src/share/vm/opto/vectornode.cpp

Mon, 20 Aug 2012 09:07:21 -0700

author
kvn
date
Mon, 20 Aug 2012 09:07:21 -0700
changeset 4001
006050192a5a
parent 3882
8c92982cbbc4
child 4004
4b0d6fd74911
permissions
-rw-r--r--

6340864: Implement vectorization optimizations in hotspot-server
Summary: Added asm encoding and mach nodes for vector arithmetic instructions on x86.
Reviewed-by: roland

duke@435 1 /*
kvn@3882 2 * Copyright (c) 2007, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 */
duke@435 23
stefank@2314 24 #include "precompiled.hpp"
stefank@2314 25 #include "memory/allocation.inline.hpp"
stefank@2314 26 #include "opto/connode.hpp"
stefank@2314 27 #include "opto/vectornode.hpp"
duke@435 28
duke@435 29 //------------------------------VectorNode--------------------------------------
duke@435 30
duke@435 31 // Return the vector operator for the specified scalar operation
kvn@3882 32 // and vector length. Also used to check if the code generator
duke@435 33 // supports the vector operation.
kvn@3882 34 int VectorNode::opcode(int sopc, uint vlen, BasicType bt) {
duke@435 35 switch (sopc) {
duke@435 36 case Op_AddI:
duke@435 37 switch (bt) {
duke@435 38 case T_BOOLEAN:
duke@435 39 case T_BYTE: return Op_AddVB;
kvn@3882 40 case T_CHAR:
duke@435 41 case T_SHORT: return Op_AddVS;
duke@435 42 case T_INT: return Op_AddVI;
duke@435 43 }
duke@435 44 ShouldNotReachHere();
duke@435 45 case Op_AddL:
duke@435 46 assert(bt == T_LONG, "must be");
duke@435 47 return Op_AddVL;
duke@435 48 case Op_AddF:
duke@435 49 assert(bt == T_FLOAT, "must be");
duke@435 50 return Op_AddVF;
duke@435 51 case Op_AddD:
duke@435 52 assert(bt == T_DOUBLE, "must be");
duke@435 53 return Op_AddVD;
duke@435 54 case Op_SubI:
duke@435 55 switch (bt) {
duke@435 56 case T_BOOLEAN:
duke@435 57 case T_BYTE: return Op_SubVB;
kvn@3882 58 case T_CHAR:
duke@435 59 case T_SHORT: return Op_SubVS;
duke@435 60 case T_INT: return Op_SubVI;
duke@435 61 }
duke@435 62 ShouldNotReachHere();
duke@435 63 case Op_SubL:
duke@435 64 assert(bt == T_LONG, "must be");
duke@435 65 return Op_SubVL;
duke@435 66 case Op_SubF:
duke@435 67 assert(bt == T_FLOAT, "must be");
duke@435 68 return Op_SubVF;
duke@435 69 case Op_SubD:
duke@435 70 assert(bt == T_DOUBLE, "must be");
duke@435 71 return Op_SubVD;
kvn@4001 72 case Op_MulI:
kvn@4001 73 switch (bt) {
kvn@4001 74 case T_BOOLEAN:
kvn@4001 75 case T_BYTE: return 0; // Unimplemented
kvn@4001 76 case T_CHAR:
kvn@4001 77 case T_SHORT: return Op_MulVS;
kvn@4001 78 case T_INT: return Matcher::match_rule_supported(Op_MulVI) ? Op_MulVI : 0; // SSE4_1
kvn@4001 79 }
kvn@4001 80 ShouldNotReachHere();
duke@435 81 case Op_MulF:
duke@435 82 assert(bt == T_FLOAT, "must be");
duke@435 83 return Op_MulVF;
duke@435 84 case Op_MulD:
duke@435 85 assert(bt == T_DOUBLE, "must be");
duke@435 86 return Op_MulVD;
duke@435 87 case Op_DivF:
duke@435 88 assert(bt == T_FLOAT, "must be");
duke@435 89 return Op_DivVF;
duke@435 90 case Op_DivD:
