src/share/vm/opto/vectornode.cpp

Fri, 15 Jun 2012 01:25:19 -0700

author
kvn
date
Fri, 15 Jun 2012 01:25:19 -0700
changeset 3882
8c92982cbbc4
parent 3040
c7b60b601eb4
child 4001
006050192a5a
permissions
-rw-r--r--

7119644: Increase superword's vector size up to 256 bits
Summary: Increase vector size up to 256-bits for YMM AVX registers on x86.
Reviewed-by: never, twisti, roland

duke@435 1 /*
kvn@3882 2 * Copyright (c) 2007, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 */
duke@435 23
stefank@2314 24 #include "precompiled.hpp"
stefank@2314 25 #include "memory/allocation.inline.hpp"
stefank@2314 26 #include "opto/connode.hpp"
stefank@2314 27 #include "opto/vectornode.hpp"
duke@435 28
duke@435 29 //------------------------------VectorNode--------------------------------------
duke@435 30
duke@435 31 // Return the vector operator for the specified scalar operation
kvn@3882 32 // and vector length. Also used to check if the code generator
duke@435 33 // supports the vector operation.
kvn@3882 34 int VectorNode::opcode(int sopc, uint vlen, BasicType bt) {
duke@435 35 switch (sopc) {
duke@435 36 case Op_AddI:
duke@435 37 switch (bt) {
duke@435 38 case T_BOOLEAN:
duke@435 39 case T_BYTE: return Op_AddVB;
kvn@3882 40 case T_CHAR:
duke@435 41 case T_SHORT: return Op_AddVS;
duke@435 42 case T_INT: return Op_AddVI;
duke@435 43 }
duke@435 44 ShouldNotReachHere();
duke@435 45 case Op_AddL:
duke@435 46 assert(bt == T_LONG, "must be");
duke@435 47 return Op_AddVL;
duke@435 48 case Op_AddF:
duke@435 49 assert(bt == T_FLOAT, "must be");
duke@435 50 return Op_AddVF;
duke@435 51 case Op_AddD:
duke@435 52 assert(bt == T_DOUBLE, "must be");
duke@435 53 return Op_AddVD;
duke@435 54 case Op_SubI:
duke@435 55 switch (bt) {
duke@435 56 case T_BOOLEAN:
duke@435 57 case T_BYTE: return Op_SubVB;
kvn@3882 58 case T_CHAR:
duke@435 59 case T_SHORT: return Op_SubVS;
duke@435 60 case T_INT: return Op_SubVI;
duke@435 61 }
duke@435 62 ShouldNotReachHere();
duke@435 63 case Op_SubL:
duke@435 64 assert(bt == T_LONG, "must be");
duke@435 65 return Op_SubVL;
duke@435 66 case Op_SubF:
duke@435 67 assert(bt == T_FLOAT, "must be");
duke@435 68 return Op_SubVF;
duke@435 69 case Op_SubD:
duke@435 70 assert(bt == T_DOUBLE, "must be");
duke@435 71 return Op_SubVD;
duke@435 72 case Op_MulF:
duke@435 73 assert(bt == T_FLOAT, "must be");
duke@435 74 return Op_MulVF;
duke@435 75 case Op_MulD:
duke@435 76 assert(bt == T_DOUBLE, "must be");
duke@435 77 return Op_MulVD;
duke@435 78 case Op_DivF:
duke@435 79 assert(bt == T_FLOAT, "must be");
duke@435 80 return Op_DivVF;
duke@435 81 case Op_DivD:
duke@435 82 assert(bt == T_DOUBLE, "must be");
duke@435 83 return Op_DivVD;
duke@435 84 case Op_LShiftI:
duke@435 85 switch (bt) {
duke@435 86 case T_BOOLEAN:
duke@435 87 case T_BYTE: return Op_LShiftVB;
kvn@3882 88 case T_CHAR:
duke@435 89 case T_SHORT: return Op_LShiftVS;
duke@435 90 case T_INT: return Op_LShiftVI;
duke@435 91 }
duke@435 92 ShouldNotReachHere();
kvn@3882 93 case Op_RShiftI:
