099 Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
kvn@4115 1100 Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
kvn@1421 1101
kvn@1421 1102 Node* if_eq = generate_slow_guard(bol, NULL);
kvn@1421 1103 if (if_eq != NULL) {
kvn@1421 1104 // receiver == argument
kvn@1421 1105 phi->init_req(2, intcon(1));
kvn@1421 1106 region->init_req(2, if_eq);
kvn@1421 1107 }
kvn@1421 1108
cfang@1116 1109 // get String klass for instanceOf
cfang@1116 1110 ciInstanceKlass* klass = env()->String_klass();
cfang@1116 1111
kvn@1421 1112 if (!stopped()) {
kvn@1421 1113 Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
kvn@4115 1114 Node* cmp = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
kvn@4115 1115 Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
kvn@1421 1116
kvn@1421 1117 Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
kvn@1421 1118 //instanceOf == true, fallthrough
kvn@1421 1119
kvn@1421 1120 if (inst_false != NULL) {
kvn@1421 1121 phi->init_req(3, intcon(0));
kvn@1421 1122 region->init_req(3, inst_false);
kvn@1421 1123 }
kvn@1421 1124 }
cfang@1116 1125
kvn@1421 1126 if (!stopped()) {
kvn@3760 1127 const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
kvn@3760 1128
never@1851 1129 // Properly cast the argument to String
kvn@4115 1130 argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
kvn@2869 1131 // This path is taken only when argument's type is String:NotNull.
kvn@2869 1132 argument = cast_not_null(argument, false);
never@1851 1133
kvn@3760 1134 Node* no_ctrl = NULL;
kvn@3760 1135
kvn@3760 1136 // Get start addr of receiver
kvn@3760 1137 Node* receiver_val = load_String_value(no_ctrl, receiver);
kvn@3760 1138 Node* receiver_offset = load_String_offset(no_ctrl, receiver);
kvn@3760 1139 Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
kvn@3760 1140
kvn@3760 1141 // Get length of receiver
kvn@3760 1142 Node* receiver_cnt = load_String_length(no_ctrl, receiver);
kvn@3760 1143
kvn@3760 1144 // Get start addr of argument
twisti@4313 1145 Node* argument_val = load_String_value(no_ctrl, argument);
kvn@3760 1146 Node* argument_offset = load_String_offset(no_ctrl, argument);
kvn@3760 1147 Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
kvn@3760 1148
kvn@3760 1149 // Get length of argument
kvn@3760 1150 Node* argument_cnt = load_String_length(no_ctrl, argument);
kvn@1421 1151
kvn@1421 1152 // Check for receiver count != argument count
kvn@4115 1153 Node* cmp = _gvn.transform( new(C) CmpINode(receiver_cnt, argument_cnt) );
kvn@4115 1154 Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::ne) );
kvn@1421 1155 Node* if_ne = generate_slow_guard(bol, NULL);
kvn@1421 1156 if (if_ne != NULL) {
kvn@1421 1157 phi->init_req(4, intcon(0));
kvn@1421 1158 region->init_req(4, if_ne);
kvn@1421 1159 }
kvn@3760 1160
kvn@3760 1161 // Check for count == 0 is done by assembler code for StrEquals.
kvn@3760 1162
kvn@3760 1163 if (!stopped()) {
kvn@3760 1164 Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
kvn@3760 1165 phi->init_req(1, equals);
kvn@3760 1166 region->init_req(1, control());
kvn@3760 1167 }
kvn@1421 1168 }
cfang@1116 1169
cfang@1116 1170 // post merge
cfang@1116 1171 set_control(_gvn.transform(region));
cfang@1116 1172 record_for_igvn(region);
cfang@1116 1173
twisti@4313 1174 set_result(_gvn.transform(phi));
cfang@1116 1175 return true;
cfang@1116 1176 }
cfang@1116 1177
rasbold@604 1178 //------------------------------inline_array_equals----------------------------
rasbold@604 1179 bool LibraryCallKit::inline_array_equals() {
twisti@4313 1180 Node* arg1 = argument(0);
twisti@4313 1181 Node* arg2 = argument(1);
twisti@4313 1182 set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
rasbold@604 1183 return true;
rasbold@604 1184 }
rasbold@604 1185
duke@435 1186 // Java version of String.indexOf(constant string)
duke@435 1187 // class StringDecl {
duke@435 1188 // StringDecl(char[] ca) {
duke@435 1189 // offset = 0;
duke@435 1190 // count = ca.length;
duke@435 1191 // value = ca;
duke@435 1192 // }
duke@435 1193 // int offset;
duke@435 1194 // int count;
duke@435 1195 // char[] value;
duke@435 1196 // }
duke@435 1197 //
duke@435 1198 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
duke@435 1199 // int targetOffset, int cache_i, int md2) {
duke@435 1200 // int cache = cache_i;
duke@435 1201 // int sourceOffset = string_object.offset;
duke@435 1202 // int sourceCount = string_object.count;
duke@435 1203 // int targetCount = target_object.length;
duke@435 1204 //
duke@435 1205 // int targetCountLess1 = targetCount - 1;
duke@435 1206 // int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
duke@435 1207 //
duke@435 1208 // char[] source = string_object.value;
duke@435 1209 // char[] target = target_object;
duke@435 1210 // int lastChar = target[targetCountLess1];
duke@435 1211 //
duke@435 1212 // outer_loop:
duke@435 1213 // for (int i = sourceOffset; i < sourceEnd; ) {
duke@435 1214 // int src = source[i + targetCountLess1];
duke@435 1215 // if (src == lastChar) {
duke@435 1216 // // With random strings and a 4-character alphabet,
duke@435 1217 // // reverse matching at this point sets up 0.8% fewer
duke@435 1218 // // frames, but (paradoxically) makes 0.3% more probes.
duke@435 1219 // // Since those probes are nearer the lastChar probe,
duke@435 1220 // // there is may be a net D$ win with reverse matching.
duke@435 1221 // // But, reversing loop inhibits unroll of inner loop
duke@435 1222 // // for unknown reason. So, does running outer loop from
duke@435 1223 // // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
duke@435 1224 // for (int j = 0; j < targetCountLess1; j++) {
duke@435 1225 // if (target[targetOffset + j] != source[i+j]) {
duke@435 1226 // if ((cache & (1 << source[i+j])) == 0) {
duke@435 1227 // if (md2 < j+1) {
duke@435 1228 // i += j+1;
duke@435 1229 // continue outer_loop;
duke@435 1230 // }
duke@435 1231 // }
duke@435 1232 // i += md2;
duke@435 1233 // continue outer_loop;
duke@435 1234 // }
duke@435 1235 // }
duke@435 1236 // return i - sourceOffset;
duke@435 1237 // }
duke@435 1238 // if ((cache & (1 << src)) == 0) {
duke@435 1239 // i += targetCountLess1;
duke@435 1240 // } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
duke@435 1241 // i++;
duke@435 1242 // }
duke@435 1243 // return -1;
duke@435 1244 // }
duke@435 1245
duke@435 1246 //------------------------------string_indexOf------------------------
duke@435 1247 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
duke@435 1248 jint cache_i, jint md2_i) {
duke@435 1249
duke@435 1250 Node* no_ctrl = NULL;
duke@435 1251 float likely = PROB_LIKELY(0.9);
duke@435 1252 float unlikely = PROB_UNLIKELY(0.9);
duke@435 1253
twisti@4313 1254 const int nargs = 0; // no arguments to push back for uncommon trap in predicate
kvn@2665 1255
kvn@3760 1256 Node* source = load_String_value(no_ctrl, string_object);
kvn@3760 1257 Node* sourceOffset = load_String_offset(no_ctrl, string_object);
kvn@3760 1258 Node* sourceCount = load_String_length(no_ctrl, string_object);
duke@435 1259
jcoomes@2661 1260 Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)) );
duke@435 1261 jint target_length = target_array->length();
duke@435 1262 const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
duke@435 1263 const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
duke@435 1264
kvn@2726 1265 IdealKit kit(this, false, true);
duke@435 1266 #define __ kit.
duke@435 1267 Node* zero = __ ConI(0);
duke@435 1268 Node* one = __ ConI(1);
duke@435 1269 Node* cache = __ ConI(cache_i);
duke@435 1270 Node* md2 = __ ConI(md2_i);
duke@435 1271 Node* lastChar = __ ConI(target_array->char_at(target_length - 1));
duke@435 1272 Node* targetCount = __ ConI(target_length);
duke@435 1273 Node* targetCountLess1 = __ ConI(target_length - 1);
duke@435 1274 Node* targetOffset = __ ConI(targetOffset_i);
duke@435 1275 Node* sourceEnd = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
duke@435 1276
kvn@1286 1277 IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
duke@435 1278 Node* outer_loop = __ make_label(2 /* goto */);
duke@435 1279 Node* return_ = __ make_label(1);
duke@435 1280
duke@435 1281 __ set(rtn,__ ConI(-1));
kvn@2665 1282 __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
duke@435 1283 Node* i2 = __ AddI(__ value(i), targetCountLess1);
duke@435 1284 // pin to prohibit loading of "next iteration" value which may SEGV (rare)
duke@435 1285 Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
duke@435 1286 __ if_then(src, BoolTest::eq, lastChar, unlikely); {
kvn@2665 1287 __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
duke@435 1288 Node* tpj = __ AddI(targetOffset, __ value(j));
duke@435 1289 Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
duke@435 1290 Node* ipj = __ AddI(__ value(i), __ value(j));
duke@435 1291 Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
duke@435 1292 __ if_then(targ, BoolTest::ne, src2); {
duke@435 1293 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
duke@435 1294 __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
duke@435 1295 __ increment(i, __ AddI(__ value(j), one));
duke@435 1296 __ goto_(outer_loop);
duke@435 1297 } __ end_if(); __ dead(j);
duke@435 1298 }__ end_if(); __ dead(j);
duke@435 1299 __ increment(i, md2);
duke@435 1300 __ goto_(outer_loop);
duke@435 1301 }__ end_if();
duke@435 1302 __ increment(j, one);
duke@435 1303 }__ end_loop(); __ dead(j);
duke@435 1304 __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
duke@435 1305 __ goto_(return_);
duke@435 1306 }__ end_if();
duke@435 1307 __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
duke@435 1308 __ increment(i, targetCountLess1);
duke@435 1309 }__ end_if();
duke@435 1310 __ increment(i, one);
duke@435 1311 __ bind(outer_loop);
duke@435 1312 }__ end_loop(); __ dead(i);
duke@435 1313 __ bind(return_);
kvn@1286 1314
kvn@1286 1315 // Final sync IdealKit and GraphKit.
kvn@2726 1316 final_sync(kit);
duke@435 1317 Node* result = __ value(rtn);
duke@435 1318 #undef __
duke@435 1319 C->set_has_loops(true);
duke@435 1320 return result;
duke@435 1321 }
duke@435 1322
duke@435 1323 //------------------------------inline_string_indexOf------------------------
duke@435 1324 bool LibraryCallKit::inline_string_indexOf() {
twisti@4313 1325 Node* receiver = argument(0);
twisti@4313 1326 Node* arg = argument(1);
duke@435 1327
cfang@1116 1328 Node* result;
iveresov@1859 1329 // Disable the use of pcmpestri until it can be guaranteed that
iveresov@1859 1330 // the load doesn't cross into the uncommited space.
kvn@2602 1331 if (Matcher::has_match_rule(Op_StrIndexOf) &&
cfang@1116 1332 UseSSE42Intrinsics) {
cfang@1116 1333 // Generate SSE4.2 version of indexOf
cfang@1116 1334 // We currently only have match rules that use SSE4.2
cfang@1116 1335
twisti@4313 1336 receiver = null_check(receiver);
twisti@4313 1337 arg = null_check(arg);
cfang@1116 1338 if (stopped()) {
cfang@1116 1339 return true;
cfang@1116 1340 }
cfang@1116 1341
kvn@2602 1342 ciInstanceKlass* str_klass = env()->String_klass();
kvn@2602 1343 const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
kvn@2602 1344
kvn@1421 1345 // Make the merge point
kvn@4115 1346 RegionNode* result_rgn = new (C) RegionNode(4);
kvn@4115 1347 Node* result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
kvn@1421 1348 Node* no_ctrl = NULL;
kvn@1421 1349
kvn@3760 1350 // Get start addr of source string
kvn@3760 1351 Node* source = load_String_value(no_ctrl, receiver);
kvn@3760 1352 Node* source_offset = load_String_offset(no_ctrl, receiver);
kvn@3760 1353 Node* source_start = array_element_address(source, source_offset, T_CHAR);
kvn@3760 1354
kvn@3760 1355 // Get length of source string
kvn@3760 1356 Node* source_cnt = load_String_length(no_ctrl, receiver);
kvn@3760 1357
kvn@3760 1358 // Get start addr of substring
twisti@4313 1359 Node* substr = load_String_value(no_ctrl, arg);
twisti@4313 1360 Node* substr_offset = load_String_offset(no_ctrl, arg);
kvn@3760 1361 Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
kvn@3760 1362
kvn@3760 1363 // Get length of source string
twisti@4313 1364 Node* substr_cnt = load_String_length(no_ctrl, arg);
kvn@1421 1365
kvn@1421 1366 // Check for substr count > string count
kvn@4115 1367 Node* cmp = _gvn.transform( new(C) CmpINode(substr_cnt, source_cnt) );
kvn@4115 1368 Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::gt) );
kvn@1421 1369 Node* if_gt = generate_slow_guard(bol, NULL);
kvn@1421 1370 if (if_gt != NULL) {
kvn@1421 1371 result_phi->init_req(2, intcon(-1));
kvn@1421 1372 result_rgn->init_req(2, if_gt);
kvn@1421 1373 }
kvn@1421 1374
kvn@1421 1375 if (!stopped()) {
kvn@2602 1376 // Check for substr count == 0
kvn@4115 1377 cmp = _gvn.transform( new(C) CmpINode(substr_cnt, intcon(0)) );
kvn@4115 1378 bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
kvn@2602 1379 Node* if_zero = generate_slow_guard(bol, NULL);
kvn@2602 1380 if (if_zero != NULL) {
kvn@2602 1381 result_phi->init_req(3, intcon(0));
kvn@2602 1382 result_rgn->init_req(3, if_zero);
kvn@2602 1383 }
kvn@2602 1384 }
kvn@2602 1385
kvn@2602 1386 if (!stopped()) {
kvn@3760 1387 result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
kvn@1421 1388 result_phi->init_req(1, result);
kvn@1421 1389 result_rgn->init_req(1, control());
kvn@1421 1390 }
kvn@1421 1391 set_control(_gvn.transform(result_rgn));
kvn@1421 1392 record_for_igvn(result_rgn);
kvn@1421 1393 result = _gvn.transform(result_phi);
kvn@1421 1394
kvn@2602 1395 } else { // Use LibraryCallKit::string_indexOf
kvn@2602 1396 // don't intrinsify if argument isn't a constant string.
twisti@4313 1397 if (!arg->is_Con()) {
cfang@1116 1398 return false;
cfang@1116 1399 }
twisti@4313 1400 const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
cfang@1116 1401 if (str_type == NULL) {
cfang@1116 1402 return false;
cfang@1116 1403 }
cfang@1116 1404 ciInstanceKlass* klass = env()->String_klass();
cfang@1116 1405 ciObject* str_const = str_type->const_oop();
cfang@1116 1406 if (str_const == NULL || str_const->klass() != klass) {
cfang@1116 1407 return false;
cfang@1116 1408 }
cfang@1116 1409 ciInstance* str = str_const->as_instance();
cfang@1116 1410 assert(str != NULL, "must be instance");
cfang@1116 1411
kvn@3760 1412 ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
cfang@1116 1413 ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
cfang@1116 1414
kvn@3760 1415 int o;
kvn@3760 1416 int c;
kvn@3760 1417 if (java_lang_String::has_offset_field()) {
kvn@3760 1418 o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
kvn@3760 1419 c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
kvn@3760 1420 } else {
kvn@3760 1421 o = 0;
kvn@3760 1422 c = pat->length();
kvn@3760 1423 }
kvn@3760 1424
cfang@1116 1425 // constant strings have no offset and count == length which
cfang@1116 1426 // simplifies the resulting code somewhat so lets optimize for that.
cfang@1116 1427 if (o != 0 || c != pat->length()) {
cfang@1116 1428 return false;
cfang@1116 1429 }
cfang@1116 1430
twisti@4313 1431 receiver = null_check(receiver, T_OBJECT);
twisti@4313 1432 // NOTE: No null check on the argument is needed since it's a constant String oop.
cfang@1116 1433 if (stopped()) {
kvn@2602 1434 return true;
cfang@1116 1435 }
cfang@1116 1436
cfang@1116 1437 // The null string as a pattern always returns 0 (match at beginning of string)
cfang@1116 1438 if (c == 0) {
twisti@4313 1439 set_result(intcon(0));
cfang@1116 1440 return true;
cfang@1116 1441 }
cfang@1116 1442
cfang@1116 1443 // Generate default indexOf
cfang@1116 1444 jchar lastChar = pat->char_at(o + (c - 1));
cfang@1116 1445 int cache = 0;
cfang@1116 1446 int i;
cfang@1116 1447 for (i = 0; i < c - 1; i++) {
cfang@1116 1448 assert(i < pat->length(), "out of range");
cfang@1116 1449 cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
cfang@1116 1450 }
cfang@1116 1451
cfang@1116 1452 int md2 = c;
cfang@1116 1453 for (i = 0; i < c - 1; i++) {
cfang@1116 1454 assert(i < pat->length(), "out of range");
cfang@1116 1455 if (pat->char_at(o + i) == lastChar) {
cfang@1116 1456 md2 = (c - 1) - i;
cfang@1116 1457 }
cfang@1116 1458 }
cfang@1116 1459
cfang@1116 1460 result = string_indexOf(receiver, pat, o, cache, md2);
duke@435 1461 }
twisti@4313 1462 set_result(result);
duke@435 1463 return true;
duke@435 1464 }
duke@435 1465
twisti@4313 1466 //--------------------------round_double_node--------------------------------
twisti@4313 1467 // Round a double node if necessary.
twisti@4313 1468 Node* LibraryCallKit::round_double_node(Node* n) {
twisti@4313 1469 if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
twisti@4313 1470 n = _gvn.transform(new (C) RoundDoubleNode(0, n));
twisti@4313 1471 return n;
twisti@4313 1472 }
twisti@4313 1473
twisti@4313 1474 //------------------------------inline_math-----------------------------------
twisti@4313 1475 // public static double Math.abs(double)
twisti@4313 1476 // public static double Math.sqrt(double)
twisti@4313 1477 // public static double Math.log(double)
twisti@4313 1478 // public static double Math.log10(double)
twisti@4313 1479 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
twisti@4313 1480 Node* arg = round_double_node(argument(0));
twisti@4313 1481 Node* n;
twisti@4313 1482 switch (id) {
roland@4617 1483 case vmIntrinsics::_dabs: n = new (C) AbsDNode( arg); break;
roland@4617 1484 case vmIntrinsics::_dsqrt: n = new (C) SqrtDNode(C, control(), arg); break;
roland@4617 1485 case vmIntrinsics::_dlog: n = new (C) LogDNode(C, control(), arg); break;
roland@4617 1486 case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg); break;
twisti@4313 1487 default: fatal_unexpected_iid(id); break;
twisti@4313 1488 }
twisti@4313 1489 set_result(_gvn.transform(n));
twisti@4313 1490 return true;
duke@435 1491 }
duke@435 1492
duke@435 1493 //------------------------------inline_trig----------------------------------
duke@435 1494 // Inline sin/cos/tan instructions, if possible. If rounding is required, do
duke@435 1495 // argument reduction which will turn into a fast/slow diamond.
duke@435 1496 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
twisti@4313 1497 Node* arg = round_double_node(argument(0));
twisti@4313 1498 Node* n = NULL;
duke@435 1499
duke@435 1500 switch (id) {
roland@4617 1501 case vmIntrinsics::_dsin: n = new (C) SinDNode(C, control(), arg); break;
roland@4617 1502 case vmIntrinsics::_dcos: n = new (C) CosDNode(C, control(), arg); break;
roland@4617 1503 case vmIntrinsics::_dtan: n = new (C) TanDNode(C, control(), arg); break;
twisti@4313 1504 default: fatal_unexpected_iid(id); break;
duke@435 1505 }
twisti@4313 1506 n = _gvn.transform(n);
duke@435 1507
duke@435 1508 // Rounding required? Check for argument reduction!
twisti@4313 1509 if (Matcher::strict_fp_requires_explicit_rounding) {
duke@435 1510 static const double pi_4 = 0.7853981633974483;
duke@435 1511 static const double neg_pi_4 = -0.7853981633974483;
duke@435 1512 // pi/2 in 80-bit extended precision
duke@435 1513 // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
duke@435 1514 // -pi/2 in 80-bit extended precision
duke@435 1515 // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
duke@435 1516 // Cutoff value for using this argument reduction technique
duke@435 1517 //static const double pi_2_minus_epsilon = 1.564660403643354;
duke@435 1518 //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
duke@435 1519
duke@435 1520 // Pseudocode for sin:
duke@435 1521 // if (x <= Math.PI / 4.0) {
duke@435 1522 // if (x >= -Math.PI / 4.0) return fsin(x);
duke@435 1523 // if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
duke@435 1524 // } else {
duke@435 1525 // if (x <= Math.PI / 2.0) return fcos(x - Math.PI / 2.0);
duke@435 1526 // }
duke@435 1527 // return StrictMath.sin(x);
duke@435 1528
duke@435 1529 // Pseudocode for cos:
duke@435 1530 // if (x <= Math.PI / 4.0) {
duke@435 1531 // if (x >= -Math.PI / 4.0) return fcos(x);
duke@435 1532 // if (x >= -Math.PI / 2.0) return fsin(x + Math.PI / 2.0);
duke@435 1533 // } else {
duke@435 1534 // if (x <= Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
duke@435 1535 // }
duke@435 1536 // return StrictMath.cos(x);
duke@435 1537
duke@435 1538 // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
duke@435 1539 // requires a special machine instruction to load it. Instead we'll try
duke@435 1540 // the 'easy' case. If we really need the extra range +/- PI/2 we'll
duke@435 1541 // probably do the math inside the SIN encoding.
duke@435 1542
duke@435 1543 // Make the merge point
twisti@4313 1544 RegionNode* r = new (C) RegionNode(3);
twisti@4313 1545 Node* phi = new (C) PhiNode(r, Type::DOUBLE);
duke@435 1546
duke@435 1547 // Flatten arg so we need only 1 test
kvn@4115 1548 Node *abs = _gvn.transform(new (C) AbsDNode(arg));
duke@435 1549 // Node for PI/4 constant
duke@435 1550 Node *pi4 = makecon(TypeD::make(pi_4));
duke@435 1551 // Check PI/4 : abs(arg)
kvn@4115 1552 Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
duke@435 1553 // Check: If PI/4 < abs(arg) then go slow
kvn@4115 1554 Node *bol = _gvn.transform( new (C) BoolNode( cmp, BoolTest::lt ) );
duke@435 1555 // Branch either way
duke@435 1556 IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
duke@435 1557 set_control(opt_iff(r,iff));
duke@435 1558
duke@435 1559 // Set fast path result
twisti@4313 1560 phi->init_req(2, n);
duke@435 1561
duke@435 1562 // Slow path - non-blocking leaf call
duke@435 1563 Node* call = NULL;
duke@435 1564 switch (id) {
duke@435 1565 case vmIntrinsics::_dsin:
duke@435 1566 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
duke@435 1567 CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
duke@435 1568 "Sin", NULL, arg, top());
duke@435 1569 break;
duke@435 1570 case vmIntrinsics::_dcos:
duke@435 1571 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
duke@435 1572 CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
duke@435 1573 "Cos", NULL, arg, top());
duke@435 1574 break;
duke@435 1575 case vmIntrinsics::_dtan:
duke@435 1576 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
duke@435 1577 CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
duke@435 1578 "Tan", NULL, arg, top());
duke@435 1579 break;
duke@435 1580 }
duke@435 1581 assert(control()->in(0) == call, "");
twisti@4313 1582 Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
twisti@4313 1583 r->init_req(1, control());
twisti@4313 1584 phi->init_req(1, slow_result);
duke@435 1585
duke@435 1586 // Post-merge
duke@435 1587 set_control(_gvn.transform(r));
duke@435 1588 record_for_igvn(r);
twisti@4313 1589 n = _gvn.transform(phi);
duke@435 1590
duke@435 1591 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 1592 }
twisti@4313 1593 set_result(n);
duke@435 1594 return true;
duke@435 1595 }
duke@435 1596
roland@3908 1597 void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
roland@3908 1598 //-------------------
roland@3908 1599 //result=(result.isNaN())? funcAddr():result;
roland@3908 1600 // Check: If isNaN() by checking result!=result? then either trap
roland@3908 1601 // or go to runtime
twisti@4313 1602 Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
roland@3908 1603 // Build the boolean node
twisti@4313 1604 Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
roland@3908 1605
roland@3908 1606 if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
twisti@4313 1607 { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
roland@3908 1608 // The pow or exp intrinsic returned a NaN, which requires a call
roland@3908 1609 // to the runtime. Recompile with the runtime call.
roland@3908 1610 uncommon_trap(Deoptimization::Reason_intrinsic,
roland@3908 1611 Deoptimization::Action_make_not_entrant);
roland@3908 1612 }
twisti@4313 1613 set_result(result);
roland@3908 1614 } else {
roland@3908 1615 // If this inlining ever returned NaN in the past, we compile a call
roland@3908 1616 // to the runtime to properly handle corner cases
roland@3908 1617
roland@3908 1618 IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
kvn@4115 1619 Node* if_slow = _gvn.transform( new (C) IfFalseNode(iff) );
kvn@4115 1620 Node* if_fast = _gvn.transform( new (C) IfTrueNode(iff) );
roland@3908 1621
roland@3908 1622 if (!if_slow->is_top()) {
twisti@4313 1623 RegionNode* result_region = new (C) RegionNode(3);
kvn@4115 1624 PhiNode* result_val = new (C) PhiNode(result_region, Type::DOUBLE);
roland@3908 1625
roland@3908 1626 result_region->init_req(1, if_fast);
roland@3908 1627 result_val->init_req(1, result);
roland@3908 1628
roland@3908 1629 set_control(if_slow);
roland@3908 1630
roland@3908 1631 const TypePtr* no_memory_effects = NULL;
roland@3908 1632 Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
roland@3908 1633 no_memory_effects,
roland@3908 1634 x, top(), y, y ? top() : NULL);
kvn@4115 1635 Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
roland@3908 1636 #ifdef ASSERT
kvn@4115 1637 Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
roland@3908 1638 assert(value_top == top(), "second value must be top");
roland@3908 1639 #endif
roland@3908 1640
roland@3908 1641 result_region->init_req(2, control());
roland@3908 1642 result_val->init_req(2, value);
twisti@4313 1643 set_result(result_region, result_val);
roland@3908 1644 } else {
twisti@4313 1645 set_result(result);
roland@3908 1646 }
roland@3908 1647 }
roland@3908 1648 }
roland@3908 1649
duke@435 1650 //------------------------------inline_exp-------------------------------------
duke@435 1651 // Inline exp instructions, if possible. The Intel hardware only misses
duke@435 1652 // really odd corner cases (+/- Infinity). Just uncommon-trap them.
twisti@4313 1653 bool LibraryCallKit::inline_exp() {
twisti@4313 1654 Node* arg = round_double_node(argument(0));
roland@4589 1655 Node* n = _gvn.transform(new (C) ExpDNode(C, control(), arg));
twisti@4313 1656
twisti@4313 1657 finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
duke@435 1658
duke@435 1659 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 1660 return true;
duke@435 1661 }
duke@435 1662
duke@435 1663 //------------------------------inline_pow-------------------------------------
duke@435 1664 // Inline power instructions, if possible.
twisti@4313 1665 bool LibraryCallKit::inline_pow() {
duke@435 1666 // Pseudocode for pow
duke@435 1667 // if (x <= 0.0) {
roland@3908 1668 // long longy = (long)y;
roland@3908 1669 // if ((double)longy == y) { // if y is long
roland@3908 1670 // if (y + 1 == y) longy = 0; // huge number: even
roland@3908 1671 // result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
duke@435 1672 // } else {
duke@435 1673 // result = NaN;
duke@435 1674 // }
duke@435 1675 // } else {
duke@435 1676 // result = DPow(x,y);
duke@435 1677 // }
duke@435 1678 // if (result != result)? {
roland@3908 1679 // result = uncommon_trap() or runtime_call();
duke@435 1680 // }
duke@435 1681 // return result;
duke@435 1682
twisti@4313 1683 Node* x = round_double_node(argument(0));
twisti@4313 1684 Node* y = round_double_node(argument(2));
duke@435 1685
roland@3908 1686 Node* result = NULL;
roland@3908 1687
roland@3908 1688 if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
roland@3908 1689 // Short form: skip the fancy tests and just check for NaN result.