duke@435 91 assert(bt == T_DOUBLE, "must be");
duke@435 92 return Op_DivVD;
duke@435 93 case Op_LShiftI:
duke@435 94 switch (bt) {
duke@435 95 case T_BOOLEAN:
duke@435 96 case T_BYTE: return Op_LShiftVB;
kvn@3882 97 case T_CHAR:
duke@435 98 case T_SHORT: return Op_LShiftVS;
duke@435 99 case T_INT: return Op_LShiftVI;
duke@435 100 }
duke@435 101 ShouldNotReachHere();
kvn@4001 102 case Op_LShiftL:
kvn@4001 103 assert(bt == T_LONG, "must be");
kvn@4001 104 return Op_LShiftVL;
kvn@3882 105 case Op_RShiftI:
duke@435 106 switch (bt) {
duke@435 107 case T_BOOLEAN:
kvn@3882 108 case T_BYTE: return Op_RShiftVB;
kvn@3882 109 case T_CHAR:
kvn@3882 110 case T_SHORT: return Op_RShiftVS;
kvn@3882 111 case T_INT: return Op_RShiftVI;
duke@435 112 }
duke@435 113 ShouldNotReachHere();
kvn@4001 114 case Op_RShiftL:
kvn@4001 115 assert(bt == T_LONG, "must be");
kvn@4001 116 return Op_RShiftVL;
kvn@4001 117 case Op_URShiftI:
kvn@4001 118 switch (bt) {
kvn@4001 119 case T_BOOLEAN:
kvn@4001 120 case T_BYTE: return Op_URShiftVB;
kvn@4001 121 case T_CHAR:
kvn@4001 122 case T_SHORT: return Op_URShiftVS;
kvn@4001 123 case T_INT: return Op_URShiftVI;
kvn@4001 124 }
kvn@4001 125 ShouldNotReachHere();
kvn@4001 126 case Op_URShiftL:
kvn@4001 127 assert(bt == T_LONG, "must be");
kvn@4001 128 return Op_URShiftVL;
duke@435 129 case Op_AndI:
duke@435 130 case Op_AndL:
duke@435 131 return Op_AndV;
duke@435 132 case Op_OrI:
duke@435 133 case Op_OrL:
duke@435 134 return Op_OrV;
duke@435 135 case Op_XorI:
duke@435 136 case Op_XorL:
duke@435 137 return Op_XorV;
duke@435 138
duke@435 139 case Op_LoadB:
kvn@3882 140 case Op_LoadUB:
twisti@993 141 case Op_LoadUS:
duke@435 142 case Op_LoadS:
duke@435 143 case Op_LoadI:
duke@435 144 case Op_LoadL:
duke@435 145 case Op_LoadF:
duke@435 146 case Op_LoadD:
kvn@3882 147 return Op_LoadVector;
duke@435 148
duke@435 149 case Op_StoreB:
duke@435 150 case Op_StoreC:
duke@435 151 case Op_StoreI:
duke@435 152 case Op_StoreL:
duke@435 153 case Op_StoreF:
duke@435 154 case Op_StoreD:
kvn@3882 155 return Op_StoreVector;
duke@435 156 }
duke@435 157 return 0; // Unimplemented
duke@435 158 }
duke@435 159
kvn@3882 160 bool VectorNode::implemented(int opc, uint vlen, BasicType bt) {
kvn@3882 161 if (is_java_primitive(bt) &&
kvn@3882 162 (vlen > 1) && is_power_of_2(vlen) &&
kvn@3882 163 Matcher::vector_size_supported(bt, vlen)) {
kvn@3882 164 int vopc = VectorNode::opcode(opc, vlen, bt);
kvn@3882 165 return vopc > 0 && Matcher::has_match_rule(vopc);
duke@435 166 }
kvn@3882 167 return false;
duke@435 168 }
duke@435 169
kvn@4001 170 bool VectorNode::is_shift(Node* n) {
kvn@4001 171 switch (n->Opcode()) {
kvn@4001 172 case Op_LShiftI:
kvn@4001 173 case Op_LShiftL:
kvn@4001 174 case Op_RShiftI:
kvn@4001 175 case Op_RShiftL:
kvn@4001 176 case Op_URShiftI:
kvn@4001 177 case Op_URShiftL:
kvn@4001 178 return true;
kvn@4001 179 }
kvn@4001 180 return false;
kvn@4001 181 }
kvn@4001 182
kvn@4001 183 // Check if input is loop invarient vector.