duke@435 94 switch (bt) {
duke@435 95 case T_BOOLEAN:
kvn@3882 96 case T_BYTE: return Op_RShiftVB;
kvn@3882 97 case T_CHAR:
kvn@3882 98 case T_SHORT: return Op_RShiftVS;
kvn@3882 99 case T_INT: return Op_RShiftVI;
duke@435 100 }
duke@435 101 ShouldNotReachHere();
duke@435 102 case Op_AndI:
duke@435 103 case Op_AndL:
duke@435 104 return Op_AndV;
duke@435 105 case Op_OrI:
duke@435 106 case Op_OrL:
duke@435 107 return Op_OrV;
duke@435 108 case Op_XorI:
duke@435 109 case Op_XorL:
duke@435 110 return Op_XorV;
duke@435 111
duke@435 112 case Op_LoadB:
kvn@3882 113 case Op_LoadUB:
twisti@993 114 case Op_LoadUS:
duke@435 115 case Op_LoadS:
duke@435 116 case Op_LoadI:
duke@435 117 case Op_LoadL:
duke@435 118 case Op_LoadF:
duke@435 119 case Op_LoadD:
kvn@3882 120 return Op_LoadVector;
duke@435 121
duke@435 122 case Op_StoreB:
duke@435 123 case Op_StoreC:
duke@435 124 case Op_StoreI:
duke@435 125 case Op_StoreL:
duke@435 126 case Op_StoreF:
duke@435 127 case Op_StoreD:
kvn@3882 128 return Op_StoreVector;
duke@435 129 }
duke@435 130 return 0; // Unimplemented
duke@435 131 }
duke@435 132
kvn@3882 133 bool VectorNode::implemented(int opc, uint vlen, BasicType bt) {
kvn@3882 134 if (is_java_primitive(bt) &&
kvn@3882 135 (vlen > 1) && is_power_of_2(vlen) &&
kvn@3882 136 Matcher::vector_size_supported(bt, vlen)) {
kvn@3882 137 int vopc = VectorNode::opcode(opc, vlen, bt);
kvn@3882 138 return vopc > 0 && Matcher::has_match_rule(vopc);
duke@435 139 }
kvn@3882 140 return false;
duke@435 141 }
duke@435 142
duke@435 143 // Return the vector version of a scalar operation node.
kvn@3882 144 VectorNode* VectorNode::make(Compile* C, int opc, Node* n1, Node* n2, uint vlen, BasicType bt) {
kvn@3882 145 const TypeVect* vt = TypeVect::make(bt, vlen);
kvn@3882 146 int vopc = VectorNode::opcode(opc, vlen, bt);
duke@435 147
duke@435 148 switch (vopc) {
kvn@3882 149 case Op_AddVB: return new (C, 3) AddVBNode(n1, n2, vt);
kvn@3882 150 case Op_AddVS: return new (C, 3) AddVSNode(n1, n2, vt);
kvn@3882 151 case Op_AddVI: return new (C, 3) AddVINode(n1, n2, vt);
kvn@3882 152 case Op_AddVL: return new (C, 3) AddVLNode(n1, n2, vt);
kvn@3882 153 case Op_AddVF: return new (C, 3) AddVFNode(n1, n2, vt);
kvn@3882 154 case Op_AddVD: return new (C, 3) AddVDNode(n1, n2, vt);
duke@435 155
kvn@3882 156 case Op_SubVB: return new (C, 3) SubVBNode(n1, n2, vt);
kvn@3882 157 case Op_SubVS: return new (C, 3) SubVSNode(n1, n2, vt);
kvn@3882 158 case Op_SubVI: return new (C, 3) SubVINode(n1, n2, vt);
kvn@3882 159 case Op_SubVL: return new (C, 3) SubVLNode(n1, n2, vt);
kvn@3882 160 case Op_SubVF: return new (C, 3) SubVFNode(n1, n2, vt);
kvn@3882 161 case Op_SubVD: return new (C, 3) SubVDNode(n1, n2, vt);
duke@435 162
kvn@3882 163 case Op_MulVF: return new (C, 3) MulVFNode(n1, n2, vt);
kvn@3882 164 case Op_MulVD: return new (C, 3) MulVDNode(n1, n2, vt);
duke@435 165
kvn@3882 166 case Op_DivVF: return new (C, 3) DivVFNode(n1, n2, vt);
kvn@3882 167 case Op_DivVD: return new (C, 3) DivVDNode(n1, n2, vt);
duke@435 168