roland@4589 1690 result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
duke@435 1691 } else {
roland@3908 1692 // If this inlining ever returned NaN in the past, include all
roland@3908 1693 // checks + call to the runtime.
duke@435 1694
duke@435 1695 // Set the merge point for If node with condition of (x <= 0.0)
duke@435 1696 // There are four possible paths to region node and phi node
kvn@4115 1697 RegionNode *r = new (C) RegionNode(4);
kvn@4115 1698 Node *phi = new (C) PhiNode(r, Type::DOUBLE);
duke@435 1699
duke@435 1700 // Build the first if node: if (x <= 0.0)
duke@435 1701 // Node for 0 constant
duke@435 1702 Node *zeronode = makecon(TypeD::ZERO);
duke@435 1703 // Check x:0
kvn@4115 1704 Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
duke@435 1705 // Check: If (x<=0) then go complex path
kvn@4115 1706 Node *bol1 = _gvn.transform( new (C) BoolNode( cmp, BoolTest::le ) );
duke@435 1707 // Branch either way
duke@435 1708 IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
duke@435 1709 // Fast path taken; set region slot 3
kvn@4115 1710 Node *fast_taken = _gvn.transform( new (C) IfFalseNode(if1) );
duke@435 1711 r->init_req(3,fast_taken); // Capture fast-control
duke@435 1712
duke@435 1713 // Fast path not-taken, i.e. slow path
kvn@4115 1714 Node *complex_path = _gvn.transform( new (C) IfTrueNode(if1) );
duke@435 1715
duke@435 1716 // Set fast path result
roland@4589 1717 Node *fast_result = _gvn.transform( new (C) PowDNode(C, control(), x, y) );
duke@435 1718 phi->init_req(3, fast_result);
duke@435 1719
duke@435 1720 // Complex path
roland@3908 1721 // Build the second if node (if y is long)
roland@3908 1722 // Node for (long)y
kvn@4115 1723 Node *longy = _gvn.transform( new (C) ConvD2LNode(y));
roland@3908 1724 // Node for (double)((long) y)
kvn@4115 1725 Node *doublelongy= _gvn.transform( new (C) ConvL2DNode(longy));
roland@3908 1726 // Check (double)((long) y) : y
kvn@4115 1727 Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
roland@3908 1728 // Check if (y isn't long) then go to slow path
roland@3908 1729
kvn@4115 1730 Node *bol2 = _gvn.transform( new (C) BoolNode( cmplongy, BoolTest::ne ) );
twisti@1040 1731 // Branch either way
duke@435 1732 IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
kvn@4115 1733 Node* ylong_path = _gvn.transform( new (C) IfFalseNode(if2));
kvn@4115 1734
kvn@4115 1735 Node *slow_path = _gvn.transform( new (C) IfTrueNode(if2) );
roland@3908 1736
roland@3908 1737 // Calculate DPow(abs(x), y)*(1 & (long)y)
duke@435 1738 // Node for constant 1
roland@3908 1739 Node *conone = longcon(1);
roland@3908 1740 // 1& (long)y
kvn@4115 1741 Node *signnode= _gvn.transform( new (C) AndLNode(conone, longy) );
roland@3908 1742
roland@3908 1743 // A huge number is always even. Detect a huge number by checking
roland@3908 1744 // if y + 1 == y and set integer to be tested for parity to 0.
roland@3908 1745 // Required for corner case:
roland@3908 1746 // (long)9.223372036854776E18 = max_jlong
roland@3908 1747 // (double)(long)9.223372036854776E18 = 9.223372036854776E18
roland@3908 1748 // max_jlong is odd but 9.223372036854776E18 is even
kvn@4115 1749 Node* yplus1 = _gvn.transform( new (C) AddDNode(y, makecon(TypeD::make(1))));
kvn@4115 1750 Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
kvn@4115 1751 Node *bolyplus1 = _gvn.transform( new (C) BoolNode( cmpyplus1, BoolTest::eq ) );
roland@3908 1752 Node* correctedsign = NULL;
roland@3908 1753 if (ConditionalMoveLimit != 0) {
roland@3908 1754 correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
roland@3908 1755 } else {
roland@3908 1756 IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
kvn@4115 1757 RegionNode *r = new (C) RegionNode(3);
kvn@4115 1758 Node *phi = new (C) PhiNode(r, TypeLong::LONG);
kvn@4115 1759 r->init_req(1, _gvn.transform( new (C) IfFalseNode(ifyplus1)));
kvn@4115 1760 r->init_req(2, _gvn.transform( new (C) IfTrueNode(ifyplus1)));
roland@3908 1761 phi->init_req(1, signnode);
roland@3908 1762 phi->init_req(2, longcon(0));
roland@3908 1763 correctedsign = _gvn.transform(phi);
roland@3908 1764 ylong_path = _gvn.transform(r);
roland@3908 1765 record_for_igvn(r);
roland@3908 1766 }
roland@3908 1767
duke@435 1768 // zero node
roland@3908 1769 Node *conzero = longcon(0);
roland@3908 1770 // Check (1&(long)y)==0?
kvn@4115 1771 Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
roland@3908 1772 // Check if (1&(long)y)!=0?, if so the result is negative
kvn@4115 1773 Node *bol3 = _gvn.transform( new (C) BoolNode( cmpeq1, BoolTest::ne ) );
duke@435 1774 // abs(x)
kvn@4115 1775 Node *absx=_gvn.transform( new (C) AbsDNode(x));
duke@435 1776 // abs(x)^y
roland@4589 1777 Node *absxpowy = _gvn.transform( new (C) PowDNode(C, control(), absx, y) );
duke@435 1778 // -abs(x)^y
kvn@4115 1779 Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
roland@3908 1780 // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
roland@3908 1781 Node *signresult = NULL;
roland@3908 1782 if (ConditionalMoveLimit != 0) {
roland@3908 1783 signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
roland@3908 1784 } else {
roland@3908 1785 IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
kvn@4115 1786 RegionNode *r = new (C) RegionNode(3);
kvn@4115 1787 Node *phi = new (C) PhiNode(r, Type::DOUBLE);
kvn@4115 1788 r->init_req(1, _gvn.transform( new (C) IfFalseNode(ifyeven)));
kvn@4115 1789 r->init_req(2, _gvn.transform( new (C) IfTrueNode(ifyeven)));
roland@3908 1790 phi->init_req(1, absxpowy);
roland@3908 1791 phi->init_req(2, negabsxpowy);
roland@3908 1792 signresult = _gvn.transform(phi);
roland@3908 1793 ylong_path = _gvn.transform(r);
roland@3908 1794 record_for_igvn(r);
roland@3908 1795 }
duke@435 1796 // Set complex path fast result
roland@3908 1797 r->init_req(2, ylong_path);
duke@435 1798 phi->init_req(2, signresult);
duke@435 1799
duke@435 1800 static const jlong nan_bits = CONST64(0x7ff8000000000000);
duke@435 1801 Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
duke@435 1802 r->init_req(1,slow_path);
duke@435 1803 phi->init_req(1,slow_result);
duke@435 1804
duke@435 1805 // Post merge
duke@435 1806 set_control(_gvn.transform(r));
duke@435 1807 record_for_igvn(r);
twisti@4313 1808 result = _gvn.transform(phi);
duke@435 1809 }
duke@435 1810
roland@3908 1811 finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
duke@435 1812
duke@435 1813 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 1814 return true;
duke@435 1815 }
duke@435 1816
duke@435 1817 //------------------------------runtime_math-----------------------------
duke@435 1818 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
duke@435 1819 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
duke@435 1820 "must be (DD)D or (D)D type");
duke@435 1821
duke@435 1822 // Inputs
twisti@4313 1823 Node* a = round_double_node(argument(0));
twisti@4313 1824 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
duke@435 1825
duke@435 1826 const TypePtr* no_memory_effects = NULL;
duke@435 1827 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
duke@435 1828 no_memory_effects,
duke@435 1829 a, top(), b, b ? top() : NULL);
kvn@4115 1830 Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
duke@435 1831 #ifdef ASSERT
kvn@4115 1832 Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
duke@435 1833 assert(value_top == top(), "second value must be top");
duke@435 1834 #endif
duke@435 1835
twisti@4313 1836 set_result(value);
duke@435 1837 return true;
duke@435 1838 }
duke@435 1839
duke@435 1840 //------------------------------inline_math_native-----------------------------
duke@435 1841 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
twisti@4313 1842 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
duke@435 1843 switch (id) {
duke@435 1844 // These intrinsics are not properly supported on all hardware
twisti@4313 1845 case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
twisti@4313 1846 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos), "COS");
twisti@4313 1847 case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
twisti@4313 1848 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin), "SIN");
twisti@4313 1849 case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
twisti@4313 1850 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN");
twisti@4313 1851
twisti@4313 1852 case vmIntrinsics::_dlog: return Matcher::has_match_rule(Op_LogD) ? inline_math(id) :
twisti@4313 1853 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog), "LOG");
twisti@4313 1854 case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
twisti@4313 1855 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
duke@435 1856
duke@435 1857 // These intrinsics are supported on all hardware
twisti@4313 1858 case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_math(id) : false;
twisti@4313 1859 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_math(id) : false;
twisti@4313 1860
twisti@4313 1861 case vmIntrinsics::_dexp: return Matcher::has_match_rule(Op_ExpD) ? inline_exp() :
twisti@4313 1862 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp), "EXP");
twisti@4313 1863 case vmIntrinsics::_dpow: return Matcher::has_match_rule(Op_PowD) ? inline_pow() :
twisti@4313 1864 runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow), "POW");
twisti@4313 1865 #undef FN_PTR
duke@435 1866
duke@435 1867 // These intrinsics are not yet correctly implemented
duke@435 1868 case vmIntrinsics::_datan2:
duke@435 1869 return false;
duke@435 1870
duke@435 1871 default:
twisti@4313 1872 fatal_unexpected_iid(id);
duke@435 1873 return false;
duke@435 1874 }
duke@435 1875 }
duke@435 1876
duke@435 1877 static bool is_simple_name(Node* n) {
duke@435 1878 return (n->req() == 1 // constant
duke@435 1879 || (n->is_Type() && n->as_Type()->type()->singleton())
duke@435 1880 || n->is_Proj() // parameter or return value
duke@435 1881 || n->is_Phi() // local of some sort
duke@435 1882 );
duke@435 1883 }
duke@435 1884
duke@435 1885 //----------------------------inline_min_max-----------------------------------
duke@435 1886 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
twisti@4313 1887 set_result(generate_min_max(id, argument(0), argument(1)));
duke@435 1888 return true;
duke@435 1889 }
duke@435 1890
duke@435 1891 Node*
duke@435 1892 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
duke@435 1893 // These are the candidate return value:
duke@435 1894 Node* xvalue = x0;
duke@435 1895 Node* yvalue = y0;
duke@435 1896
duke@435 1897 if (xvalue == yvalue) {
duke@435 1898 return xvalue;
duke@435 1899 }
duke@435 1900
duke@435 1901 bool want_max = (id == vmIntrinsics::_max);
duke@435 1902
duke@435 1903 const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
duke@435 1904 const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
duke@435 1905 if (txvalue == NULL || tyvalue == NULL) return top();
duke@435 1906 // This is not really necessary, but it is consistent with a
duke@435 1907 // hypothetical MaxINode::Value method:
duke@435 1908 int widen = MAX2(txvalue->_widen, tyvalue->_widen);
duke@435 1909
duke@435 1910 // %%% This folding logic should (ideally) be in a different place.
duke@435 1911 // Some should be inside IfNode, and there to be a more reliable
duke@435 1912 // transformation of ?: style patterns into cmoves. We also want
duke@435 1913 // more powerful optimizations around cmove and min/max.
duke@435 1914
duke@435 1915 // Try to find a dominating comparison of these guys.
duke@435 1916 // It can simplify the index computation for Arrays.copyOf
duke@435 1917 // and similar uses of System.arraycopy.
duke@435 1918 // First, compute the normalized version of CmpI(x, y).
duke@435 1919 int cmp_op = Op_CmpI;
duke@435 1920 Node* xkey = xvalue;
duke@435 1921 Node* ykey = yvalue;
kvn@4115 1922 Node* ideal_cmpxy = _gvn.transform( new(C) CmpINode(xkey, ykey) );
duke@435 1923 if (ideal_cmpxy->is_Cmp()) {
duke@435 1924 // E.g., if we have CmpI(length - offset, count),
duke@435 1925 // it might idealize to CmpI(length, count + offset)
duke@435 1926 cmp_op = ideal_cmpxy->Opcode();
duke@435 1927 xkey = ideal_cmpxy->in(1);
duke@435 1928 ykey = ideal_cmpxy->in(2);
duke@435 1929 }
duke@435 1930
duke@435 1931 // Start by locating any relevant comparisons.
duke@435 1932 Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
duke@435 1933 Node* cmpxy = NULL;
duke@435 1934 Node* cmpyx = NULL;
duke@435 1935 for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
duke@435 1936 Node* cmp = start_from->fast_out(k);
duke@435 1937 if (cmp->outcnt() > 0 && // must have prior uses
duke@435 1938 cmp->in(0) == NULL && // must be context-independent
duke@435 1939 cmp->Opcode() == cmp_op) { // right kind of compare
duke@435 1940 if (cmp->in(1) == xkey && cmp->in(2) == ykey) cmpxy = cmp;
duke@435 1941 if (cmp->in(1) == ykey && cmp->in(2) == xkey) cmpyx = cmp;
duke@435 1942 }
duke@435 1943 }
duke@435 1944
duke@435 1945 const int NCMPS = 2;
duke@435 1946 Node* cmps[NCMPS] = { cmpxy, cmpyx };
duke@435 1947 int cmpn;
duke@435 1948 for (cmpn = 0; cmpn < NCMPS; cmpn++) {
duke@435 1949 if (cmps[cmpn] != NULL) break; // find a result
duke@435 1950 }
duke@435 1951 if (cmpn < NCMPS) {
duke@435 1952 // Look for a dominating test that tells us the min and max.
duke@435 1953 int depth = 0; // Limit search depth for speed
duke@435 1954 Node* dom = control();
duke@435 1955 for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
duke@435 1956 if (++depth >= 100) break;
duke@435 1957 Node* ifproj = dom;
duke@435 1958 if (!ifproj->is_Proj()) continue;
duke@435 1959 Node* iff = ifproj->in(0);
duke@435 1960 if (!iff->is_If()) continue;
duke@435 1961 Node* bol = iff->in(1);
duke@435 1962 if (!bol->is_Bool()) continue;
duke@435 1963 Node* cmp = bol->in(1);
duke@435 1964 if (cmp == NULL) continue;
duke@435 1965 for (cmpn = 0; cmpn < NCMPS; cmpn++)
duke@435 1966 if (cmps[cmpn] == cmp) break;
duke@435 1967 if (cmpn == NCMPS) continue;
duke@435 1968 BoolTest::mask btest = bol->as_Bool()->_test._test;
duke@435 1969 if (ifproj->is_IfFalse()) btest = BoolTest(btest).negate();
duke@435 1970 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
duke@435 1971 // At this point, we know that 'x btest y' is true.
duke@435 1972 switch (btest) {
duke@435 1973 case BoolTest::eq:
duke@435 1974 // They are proven equal, so we can collapse the min/max.
duke@435 1975 // Either value is the answer. Choose the simpler.
duke@435 1976 if (is_simple_name(yvalue) && !is_simple_name(xvalue))
duke@435 1977 return yvalue;
duke@435 1978 return xvalue;
duke@435 1979 case BoolTest::lt: // x < y
duke@435 1980 case BoolTest::le: // x <= y
duke@435 1981 return (want_max ? yvalue : xvalue);
duke@435 1982 case BoolTest::gt: // x > y
duke@435 1983 case BoolTest::ge: // x >= y
duke@435 1984 return (want_max ? xvalue : yvalue);
duke@435 1985 }
duke@435 1986 }
duke@435 1987 }
duke@435 1988
duke@435 1989 // We failed to find a dominating test.
duke@435 1990 // Let's pick a test that might GVN with prior tests.
duke@435 1991 Node* best_bol = NULL;
duke@435 1992 BoolTest::mask best_btest = BoolTest::illegal;
duke@435 1993 for (cmpn = 0; cmpn < NCMPS; cmpn++) {
duke@435 1994 Node* cmp = cmps[cmpn];
duke@435 1995 if (cmp == NULL) continue;
duke@435 1996 for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
duke@435 1997 Node* bol = cmp->fast_out(j);
duke@435 1998 if (!bol->is_Bool()) continue;
duke@435 1999 BoolTest::mask btest = bol->as_Bool()->_test._test;
duke@435 2000 if (btest == BoolTest::eq || btest == BoolTest::ne) continue;
duke@435 2001 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
duke@435 2002 if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
duke@435 2003 best_bol = bol->as_Bool();
duke@435 2004 best_btest = btest;
duke@435 2005 }
duke@435 2006 }
duke@435 2007 }
duke@435 2008
duke@435 2009 Node* answer_if_true = NULL;
duke@435 2010 Node* answer_if_false = NULL;
duke@435 2011 switch (best_btest) {
duke@435 2012 default:
duke@435 2013 if (cmpxy == NULL)
duke@435 2014 cmpxy = ideal_cmpxy;
kvn@4115 2015 best_bol = _gvn.transform( new(C) BoolNode(cmpxy, BoolTest::lt) );
duke@435 2016 // and fall through:
duke@435 2017 case BoolTest::lt: // x < y
duke@435 2018 case BoolTest::le: // x <= y
duke@435 2019 answer_if_true = (want_max ? yvalue : xvalue);
duke@435 2020 answer_if_false = (want_max ? xvalue : yvalue);
duke@435 2021 break;
duke@435 2022 case BoolTest::gt: // x > y
duke@435 2023 case BoolTest::ge: // x >= y
duke@435 2024 answer_if_true = (want_max ? xvalue : yvalue);
duke@435 2025 answer_if_false = (want_max ? yvalue : xvalue);
duke@435 2026 break;
duke@435 2027 }
duke@435 2028
duke@435 2029 jint hi, lo;
duke@435 2030 if (want_max) {
duke@435 2031 // We can sharpen the minimum.
duke@435 2032 hi = MAX2(txvalue->_hi, tyvalue->_hi);
duke@435 2033 lo = MAX2(txvalue->_lo, tyvalue->_lo);
duke@435 2034 } else {
duke@435 2035 // We can sharpen the maximum.
duke@435 2036 hi = MIN2(txvalue->_hi, tyvalue->_hi);
duke@435 2037 lo = MIN2(txvalue->_lo, tyvalue->_lo);
duke@435 2038 }
duke@435 2039
duke@435 2040 // Use a flow-free graph structure, to avoid creating excess control edges
duke@435 2041 // which could hinder other optimizations.
duke@435 2042 // Since Math.min/max is often used with arraycopy, we want
duke@435 2043 // tightly_coupled_allocation to be able to see beyond min/max expressions.
duke@435 2044 Node* cmov = CMoveNode::make(C, NULL, best_bol,
duke@435 2045 answer_if_false, answer_if_true,
duke@435 2046 TypeInt::make(lo, hi, widen));
duke@435 2047
duke@435 2048 return _gvn.transform(cmov);
duke@435 2049
duke@435 2050 /*
duke@435 2051 // This is not as desirable as it may seem, since Min and Max
duke@435 2052 // nodes do not have a full set of optimizations.
duke@435 2053 // And they would interfere, anyway, with 'if' optimizations
duke@435 2054 // and with CMoveI canonical forms.
duke@435 2055 switch (id) {
duke@435 2056 case vmIntrinsics::_min:
duke@435 2057 result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
duke@435 2058 case vmIntrinsics::_max:
duke@435 2059 result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
duke@435 2060 default:
duke@435 2061 ShouldNotReachHere();
duke@435 2062 }
duke@435 2063 */
duke@435 2064 }
duke@435 2065
duke@435 2066 inline int
duke@435 2067 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
duke@435 2068 const TypePtr* base_type = TypePtr::NULL_PTR;
duke@435 2069 if (base != NULL) base_type = _gvn.type(base)->isa_ptr();
duke@435 2070 if (base_type == NULL) {
duke@435 2071 // Unknown type.
duke@435 2072 return Type::AnyPtr;
duke@435 2073 } else if (base_type == TypePtr::NULL_PTR) {
duke@435 2074 // Since this is a NULL+long form, we have to switch to a rawptr.
kvn@4115 2075 base = _gvn.transform( new (C) CastX2PNode(offset) );
duke@435 2076 offset = MakeConX(0);
duke@435 2077 return Type::RawPtr;
duke@435 2078 } else if (base_type->base() == Type::RawPtr) {
duke@435 2079 return Type::RawPtr;
duke@435 2080 } else if (base_type->isa_oopptr()) {
duke@435 2081 // Base is never null => always a heap address.
duke@435 2082 if (base_type->ptr() == TypePtr::NotNull) {
duke@435 2083 return Type::OopPtr;
duke@435 2084 }
duke@435 2085 // Offset is small => always a heap address.
duke@435 2086 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
duke@435 2087 if (offset_type != NULL &&
duke@435 2088 base_type->offset() == 0 && // (should always be?)
duke@435 2089 offset_type->_lo >= 0 &&
duke@435 2090 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
duke@435 2091 return Type::OopPtr;
duke@435 2092 }
duke@435 2093 // Otherwise, it might either be oop+off or NULL+addr.
duke@435 2094 return Type::AnyPtr;
duke@435 2095 } else {
duke@435 2096 // No information:
duke@435 2097 return Type::AnyPtr;
duke@435 2098 }
duke@435 2099 }
duke@435 2100
duke@435 2101 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
duke@435 2102 int kind = classify_unsafe_addr(base, offset);
duke@435 2103 if (kind == Type::RawPtr) {
duke@435 2104 return basic_plus_adr(top(), base, offset);
duke@435 2105 } else {
duke@435 2106 return basic_plus_adr(base, offset);
duke@435 2107 }
duke@435 2108 }
duke@435 2109
twisti@4313 2110 //--------------------------inline_number_methods-----------------------------
twisti@4313 2111 // inline int Integer.numberOfLeadingZeros(int)
twisti@4313 2112 // inline int Long.numberOfLeadingZeros(long)
twisti@4313 2113 //
twisti@4313 2114 // inline int Integer.numberOfTrailingZeros(int)
twisti@4313 2115 // inline int Long.numberOfTrailingZeros(long)
twisti@4313 2116 //
twisti@4313 2117 // inline int Integer.bitCount(int)
twisti@4313 2118 // inline int Long.bitCount(long)
twisti@4313 2119 //
twisti@4313 2120 // inline char Character.reverseBytes(char)
twisti@4313 2121 // inline short Short.reverseBytes(short)
twisti@4313 2122 // inline int Integer.reverseBytes(int)
twisti@4313 2123 // inline long Long.reverseBytes(long)
twisti@4313 2124 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
twisti@4313 2125 Node* arg = argument(0);
twisti@4313 2126 Node* n;
twisti@1210 2127 switch (id) {
twisti@4313 2128 case vmIntrinsics::_numberOfLeadingZeros_i: n = new (C) CountLeadingZerosINode( arg); break;
twisti@4313 2129 case vmIntrinsics::_numberOfLeadingZeros_l: n = new (C) CountLeadingZerosLNode( arg); break;
twisti@4313 2130 case vmIntrinsics::_numberOfTrailingZeros_i: n = new (C) CountTrailingZerosINode(arg); break;
twisti@4313 2131 case vmIntrinsics::_numberOfTrailingZeros_l: n = new (C) CountTrailingZerosLNode(arg); break;
twisti@4313 2132 case vmIntrinsics::_bitCount_i: n = new (C) PopCountINode( arg); break;
twisti@4313 2133 case vmIntrinsics::_bitCount_l: n = new (C) PopCountLNode( arg); break;
twisti@4313 2134 case vmIntrinsics::_reverseBytes_c: n = new (C) ReverseBytesUSNode(0, arg); break;
twisti@4313 2135 case vmIntrinsics::_reverseBytes_s: n = new (C) ReverseBytesSNode( 0, arg); break;
twisti@4313 2136 case vmIntrinsics::_reverseBytes_i: n = new (C) ReverseBytesINode( 0, arg); break;
twisti@4313 2137 case vmIntrinsics::_reverseBytes_l: n = new (C) ReverseBytesLNode( 0, arg); break;
twisti@4313 2138 default: fatal_unexpected_iid(id); break;
twisti@1210 2139 }
twisti@4313 2140 set_result(_gvn.transform(n));
twisti@1210 2141 return true;
twisti@1210 2142 }
twisti@1210 2143
duke@435 2144 //----------------------------inline_unsafe_access----------------------------
duke@435 2145
duke@435 2146 const static BasicType T_ADDRESS_HOLDER = T_LONG;
duke@435 2147
kvn@4002 2148 // Helper that guards and inserts a pre-barrier.
kvn@4002 2149 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
twisti@4313 2150 Node* pre_val, bool need_mem_bar) {
johnc@2781 2151 // We could be accessing the referent field of a reference object. If so, when G1
johnc@2781 2152 // is enabled, we need to log the value in the referent field in an SATB buffer.
johnc@2781 2153 // This routine performs some compile time filters and generates suitable
johnc@2781 2154 // runtime filters that guard the pre-barrier code.
kvn@4002 2155 // Also add memory barrier for non volatile load from the referent field
kvn@4002 2156 // to prevent commoning of loads across safepoint.
kvn@4002 2157 if (!UseG1GC && !need_mem_bar)
kvn@4002 2158 return;
johnc@2781 2159
johnc@2781 2160 // Some compile time checks.
johnc@2781 2161
johnc@2781 2162 // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
johnc@2781 2163 const TypeX* otype = offset->find_intptr_t_type();
johnc@2781 2164 if (otype != NULL && otype->is_con() &&
johnc@2781 2165 otype->get_con() != java_lang_ref_Reference::referent_offset) {
johnc@2781 2166 // Constant offset but not the reference_offset so just return
johnc@2781 2167 return;
johnc@2781 2168 }
johnc@2781 2169
johnc@2781 2170 // We only need to generate the runtime guards for instances.
johnc@2781 2171 const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
johnc@2781 2172 if (btype != NULL) {
johnc@2781 2173 if (btype->isa_aryptr()) {
johnc@2781 2174 // Array type so nothing to do
johnc@2781 2175 return;
johnc@2781 2176 }
johnc@2781 2177
johnc@2781 2178 const TypeInstPtr* itype = btype->isa_instptr();
johnc@2781 2179 if (itype != NULL) {
kvn@4002 2180 // Can the klass of base_oop be statically determined to be
kvn@4002 2181 // _not_ a sub-class of Reference and _not_ Object?
johnc@2781 2182 ciKlass* klass = itype->klass();
kvn@4002 2183 if ( klass->is_loaded() &&
kvn@4002 2184 !klass->is_subtype_of(env()->Reference_klass()) &&
kvn@4002 2185 !env()->Object_klass()->is_subtype_of(klass)) {
johnc@2781 2186 return;
johnc@2781 2187 }
johnc@2781 2188 }
johnc@2781 2189 }
johnc@2781 2190
johnc@2781 2191 // The compile time filters did not reject base_oop/offset so
johnc@2781 2192 // we need to generate the following runtime filters
johnc@2781 2193 //
johnc@2781 2194 // if (offset == java_lang_ref_Reference::_reference_offset) {
kvn@4002 2195 // if (instance_of(base, java.lang.ref.Reference)) {
kvn@4002 2196 // pre_barrier(_, pre_val, ...);
johnc@2781 2197 // }
johnc@2781 2198 // }
johnc@2781 2199
twisti@4313 2200 float likely = PROB_LIKELY( 0.999);
twisti@4313 2201 float unlikely = PROB_UNLIKELY(0.999);
johnc@2781 2202
johnc@2787 2203 IdealKit ideal(this);
johnc@2781 2204 #define __ ideal.
johnc@2781 2205
johnc@2786 2206 Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
johnc@2781 2207
johnc@2781 2208 __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
johnc@2781 2209 // Update graphKit memory and control from IdealKit.
johnc@2787 2210 sync_kit(ideal);
johnc@2781 2211
johnc@2781 2212 Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
johnc@2781 2213 Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
johnc@2781 2214
johnc@2781 2215 // Update IdealKit memory and control from graphKit.
johnc@2787 2216 __ sync_kit(this);
johnc@2781 2217
johnc@2781 2218 Node* one = __ ConI(1);
kvn@4002 2219 // is_instof == 0 if base_oop == NULL
johnc@2781 2220 __ if_then(is_instof, BoolTest::eq, one, unlikely); {
johnc@2781 2221
johnc@2781 2222 // Update graphKit from IdeakKit.