kvn@4001 184 bool VectorNode::is_invariant_vector(Node* n) {
kvn@4001 185 // Only Replicate vector nodes are loop invarient for now.
kvn@4001 186 switch (n->Opcode()) {
kvn@4001 187 case Op_ReplicateB:
kvn@4001 188 case Op_ReplicateS:
kvn@4001 189 case Op_ReplicateI:
kvn@4001 190 case Op_ReplicateL:
kvn@4001 191 case Op_ReplicateF:
kvn@4001 192 case Op_ReplicateD:
kvn@4001 193 return true;
kvn@4001 194 }
kvn@4001 195 return false;
kvn@4001 196 }
kvn@4001 197
duke@435 198 // Return the vector version of a scalar operation node.
kvn@3882 199 VectorNode* VectorNode::make(Compile* C, int opc, Node* n1, Node* n2, uint vlen, BasicType bt) {
kvn@3882 200 const TypeVect* vt = TypeVect::make(bt, vlen);
kvn@3882 201 int vopc = VectorNode::opcode(opc, vlen, bt);
duke@435 202
duke@435 203 switch (vopc) {
kvn@3882 204 case Op_AddVB: return new (C, 3) AddVBNode(n1, n2, vt);
kvn@3882 205 case Op_AddVS: return new (C, 3) AddVSNode(n1, n2, vt);
kvn@3882 206 case Op_AddVI: return new (C, 3) AddVINode(n1, n2, vt);
kvn@3882 207 case Op_AddVL: return new (C, 3) AddVLNode(n1, n2, vt);
kvn@3882 208 case Op_AddVF: return new (C, 3) AddVFNode(n1, n2, vt);
kvn@3882 209 case Op_AddVD: return new (C, 3) AddVDNode(n1, n2, vt);
duke@435 210
kvn@3882 211 case Op_SubVB: return new (C, 3) SubVBNode(n1, n2, vt);
kvn@3882 212 case Op_SubVS: return new (C, 3) SubVSNode(n1, n2, vt);
kvn@3882 213 case Op_SubVI: return new (C, 3) SubVINode(n1, n2, vt);
kvn@3882 214 case Op_SubVL: return new (C, 3) SubVLNode(n1, n2, vt);
kvn@3882 215 case Op_SubVF: return new (C, 3) SubVFNode(n1, n2, vt);
kvn@3882 216 case Op_SubVD: return new (C, 3) SubVDNode(n1, n2, vt);
duke@435 217
kvn@4001 218 case Op_MulVS: return new (C, 3) MulVSNode(n1, n2, vt);
kvn@4001 219 case Op_MulVI: return new (C, 3) MulVINode(n1, n2, vt);
kvn@3882 220 case Op_MulVF: return new (C, 3) MulVFNode(n1, n2, vt);
kvn@3882 221 case Op_MulVD: return new (C, 3) MulVDNode(n1, n2, vt);
duke@435 222
kvn@3882 223 case Op_DivVF: return new (C, 3) DivVFNode(n1, n2, vt);
kvn@3882 224 case Op_DivVD: return new (C, 3) DivVDNode(n1, n2, vt);
duke@435 225
kvn@3882 226 case Op_LShiftVB: return new (C, 3) LShiftVBNode(n1, n2, vt);
kvn@3882 227 case Op_LShiftVS: return new (C, 3) LShiftVSNode(n1, n2, vt);
kvn@3882 228 case Op_LShiftVI: return new (C, 3) LShiftVINode(n1, n2, vt);
kvn@4001 229 case Op_LShiftVL: return new (C, 3) LShiftVLNode(n1, n2, vt);
duke@435 230
kvn@3882 231 case Op_RShiftVB: return new (C, 3) RShiftVBNode(n1, n2, vt);
kvn@3882 232 case Op_RShiftVS: return new (C, 3) RShiftVSNode(n1, n2, vt);
kvn@3882 233 case Op_RShiftVI: return new (C, 3) RShiftVINode(n1, n2, vt);
kvn@4001 234 case Op_RShiftVL: return new (C, 3) RShiftVLNode(n1, n2, vt);
kvn@4001 235
kvn@4001 236 case Op_URShiftVB: return new (C, 3) URShiftVBNode(n1, n2, vt);
kvn@4001 237 case Op_URShiftVS: return new (C, 3) URShiftVSNode(n1, n2, vt);