kvn@3882 169 case Op_LShiftVB: return new (C, 3) LShiftVBNode(n1, n2, vt);
kvn@3882 170 case Op_LShiftVS: return new (C, 3) LShiftVSNode(n1, n2, vt);
kvn@3882 171 case Op_LShiftVI: return new (C, 3) LShiftVINode(n1, n2, vt);
duke@435 172
kvn@3882 173 case Op_RShiftVB: return new (C, 3) RShiftVBNode(n1, n2, vt);
kvn@3882 174 case Op_RShiftVS: return new (C, 3) RShiftVSNode(n1, n2, vt);
kvn@3882 175 case Op_RShiftVI: return new (C, 3) RShiftVINode(n1, n2, vt);
duke@435 176
kvn@3882 177 case Op_AndV: return new (C, 3) AndVNode(n1, n2, vt);
kvn@3882 178 case Op_OrV: return new (C, 3) OrVNode (n1, n2, vt);
kvn@3882 179 case Op_XorV: return new (C, 3) XorVNode(n1, n2, vt);
kvn@3882 180 }
kvn@3882 181 ShouldNotReachHere();
kvn@3882 182 return NULL;
kvn@3882 183
kvn@3882 184 }
kvn@3882 185
kvn@3882 186 // Scalar promotion
kvn@3882 187 VectorNode* VectorNode::scalar2vector(Compile* C, Node* s, uint vlen, const Type* opd_t) {
kvn@3882 188 BasicType bt = opd_t->array_element_basic_type();
kvn@3882 189 const TypeVect* vt = opd_t->singleton() ? TypeVect::make(opd_t, vlen)
kvn@3882 190 : TypeVect::make(bt, vlen);
kvn@3882 191 switch (bt) {
kvn@3882 192 case T_BOOLEAN:
kvn@3882 193 case T_BYTE:
kvn@3882 194 return new (C, 2) ReplicateBNode(s, vt);
kvn@3882 195 case T_CHAR:
kvn@3882 196 case T_SHORT:
kvn@3882 197 return new (C, 2) ReplicateSNode(s, vt);
kvn@3882 198 case T_INT:
kvn@3882 199 return new (C, 2) ReplicateINode(s, vt);
kvn@3882 200 case T_LONG:
kvn@3882 201 return new (C, 2) ReplicateLNode(s, vt);
kvn@3882 202 case T_FLOAT:
kvn@3882 203 return new (C, 2) ReplicateFNode(s, vt);
kvn@3882 204 case T_DOUBLE:
kvn@3882 205 return new (C, 2) ReplicateDNode(s, vt);
duke@435 206 }
duke@435 207 ShouldNotReachHere();
duke@435 208 return NULL;
duke@435 209 }
duke@435 210
kvn@3882 211 // Return initial Pack node. Additional operands added with add_opd() calls.
kvn@3882 212 PackNode* PackNode::make(Compile* C, Node* s, uint vlen, BasicType bt) {
kvn@3882 213 const TypeVect* vt = TypeVect::make(bt, vlen);
kvn@3882 214 switch (bt) {
kvn@3882 215 case T_BOOLEAN:
kvn@3882 216 case T_BYTE:
kvn@3882 217 return new (C, vlen+1) PackBNode(s, vt);
kvn@3882 218 case T_CHAR:
kvn@3882 219 case T_SHORT:
kvn@3882 220 return new (C, vlen+1) PackSNode(s, vt);
kvn@3882 221 case T_INT:
kvn@3882 222 return new (C, vlen+1) PackINode(s, vt);
kvn@3882 223 case T_LONG:
kvn@3882 224 return new (C, vlen+1) PackLNode(s, vt);
kvn@3882 225 case T_FLOAT:
kvn@3882 226 return new (C, vlen+1) PackFNode(s, vt);
kvn@3882 227 case T_DOUBLE:
kvn@3882 228 return new (C, vlen+1) PackDNode(s, vt);
duke@435 229 }
duke@435 230 ShouldNotReachHere();
duke@435 231 return NULL;
duke@435 232 }
duke@435 233
kvn@3882 234 // Create a binary tree form for Packs. [lo, hi) (half-open) range
kvn@3882 235 Node* PackNode::binaryTreePack(Compile* C, int lo, int hi) {
kvn@3882 236 int ct = hi - lo;
kvn@3882 237 assert(is_power_of_2(ct), "power of 2");
kvn@3882 238 if (ct == 2) {
kvn@3882 239 PackNode* pk = PackNode::make(C, in(lo), 2, vect_type()->element_basic_type());