johnc@2787 2223 sync_kit(ideal);
johnc@2781 2224
johnc@2781 2225 // Use the pre-barrier to record the value in the referent field
johnc@2781 2226 pre_barrier(false /* do_load */,
johnc@2781 2227 __ ctrl(),
johnc@2790 2228 NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
johnc@2781 2229 pre_val /* pre_val */,
johnc@2781 2230 T_OBJECT);
kvn@4002 2231 if (need_mem_bar) {
kvn@4002 2232 // Add memory barrier to prevent commoning reads from this field
kvn@4002 2233 // across safepoint since GC can change its value.
kvn@4002 2234 insert_mem_bar(Op_MemBarCPUOrder);
kvn@4002 2235 }
johnc@2781 2236 // Update IdealKit from graphKit.
johnc@2787 2237 __ sync_kit(this);
johnc@2781 2238
johnc@2781 2239 } __ end_if(); // _ref_type != ref_none
johnc@2781 2240 } __ end_if(); // offset == referent_offset
johnc@2781 2241
johnc@2781 2242 // Final sync IdealKit and GraphKit.
johnc@2787 2243 final_sync(ideal);
johnc@2781 2244 #undef __
johnc@2781 2245 }
johnc@2781 2246
johnc@2781 2247
duke@435 2248 // Interpret Unsafe.fieldOffset cookies correctly:
duke@435 2249 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
duke@435 2250
roland@4106 2251 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
roland@4106 2252 // Attempt to infer a sharper value type from the offset and base type.
roland@4106 2253 ciKlass* sharpened_klass = NULL;
roland@4106 2254
roland@4106 2255 // See if it is an instance field, with an object type.
roland@4106 2256 if (alias_type->field() != NULL) {
roland@4106 2257 assert(!is_native_ptr, "native pointer op cannot use a java address");
roland@4106 2258 if (alias_type->field()->type()->is_klass()) {
roland@4106 2259 sharpened_klass = alias_type->field()->type()->as_klass();
roland@4106 2260 }
roland@4106 2261 }
roland@4106 2262
roland@4106 2263 // See if it is a narrow oop array.
roland@4106 2264 if (adr_type->isa_aryptr()) {
roland@4106 2265 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
roland@4106 2266 const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
roland@4106 2267 if (elem_type != NULL) {
roland@4106 2268 sharpened_klass = elem_type->klass();
roland@4106 2269 }
roland@4106 2270 }
roland@4106 2271 }
roland@4106 2272
twisti@4158 2273 // The sharpened class might be unloaded if there is no class loader
twisti@4158 2274 // contraint in place.
twisti@4158 2275 if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
roland@4106 2276 const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
roland@4106 2277
roland@4106 2278 #ifndef PRODUCT
roland@4106 2279 if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
twisti@4158 2280 tty->print(" from base type: "); adr_type->dump();
twisti@4158 2281 tty->print(" sharpened value: "); tjp->dump();
roland@4106 2282 }
roland@4106 2283 #endif
roland@4106 2284 // Sharpen the value type.
roland@4106 2285 return tjp;
roland@4106 2286 }
roland@4106 2287 return NULL;
roland@4106 2288 }
roland@4106 2289
duke@435 2290 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
duke@435 2291 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2292
duke@435 2293 #ifndef PRODUCT
duke@435 2294 {
duke@435 2295 ResourceMark rm;
duke@435 2296 // Check the signatures.
twisti@4313 2297 ciSignature* sig = callee()->signature();
duke@435 2298 #ifdef ASSERT
duke@435 2299 if (!is_store) {
duke@435 2300 // Object getObject(Object base, int/long offset), etc.
duke@435 2301 BasicType rtype = sig->return_type()->basic_type();
duke@435 2302 if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
duke@435 2303 rtype = T_ADDRESS; // it is really a C void*
duke@435 2304 assert(rtype == type, "getter must return the expected value");
duke@435 2305 if (!is_native_ptr) {
duke@435 2306 assert(sig->count() == 2, "oop getter has 2 arguments");
duke@435 2307 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
duke@435 2308 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
duke@435 2309 } else {
duke@435 2310 assert(sig->count() == 1, "native getter has 1 argument");
duke@435 2311 assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
duke@435 2312 }
duke@435 2313 } else {
duke@435 2314 // void putObject(Object base, int/long offset, Object x), etc.
duke@435 2315 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
duke@435 2316 if (!is_native_ptr) {
duke@435 2317 assert(sig->count() == 3, "oop putter has 3 arguments");
duke@435 2318 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
duke@435 2319 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
duke@435 2320 } else {
duke@435 2321 assert(sig->count() == 2, "native putter has 2 arguments");
duke@435 2322 assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
duke@435 2323 }
duke@435 2324 BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
duke@435 2325 if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
duke@435 2326 vtype = T_ADDRESS; // it is really a C void*
duke@435 2327 assert(vtype == type, "putter must accept the expected value");
duke@435 2328 }
duke@435 2329 #endif // ASSERT
duke@435 2330 }
duke@435 2331 #endif //PRODUCT
duke@435 2332
duke@435 2333 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2334
twisti@4313 2335 Node* receiver = argument(0); // type: oop
twisti@4313 2336
twisti@4313 2337 // Build address expression. See the code in inline_unsafe_prefetch.
twisti@4313 2338 Node* adr;
twisti@4313 2339 Node* heap_base_oop = top();
twisti@4313 2340 Node* offset = top();
duke@435 2341 Node* val;
johnc@2781 2342
duke@435 2343 if (!is_native_ptr) {
twisti@4313 2344 // The base is either a Java object or a value produced by Unsafe.staticFieldBase
twisti@4313 2345 Node* base = argument(1); // type: oop
duke@435 2346 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
twisti@4313 2347 offset = argument(2); // type: long
duke@435 2348 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
duke@435 2349 // to be plain byte offsets, which are also the same as those accepted
duke@435 2350 // by oopDesc::field_base.
duke@435 2351 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
duke@435 2352 "fieldOffset must be byte-scaled");
duke@435 2353 // 32-bit machines ignore the high half!
duke@435 2354 offset = ConvL2X(offset);
duke@435 2355 adr = make_unsafe_address(base, offset);
duke@435 2356 heap_base_oop = base;
twisti@4313 2357 val = is_store ? argument(4) : NULL;
duke@435 2358 } else {
twisti@4313 2359 Node* ptr = argument(1); // type: long
twisti@4313 2360 ptr = ConvL2X(ptr); // adjust Java long to machine word
duke@435 2361 adr = make_unsafe_address(NULL, ptr);
twisti@4313 2362 val = is_store ? argument(3) : NULL;
duke@435 2363 }
duke@435 2364
duke@435 2365 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
duke@435 2366
duke@435 2367 // First guess at the value type.
duke@435 2368 const Type *value_type = Type::get_const_basic_type(type);
duke@435 2369
duke@435 2370 // Try to categorize the address. If it comes up as TypeJavaPtr::BOTTOM,
duke@435 2371 // there was not enough information to nail it down.
duke@435 2372 Compile::AliasType* alias_type = C->alias_type(adr_type);
duke@435 2373 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
duke@435 2374
duke@435 2375 // We will need memory barriers unless we can determine a unique
duke@435 2376 // alias category for this reference. (Note: If for some reason
duke@435 2377 // the barriers get omitted and the unsafe reference begins to "pollute"
duke@435 2378 // the alias analysis of the rest of the graph, either Compile::can_alias
duke@435 2379 // or Compile::must_alias will throw a diagnostic assert.)
duke@435 2380 bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
duke@435 2381
johnc@2781 2382 // If we are reading the value of the referent field of a Reference
johnc@2781 2383 // object (either by using Unsafe directly or through reflection)
johnc@2781 2384 // then, if G1 is enabled, we need to record the referent in an
johnc@2781 2385 // SATB log buffer using the pre-barrier mechanism.
kvn@4002 2386 // Also we need to add memory barrier to prevent commoning reads
kvn@4002 2387 // from this field across safepoint since GC can change its value.
kvn@4002 2388 bool need_read_barrier = !is_native_ptr && !is_store &&
johnc@2781 2389 offset != top() && heap_base_oop != top();
johnc@2781 2390
duke@435 2391 if (!is_store && type == T_OBJECT) {
roland@4106 2392 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
roland@4106 2393 if (tjp != NULL) {
duke@435 2394 value_type = tjp;
duke@435 2395 }
duke@435 2396 }
duke@435 2397
twisti@4313 2398 receiver = null_check(receiver);
duke@435 2399 if (stopped()) {
duke@435 2400 return true;
duke@435 2401 }
duke@435 2402 // Heap pointers get a null-check from the interpreter,
duke@435 2403 // as a courtesy. However, this is not guaranteed by Unsafe,
duke@435 2404 // and it is not possible to fully distinguish unintended nulls
duke@435 2405 // from intended ones in this API.
duke@435 2406
duke@435 2407 if (is_volatile) {
duke@435 2408 // We need to emit leading and trailing CPU membars (see below) in
duke@435 2409 // addition to memory membars when is_volatile. This is a little
duke@435 2410 // too strong, but avoids the need to insert per-alias-type
duke@435 2411 // volatile membars (for stores; compare Parse::do_put_xxx), which
twisti@1040 2412 // we cannot do effectively here because we probably only have a
duke@435 2413 // rough approximation of type.
duke@435 2414 need_mem_bar = true;
duke@435 2415 // For Stores, place a memory ordering barrier now.
duke@435 2416 if (is_store)
duke@435 2417 insert_mem_bar(Op_MemBarRelease);
duke@435 2418 }
duke@435 2419
duke@435 2420 // Memory barrier to prevent normal and 'unsafe' accesses from
duke@435 2421 // bypassing each other. Happens after null checks, so the
duke@435 2422 // exception paths do not take memory state from the memory barrier,
duke@435 2423 // so there's no problems making a strong assert about mixing users
duke@435 2424 // of safe & unsafe memory. Otherwise fails in a CTW of rt.jar
duke@435 2425 // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
duke@435 2426 if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2427
duke@435 2428 if (!is_store) {
duke@435 2429 Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
twisti@4313 2430 // load value
duke@435 2431 switch (type) {
duke@435 2432 case T_BOOLEAN:
duke@435 2433 case T_CHAR:
duke@435 2434 case T_BYTE:
duke@435 2435 case T_SHORT:
duke@435 2436 case T_INT:
twisti@4313 2437 case T_LONG:
duke@435 2438 case T_FLOAT:
twisti@4313 2439 case T_DOUBLE:
johnc@2781 2440 break;
duke@435 2441 case T_OBJECT:
johnc@2781 2442 if (need_read_barrier) {
twisti@4313 2443 insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
johnc@2781 2444 }
duke@435 2445 break;
duke@435 2446 case T_ADDRESS:
duke@435 2447 // Cast to an int type.
twisti@4313 2448 p = _gvn.transform(new (C) CastP2XNode(NULL, p));
duke@435 2449 p = ConvX2L(p);
duke@435 2450 break;
twisti@4313 2451 default:
twisti@4313 2452 fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
duke@435 2453 break;
duke@435 2454 }
twisti@4313 2455 // The load node has the control of the preceding MemBarCPUOrder. All
twisti@4313 2456 // following nodes will have the control of the MemBarCPUOrder inserted at
twisti@4313 2457 // the end of this method. So, pushing the load onto the stack at a later
twisti@4313 2458 // point is fine.
twisti@4313 2459 set_result(p);
duke@435 2460 } else {
duke@435 2461 // place effect of store into memory
duke@435 2462 switch (type) {
duke@435 2463 case T_DOUBLE:
duke@435 2464 val = dstore_rounding(val);
duke@435 2465 break;
duke@435 2466 case T_ADDRESS:
duke@435 2467 // Repackage the long as a pointer.
duke@435 2468 val = ConvL2X(val);
kvn@4115 2469 val = _gvn.transform( new (C) CastX2PNode(val) );
duke@435 2470 break;
duke@435 2471 }
duke@435 2472
duke@435 2473 if (type != T_OBJECT ) {
duke@435 2474 (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
duke@435 2475 } else {
duke@435 2476 // Possibly an oop being stored to Java heap or native memory
duke@435 2477 if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
duke@435 2478 // oop to Java heap.
never@1260 2479 (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
duke@435 2480 } else {
duke@435 2481 // We can't tell at compile time if we are storing in the Java heap or outside
duke@435 2482 // of it. So we need to emit code to conditionally do the proper type of
duke@435 2483 // store.
duke@435 2484
kvn@2726 2485 IdealKit ideal(this);
kvn@1286 2486 #define __ ideal.
duke@435 2487 // QQQ who knows what probability is here??
kvn@1286 2488 __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
kvn@1286 2489 // Sync IdealKit and graphKit.
kvn@2726 2490 sync_kit(ideal);
kvn@1286 2491 Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
kvn@1286 2492 // Update IdealKit memory.
kvn@2726 2493 __ sync_kit(this);
kvn@1286 2494 } __ else_(); {
kvn@1286 2495 __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
kvn@1286 2496 } __ end_if();
kvn@1286 2497 // Final sync IdealKit and GraphKit.
kvn@2726 2498 final_sync(ideal);
kvn@1286 2499 #undef __
duke@435 2500 }
duke@435 2501 }
duke@435 2502 }
duke@435 2503
duke@435 2504 if (is_volatile) {
duke@435 2505 if (!is_store)
duke@435 2506 insert_mem_bar(Op_MemBarAcquire);
duke@435 2507 else
duke@435 2508 insert_mem_bar(Op_MemBarVolatile);
duke@435 2509 }
duke@435 2510
duke@435 2511 if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2512
duke@435 2513 return true;
duke@435 2514 }
duke@435 2515
duke@435 2516 //----------------------------inline_unsafe_prefetch----------------------------
duke@435 2517
duke@435 2518 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
duke@435 2519 #ifndef PRODUCT
duke@435 2520 {
duke@435 2521 ResourceMark rm;
duke@435 2522 // Check the signatures.
twisti@4313 2523 ciSignature* sig = callee()->signature();
duke@435 2524 #ifdef ASSERT
duke@435 2525 // Object getObject(Object base, int/long offset), etc.
duke@435 2526 BasicType rtype = sig->return_type()->basic_type();
duke@435 2527 if (!is_native_ptr) {
duke@435 2528 assert(sig->count() == 2, "oop prefetch has 2 arguments");
duke@435 2529 assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
duke@435 2530 assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
duke@435 2531 } else {
duke@435 2532 assert(sig->count() == 1, "native prefetch has 1 argument");
duke@435 2533 assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
duke@435 2534 }
duke@435 2535 #endif // ASSERT
duke@435 2536 }
duke@435 2537 #endif // !PRODUCT
duke@435 2538
duke@435 2539 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2540
twisti@4313 2541 const int idx = is_static ? 0 : 1;
twisti@4313 2542 if (!is_static) {
twisti@4313 2543 null_check_receiver();
twisti@4313 2544 if (stopped()) {
twisti@4313 2545 return true;
twisti@4313 2546 }
twisti@4313 2547 }
duke@435 2548
duke@435 2549 // Build address expression. See the code in inline_unsafe_access.
duke@435 2550 Node *adr;
duke@435 2551 if (!is_native_ptr) {
twisti@4313 2552 // The base is either a Java object or a value produced by Unsafe.staticFieldBase
twisti@4313 2553 Node* base = argument(idx + 0); // type: oop
duke@435 2554 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
twisti@4313 2555 Node* offset = argument(idx + 1); // type: long
duke@435 2556 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
duke@435 2557 // to be plain byte offsets, which are also the same as those accepted
duke@435 2558 // by oopDesc::field_base.
duke@435 2559 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
duke@435 2560 "fieldOffset must be byte-scaled");
duke@435 2561 // 32-bit machines ignore the high half!
duke@435 2562 offset = ConvL2X(offset);
duke@435 2563 adr = make_unsafe_address(base, offset);
duke@435 2564 } else {
twisti@4313 2565 Node* ptr = argument(idx + 0); // type: long
twisti@4313 2566 ptr = ConvL2X(ptr); // adjust Java long to machine word
duke@435 2567 adr = make_unsafe_address(NULL, ptr);
duke@435 2568 }
duke@435 2569
duke@435 2570 // Generate the read or write prefetch
duke@435 2571 Node *prefetch;
duke@435 2572 if (is_store) {
kvn@4115 2573 prefetch = new (C) PrefetchWriteNode(i_o(), adr);
duke@435 2574 } else {
kvn@4115 2575 prefetch = new (C) PrefetchReadNode(i_o(), adr);
duke@435 2576 }
duke@435 2577 prefetch->init_req(0, control());
duke@435 2578 set_i_o(_gvn.transform(prefetch));
duke@435 2579
duke@435 2580 return true;
duke@435 2581 }
duke@435 2582
roland@4106 2583 //----------------------------inline_unsafe_load_store----------------------------
twisti@4313 2584 // This method serves a couple of different customers (depending on LoadStoreKind):
twisti@4313 2585 //
twisti@4313 2586 // LS_cmpxchg:
twisti@4313 2587 // public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
twisti@4313 2588 // public final native boolean compareAndSwapInt( Object o, long offset, int expected, int x);
twisti@4313 2589 // public final native boolean compareAndSwapLong( Object o, long offset, long expected, long x);
twisti@4313 2590 //
twisti@4313 2591 // LS_xadd:
twisti@4313 2592 // public int getAndAddInt( Object o, long offset, int delta)
twisti@4313 2593 // public long getAndAddLong(Object o, long offset, long delta)
twisti@4313 2594 //
twisti@4313 2595 // LS_xchg:
twisti@4313 2596 // int getAndSet(Object o, long offset, int newValue)
twisti@4313 2597 // long getAndSet(Object o, long offset, long newValue)
twisti@4313 2598 // Object getAndSet(Object o, long offset, Object newValue)
twisti@4313 2599 //
roland@4106 2600 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
duke@435 2601 // This basic scheme here is the same as inline_unsafe_access, but
duke@435 2602 // differs in enough details that combining them would make the code
duke@435 2603 // overly confusing. (This is a true fact! I originally combined
duke@435 2604 // them, but even I was confused by it!) As much code/comments as
duke@435 2605 // possible are retained from inline_unsafe_access though to make
twisti@1040 2606 // the correspondences clearer. - dl
duke@435 2607
duke@435 2608 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2609
duke@435 2610 #ifndef PRODUCT
roland@4106 2611 BasicType rtype;
duke@435 2612 {
duke@435 2613 ResourceMark rm;
twisti@4313 2614 // Check the signatures.
twisti@4313 2615 ciSignature* sig = callee()->signature();
roland@4106 2616 rtype = sig->return_type()->basic_type();
roland@4106 2617 if (kind == LS_xadd || kind == LS_xchg) {
roland@4106 2618 // Check the signatures.
duke@435 2619 #ifdef ASSERT
roland@4106 2620 assert(rtype == type, "get and set must return the expected type");
roland@4106 2621 assert(sig->count() == 3, "get and set has 3 arguments");
roland@4106 2622 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
roland@4106 2623 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
roland@4106 2624 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
duke@435 2625 #endif // ASSERT
roland@4106 2626 } else if (kind == LS_cmpxchg) {
roland@4106 2627 // Check the signatures.
roland@4106 2628 #ifdef ASSERT
roland@4106 2629 assert(rtype == T_BOOLEAN, "CAS must return boolean");
roland@4106 2630 assert(sig->count() == 4, "CAS has 4 arguments");
roland@4106 2631 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
roland@4106 2632 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
roland@4106 2633 #endif // ASSERT
roland@4106 2634 } else {
roland@4106 2635 ShouldNotReachHere();
roland@4106 2636 }
duke@435 2637 }
duke@435 2638 #endif //PRODUCT
duke@435 2639
duke@435 2640 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2641
twisti@4313 2642 // Get arguments:
twisti@4313 2643 Node* receiver = NULL;
twisti@4313 2644 Node* base = NULL;
twisti@4313 2645 Node* offset = NULL;
twisti@4313 2646 Node* oldval = NULL;
twisti@4313 2647 Node* newval = NULL;
twisti@4313 2648 if (kind == LS_cmpxchg) {
twisti@4313 2649 const bool two_slot_type = type2size[type] == 2;
twisti@4313 2650 receiver = argument(0); // type: oop
twisti@4313 2651 base = argument(1); // type: oop
twisti@4313 2652 offset = argument(2); // type: long
twisti@4313 2653 oldval = argument(4); // type: oop, int, or long
twisti@4313 2654 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long
twisti@4313 2655 } else if (kind == LS_xadd || kind == LS_xchg){
twisti@4313 2656 receiver = argument(0); // type: oop
twisti@4313 2657 base = argument(1); // type: oop
twisti@4313 2658 offset = argument(2); // type: long
twisti@4313 2659 oldval = NULL;
twisti@4313 2660 newval = argument(4); // type: oop, int, or long
twisti@4313 2661 }
twisti@4313 2662
twisti@4313 2663 // Null check receiver.
twisti@4313 2664 receiver = null_check(receiver);
duke@435 2665 if (stopped()) {
duke@435 2666 return true;
duke@435 2667 }
duke@435 2668
duke@435 2669 // Build field offset expression.
duke@435 2670 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
duke@435 2671 // to be plain byte offsets, which are also the same as those accepted
duke@435 2672 // by oopDesc::field_base.
duke@435 2673 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
duke@435 2674 // 32-bit machines ignore the high half of long offsets
duke@435 2675 offset = ConvL2X(offset);
duke@435 2676 Node* adr = make_unsafe_address(base, offset);
duke@435 2677 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
duke@435 2678
roland@4106 2679 // For CAS, unlike inline_unsafe_access, there seems no point in
roland@4106 2680 // trying to refine types. Just use the coarse types here.
duke@435 2681 const Type *value_type = Type::get_const_basic_type(type);
duke@435 2682 Compile::AliasType* alias_type = C->alias_type(adr_type);
duke@435 2683 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
roland@4106 2684
roland@4106 2685 if (kind == LS_xchg && type == T_OBJECT) {
roland@4106 2686 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
roland@4106 2687 if (tjp != NULL) {
roland@4106 2688 value_type = tjp;
roland@4106 2689 }
roland@4106 2690 }
roland@4106 2691
duke@435 2692 int alias_idx = C->get_alias_index(adr_type);
duke@435 2693
roland@4106 2694 // Memory-model-wise, a LoadStore acts like a little synchronized
roland@4106 2695 // block, so needs barriers on each side. These don't translate
roland@4106 2696 // into actual barriers on most machines, but we still need rest of
duke@435 2697 // compiler to respect ordering.
duke@435 2698
duke@435 2699 insert_mem_bar(Op_MemBarRelease);
duke@435 2700 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2701
duke@435 2702 // 4984716: MemBars must be inserted before this
duke@435 2703 // memory node in order to avoid a false
duke@435 2704 // dependency which will confuse the scheduler.
duke@435 2705 Node *mem = memory(alias_idx);
duke@435 2706
duke@435 2707 // For now, we handle only those cases that actually exist: ints,
duke@435 2708 // longs, and Object. Adding others should be straightforward.
roland@4106 2709 Node* load_store;
duke@435 2710 switch(type) {
duke@435 2711 case T_INT:
roland@4106 2712 if (kind == LS_xadd) {
kvn@4115 2713 load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
roland@4106 2714 } else if (kind == LS_xchg) {
kvn@4115 2715 load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
roland@4106 2716 } else if (kind == LS_cmpxchg) {
kvn@4115 2717 load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
roland@4106 2718 } else {
roland@4106 2719 ShouldNotReachHere();
roland@4106 2720 }
duke@435 2721 break;
duke@435 2722 case T_LONG:
roland@4106 2723 if (kind == LS_xadd) {
kvn@4115 2724 load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
roland@4106 2725 } else if (kind == LS_xchg) {
kvn@4115 2726 load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
roland@4106 2727 } else if (kind == LS_cmpxchg) {
kvn@4115 2728 load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
roland@4106 2729 } else {
roland@4106 2730 ShouldNotReachHere();
roland@4106 2731 }
duke@435 2732 break;
duke@435 2733 case T_OBJECT:
kvn@3521 2734 // Transformation of a value which could be NULL pointer (CastPP #NULL)
kvn@3521 2735 // could be delayed during Parse (for example, in adjust_map_after_if()).
kvn@3521 2736 // Execute transformation here to avoid barrier generation in such case.
kvn@3521 2737 if (_gvn.type(newval) == TypePtr::NULL_PTR)
kvn@3521 2738 newval = _gvn.makecon(TypePtr::NULL_PTR);
kvn@3521 2739
kvn@3521 2740 // Reference stores need a store barrier.
johnc@2781 2741 pre_barrier(true /* do_load*/,
johnc@2781 2742 control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
johnc@2781 2743 NULL /* pre_val*/,
johnc@2781 2744 T_OBJECT);
coleenp@548 2745 #ifdef _LP64
kvn@598 2746 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
kvn@4115 2747 Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
roland@4106 2748 if (kind == LS_xchg) {
kvn@4115 2749 load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
roland@4106 2750 newval_enc, adr_type, value_type->make_narrowoop()));
roland@4106 2751 } else {
roland@4106 2752 assert(kind == LS_cmpxchg, "wrong LoadStore operation");
kvn@4115 2753 Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
kvn@4115 2754 load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
roland@4106 2755 newval_enc, oldval_enc));
roland@4106 2756 }
coleenp@548 2757 } else
coleenp@548 2758 #endif
kvn@656 2759 {
roland@4106 2760 if (kind == LS_xchg) {
kvn@4115 2761 load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
roland@4106 2762 } else {
roland@4106 2763 assert(kind == LS_cmpxchg, "wrong LoadStore operation");
kvn@4115 2764 load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
roland@4106 2765 }
kvn@656 2766 }
roland@4106 2767 post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
duke@435 2768 break;
duke@435 2769 default:
twisti@4313 2770 fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
duke@435 2771 break;
duke@435 2772 }
duke@435 2773
roland@4106 2774 // SCMemProjNodes represent the memory state of a LoadStore. Their
roland@4106 2775 // main role is to prevent LoadStore nodes from being optimized away
roland@4106 2776 // when their results aren't used.
kvn@4115 2777 Node* proj = _gvn.transform( new (C) SCMemProjNode(load_store));
duke@435 2778 set_memory(proj, alias_idx);
duke@435 2779
duke@435 2780 // Add the trailing membar surrounding the access
duke@435 2781 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2782 insert_mem_bar(Op_MemBarAcquire);
duke@435 2783
roland@4106 2784 #ifdef _LP64
roland@4106 2785 if (type == T_OBJECT && adr->bottom_type()->is_ptr_to_narrowoop() && kind == LS_xchg) {
kvn@5111 2786 load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
roland@4106 2787 }
roland@4106 2788 #endif
roland@4106 2789
roland@4106 2790 assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
twisti@4313 2791 set_result(load_store);
duke@435 2792 return true;
duke@435 2793 }
duke@435 2794
twisti@4313 2795 //----------------------------inline_unsafe_ordered_store----------------------
twisti@4313 2796 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
twisti@4313 2797 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
twisti@4313 2798 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
duke@435 2799 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
duke@435 2800 // This is another variant of inline_unsafe_access, differing in
duke@435 2801 // that it always issues store-store ("release") barrier and ensures
duke@435 2802 // store-atomicity (which only matters for "long").
duke@435 2803
duke@435 2804 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2805
duke@435 2806 #ifndef PRODUCT
duke@435 2807 {
duke@435 2808 ResourceMark rm;
duke@435 2809 // Check the signatures.
twisti@4313 2810 ciSignature* sig = callee()->signature();
duke@435 2811 #ifdef ASSERT
duke@435 2812 BasicType rtype = sig->return_type()->basic_type();
duke@435 2813 assert(rtype == T_VOID, "must return void");
duke@435 2814 assert(sig->count() == 3, "has 3 arguments");
duke@435 2815 assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
duke@435 2816 assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
duke@435 2817 #endif // ASSERT
duke@435 2818 }
duke@435 2819 #endif //PRODUCT
duke@435 2820
duke@435 2821 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2822
twisti@4313 2823 // Get arguments:
twisti@4313 2824 Node* receiver = argument(0); // type: oop
twisti@4313 2825 Node* base = argument(1); // type: oop
twisti@4313 2826 Node* offset = argument(2); // type: long
twisti@4313 2827 Node* val = argument(4); // type: oop, int, or long
twisti@4313 2828
twisti@4313 2829 // Null check receiver.
twisti@4313 2830 receiver = null_check(receiver);
duke@435 2831 if (stopped()) {
duke@435 2832 return true;
duke@435 2833 }
duke@435 2834
duke@435 2835 // Build field offset expression.
duke@435 2836 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
duke@435 2837 // 32-bit machines ignore the high half of long offsets
duke@435 2838 offset = ConvL2X(offset);
duke@435 2839 Node* adr = make_unsafe_address(base, offset);
duke@435 2840 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
duke@435 2841 const Type *value_type = Type::get_const_basic_type(type);
duke@435 2842 Compile::AliasType* alias_type = C->alias_type(adr_type);
duke@435 2843
duke@435 2844 insert_mem_bar(Op_MemBarRelease);
duke@435 2845 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2846 // Ensure that the store is atomic for longs:
twisti@4313 2847 const bool require_atomic_access = true;
duke@435 2848 Node* store;
duke@435 2849 if (type == T_OBJECT) // reference stores need a store barrier.