kvn@4001 238 case Op_URShiftVI: return new (C, 3) URShiftVINode(n1, n2, vt);
kvn@4001 239 case Op_URShiftVL: return new (C, 3) URShiftVLNode(n1, n2, vt);
duke@435 240
kvn@3882 241 case Op_AndV: return new (C, 3) AndVNode(n1, n2, vt);
kvn@3882 242 case Op_OrV: return new (C, 3) OrVNode (n1, n2, vt);
kvn@3882 243 case Op_XorV: return new (C, 3) XorVNode(n1, n2, vt);
kvn@3882 244 }
kvn@3882 245 ShouldNotReachHere();
kvn@3882 246 return NULL;
kvn@3882 247
kvn@3882 248 }
kvn@3882 249
kvn@3882 250 // Scalar promotion
kvn@3882 251 VectorNode* VectorNode::scalar2vector(Compile* C, Node* s, uint vlen, const Type* opd_t) {
kvn@3882 252 BasicType bt = opd_t->array_element_basic_type();
kvn@3882 253 const TypeVect* vt = opd_t->singleton() ? TypeVect::make(opd_t, vlen)
kvn@3882 254 : TypeVect::make(bt, vlen);
kvn@3882 255 switch (bt) {
kvn@3882 256 case T_BOOLEAN:
kvn@3882 257 case T_BYTE:
kvn@3882 258 return new (C, 2) ReplicateBNode(s, vt);
kvn@3882 259 case T_CHAR:
kvn@3882 260 case T_SHORT:
kvn@3882 261 return new (C, 2) ReplicateSNode(s, vt);
kvn@3882 262 case T_INT:
kvn@3882 263 return new (C, 2) ReplicateINode(s, vt);
kvn@3882 264 case T_LONG:
kvn@3882 265 return new (C, 2) ReplicateLNode(s, vt);
kvn@3882 266 case T_FLOAT:
kvn@3882 267 return new (C, 2) ReplicateFNode(s, vt);
kvn@3882 268 case T_DOUBLE:
kvn@3882 269 return new (C, 2) ReplicateDNode(s, vt);
duke@435 270 }
duke@435 271 ShouldNotReachHere();
duke@435 272 return NULL;
duke@435 273 }
duke@435 274
kvn@3882 275 // Return initial Pack node. Additional operands added with add_opd() calls.
kvn@3882 276 PackNode* PackNode::make(Compile* C, Node* s, uint vlen, BasicType bt) {
kvn@3882 277 const TypeVect* vt = TypeVect::make(bt, vlen);
kvn@3882 278 switch (bt) {
kvn@3882 279 case T_BOOLEAN:
kvn@3882 280 case T_BYTE:
kvn@3882 281 return new (C, vlen+1) PackBNode(s, vt);
kvn@3882 282 case T_CHAR:
kvn@3882 283 case T_SHORT:
kvn@3882 284 return new (C, vlen+1) PackSNode(s, vt);
kvn@3882 285 case T_INT:
kvn@3882 286 return new (C, vlen+1) PackINode(s, vt);
kvn@3882 287 case T_LONG:
kvn@3882 288 return new (C, vlen+1) PackLNode(s, vt);
kvn@3882 289 case T_FLOAT:
kvn@3882 290 return new (C, vlen+1) PackFNode(s, vt);
kvn@3882 291 case T_DOUBLE:
kvn@3882 292 return new (C, vlen+1) PackDNode(s, vt);
duke@435 293 }
duke@435 294 ShouldNotReachHere();
duke@435 295 return NULL;
duke@435 296 }
duke@435 297
kvn@3882 298 // Create a binary tree form for Packs. [lo, hi) (half-open) range
kvn@3882 299 Node* PackNode::binaryTreePack(Compile* C, int lo, int hi) {
kvn@3882 300 int ct = hi - lo;
kvn@3882 301 assert(is_power_of_2(ct), "power of 2");
kvn@3882 302 if (ct == 2) {
kvn@3882 303 PackNode* pk = PackNode::make(C, in(lo), 2, vect_type()->element_basic_type());
kvn@3882 304 pk->add_opd(1, in(lo+1));
kvn@3882 305 return pk;
duke@435 306
kvn@3882 307 } else {