kvn@3882 240 pk->add_opd(1, in(lo+1));
kvn@3882 241 return pk;
duke@435 242
kvn@3882 243 } else {
kvn@3882 244 int mid = lo + ct/2;
kvn@3882 245 Node* n1 = binaryTreePack(C, lo, mid);
kvn@3882 246 Node* n2 = binaryTreePack(C, mid, hi );
duke@435 247
kvn@3882 248 BasicType bt = vect_type()->element_basic_type();
kvn@3882 249 switch (bt) {
kvn@3882 250 case T_BOOLEAN:
kvn@3882 251 case T_BYTE:
kvn@3882 252 return new (C, 3) PackSNode(n1, n2, TypeVect::make(T_SHORT, 2));
kvn@3882 253 case T_CHAR:
kvn@3882 254 case T_SHORT:
kvn@3882 255 return new (C, 3) PackINode(n1, n2, TypeVect::make(T_INT, 2));
kvn@3882 256 case T_INT:
kvn@3882 257 return new (C, 3) PackLNode(n1, n2, TypeVect::make(T_LONG, 2));
kvn@3882 258 case T_LONG:
kvn@3882 259 return new (C, 3) Pack2LNode(n1, n2, TypeVect::make(T_LONG, 2));
kvn@3882 260 case T_FLOAT:
kvn@3882 261 return new (C, 3) PackDNode(n1, n2, TypeVect::make(T_DOUBLE, 2));
kvn@3882 262 case T_DOUBLE:
kvn@3882 263 return new (C, 3) Pack2DNode(n1, n2, TypeVect::make(T_DOUBLE, 2));
kvn@3882 264 }
kvn@3882 265 ShouldNotReachHere();
duke@435 266 }
duke@435 267 return NULL;
duke@435 268 }
duke@435 269
kvn@3882 270 // Return the vector version of a scalar load node.
kvn@3882 271 LoadVectorNode* LoadVectorNode::make(Compile* C, int opc, Node* ctl, Node* mem,
kvn@3882 272 Node* adr, const TypePtr* atyp, uint vlen, BasicType bt) {
kvn@3882 273 const TypeVect* vt = TypeVect::make(bt, vlen);
kvn@3882 274 return new (C, 3) LoadVectorNode(ctl, mem, adr, atyp, vt);
kvn@3882 275 return NULL;
kvn@3882 276 }
kvn@3882 277
kvn@3882 278 // Return the vector version of a scalar store node.
kvn@3882 279 StoreVectorNode* StoreVectorNode::make(Compile* C, int opc, Node* ctl, Node* mem,
kvn@3882 280 Node* adr, const TypePtr* atyp, Node* val,
kvn@3882 281 uint vlen) {
kvn@3882 282 return new (C, 4) StoreVectorNode(ctl, mem, adr, atyp, val);
kvn@3882 283 }
kvn@3882 284
duke@435 285 // Extract a scalar element of vector.
kvn@3882 286 Node* ExtractNode::make(Compile* C, Node* v, uint position, BasicType bt) {
kvn@3882 287 assert((int)position < Matcher::max_vector_size(bt), "pos in range");
duke@435 288 ConINode* pos = ConINode::make(C, (int)position);
duke@435 289 switch (bt) {
duke@435 290 case T_BOOLEAN:
kvn@3882 291 return new (C, 3) ExtractUBNode(v, pos);
duke@435 292 case T_BYTE:
duke@435 293 return new (C, 3) ExtractBNode(v, pos);
duke@435 294 case T_CHAR:
duke@435 295 return new (C, 3) ExtractCNode(v, pos);
duke@435 296 case T_SHORT:
duke@435 297 return new (C, 3) ExtractSNode(v, pos);
duke@435 298 case T_INT:
duke@435 299 return new (C, 3) ExtractINode(v, pos);
duke@435 300 case T_LONG:
duke@435 301 return new (C, 3) ExtractLNode(v, pos);
duke@435 302 case T_FLOAT:
duke@435 303 return new (C, 3) ExtractFNode(v, pos);
duke@435 304 case T_DOUBLE:
duke@435 305 return new (C, 3) ExtractDNode(v, pos);
duke@435 306 }
duke@435 307 ShouldNotReachHere();
duke@435 308 return NULL;
duke@435 309 }
kvn@3882 310

mercurial