never@1260 2850 store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
duke@435 2851 else {
duke@435 2852 store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
duke@435 2853 }
duke@435 2854 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2855 return true;
duke@435 2856 }
duke@435 2857
kvn@4361 2858 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
kvn@4361 2859 // Regardless of form, don't allow previous ld/st to move down,
kvn@4361 2860 // then issue acquire, release, or volatile mem_bar.
kvn@4361 2861 insert_mem_bar(Op_MemBarCPUOrder);
kvn@4361 2862 switch(id) {
kvn@4361 2863 case vmIntrinsics::_loadFence:
kvn@4361 2864 insert_mem_bar(Op_MemBarAcquire);
kvn@4361 2865 return true;
kvn@4361 2866 case vmIntrinsics::_storeFence:
kvn@4361 2867 insert_mem_bar(Op_MemBarRelease);
kvn@4361 2868 return true;
kvn@4361 2869 case vmIntrinsics::_fullFence:
kvn@4361 2870 insert_mem_bar(Op_MemBarVolatile);
kvn@4361 2871 return true;
kvn@4361 2872 default:
kvn@4361 2873 fatal_unexpected_iid(id);
kvn@4361 2874 return false;
kvn@4361 2875 }
kvn@4361 2876 }
kvn@4361 2877
twisti@4313 2878 //----------------------------inline_unsafe_allocate---------------------------
twisti@4313 2879 // public native Object sun.mics.Unsafe.allocateInstance(Class<?> cls);
duke@435 2880 bool LibraryCallKit::inline_unsafe_allocate() {
duke@435 2881 if (callee()->is_static()) return false; // caller must have the capability!
twisti@4313 2882
twisti@4313 2883 null_check_receiver(); // null-check, then ignore
twisti@4313 2884 Node* cls = null_check(argument(1));
duke@435 2885 if (stopped()) return true;
duke@435 2886
twisti@4313 2887 Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
twisti@4313 2888 kls = null_check(kls);
duke@435 2889 if (stopped()) return true; // argument was like int.class
duke@435 2890
duke@435 2891 // Note: The argument might still be an illegal value like
duke@435 2892 // Serializable.class or Object[].class. The runtime will handle it.
duke@435 2893 // But we must make an explicit check for initialization.
coleenp@4037 2894 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
coleenp@4037 2895 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
coleenp@3368 2896 // can generate code to load it as unsigned byte.
coleenp@3368 2897 Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
coleenp@4037 2898 Node* bits = intcon(InstanceKlass::fully_initialized);
twisti@4313 2899 Node* test = _gvn.transform(new (C) SubINode(inst, bits));
duke@435 2900 // The 'test' is non-zero if we need to take a slow path.
duke@435 2901
duke@435 2902 Node* obj = new_instance(kls, test);
twisti@4313 2903 set_result(obj);
duke@435 2904 return true;
duke@435 2905 }
duke@435 2906
rbackman@3709 2907 #ifdef TRACE_HAVE_INTRINSICS
rbackman@3709 2908 /*
rbackman@3709 2909 * oop -> myklass
rbackman@3709 2910 * myklass->trace_id |= USED
rbackman@3709 2911 * return myklass->trace_id & ~0x3
rbackman@3709 2912 */
rbackman@3709 2913 bool LibraryCallKit::inline_native_classID() {
twisti@4313 2914 null_check_receiver(); // null-check, then ignore
twisti@4313 2915 Node* cls = null_check(argument(1), T_OBJECT);
twisti@4313 2916 Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
twisti@4313 2917 kls = null_check(kls, T_OBJECT);
rbackman@3709 2918 ByteSize offset = TRACE_ID_OFFSET;
rbackman@3709 2919 Node* insp = basic_plus_adr(kls, in_bytes(offset));
rbackman@3709 2920 Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG);
rbackman@3709 2921 Node* bits = longcon(~0x03l); // ignore bit 0 & 1
kvn@4115 2922 Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
rbackman@3709 2923 Node* clsused = longcon(0x01l); // set the class bit
kvn@4115 2924 Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
rbackman@3709 2925
rbackman@3709 2926 const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
rbackman@3709 2927 store_to_memory(control(), insp, orl, T_LONG, adr_type);
twisti@4313 2928 set_result(andl);
rbackman@3709 2929 return true;
rbackman@3709 2930 }
rbackman@3709 2931
rbackman@3709 2932 bool LibraryCallKit::inline_native_threadID() {
rbackman@3709 2933 Node* tls_ptr = NULL;
rbackman@3709 2934 Node* cur_thr = generate_current_thread(tls_ptr);
rbackman@3709 2935 Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
rbackman@3709 2936 Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
rbackman@3709 2937 p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
rbackman@3709 2938
rbackman@3709 2939 Node* threadid = NULL;
rbackman@3709 2940 size_t thread_id_size = OSThread::thread_id_size();
rbackman@3709 2941 if (thread_id_size == (size_t) BytesPerLong) {
rbackman@3709 2942 threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG));
rbackman@3709 2943 } else if (thread_id_size == (size_t) BytesPerInt) {
rbackman@3709 2944 threadid = make_load(control(), p, TypeInt::INT, T_INT);
rbackman@3709 2945 } else {
rbackman@3709 2946 ShouldNotReachHere();
rbackman@3709 2947 }
twisti@4313 2948 set_result(threadid);
rbackman@3709 2949 return true;
rbackman@3709 2950 }
rbackman@3709 2951 #endif
rbackman@3709 2952
duke@435 2953 //------------------------inline_native_time_funcs--------------
duke@435 2954 // inline code for System.currentTimeMillis() and System.nanoTime()
duke@435 2955 // these have the same type and signature
rbackman@3709 2956 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
twisti@4313 2957 const TypeFunc* tf = OptoRuntime::void_long_Type();
duke@435 2958 const TypePtr* no_memory_effects = NULL;
duke@435 2959 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
kvn@4115 2960 Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
duke@435 2961 #ifdef ASSERT
twisti@4313 2962 Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
duke@435 2963 assert(value_top == top(), "second value must be top");
duke@435 2964 #endif
twisti@4313 2965 set_result(value);
duke@435 2966 return true;
duke@435 2967 }
duke@435 2968
duke@435 2969 //------------------------inline_native_currentThread------------------
duke@435 2970 bool LibraryCallKit::inline_native_currentThread() {
duke@435 2971 Node* junk = NULL;
twisti@4313 2972 set_result(generate_current_thread(junk));
duke@435 2973 return true;
duke@435 2974 }
duke@435 2975
duke@435 2976 //------------------------inline_native_isInterrupted------------------
twisti@4313 2977 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
duke@435 2978 bool LibraryCallKit::inline_native_isInterrupted() {
duke@435 2979 // Add a fast path to t.isInterrupted(clear_int):
duke@435 2980 // (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
duke@435 2981 // ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
duke@435 2982 // So, in the common case that the interrupt bit is false,
duke@435 2983 // we avoid making a call into the VM. Even if the interrupt bit
duke@435 2984 // is true, if the clear_int argument is false, we avoid the VM call.
duke@435 2985 // However, if the receiver is not currentThread, we must call the VM,
duke@435 2986 // because there must be some locking done around the operation.
duke@435 2987
duke@435 2988 // We only go to the fast case code if we pass two guards.
duke@435 2989 // Paths which do not pass are accumulated in the slow_region.
vlivanov@4358 2990
vlivanov@4358 2991 enum {
vlivanov@4358 2992 no_int_result_path = 1, // t == Thread.current() && !TLS._osthread._interrupted
vlivanov@4358 2993 no_clear_result_path = 2, // t == Thread.current() && TLS._osthread._interrupted && !clear_int
vlivanov@4358 2994 slow_result_path = 3, // slow path: t.isInterrupted(clear_int)
vlivanov@4358 2995 PATH_LIMIT
vlivanov@4358 2996 };
vlivanov@4358 2997
vlivanov@4358 2998 // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
vlivanov@4358 2999 // out of the function.
vlivanov@4358 3000 insert_mem_bar(Op_MemBarCPUOrder);
vlivanov@4358 3001
vlivanov@4358 3002 RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
vlivanov@4358 3003 PhiNode* result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
vlivanov@4358 3004
kvn@4115 3005 RegionNode* slow_region = new (C) RegionNode(1);
duke@435 3006 record_for_igvn(slow_region);
duke@435 3007
duke@435 3008 // (a) Receiving thread must be the current thread.
duke@435 3009 Node* rec_thr = argument(0);
duke@435 3010 Node* tls_ptr = NULL;
duke@435 3011 Node* cur_thr = generate_current_thread(tls_ptr);
kvn@4115 3012 Node* cmp_thr = _gvn.transform( new (C) CmpPNode(cur_thr, rec_thr) );
kvn@4115 3013 Node* bol_thr = _gvn.transform( new (C) BoolNode(cmp_thr, BoolTest::ne) );
duke@435 3014
vlivanov@4358 3015 generate_slow_guard(bol_thr, slow_region);
duke@435 3016
duke@435 3017 // (b) Interrupt bit on TLS must be false.
duke@435 3018 Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
duke@435 3019 Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
duke@435 3020 p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
vlivanov@4358 3021
kvn@1222 3022 // Set the control input on the field _interrupted read to prevent it floating up.
kvn@1222 3023 Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
kvn@4115 3024 Node* cmp_bit = _gvn.transform( new (C) CmpINode(int_bit, intcon(0)) );
kvn@4115 3025 Node* bol_bit = _gvn.transform( new (C) BoolNode(cmp_bit, BoolTest::ne) );
duke@435 3026
duke@435 3027 IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
duke@435 3028
duke@435 3029 // First fast path: if (!TLS._interrupted) return false;
kvn@4115 3030 Node* false_bit = _gvn.transform( new (C) IfFalseNode(iff_bit) );
duke@435 3031 result_rgn->init_req(no_int_result_path, false_bit);
duke@435 3032 result_val->init_req(no_int_result_path, intcon(0));
duke@435 3033
duke@435 3034 // drop through to next case
kvn@4115 3035 set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)) );
duke@435 3036
duke@435 3037 // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
duke@435 3038 Node* clr_arg = argument(1);
kvn@4115 3039 Node* cmp_arg = _gvn.transform( new (C) CmpINode(clr_arg, intcon(0)) );
kvn@4115 3040 Node* bol_arg = _gvn.transform( new (C) BoolNode(cmp_arg, BoolTest::ne) );
duke@435 3041 IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
duke@435 3042
duke@435 3043 // Second fast path: ... else if (!clear_int) return true;
kvn@4115 3044 Node* false_arg = _gvn.transform( new (C) IfFalseNode(iff_arg) );
duke@435 3045 result_rgn->init_req(no_clear_result_path, false_arg);
duke@435 3046 result_val->init_req(no_clear_result_path, intcon(1));
duke@435 3047
duke@435 3048 // drop through to next case
kvn@4115 3049 set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)) );
duke@435 3050
duke@435 3051 // (d) Otherwise, go to the slow path.
duke@435 3052 slow_region->add_req(control());
duke@435 3053 set_control( _gvn.transform(slow_region) );
duke@435 3054
duke@435 3055 if (stopped()) {
duke@435 3056 // There is no slow path.
duke@435 3057 result_rgn->init_req(slow_result_path, top());
duke@435 3058 result_val->init_req(slow_result_path, top());
duke@435 3059 } else {
duke@435 3060 // non-virtual because it is a private non-static
duke@435 3061 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
duke@435 3062
duke@435 3063 Node* slow_val = set_results_for_java_call(slow_call);
duke@435 3064 // this->control() comes from set_results_for_java_call
duke@435 3065
duke@435 3066 Node* fast_io = slow_call->in(TypeFunc::I_O);
duke@435 3067 Node* fast_mem = slow_call->in(TypeFunc::Memory);
vlivanov@4358 3068
duke@435 3069 // These two phis are pre-filled with copies of of the fast IO and Memory
vlivanov@4358 3070 PhiNode* result_mem = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
vlivanov@4358 3071 PhiNode* result_io = PhiNode::make(result_rgn, fast_io, Type::ABIO);
duke@435 3072
duke@435 3073 result_rgn->init_req(slow_result_path, control());
vlivanov@4358 3074 result_io ->init_req(slow_result_path, i_o());
vlivanov@4358 3075 result_mem->init_req(slow_result_path, reset_memory());
duke@435 3076 result_val->init_req(slow_result_path, slow_val);
duke@435 3077
vlivanov@4358 3078 set_all_memory(_gvn.transform(result_mem));
vlivanov@4358 3079 set_i_o( _gvn.transform(result_io));
duke@435 3080 }
duke@435 3081
duke@435 3082 C->set_has_split_ifs(true); // Has chance for split-if optimization
twisti@4313 3083 set_result(result_rgn, result_val);
duke@435 3084 return true;
duke@435 3085 }
duke@435 3086
duke@435 3087 //---------------------------load_mirror_from_klass----------------------------
duke@435 3088 // Given a klass oop, load its java mirror (a java.lang.Class oop).
duke@435 3089 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
stefank@3391 3090 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
duke@435 3091 return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
duke@435 3092 }
duke@435 3093
duke@435 3094 //-----------------------load_klass_from_mirror_common-------------------------
duke@435 3095 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
duke@435 3096 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
duke@435 3097 // and branch to the given path on the region.
duke@435 3098 // If never_see_null, take an uncommon trap on null, so we can optimistically
duke@435 3099 // compile for the non-null case.
duke@435 3100 // If the region is NULL, force never_see_null = true.
duke@435 3101 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
duke@435 3102 bool never_see_null,
duke@435 3103 RegionNode* region,
duke@435 3104 int null_path,
duke@435 3105 int offset) {
duke@435 3106 if (region == NULL) never_see_null = true;
duke@435 3107 Node* p = basic_plus_adr(mirror, offset);
duke@435 3108 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
kvn@599 3109 Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
duke@435 3110 Node* null_ctl = top();
duke@435 3111 kls = null_check_oop(kls, &null_ctl, never_see_null);
duke@435 3112 if (region != NULL) {
duke@435 3113 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
duke@435 3114 region->init_req(null_path, null_ctl);
duke@435 3115 } else {
duke@435 3116 assert(null_ctl == top(), "no loose ends");
duke@435 3117 }
duke@435 3118 return kls;
duke@435 3119 }
duke@435 3120
duke@435 3121 //--------------------(inline_native_Class_query helpers)---------------------
duke@435 3122 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
duke@435 3123 // Fall through if (mods & mask) == bits, take the guard otherwise.
duke@435 3124 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
duke@435 3125 // Branch around if the given klass has the given modifier bit set.
duke@435 3126 // Like generate_guard, adds a new path onto the region.
stefank@3391 3127 Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
duke@435 3128 Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
duke@435 3129 Node* mask = intcon(modifier_mask);
duke@435 3130 Node* bits = intcon(modifier_bits);
kvn@4115 3131 Node* mbit = _gvn.transform( new (C) AndINode(mods, mask) );
kvn@4115 3132 Node* cmp = _gvn.transform( new (C) CmpINode(mbit, bits) );
kvn@4115 3133 Node* bol = _gvn.transform( new (C) BoolNode(cmp, BoolTest::ne) );
duke@435 3134 return generate_fair_guard(bol, region);
duke@435 3135 }
duke@435 3136 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
duke@435 3137 return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
duke@435 3138 }
duke@435 3139
duke@435 3140 //-------------------------inline_native_Class_query-------------------
duke@435 3141 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
duke@435 3142 const Type* return_type = TypeInt::BOOL;
duke@435 3143 Node* prim_return_value = top(); // what happens if it's a primitive class?
duke@435 3144 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
duke@435 3145 bool expect_prim = false; // most of these guys expect to work on refs
duke@435 3146
duke@435 3147 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
duke@435 3148
twisti@4313 3149 Node* mirror = argument(0);
twisti@4313 3150 Node* obj = top();
twisti@4313 3151
duke@435 3152 switch (id) {
duke@435 3153 case vmIntrinsics::_isInstance:
duke@435 3154 // nothing is an instance of a primitive type
duke@435 3155 prim_return_value = intcon(0);
twisti@4313 3156 obj = argument(1);
duke@435 3157 break;
duke@435 3158 case vmIntrinsics::_getModifiers:
duke@435 3159 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
duke@435 3160 assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
duke@435 3161 return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
duke@435 3162 break;
duke@435 3163 case vmIntrinsics::_isInterface:
duke@435 3164 prim_return_value = intcon(0);
duke@435 3165 break;
duke@435 3166 case vmIntrinsics::_isArray:
duke@435 3167 prim_return_value = intcon(0);
duke@435 3168 expect_prim = true; // cf. ObjectStreamClass.getClassSignature
duke@435 3169 break;
duke@435 3170 case vmIntrinsics::_isPrimitive:
duke@435 3171 prim_return_value = intcon(1);
duke@435 3172 expect_prim = true; // obviously
duke@435 3173 break;
duke@435 3174 case vmIntrinsics::_getSuperclass:
duke@435 3175 prim_return_value = null();
duke@435 3176 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
duke@435 3177 break;
duke@435 3178 case vmIntrinsics::_getComponentType:
duke@435 3179 prim_return_value = null();
duke@435 3180 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
duke@435 3181 break;
duke@435 3182 case vmIntrinsics::_getClassAccessFlags:
duke@435 3183 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
duke@435 3184 return_type = TypeInt::INT; // not bool! 6297094
duke@435 3185 break;
duke@435 3186 default:
twisti@4313 3187 fatal_unexpected_iid(id);
twisti@4313 3188 break;
duke@435 3189 }
duke@435 3190
duke@435 3191 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
duke@435 3192 if (mirror_con == NULL) return false; // cannot happen?
duke@435 3193
duke@435 3194 #ifndef PRODUCT
duke@435 3195 if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
duke@435 3196 ciType* k = mirror_con->java_mirror_type();
duke@435 3197 if (k) {
duke@435 3198 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
duke@435 3199 k->print_name();
duke@435 3200 tty->cr();
duke@435 3201 }
duke@435 3202 }
duke@435 3203 #endif
duke@435 3204
duke@435 3205 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
kvn@4115 3206 RegionNode* region = new (C) RegionNode(PATH_LIMIT);
duke@435 3207 record_for_igvn(region);
kvn@4115 3208 PhiNode* phi = new (C) PhiNode(region, return_type);
duke@435 3209
duke@435 3210 // The mirror will never be null of Reflection.getClassAccessFlags, however
duke@435 3211 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
duke@435 3212 // if it is. See bug 4774291.
duke@435 3213
duke@435 3214 // For Reflection.getClassAccessFlags(), the null check occurs in
duke@435 3215 // the wrong place; see inline_unsafe_access(), above, for a similar
duke@435 3216 // situation.
twisti@4313 3217 mirror = null_check(mirror);
duke@435 3218 // If mirror or obj is dead, only null-path is taken.
duke@435 3219 if (stopped()) return true;
duke@435 3220
duke@435 3221 if (expect_prim) never_see_null = false; // expect nulls (meaning prims)
duke@435 3222
duke@435 3223 // Now load the mirror's klass metaobject, and null-check it.
duke@435 3224 // Side-effects region with the control path if the klass is null.
twisti@4313 3225 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
duke@435 3226 // If kls is null, we have a primitive mirror.
duke@435 3227 phi->init_req(_prim_path, prim_return_value);
twisti@4313 3228 if (stopped()) { set_result(region, phi); return true; }
duke@435 3229
duke@435 3230 Node* p; // handy temp
duke@435 3231 Node* null_ctl;
duke@435 3232
duke@435 3233 // Now that we have the non-null klass, we can perform the real query.
duke@435 3234 // For constant classes, the query will constant-fold in LoadNode::Value.
duke@435 3235 Node* query_value = top();
duke@435 3236 switch (id) {
duke@435 3237 case vmIntrinsics::_isInstance:
duke@435 3238 // nothing is an instance of a primitive type
duke@435 3239 query_value = gen_instanceof(obj, kls);
duke@435 3240 break;
duke@435 3241
duke@435 3242 case vmIntrinsics::_getModifiers:
stefank@3391 3243 p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
duke@435 3244 query_value = make_load(NULL, p, TypeInt::INT, T_INT);
duke@435 3245 break;
duke@435 3246
duke@435 3247 case vmIntrinsics::_isInterface:
duke@435 3248 // (To verify this code sequence, check the asserts in JVM_IsInterface.)
duke@435 3249 if (generate_interface_guard(kls, region) != NULL)
duke@435 3250 // A guard was added. If the guard is taken, it was an interface.
duke@435 3251 phi->add_req(intcon(1));
duke@435 3252 // If we fall through, it's a plain class.
duke@435 3253 query_value = intcon(0);
duke@435 3254 break;
duke@435 3255
duke@435 3256 case vmIntrinsics::_isArray:
duke@435 3257 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
duke@435 3258 if (generate_array_guard(kls, region) != NULL)
duke@435 3259 // A guard was added. If the guard is taken, it was an array.
duke@435 3260 phi->add_req(intcon(1));
duke@435 3261 // If we fall through, it's a plain class.
duke@435 3262 query_value = intcon(0);
duke@435 3263 break;
duke@435 3264
duke@435 3265 case vmIntrinsics::_isPrimitive:
duke@435 3266 query_value = intcon(0); // "normal" path produces false
duke@435 3267 break;
duke@435 3268
duke@435 3269 case vmIntrinsics::_getSuperclass:
duke@435 3270 // The rules here are somewhat unfortunate, but we can still do better
duke@435 3271 // with random logic than with a JNI call.
duke@435 3272 // Interfaces store null or Object as _super, but must report null.
duke@435 3273 // Arrays store an intermediate super as _super, but must report Object.
duke@435 3274 // Other types can report the actual _super.
duke@435 3275 // (To verify this code sequence, check the asserts in JVM_IsInterface.)
duke@435 3276 if (generate_interface_guard(kls, region) != NULL)
duke@435 3277 // A guard was added. If the guard is taken, it was an interface.
duke@435 3278 phi->add_req(null());
duke@435 3279 if (generate_array_guard(kls, region) != NULL)
duke@435 3280 // A guard was added. If the guard is taken, it was an array.
duke@435 3281 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
duke@435 3282 // If we fall through, it's a plain class. Get its _super.
stefank@3391 3283 p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
kvn@599 3284 kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
duke@435 3285 null_ctl = top();
duke@435 3286 kls = null_check_oop(kls, &null_ctl);
duke@435 3287 if (null_ctl != top()) {
duke@435 3288 // If the guard is taken, Object.superClass is null (both klass and mirror).
duke@435 3289 region->add_req(null_ctl);
duke@435 3290 phi ->add_req(null());
duke@435 3291 }
duke@435 3292 if (!stopped()) {
duke@435 3293 query_value = load_mirror_from_klass(kls);
duke@435 3294 }
duke@435 3295 break;
duke@435 3296
duke@435 3297 case vmIntrinsics::_getComponentType:
duke@435 3298 if (generate_array_guard(kls, region) != NULL) {
duke@435 3299 // Be sure to pin the oop load to the guard edge just created:
duke@435 3300 Node* is_array_ctrl = region->in(region->req()-1);
coleenp@4142 3301 Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
duke@435 3302 Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
duke@435 3303 phi->add_req(cmo);
duke@435 3304 }
duke@435 3305 query_value = null(); // non-array case is null
duke@435 3306 break;
duke@435 3307
duke@435 3308 case vmIntrinsics::_getClassAccessFlags:
stefank@3391 3309 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
duke@435 3310 query_value = make_load(NULL, p, TypeInt::INT, T_INT);
duke@435 3311 break;
duke@435 3312
duke@435 3313 default:
twisti@4313 3314 fatal_unexpected_iid(id);
twisti@4313 3315 break;
duke@435 3316 }
duke@435 3317
duke@435 3318 // Fall-through is the normal case of a query to a real class.
duke@435 3319 phi->init_req(1, query_value);
duke@435 3320 region->init_req(1, control());
duke@435 3321
duke@435 3322 C->set_has_split_ifs(true); // Has chance for split-if optimization
twisti@4313 3323 set_result(region, phi);
duke@435 3324 return true;
duke@435 3325 }
duke@435 3326
duke@435 3327 //--------------------------inline_native_subtype_check------------------------
duke@435 3328 // This intrinsic takes the JNI calls out of the heart of
duke@435 3329 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
duke@435 3330 bool LibraryCallKit::inline_native_subtype_check() {
duke@435 3331 // Pull both arguments off the stack.
duke@435 3332 Node* args[2]; // two java.lang.Class mirrors: superc, subc
duke@435 3333 args[0] = argument(0);
duke@435 3334 args[1] = argument(1);
duke@435 3335 Node* klasses[2]; // corresponding Klasses: superk, subk
duke@435 3336 klasses[0] = klasses[1] = top();
duke@435 3337
duke@435 3338 enum {
duke@435 3339 // A full decision tree on {superc is prim, subc is prim}:
duke@435 3340 _prim_0_path = 1, // {P,N} => false
duke@435 3341 // {P,P} & superc!=subc => false
duke@435 3342 _prim_same_path, // {P,P} & superc==subc => true
duke@435 3343 _prim_1_path, // {N,P} => false
duke@435 3344 _ref_subtype_path, // {N,N} & subtype check wins => true
duke@435 3345 _both_ref_path, // {N,N} & subtype check loses => false
duke@435 3346 PATH_LIMIT
duke@435 3347 };
duke@435 3348
kvn@4115 3349 RegionNode* region = new (C) RegionNode(PATH_LIMIT);
kvn@4115 3350 Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
duke@435 3351 record_for_igvn(region);
duke@435 3352
duke@435 3353 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads
duke@435 3354 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
duke@435 3355 int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
duke@435 3356
duke@435 3357 // First null-check both mirrors and load each mirror's klass metaobject.
duke@435 3358 int which_arg;
duke@435 3359 for (which_arg = 0; which_arg <= 1; which_arg++) {
duke@435 3360 Node* arg = args[which_arg];
twisti@4313 3361 arg = null_check(arg);
duke@435 3362 if (stopped()) break;
roland@4357 3363 args[which_arg] = arg;
duke@435 3364
duke@435 3365 Node* p = basic_plus_adr(arg, class_klass_offset);
kvn@599 3366 Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
duke@435 3367 klasses[which_arg] = _gvn.transform(kls);
duke@435 3368 }
duke@435 3369
duke@435 3370 // Having loaded both klasses, test each for null.
duke@435 3371 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
duke@435 3372 for (which_arg = 0; which_arg <= 1; which_arg++) {
duke@435 3373 Node* kls = klasses[which_arg];
duke@435 3374 Node* null_ctl = top();
duke@435 3375 kls = null_check_oop(kls, &null_ctl, never_see_null);
duke@435 3376 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
duke@435 3377 region->init_req(prim_path, null_ctl);
duke@435 3378 if (stopped()) break;
duke@435 3379 klasses[which_arg] = kls;
duke@435 3380 }
duke@435 3381
duke@435 3382 if (!stopped()) {
duke@435 3383 // now we have two reference types, in klasses[0..1]
duke@435 3384 Node* subk = klasses[1]; // the argument to isAssignableFrom
duke@435 3385 Node* superk = klasses[0]; // the receiver
duke@435 3386 region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
duke@435 3387 // now we have a successful reference subtype check
duke@435 3388 region->set_req(_ref_subtype_path, control());
duke@435 3389 }
duke@435 3390
duke@435 3391 // If both operands are primitive (both klasses null), then
duke@435 3392 // we must return true when they are identical primitives.
duke@435 3393 // It is convenient to test this after the first null klass check.
duke@435 3394 set_control(region->in(_prim_0_path)); // go back to first null check
duke@435 3395 if (!stopped()) {
duke@435 3396 // Since superc is primitive, make a guard for the superc==subc case.
kvn@4115 3397 Node* cmp_eq = _gvn.transform( new (C) CmpPNode(args[0], args[1]) );
kvn@4115 3398 Node* bol_eq = _gvn.transform( new (C) BoolNode(cmp_eq, BoolTest::eq) );
duke@435 3399 generate_guard(bol_eq, region, PROB_FAIR);
duke@435 3400 if (region->req() == PATH_LIMIT+1) {
duke@435 3401 // A guard was added. If the added guard is taken, superc==subc.
duke@435 3402 region->swap_edges(PATH_LIMIT, _prim_same_path);
duke@435 3403 region->del_req(PATH_LIMIT);
duke@435 3404 }
duke@435 3405 region->set_req(_prim_0_path, control()); // Not equal after all.