kvn@3882 308 int mid = lo + ct/2;
kvn@3882 309 Node* n1 = binaryTreePack(C, lo, mid);
kvn@3882 310 Node* n2 = binaryTreePack(C, mid, hi );
duke@435 311
kvn@3882 312 BasicType bt = vect_type()->element_basic_type();
kvn@3882 313 switch (bt) {
kvn@3882 314 case T_BOOLEAN:
kvn@3882 315 case T_BYTE:
kvn@3882 316 return new (C, 3) PackSNode(n1, n2, TypeVect::make(T_SHORT, 2));
kvn@3882 317 case T_CHAR:
kvn@3882 318 case T_SHORT:
kvn@3882 319 return new (C, 3) PackINode(n1, n2, TypeVect::make(T_INT, 2));
kvn@3882 320 case T_INT:
kvn@3882 321 return new (C, 3) PackLNode(n1, n2, TypeVect::make(T_LONG, 2));
kvn@3882 322 case T_LONG:
kvn@3882 323 return new (C, 3) Pack2LNode(n1, n2, TypeVect::make(T_LONG, 2));
kvn@3882 324 case T_FLOAT:
kvn@3882 325 return new (C, 3) PackDNode(n1, n2, TypeVect::make(T_DOUBLE, 2));
kvn@3882 326 case T_DOUBLE:
kvn@3882 327 return new (C, 3) Pack2DNode(n1, n2, TypeVect::make(T_DOUBLE, 2));
kvn@3882 328 }
kvn@3882 329 ShouldNotReachHere();
duke@435 330 }
duke@435 331 return NULL;
duke@435 332 }
duke@435 333
kvn@3882 334 // Return the vector version of a scalar load node.
kvn@3882 335 LoadVectorNode* LoadVectorNode::make(Compile* C, int opc, Node* ctl, Node* mem,
kvn@3882 336 Node* adr, const TypePtr* atyp, uint vlen, BasicType bt) {
kvn@3882 337 const TypeVect* vt = TypeVect::make(bt, vlen);
kvn@3882 338 return new (C, 3) LoadVectorNode(ctl, mem, adr, atyp, vt);
kvn@3882 339 return NULL;
kvn@3882 340 }
kvn@3882 341
kvn@3882 342 // Return the vector version of a scalar store node.
kvn@3882 343 StoreVectorNode* StoreVectorNode::make(Compile* C, int opc, Node* ctl, Node* mem,
kvn@3882 344 Node* adr, const TypePtr* atyp, Node* val,
kvn@3882 345 uint vlen) {
kvn@3882 346 return new (C, 4) StoreVectorNode(ctl, mem, adr, atyp, val);
kvn@3882 347 }
kvn@3882 348
duke@435 349 // Extract a scalar element of vector.
kvn@3882 350 Node* ExtractNode::make(Compile* C, Node* v, uint position, BasicType bt) {
kvn@3882 351 assert((int)position < Matcher::max_vector_size(bt), "pos in range");
duke@435 352 ConINode* pos = ConINode::make(C, (int)position);
duke@435 353 switch (bt) {
duke@435 354 case T_BOOLEAN:
kvn@3882 355 return new (C, 3) ExtractUBNode(v, pos);
duke@435 356 case T_BYTE:
duke@435 357 return new (C, 3) ExtractBNode(v, pos);
duke@435 358 case T_CHAR:
duke@435 359 return new (C, 3) ExtractCNode(v, pos);
duke@435 360 case T_SHORT:
duke@435 361 return new (C, 3) ExtractSNode(v, pos);
duke@435 362 case T_INT:
duke@435 363 return new (C, 3) ExtractINode(v, pos);
duke@435 364 case T_LONG:
duke@435 365 return new (C, 3) ExtractLNode(v, pos);
duke@435 366 case T_FLOAT:
duke@435 367 return new (C, 3) ExtractFNode(v, pos);
duke@435 368 case T_DOUBLE:
duke@435 369 return new (C, 3) ExtractDNode(v, pos);
duke@435 370 }
duke@435 371 ShouldNotReachHere();
duke@435 372 return NULL;
duke@435 373 }
kvn@3882 374

mercurial