duke@435 3406 }
duke@435 3407
duke@435 3408 // these are the only paths that produce 'true':
duke@435 3409 phi->set_req(_prim_same_path, intcon(1));
duke@435 3410 phi->set_req(_ref_subtype_path, intcon(1));
duke@435 3411
duke@435 3412 // pull together the cases:
duke@435 3413 assert(region->req() == PATH_LIMIT, "sane region");
duke@435 3414 for (uint i = 1; i < region->req(); i++) {
duke@435 3415 Node* ctl = region->in(i);
duke@435 3416 if (ctl == NULL || ctl == top()) {
duke@435 3417 region->set_req(i, top());
duke@435 3418 phi ->set_req(i, top());
duke@435 3419 } else if (phi->in(i) == NULL) {
duke@435 3420 phi->set_req(i, intcon(0)); // all other paths produce 'false'
duke@435 3421 }
duke@435 3422 }
duke@435 3423
duke@435 3424 set_control(_gvn.transform(region));
twisti@4313 3425 set_result(_gvn.transform(phi));
duke@435 3426 return true;
duke@435 3427 }
duke@435 3428
duke@435 3429 //---------------------generate_array_guard_common------------------------
duke@435 3430 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
duke@435 3431 bool obj_array, bool not_array) {
duke@435 3432 // If obj_array/non_array==false/false:
duke@435 3433 // Branch around if the given klass is in fact an array (either obj or prim).
duke@435 3434 // If obj_array/non_array==false/true:
duke@435 3435 // Branch around if the given klass is not an array klass of any kind.
duke@435 3436 // If obj_array/non_array==true/true:
duke@435 3437 // Branch around if the kls is not an oop array (kls is int[], String, etc.)
duke@435 3438 // If obj_array/non_array==true/false:
duke@435 3439 // Branch around if the kls is an oop array (Object[] or subtype)
duke@435 3440 //
duke@435 3441 // Like generate_guard, adds a new path onto the region.
duke@435 3442 jint layout_con = 0;
duke@435 3443 Node* layout_val = get_layout_helper(kls, layout_con);
duke@435 3444 if (layout_val == NULL) {
duke@435 3445 bool query = (obj_array
duke@435 3446 ? Klass::layout_helper_is_objArray(layout_con)
coleenp@4037 3447 : Klass::layout_helper_is_array(layout_con));
duke@435 3448 if (query == not_array) {
duke@435 3449 return NULL; // never a branch
duke@435 3450 } else { // always a branch
duke@435 3451 Node* always_branch = control();
duke@435 3452 if (region != NULL)
duke@435 3453 region->add_req(always_branch);
duke@435 3454 set_control(top());
duke@435 3455 return always_branch;
duke@435 3456 }
duke@435 3457 }
duke@435 3458 // Now test the correct condition.
duke@435 3459 jint nval = (obj_array
duke@435 3460 ? ((jint)Klass::_lh_array_tag_type_value
duke@435 3461 << Klass::_lh_array_tag_shift)
duke@435 3462 : Klass::_lh_neutral_value);
kvn@4115 3463 Node* cmp = _gvn.transform( new(C) CmpINode(layout_val, intcon(nval)) );
duke@435 3464 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array
duke@435 3465 // invert the test if we are looking for a non-array
duke@435 3466 if (not_array) btest = BoolTest(btest).negate();
kvn@4115 3467 Node* bol = _gvn.transform( new(C) BoolNode(cmp, btest) );
duke@435 3468 return generate_fair_guard(bol, region);
duke@435 3469 }
duke@435 3470
duke@435 3471
duke@435 3472 //-----------------------inline_native_newArray--------------------------
twisti@4313 3473 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
duke@435 3474 bool LibraryCallKit::inline_native_newArray() {
duke@435 3475 Node* mirror = argument(0);
duke@435 3476 Node* count_val = argument(1);
duke@435 3477
twisti@4313 3478 mirror = null_check(mirror);
kvn@598 3479 // If mirror or obj is dead, only null-path is taken.
kvn@598 3480 if (stopped()) return true;
duke@435 3481
duke@435 3482 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
kvn@4115 3483 RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
kvn@4115 3484 PhiNode* result_val = new(C) PhiNode(result_reg,
kvn@4115 3485 TypeInstPtr::NOTNULL);
kvn@4115 3486 PhiNode* result_io = new(C) PhiNode(result_reg, Type::ABIO);
kvn@4115 3487 PhiNode* result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
kvn@4115 3488 TypePtr::BOTTOM);
duke@435 3489
duke@435 3490 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
duke@435 3491 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
duke@435 3492 result_reg, _slow_path);
duke@435 3493 Node* normal_ctl = control();
duke@435 3494 Node* no_array_ctl = result_reg->in(_slow_path);
duke@435 3495
duke@435 3496 // Generate code for the slow case. We make a call to newArray().
duke@435 3497 set_control(no_array_ctl);
duke@435 3498 if (!stopped()) {
duke@435 3499 // Either the input type is void.class, or else the
duke@435 3500 // array klass has not yet been cached. Either the
duke@435 3501 // ensuing call will throw an exception, or else it
duke@435 3502 // will cache the array klass for next time.
duke@435 3503 PreserveJVMState pjvms(this);
duke@435 3504 CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
duke@435 3505 Node* slow_result = set_results_for_java_call(slow_call);
duke@435 3506 // this->control() comes from set_results_for_java_call
duke@435 3507 result_reg->set_req(_slow_path, control());
duke@435 3508 result_val->set_req(_slow_path, slow_result);
duke@435 3509 result_io ->set_req(_slow_path, i_o());
duke@435 3510 result_mem->set_req(_slow_path, reset_memory());
duke@435 3511 }
duke@435 3512
duke@435 3513 set_control(normal_ctl);
duke@435 3514 if (!stopped()) {
duke@435 3515 // Normal case: The array type has been cached in the java.lang.Class.
duke@435 3516 // The following call works fine even if the array type is polymorphic.
duke@435 3517 // It could be a dynamic mix of int[], boolean[], Object[], etc.
twisti@4313 3518 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push
duke@435 3519 result_reg->init_req(_normal_path, control());
duke@435 3520 result_val->init_req(_normal_path, obj);
duke@435 3521 result_io ->init_req(_normal_path, i_o());
duke@435 3522 result_mem->init_req(_normal_path, reset_memory());
duke@435 3523 }
duke@435 3524
duke@435 3525 // Return the combined state.
duke@435 3526 set_i_o( _gvn.transform(result_io) );
duke@435 3527 set_all_memory( _gvn.transform(result_mem) );
twisti@4313 3528
duke@435 3529 C->set_has_split_ifs(true); // Has chance for split-if optimization
twisti@4313 3530 set_result(result_reg, result_val);
duke@435 3531 return true;
duke@435 3532 }
duke@435 3533
duke@435 3534 //----------------------inline_native_getLength--------------------------
twisti@4313 3535 // public static native int java.lang.reflect.Array.getLength(Object array);
duke@435 3536 bool LibraryCallKit::inline_native_getLength() {
duke@435 3537 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 3538
twisti@4313 3539 Node* array = null_check(argument(0));
duke@435 3540 // If array is dead, only null-path is taken.
duke@435 3541 if (stopped()) return true;
duke@435 3542
duke@435 3543 // Deoptimize if it is a non-array.
duke@435 3544 Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
duke@435 3545
duke@435 3546 if (non_array != NULL) {
duke@435 3547 PreserveJVMState pjvms(this);
duke@435 3548 set_control(non_array);
duke@435 3549 uncommon_trap(Deoptimization::Reason_intrinsic,
duke@435 3550 Deoptimization::Action_maybe_recompile);
duke@435 3551 }
duke@435 3552
duke@435 3553 // If control is dead, only non-array-path is taken.
duke@435 3554 if (stopped()) return true;
duke@435 3555
duke@435 3556 // The works fine even if the array type is polymorphic.
duke@435 3557 // It could be a dynamic mix of int[], boolean[], Object[], etc.
twisti@4313 3558 Node* result = load_array_length(array);
twisti@4313 3559
twisti@4313 3560 C->set_has_split_ifs(true); // Has chance for split-if optimization
twisti@4313 3561 set_result(result);
duke@435 3562 return true;
duke@435 3563 }
duke@435 3564
duke@435 3565 //------------------------inline_array_copyOf----------------------------
twisti@4313 3566 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType);
twisti@4313 3567 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType);
duke@435 3568 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
duke@435 3569 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 3570
twisti@4313 3571 // Get the arguments.
duke@435 3572 Node* original = argument(0);
duke@435 3573 Node* start = is_copyOfRange? argument(1): intcon(0);
duke@435 3574 Node* end = is_copyOfRange? argument(2): argument(1);
duke@435 3575 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
duke@435 3576
cfang@1337 3577 Node* newcopy;
cfang@1337 3578
twisti@4313 3579 // Set the original stack and the reexecute bit for the interpreter to reexecute
twisti@4313 3580 // the bytecode that invokes Arrays.copyOf if deoptimization happens.
cfang@1337 3581 { PreserveReexecuteState preexecs(this);
cfang@1337 3582 jvms()->set_should_reexecute(true);
cfang@1337 3583
twisti@4313 3584 array_type_mirror = null_check(array_type_mirror);
twisti@4313 3585 original = null_check(original);
cfang@1337 3586
cfang@1337 3587 // Check if a null path was taken unconditionally.
cfang@1337 3588 if (stopped()) return true;
cfang@1337 3589
cfang@1337 3590 Node* orig_length = load_array_length(original);
cfang@1337 3591
twisti@4313 3592 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
twisti@4313 3593 klass_node = null_check(klass_node);
cfang@1337 3594
kvn@4115 3595 RegionNode* bailout = new (C) RegionNode(1);
cfang@1337 3596 record_for_igvn(bailout);
cfang@1337 3597
cfang@1337 3598 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
cfang@1337 3599 // Bail out if that is so.
cfang@1337 3600 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
cfang@1337 3601 if (not_objArray != NULL) {
cfang@1337 3602 // Improve the klass node's type from the new optimistic assumption:
cfang@1337 3603 ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
cfang@1337 3604 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
kvn@4115 3605 Node* cast = new (C) CastPPNode(klass_node, akls);
cfang@1337 3606 cast->init_req(0, control());
cfang@1337 3607 klass_node = _gvn.transform(cast);
cfang@1337 3608 }
cfang@1337 3609
cfang@1337 3610 // Bail out if either start or end is negative.
cfang@1337 3611 generate_negative_guard(start, bailout, &start);
cfang@1337 3612 generate_negative_guard(end, bailout, &end);
cfang@1337 3613
cfang@1337 3614 Node* length = end;
cfang@1337 3615 if (_gvn.type(start) != TypeInt::ZERO) {
twisti@4313 3616 length = _gvn.transform(new (C) SubINode(end, start));
cfang@1337 3617 }
cfang@1337 3618
cfang@1337 3619 // Bail out if length is negative.
roland@3883 3620 // Without this the new_array would throw
roland@3883 3621 // NegativeArraySizeException but IllegalArgumentException is what
roland@3883 3622 // should be thrown
roland@3883 3623 generate_negative_guard(length, bailout, &length);
cfang@1337 3624
cfang@1337 3625 if (bailout->req() > 1) {
cfang@1337 3626 PreserveJVMState pjvms(this);
twisti@4313 3627 set_control(_gvn.transform(bailout));
cfang@1337 3628 uncommon_trap(Deoptimization::Reason_intrinsic,
cfang@1337 3629 Deoptimization::Action_maybe_recompile);
cfang@1337 3630 }
cfang@1337 3631
cfang@1337 3632 if (!stopped()) {
cfang@1335 3633 // How many elements will we copy from the original?
cfang@1335 3634 // The answer is MinI(orig_length - start, length).
twisti@4313 3635 Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
cfang@1335 3636 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
cfang@1335 3637
twisti@4313 3638 newcopy = new_array(klass_node, length, 0); // no argments to push
cfang@1335 3639
cfang@1335 3640 // Generate a direct call to the right arraycopy function(s).
cfang@1335 3641 // We know the copy is disjoint but we might not know if the
cfang@1335 3642 // oop stores need checking.
cfang@1335 3643 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class).
cfang@1335 3644 // This will fail a store-check if x contains any non-nulls.
cfang@1335 3645 bool disjoint_bases = true;
roland@3883 3646 // if start > orig_length then the length of the copy may be
roland@3883 3647 // negative.
roland@3883 3648 bool length_never_negative = !is_copyOfRange;
cfang@1335 3649 generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
cfang@1335 3650 original, start, newcopy, intcon(0), moved,
cfang@1335 3651 disjoint_bases, length_never_negative);
cfang@1337 3652 }
twisti@4313 3653 } // original reexecute is set back here
twisti@4313 3654
twisti@4313 3655 C->set_has_split_ifs(true); // Has chance for split-if optimization
twisti@4313 3656 if (!stopped()) {
twisti@4313 3657 set_result(newcopy);
duke@435 3658 }
duke@435 3659 return true;
duke@435 3660 }
duke@435 3661
duke@435 3662
duke@435 3663 //----------------------generate_virtual_guard---------------------------
duke@435 3664 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call.
duke@435 3665 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
duke@435 3666 RegionNode* slow_region) {
duke@435 3667 ciMethod* method = callee();
duke@435 3668 int vtable_index = method->vtable_index();
coleenp@4037 3669 // Get the Method* out of the appropriate vtable entry.
coleenp@4037 3670 int entry_offset = (InstanceKlass::vtable_start_offset() +
duke@435 3671 vtable_index*vtableEntry::size()) * wordSize +
duke@435 3672 vtableEntry::method_offset_in_bytes();
duke@435 3673 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset);
kvn@4199 3674 Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS);
duke@435 3675
duke@435 3676 // Compare the target method with the expected method (e.g., Object.hashCode).
coleenp@4037 3677 const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
duke@435 3678
duke@435 3679 Node* native_call = makecon(native_call_addr);
kvn@4115 3680 Node* chk_native = _gvn.transform( new(C) CmpPNode(target_call, native_call) );
kvn@4115 3681 Node* test_native = _gvn.transform( new(C) BoolNode(chk_native, BoolTest::ne) );
duke@435 3682
duke@435 3683 return generate_slow_guard(test_native, slow_region);
duke@435 3684 }
duke@435 3685
duke@435 3686 //-----------------------generate_method_call----------------------------
duke@435 3687 // Use generate_method_call to make a slow-call to the real
duke@435 3688 // method if the fast path fails. An alternative would be to
duke@435 3689 // use a stub like OptoRuntime::slow_arraycopy_Java.
duke@435 3690 // This only works for expanding the current library call,
duke@435 3691 // not another intrinsic. (E.g., don't use this for making an
duke@435 3692 // arraycopy call inside of the copyOf intrinsic.)
duke@435 3693 CallJavaNode*
duke@435 3694 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
duke@435 3695 // When compiling the intrinsic method itself, do not use this technique.
duke@435 3696 guarantee(callee() != C->method(), "cannot make slow-call to self");
duke@435 3697
duke@435 3698 ciMethod* method = callee();
duke@435 3699 // ensure the JVMS we have will be correct for this call
duke@435 3700 guarantee(method_id == method->intrinsic_id(), "must match");
duke@435 3701
duke@435 3702 const TypeFunc* tf = TypeFunc::make(method);
duke@435 3703 CallJavaNode* slow_call;
duke@435 3704 if (is_static) {
duke@435 3705 assert(!is_virtual, "");
kvn@5110 3706 slow_call = new(C) CallStaticJavaNode(C, tf,
kvn@4115 3707 SharedRuntime::get_resolve_static_call_stub(),
kvn@4115 3708 method, bci());
duke@435 3709 } else if (is_virtual) {
twisti@4313 3710 null_check_receiver();
coleenp@4037 3711 int vtable_index = Method::invalid_vtable_index;
duke@435 3712 if (UseInlineCaches) {
duke@435 3713 // Suppress the vtable call
duke@435 3714 } else {
duke@435 3715 // hashCode and clone are not a miranda methods,
duke@435 3716 // so the vtable index is fixed.
duke@435 3717 // No need to use the linkResolver to get it.
duke@435 3718 vtable_index = method->vtable_index();
duke@435 3719 }
kvn@4115 3720 slow_call = new(C) CallDynamicJavaNode(tf,
kvn@4115 3721 SharedRuntime::get_resolve_virtual_call_stub(),
kvn@4115 3722 method, vtable_index, bci());
duke@435 3723 } else { // neither virtual nor static: opt_virtual
twisti@4313 3724 null_check_receiver();
kvn@5110 3725 slow_call = new(C) CallStaticJavaNode(C, tf,
duke@435 3726 SharedRuntime::get_resolve_opt_virtual_call_stub(),
duke@435 3727 method, bci());
duke@435 3728 slow_call->set_optimized_virtual(true);
duke@435 3729 }
duke@435 3730 set_arguments_for_java_call(slow_call);
duke@435 3731 set_edges_for_java_call(slow_call);
duke@435 3732 return slow_call;
duke@435 3733 }
duke@435 3734
duke@435 3735
duke@435 3736 //------------------------------inline_native_hashcode--------------------
duke@435 3737 // Build special case code for calls to hashCode on an object.
duke@435 3738 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
duke@435 3739 assert(is_static == callee()->is_static(), "correct intrinsic selection");
duke@435 3740 assert(!(is_virtual && is_static), "either virtual, special, or static");
duke@435 3741
duke@435 3742 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
duke@435 3743
kvn@4115 3744 RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
kvn@4115 3745 PhiNode* result_val = new(C) PhiNode(result_reg,
kvn@4115 3746 TypeInt::INT);
kvn@4115 3747 PhiNode* result_io = new(C) PhiNode(result_reg, Type::ABIO);
kvn@4115 3748 PhiNode* result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
kvn@4115 3749 TypePtr::BOTTOM);
duke@435 3750 Node* obj = NULL;
duke@435 3751 if (!is_static) {
duke@435 3752 // Check for hashing null object
twisti@4313 3753 obj = null_check_receiver();
duke@435 3754 if (stopped()) return true; // unconditionally null
duke@435 3755 result_reg->init_req(_null_path, top());
duke@435 3756 result_val->init_req(_null_path, top());
duke@435 3757 } else {
duke@435 3758 // Do a null check, and return zero if null.
duke@435 3759 // System.identityHashCode(null) == 0
duke@435 3760 obj = argument(0);
duke@435 3761 Node* null_ctl = top();
duke@435 3762 obj = null_check_oop(obj, &null_ctl);
duke@435 3763 result_reg->init_req(_null_path, null_ctl);
duke@435 3764 result_val->init_req(_null_path, _gvn.intcon(0));
duke@435 3765 }
duke@435 3766
duke@435 3767 // Unconditionally null? Then return right away.
duke@435 3768 if (stopped()) {
twisti@4313 3769 set_control( result_reg->in(_null_path));
duke@435 3770 if (!stopped())
twisti@4313 3771 set_result(result_val->in(_null_path));
duke@435 3772 return true;
duke@435 3773 }
duke@435 3774
duke@435 3775 // After null check, get the object's klass.
duke@435 3776 Node* obj_klass = load_object_klass(obj);
duke@435 3777
duke@435 3778 // This call may be virtual (invokevirtual) or bound (invokespecial).
duke@435 3779 // For each case we generate slightly different code.
duke@435 3780
duke@435 3781 // We only go to the fast case code if we pass a number of guards. The
duke@435 3782 // paths which do not pass are accumulated in the slow_region.
kvn@4115 3783 RegionNode* slow_region = new (C) RegionNode(1);
duke@435 3784 record_for_igvn(slow_region);
duke@435 3785
duke@435 3786 // If this is a virtual call, we generate a funny guard. We pull out
duke@435 3787 // the vtable entry corresponding to hashCode() from the target object.
duke@435 3788 // If the target method which we are calling happens to be the native
duke@435 3789 // Object hashCode() method, we pass the guard. We do not need this
duke@435 3790 // guard for non-virtual calls -- the caller is known to be the native
duke@435 3791 // Object hashCode().
duke@435 3792 if (is_virtual) {
duke@435 3793 generate_virtual_guard(obj_klass, slow_region);
duke@435 3794 }
duke@435 3795
duke@435 3796 // Get the header out of the object, use LoadMarkNode when available
duke@435 3797 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
kvn@1964 3798 Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
duke@435 3799
duke@435 3800 // Test the header to see if it is unlocked.
duke@435 3801 Node *lock_mask = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
kvn@4115 3802 Node *lmasked_header = _gvn.transform( new (C) AndXNode(header, lock_mask) );
duke@435 3803 Node *unlocked_val = _gvn.MakeConX(markOopDesc::unlocked_value);
kvn@4115 3804 Node *chk_unlocked = _gvn.transform( new (C) CmpXNode( lmasked_header, unlocked_val));
kvn@4115 3805 Node *test_unlocked = _gvn.transform( new (C) BoolNode( chk_unlocked, BoolTest::ne) );
duke@435 3806
duke@435 3807 generate_slow_guard(test_unlocked, slow_region);
duke@435 3808
duke@435 3809 // Get the hash value and check to see that it has been properly assigned.
duke@435 3810 // We depend on hash_mask being at most 32 bits and avoid the use of
duke@435 3811 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
duke@435 3812 // vm: see markOop.hpp.
duke@435 3813 Node *hash_mask = _gvn.intcon(markOopDesc::hash_mask);
duke@435 3814 Node *hash_shift = _gvn.intcon(markOopDesc::hash_shift);
kvn@4115 3815 Node *hshifted_header= _gvn.transform( new (C) URShiftXNode(header, hash_shift) );
duke@435 3816 // This hack lets the hash bits live anywhere in the mark object now, as long
twisti@1040 3817 // as the shift drops the relevant bits into the low 32 bits. Note that
duke@435 3818 // Java spec says that HashCode is an int so there's no point in capturing
duke@435 3819 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
duke@435 3820 hshifted_header = ConvX2I(hshifted_header);
kvn@4115 3821 Node *hash_val = _gvn.transform( new (C) AndINode(hshifted_header, hash_mask) );
duke@435 3822
duke@435 3823 Node *no_hash_val = _gvn.intcon(markOopDesc::no_hash);
kvn@4115 3824 Node *chk_assigned = _gvn.transform( new (C) CmpINode( hash_val, no_hash_val));
kvn@4115 3825 Node *test_assigned = _gvn.transform( new (C) BoolNode( chk_assigned, BoolTest::eq) );
duke@435 3826
duke@435 3827 generate_slow_guard(test_assigned, slow_region);
duke@435 3828
duke@435 3829 Node* init_mem = reset_memory();
duke@435 3830 // fill in the rest of the null path:
duke@435 3831 result_io ->init_req(_null_path, i_o());
duke@435 3832 result_mem->init_req(_null_path, init_mem);
duke@435 3833
duke@435 3834 result_val->init_req(_fast_path, hash_val);
duke@435 3835 result_reg->init_req(_fast_path, control());
duke@435 3836 result_io ->init_req(_fast_path, i_o());
duke@435 3837 result_mem->init_req(_fast_path, init_mem);
duke@435 3838
duke@435 3839 // Generate code for the slow case. We make a call to hashCode().
duke@435 3840 set_control(_gvn.transform(slow_region));
duke@435 3841 if (!stopped()) {
duke@435 3842 // No need for PreserveJVMState, because we're using up the present state.
duke@435 3843 set_all_memory(init_mem);
twisti@4313 3844 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
duke@435 3845 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
duke@435 3846 Node* slow_result = set_results_for_java_call(slow_call);
duke@435 3847 // this->control() comes from set_results_for_java_call
duke@435 3848 result_reg->init_req(_slow_path, control());
duke@435 3849 result_val->init_req(_slow_path, slow_result);
duke@435 3850 result_io ->set_req(_slow_path, i_o());
duke@435 3851 result_mem ->set_req(_slow_path, reset_memory());
duke@435 3852 }
duke@435 3853
duke@435 3854 // Return the combined state.
duke@435 3855 set_i_o( _gvn.transform(result_io) );
duke@435 3856 set_all_memory( _gvn.transform(result_mem) );
twisti@4313 3857
twisti@4313 3858 set_result(result_reg, result_val);
duke@435 3859 return true;
duke@435 3860 }
duke@435 3861
duke@435 3862 //---------------------------inline_native_getClass----------------------------
twisti@4313 3863 // public final native Class<?> java.lang.Object.getClass();
twisti@4313 3864 //
twisti@1040 3865 // Build special case code for calls to getClass on an object.
duke@435 3866 bool LibraryCallKit::inline_native_getClass() {
twisti@4313 3867 Node* obj = null_check_receiver();
duke@435 3868 if (stopped()) return true;
twisti@4313 3869 set_result(load_mirror_from_klass(load_object_klass(obj)));
duke@435 3870 return true;
duke@435 3871 }
duke@435 3872
duke@435 3873 //-----------------inline_native_Reflection_getCallerClass---------------------
twisti@4866 3874 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
twisti@4313 3875 //
duke@435 3876 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
duke@435 3877 //
twisti@4866 3878 // NOTE: This code must perform the same logic as JVM_GetCallerClass
twisti@4866 3879 // in that it must skip particular security frames and checks for
twisti@4866 3880 // caller sensitive methods.
duke@435 3881 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
duke@435 3882 #ifndef PRODUCT
duke@435 3883 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3884 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
duke@435 3885 }
duke@435 3886 #endif
duke@435 3887
duke@435 3888 if (!jvms()->has_method()) {
duke@435 3889 #ifndef PRODUCT
duke@435 3890 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3891 tty->print_cr(" Bailing out because intrinsic was inlined at top level");
duke@435 3892 }
duke@435 3893 #endif
duke@435 3894 return false;
duke@435 3895 }
duke@435 3896
duke@435 3897 // Walk back up the JVM state to find the caller at the required
twisti@4866 3898 // depth.
twisti@4866 3899 JVMState* caller_jvms = jvms();
twisti@4866 3900
twisti@4866 3901 // Cf. JVM_GetCallerClass
twisti@4866 3902 // NOTE: Start the loop at depth 1 because the current JVM state does
twisti@4866 3903 // not include the Reflection.getCallerClass() frame.
twisti@4866 3904 for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
twisti@4866 3905 ciMethod* m = caller_jvms->method();
twisti@4866 3906 switch (n) {
twisti@4866 3907 case 0:
twisti@4866 3908 fatal("current JVM state does not include the Reflection.getCallerClass frame");
twisti@4866 3909 break;
twisti@4866 3910 case 1:
twisti@4866 3911 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
twisti@4866 3912 if (!m->caller_sensitive()) {
twisti@4866 3913 #ifndef PRODUCT
twisti@4866 3914 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
twisti@4866 3915 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n);
twisti@4866 3916 }
twisti@4866 3917 #endif
twisti@4866 3918 return false; // bail-out; let JVM_GetCallerClass do the work
duke@435 3919 }
twisti@4866 3920 break;
twisti@4866 3921 default:
twisti@4866 3922 if (!m->is_ignored_by_security_stack_walk()) {
twisti@4866 3923 // We have reached the desired frame; return the holder class.
twisti@4866 3924 // Acquire method holder as java.lang.Class and push as constant.
twisti@4866 3925 ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
twisti@4866 3926 ciInstance* caller_mirror = caller_klass->java_mirror();
twisti@4866 3927 set_result(makecon(TypeInstPtr::make(caller_mirror)));
twisti@4866 3928
twisti@4866 3929 #ifndef PRODUCT
twisti@4866 3930 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
twisti@4866 3931 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
twisti@4866 3932 tty->print_cr(" JVM state at this point:");
twisti@4866 3933 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
twisti@4866 3934 ciMethod* m = jvms()->of_depth(i)->method();
twisti@4866 3935 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
twisti@4866 3936 }
twisti@4866 3937 }
twisti@4866 3938 #endif
twisti@4866 3939 return true;
twisti@4866 3940 }
twisti@4866 3941 break;
twisti@4866 3942 }
duke@435 3943 }
duke@435 3944
duke@435 3945 #ifndef PRODUCT
duke@435 3946 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
twisti@4866 3947 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
duke@435 3948 tty->print_cr(" JVM state at this point:");
twisti@4866 3949 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
twisti@4313 3950 ciMethod* m = jvms()->of_depth(i)->method();
twisti@4866 3951 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
duke@435 3952 }
duke@435 3953 }
duke@435 3954 #endif
twisti@4866 3955
twisti@4866 3956 return false; // bail-out; let JVM_GetCallerClass do the work
duke@435 3957 }
duke@435 3958
duke@435 3959 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
twisti@4313 3960 Node* arg = argument(0);
twisti@4313 3961 Node* result;
duke@435 3962
duke@435 3963 switch (id) {
twisti@4313 3964 case vmIntrinsics::_floatToRawIntBits: result = new (C) MoveF2INode(arg); break;
twisti@4313 3965 case vmIntrinsics::_intBitsToFloat: result = new (C) MoveI2FNode(arg); break;
twisti@4313 3966 case vmIntrinsics::_doubleToRawLongBits: result = new (C) MoveD2LNode(arg); break;
twisti@4313 3967 case vmIntrinsics::_longBitsToDouble: result = new (C) MoveL2DNode(arg); break;
duke@435 3968
duke@435 3969 case vmIntrinsics::_doubleToLongBits: {
duke@435 3970 // two paths (plus control) merge in a wood
kvn@4115 3971 RegionNode *r = new (C) RegionNode(3);
kvn@4115 3972 Node *phi = new (C) PhiNode(r, TypeLong::LONG);
kvn@4115 3973
twisti@4313 3974 Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
duke@435 3975 // Build the boolean node
twisti@4313 3976 Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
duke@435 3977
duke@435 3978 // Branch either way.
duke@435 3979 // NaN case is less traveled, which makes all the difference.
duke@435 3980 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
duke@435 3981 Node *opt_isnan = _gvn.transform(ifisnan);
duke@435 3982 assert( opt_isnan->is_If(), "Expect an IfNode");
duke@435 3983 IfNode *opt_ifisnan = (IfNode*)opt_isnan;
kvn@4115 3984 Node *iftrue = _gvn.transform( new (C) IfTrueNode(opt_ifisnan) );
duke@435 3985
duke@435 3986 set_control(iftrue);
duke@435 3987
duke@435 3988 static const jlong nan_bits = CONST64(0x7ff8000000000000);
duke@435 3989 Node *slow_result = longcon(nan_bits); // return NaN
duke@435 3990 phi->init_req(1, _gvn.transform( slow_result ));
duke@435 3991 r->init_req(1, iftrue);
duke@435 3992
duke@435 3993 // Else fall through
twisti@4313 3994 Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
duke@435 3995 set_control(iffalse);
duke@435 3996
twisti@4313 3997 phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
duke@435 3998 r->init_req(2, iffalse);
duke@435 3999
duke@435 4000 // Post merge
duke@435 4001 set_control(_gvn.transform(r));
duke@435 4002 record_for_igvn(r);
duke@435 4003
twisti@4313 4004 C->set_has_split_ifs(true); // Has chance for split-if optimization
twisti@4313 4005 result = phi;
duke@435 4006 assert(result->bottom_type()->isa_long(), "must be");
duke@435 4007 break;
duke@435 4008 }
duke@435 4009
duke@435 4010 case vmIntrinsics::_floatToIntBits: {
duke@435 4011 // two paths (plus control) merge in a wood
kvn@4115 4012 RegionNode *r = new (C) RegionNode(3);
kvn@4115 4013 Node *phi = new (C) PhiNode(r, TypeInt::INT);
kvn@4115 4014
twisti@4313 4015 Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
duke@435 4016 // Build the boolean node
twisti@4313 4017 Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
duke@435 4018
duke@435 4019 // Branch either way.
duke@435 4020 // NaN case is less traveled, which makes all the difference.
duke@435 4021 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
duke@435 4022 Node *opt_isnan = _gvn.transform(ifisnan);
duke@435 4023 assert( opt_isnan->is_If(), "Expect an IfNode");
duke@435 4024 IfNode *opt_ifisnan = (IfNode*)opt_isnan;
kvn@4115 4025 Node *iftrue = _gvn.transform( new (C) IfTrueNode(opt_ifisnan) );
duke@435 4026
duke@435 4027 set_control(iftrue);
duke@435 4028
duke@435 4029 static const jint nan_bits = 0x7fc00000;
duke@435 4030 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
duke@435 4031 phi->init_req(1, _gvn.transform( slow_result ));
duke@435 4032 r->init_req(1, iftrue);
duke@435 4033
duke@435 4034 // Else fall through
twisti@4313 4035 Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
duke@435 4036 set_control(iffalse);
duke@435 4037
twisti@4313 4038 phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
duke@435 4039 r->init_req(2, iffalse);
duke@435 4040
duke@435 4041 // Post merge
duke@435 4042 set_control(_gvn.transform(r));
duke@435 4043 record_for_igvn(r);
duke@435 4044
twisti@4313 4045 C->set_has_split_ifs(true); // Has chance for split-if optimization
twisti@4313 4046 result = phi;
duke@435 4047 assert(result->bottom_type()->isa_int(), "must be");
duke@435 4048 break;
duke@435 4049 }
duke@435 4050
duke@435 4051 default:
twisti@4313 4052 fatal_unexpected_iid(id);
twisti@4313 4053 break;
duke@435 4054 }
twisti@4313 4055 set_result(_gvn.transform(result));
duke@435 4056 return true;
duke@435 4057 }
duke@435 4058
duke@435 4059 #ifdef _LP64
duke@435 4060 #define XTOP ,top() /*additional argument*/
duke@435 4061 #else //_LP64
duke@435 4062 #define XTOP /*no additional argument*/
duke@435 4063 #endif //_LP64
duke@435 4064
duke@435 4065 //----------------------inline_unsafe_copyMemory-------------------------
twisti@4313 4066 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
duke@435 4067 bool LibraryCallKit::inline_unsafe_copyMemory() {
duke@435 4068 if (callee()->is_static()) return false; // caller must have the capability!
twisti@4313 4069 null_check_receiver(); // null-check receiver
duke@435 4070 if (stopped()) return true;
duke@435 4071
duke@435 4072 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 4073
twisti@4313 4074 Node* src_ptr = argument(1); // type: oop
twisti@4313 4075 Node* src_off = ConvL2X(argument(2)); // type: long
twisti@4313 4076 Node* dst_ptr = argument(4); // type: oop
twisti@4313 4077 Node* dst_off = ConvL2X(argument(5)); // type: long
twisti@4313 4078 Node* size = ConvL2X(argument(7)); // type: long
duke@435 4079
duke@435 4080 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
duke@435 4081 "fieldOffset must be byte-scaled");
duke@435 4082
duke@435 4083 Node* src = make_unsafe_address(src_ptr, src_off);
duke@435 4084 Node* dst = make_unsafe_address(dst_ptr, dst_off);
duke@435 4085
duke@435 4086 // Conservatively insert a memory barrier on all memory slices.
duke@435 4087 // Do not let writes of the copy source or destination float below the copy.
duke@435 4088 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4089
duke@435 4090 // Call it. Note that the length argument is not scaled.
duke@435 4091 make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 4092 OptoRuntime::fast_arraycopy_Type(),
duke@435 4093 StubRoutines::unsafe_arraycopy(),
duke@435 4094 "unsafe_arraycopy",
duke@435 4095 TypeRawPtr::BOTTOM,
duke@435 4096 src, dst, size XTOP);
duke@435 4097
duke@435 4098 // Do not let reads of the copy destination float above the copy.
duke@435 4099 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4100
duke@435 4101 return true;
duke@435 4102 }
duke@435 4103
kvn@1268 4104 //------------------------clone_coping-----------------------------------
kvn@1268 4105 // Helper function for inline_native_clone.
kvn@1268 4106 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
kvn@1268 4107 assert(obj_size != NULL, "");
kvn@1268 4108 Node* raw_obj = alloc_obj->in(1);
kvn@1268 4109 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
kvn@1268 4110
roland@3392 4111 AllocateNode* alloc = NULL;
kvn@1268 4112 if (ReduceBulkZeroing) {
kvn@1268 4113 // We will be completely responsible for initializing this object -
kvn@1268 4114 // mark Initialize node as complete.
roland@3392 4115 alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
kvn@1268 4116 // The object was just allocated - there should be no any stores!
kvn@1268 4117 guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
roland@3392 4118 // Mark as complete_with_arraycopy so that on AllocateNode
roland@3392 4119 // expansion, we know this AllocateNode is initialized by an array
roland@3392 4120 // copy and a StoreStore barrier exists after the array copy.
roland@3392 4121 alloc->initialization()->set_complete_with_arraycopy();
kvn@1268 4122 }
kvn@1268 4123
kvn@1268 4124 // Copy the fastest available way.
kvn@1268 4125 // TODO: generate fields copies for small objects instead.
kvn@1268 4126 Node* src = obj;
kvn@1393 4127 Node* dest = alloc_obj;
kvn@1268 4128 Node* size = _gvn.transform(obj_size);
kvn@1268 4129
kvn@1268 4130 // Exclude the header but include array length to copy by 8 bytes words.
kvn@1268 4131 // Can't use base_offset_in_bytes(bt) since basic type is unknown.
kvn@1268 4132 int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
kvn@1268 4133 instanceOopDesc::base_offset_in_bytes();
kvn@1268 4134 // base_off:
kvn@1268 4135 // 8 - 32-bit VM
coleenp@4037 4136 // 12 - 64-bit VM, compressed klass
coleenp@4037 4137 // 16 - 64-bit VM, normal klass
kvn@1268 4138 if (base_off % BytesPerLong != 0) {
roland@4159 4139 assert(UseCompressedKlassPointers, "");
kvn@1268 4140 if (is_array) {
kvn@1268 4141 // Exclude length to copy by 8 bytes words.
kvn@1268 4142 base_off += sizeof(int);
kvn@1268 4143 } else {
kvn@1268 4144 // Include klass to copy by 8 bytes words.
kvn@1268 4145 base_off = instanceOopDesc::klass_offset_in_bytes();
kvn@1268 4146 }
kvn@1268 4147 assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
kvn@1268 4148 }
kvn@1268 4149 src = basic_plus_adr(src, base_off);
kvn@1268 4150 dest = basic_plus_adr(dest, base_off);
kvn@1268 4151
kvn@1268 4152 // Compute the length also, if needed:
kvn@1268 4153 Node* countx = size;
kvn@4115 4154 countx = _gvn.transform( new (C) SubXNode(countx, MakeConX(base_off)) );
kvn@4115 4155 countx = _gvn.transform( new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
kvn@1268 4156
kvn@1268 4157 const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
kvn@1268 4158 bool disjoint_bases = true;
kvn@1268 4159 generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
iveresov@2606 4160 src, NULL, dest, NULL, countx,
iveresov@2606 4161 /*dest_uninitialized*/true);
kvn@1268 4162
kvn@1268 4163 // If necessary, emit some card marks afterwards. (Non-arrays only.)
kvn@1268 4164 if (card_mark) {
kvn@1268 4165 assert(!is_array, "");
kvn@1268 4166 // Put in store barrier for any and all oops we are sticking
kvn@1268 4167 // into this object. (We could avoid this if we could prove
kvn@1268 4168 // that the object type contains no oop fields at all.)
kvn@1268 4169 Node* no_particular_value = NULL;
kvn@1268 4170 Node* no_particular_field = NULL;
kvn@1268 4171 int raw_adr_idx = Compile::AliasIdxRaw;
kvn@1268 4172 post_barrier(control(),
kvn@1268 4173 memory(raw_adr_type),
kvn@1393 4174 alloc_obj,
kvn@1268 4175 no_particular_field,
kvn@1268 4176 raw_adr_idx,
kvn@1268 4177 no_particular_value,
kvn@1268 4178 T_OBJECT,
kvn@1268 4179 false);
kvn@1268 4180 }
kvn@1268 4181
kvn@1393 4182 // Do not let reads from the cloned object float above the arraycopy.
roland@3392 4183 if (alloc != NULL) {
roland@3392 4184 // Do not let stores that initialize this object be reordered with
roland@3392 4185 // a subsequent store that would make this object accessible by
roland@3392 4186 // other threads.
roland@3392 4187 // Record what AllocateNode this StoreStore protects so that
roland@3392 4188 // escape analysis can go from the MemBarStoreStoreNode to the
roland@3392 4189 // AllocateNode and eliminate the MemBarStoreStoreNode if possible
roland@3392 4190 // based on the escape status of the AllocateNode.
roland@3392 4191 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
roland@3392 4192 } else {
roland@3392 4193 insert_mem_bar(Op_MemBarCPUOrder);
roland@3392 4194 }
kvn@1268 4195 }
duke@435 4196
duke@435 4197 //------------------------inline_native_clone----------------------------
twisti@4313 4198 // protected native Object java.lang.Object.clone();
twisti@4313 4199 //
duke@435 4200 // Here are the simple edge cases:
duke@435 4201 // null receiver => normal trap
duke@435 4202 // virtual and clone was overridden => slow path to out-of-line clone
duke@435 4203 // not cloneable or finalizer => slow path to out-of-line Object.clone
duke@435 4204 //
duke@435 4205 // The general case has two steps, allocation and copying.
duke@435 4206 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
duke@435 4207 //
duke@435 4208 // Copying also has two cases, oop arrays and everything else.
duke@435 4209 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
duke@435 4210 // Everything else uses the tight inline loop supplied by CopyArrayNode.
duke@435 4211 //
duke@435 4212 // These steps fold up nicely if and when the cloned object's klass
duke@435 4213 // can be sharply typed as an object array, a type array, or an instance.
duke@435 4214 //
duke@435 4215 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
cfang@1337 4216 PhiNode* result_val;
duke@435 4217
twisti@4313 4218 // Set the reexecute bit for the interpreter to reexecute
twisti@4313 4219 // the bytecode that invokes Object.clone if deoptimization happens.
cfang@1335 4220 { PreserveReexecuteState preexecs(this);
cfang@1337 4221 jvms()->set_should_reexecute(true);
cfang@1337 4222
twisti@4313 4223 Node* obj = null_check_receiver();
cfang@1337 4224 if (stopped()) return true;
cfang@1337 4225
cfang@1337 4226 Node* obj_klass = load_object_klass(obj);
cfang@1337 4227 const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
cfang@1337 4228 const TypeOopPtr* toop = ((tklass != NULL)
cfang@1337 4229 ? tklass->as_instance_type()
cfang@1337 4230 : TypeInstPtr::NOTNULL);
cfang@1337 4231
cfang@1337 4232 // Conservatively insert a memory barrier on all memory slices.
cfang@1337 4233 // Do not let writes into the original float below the clone.
cfang@1337 4234 insert_mem_bar(Op_MemBarCPUOrder);
cfang@1337 4235
cfang@1337 4236 // paths into result_reg:
cfang@1337 4237 enum {
cfang@1337 4238 _slow_path = 1, // out-of-line call to clone method (virtual or not)
cfang@1337 4239 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy
cfang@1337 4240 _array_path, // plain array allocation, plus arrayof_long_arraycopy
cfang@1337 4241 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy
cfang@1337 4242 PATH_LIMIT
cfang@1337 4243 };
kvn@4115 4244 RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
kvn@4115 4245 result_val = new(C) PhiNode(result_reg,
kvn@4115 4246 TypeInstPtr::NOTNULL);
kvn@4115 4247 PhiNode* result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
kvn@4115 4248 PhiNode* result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
kvn@4115 4249 TypePtr::BOTTOM);
cfang@1337 4250 record_for_igvn(result_reg);
cfang@1337 4251
cfang@1337 4252 const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
cfang@1337 4253 int raw_adr_idx = Compile::AliasIdxRaw;
cfang@1335 4254
cfang@1335 4255 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
cfang@1335 4256 if (array_ctl != NULL) {
cfang@1335 4257 // It's an array.
cfang@1335 4258 PreserveJVMState pjvms(this);
cfang@1335 4259 set_control(array_ctl);
cfang@1335 4260 Node* obj_length = load_array_length(obj);
cfang@1335 4261 Node* obj_size = NULL;
twisti@4313 4262 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size); // no arguments to push
cfang@1335 4263
cfang@1335 4264 if (!use_ReduceInitialCardMarks()) {
cfang@1335 4265 // If it is an oop array, it requires very special treatment,
cfang@1335 4266 // because card marking is required on each card of the array.
cfang@1335 4267 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
cfang@1335 4268 if (is_obja != NULL) {
cfang@1335 4269 PreserveJVMState pjvms2(this);
cfang@1335 4270 set_control(is_obja);
cfang@1335 4271 // Generate a direct call to the right arraycopy function(s).
cfang@1335 4272 bool disjoint_bases = true;
cfang@1335 4273 bool length_never_negative = true;
cfang@1335 4274 generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
cfang@1335 4275 obj, intcon(0), alloc_obj, intcon(0),
cfang@1335 4276 obj_length,
cfang@1335 4277 disjoint_bases, length_never_negative);
cfang@1335 4278 result_reg->init_req(_objArray_path, control());
cfang@1335 4279 result_val->init_req(_objArray_path, alloc_obj);
cfang@1335 4280 result_i_o ->set_req(_objArray_path, i_o());
cfang@1335 4281 result_mem ->set_req(_objArray_path, reset_memory());
cfang@1335 4282 }
cfang@1335 4283 }
cfang@1335 4284 // Otherwise, there are no card marks to worry about.
ysr@1462 4285 // (We can dispense with card marks if we know the allocation
ysr@1462 4286 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks
ysr@1462 4287 // causes the non-eden paths to take compensating steps to
ysr@1462 4288 // simulate a fresh allocation, so that no further
ysr@1462 4289 // card marks are required in compiled code to initialize
ysr@1462 4290 // the object.)
cfang@1335 4291
cfang@1335 4292 if (!stopped()) {
cfang@1335 4293 copy_to_clone(obj, alloc_obj, obj_size, true, false);
cfang@1335 4294
cfang@1335 4295 // Present the results of the copy.
cfang@1335 4296 result_reg->init_req(_array_path, control());
cfang@1335 4297 result_val->init_req(_array_path, alloc_obj);
cfang@1335 4298 result_i_o ->set_req(_array_path, i_o());
cfang@1335 4299 result_mem ->set_req(_array_path, reset_memory());
duke@435 4300 }
duke@435 4301 }
cfang@1335 4302
cfang@1335 4303 // We only go to the instance fast case code if we pass a number of guards.
cfang@1335 4304 // The paths which do not pass are accumulated in the slow_region.
kvn@4115 4305 RegionNode* slow_region = new (C) RegionNode(1);
cfang@1335 4306 record_for_igvn(slow_region);
kvn@1268 4307 if (!stopped()) {
cfang@1335 4308 // It's an instance (we did array above). Make the slow-path tests.
cfang@1335 4309 // If this is a virtual call, we generate a funny guard. We grab
cfang@1335 4310 // the vtable entry corresponding to clone() from the target object.
cfang@1335 4311 // If the target method which we are calling happens to be the
cfang@1335 4312 // Object clone() method, we pass the guard. We do not need this
cfang@1335 4313 // guard for non-virtual calls; the caller is known to be the native
cfang@1335 4314 // Object clone().
cfang@1335 4315 if (is_virtual) {
cfang@1335 4316 generate_virtual_guard(obj_klass, slow_region);
cfang@1335 4317 }
cfang@1335 4318
cfang@1335 4319 // The object must be cloneable and must not have a finalizer.
cfang@1335 4320 // Both of these conditions may be checked in a single test.
cfang@1335 4321 // We could optimize the cloneable test further, but we don't care.
cfang@1335 4322 generate_access_flags_guard(obj_klass,
cfang@1335 4323 // Test both conditions:
cfang@1335 4324 JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
cfang@1335 4325 // Must be cloneable but not finalizer:
cfang@1335 4326 JVM_ACC_IS_CLONEABLE,
cfang@1335 4327 slow_region);
kvn@1268 4328 }
cfang@1335 4329
cfang@1335 4330 if (!stopped()) {
cfang@1335 4331 // It's an instance, and it passed the slow-path tests.
cfang@1335 4332 PreserveJVMState pjvms(this);
cfang@1335 4333 Node* obj_size = NULL;
kvn@2810 4334 Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
cfang@1335 4335
cfang@1335 4336 copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
cfang@1335 4337
cfang@1335 4338 // Present the results of the slow call.
cfang@1335 4339 result_reg->init_req(_instance_path, control());
cfang@1335 4340 result_val->init_req(_instance_path, alloc_obj);
cfang@1335 4341 result_i_o ->set_req(_instance_path, i_o());
cfang@1335 4342 result_mem ->set_req(_instance_path, reset_memory());
duke@435 4343 }
duke@435 4344
cfang@1335 4345 // Generate code for the slow case. We make a call to clone().
cfang@1335 4346 set_control(_gvn.transform(slow_region));
cfang@1335 4347 if (!stopped()) {
cfang@1335 4348 PreserveJVMState pjvms(this);
cfang@1335 4349 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
cfang@1335 4350 Node* slow_result = set_results_for_java_call(slow_call);
cfang@1335 4351 // this->control() comes from set_results_for_java_call
cfang@1335 4352 result_reg->init_req(_slow_path, control());
cfang@1335 4353 result_val->init_req(_slow_path, slow_result);
cfang@1335 4354 result_i_o ->set_req(_slow_path, i_o());
cfang@1335 4355 result_mem ->set_req(_slow_path, reset_memory());
cfang@1335 4356 }
cfang@1337 4357
cfang@1337 4358 // Return the combined state.
cfang@1337 4359 set_control( _gvn.transform(result_reg) );
cfang@1337 4360 set_i_o( _gvn.transform(result_i_o) );
cfang@1337 4361 set_all_memory( _gvn.transform(result_mem) );
twisti@4313 4362 } // original reexecute is set back here
twisti@4313 4363
twisti@4313 4364 set_result(_gvn.transform(result_val));
duke@435 4365 return true;
duke@435 4366 }
duke@435 4367
duke@435 4368 //------------------------------basictype2arraycopy----------------------------
duke@435 4369 address LibraryCallKit::basictype2arraycopy(BasicType t,
duke@435 4370 Node* src_offset,
duke@435 4371 Node* dest_offset,
duke@435 4372 bool disjoint_bases,
iveresov@2606 4373 const char* &name,
iveresov@2606 4374 bool dest_uninitialized) {
duke@435 4375 const TypeInt* src_offset_inttype = gvn().find_int_type(src_offset);;
duke@435 4376 const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
duke@435 4377
duke@435 4378 bool aligned = false;
duke@435 4379 bool disjoint = disjoint_bases;
duke@435 4380
duke@435 4381 // if the offsets are the same, we can treat the memory regions as
duke@435 4382 // disjoint, because either the memory regions are in different arrays,
duke@435 4383 // or they are identical (which we can treat as disjoint.) We can also
duke@435 4384 // treat a copy with a destination index less that the source index
duke@435 4385 // as disjoint since a low->high copy will work correctly in this case.
duke@435 4386 if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
duke@435 4387 dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
duke@435 4388 // both indices are constants
duke@435 4389 int s_offs = src_offset_inttype->get_con();
duke@435 4390 int d_offs = dest_offset_inttype->get_con();
kvn@464 4391 int element_size = type2aelembytes(t);
duke@435 4392 aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
duke@435 4393 ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
duke@435 4394 if (s_offs >= d_offs) disjoint = true;
duke@435 4395 } else if (src_offset == dest_offset && src_offset != NULL) {
duke@435 4396 // This can occur if the offsets are identical non-constants.
duke@435 4397 disjoint = true;
duke@435 4398 }
duke@435 4399
roland@2728 4400 return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
duke@435 4401 }
duke@435 4402
duke@435 4403
duke@435 4404 //------------------------------inline_arraycopy-----------------------
twisti@4313 4405 // public static native void java.lang.System.arraycopy(Object src, int srcPos,
twisti@4313 4406 // Object dest, int destPos,
twisti@4313 4407 // int length);
duke@435 4408 bool LibraryCallKit::inline_arraycopy() {
twisti@4313 4409 // Get the arguments.
twisti@4313 4410 Node* src = argument(0); // type: oop
twisti@4313 4411 Node* src_offset = argument(1); // type: int
twisti@4313 4412 Node* dest = argument(2); // type: oop
twisti@4313 4413 Node* dest_offset = argument(3); // type: int
twisti@4313 4414 Node* length = argument(4); // type: int
duke@435 4415
duke@435 4416 // Compile time checks. If any of these checks cannot be verified at compile time,
duke@435 4417 // we do not make a fast path for this call. Instead, we let the call remain as it
duke@435 4418 // is. The checks we choose to mandate at compile time are:
duke@435 4419 //
duke@435 4420 // (1) src and dest are arrays.
twisti@4313 4421 const Type* src_type = src->Value(&_gvn);
duke@435 4422 const Type* dest_type = dest->Value(&_gvn);
twisti@4313 4423 const TypeAryPtr* top_src = src_type->isa_aryptr();
duke@435 4424 const TypeAryPtr* top_dest = dest_type->isa_aryptr();
duke@435 4425 if (top_src == NULL || top_src->klass() == NULL ||
duke@435 4426 top_dest == NULL || top_dest->klass() == NULL) {
duke@435 4427 // Conservatively insert a memory barrier on all memory slices.
duke@435 4428 // Do not let writes into the source float below the arraycopy.
duke@435 4429 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4430
duke@435 4431 // Call StubRoutines::generic_arraycopy stub.
duke@435 4432 generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
kvn@1268 4433 src, src_offset, dest, dest_offset, length);
duke@435 4434
duke@435 4435 // Do not let reads from the destination float above the arraycopy.
duke@435 4436 // Since we cannot type the arrays, we don't know which slices
duke@435 4437 // might be affected. We could restrict this barrier only to those
duke@435 4438 // memory slices which pertain to array elements--but don't bother.
duke@435 4439 if (!InsertMemBarAfterArraycopy)
duke@435 4440 // (If InsertMemBarAfterArraycopy, there is already one in place.)
duke@435 4441 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4442 return true;
duke@435 4443 }
duke@435 4444
duke@435 4445 // (2) src and dest arrays must have elements of the same BasicType
duke@435 4446 // Figure out the size and type of the elements we will be copying.
duke@435 4447 BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type();
duke@435 4448 BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
duke@435 4449 if (src_elem == T_ARRAY) src_elem = T_OBJECT;
duke@435 4450 if (dest_elem == T_ARRAY) dest_elem = T_OBJECT;
duke@435 4451
duke@435 4452 if (src_elem != dest_elem || dest_elem == T_VOID) {
duke@435 4453 // The component types are not the same or are not recognized. Punt.
duke@435 4454 // (But, avoid the native method wrapper to JVM_ArrayCopy.)
duke@435 4455 generate_slow_arraycopy(TypePtr::BOTTOM,
iveresov@2606 4456 src, src_offset, dest, dest_offset, length,
iveresov@2606 4457 /*dest_uninitialized*/false);
duke@435 4458 return true;
duke@435 4459 }
duke@435 4460
duke@435 4461 //---------------------------------------------------------------------------
duke@435 4462 // We will make a fast path for this call to arraycopy.
duke@435 4463
duke@435 4464 // We have the following tests left to perform:
duke@435 4465 //
duke@435 4466 // (3) src and dest must not be null.
duke@435 4467 // (4) src_offset must not be negative.
duke@435 4468 // (5) dest_offset must not be negative.
duke@435 4469 // (6) length must not be negative.
duke@435 4470 // (7) src_offset + length must not exceed length of src.
duke@435 4471 // (8) dest_offset + length must not exceed length of dest.
duke@435 4472 // (9) each element of an oop array must be assignable
duke@435 4473
kvn@4115 4474 RegionNode* slow_region = new (C) RegionNode(1);
duke@435 4475 record_for_igvn(slow_region);
duke@435 4476
duke@435 4477 // (3) operands must not be null
twisti@4313 4478 // We currently perform our null checks with the null_check routine.
duke@435 4479 // This means that the null exceptions will be reported in the caller
duke@435 4480 // rather than (correctly) reported inside of the native arraycopy call.
duke@435 4481 // This should be corrected, given time. We do our null check with the
duke@435 4482 // stack pointer restored.
twisti@4313 4483 src = null_check(src, T_ARRAY);
twisti@4313 4484 dest = null_check(dest, T_ARRAY);
duke@435 4485
duke@435 4486 // (4) src_offset must not be negative.
duke@435 4487 generate_negative_guard(src_offset, slow_region);
duke@435 4488
duke@435 4489 // (5) dest_offset must not be negative.
duke@435 4490 generate_negative_guard(dest_offset, slow_region);
duke@435 4491
duke@435 4492 // (6) length must not be negative (moved to generate_arraycopy()).
duke@435 4493 // generate_negative_guard(length, slow_region);
duke@435 4494
duke@435 4495 // (7) src_offset + length must not exceed length of src.
duke@435 4496 generate_limit_guard(src_offset, length,
duke@435 4497 load_array_length(src),
duke@435 4498 slow_region);
duke@435 4499
duke@435 4500 // (8) dest_offset + length must not exceed length of dest.
duke@435 4501 generate_limit_guard(dest_offset, length,
duke@435 4502 load_array_length(dest),
duke@435 4503 slow_region);
duke@435 4504
duke@435 4505 // (9) each element of an oop array must be assignable
duke@435 4506 // The generate_arraycopy subroutine checks this.
duke@435 4507
duke@435 4508 // This is where the memory effects are placed:
duke@435 4509 const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
duke@435 4510 generate_arraycopy(adr_type, dest_elem,
duke@435 4511 src, src_offset, dest, dest_offset, length,
kvn@1268 4512 false, false, slow_region);
duke@435 4513
duke@435 4514 return true;
duke@435 4515 }
duke@435 4516
duke@435 4517 //-----------------------------generate_arraycopy----------------------
duke@435 4518 // Generate an optimized call to arraycopy.
duke@435 4519 // Caller must guard against non-arrays.
duke@435 4520 // Caller must determine a common array basic-type for both arrays.
duke@435 4521 // Caller must validate offsets against array bounds.
duke@435 4522 // The slow_region has already collected guard failure paths
duke@435 4523 // (such as out of bounds length or non-conformable array types).
duke@435 4524 // The generated code has this shape, in general:
duke@435 4525 //
duke@435 4526 // if (length == 0) return // via zero_path
duke@435 4527 // slowval = -1
duke@435 4528 // if (types unknown) {
duke@435 4529 // slowval = call generic copy loop
duke@435 4530 // if (slowval == 0) return // via checked_path
duke@435 4531 // } else if (indexes in bounds) {
duke@435 4532 // if ((is object array) && !(array type check)) {
duke@435 4533 // slowval = call checked copy loop
duke@435 4534 // if (slowval == 0) return // via checked_path
duke@435 4535 // } else {
duke@435 4536 // call bulk copy loop
duke@435 4537 // return // via fast_path
duke@435 4538 // }
duke@435 4539 // }
duke@435 4540 // // adjust params for remaining work:
duke@435 4541 // if (slowval != -1) {
duke@435 4542 // n = -1^slowval; src_offset += n; dest_offset += n; length -= n
duke@435 4543 // }
duke@435 4544 // slow_region:
duke@435 4545 // call slow arraycopy(src, src_offset, dest, dest_offset, length)
duke@435 4546 // return // via slow_call_path
duke@435 4547 //
duke@435 4548 // This routine is used from several intrinsics: System.arraycopy,
duke@435 4549 // Object.clone (the array subcase), and Arrays.copyOf[Range].
duke@435 4550 //
duke@435 4551 void
duke@435 4552 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
duke@435 4553 BasicType basic_elem_type,
duke@435 4554 Node* src, Node* src_offset,
duke@435 4555 Node* dest, Node* dest_offset,
duke@435 4556 Node* copy_length,
duke@435 4557 bool disjoint_bases,
duke@435 4558 bool length_never_negative,
duke@435 4559 RegionNode* slow_region) {
duke@435 4560
duke@435 4561 if (slow_region == NULL) {
kvn@4115 4562 slow_region = new(C) RegionNode(1);
duke@435 4563 record_for_igvn(slow_region);
duke@435 4564 }
duke@435 4565
duke@435 4566 Node* original_dest = dest;
duke@435 4567 AllocateArrayNode* alloc = NULL; // used for zeroing, if needed
iveresov@2606 4568 bool dest_uninitialized = false;
duke@435 4569
duke@435 4570 // See if this is the initialization of a newly-allocated array.
duke@435 4571 // If so, we will take responsibility here for initializing it to zero.
duke@435 4572 // (Note: Because tightly_coupled_allocation performs checks on the
duke@435 4573 // out-edges of the dest, we need to avoid making derived pointers
duke@435 4574 // from it until we have checked its uses.)
duke@435 4575 if (ReduceBulkZeroing
duke@435 4576 && !ZeroTLAB // pointless if already zeroed
duke@435 4577 && basic_elem_type != T_CONFLICT // avoid corner case
kvn@3407 4578 && !src->eqv_uncast(dest)
duke@435 4579 && ((alloc = tightly_coupled_allocation(dest, slow_region))
duke@435 4580 != NULL)
kvn@469 4581 && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
duke@435 4582 && alloc->maybe_set_complete(&_gvn)) {
duke@435 4583 // "You break it, you buy it."
duke@435 4584 InitializeNode* init = alloc->initialization();
duke@435 4585 assert(init->is_complete(), "we just did this");
kvn@3157 4586 init->set_complete_with_arraycopy();
kvn@1268 4587 assert(dest->is_CheckCastPP(), "sanity");
duke@435 4588 assert(dest->in(0)->in(0) == init, "dest pinned");
duke@435 4589 adr_type = TypeRawPtr::BOTTOM; // all initializations are into raw memory
duke@435 4590 // From this point on, every exit path is responsible for
duke@435 4591 // initializing any non-copied parts of the object to zero.
iveresov@2606 4592 // Also, if this flag is set we make sure that arraycopy interacts properly
iveresov@2606 4593 // with G1, eliding pre-barriers. See CR 6627983.
iveresov@2606 4594 dest_uninitialized = true;
duke@435 4595 } else {
duke@435 4596 // No zeroing elimination here.
duke@435 4597 alloc = NULL;
duke@435 4598 //original_dest = dest;
iveresov@2606 4599 //dest_uninitialized = false;
duke@435 4600 }
duke@435 4601
duke@435 4602 // Results are placed here:
duke@435 4603 enum { fast_path = 1, // normal void-returning assembly stub
duke@435 4604 checked_path = 2, // special assembly stub with cleanup
duke@435 4605 slow_call_path = 3, // something went wrong; call the VM
duke@435 4606 zero_path = 4, // bypass when length of copy is zero
duke@435 4607 bcopy_path = 5, // copy primitive array by 64-bit blocks
duke@435 4608 PATH_LIMIT = 6
duke@435 4609 };
kvn@4115 4610 RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
kvn@4115 4611 PhiNode* result_i_o = new(C) PhiNode(result_region, Type::ABIO);
kvn@4115 4612 PhiNode* result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
duke@435 4613 record_for_igvn(result_region);
duke@435 4614 _gvn.set_type_bottom(result_i_o);
duke@435 4615 _gvn.set_type_bottom(result_memory);
duke@435 4616 assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
duke@435 4617
duke@435 4618 // The slow_control path:
duke@435 4619 Node* slow_control;
duke@435 4620 Node* slow_i_o = i_o();
duke@435 4621 Node* slow_mem = memory(adr_type);
duke@435 4622 debug_only(slow_control = (Node*) badAddress);
duke@435 4623
duke@435 4624 // Checked control path:
duke@435 4625 Node* checked_control = top();
duke@435 4626 Node* checked_mem = NULL;
duke@435 4627 Node* checked_i_o = NULL;
duke@435 4628 Node* checked_value = NULL;
duke@435 4629
duke@435 4630 if (basic_elem_type == T_CONFLICT) {
iveresov@2606 4631 assert(!dest_uninitialized, "");
duke@435 4632 Node* cv = generate_generic_arraycopy(adr_type,
duke@435 4633 src, src_offset, dest, dest_offset,
iveresov@2606 4634 copy_length, dest_uninitialized);
duke@435 4635 if (cv == NULL) cv = intcon(-1); // failure (no stub available)
duke@435 4636 checked_control = control();
duke@435 4637 checked_i_o = i_o();
duke@435 4638 checked_mem = memory(adr_type);
duke@435 4639 checked_value = cv;
duke@435 4640 set_control(top()); // no fast path
duke@435 4641 }
duke@435 4642
duke@435 4643 Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
duke@435 4644 if (not_pos != NULL) {
duke@435 4645 PreserveJVMState pjvms(this);
duke@435 4646 set_control(not_pos);
duke@435 4647
duke@435 4648 // (6) length must not be negative.
duke@435 4649 if (!length_never_negative) {
duke@435 4650 generate_negative_guard(copy_length, slow_region);
duke@435 4651 }
duke@435 4652
kvn@1271 4653 // copy_length is 0.
iveresov@2606 4654 if (!stopped() && dest_uninitialized) {
duke@435 4655 Node* dest_length = alloc->in(AllocateNode::ALength);
kvn@3407 4656 if (copy_length->eqv_uncast(dest_length)
duke@435 4657 || _gvn.find_int_con(dest_length, 1) <= 0) {
kvn@1271 4658 // There is no zeroing to do. No need for a secondary raw memory barrier.
duke@435 4659 } else {
duke@435 4660 // Clear the whole thing since there are no source elements to copy.
duke@435 4661 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4662 intcon(0), NULL,
duke@435 4663 alloc->in(AllocateNode::AllocSize));
kvn@1271 4664 // Use a secondary InitializeNode as raw memory barrier.
kvn@1271 4665 // Currently it is needed only on this path since other
kvn@1271 4666 // paths have stub or runtime calls as raw memory barriers.
kvn@1271 4667 InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
kvn@1271 4668 Compile::AliasIdxRaw,
kvn@1271 4669 top())->as_Initialize();
kvn@1271 4670 init->set_complete(&_gvn); // (there is no corresponding AllocateNode)
duke@435 4671 }
duke@435 4672 }
duke@435 4673
duke@435 4674 // Present the results of the fast call.
duke@435 4675 result_region->init_req(zero_path, control());
duke@435 4676 result_i_o ->init_req(zero_path, i_o());
duke@435 4677 result_memory->init_req(zero_path, memory(adr_type));
duke@435 4678 }
duke@435 4679
iveresov@2606 4680 if (!stopped() && dest_uninitialized) {
duke@435 4681 // We have to initialize the *uncopied* part of the array to zero.
duke@435 4682 // The copy destination is the slice dest[off..off+len]. The other slices
duke@435 4683 // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
duke@435 4684 Node* dest_size = alloc->in(AllocateNode::AllocSize);
duke@435 4685 Node* dest_length = alloc->in(AllocateNode::ALength);
kvn@4115 4686 Node* dest_tail = _gvn.transform( new(C) AddINode(dest_offset,
duke@435 4687 copy_length) );
duke@435 4688
duke@435 4689 // If there is a head section that needs zeroing, do it now.
duke@435 4690 if (find_int_con(dest_offset, -1) != 0) {
duke@435 4691 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4692 intcon(0), dest_offset,
duke@435 4693 NULL);
duke@435 4694 }
duke@435 4695
duke@435 4696 // Next, perform a dynamic check on the tail length.
duke@435 4697 // It is often zero, and we can win big if we prove this.
duke@435 4698 // There are two wins: Avoid generating the ClearArray
duke@435 4699 // with its attendant messy index arithmetic, and upgrade
duke@435 4700 // the copy to a more hardware-friendly word size of 64 bits.
duke@435 4701 Node* tail_ctl = NULL;
kvn@3407 4702 if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
kvn@4115 4703 Node* cmp_lt = _gvn.transform( new(C) CmpINode(dest_tail, dest_length) );
kvn@4115 4704 Node* bol_lt = _gvn.transform( new(C) BoolNode(cmp_lt, BoolTest::lt) );
duke@435 4705 tail_ctl = generate_slow_guard(bol_lt, NULL);
duke@435 4706 assert(tail_ctl != NULL || !stopped(), "must be an outcome");
duke@435 4707 }
duke@435 4708
duke@435 4709 // At this point, let's assume there is no tail.
duke@435 4710 if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
duke@435 4711 // There is no tail. Try an upgrade to a 64-bit copy.
duke@435 4712 bool didit = false;
duke@435 4713 { PreserveJVMState pjvms(this);
duke@435 4714 didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
duke@435 4715 src, src_offset, dest, dest_offset,
iveresov@2606 4716 dest_size, dest_uninitialized);
duke@435 4717 if (didit) {
duke@435 4718 // Present the results of the block-copying fast call.
duke@435 4719 result_region->init_req(bcopy_path, control());
duke@435 4720 result_i_o ->init_req(bcopy_path, i_o());
duke@435 4721 result_memory->init_req(bcopy_path, memory(adr_type));
duke@435 4722 }
duke@435 4723 }
duke@435 4724 if (didit)
duke@435 4725 set_control(top()); // no regular fast path
duke@435 4726 }
duke@435 4727
duke@435 4728 // Clear the tail, if any.
duke@435 4729 if (tail_ctl != NULL) {
duke@435 4730 Node* notail_ctl = stopped() ? NULL : control();
duke@435 4731 set_control(tail_ctl);
duke@435 4732 if (notail_ctl == NULL) {
duke@435 4733 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4734 dest_tail, NULL,
duke@435 4735 dest_size);
duke@435 4736 } else {
duke@435 4737 // Make a local merge.
kvn@4115 4738 Node* done_ctl = new(C) RegionNode(3);
kvn@4115 4739 Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
duke@435 4740 done_ctl->init_req(1, notail_ctl);
duke@435 4741 done_mem->init_req(1, memory(adr_type));
duke@435 4742 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4743 dest_tail, NULL,
duke@435 4744 dest_size);
duke@435 4745 done_ctl->init_req(2, control());
duke@435 4746 done_mem->init_req(2, memory(adr_type));
duke@435 4747 set_control( _gvn.transform(done_ctl) );
duke@435 4748 set_memory( _gvn.transform(done_mem), adr_type );
duke@435 4749 }
duke@435 4750 }
duke@435 4751 }
duke@435 4752
duke@435 4753 BasicType copy_type = basic_elem_type;
duke@435 4754 assert(basic_elem_type != T_ARRAY, "caller must fix this");
duke@435 4755 if (!stopped() && copy_type == T_OBJECT) {
duke@435 4756 // If src and dest have compatible element types, we can copy bits.
duke@435 4757 // Types S[] and D[] are compatible if D is a supertype of S.
duke@435 4758 //
duke@435 4759 // If they are not, we will use checked_oop_disjoint_arraycopy,
duke@435 4760 // which performs a fast optimistic per-oop check, and backs off
duke@435 4761 // further to JVM_ArrayCopy on the first per-oop check that fails.
duke@435 4762 // (Actually, we don't move raw bits only; the GC requires card marks.)
duke@435 4763
coleenp@4037 4764 // Get the Klass* for both src and dest
duke@435 4765 Node* src_klass = load_object_klass(src);
duke@435 4766 Node* dest_klass = load_object_klass(dest);
duke@435 4767
duke@435 4768 // Generate the subtype check.
duke@435 4769 // This might fold up statically, or then again it might not.
duke@435 4770 //
duke@435 4771 // Non-static example: Copying List<String>.elements to a new String[].
duke@435 4772 // The backing store for a List<String> is always an Object[],
duke@435 4773 // but its elements are always type String, if the generic types
duke@435 4774 // are correct at the source level.
duke@435 4775 //
duke@435 4776 // Test S[] against D[], not S against D, because (probably)
duke@435 4777 // the secondary supertype cache is less busy for S[] than S.
duke@435 4778 // This usually only matters when D is an interface.
duke@435 4779 Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
duke@435 4780 // Plug failing path into checked_oop_disjoint_arraycopy
duke@435 4781 if (not_subtype_ctrl != top()) {
duke@435 4782 PreserveJVMState pjvms(this);
duke@435 4783 set_control(not_subtype_ctrl);
duke@435 4784 // (At this point we can assume disjoint_bases, since types differ.)
coleenp@4142 4785 int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
duke@435 4786 Node* p1 = basic_plus_adr(dest_klass, ek_offset);
kvn@599 4787 Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
duke@435 4788 Node* dest_elem_klass = _gvn.transform(n1);
duke@435 4789 Node* cv = generate_checkcast_arraycopy(adr_type,
duke@435 4790 dest_elem_klass,
duke@435 4791 src, src_offset, dest, dest_offset,
iveresov@2606 4792 ConvI2X(copy_length), dest_uninitialized);
duke@435 4793 if (cv == NULL) cv = intcon(-1); // failure (no stub available)
duke@435 4794 checked_control = control();
duke@435 4795 checked_i_o = i_o();
duke@435 4796 checked_mem = memory(adr_type);
duke@435 4797 checked_value = cv;
duke@435 4798 }
duke@435 4799 // At this point we know we do not need type checks on oop stores.
duke@435 4800
duke@435 4801 // Let's see if we need card marks:
duke@435 4802 if (alloc != NULL && use_ReduceInitialCardMarks()) {
duke@435 4803 // If we do not need card marks, copy using the jint or jlong stub.
coleenp@548 4804 copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
kvn@464 4805 assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
duke@435 4806 "sizes agree");
duke@435 4807 }
duke@435 4808 }
duke@435 4809
duke@435 4810 if (!stopped()) {
duke@435 4811 // Generate the fast path, if possible.
duke@435 4812 PreserveJVMState pjvms(this);
duke@435 4813 generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
duke@435 4814 src, src_offset, dest, dest_offset,
iveresov@2606 4815 ConvI2X(copy_length), dest_uninitialized);
duke@435 4816
duke@435 4817 // Present the results of the fast call.
duke@435 4818 result_region->init_req(fast_path, control());
duke@435 4819 result_i_o ->init_req(fast_path, i_o());
duke@435 4820 result_memory->init_req(fast_path, memory(adr_type));
duke@435 4821 }
duke@435 4822
duke@435 4823 // Here are all the slow paths up to this point, in one bundle:
duke@435 4824 slow_control = top();
duke@435 4825 if (slow_region != NULL)
duke@435 4826 slow_control = _gvn.transform(slow_region);
twisti@4313 4827 DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
duke@435 4828
duke@435 4829 set_control(checked_control);
duke@435 4830 if (!stopped()) {
duke@435 4831 // Clean up after the checked call.
duke@435 4832 // The returned value is either 0 or -1^K,
duke@435 4833 // where K = number of partially transferred array elements.
kvn@4115 4834 Node* cmp = _gvn.transform( new(C) CmpINode(checked_value, intcon(0)) );
kvn@4115 4835 Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
duke@435 4836 IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
duke@435 4837
duke@435 4838 // If it is 0, we are done, so transfer to the end.
kvn@4115 4839 Node* checks_done = _gvn.transform( new(C) IfTrueNode(iff) );
duke@435 4840 result_region->init_req(checked_path, checks_done);
duke@435 4841 result_i_o ->init_req(checked_path, checked_i_o);
duke@435 4842 result_memory->init_req(checked_path, checked_mem);
duke@435 4843
duke@435 4844 // If it is not zero, merge into the slow call.
kvn@4115 4845 set_control( _gvn.transform( new(C) IfFalseNode(iff) ));
kvn@4115 4846 RegionNode* slow_reg2 = new(C) RegionNode(3);
kvn@4115 4847 PhiNode* slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
kvn@4115 4848 PhiNode* slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
duke@435 4849 record_for_igvn(slow_reg2);
duke@435 4850 slow_reg2 ->init_req(1, slow_control);
duke@435 4851 slow_i_o2 ->init_req(1, slow_i_o);
duke@435 4852 slow_mem2 ->init_req(1, slow_mem);
duke@435 4853 slow_reg2 ->init_req(2, control());
kvn@1268 4854 slow_i_o2 ->init_req(2, checked_i_o);
kvn@1268 4855 slow_mem2 ->init_req(2, checked_mem);
duke@435 4856
duke@435 4857 slow_control = _gvn.transform(slow_reg2);
duke@435 4858 slow_i_o = _gvn.transform(slow_i_o2);
duke@435 4859 slow_mem = _gvn.transform(slow_mem2);
duke@435 4860
duke@435 4861 if (alloc != NULL) {
duke@435 4862 // We'll restart from the very beginning, after zeroing the whole thing.
duke@435 4863 // This can cause double writes, but that's OK since dest is brand new.
duke@435 4864 // So we ignore the low 31 bits of the value returned from the stub.
duke@435 4865 } else {
duke@435 4866 // We must continue the copy exactly where it failed, or else
duke@435 4867 // another thread might see the wrong number of writes to dest.
kvn@4115 4868 Node* checked_offset = _gvn.transform( new(C) XorINode(checked_value, intcon(-1)) );
kvn@4115 4869 Node* slow_offset = new(C) PhiNode(slow_reg2, TypeInt::INT);
duke@435 4870 slow_offset->init_req(1, intcon(0));
duke@435 4871 slow_offset->init_req(2, checked_offset);
duke@435 4872 slow_offset = _gvn.transform(slow_offset);
duke@435 4873
duke@435 4874 // Adjust the arguments by the conditionally incoming offset.
kvn@4115 4875 Node* src_off_plus = _gvn.transform( new(C) AddINode(src_offset, slow_offset) );
kvn@4115 4876 Node* dest_off_plus = _gvn.transform( new(C) AddINode(dest_offset, slow_offset) );
kvn@4115 4877 Node* length_minus = _gvn.transform( new(C) SubINode(copy_length, slow_offset) );
duke@435 4878
duke@435 4879 // Tweak the node variables to adjust the code produced below:
duke@435 4880 src_offset = src_off_plus;
duke@435 4881 dest_offset = dest_off_plus;
duke@435 4882 copy_length = length_minus;
duke@435 4883 }
duke@435 4884 }
duke@435 4885
duke@435 4886 set_control(slow_control);
duke@435 4887 if (!stopped()) {
duke@435 4888 // Generate the slow path, if needed.
duke@435 4889 PreserveJVMState pjvms(this); // replace_in_map may trash the map
duke@435 4890
duke@435 4891 set_memory(slow_mem, adr_type);
duke@435 4892 set_i_o(slow_i_o);
duke@435 4893
iveresov@2606 4894 if (dest_uninitialized) {
duke@435 4895 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4896 intcon(0), NULL,
duke@435 4897 alloc->in(AllocateNode::AllocSize));
duke@435 4898 }
duke@435 4899
duke@435 4900 generate_slow_arraycopy(adr_type,
duke@435 4901 src, src_offset, dest, dest_offset,
iveresov@2606 4902 copy_length, /*dest_uninitialized*/false);
duke@435 4903
duke@435 4904 result_region->init_req(slow_call_path, control());
duke@435 4905 result_i_o ->init_req(slow_call_path, i_o());
duke@435 4906 result_memory->init_req(slow_call_path, memory(adr_type));
duke@435 4907 }
duke@435 4908
duke@435 4909 // Remove unused edges.
duke@435 4910 for (uint i = 1; i < result_region->req(); i++) {
duke@435 4911 if (result_region->in(i) == NULL)
duke@435 4912 result_region->init_req(i, top());
duke@435 4913 }
duke@435 4914
duke@435 4915 // Finished; return the combined state.
duke@435 4916 set_control( _gvn.transform(result_region) );
duke@435 4917 set_i_o( _gvn.transform(result_i_o) );
duke@435 4918 set_memory( _gvn.transform(result_memory), adr_type );
duke@435 4919
duke@435 4920 // The memory edges above are precise in order to model effects around
twisti@1040 4921 // array copies accurately to allow value numbering of field loads around
duke@435 4922 // arraycopy. Such field loads, both before and after, are common in Java
duke@435 4923 // collections and similar classes involving header/array data structures.
duke@435 4924 //
duke@435 4925 // But with low number of register or when some registers are used or killed
duke@435 4926 // by arraycopy calls it causes registers spilling on stack. See 6544710.
duke@435 4927 // The next memory barrier is added to avoid it. If the arraycopy can be
duke@435 4928 // optimized away (which it can, sometimes) then we can manually remove
duke@435 4929 // the membar also.
kvn@1393 4930 //
kvn@1393 4931 // Do not let reads from the cloned object float above the arraycopy.
roland@3392 4932 if (alloc != NULL) {
roland@3392 4933 // Do not let stores that initialize this object be reordered with
roland@3392 4934 // a subsequent store that would make this object accessible by
roland@3392 4935 // other threads.
roland@3392 4936 // Record what AllocateNode this StoreStore protects so that
roland@3392 4937 // escape analysis can go from the MemBarStoreStoreNode to the
roland@3392 4938 // AllocateNode and eliminate the MemBarStoreStoreNode if possible
roland@3392 4939 // based on the escape status of the AllocateNode.
roland@3392 4940 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
roland@3392 4941 } else if (InsertMemBarAfterArraycopy)
duke@435 4942 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4943 }
duke@435 4944
duke@435 4945
duke@435 4946 // Helper function which determines if an arraycopy immediately follows
duke@435 4947 // an allocation, with no intervening tests or other escapes for the object.
duke@435 4948 AllocateArrayNode*
duke@435 4949 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
duke@435 4950 RegionNode* slow_region) {
duke@435 4951 if (stopped()) return NULL; // no fast path
duke@435 4952 if (C->AliasLevel() == 0) return NULL; // no MergeMems around
duke@435 4953
duke@435 4954 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
duke@435 4955 if (alloc == NULL) return NULL;
duke@435 4956
duke@435 4957 Node* rawmem = memory(Compile::AliasIdxRaw);
duke@435 4958 // Is the allocation's memory state untouched?
duke@435 4959 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
duke@435 4960 // Bail out if there have been raw-memory effects since the allocation.
duke@435 4961 // (Example: There might have been a call or safepoint.)
duke@435 4962 return NULL;
duke@435 4963 }
duke@435 4964 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
duke@435 4965 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
duke@435 4966 return NULL;
duke@435 4967 }
duke@435 4968
duke@435 4969 // There must be no unexpected observers of this allocation.
duke@435 4970 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
duke@435 4971 Node* obs = ptr->fast_out(i);
duke@435 4972 if (obs != this->map()) {
duke@435 4973 return NULL;
duke@435 4974 }
duke@435 4975 }
duke@435 4976
duke@435 4977 // This arraycopy must unconditionally follow the allocation of the ptr.
duke@435 4978 Node* alloc_ctl = ptr->in(0);
duke@435 4979 assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
duke@435 4980
duke@435 4981 Node* ctl = control();
duke@435 4982 while (ctl != alloc_ctl) {
duke@435 4983 // There may be guards which feed into the slow_region.
duke@435 4984 // Any other control flow means that we might not get a chance
duke@435 4985 // to finish initializing the allocated object.
duke@435 4986 if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
duke@435 4987 IfNode* iff = ctl->in(0)->as_If();
duke@435 4988 Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
duke@435 4989 assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
duke@435 4990 if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
duke@435 4991 ctl = iff->in(0); // This test feeds the known slow_region.
duke@435 4992 continue;
duke@435 4993 }
duke@435 4994 // One more try: Various low-level checks bottom out in
duke@435 4995 // uncommon traps. If the debug-info of the trap omits
duke@435 4996 // any reference to the allocation, as we've already
duke@435 4997 // observed, then there can be no objection to the trap.
duke@435 4998 bool found_trap = false;
duke@435 4999 for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
duke@435 5000 Node* obs = not_ctl->fast_out(j);
duke@435 5001 if (obs->in(0) == not_ctl && obs->is_Call() &&
twisti@2103 5002 (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
duke@435 5003 found_trap = true; break;
duke@435 5004 }
duke@435 5005 }
duke@435 5006 if (found_trap) {
duke@435 5007 ctl = iff->in(0); // This test feeds a harmless uncommon trap.
duke@435 5008 continue;
duke@435 5009 }
duke@435 5010 }
duke@435 5011 return NULL;
duke@435 5012 }
duke@435 5013
duke@435 5014 // If we get this far, we have an allocation which immediately
duke@435 5015 // precedes the arraycopy, and we can take over zeroing the new object.
duke@435 5016 // The arraycopy will finish the initialization, and provide
duke@435 5017 // a new control state to which we will anchor the destination pointer.
duke@435 5018
duke@435 5019 return alloc;
duke@435 5020 }
duke@435 5021
duke@435 5022 // Helper for initialization of arrays, creating a ClearArray.
duke@435 5023 // It writes zero bits in [start..end), within the body of an array object.
duke@435 5024 // The memory effects are all chained onto the 'adr_type' alias category.
duke@435 5025 //
duke@435 5026 // Since the object is otherwise uninitialized, we are free
duke@435 5027 // to put a little "slop" around the edges of the cleared area,
duke@435 5028 // as long as it does not go back into the array's header,
duke@435 5029 // or beyond the array end within the heap.
duke@435 5030 //
duke@435 5031 // The lower edge can be rounded down to the nearest jint and the
duke@435 5032 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
duke@435 5033 //
duke@435 5034 // Arguments:
duke@435 5035 // adr_type memory slice where writes are generated
duke@435 5036 // dest oop of the destination array
duke@435 5037 // basic_elem_type element type of the destination
duke@435 5038 // slice_idx array index of first element to store
duke@435 5039 // slice_len number of elements to store (or NULL)
duke@435 5040 // dest_size total size in bytes of the array object
duke@435 5041 //
duke@435 5042 // Exactly one of slice_len or dest_size must be non-NULL.
duke@435 5043 // If dest_size is non-NULL, zeroing extends to the end of the object.
duke@435 5044 // If slice_len is non-NULL, the slice_idx value must be a constant.
duke@435 5045 void
duke@435 5046 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
duke@435 5047 Node* dest,
duke@435 5048 BasicType basic_elem_type,
duke@435 5049 Node* slice_idx,
duke@435 5050 Node* slice_len,
duke@435 5051 Node* dest_size) {
duke@435 5052 // one or the other but not both of slice_len and dest_size:
duke@435 5053 assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
duke@435 5054 if (slice_len == NULL) slice_len = top();
duke@435 5055 if (dest_size == NULL) dest_size = top();
duke@435 5056
duke@435 5057 // operate on this memory slice:
duke@435 5058 Node* mem = memory(adr_type); // memory slice to operate on
duke@435 5059
duke@435 5060 // scaling and rounding of indexes:
kvn@464 5061 int scale = exact_log2(type2aelembytes(basic_elem_type));
duke@435 5062 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
duke@435 5063 int clear_low = (-1 << scale) & (BytesPerInt - 1);
duke@435 5064 int bump_bit = (-1 << scale) & BytesPerInt;
duke@435 5065
duke@435 5066 // determine constant starts and ends
duke@435 5067 const intptr_t BIG_NEG = -128;
duke@435 5068 assert(BIG_NEG + 2*abase < 0, "neg enough");
duke@435 5069 intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
duke@435 5070 intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
duke@435 5071 if (slice_len_con == 0) {
duke@435 5072 return; // nothing to do here
duke@435 5073 }
duke@435 5074 intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
duke@435 5075 intptr_t end_con = find_intptr_t_con(dest_size, -1);
duke@435 5076 if (slice_idx_con >= 0 && slice_len_con >= 0) {
duke@435 5077 assert(end_con < 0, "not two cons");
duke@435 5078 end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
duke@435 5079 BytesPerLong);
duke@435 5080 }
duke@435 5081
duke@435 5082 if (start_con >= 0 && end_con >= 0) {
duke@435 5083 // Constant start and end. Simple.
duke@435 5084 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5085 start_con, end_con, &_gvn);
duke@435 5086 } else if (start_con >= 0 && dest_size != top()) {
duke@435 5087 // Constant start, pre-rounded end after the tail of the array.
duke@435 5088 Node* end = dest_size;
duke@435 5089 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5090 start_con, end, &_gvn);
duke@435 5091 } else if (start_con >= 0 && slice_len != top()) {
duke@435 5092 // Constant start, non-constant end. End needs rounding up.
duke@435 5093 // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
duke@435 5094 intptr_t end_base = abase + (slice_idx_con << scale);
duke@435 5095 int end_round = (-1 << scale) & (BytesPerLong - 1);
duke@435 5096 Node* end = ConvI2X(slice_len);
duke@435 5097 if (scale != 0)
kvn@4115 5098 end = _gvn.transform( new(C) LShiftXNode(end, intcon(scale) ));
duke@435 5099 end_base += end_round;
kvn@4115 5100 end = _gvn.transform( new(C) AddXNode(end, MakeConX(end_base)) );
kvn@4115 5101 end = _gvn.transform( new(C) AndXNode(end, MakeConX(~end_round)) );
duke@435 5102 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5103 start_con, end, &_gvn);
duke@435 5104 } else if (start_con < 0 && dest_size != top()) {
duke@435 5105 // Non-constant start, pre-rounded end after the tail of the array.
duke@435 5106 // This is almost certainly a "round-to-end" operation.
duke@435 5107 Node* start = slice_idx;
duke@435 5108 start = ConvI2X(start);
duke@435 5109 if (scale != 0)
kvn@4115 5110 start = _gvn.transform( new(C) LShiftXNode( start, intcon(scale) ));
kvn@4115 5111 start = _gvn.transform( new(C) AddXNode(start, MakeConX(abase)) );
duke@435 5112 if ((bump_bit | clear_low) != 0) {
duke@435 5113 int to_clear = (bump_bit | clear_low);
duke@435 5114 // Align up mod 8, then store a jint zero unconditionally
duke@435 5115 // just before the mod-8 boundary.
coleenp@548 5116 if (((abase + bump_bit) & ~to_clear) - bump_bit
coleenp@548 5117 < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
coleenp@548 5118 bump_bit = 0;
coleenp@548 5119 assert((abase & to_clear) == 0, "array base must be long-aligned");
coleenp@548 5120 } else {
coleenp@548 5121 // Bump 'start' up to (or past) the next jint boundary:
kvn@4115 5122 start = _gvn.transform( new(C) AddXNode(start, MakeConX(bump_bit)) );
coleenp@548 5123 assert((abase & clear_low) == 0, "array base must be int-aligned");
coleenp@548 5124 }
duke@435 5125 // Round bumped 'start' down to jlong boundary in body of array.
kvn@4115 5126 start = _gvn.transform( new(C) AndXNode(start, MakeConX(~to_clear)) );
coleenp@548 5127 if (bump_bit != 0) {
coleenp@548 5128 // Store a zero to the immediately preceding jint:
kvn@4115 5129 Node* x1 = _gvn.transform( new(C) AddXNode(start, MakeConX(-bump_bit)) );
coleenp@548 5130 Node* p1 = basic_plus_adr(dest, x1);
coleenp@548 5131 mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
coleenp@548 5132 mem = _gvn.transform(mem);
coleenp@548 5133 }
duke@435 5134 }
duke@435 5135 Node* end = dest_size; // pre-rounded
duke@435 5136 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5137 start, end, &_gvn);
duke@435 5138 } else {
duke@435 5139 // Non-constant start, unrounded non-constant end.
duke@435 5140 // (Nobody zeroes a random midsection of an array using this routine.)
duke@435 5141 ShouldNotReachHere(); // fix caller
duke@435 5142 }
duke@435 5143
duke@435 5144 // Done.
duke@435 5145 set_memory(mem, adr_type);
duke@435 5146 }
duke@435 5147
duke@435 5148
duke@435 5149 bool
duke@435 5150 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
duke@435 5151 BasicType basic_elem_type,
duke@435 5152 AllocateNode* alloc,
duke@435 5153 Node* src, Node* src_offset,
duke@435 5154 Node* dest, Node* dest_offset,
iveresov@2606 5155 Node* dest_size, bool dest_uninitialized) {
duke@435 5156 // See if there is an advantage from block transfer.
kvn@464 5157 int scale = exact_log2(type2aelembytes(basic_elem_type));
duke@435 5158 if (scale >= LogBytesPerLong)
duke@435 5159 return false; // it is already a block transfer
duke@435 5160
duke@435 5161 // Look at the alignment of the starting offsets.
duke@435 5162 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@2939 5163
kvn@2939 5164 intptr_t src_off_con = (intptr_t) find_int_con(src_offset, -1);
kvn@2939 5165 intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
kvn@2939 5166 if (src_off_con < 0 || dest_off_con < 0)
duke@435 5167 // At present, we can only understand constants.
duke@435 5168 return false;
duke@435 5169
kvn@2939 5170 intptr_t src_off = abase + (src_off_con << scale);
kvn@2939 5171 intptr_t dest_off = abase + (dest_off_con << scale);
kvn@2939 5172
duke@435 5173 if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
duke@435 5174 // Non-aligned; too bad.
duke@435 5175 // One more chance: Pick off an initial 32-bit word.
duke@435 5176 // This is a common case, since abase can be odd mod 8.
duke@435 5177 if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
duke@435 5178 ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
duke@435 5179 Node* sptr = basic_plus_adr(src, src_off);
duke@435 5180 Node* dptr = basic_plus_adr(dest, dest_off);
duke@435 5181 Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
duke@435 5182 store_to_memory(control(), dptr, sval, T_INT, adr_type);
duke@435 5183 src_off += BytesPerInt;
duke@435 5184 dest_off += BytesPerInt;
duke@435 5185 } else {
duke@435 5186 return false;
duke@435 5187 }
duke@435 5188 }
duke@435 5189 assert(src_off % BytesPerLong == 0, "");
duke@435 5190 assert(dest_off % BytesPerLong == 0, "");
duke@435 5191
duke@435 5192 // Do this copy by giant steps.
duke@435 5193 Node* sptr = basic_plus_adr(src, src_off);
duke@435 5194 Node* dptr = basic_plus_adr(dest, dest_off);
duke@435 5195 Node* countx = dest_size;
kvn@4115 5196 countx = _gvn.transform( new (C) SubXNode(countx, MakeConX(dest_off)) );
kvn@4115 5197 countx = _gvn.transform( new (C) URShiftXNode(countx, intcon(LogBytesPerLong)) );
duke@435 5198
duke@435 5199 bool disjoint_bases = true; // since alloc != NULL
duke@435 5200 generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
iveresov@2606 5201 sptr, NULL, dptr, NULL, countx, dest_uninitialized);
duke@435 5202
duke@435 5203 return true;
duke@435 5204 }
duke@435 5205
duke@435 5206
duke@435 5207 // Helper function; generates code for the slow case.
duke@435 5208 // We make a call to a runtime method which emulates the native method,
duke@435 5209 // but without the native wrapper overhead.
duke@435 5210 void
duke@435 5211 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
duke@435 5212 Node* src, Node* src_offset,
duke@435 5213 Node* dest, Node* dest_offset,
iveresov@2606 5214 Node* copy_length, bool dest_uninitialized) {
iveresov@2606 5215 assert(!dest_uninitialized, "Invariant");
duke@435 5216 Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
duke@435 5217 OptoRuntime::slow_arraycopy_Type(),
duke@435 5218 OptoRuntime::slow_arraycopy_Java(),
duke@435 5219 "slow_arraycopy", adr_type,
duke@435 5220 src, src_offset, dest, dest_offset,
duke@435 5221 copy_length);
duke@435 5222
duke@435 5223 // Handle exceptions thrown by this fellow:
duke@435 5224 make_slow_call_ex(call, env()->Throwable_klass(), false);
duke@435 5225 }
duke@435 5226
duke@435 5227 // Helper function; generates code for cases requiring runtime checks.
duke@435 5228 Node*
duke@435 5229 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
duke@435 5230 Node* dest_elem_klass,
duke@435 5231 Node* src, Node* src_offset,
duke@435 5232 Node* dest, Node* dest_offset,
iveresov@2606 5233 Node* copy_length, bool dest_uninitialized) {
duke@435 5234 if (stopped()) return NULL;
duke@435 5235
iveresov@2606 5236 address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
duke@435 5237 if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
duke@435 5238 return NULL;
duke@435 5239 }
duke@435 5240
duke@435 5241 // Pick out the parameters required to perform a store-check
duke@435 5242 // for the target array. This is an optimistic check. It will
duke@435 5243 // look in each non-null element's class, at the desired klass's
duke@435 5244 // super_check_offset, for the desired klass.
stefank@3391 5245 int sco_offset = in_bytes(Klass::super_check_offset_offset());
duke@435 5246 Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
kvn@4115 5247 Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
never@2199 5248 Node* check_offset = ConvI2X(_gvn.transform(n3));
duke@435 5249 Node* check_value = dest_elem_klass;
duke@435 5250
duke@435 5251 Node* src_start = array_element_address(src, src_offset, T_OBJECT);
duke@435 5252 Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
duke@435 5253
duke@435 5254 // (We know the arrays are never conjoint, because their types differ.)
duke@435 5255 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 5256 OptoRuntime::checkcast_arraycopy_Type(),
duke@435 5257 copyfunc_addr, "checkcast_arraycopy", adr_type,
duke@435 5258 // five arguments, of which two are
duke@435 5259 // intptr_t (jlong in LP64)
duke@435 5260 src_start, dest_start,
duke@435 5261 copy_length XTOP,
duke@435 5262 check_offset XTOP,
duke@435 5263 check_value);
duke@435 5264
kvn@4115 5265 return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
duke@435 5266 }
duke@435 5267
duke@435 5268
duke@435 5269 // Helper function; generates code for cases requiring runtime checks.
duke@435 5270 Node*
duke@435 5271 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
duke@435 5272 Node* src, Node* src_offset,
duke@435 5273 Node* dest, Node* dest_offset,
iveresov@2606 5274 Node* copy_length, bool dest_uninitialized) {
iveresov@2606 5275 assert(!dest_uninitialized, "Invariant");
duke@435 5276 if (stopped()) return NULL;
duke@435 5277 address copyfunc_addr = StubRoutines::generic_arraycopy();
duke@435 5278 if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
duke@435 5279 return NULL;
duke@435 5280 }
duke@435 5281
duke@435 5282 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 5283 OptoRuntime::generic_arraycopy_Type(),
duke@435 5284 copyfunc_addr, "generic_arraycopy", adr_type,
duke@435 5285 src, src_offset, dest, dest_offset, copy_length);
duke@435 5286
kvn@4115 5287 return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
duke@435 5288 }
duke@435 5289
duke@435 5290 // Helper function; generates the fast out-of-line call to an arraycopy stub.
duke@435 5291 void
duke@435 5292 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
duke@435 5293 BasicType basic_elem_type,
duke@435 5294 bool disjoint_bases,
duke@435 5295 Node* src, Node* src_offset,
duke@435 5296 Node* dest, Node* dest_offset,
iveresov@2606 5297 Node* copy_length, bool dest_uninitialized) {
duke@435 5298 if (stopped()) return; // nothing to do
duke@435 5299
duke@435 5300 Node* src_start = src;
duke@435 5301 Node* dest_start = dest;
duke@435 5302 if (src_offset != NULL || dest_offset != NULL) {
duke@435 5303 assert(src_offset != NULL && dest_offset != NULL, "");
duke@435 5304 src_start = array_element_address(src, src_offset, basic_elem_type);
duke@435 5305 dest_start = array_element_address(dest, dest_offset, basic_elem_type);
duke@435 5306 }
duke@435 5307
duke@435 5308 // Figure out which arraycopy runtime method to call.
duke@435 5309 const char* copyfunc_name = "arraycopy";
duke@435 5310 address copyfunc_addr =
duke@435 5311 basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
iveresov@2606 5312 disjoint_bases, copyfunc_name, dest_uninitialized);
duke@435 5313
duke@435 5314 // Call it. Note that the count_ix value is not scaled to a byte-size.
duke@435 5315 make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 5316 OptoRuntime::fast_arraycopy_Type(),
duke@435 5317 copyfunc_addr, copyfunc_name, adr_type,
duke@435 5318 src_start, dest_start, copy_length XTOP);
duke@435 5319 }
johnc@2781 5320
kvn@4479 5321 //-------------inline_encodeISOArray-----------------------------------
kvn@4479 5322 // encode char[] to byte[] in ISO_8859_1
kvn@4479 5323 bool LibraryCallKit::inline_encodeISOArray() {
kvn@4479 5324 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
kvn@4479 5325 // no receiver since it is static method
kvn@4479 5326 Node *src = argument(0);
kvn@4479 5327 Node *src_offset = argument(1);
kvn@4479 5328 Node *dst = argument(2);
kvn@4479 5329 Node *dst_offset = argument(3);
kvn@4479 5330 Node *length = argument(4);
kvn@4479 5331
kvn@4479 5332 const Type* src_type = src->Value(&_gvn);
kvn@4479 5333 const Type* dst_type = dst->Value(&_gvn);
kvn@4479 5334 const TypeAryPtr* top_src = src_type->isa_aryptr();
kvn@4479 5335 const TypeAryPtr* top_dest = dst_type->isa_aryptr();
kvn@4479 5336 if (top_src == NULL || top_src->klass() == NULL ||
kvn@4479 5337 top_dest == NULL || top_dest->klass() == NULL) {
kvn@4479 5338 // failed array check
kvn@4479 5339 return false;
kvn@4479 5340 }
kvn@4479 5341
kvn@4479 5342 // Figure out the size and type of the elements we will be copying.
kvn@4479 5343 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
kvn@4479 5344 BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
kvn@4479 5345 if (src_elem != T_CHAR || dst_elem != T_BYTE) {
kvn@4479 5346 return false;
kvn@4479 5347 }
kvn@4479 5348 Node* src_start = array_element_address(src, src_offset, src_elem);
kvn@4479 5349 Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
kvn@4479 5350 // 'src_start' points to src array + scaled offset
kvn@4479 5351 // 'dst_start' points to dst array + scaled offset
kvn@4479 5352
kvn@4479 5353 const TypeAryPtr* mtype = TypeAryPtr::BYTES;
kvn@4479 5354 Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
kvn@4479 5355 enc = _gvn.transform(enc);
kvn@4479 5356 Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
kvn@4479 5357 set_memory(res_mem, mtype);
kvn@4479 5358 set_result(enc);
kvn@4479 5359 return true;
kvn@4479 5360 }
kvn@4479 5361
johnc@2781 5362 //----------------------------inline_reference_get----------------------------
twisti@4313 5363 // public T java.lang.ref.Reference.get();
johnc@2781 5364 bool LibraryCallKit::inline_reference_get() {
twisti@4313 5365 const int referent_offset = java_lang_ref_Reference::referent_offset;
twisti@4313 5366 guarantee(referent_offset > 0, "should have already been set");
twisti@4313 5367
twisti@4313 5368 // Get the argument:
twisti@4313 5369 Node* reference_obj = null_check_receiver();
johnc@2781 5370 if (stopped()) return true;
johnc@2781 5371
twisti@4313 5372 Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
johnc@2781 5373
johnc@2781 5374 ciInstanceKlass* klass = env()->Object_klass();
johnc@2781 5375 const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
johnc@2781 5376
johnc@2781 5377 Node* no_ctrl = NULL;
twisti@4313 5378 Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT);
johnc@2781 5379
johnc@2781 5380 // Use the pre-barrier to record the value in the referent field
johnc@2781 5381 pre_barrier(false /* do_load */,
johnc@2781 5382 control(),
johnc@2790 5383 NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
johnc@2781 5384 result /* pre_val */,
johnc@2781 5385 T_OBJECT);
johnc@2781 5386
kvn@4002 5387 // Add memory barrier to prevent commoning reads from this field
kvn@4002 5388 // across safepoint since GC can change its value.
kvn@4002 5389 insert_mem_bar(Op_MemBarCPUOrder);
kvn@4002 5390
twisti@4313 5391 set_result(result);
johnc@2781 5392 return true;
johnc@2781 5393 }
kvn@4205 5394
kvn@4205 5395
kvn@4205 5396 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
kvn@4205 5397 bool is_exact=true, bool is_static=false) {
kvn@4205 5398
kvn@4205 5399 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
kvn@4205 5400 assert(tinst != NULL, "obj is null");
kvn@4205 5401 assert(tinst->klass()->is_loaded(), "obj is not loaded");
kvn@4205 5402 assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
kvn@4205 5403
kvn@4205 5404 ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
kvn@4205 5405 ciSymbol::make(fieldTypeString),
kvn@4205 5406 is_static);
kvn@4205 5407 if (field == NULL) return (Node *) NULL;
kvn@4205 5408 assert (field != NULL, "undefined field");
kvn@4205 5409
kvn@4205 5410 // Next code copied from Parse::do_get_xxx():
kvn@4205 5411
kvn@4205 5412 // Compute address and memory type.
kvn@4205 5413 int offset = field->offset_in_bytes();
kvn@4205 5414 bool is_vol = field->is_volatile();
kvn@4205 5415 ciType* field_klass = field->type();
kvn@4205 5416 assert(field_klass->is_loaded(), "should be loaded");
kvn@4205 5417 const TypePtr* adr_type = C->alias_type(field)->adr_type();
kvn@4205 5418 Node *adr = basic_plus_adr(fromObj, fromObj, offset);
kvn@4205 5419 BasicType bt = field->layout_type();
kvn@4205 5420
kvn@4205 5421 // Build the resultant type of the load
kvn@4205 5422 const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
kvn@4205 5423
kvn@4205 5424 // Build the load.
kvn@4205 5425 Node* loadedField = make_load(NULL, adr, type, bt, adr_type, is_vol);
kvn@4205 5426 return loadedField;
kvn@4205 5427 }
kvn@4205 5428
kvn@4205 5429
kvn@4205 5430 //------------------------------inline_aescrypt_Block-----------------------
kvn@4205 5431 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
kvn@4205 5432 address stubAddr;
kvn@4205 5433 const char *stubName;
kvn@4205 5434 assert(UseAES, "need AES instruction support");
kvn@4205 5435
kvn@4205 5436 switch(id) {
kvn@4205 5437 case vmIntrinsics::_aescrypt_encryptBlock:
kvn@4205 5438 stubAddr = StubRoutines::aescrypt_encryptBlock();
kvn@4205 5439 stubName = "aescrypt_encryptBlock";
kvn@4205 5440 break;
kvn@4205 5441 case vmIntrinsics::_aescrypt_decryptBlock:
kvn@4205 5442 stubAddr = StubRoutines::aescrypt_decryptBlock();
kvn@4205 5443 stubName = "aescrypt_decryptBlock";
kvn@4205 5444 break;
kvn@4205 5445 }
kvn@4205 5446 if (stubAddr == NULL) return false;
kvn@4205 5447
twisti@4313 5448 Node* aescrypt_object = argument(0);
twisti@4313 5449 Node* src = argument(1);
twisti@4313 5450 Node* src_offset = argument(2);
twisti@4313 5451 Node* dest = argument(3);
twisti@4313 5452 Node* dest_offset = argument(4);
kvn@4205 5453
kvn@4205 5454 // (1) src and dest are arrays.
kvn@4205 5455 const Type* src_type = src->Value(&_gvn);
kvn@4205 5456 const Type* dest_type = dest->Value(&_gvn);
kvn@4205 5457 const TypeAryPtr* top_src = src_type->isa_aryptr();
kvn@4205 5458 const TypeAryPtr* top_dest = dest_type->isa_aryptr();
kvn@4205 5459 assert (top_src != NULL && top_src->klass() != NULL && top_dest != NULL && top_dest->klass() != NULL, "args are strange");
kvn@4205 5460
kvn@4205 5461 // for the quick and dirty code we will skip all the checks.
kvn@4205 5462 // we are just trying to get the call to be generated.
kvn@4205 5463 Node* src_start = src;
kvn@4205 5464 Node* dest_start = dest;
kvn@4205 5465 if (src_offset != NULL || dest_offset != NULL) {
kvn@4205 5466 assert(src_offset != NULL && dest_offset != NULL, "");
kvn@4205 5467 src_start = array_element_address(src, src_offset, T_BYTE);
kvn@4205 5468 dest_start = array_element_address(dest, dest_offset, T_BYTE);
kvn@4205 5469 }
kvn@4205 5470
kvn@4205 5471 // now need to get the start of its expanded key array
kvn@4205 5472 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
kvn@4205 5473 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
kvn@4205 5474 if (k_start == NULL) return false;
kvn@4205 5475
kvn@4205 5476 // Call the stub.
kvn@4205 5477 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
kvn@4205 5478 stubAddr, stubName, TypePtr::BOTTOM,
kvn@4205 5479 src_start, dest_start, k_start);
kvn@4205 5480
kvn@4205 5481 return true;
kvn@4205 5482 }
kvn@4205 5483
kvn@4205 5484 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
kvn@4205 5485 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
kvn@4205 5486 address stubAddr;
kvn@4205 5487 const char *stubName;
kvn@4205 5488
kvn@4205 5489 assert(UseAES, "need AES instruction support");
kvn@4205 5490
kvn@4205 5491 switch(id) {
kvn@4205 5492 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
kvn@4205 5493 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
kvn@4205 5494 stubName = "cipherBlockChaining_encryptAESCrypt";
kvn@4205 5495 break;
kvn@4205 5496 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
kvn@4205 5497 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
kvn@4205 5498 stubName = "cipherBlockChaining_decryptAESCrypt";
kvn@4205 5499 break;
kvn@4205 5500 }
kvn@4205 5501 if (stubAddr == NULL) return false;
kvn@4205 5502
twisti@4313 5503 Node* cipherBlockChaining_object = argument(0);
twisti@4313 5504 Node* src = argument(1);
twisti@4313 5505 Node* src_offset = argument(2);
twisti@4313 5506 Node* len = argument(3);
twisti@4313 5507 Node* dest = argument(4);
twisti@4313 5508 Node* dest_offset = argument(5);
kvn@4205 5509
kvn@4205 5510 // (1) src and dest are arrays.
kvn@4205 5511 const Type* src_type = src->Value(&_gvn);
kvn@4205 5512 const Type* dest_type = dest->Value(&_gvn);
kvn@4205 5513 const TypeAryPtr* top_src = src_type->isa_aryptr();
kvn@4205 5514 const TypeAryPtr* top_dest = dest_type->isa_aryptr();
kvn@4205 5515 assert (top_src != NULL && top_src->klass() != NULL
kvn@4205 5516 && top_dest != NULL && top_dest->klass() != NULL, "args are strange");
kvn@4205 5517
kvn@4205 5518 // checks are the responsibility of the caller
kvn@4205 5519 Node* src_start = src;
kvn@4205 5520 Node* dest_start = dest;
kvn@4205 5521 if (src_offset != NULL || dest_offset != NULL) {
kvn@4205 5522 assert(src_offset != NULL && dest_offset != NULL, "");
kvn@4205 5523 src_start = array_element_address(src, src_offset, T_BYTE);
kvn@4205 5524 dest_start = array_element_address(dest, dest_offset, T_BYTE);
kvn@4205 5525 }
kvn@4205 5526
kvn@4205 5527 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
kvn@4205 5528 // (because of the predicated logic executed earlier).
kvn@4205 5529 // so we cast it here safely.
kvn@4205 5530 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
kvn@4205 5531
kvn@4205 5532 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
kvn@4205 5533 if (embeddedCipherObj == NULL) return false;
kvn@4205 5534
kvn@4205 5535 // cast it to what we know it will be at runtime
kvn@4205 5536 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
kvn@4205 5537 assert(tinst != NULL, "CBC obj is null");
kvn@4205 5538 assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
kvn@4205 5539 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
kvn@4205 5540 if (!klass_AESCrypt->is_loaded()) return false;
kvn@4205 5541
kvn@4205 5542 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
kvn@4205 5543 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
kvn@4205 5544 const TypeOopPtr* xtype = aklass->as_instance_type();
kvn@4205 5545 Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
kvn@4205 5546 aescrypt_object = _gvn.transform(aescrypt_object);
kvn@4205 5547
kvn@4205 5548 // we need to get the start of the aescrypt_object's expanded key array
kvn@4205 5549 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
kvn@4205 5550 if (k_start == NULL) return false;
kvn@4205 5551
kvn@4205 5552 // similarly, get the start address of the r vector
kvn@4205 5553 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
kvn@4205 5554 if (objRvec == NULL) return false;
kvn@4205 5555 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
kvn@4205 5556
kvn@4205 5557 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
kvn@4205 5558 make_runtime_call(RC_LEAF|RC_NO_FP,
kvn@4205 5559 OptoRuntime::cipherBlockChaining_aescrypt_Type(),
kvn@4205 5560 stubAddr, stubName, TypePtr::BOTTOM,
kvn@4205 5561 src_start, dest_start, k_start, r_start, len);
kvn@4205 5562
kvn@4205 5563 // return is void so no result needs to be pushed
kvn@4205 5564
kvn@4205 5565 return true;
kvn@4205 5566 }
kvn@4205 5567
kvn@4205 5568 //------------------------------get_key_start_from_aescrypt_object-----------------------
kvn@4205 5569 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
kvn@4205 5570 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
kvn@4205 5571 assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
kvn@4205 5572 if (objAESCryptKey == NULL) return (Node *) NULL;
kvn@4205 5573
kvn@4205 5574 // now have the array, need to get the start address of the K array
kvn@4205 5575 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
kvn@4205 5576 return k_start;
kvn@4205 5577 }
kvn@4205 5578
kvn@4205 5579 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
kvn@4205 5580 // Return node representing slow path of predicate check.
kvn@4205 5581 // the pseudo code we want to emulate with this predicate is:
kvn@4205 5582 // for encryption:
kvn@4205 5583 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
kvn@4205 5584 // for decryption:
kvn@4205 5585 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
kvn@4205 5586 // note cipher==plain is more conservative than the original java code but that's OK
kvn@4205 5587 //
kvn@4205 5588 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
kvn@4205 5589 // First, check receiver for NULL since it is virtual method.
kvn@4205 5590 Node* objCBC = argument(0);
twisti@4313 5591 objCBC = null_check(objCBC);
kvn@4205 5592
kvn@4205 5593 if (stopped()) return NULL; // Always NULL
kvn@4205 5594
kvn@4205 5595 // Load embeddedCipher field of CipherBlockChaining object.
kvn@4205 5596 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
kvn@4205 5597
kvn@4205 5598 // get AESCrypt klass for instanceOf check
kvn@4205 5599 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
kvn@4205 5600 // will have same classloader as CipherBlockChaining object
kvn@4205 5601 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
kvn@4205 5602 assert(tinst != NULL, "CBCobj is null");
kvn@4205 5603 assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
kvn@4205 5604
kvn@4205 5605 // we want to do an instanceof comparison against the AESCrypt class
kvn@4205 5606 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
kvn@4205 5607 if (!klass_AESCrypt->is_loaded()) {
kvn@4205 5608 // if AESCrypt is not even loaded, we never take the intrinsic fast path
kvn@4205 5609 Node* ctrl = control();
kvn@4205 5610 set_control(top()); // no regular fast path
kvn@4205 5611 return ctrl;
kvn@4205 5612 }
kvn@4205 5613 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
kvn@4205 5614
kvn@4205 5615 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
kvn@4205 5616 Node* cmp_instof = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
kvn@4205 5617 Node* bool_instof = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
kvn@4205 5618
kvn@4205 5619 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
kvn@4205 5620
kvn@4205 5621 // for encryption, we are done
kvn@4205 5622 if (!decrypting)
kvn@4205 5623 return instof_false; // even if it is NULL
kvn@4205 5624
kvn@4205 5625 // for decryption, we need to add a further check to avoid
kvn@4205 5626 // taking the intrinsic path when cipher and plain are the same
kvn@4205 5627 // see the original java code for why.
kvn@4205 5628 RegionNode* region = new(C) RegionNode(3);
kvn@4205 5629 region->init_req(1, instof_false);
kvn@4205 5630 Node* src = argument(1);
twisti@4313 5631 Node* dest = argument(4);
kvn@4205 5632 Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
kvn@4205 5633 Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
kvn@4205 5634 Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
kvn@4205 5635 region->init_req(2, src_dest_conjoint);
kvn@4205 5636
kvn@4205 5637 record_for_igvn(region);
kvn@4205 5638 return _gvn.transform(region);
kvn@4205 5639 }

mercurial